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Figure 4.16: Sensor fault fs1 and its estimated value f̂s1

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

M
ag

ni
tu

de

 

 

Actual sensor fault
Fault estimation by SMO
Fault estimation by AO

Figure 4.17: Sensor fault fs2 and its estimated value f̂s2
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observer that is also used to reduce the effect of the system uncertainty. The sensor

fault is directly estimated by the adaptive observer instead of using a sliding mode

observer. Adaptation laws are integrated into both schemes to deal with the situation

when the Lipschitz constant is unknown or too large, which may cause the failure of

solving LMIs to find design parameters for observers. Two examples have been used

to demonstrate the effectiveness of the proposed sensor fault estimation schemes.

Simulation results confirm that both methods can accurately estimate sensor faults

,including the incipient faults, in the presence of large system uncertainties.
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Chapter 5

Robust H∞ filtering for uncertain

nonlinear systems with fault

estimation synthesis

The problem of actuator fault and sensor fault diagnosis has been discussed in pre-

vious chapters. However, it is assumed that there is no sensor fault when dealing

actuator fault (chapter 2), or there is no actuator fault when dealing with sensor val-

idation (chapters 3 and 4). In this chapter, the simultaneous estimation of actuator

and sensor faults is studied.

5.1 Introduction

Almost all the approaches proposed in the past deal separately with actuator faults

and sensor faults [19, 51, 56, 77, 82, 104]. In other words, it is usually assumed that

there is no actuator fault when dealing with sensor validation, or sensors are healthy

when faults occur in actuators. However, in many practical systems, both actuators

and sensors are simultaneously prone to faults. Misinterpretation of actuator faults

and sensor faults may cause a high rate of false alarm and unnecessary mainte-

nance. Therefore, it would be desirable to consider actuator faults and sensor faults

under one unified framework, and coincidentally detect and isolate them. This moti-

vates the present study of estimating actuator faults and sensor faults which occur at

99
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the same time.

In this chapter, two schemes are developed for a class of uncertain nonlinear sys-

tems. The proposed methods essentially transform the original system into two sub-

systems (subsystem-1 and 2). Subsystem-1 includes the effects of actuator faults but

is free from sensor faults and subsystem-2 only has sensor faults. Sensor faults in

subsystem-2 take the appearance of actuator faults by using integral observer based

approach [92]. The augmented subsystem-2 is further transformed by a linear co-

ordinate transformation such that a specific structure can be imposed to the sensor

fault distribution matrix. The first scheme is based on the matching condition and two

sliding mode observers (SMOs) are designed to estimate actuator faults and sensor

faults, respectively. However, this assumption is restrictive and sometimes it is difficult

to find such matrices to satisfy both the Lyapunov equation and matching condition.

In order to reduce this conservativeness, we remove the assumption of matching

condition in the second scheme and use an adaptive observer (AO) to estimate the

sensor fault.

It is worth emphasizing that unlike in chapters 2,3 and 4 where the uncertainty un-

der consideration is assumed to be structured, the uncertainty considered in this

chapter is assumed to be unstructured and can be a high-frequency noise or a slow-

varying signal. For the case of structured uncertainty, certain rank conditions of the

uncertainty distribution matrix should be satisfied such that the uncertainty can be

completely decoupled from the fault. However, this additional assumption often limits

the application of FDI schemes. For the case of unstructured uncertainty, the com-

plete decoupling uncertainties from faults is not possible, but fortunately its effects on

the estimation errors of states and faults can still be minimized. This can be done by

integrating a prescribed H∞ disturbance attenuation level into fault estimators. The

H∞ control problem is able to address the issue of system uncertainties, and also be

applied to the typical problem of disturbance input control. It was initially formulated

in [106] where the H∞ norm from the norm-bounded exogenous disturbance signals

to the observer error is guaranteed to be below a prescribed level. In this chapter,

the sufficient condition for the stability of both proposed fault estimation observers is

presented in an LMI form. By solving the LMI optimization problem, the L2 gain of

the transfer from system uncertainties to the estimation errors can be minimized and

observer parameters can be obtained.

The chapter is organized as follows: section-5.2 briefly describes the mathematical
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preliminaries required for designing observers. Section-5.3 proposes the first fault

estimation scheme based on the matching condition. The stability condition of the

proposed observers are derived and expressed in LMIs. If the matching condition is

not satisfied, the second fault estimation scheme is given in section-5.4. The results

of simulation are shown in section-5.5 with conclusions in section-5.6.

5.2 Problem Formulation

Consider a nonlinear system described by

ẋ(t) = Ax(t) + f(x, t) + B(u(t) + fa(t)) + ∆ψ(t)

y(t) = Cx(t) + Dfs(t) (5.1)

where x ∈ Rn are the state variables, u ∈ Rm the inputs and y ∈ Rp the out-

puts. fa ∈ Rm and fs ∈ Rq denote the actuator fault and sensor fault, respectively.

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×q (p ≥ q) are known constant matri-

ces with C and D both being of full rank. The nonlinear continuous term f(x, t) ∈ Rn

is assumed to be known. Note that nonlinear term ∆ψ(t) which represents the mod-

elling errors or external disturbances is unstructured.

For the objective of achieving simultaneous fault estimation, the following assump-

tions are made throughout:

Assumption 5.1 rank(CB) = rank(B).

This assumption implies that the number of measurements is at least equal to the

number of effective inputs.

Lemma 5.1 Under Assumption 5.1, there exist state and output transformations

h =

[
h1

h2

]
= T

[
x1

x2

]
, w =

[
w1

w2

]
= S

[
y1

y2

]
(5.2)

such that in the new coordinate, the system matrices become:

TAT−1 =

[
A1 A2

A3 A4

]
, TB =

[
B1

0

]
, SCT−1 =

[
C1 0

0 C4

]
, SD =

[
0

D2

]
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where T ∈ Rn×n, S ∈ Rp×p, h1 ∈ Rm, w1 ∈ Rm, A1 ∈ Rm×m, A4 ∈ R(n−m)×(n−m),

B1 ∈ Rm×m, E1 ∈ Rm×r, C1 ∈ Rm×m, C4 ∈ R(p−m)×(n−m) and D2 ∈ R(p−m)×q. B1

and C1 are invertible.

