Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
FTIR STUDIES OF SURFACE ADSORPTION
ON NOBLE METAL HYDROSOLS

A thesis submitted to the
University of Auckland for
the degree of
Doctor of Philosophy

by
Michael Roger Mucalo

Department of Chemistry
University of Auckland
April, 1991
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>IX</td>
</tr>
<tr>
<td>Abstract</td>
<td>XII</td>
</tr>
<tr>
<td>List of Figures</td>
<td>XIV</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XXVI</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>XXVIII</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION

1.1 Definition of a Hydrosol 1
1.2 History 1
1.3 Applications of Metal Hydrosols 2
1.4 Relationship between Metal Hydrosols and Electrodes 3
1.5 Direct Investigative Methods for Studying Metal Hydrosols 4
1.6 In situ Infrared Spectroscopy of the Electrode/Electrolyte Interface 6
1.7 Aims of the Present Study 7

CHAPTER 2: THEORY OF EXPERIMENTAL TECHNIQUES

2.1 Fourier Transform Infrared Spectroscopy (FTIR) 9
2.2 Spectroelectrochemical Techniques 10
CHAPTER 3: PLATINUM AND PALLADIUM HYDROSOLS: CHARACTERISATION BY X-RAY PHOTOELECTRON SPECTROSCOPY AND TRANSMISSION ELECTRON MICROSCOPY

3.1 Introduction

3.2 Experimental

Reagents

Preparation of Hydrosols

(a) Borohydride-Generated Metal Hydrosols

(b) Citrate-Generated Platinum Hydrosols

(c) CO-generated Palladium Hydrosols

(d) Electric-Arc-Generated (Bredig) Platinum Hydrosol

Preparation of the PtO₂/CO Sample

Transmission Electron Microscopy

X-ray Photoelectron Spectroscopy

3.3 Results and Discussion

Transmission Electron Microscopy

X-ray Photoelectron Spectroscopy

(a) Platinum Hydrosols
(i) Borohydride- and Citrate-Generated Hydrosols 35
(ii) Bredig Platinum Hydrosols 41
(iii) PtO₂/CO Sample 43
(b) Palladium Hydrosols
 (i) Borohydride-Generated Palladium Hydrosols
 (Methods A and B) 46
 (ii) PdCl₂/CO Palladium Hydrosol 49
 (c) Estimation of Thickness of the Oxide Film on the Hydrosols 50

CHAPTER 4: THE INFLUENCE OF pH ON CARBON MONOXIDE ADSORPTION ON PLATINUM AND PALLADIUM HYDROSOLS

4.1 Introduction 53

4.2 Experimental
Reagents 54
Preparation of Platinum and Palladium Hydrosols 54
Characterisation of the Hydrosols 55
Spectroscopy 57

4.3 Quantification of CO Coverage on Platinum and Palladium Hydrosols
(A'(CO), θ and Θ)
 (a) Calculation of Normalised Absorbance (A'(CO)) 59
 (b) Calculation of θ 60
 (c) Calculation of Θ (Metal-Face-Averaged Coverage) 63

4.4 Results and Discussion
 (a) Natural pH Studies
(i) Pt sol/CO (pH ~ 5.0) 65
(ii) PtO₂/CO 68
(iii) Pd sol/CO (pH ~ 6.0) 68
(iv) Band Asymmetry of ν(CO)_{ads} 70

(b) Adjusted pH Studies
(i) Pt sol/CO (adjusted pH) 71
(ii) Pd sol/CO (adjusted pH) 76
(iii) Comparison with the Electrode/Electrolyte Interface 82

CHAPTER 5: THE EFFECT OF ADDED SALTS ON CO ADSORPTION ON PLATINUM AND PALLADIUM HYDROSOLS

5.1 Introduction 87
5.2 Experimental
Reagents 88
Spectroscopy 89

5.3 Results and Discussion
Stability of Hydrosol Towards Added Inorganic Salts 90
Effect of Salt Addition on ν(CO)_{ads} 90
(i) Poisoning Anions 93
(ii) Inert Anions 97
(iii) Anions affecting ν(CO)_{ads} via pH change 100
Effect of Aggregation on the ν(CO)_{ads} Band 103
CHAPTER 6: INFRARED STUDIES OF CO ADSORPTION ON PLATINUM SOLS IN ALCOHOLIC MEDIA

