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ABSTRACT: 

A simple and intuitive method for estimating the probability distribution of cumulative 

direct earthquake losses is presented. The method is a Monte Carlo simulation which 

treats the occurrence of earthquake events as a random Poisson process. Examples carried 

out using this method show that the probabilistic skew in a cumulative loss distribution is 

greatest for short considered time periods and for regions with lower overall seismic 

hazard. Disaggregation and sample loss functions in time are used to examine which 

intensity level events contributed most to the overall cumulative loss estimates and how 

often these events occurred. Errors and limitations of the model are briefly discussed, 

with the conclusion that the presented method is potentially a valuable means of 

conveying earthquake loss information, as an addition to an expected loss term and/or 

loss hazard curve. 

1 INTRODUCTION 

Expected or mean direct losses is often the key output variable for loss estimation and cost-benefit 

studies. Whether the loss estimation method is the PEER performance based-design framework (see 

Porter, 2003), a method based on capacity and demand spectrum as in HAZUS (see Kircher, Whitman, 

& Holmes, 2006), a method based on the Modified Mercalli Intensity (MMI) scale (see Smith & 

Cousins, 2002), or any other methods, the following can be generally stated: 

  For a loss estimation study, results are commonly presented as an expected loss, perhaps by 

way of a loss hazard curve (for example Bradley, Cubrinovski, Dhakal, & MacRae, 2010; 

Mander, Dhakal, Mashiko, & Solberg, 2007; Rahnama, Seneviratna, Morrow, & Rodriguez, 

2004 and others)  

  For a cost-benefit study, results are commonly presented as an expected cost-benefit, often in 

the form of an expected net present value (for example FEMA, 1994; Hopkins & Stuart, 2003 

and others) 

The loss-hazard curve plots the annual expected number of seismic events producing losses at or 

exceeding a given loss level, a direct extension of the seismic hazard curve. It provides information to 

the user about how frequently different loss level events are likely to occur. The area under the loss 

hazard curve represents the Expected Annual Loss (EAL). However, the limitation of the loss hazard 

curve is that while it informs users the annualised occurrence probability of different loss level events 

over a design period, it does not provide any information on how the actual event may likely vary 

from the expected amount. Disaggreations of expected losses are useful in allowing the user to see 

what were the most significant factors contributing to the expected losses, but they are still expected or 

mean terms. 

Expected losses, or expected cost-benefits, is undoubtedly a valuable parameter in earthquake risk 

management. However, it stands as self-evident that at the end of a structure’s design life, there can 

only be one outcome, which may be radically different than the ‘expected’ outcome. In this light, it 

would seem that a probability distribution of cumulative losses would be a very useful addition to 

expected value data, with the proviso that this can be attained with a reasonable accuracy and in a 

reasonable time.  
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Smith (2003a) has argued this in a journal paper in which he suggests the expected cost-benefit is, by 

its name, the mean or expected value of a probability distribution of many possible cost-benefit 

outcomes and in the context of decision-making, what is really needed is the full probability 

distribution.  

Smith presented a Monte Carlo technique for predicting loss distributions based on knowing the 

Guttenberg-Richter magnitude-frequency relationships of nearby sources of seismicity, an appropriate 

strong motion attenuation model in terms of MMI and the vulnerability of the buildings in question 

(Smith, 2003b; Smith & Cousins, 2002). Application of this technique to a cost-benefit study showed 

that a probability distribution of cost-benefit may be highly skewed, and hence conventional expected 

cost-benefit may be a poor decision-making tool when compared to other available options (Smith, 

2003a; Smith & Vignaux, 2006). 

More recently, Pei and Lindt (2009) used a Monte Carlo method to calculate a probability distribution 

of long-term cumulative losses for a given time period. In the analysis, the occurrence of earthquake 

events was modelled as a random Poisson process (Anagnos & Kiremidjian, 1988; Benjamin & 

Cornell, 1970, pp. 236-249; Der Kiureghian, 2005). The analysis first established the Poisson rate of 

‘notable’ earthquake shaking occurrences at a site and the probability distribution of shaking intensity 

for each ‘notable’ event (in terms of spectral acceleration), these were then combined with the loss 

intensity vulnerability model for the building in question, derived using PEER performance based 

design framework type methods. A key advantage of this technique was that conditional probability 

was implemented at all stages of the simulation through Bayesian updating. This therefore enabled the 

calibration of the results with any known data throughout the steps. Pei and Lindt applied this 

methodology in an example to calculate the probability distribution for cumulative loss for time 

periods of 1, 10, 20, 50 and 75 years for a woodframe building. Other notable studies using Monte 

Carlo simulation methods to calculate life cycle costs include those by Ergonul (2005, 2006) and Goda 

et al. (2010). 