Proof. See [91, 94, 107].

Remark 5.1 Notice that in Chapter 4 a similar coordinate transformation has been

used. The transformation is chosen such that the uncertainty distribution matrix after

the transformation becomes TE =

[
E1

0

]
. While in this chapter, the transformation

is chosen to make TB =

[
B1

0

]
.

Assumption 5.2 For every complex number s with nonnegative real part:

rank

[
sIn − A B

C 0

]
= n + m (5.3)

This assumption is known as the minimum phase condition.

Lemma 5.2 The pair (A4, C4) is detectable if and only if Assumption 5.2 holds.

Proof. See [94, 95].

Assumption 5.3 The nonlinear function f(x, t) is Lipschitz about x uniformly, that is,

∀x, x̂ ∈ X ,

‖f(x, t)− f(x̂, t)‖ ≤ Lf‖x− x̂‖ (5.4)

where Lf is the Lipschitz constant.

Assumption 5.4 The function ∆ψ(x, t) ,which represents the modeling uncertainty,

is unknown but bounded, and it satisfies ‖∆ψ‖ ≤ ξ. Also the unknown actuator fault

fa, sensor fault fs and the derivative of fs with respect to time are norm bounded,

i.e., ‖fa(t)‖ ≤ ρa, ‖fs(t)‖ ≤ ρs, ‖ḟs(t)‖ ≤ ρss.

After introducing the state and output transformations T =

[
T1

T2

]
and S =

[
S1

S2

]
,

the original system is converted into two subsystems:

ḣ1 = A1h1 + A2h2 + f1(T
−1h, t) + B1(u + fa) + ∆ψ1
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w1 = C1h1 (5.5)

ḣ2 = A3h1 + A4h2 + f2(T
−1h, t) + ∆ψ2

w2 = C4h2 + D2fs (5.6)

where (5.5) is referred to as subsystem-1 and (5.6) is referred to as subsystem-2,

T1 ∈ Rm×n, S1 ∈ Rm×p, f1(T
−1h, t) = T1f(T−1h, t), f2(T

−1h, t) = T2f(T−1h, t),

∆ψ1 = T1∆ψ and ∆ψ2 = T2∆ψ.

For subsystem-2, define a new state h3 =
∫ t

0
w2(τ)dτ so that ḣ3(t) = C4h2 + D2fs,

then the augmented system with the new state h3 is given as:

ḣ0 = A0h0 + Ā3h1 + T̄2f(T−1h, t) + D0fs + T̄2∆ψ

w3 = C0h0 (5.7)

where h0 =

[
h2

h3

]
∈ Rn+p−2m, w3 ∈ Rp−m, A0 =

[
A4 0

C4 0

]
∈ R(n+p−2m)×(n+p−2m),

Ā3 =

[
A3

0

]
∈ R(n+p−2m)×m, T̄2 =

[
T2

0

]
∈ R(n+p−2m)×n, D0 =

[
0

D2

]
∈

R(n+p−2m)×q and C0 =
[

0 Ip−m

]
∈ R(p−m)×(n+p−2m).

Lemma 5.3 The pair (A0, C0) is observable if Assumption 5.2 holds.

Proof. From the Popov-Belevitch-Hautus (PBH) test, the pair (A0, C0) is observable

if and only if

rank

[
sI − A0

C0

]
= rank




sI − A4 0

−C4 sI

0 I


 = n + p− 2m (5.8)

for all s ∈ C. If s = 0, it is obvious that

rank




sI − A4 0

−C4 sI

0 I


 = rank

[
−A4

−C4

]
+ p−m (5.9)

If Assumption 2 holds, then

rank

[
sI − A4

−C4

]
= n−m for all s ∈ C (5.10)
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It follows that the rank test (5.8) holds when s = 0.

When s 6= 0




sI − A4 0

−C4 sI

0 I




[
a1

a2

]
= 0 ⇒

[
a1

a2

]
= 0 (5.11)

since (A4, C4) is observable, which implies that the columns of




sI − A4 0

−C4 sI

0 I


 are

linearly independent and its rank is n + p− 2m.

This completes the proof.

It follows from Lemma 5.3 that there exists a matrix L0 ∈ R(n+p−2m)×(p−m) such that

A0 − L0C0 is stable, and thus for any Q0 > 0, the Lyapunov equation

(A0 − L0C0)
T P0 + P0(A0 − L0C0) = −Q0 (5.12)

has an unique solution P0 > 0 [80].

Partition P0 ∈ R(n+p−2m)×(n+p−2m) and Q0 ∈ R(n+p−2m)×(n+p−2m) as:

P0 =

[
P01 P02

P T
02 P03

]
, Q0 =

[
Q01 Q02

QT
02 Q03

]
, (5.13)

It follows from P0 > 0 and Q0 > 0 that P01 ∈ R(n−m)×(n−m) > 0, P03 ∈ R(p−m)×(p−m) >

0, Q01 ∈ R(n−m)×(n−m) > 0 and Q03 ∈ R(p−m)×(p−m) > 0. If P0 and Q0 have the

structure as shown in (5.13), then the following conclusion is obvious:

Lemma 5.4 The matrix A4 + P−1
01 P02C4 is stable if Lyapunov equation (5.12) is satis-

fied.

Proof. According to the structure of A0, C0, P0 and Q0, it is easy to see that the first

n−m columns of A0 − L0C0 are independent of L0. After the block multiplication to

(5.12), the following equation can be obtained as

AT
4 P01 + CT

4 P T
02 + P01A3 + P02C4 = −Q01
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This equation can be rewritten as

(A4 + P−1
01 P02C4)

T P01 + P01(A4 + P−1
01 P02C4) = −Q01

Since P01 > 0 and Q01 > 0, it follows that A4 +P−1
01 P02C4 is stable from the Lyapunov

theory.