6.1 Introduction

6.2 Experimental

- **Reagents**
- **Preparation of Hydrosols and Solutions**
- **Ultra-Violet/Visible Spectroscopy**
- **Infrared Spectroscopy**

6.3 Results and Discussion

(a) **Ultra-Violet/Visible Spectroscopy**

(b) **Infrared Spectroscopy**

(i) Pt Sol/CO in Aqueous Mixtures of the C₃-C₇ n-Alcohols

(ii) Pt Sol/CO in Aqueous Methanol and Ethanol

(iii) Colloidal Platinum Extracted into n-Alcohols

(iv) PVA-Protected Platinum Hydrosols:

* Transmission Electron Microscopy

(v) Infrared Spectra of CO Adsorbed on PVA-Protected Platinum Hydrosols

(vi) Comparison with the Electrode/Electrolyte Interface

(vii) Other Organic Compounds Containing Alcohol Groups

CHAPTER 7: THE EFFECT OF ACETYLENE, HYDROGEN AND OXYGEN ON CO ADSORPTION ON PLATINUM HYDROSOLS

7.1 Introduction
7.2 Experimental

Reagents

Spectroscopy

7.3 Results and Discussion

(i) Pt sol/C\textsubscript{2}H\textsubscript{2} and Pt sol/H\textsubscript{2} 141
(ii) Pt sol/CO/C\textsubscript{2}H\textsubscript{2} 142
(iii) Pt sol/CO/H\textsubscript{2} 145
(iv) Pt sol/CO/O\textsubscript{2} 149

CHAPTER 8: INFRARED STUDIES OF CO ADSORPTION ON RHODIUM HYDROSOLS

8.1 Introduction 151

8.2 Experimental

Reagents 153

Preparation and Characterisation of Rhodium Hydrosols 153

Transmission Electron Microscopy 154

Infrared Spectroscopy 155

8.3 Results and Discussion

(i) *Transmission Electron Microscopy* 155
(ii) *Rh sol/CO at Natural pH (ca. 2.2)* 157
(iii) *Adjusted pH Studies* 161
(iv) *Comparison with the electrode\textendash;electrolyte Interface* 164
CHAPTER 9: INFRARED SPECTROELECTROCHEMICAL STUDIES OF THE CORROSION OF NICKEL IN AQUEOUS CYANIDE MEDIA

9.1 Introduction 168
9.2 Experimental
Materials 170
Cell Design 170
Spectroelectrochemistry 172
Electrode Pretreatment and Data Collection 172
9.3 Results and Discussion
Cyclic Voltammetry 174
Infrared Spectra of the Nickel/Cyanide System 177
Correlation of Spectroscopic and Electrochemical Data 184

CHAPTER 10: CONCLUSIONS

10.1 Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy 188
10.2 Infrared Spectroscopy 189
10.3 Comparison with the Electrode/Electrolyte Interface 189
10.4 Infrared Spectroelectrochemistry of the Nickel/Cyanide Solution Interphase 191
REFERENCES 192

APPENDIX 1: CALCULATION OF SURFACE OXIDE THICKNESS ON METAL HYDROSOL PARTICLES 204
I would like to thank my supervisor Professor Ralph Cooney to whom I am indebted for the invaluable assistance, support and encouragement he has offered over the past three years of my PhD. The time he has taken out on many occasions to offer advice on various matters such as job opportunities, C.V. preparation, the presentation of seminars, and the preparation of scientific publications has been of tremendous benefit over the years and is greatly appreciated.

I am very grateful to Dr Jim Metson for his advice in the operation of the Kratos XSAM X-ray photoelectron spectrometer, for the use of the reaction cell that he developed (in conjunction with Ken Jackson) and, in the interpretation of X-ray photoelectron spectra.

I would like to extend my thanks to Associate-Professor Graham Wright for his help and advice in many matters as well as valuable information offered on electrochemistry and its relation to colloid systems.

Thanks are also due to Associate-Professor Graham Bowmaker for his performing CAS-ON-LINE searches. I am also very grateful to Dr Allan Easteal for his advice pertaining to the operation and calibration of the Anton-Paar Digital Densimeter.