One downside of Monte Carlo methods mentioned above is that they may be difficult to implement 

from the point of view of a structural earthquake engineering researcher. For example, Smith’s method 

required a model for sources of seismicity and their Guttenberg-Richter  ,   and    values. Pei’s 

method required a thorough background in Bayesian updating. Furthermore, Bayesian updating 

required much supplementary data. 

2 SIMPLIFIED METHOD FOR ESTIMATING PROBABILISTIC DISTRIBUTION OF 

CUMULATIVE LOSSES 

2.1 Overview 

The proposed overall framework for estimating the probability distribution of cumulative losses, 

modified from that presented by Pei and Lindt (2009), is illustrated in Figure 1. The earthquake 

occurrence models used in this framework are derived from a seismic hazard curve assuming a 

random Poisson process. The probabilistic loss given intensity model must be derived for the structure 

of interest using an appropriate method, such as the PEER performance based design framework. All 

of these are discussed in details in the following sections. 

2.2 Probability distribution for the number of earthquakes 

For each trial, the analysis randomly samples the number of earthquakes to occur in the considered 

time period. This requires a probability distribution for the number of earthquake events to occur. 

Assuming the occurrence of earthquakes at a site is adequately modelled by a random Poisson process, 

the probability of   earthquake events occurring of an intensity greater than equal to some intensity 

level,   , is given by Equation 1. 

           
[      ]   [      ]

  
 (1) 

where       is the mean annual number of events producing an intensity of    or greater, which can 

be obtained directly from a seismic hazard curve and   is the time period considered. 
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In order to create a practicable probability distribution for the total number of events to occur in the 

time period, it is necessary to place a lower limit on earthquake intensity,      , so that a pool of 

‘important’ events can be counted. Intuitively, this lower limit should be selected such that the 

occurrences of loss from earthquake events with shaking intensities less than the lower limit produce a 

negligible contribution to the overall losses. This can be achieved by disaggregating the expected 

annual loss by intensity and ensuring that the area under the resulting curve from earthquake 

intensities less than the lower limit is small. 

With a lower bound now placed on the earthquake intensity measure, substituting          into 

Equation 1 yields a probability distribution for the ‘total’ number of earthquake events to occur. For 

clarity, this is reproduced as Equation 2. 

              
[         ]

   [         ]

  
 (2) 

Users can create a cumulative probability distribution from Equation 2, from which different numbers 

of earthquake events can be randomly sampled for each trial of the Monte Carlo simulation. It is noted 

that as   becomes large, it may be necessary to use a Normal approximation to the Poisson 

distribution. 

 
Figure 1 - Flowchart for the Monte Carlo simulation framework 

2.3 Probability distribution for the intensity of each earthquake 

A probability distribution of intensity is required in order to randomly sample an intensity for each 

event that occurs. Equation 3 gives the simple formula for this distribution.       and          terms 

are the number of events expected to occur annually with intensity exceeding    and      , 

respectively. They can be read off a seismic hazard curve. This result has been previously reported by 

Der Kiureghian (2005, p. 1645). 

        
     

        
 (3) 

where         is the Complementary Cumulative Distribution Function (CCDF) of the intensity of 

each ‘important’ event (i.e. for intensities greater than      ) 

2.4 Probability distribution for loss conditional upon intensity 

For each intensity selected, a loss must then be selected conditional upon that intensity. This loss can 

be attained by random sampling from a CCDF of loss as a function of intensity,            . This 

distribution can be calculated using the PEER performance-based design framework as in Equation 4 

(Der Kiureghian, 2005; Porter, 2003). 
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 ∫∫           |                ||                | (4) 

where             is the CCDF of loss conditional upon intensity;                 is the CCDF of 

demand conditional upon intensity that may be derived using incremental dynamic analysis; 

                is the CCDF of damage conditional upon demand that may be derived by a 

damage analysis; and             is the CCDF of loss conditional upon damage that may be derived 

by a loss analysis. 

2.5 A simplified approach 

Including a probabilistic distribution of loss given intensity,            , in the Monte Carlo 

simulation adds a significant amount of set up and running time. This can be simplified by selecting 

the loss for each intensity measure as the expected or mean value of loss for that intensity measure, 

 [    ]. If this simplification is made, the random sampling of a loss for each intensity is not required 

because the expected or mean loss is a one-to-one, monotonic function of intensity measure  and as 

such the simulation procedure can be shortened. Instead of using Equation 2 to randomly sample a 

number of events, Equation 3 to randomly sample an intensity for each event and Equation 4 to 

randomly sample a loss for each intensity, it is possible to use Equation 5 to randomly sample a 

number of events with intensities greater than immin, and Equation 6 to randomly sample a loss for each 

event. As the      and         terms in Equations 5 and 6 can be obtained directly from a loss hazard 

curve, this simplified method will result in a significant time reduction in the set up and simulation 

process. 