In the next two sections 5.3 and 5.4, two schemes will be proposed to simultaneously

estimate actuator faults and sensor faults. The design of fault estimation schemes

begins by employing the nonsingular state transformation z := [zT
1 zT

2 ]T = T0h0 to

subsystem (5.7). T0 is defined as:

T0 =

[
In−m P−1

01 P02

0 Ip−m

]
(5.14)

After the transformation z = T0h0, the subsystem (5.7) becomes

ż = T0A0T
−1
0 z + T0Ā3h1 + T0T̄2f(T−1h, t) + T0D0fs + T0T̄2∆ψ

w3 = C0T
−1
0 z (5.15)

5.3 Fault estimation using SMOs

In this section, two sliding mode observers are developed to simultaneously estimate

multiple actuator faults and sensor faults for the system described by (5.1).

5.3.1 Design of SMOs

Prior to the design of sliding mode observers, the following assumption is made.

Assumption 5.5 There exists an arbitrary matrix F0 ∈ Rq×(p−m) such that:

DT
0 P0 = F0C0 (5.16)

Lemma 5.5 If Assumption 5.5 holds, then P−1
01 P02D2 = 0.
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Proof. See Lemma 2.1.

It is worth noting that a specific structure on the sensor fault distribution matrix T0D0

can be imposed in the new coordinate. If Assumption 5.5 is satisfied, then we can

have

Dz = T0D0 =

[
P−1

01 P02D2

D2

]
=

[
0

D2

]

The system (5.15) can be rewritten as

ż1 = Ā1z1 + Ā2z2 + A3h1 + f2(T
−1h, t) + ∆ψ2

ż2 = Ā3z1 + Ā4z2 + D2fs

w3 = Czz (5.17)

where

Ā1 = A4 + P−1
01 P02C4

Ā2 = −A4P
−1
01 P02 − P−1

01 P02C4P
−1
01 P02

Ā3 = C4 (5.18)

Ā4 = −C4P
−1
01 P02

Cz = C0T
−1
0 =

[
0 I

]

The Lyapunov matrix P0 in the new coordinate can be proved to have the following

quadratic form:

Pz = (T T
0 )−1P0T0

−1 =

[
P01 0

0 P̄03

]
(5.19)

where P̄03 = −P T
02P

−T
01 P02 + P03.

Substituting P0 = T T
0 PzT0, C0 = CzT0 and D0 = T−1

0 Dz into the matching condi-

tion (5.16) yields

DT
z Pz = F0Cz (5.20)

From the structure of Dz, Cz and Pz, it is easy to obtain that DT
2 P̄03 = F0.
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Since

[
h2

h3

]
= T−1

0

[
z1

z2

]
=

[
z1 − P−1

01 P02z2

z2

]
(5.21)

then subsystem (5.5) can be rewritten as

ḣ1 = A1h1 + A2h2 + f1(T
−1h, t) + B1(u + fa) + ∆ψ1

= A1h1 + A2z1 − A2P
−1
01 P02z2 + f1(T

−1h, t)

+ B1(u + fa) + ∆ψ1 (5.22)

For subsystem (5.22), the proposed sliding mode observer has the form:

˙̂
h1 = A1ĥ1 + A2ẑ1 − A2P

−1
01 P02w3 + f1(T

−1ĥ, t) + B1(u + ν1)

+ (A1 − As
1)C

−1
1 (w1 − ŵ1)

ŵ1 = C1ĥ1 (5.23)

where As
1 ∈ Rm×m is a stable matrix which needs to be determined.

The discontinuous output error injection term ν1 which is used to estimate the actuator

fault is defined as

ν1 =





(ρa + l1)
BT

1 P1(C−1
1 S1y−ĥ1)

‖BT
1 P1(C−1

1 S1y−ĥ1)‖ if C−1
1 S1y − ĥ1 6= 0

0 otherwise
(5.24)

where P1 ∈ Rm×m is the symmetric definite Lyapunov matrix for As
1 and l1 is a positive

scalar. It is worth noting that the state h1 can be computed from the measurement y

as h1 = C−1
1 S1y.

For subsystem (5.17), the proposed sliding mode observer has the form:

˙̂z1 = Ā1ẑ1 + Ā2w3 + A3C
−1
1 w1 + f2(T

−1ĥ, t)

˙̂z2 = Ā3ẑ1 + Ā4ẑ2 + (Ā4 − L)(w3 − ŵ3) + D2ν2

ŵ3 = ẑ2 (5.25)

where L ∈ R(p−m)×(p−m) is the observer gain. The discontinuous output error injec-
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tion term ν2 is used to estimate the sensor fault and is defined as:

ν2 =





(ρs + l2)
DT

2 P̄03(w3−ŵ3)

‖DT
2 P̄03(w3−ŵ3)‖ if w3 − ŵ3 6= 0

0 otherwise
(5.26)

where l2 is a positive constant which needs to be determined.

If the state estimation errors are defined as e1 = h1−ĥ1, e2 = z1− ẑ1 and e3 = z2− ẑ2,

then their dynamics after the occurrence of faults can be obtained as:

ė1 = As
1e1 + A2e2 +

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ B1(fa − ν1)

+ T1∆ψ (5.27)

ė2 = Ā1e2 +
(
f2(T

−1h, t)− f2(T
−1ĥ, t)

)
+ T2∆ψ (5.28)

ė3 = Ā3e2 + Le3 + D2(fs − ν2)

e3 = Cze0 (5.29)

Define

r(t) = H




h1(t)

z1(t)

z2(t)


 , and r̄ = He = H




e1

e2

e3


 (5.30)

where r(t) ∈ Rn+p−m is a linear combination of state variables to be estimated over

the horizon [0, T ]. H is a pre-specified weight matrix and assumed to have full rank:

H :=




H1 0 0

0 H2 0

0 0 H3


 (5.31)

Consider the following worst-case performance measure:

J := sup
‖∆ψ‖L2

6=0

‖r̄‖2
L2

‖∆ψ‖2
L2

(5.32)

The objective of this section is to design sliding mode observers in the form of (5.23)

and (5.25) such that the observer error dynamics (5.27)-(5.29) is asymptotically sta-

ble and the performance measure satisfies J ≤ µ, where µ is a small positive con-

stant. In other words, theH∞ gain of the transfer function from the system uncertainty
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∆ψ to the state estimation error r̄ is bounded by
√

µ.