I would like to acknowledge Associate-Professor Michael Taylor for the use of his travelling microscope for measuring particle sizes and Professor Russell Howe for the loan of the CO cylinder. Professor Milton Kerker and Dr Stuart Bradley are thanked for their valuable contributions to discussions on the optical properties.
of systems of small particles. I am also very grateful for the advice offered by Professors John Bertie (Alberta), Norman Sheppard (East Anglia) and Colin Rochester (Dundee) on general aspects of spectroscopy and CO adsorption on metal surfaces.

Special thanks are extended to Dr Terry Gruijters of the University of Auckland Cell Biology Department for the use of the electron microscope facilities. His instruction in the use of the electron microscope, preparation of copper grids and the measurement of particles using image-processing has been a valuable learning experience for me and was much appreciated.

The assistance and advice of Mr Bill Qualls of Qualls Scientific Services pertaining to the Digilab FTIR spectrometer are very gratefully acknowledged. I would like to extend my gratitude to Dr John Seakins, Richard Barton as well as the Glassblowers and Instrument and Electronics people for their assistance in making the electric arc (Bredig) synthesis of platinum sols possible. I also would like to thank Mrs Dorothy Chaffe for the use of her typewriter on numerous occasions.

A special thank you is extended to my friends and work colleagues: Diana Siew, Stéphane Brienne, Yee Hong Chee Roscoe, Andrew Lewis, Les Young, Dr Tom Barton, Jim Blanking and Cathy Butler. Our frequent "chats", "conferences", and lunch excursions in the central city were a source of much enjoyment and will be fondly remembered. Other people whom I would like to thank for assistance offered over the past few years are Catherine Hobbis, Margaret Hyland and Michael Logan.

I am grateful to the University Grants Committee and the Vice Chancellor's
Committee for financial support in the form of a Postgraduate and William Georgetti Scholarship as well as to the University of Auckland Chemistry Department for the awarding of a Teaching Fellowship for the tenure of my studies.

Last but not least, I would like to thank my mother and other members of my family for their continued support and encouragement during the course of my studies.
Carbon monoxide adsorption, surface speciation and particle size distributions have been studied in platinum, palladium, and rhodium hydrosol systems using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. In transmission electron micrographs of unprotected platinum and palladium hydrosols, particle necklacing believed to arise from sintering during preparation, is apparent. The average particle sizes of all hydrosols studied were in the range of 2 to 12 nm. X-ray photoelectron spectra of the metal hydrosols revealed evidence for (Pt-O)_{ads}, Pt(II) and Pt(IV) oxides on platinum hydrosol particles whereas Pd(II) and Pd(IV) oxides were detected on the surfaces of palladium hydrosol particles. These surface oxides are found to be important in influencing hydrosol surface processes such as CO adsorption as a function of pH, inhibition of CO adsorption by alcohols and surface corrosion products resulting from the addition of iodide and cyanide.

Fourier transform infrared spectra of CO-treated metal hydrosols revealed bands due to CO linearly adsorbed on the metal particles at ca. 2070 cm^{-1} (Pt), 2067 cm^{-1} (Pd) and 2045 cm^{-1} (Rh) whereas bands due to bridge-adsorbed (B_{ads}) CO were detected at ca. 1950 cm^{-1} (Pd) and 1890 cm^{-1} (Rh). The use of CO as a spectroscopic probe molecule enabled the study of changes in the surface properties of the metal hydrosols which were induced by changes in the dispersion medium. For example, \nu(CO)_{ads} was observed to decrease in infrared spectra of CO-treated platinum and rhodium hydrosols as pH was increased by KOH or other dissolved salts yielding
alkaline solutions. This suggested a reduction in CO coverage resulting from hydroxyl adsorption and consequent increased oxide growth on the particles. In contrast, CO adsorption on platinum and rhodium hydrosols was enhanced in acidic media possibly as a result of the neutralisation of surface hydroxyls. The spectroscopic behaviour of adsorbed CO on platinum and rhodium hydrosols was only comparable to that of CO adsorbed at an electrode surface in acidic media when protecting agent was present which prevented aggregation of the hydrosol in such media. Inhibition of CO adsorption on platinum hydrosols was induced by the addition of aliphatic alcohols, poly(vinyl alcohol) and poisoning anions such as CN⁻ and SH⁻. Correlations of ν(CO)ads with CO coverage suggested that island formation of adsorbed CO was occurring for CO adsorption on unprotected palladium hydrosols and protected platinum and rhodium hydrosols as a function of pH.