     
[        ]

   [        ]

  
 (5) 

      
          

        
        

 
(6) 

where   is the loss incurred from an earthquake;      is the lower bound loss level event (the expected 

loss resulting from the minimum intensity event      );      is the mean annual number of events 

producing a loss of   or greater, which can be obtained directly from a loss hazard curve; and        is 

the CCDF of the loss of each ‘important’ event. 

2.6 Example: Comparing cumulative loss distributions from different New Zealand regions 

Consider the ten-storey reinforced concrete frame structure detailed in the New Zealand ‘Red Book’ 

(Bull & Brunsdon, 1998). The expected (mean) loss given intensity relationship for this structure was 

calculated by Bradley et al. (2009) using Incremental Dynamic Analysis and the PEER performance 

based framework. This expected loss given intensity relationship is reproduced as Figure 2(a). The 

building has a fundamental period of 1.5 s (Bradley, et al., 2009, p. 3) and is assumed to be situated on 

shallow (Class C) soil.  Spectral acceleration hazard curves (T=1.5 s, ξ=5%) for Wellington, 

Christchurch and Otira were approximated by multiplying the peak ground accelerations given by 

Stirling et al. (2002, p. 1894) by 0.88, the appropriate spectral shape factor from the New Zealand 

loadings code (Standards New Zealand, 2004). The resulting hazard curves are given in Figure 2(b).  

Cumulative loss distributions were then calculated for time periods of 1 year, 20 years, 50 years and 

100 years. In all cases, a lower bound intensity of 0.05 g was used. The results for Wellington, 

Christchurch and Otira are shown in Figures 3 and 4 respectively.  

In each location, as the simulation time period increased, the expected losses increased and the loss 

distributions became more normally distributed. Conversely, as the simulation time period decreased, 

the expected losses decreased and the loss distribution became more skewed towards zero losses, and 

producing a large divergence of mean and the median loss values. 

Comparing between the three regions, for the same time periods, loss distributions for Otira have 
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higher cumulative losses than for Wellington, which in turn have higher cumulative losses than for 

Christchurch (based on preconceived seismic hazard prior to 2010). This might be expected from 

Figure 2(b), where the annual rate of exceedances for large earthquakes (greater than 0.1g) is higher 

for Otira than for Wellington and higher for Wellington than for Christchurch. For example, for a 

design life of 50 years, the expected cumulative loss for Christchurch is $0.53 million, the expected 

cumulative loss for Wellington is $2.19 million and the expected cumulative loss for Otira is $7.54 

million.  Also, with increasing time period, greater reductions in skew can be observed for Otira than 

for Wellington, and the same for Wellington over Christchurch. For example, between 1 year and 100 

years, the percentile value of the mean cumulative loss for Otira dropped 32.0% (87.4% to 55.4%), the 

percentile value of the mean cumulative loss for Wellington dropped 25.5% (88.8% to 63.3%) and the 

percentile value of the mean cumulative loss for Christchurch dropped 15.4% (89.3% to 73.9%). 

Summarising the results in practical terms, when the considered time period is short (roughly in the 

order equating to the designed working life of a typical building), the earthquake loss distribution is 

bimodal in the extremes. Mean expected loss value is significantly over represented by small 

occurrences of large loss events, and in most instances one can expect no or minimum losses. The 

skewness of the loss distribution is a function of the seismic hazard curve in additional to the 

considered time period. 

  

Figure 2 – (a) Expected loss given intensity relationship for the building, (b) Seismic hazard curves for 

Wellington, Christchurch and Otira 

One of the disadvantages of cumulative distribution function plots for earthquake loss such as that 

shown in Figures 3 and 4 is that they do not convey information on how which intensity level or loss 

level events contributed to the overall cumulative losses, and how frequently these events occurred. 

These information are important for risk management and for checking the validity of the loss model. 

For this purpose, two alternate representations are helpful and are provided for the current simulation 

with the example Wellington building. 