In the next, the stability of the proposed fault estimators is studied and the sufficient

condition is summarized as follows:

Proposition 5.1 Under the Assumptions 5.1-5.5, the observer error dynamics is

asymptotically stable with an H∞ disturbance attenuation level
√

µ > 0 subject to

‖r̄‖L2 ≤
√

µ‖∆ψ‖L2 if there exist matrices As
1, L, P01 > 0, P02 and P̄03 > 0 such that:




Π1 + 1
α1

P1P1 P1A2 0 P1T1

AT
2 P1 Π2 + 1

α2
P01P01 CT

4 P̄03 P01T2

0 P̄03C4 Π3 0

T T
1 P1 T T

2 P01 0 −µIr




< 0 (5.33)

where Π1 = As
1
T P1 + P1A

s
1 + HT

1 H1, Π2 = AT
4 P01 + P01A4 + P02C4 + CT

4 P T
02 +

α1L2
f1
‖T−1‖2I +α2L2

f2
‖T−1‖2I +HT

2 H2, Π3 = P̄03L+LT P̄03 +HT
3 H3, Lf1 = ‖T1‖Lf

and Lf2 = ‖T2‖Lf .

Proof. Based on the quadratic form of Pz, we consider the Lyapunov function as:

V (t) = V1(t) + V2(t) + V3(t) (5.34)

where V1(t) = eT
1 P1e1, V2(t) = eT

2 P01e2 and V3(t) = eT
3 P̄03e3.

The time derivative of V1(t) along the trajectories of state estimation error dynamics

(5.27) can be shown to be:

V̇1(t) = eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ

+ 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ 2eT

1 P1B1(fa − ν1)

Since for any scalar α > 0, the inequality 2XT Y ≤ 1
α
XT X + αY T Y [46], then

V̇1(t) ≤ eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ +

1

α1

‖P1e1‖2

+ α1‖f1(T
−1h, t)− f1(T

−1ĥ, t)‖2 + 2eT
1 P1B1(fa − ν1)

≤ eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ +

1

α1

‖P1e1‖2

+ α1L2
f1
‖T−1‖2‖e2‖2 + 2eT

1 P1B1(fa − ν1) (5.35)
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It follows from (5.24) the last term of (5.35) can be calculated as:

eT
1 P1B1(fa − ν1) = eT

1 P1B1fa − (ρa + η1)
‖BT

1 P1e1‖2

‖BT
1 P1e1‖

≤ −l1‖BT
1 P1e1‖ < 0 (5.36)

Therefore

V̇1(t) ≤ eT
1 (As

1
T P1 + P1A

s
1 +

1

α1

P1P1)e1 + 2eT
1 P1A2e2

+ 2eT
1 P1T1∆ψ + α1L2

f1
‖T−1‖2‖e2‖2 (5.37)

Similarly, the derivatives of V2(t) and V3(t) with respect to time can be obtained as:

V̇2(t) = eT
2

(
ĀT

1 P01 + P01Ā1

)
e2 + 2eT

2 P01

(
f2(T

−1h, t)− f2(T
−1ĥ, t)

)

+ 2eT
2 P01T2∆ψ

≤ eT
2 (AT

4 P01 + P01A4 + P02C4 + CT
4 P T

02 +
1

α2

P01P01 + α2L2
f2
‖T−1‖2I)e2

+ 2eT
2 P01T2∆ψ (5.38)

V̇3(t) = eT
3 (P̄03L + LT P̄03)e3 + 2eT

3 P̄03C4e2 + 2eT
3 P̄03D2(fs − ν2)

≤ eT
3 (P̄03L + LT P̄03)e3 + 2eT

3 P̄03C4e2 − 2l2‖DT
2 P̄03e3‖

≤ eT
3 (P̄03L + LT P̄03)e3 + 2eT

3 P̄03C4e2 (5.39)

Therefore, the derivative of V (t) can be obtained from:

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t)

≤ eT
1 (As

1
T P1 + P1A

s
1 +

1

α1

P1P1)e1 + eT
2 (AT

4 P01 + P01A4 + P02C4 + CT
4 P T

02

+
1

α2

P01P01 + α1L2
f1
‖T−1‖2I + α2L2

f2
‖T−1‖2I)e2 + eT

3 (P̄03L + LT P̄03)e3

+ 2eT
1 P1A2e2 + 2eT

3 P̄03C4e2 + 2eT
1 P1T1∆ψ + 2eT

2 P01T2∆ψ (5.40)

To attain the robustness of the proposed observer to the uncertainty ∆ψ inH∞ sense,

the following stability constraint is imposed instead of V̇ < 0:

V̇ + r̄T r̄ − µ∆ψT ∆ψ ≤ 0 (5.41)

If this constraint holds, then the state estimation error dynamics is stable and the H∞
gain of the transfer function from ∆ψ to r̄ is norm bounded by

√
µ [108, 107]. In other
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words, (5.41) minimizes the worst case effect of the system uncertainty ∆ψ on the

state estimation error r̄.

V̇ + r̄T r̄ − µ∆ψT ∆ψ ≤




e1

e2

e3

∆ψ




T 


Π1 + 1
α1

P1P1

AT
2 P1

0

T T
1 P1

P1A2 0 P1T1

Π2 + 1
α2

P01P01 CT
4 P̄03 P01T2

P̄03C4 Π3 0

T T
2 P01 0 −µIr







e1

e2

e3

∆ψ




< 0 (5.42)

Under zero initial conditions, it follows that

∫ T

0

(r̄T r̄ − µ∆ψT ∆ψ)dt ≤
∫ T

0

(r̄T r̄ − µ∆ψT ∆ψ)dt + V

=

∫ T

0

(r̄T r̄ − µ∆ψT ∆ψ + V̇ )dt

≤ 0 (5.43)

which implies that

∫ T

0

(r̄T r̄)dt ≤ µ

∫ T

0

(∆ψT ∆ψ)dt (5.44)

namely,

‖r̄‖L2 ≤
√

µ‖∆ψ‖L2 (5.45)

This completes the proof.