In allied investigations, an infrared spectroelectrochemical study of corrosion of a nickel electrode in aqueous cyanide media has revealed that [Ni(CN)₄]²⁻ is detected at potentials more cathodic than 200 mV vs. SCE. Cyanide was oxidised to cyanate (OCN⁻) and then successively to carbon dioxide at potentials more anodic than 200 mV vs. SCE. The appearance of features at 2094 cm⁻¹ (HCN) and 2256 cm⁻¹ (HNCO) were attributed to pH changes associated with the oxidation of cyanide to cyanate. The appearance of a band at ca. 2218 cm⁻¹ in infrared spectra of the thin layer at very high potentials (> 1000 mV vs. SCE) was believed to arise from an unstable nickel(II) isocyanate complex.
LIST OF FIGURES

Chapter 3:

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Photograph of the experimental apparatus used to prepare a Bredig (electric-arc-generated) platinum hydrosol. In addition to the protective goggles, a perspex screen was employed to provide protection from ultra-violet radiation produced during arcing.</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Transmission electron micrographs of the hydrosol systems: (a) Method A borohydride-generated palladium hydrosol, (b) palladium hydrosol generated from CO reduction of palladium(II) chloride, (c) Bredig (electric-arc-generated) platinum hydrosol, and (d) citrate-generated platinum hydrosol. The micrographs in (c) and (d) are at the same magnification.</td>
<td>27-28</td>
</tr>
<tr>
<td>3.3</td>
<td>Particle size distributions for the palladium and platinum hydrosols (a), (b) Method A and B borohydride-generated palladium hydrosols and (c) palladium hydrosol generated by CO reduction of palladium(II) chloride, (d) borohydride-generated platinum hydrosol, (e) Bredig platinum hydrosol, and (f) citrate-generated platinum hydrosol.</td>
<td>30-31</td>
</tr>
</tbody>
</table>
Fig. 3.4 Wide scan X-ray photoelectron spectra of (a) platinum (Bredig) hydrosol and (b) method B borohydride-generated palladium hydrosol.

Fig. 3.5 Narrow scan X-ray photoelectron spectra in the Pt4f region for borohydride-generated platinum hydrosols: (a) Typical Pt4f narrow scan showing the three curve-fitted spin-orbit doublets, (b) spectrum resulting from the subtraction of the Pt4f narrow scan of the hydrosol after H₂ treatment at 300°C from that of the hydrosol before H₂ treatment, and (c) spectrum resulting from the subtraction of the Pt4f narrow scan of the sputtered hydrosol from that of the unsputtered hydrosol.

Fig. 3.6 Narrow scan X-ray photoelectron spectra in the Pt4f region for the Bredig platinum hydrosol: (a) Typical Pt4f narrow scan showing the four curve-fitted spin-orbit doublets, and (b) spectrum resulting from the subtraction of the Pt4f narrow scan of the sputtered hydrosol from that of the unsputtered hydrosol.

Fig. 3.7 Typical Pt4f narrow scan over the region for the PtO₂/CO system showing the four curve-fitted spin-orbit doublets.
Fig. 3.8 Narrow scan X-ray photoelectron spectra in the Pd3d region for method B borohydride-generated palladium hydrosols: (a) Typical Pd3d narrow scan showing the three curve-fitted spin-orbit doublets, (b) spectrum resulting from the subtraction of the Pd3d narrow scan of the hydrosol after H₂ treatment at 300°C from that of the hydrosol before H₂ treatment, and (c) spectrum resulting from the subtraction of the Pd3d narrow scan of the sputtered hydrosol from that of the unsputtered hydrosol.

Chapter 4

Fig. 4.1 Photograph of a typical borohydride-generated platinum hydrosol as well as the vessel in which sol samples were treated with CO gas.

Fig. 4.2 Infrared absorbance of the association band of water (0.010 x 10⁻³ m pathlength) at 2137 cm⁻¹ (A_{2137}) vs. the ultra-violet/visible absorbance (10 x 10⁻³ m pathlength) at 450 nm (A_{450}) for diluted samples of a platinum sol.