In the first method, EAL was disaggregated by intensity level or loss level, the output of these 

processes are presented in Figures 5(a) and 5(b) respectively (Bradley, et al., 2009, p. 18; Smith, 

2008). In both figures, the Design Level Earthquake (DLE) is defined as the earthquake with 10% 

exceedance probability in 50 years and the Maximum Considered Earthquake (MCE) is defined as the 

earthquake with a 2% exceedance probability in 50 years. The second method plots the cumulative 

loss for individual Monte Carlo trial (loss sample function) against the simulation time., where the 

time of occurrence of an event was randomly and independently sampled from within the time period 

(Benjamin & Cornell, 1970, p. 236). Twenty loss sample functions for the Wellington example 

building over a 50 year time period are shown in Figure 6 for illustration. 
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Figure 3 – Cumulative loss distributions for Wellington and Christchurch example structures 

 

 

Figure 4 – Cumulative loss distributions for the Otira example structure 

Figure 5(a) shows that events less than the DLE, with spectral accelerations between 0.1g to 0.4g, 

made up the majority of events contributing to the overall losses. Using Figure 2(b) it can be 

calculated that the return period for events in this acceleration range is about 20 years. Events larger 

than the MCE occurred rarely but has a noticeable contribution to the overall losses. The return period 

of an event exceeding the MCE is 2475 years. Figure 5(b) shows similar information to Figure 5(a), 

except in the context of the loss caused by each event. It shows that most likely events have losses 

ranging from small loss levels (about $10,000) up to loss levels of about $3 million.  

In contrast, Figure 6 does not show an accurate breakdown of loss level events contributing to the 

overall losses, it instead has the advantage of providing a snapshot of ‘typical’ cumulative loss 

outcomes in the time domain based on the loss model used. The skew in the cumulative loss 

distribution is highlighted in that only 6 of the 20 sample trials shown reached a cumulative loss over 

the expected amount. The distribution in the contribution of each loss level event appears to fit with 

the distribution given in Figure 5(b). 
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Figure 5 – Expected loss probability density function for the Wellington example building over a 50 year design 

life disaggregated by (a) intensity level, and (b) loss level  

 
Figure 6 – Twenty sample functions of cumulative loss for the example building in Wellington 

3 LIMITATIONS 

The Monte Carlo method presented in this paper is subject to several sources of error due to the 

assumptions made in the modelling process. An outline of the major sources of error is given below. 

 The annual expected number of events are assumed to be exactly as given by a seismic hazard 

curve. This seismic hazard curve is the output of a Probabilistic Seismic Hazard Analysis 

which is subject to significant epistemic uncertainty (Bradley, 2009), at least in part due to a 

limited number of accurate strong motions recordings. Uncertainty at this stage might be 

reduced by using Bayesian updating (Pei & Lindt, 2009). 

 The ordinates on the seismic hazard curve are treated as Poisson means, in other words, 

earthquake events are assumed to occur randomly and independently according to a Poisson 

process. This model is mathematically convenient but over-simplified in terms of the actual 

geological processes that cause earthquakes, and is therefore likely to lead to some error. It is 

of course possible that more realistic models for earthquake occurrence could be used, for 

example, Markov or semi-Markov models or models incorporating a treatment of aftershocks 

(Anagnos & Kiremidjian, 1988). However, their implementation is likely to be considerably 

more complicated than the Poisson model, and hence they are avoided in this study.  
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 The relationship between financial loss and intensity level will typically be calculated by an 

analytical method such as the PEER performance base design framework. The choice of 

ground motions used in dynamic analysis, structural modelling assumptions, repair cost 

assumptions and, in particular, the treatment of component fragility functions will all have a 

significant effect on the results of such a study (Porter, 2003). Case studies into the magnitude 

of epistemic uncertainties in component fragility functions have been undertaken by Bradley 

(Bradley, 2010). 

 As the method presented in this paper investigates cumulative losses, it is neatly assumed that 

after any earthquake event, the structure is repaired instantaneously and exactly to its pre-

damage state. This may be acceptable for small events, but is likely to be untrue for larger 

events. In reality, the structure may be altered or even demolished. 

 The method considered only direct losses, it does not consider other sources of loss including 

business downtime losses, relocation costs or economic ramifications of loss of life or injury.   

One technique to minimise these errors would be to update the modelling relationships with physical 

data using Bayesian updating. 

4 CONCLUSIONS 

This paper presented a simple method for estimating the probability distribution of cumulative direct 

earthquake losses and net present values. The method treated the occurrence of earthquake events at a 

site as a random Poisson process and combined it with an appropriate loss intensity relationship to 

simplified loss estimation. Numerical examples showed that as the considered time period became 

shorter, the probability distribution for cumulative losses became progressively more skewed. 

Similarly, regions of lower overall seismicity had more skewed distributions of cumulative losses. In 

addition to disaggregation, a method based on Monte Carlo simulation was presented for investigating 

which intensity level or loss level events contributed most to the overall cumulative losses and how 

frequently these events occurred. Based on the examples undertaken and a brief examination of 

uncertainties the Monte Carlo method presented in this paper is potentially a valuable tool for 

conveying earthquake loss information, as an addition to an expected loss term and loss hazard curve. 
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