Remark 5.2 The effect of the system uncertainty on the state estimation error is de-

cided by the value of µ. The smaller value of µ is, the more accurate fault estimation

can be obtained. The minimization of µ can be found by solving the following LMI

optimization problem:

min(µ)

subject to

X < 0, P1 > 0, P01 > 0, P̄03 > 0
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and


Π1 P1A2 0 P1T1 P1 0

AT
2 P1 Π2 CT

4 P̄03 P01T2 0 P01

0 P̄03C4 Π3 0 0 0

T T
1 P1 T T

2 P01 0 −µI 0 0

P1 0 0 0 −α1I 0

0 P01 0 0 0 −α2I




< 0 (5.46)

where Π1 = X+XT +HT
1 H1, Π2 = AT

4 P01+P01A4+P02C4+CT
4 P T

02+α1L2
f1
‖T−1‖2I+

α2L2
f2
‖T−1‖2I+HT

2 H2, Π3 = Y +Y T +HT
3 H3, X = P1A

s
1, Y = P̄03L. Once the LMIs

are solved, As
1 and L can be obtained from As

1 = P−1
1 X and L = P̄−1

03 Y , respectively.

Remark 5.3 The convergence speed of the observer can be imposed by using a

more restrictive condition V̇ ≤ −2βV , instead of V̇ < 0. This implies that the state

estimation error e will have a decay rate of at least β. It follows that there exists a

positive scalar

κ :=

√
λmax(P )

λmin(P )
(5.47)

where

P =




P1 0 0

0 P01 0

0 0 P̄03




such that ‖e(t)‖ ≤ κ‖e(0)‖ exp(−βt). Following the same procedure of the proof as

that has been carried out for Proposition 5.1, it can easily be proved that the observer

error dynamics is asymptotically stable with an H∞ disturbance attenuation level
√

µ

and a prescribed decay rate of β if there exist matrices X, Y , P1, P01, P02 and P̄03

such that the following LMI optimization problem is solvable:

min(µ)

s.t.

X < 0, P1 > 0, P01 > 0, P̄03 > 0,

and
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


Π1 + 2βP1 P1A2 0 P1T1 P1 0

AT
2 P1 Π2 + 2βP01 CT

4 P̄03 P01T2 0 P01

0 P̄03C4 Π3 + 2βP̄03 0 0 0

T T
1 P1 T T

2 P01 0 −µI 0 0

P1 0 0 0 −α1I 0

0 P01 0 0 0 −α2I




< 0 (5.48)

Remark 5.4 Without integrating the H∞ filtering feature into the proposed observers,

it can be proved that the error dynamics (5.27)-(5.29) is ultimately bounded if there

exist matrices X, Y , P1, P01, P02 and P̄03 such that




Π1 + 1
α1

P1P1 P1A2 0

AT
2 P1 Π2 + 1

α2
P01P01 CT

4 P̄03

0 P̄03C4 Π3




︸ ︷︷ ︸
−Σ

< 0 (5.49)

The magnitude of the state estimation error is ultimately bounded with respect to the

set

Ω = {e : ‖e‖ <
2(‖P1T1‖+ ‖P01T2‖)

λmin(Σ)
ξ + η0} (5.50)

where η0 is an arbitrarily small positive scalar.

Proposition 5.1 proves that the error dynamics is asymptotically stable. The objective

now is to determine the constant gain l1 in (5.24) and l2 in (5.26) such that the trajec-

tories (5.27)-(5.29) can be directed toward to the sliding surface which is defined as

S1 = {(e1, e2, e3)|e1 = 0, e3 = 0}.

Proposition 5.2 Under the Assumptions 5.1-5.5, an ideal sliding motion will take

place after some finite time on the hyperplane S1 if

l1 ≥ ‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ + η1 (5.51)

l2 ≥ ‖C4‖‖e‖
‖DT

2 P̄03e3‖
+ η2 (5.52)

where η1 and η2 are positive scalars.

Proof. Consider the Lyapunov candidate functions V1(t) = eT
1 P1e1 and V3(t) =
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eT
3 P̄03e3. The time derivative can be obtained as:

V̇1(t) = eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ

+ 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ 2eT

1 P1B1(fa − ν1)

It is easy to see that As
1
T P1 + P1A

s
1 < 0 since P1A

s
1 is symmetric negative definite by

design. Furthermore, from the Cauchy-Schwartz inequality and (5.24), we obtain

V̇1(t) < 2eT
1 P1A2e2 + 2eT

1 P1T1∆ψ + 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)

+ 2eT
1 P1B1(fa − ν1)

≤ 2‖P1e1‖(‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ)− 2l1‖BT
1 P1e1‖

≤ 2‖BT
1 P1e1‖‖B−T

1 ‖(‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ − l1) (5.53)

It follows from (5.51) that

V̇1 ≤ −2η1‖P1e1‖ ≤ −2η1

√
λmin(P1)V

1
2

1

Similarly, it can be verified that if (5.52) is satisfied, then

V̇3 ≤ −2η2‖P̄03e0‖ ≤ −2η2

√
λmin(P̄03)V

1
2

3

This shows that the reachability condition [61] is satisfied and a sliding motion is

achieved and maintained after some finite time ts > 0.

This completes the proof.

5.3.2 Estimation of actuator and sensor faults using SMOs

Given observers which are in the form of (5.23) -(5.26), the objective in this subsec-

tion is to estimate the actuator faults and sensor faults simultaneously.