Fig. 4.3 Infrared absorbance spectra of CO adsorbed on metal sols at natural pH after spectral subtraction of water: (a) infrared transmission spectrum of CO adsorbed on a platinum sol, (b) spectrum of CO
adsorbed on a platinum sol obtained using Si ATR sampling, and (c) infrared transmission spectrum of CO adsorbed on a palladium sol.

Fig. 4.4 Graph of $v(\text{CO})_{\text{ads}}$ vs. time after preparation of the sample for CO adsorbed on a borohydride-generated platinum hydrosol.

Fig. 4.5 Infrared spectrum of CO adsorbed on finely divided platinum generated by CO reduction of platinum dioxide held in aqueous suspension: (a) spectrum acquired immediately after preparation of sample and (b) spectrum acquired after 30 minutes standing in infrared solution cell.

Fig. 4.6 Infrared absorbance spectra of CO adsorbed on a platinum sol at pH: (a) 2.41, (b) 3.81, (c) natural pH (4.86), (d) 7.31, (e) 9.15, (f) 10.75, (g) 11.66, and (h) 12.04. Spectra (a), (b), and (h) represent infrared spectra of CO adsorbed on aggregated sol samples.

Fig. 4.7 $v(\text{CO})_{\text{ads}}$ vs. pH for the Pt sol/CO system (collated data). A polynomial curve of order x^5 (truncated at pH 2.70) has been fitted to the data.
Fig. 4.8 θ and $A'(CO)$ vs. pH for the Pt sol/CO system (collated data). The fitted parabola illustrates tentatively the trend of CO coverage on Pt sols with pH.

Fig. 4.9 $v(CO)_{ads}$ vs. pH for the Pd sol/CO system (collated data). Two straight lines determined from independent least-squares analyses have been drawn through data points in the pH range 2.0 to 11.5 and 11.5 to 13.0.

Fig. 4.10 θ and $A'(CO)$ vs. $v(CO)_{ads}$ for the Pd sol/CO system (collated data).

Fig. 4.11 Sub-band analysis of the spectrum of CO adsorbed on a Pd sol at natural pH. The spectral profile was subjected to a two-point baseline correction and Savitsky-Golay smoothing of degree 7 prior to curve-fitting.

Chapter 5:

Fig. 5.1 Correlation of $v(CO)_{ads}$ for CO adsorbed on platinum sols in the presence of various added anions with CO coverage given by $\theta(CO)_{ads}$.

Fig. 5.2 Infrared spectra of CO adsorbed on a platinum hydrosol in the presence of various anions. Top to bottom: no anions added,
1.3 \times 10^{-4} \text{ mol dm}^{-3} \text{ NaSH}, 10^{-4} \text{ mol dm}^{-3} \text{ KCN}, 10^{-2} \text{ mol dm}^{-3} \text{ NaOAc}, \\
2.2 \times 10^{-3} \text{ mol dm}^{-3} \text{ Na}_3\text{PO}_4, 2.2 \times 10^{-3} \text{ mol dm}^{-3} \text{ Na}_3\text{PO}_4 \text{ (adjusted} \\
to \text{ pH} = 6.8 \text{ using HClO}_4), 2.2 \times 10^{-3} \text{ mol dm}^{-3} \text{ K}_2\text{CO}_3, \text{ and 1 cm}^3 \\
of \text{ platinum sol saturated with sodium stearate (ca. } 10^{-6} \\
\text{ mol dm}^{-3}). \\

Fig. 5.3 Infrared spectra of the solution from (a) \text{ PtO}_2.x\text{H}_2\text{O} \\
suspension in 0.1 \text{ mol dm}^{-3} \text{ KCN}, (b) \text{ platinum hydrosol (aggregated)} \\
in 0.1 \text{ mol dm}^{-3} \text{ KCN}, \text{ and (c) clear solution arising from} \\
complete \text{ dissolution of palladium hydrosol in 0.1 \text{ mol dm}^{-3} \text{ KCN}.} \\
\text{In all spectra the band due to bulk solution cyanide (v(CN)} = \\
2080 \text{ cm}^{-1}) \text{ has been suppressed by subtraction.} \\

Fig. 5.4 v(CO)_{ads}-\text{pH data from infrared spectra pertaining} \\
to \text{ CO adsorbed on platinum hydrosols in the presence of} \\
various \text{ anions superimposed on the frequency-pH data (open} \\
circles) \text{ for CO adsorbed on platinum hydrosols from Chapter 4.} \\
\text{Legend: phosphate (filled squares), carbonate (filled diamonds),} \\
acetate (filled triangles), cyanide, hydrosulfide (filled \\
circles) and stearate obscured by filled square at pH ~ 10). \\

Fig. 5.5 Infrared spectra of \text{ CO adsorbed on a platinum hydrosol} \\
in \text{ the presence of calcium chloride: (a) } 1 \times 10^{-5} \text{ mol dm}^{-3} \text{ CaCl}_2 \\
\text{(hydrosol stable) and (b) } 1 \times 10^{-3} \text{ mol dm}^{-3} \text{ CaCl}_2 \text{ (hydrosol}
Chapter 6:

Fig. 6.1: Averaged \(\nu(\text{CO})_{\text{ads}}\) vs. \(\log_{10}[\text{ROH}]\) for CO adsorbed on platinum hydrosols in: (a) aqueous n-propanol (filled circles) and (b) aqueous n-butanol (open circles). Linear-least-squares straight lines have been fitted to each data set.

Fig. 6.2: Averaged \(\nu(\text{CO})_{\text{ads}}\) vs. \(\log_{10}[\text{ROH}]\) for CO adsorbed on platinum hydrosols in: (a) aqueous n-pentanol (open circles), (b) aqueous n-hexanol (filled circles), and (c) aqueous n-heptanol (open triangles). Second-order polynomials have been fitted to each data set.

Fig. 6.3: Infrared spectra demonstrating the change in \(\nu(\text{CO})_{\text{ads}}\) for CO adsorbed on a platinum sol in aqueous n-propanol with increasing n-propanol concentration. Spectrum of adsorbed CO at \([\text{n-propanol}]= (a) 0 \text{ mol dm}^{-3}, (b) 10^{-4} \text{ mol dm}^{-3},\)
\((c) 10^{-3} \text{ mol dm}^{-3}, (d) 10^{-2} \text{ mol dm}^{-3}, (e) 10^{-1} \text{ mol dm}^{-3},\)
\((f) 0.5 \text{ mol dm}^{-3}, \text{ and (g) 1 mol dm}^{-3}.\)

Fig. 6.4: \(A'(\text{CO})\) vs. \(\log_{10}[\text{n-butanol}]\) for CO adsorbed on a platinum hydrosol in aqueous n-butanol.
Fig. 6.5: \(v(CO)_{ads} \) vs. \(A'(CO) \) for CO adsorbed on a platinum hydrosol in aqueous n-butanol.

Fig. 6.6: Averaged \(v(CO)_{ads} \) vs. \(\log_{10}[ROH] \) for CO adsorbed on a platinum hydrosol in: (a) aqueous ethanol (open circles) and (b) aqueous methanol (closed circles).

Fig. 6.7: Averaged \(A'(CO) \) vs. \(\log_{10}[MeOH] \) for CO adsorbed on a platinum hydrosol in aqueous methanol.

Fig. 6.8: Spectra of CO adsorbed on colloidal platinum in aqueous and alcoholic media: (a) water, (b) n-butanol (c) n-pentanol, (d) n-hexanol, (e) n-heptanol, and (f) n-octanol.

Fig. 6.9 (a) Transmission electron micrograph of a borohydride-generated PVA-protected platinum hydrosol and (b) particle size distribution of the hydrosol preparation.

Fig. 6.10: Spectra of CO adsorbed on: (a) unprotected platinum hydrosol and (b) PVA-protected platinum hydrosol.

Fig. 6.11 Comparison of frequency-pH behaviour for CO adsorbed on (a) the unprotected platinum hydrosol and (b) the PVA-
protected platinum hydrosol.

Chapter 7:

Fig. 7.1 Series of infrared spectra of platinum hydrosol samples which had each been treated with CO gas for 10 minutes and subsequently with C_2H_2 gas for: (a) 0 minutes, (b) 1.0 minute, (c) 6.0 minutes, (d) 8.0 minutes, and (e) 10.0 minutes.

Fig. 7.2 θ(CO)_ads vs. C_2H_2 treatment time for the Pt/CO/C_2H_2 system. Data has been collated from two experiments.

Fig. 7.3 Series of infrared spectra of platinum hydrosol sample which had been each treated with CO gas for 10 minutes and subsequently with H_2 gas for: (a) 0 minutes, (b) 0.5 minute, (c) 2.0 minutes, (d) 4 minutes, (e) 6 minutes, and (f) 10 minutes.