From Proposition 5.2, we know that an ideal sliding motion S1 will take place after

some finite time ts if the conditions (5.51)-(5.52) are satisfied. Therefore during the

sliding motion,

e1 = ė1 = 0, ∀t > ts (5.54)
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and the error dynamics (5.27) becomes

0 = 0 + A2e2 + (f1(T
−1h, t)− f1(T

−1ĥ, t)) + B1(fa − ν1eq) + T1∆ψ (5.55)

where ν1eq denotes the equivalent output error injection signal to maintain the sliding

motion [8]. We further rewrite (5.55) as:

fa − ν1eq = −B−1
1

(
A2e2 + (f1(T

−1h, t)− f1(T
−1ĥ, t)) + T1∆ψ

)
(5.56)

Computing the L2 norm of(5.56) yields

‖fa − ν1eq‖L2 = ‖B−1
1 (A2e2 + (f1(T

−1h, t)− f1(T
−1ĥ, t)) + T1∆ψ)‖L2

≤ (σmax(B
−1
1 A2) + σmax(B

−1
1 )Lf1‖T−1‖)‖e2‖L2 + σmax(B

−1
1 T1)‖∆ψ‖L2

≤ (σmax(B
−1
1 A2) + σmax(B

−1
1 )Lf1‖T−1‖)‖e‖L2 + σmax(B

−1
1 T1)‖∆ψ‖L2

(5.57)

Since ‖e‖L2 ≤ σmax(H
−1)
√

µ‖∆ψ‖L2 , we can obtain

‖fa − ν1eq‖L2 ≤ (
√

µ(σmax(B
−1
1 A2) + σmax(B

−1
1 )Lf1‖T−1‖)σmax(H

−1)

+ σmax(B
−1
1 T1))‖∆ψ‖L2 (5.58)

It follows that

sup
‖∆ψ‖L2

6=0

‖fa − ν1eq‖L2

‖∆ψ‖L2

=
√

µβ1 + β2 (5.59)

where β1 = (σmax(B
−1
1 A2)+σmax(B

−1
1 )Lf1‖T−1‖)σmax(H

−1) and β2 = σmax(B
−1
1 T1).

Thus for a small (
√

µβ1 + β2)‖∆ψ‖L2 , the actuator fault can be approximated as

f̂a(t) ≈ ν1eq (5.60)

The equivalent output error injection signal can be approximated as:

ν1eq ≈ (ρa + l1)
BT

1 P1(C
−1
1 S1y − ĥ1)

‖BT
1 P1(C

−1
1 S1y − ĥ1)‖+ γ1

(5.61)

where γ1 is a small positive scalar to reduce the chattering effect. It can be shown

that ν1eq can be approximated to any degree of accuracy by (5.61) for a small enough
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choice of γ1 [53]. Therefore the actuator fault can be estimates as:

f̂a(t) ≈ (ρa + l1)
BT

1 P1(C
−1
1 S1y − ĥ1)

‖BT
1 P1(C

−1
1 S1y − ĥ1)‖+ γ1

(5.62)

Similarly,

sup
‖∆ψ‖L2

6=0

‖fs − ν2eq‖L2

‖∆ψ‖L2

=
√

µσmax(H
−1)σmax(D

+
2 Ā3) (5.63)

where D+
2 is the left pseudo-inverse of D2. Such a matrix always exists because D2

is of full column rank. ν2eq is the equivalent output error injection signal and can be

approximated as

ν2eq ≈ (ρs + l2)
DT

2 P̄03(w3 − ŵ3)

‖DT
2 P̄03(w3 − ŵ3)‖+ γ2

(5.64)

where γ2 is a small positive scalar to reduce the chattering effect.

Therefore for small
√

µσmax(H
−1)σmax(D

+
2 Ā3)‖∆ψ‖L2 , the sensor fault can be esti-

mated as

f̂s(t) ≈ (ρs + l2)
DT

2 P̄03(w3 − ŵ3)

‖DT
2 P̄03(w3 − ŵ3)‖+ γ2

(5.65)

The proposed actuator and sensor fault estimation scheme based on SMOs is shown

in Fig-5.1.

5.4 Fault estimation using SMO and AO

Most of the existing robust FDI methods based on sliding mode techniques [80, 84,

104, 109] and adaptive techniques [36, 92, 102, 110, 111] have the assumption that

the fault distribution matrix is matched. The solvability of Lyapunov equation together

with the matching condition is called Constrained Lyapunov Problem (CLP). Neces-

sary and sufficient conditions for solving CLP can be found in [112]. However, it is

difficult to find matrices to satisfy both the Lyapunov equation and the matching con-

dition. Therefore Assumption 5.5 is quite restrictive. In this section, an alternative

method which does not need this assumption is developed. More specifically, the ac-
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Figure 5.1: Schematic of the fault estimation using SMOs

tuator faults in subsystem (5.5) are estimated by a sliding mode observer, while the

estimates of sensor faults in subsystem (5.7) is obtained by designing an adaptive

observer.

5.4.1 Design of observers

The subsystems (5.15) and (5.5) in the new coordinate z := [zT
1 zT

2 ]T = T0h0 become:

ḣ1 = A1h1 + A2z1 − A2P
−1
01 P02z2 + f1(T

−1h, t) + B1(u + fa) + T1∆ψ

w1 = C1h1 (5.66)

ż1 = Ā1z1 + Ā2z2 + A3h1 + f2(T
−1h, t) + T2∆ψ + P−1

01 P02D2fs

ż2 = Ā3z1 + Ā4z2 + D2fs (5.67)

w3 = z2

where Ā1, Ā2, Ā3 and Ā4 are defined in (5.18).

For subsystem (5.66), the proposed sliding mode observer has the form:

˙̂
h1 = A1ĥ1 + A2ẑ1 − A2P

−1
01 P02w3 + f1(T

−1ĥ, t) + B1(u + ν)

+ (A1 − As
1)C

−1
1 (w1 − ŵ1)



118 5.4. Fault estimation using SMO and AO

ŵ1 = C1ĥ1 (5.68)

where As
1 ∈ Rm×m is a stable matrix, the discontinuous output error injection term ν

is defined by

ν =





(ρa + l)
BT

1 P1(C−1
1 S1y−ẑ1)

‖BT
1 P1(C−1

1 S1y−ẑ1)‖ if C−1
1 S1y − ẑ1 6= 0

0 otherwise
(5.69)

where P1 ∈ Rm×m is the Lyapunov matrix for As
1 and l is a positive scalar.