Fig. 7.4 θ(CO)_ads vs. H_2 treatment time for the Pt/CO/H_2 system. Data has been collated from two experiments.

Fig. 7.5 Comparison of v(CO)_ads-gas treatment time data for the: (a) Pt/CO/C_2H_2 system and the (b) Pt/CO/H_2 system.
Chapter 8:

Fig. 8.1 (a) Transmission electron micrograph and (b) particle size distribution of a PVA-protected borohydride-generated rhodium hydrosol.

Fig. 8.2 Typical infrared spectrum of CO adsorbed on a rhodium hydrosol. The rhodium hydrosol had not previously been subjected to ion-exchange.

Fig. 8.3 v(CO)ads vs. time after preparation of CO-treated sample for CO adsorbed on a rhodium hydrosol.

Fig. 8.4 Series of infrared spectra of CO adsorbed on a rhodium hydrosol at pH: (a) 0.41, (b) 1.51, (c) natural pH (2.2), (d) 3.78, (e) 6.80, (f) 8.29, (g) 9.86, and (h) 11.35.

Fig. 8.5 v(CO)ads vs. pH for the Rh sol/CO system. A polynomial of order x^2 has been fitted to the frequency-pH data.

Chapter 9:

Fig. 9.1: Spectroelectrochemical cells used for acquisition of infrared spectra at the nickel/cyanide solution interphase:
(a) Cell A, this diagram was obtained from reference 42) and
(b) a photograph of cell B.
Fig. 9.2: Optical path of the infrared beam in:
(a) Cell A and (b) Cell B.

Fig. 9.3: Comparison of voltammetric behaviour of a nickel electrode in alkaline perchlorate and cyanide media:
(a) Cyclic voltammogram (of the first potential sweep) of the Ni/0.1 mol L-1 KCN system recorded under thin-layer conditions in cell A (pH, 11.4, sweep rate, 5 mV s-1, E \textit{vs.} SCE), and
(b) cyclic voltammogram of a nickel electrode in ca. 0.1 mol L-1 NaClO\textsubscript{4} adjusted to pH 11.4 (sweep rate= 50 mV s-1).

Fig. 9.4: Infrared absorbance spectra for the thin-layer system, Ni/0.1 mol L-1 KCN with the single-beam spectrum acquired at -850 mV as a background.

Fig. 9.5 Potential-pH diagrams at 298.15 K and for a dissolved cyanide activity of 10{-2} for: (a) CN/H\textsubscript{2}O system
(b) H\textsubscript{2}CO\textsubscript{3}/HCO\textsubscript{3}/CO\textsubscript{3}{2-}/N\textsubscript{2} system at 1 atm pressure (cyanide oxidation products) and (c) Ni/CN/H\textsubscript{2}O system where [Ni(CN)\textsubscript{4}]2- (and not NiCN\textsubscript{2} (s)) is considered as a nickel/cyanide reaction product. These diagrams were reproduced from G.H. Kelsall, \textit{J. Electrochem. Soc.}, 1991, \textbf{138}, 108.

Fig. 9.6: Current-potential and absorbance-potential plots obtained
for the thin-layer system, Ni/0.1 mol L⁻¹ KCN, whilst infrared spectral acquisition was in progress: (a) current density (iₐ) against potential (E vs. SCE), (b) absorbance at 2124 cm⁻¹ against potential, and (c) absorbance at 2166-2168 cm⁻¹ against potential.

Appendix 1:

Fig. A-1: Model for the coincident spheres calculation of oxide thickness on metal hydrosols
LIST OF TABLES

Chapter 3:
Table 3.1 Suggested assignments for the spin-orbit doublets curve-fitted to Pt4f and Pd3d narrow scans. 37

Table 3.2 Line width and peak area ratio data from curve-fitting of 90% Gaussian/10% Lorentzian spin-orbit doublets to Pt4f and Pd3d narrow scans. 38

Table 3.3 Calculated thicknesses of oxide films on platinum and palladium hydrosols as measured by X-ray photoelectron spectroscopy. 52

Chapter 4:
Table 4.1 Calculated values of dv/d\psi_0 from dv/dpH for the Pt sol/CO and Pd sol/CO adjusted pH experiments. 84

Chapter 5:
Table 5.1 FTIR studies on the influence of anions on CO adsorption on platinum hydrosols. 94
Table 5.2 FTIR studies on the influence of anions on CO adsorption on palladium hydrosols.

Chapter 6:
Table 6.1 Percentage transfer (%p) values for extraction of colloidal platinum into alcoholic media.

Table 6.2 Calculated values of $\frac{dv}{dy_c}$ from $\frac{dv}{dpH}$ for the Pt sol (PVA)/CO adjusted pH experiments.

Chapter 8:
Table 8.1 Calculated values of $\frac{dv}{dy_c}$ from $\frac{dv}{dpH}$ for the Rh sol (PVA)/CO adjusted pH experiments.

Chapter 9:
Table 9.1 Survey of candidate species for the nickel/cyanide system.

Table 9.2 Species detected in the FTIR study of the system: Ni/0.1 mol dm$^{-3}$ KCN.
LIST OF ABBREVIATIONS AND SYMBOLS

FTIR = Fourier transform infrared spectroscopy
ATR = Attenuated total reflectance
SNIFTIRS = Subtractively normalised interfacial Fourier transform infrared spectroscopy.
PM-FTIRRAS = Polarisation modulated Fourier transform infrared reflection-absorption spectroscopy.
TEM = Transmission electron microscopy
XPS = X-ray photoelectron spectroscopy
NMR = Nuclear magnetic resonance
EXAFS = Extended X-Ray absorption fine structure
HREM = High resolution electron microscopy
SERS = Surface enhanced Raman scattering
CTAB = Cetyl trimethyl ammonium bromide
PVA = Poly(vinyl alcohol)
B_2 = The two-fold bridging mode of CO adsorbed on metal surfaces
I = Current in amperes (A)
i_A = Current density in μA cm^{-2}
A'((CO)) = Normalised absorbance of the \nu(CO)_{ads} Band
θ((CO))_{ads} = Fractional CO coverage on the metal hydrosol particles
Θ((CO))_{ads} = Metal-face-averaged CO coverage on the metal hydrosol particles
λ_n = Mean free path of electrons in XPS (in nm)
FWHM(i) = Full width at half maximum of the ith curve-fitted peak (XPS)

$A_i/M = \text{Peak area ratios (in XPS)}$

$A_{ox}/A_M = \text{Total metal oxide to metal peak area in curve-fitted X-ray photoelectron spectra.}$

$\sum(A_{CO}) = \text{The sum of the sub-band absorbances in curve-fitted } \nu(\text{CO})_{ads} \text{ bands}$

$A_{450} = \text{Turbidity at 450 nm in metal hydrosols as measured by ultra-violet/visible spectroscopy}$

$A_{2137} = \text{Absorbance of the association band of water in the infrared spectra of hydrosols at 2137 cm}^{-1}$

$ICV = \text{Irradiated cell volume}$

$V = \text{Volume of irradiated cell volume}$

$R = \text{Radius of the infrared beam}$

$L = \text{Sample pathlength in infrared spectroscopy}$

$S_M = \text{Total surface area of colloidal metal particles}$

$S_{CO} = \text{Surface area occupied by CO molecules on the metal hydrosol surface.}$

$S_{M,\text{atom}} = \text{Average surface area per metal atom (M=Pd, Pt)}$

$a = \text{Lattice vector lengths}$

$[M] = \text{Concentration of colloidal metal particles in metal hydrosols}$

$r = \text{Average particle radius of metal hydrosol particles.}$

$\rho = \text{Density of metal comprising metal particles.}$

$N_{\text{surf}} = \text{Total number of surface metal atoms available for CO adsorption in the irradiated cell volume.}$

$N_{CO} = \text{Total number of adsorbed CO molecules in the irradiated cell volume.}$

$S_{\text{Internal}}/A_{\text{External}} = \text{Ratio of internal CO molecules to external CO molecules in island}$
films of adsorbed CO.

dv/dpH = Slope of the v(CO)_{ads} vs. pH curves in metal sol/CO adjusted pH studies.

dv/d\psi_o = The rate of change of frequency (v) with surface potential (\psi_o) as applied to metal hydrosol/CO systems

dv/dE = The rate of change of frequency (v) with surface potential (E) as applied to metal electrode/CO systems.