For subsystem (5.67), the proposed adaptive observer has the form:

˙̂z1 = Ā1ẑ1 + Ā2w3 + A3C
−1
1 w1 + f2(T

−1ĥ, t) + P−1
01 P02D2f̂s

˙̂z2 = Ā3ẑ1 + Ā4ẑ2 + (Ā4 − L)(w3 − ŵ3) + D2f̂s

ŵ3 = ẑ2 (5.70)

where L ∈ R(p−m)×(p−m) is a traditional Luenberger observer gain. f̂s is the sensor

fault estimates with the dynamics:

˙̂
fs = ΓDT

2 P̄03(e3 + ė3) (5.71)

If the state estimation errors are defined as e1 = h1 − ĥ1, e2 = z1 − ẑ1, e3 = z2 − ẑ2

and ef = fs − f̂s, then the state estimation error dynamics after the occurrence of

faults can be obtained as:

ė1 = As
1e1 + A2e2 +

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ B1(fa − ν) + T1∆ψ (5.72)

ė2 = Ã1e1 +
(
f2(T

−1h, t)− f2(T
−1ĥ, t)

)
+ T2∆ψ + P−1

01 P02D2ef (5.73)

ė3 = Ā3e2 + Le3 + D2ef (5.74)

Define

r(t) = H




h1(t)

z1(t)

z2(t)

fs(t)




, and r̃ = H




h1 − ĥ1

z1 − ẑ1

z2 − ẑ2

fs − f̂s




(5.75)

where r(t) ∈ Rn+p+q−m is a linear combination of state variables to be estimated over
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the horizon [0, T ]. H is a full rank known matrix and assumed to have the structure:

H :=




H1 0 0 0

0 H2 0 0

0 0 H3 0

0 0 0 H4




(5.76)

We now present Proposition 5.3 which gives the sufficient condition for the existence

of the proposed observers with a prescribed H∞ performance.

Proposition 5.3 Under the Assumptions 5.1-5.4, the observer error dynamics is

ultimately bounded with an H∞ disturbance attenuation level
√

µ > 0 subject to

‖r̄‖L2 ≤
√

µ‖∆ψ‖L2 if there exist matrices X, Y , P01, P02, P̄03, G and positive scalars

α1 and α2 such that the following LMI optimization problem has a solution:

min(µ)

s.t.

X < 0, P1 > 0, P01 > 0, P̄03 > 0, G > 0 and



Π1 P1A2 0 0 P1T1 P1 0

AT
2 P1 Π2 CT

4 P̄03 P02D2 − CT
4 P̄03D2 P01T2 0 P01

0 P̄03C4 Π3 −Y T D2 0 0 0

0 DT
2 P T

02 −DT
2 P̄03C4 −DT

2 Y Π4 0 0 0

T T
1 P1 T T

2 P01 0 0 −µI 0 0

P1 0 0 0 0 −α1I 0

0 P01 0 0 0 0 −α2I




< 0 (5.77)

where Π1 = X+XT +HT
1 H1, Π2 = AT

4 P01+P01A4+P02C4+CT
4 P T

02+α1L2
f1
‖T−1‖2I+

α2L2
f2
‖T−1‖2I + HT

2 H2, Π3 = Y + Y T + HT
3 H3, Π4 = G − 2DT

2 P̄03D2 + HT
4 H4,

X = P1A
s
1 and Y = P̄03L. Once the problem is solved, As

1 and L can be obtained

from As
1 = P−1

1 X and L = P̄−1
03 Y , respectively.

Proof. Consider the Lyapunov function as

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (5.78)

where V1(t) = eT
1 P1e1, V2(t) = eT

2 P01e2, V3(t) = eT
3 P̄03e3 and V4(t) = eT

f Γ−1ef .
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The time derivative of V1(t), V2(t), V3(t) and V4(t) can be shown to be:

V̇1(t) = eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ

+ 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ 2eT

1 P1B1(fa − ν)

≤ eT
1 (As

1
T P1 + P1A

s
1 +

1

α1

P1P1)e1 + 2eT
1 P1A2e2

+ 2eT
1 P1T1∆ψ + α1L2

f1
‖T−1‖2‖e2‖2 (5.79)

V̇2(t) = eT
2

(
ĀT

1 P01 + P01Ā1

)
e2 + 2eT

2 P01

(
f2(T

−1h, t)− f2(T
−1ĥ, t)

)

+ 2eT
2 P01T2∆ψ + 2eT

2 P02D2ef

≤ eT
2 (AT

4 P01 + P01A4 + P02C4 + CT
4 P T

02 +
1

α2

P01P01 + α2L2
f2
‖T−1‖2I)e2

+ 2eT
2 P01T2∆ψ + 2eT

2 P02D2ef (5.80)

V̇3(t) = eT
3 (P̄03L + LT P̄03)e3 + 2eT

3 P̄03C4e2 + 2eT
3 P̄03D2ef (5.81)

V̇4(t) = 2eT
f Γ−1ḟs − 2eT

f Γ−1 ˙̂
fs

= 2eT
f Γ−1ḟs − 2eT

f DT
2 P̄03e3 − 2eT

f DT
2 P̄03(C4e2 + Le3 + D2ef ) (5.82)

For a positive definite matrix G it follows that

2eT
f Γ−1ḟs ≤ eT

f Gef + ḟT
s Γ−1G−1Γ−1ḟs

≤ eT
f Gef + ρ2

ssλmax(Γ
−1G−1Γ−1) (5.83)

Substituting (5.83) into (5.82) yields

V̇4(t) ≤ eT
f (G− 2DT

2 P̄03D2)ef − 2eT
f DT

2 P̄03e3 − 2eT
f DT

2 P̄03C4e2

− 2eT
f DT

2 P̄03Le3 + ρ2
ssλmax(Γ

−1G−1Γ−1) (5.84)

Therefore, the derivative of V (t) can be obtained as:

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t)

≤ eT
1 (As

1
T P1 + P1A

s
1 +

1

α1

P1P1)e1 + eT
2 (AT

4 P01 + P01A4 + P02C4 + CT
4 P T

02

+
1

α2

P01P01 + α1L2
f1
‖T−1‖2I + α2L2

f2
‖T−1‖2I)e2 + eT

3 (P̄03L + LT P̄03)e3

+ eT
f (G− 2DT

2 P̄03D2)ef + 2eT
1 P1A2e2 + 2eT

1 P1T1∆ψ + 2eT
2 P01T2∆ψ

+ 2eT
2 P02D2ef + 2eT

3 P̄03C4e2 − 2eT
f DT

2 P̄03C4e2 − 2eT
f DT

2 P̄03Le3

+ ρ2
ssλmax(Γ

−1G−1Γ−1) (5.85)
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To attain the robustness of the proposed observers to the disturbances ∆ψ in L2

sense, we impose the following constraint on the stability criteria:

V̇ + r̃T r̃ − µ∆ψT ∆ψ < 0 (5.86)

Substituting (5.85) and (5.75) into the constraint (5.86) yields

V̇ + r̃T r̃ − µ∆ψT ∆ψ ≤




eh1

ez1

ez2

ef

∆ψ




T 


Π1 + 1
α1

P1P1 P1A2 0

AT
2 P1 Π2 + 1

α2
P01P01 CT

4 P̄03

0 P̄03C4 Π3

0 DT
2 P T

02 −DT
2 P̄03C4 −DT

2 P̄03L

T T
1 P1 T T

2 P01 0

0 P1T1

P02D2 − CT
4 P̄03D2 P01T2

−LT P̄03D2 0

Π4 0

0 −µIr







eh1

ez1

ez2

ef

∆ψ




+ ρ2
ssλmax(Γ

−1G−1Γ−1)

= −wT Φw + ε

≤ 0 (5.87)

where w = [eT
1 , eT

2 , eT
3 , eT

f , ∆ψ]T , ε = ρ2
ssλmax(Γ

−1G−1Γ−1) and −Φ is the inner

matrix.

When −Φ < 0, one can obtain that V̇ (t) ≤ −λmin(Φ)‖w‖2 + ε− r̃T r̃ + µ∆ψT ∆ψ. It

follows that V̇ (t) < 0 if

‖w‖ >

√
ε− r̃T r̃ + µ∆ψT ∆ψ

λmin(Q)
(5.88)

which implies that (e1, e2, e3, ef ) will converge to a small set according to Lyapunov

stability theory. Using Schur complement, −Φ < 0 can be expressed in the LMI form

by (5.77).

This completes the proof.

Define the sliding mode surface as S2 = {(e1, e2, e3)|e1 = 0}, the objective now is to

determine the observer gain l in (5.69) such that the error dynamical system (5.72)

can be driven to this the sliding surface.
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Proposition 5.4 Under the Assumptions 5.1-5.4, an ideal sliding motion will take

place after some finite time on the hyperplane S2 if

l1 ≥ ‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ + η (5.89)

where η is a positive scalar and e = [eT
1 , eT

2 , eT
3 , eT

f ]T .

Proof. Consider the Lyapunov candidate function V (t) = eT
1 P1e1. Its time derivative

can be obtained as:

V̇ (t) = eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ

+ 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ 2eT

1 P1B1(fa − ν)

< 2eT
1 P1A2e2 + 2eT

1 P1T1∆ψ + 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)

+ 2eT
1 P1B1(fa − ν)

≤ 2‖P1e1‖(‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ)− 2l‖BT
1 P1e1‖

≤ 2‖BT
1 P1e1‖‖B−T

1 ‖(‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ − l) (5.90)

It follows from (5.89) that

V̇ ≤ −2η‖P1e1‖ ≤ −2η
√

λmin(P1)V
1
2

1

This shows that the reachability condition is satisfied.

The proof completes.

5.4.2 Estimation of actuator and sensor faults using SMO and

AO

Following the same procedure as that is given in subsection-5.3.2, one can get

that for small values of (
√

µβ1 + β2)‖∆ψ‖L2 and γ, where β1 = (σmax(B
−1
1 A2) +

σmax(B
−1
1 )Lf1‖T−1‖)σmax(H

−1) and β2 = σmax(B
−1
1 T1), the actuator faults can be

estimated as:

f̂a(t) ≈ (ρa + l)
BT

1 P1(C
−1
1 S1y − ĥ1)

‖BT
1 P1(C

−1
1 S1y − ĥ1)‖+ γ

(5.91)
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Figure 5.2: Schematic of the fault estimation using SMO and AO

From (5.71), the sensor faults can be estimated as:

f̂s(t) ≈ ΓDT
2 P̄03e3(t) + ΓDT

2 P̄03

∫ t

tf

e3(τ)dτ (5.92)

where tf is the time instant when a sensor fault occurs.

The proposed fault estimation scheme using SMO and AO is shown in Fig-5.2.

5.5 Simulation results

The effectiveness of the two proposed fault estimation schemes is illustrated by a

numerical example in this section. The considered nonlinear system is in the form of

(5.1) with

A =




−5 −1 0 1 −2

−1 −4 1 −1 1

0 −1 −2 −2 1

−1 −2 1 −2 −1

−2 −1 2 −1 −3



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C =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




B =




4

3

1

3

2




, E =




0

1

0

0

1




, D =




1

2

0

3




f(x, t) =
[

0 0 0 0 2 sin x1

]T

∆ψ = 0.2 sin t

The actuator fault fa and sensor fault fs are chosen as:

fa =





0 , t ≤ 10s

0.8 , 10s < t < 20s

−1 , 20s ≤ t < 30s

0 , t ≥ 30s

fs =





0 , t ≤ 15s

0.2t− 3 , 15s < t < 20s

−0.2t + 5 , 20s ≤ t < 25s

0 , t ≥ 25s

Nonsingular transformations T and S are given as:

T =




1.3333 0 0 −0.4444 0

−0.7500 1.0000 0 0 0

−0.2500 0 1.0000 0 0

−0.7500 0 0 1.0000 0

−0.5000 0 0 0 1.0000




S =




1.0000 0 0 −0.3333

−0.3333 1.0000 0 −0.5556

−0.3333 0 1.0000 0.1111

−1.0000 0 0 1.3333



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such that in the new coordinate

TAT−1 =




−6.1111 −0.4445 −0.4444 −0.4937 −2.2222

0.5000 −3.2500 1.0000 −1.5278 2.5000

−0.7500 −0.7500 −2.0000 −2.5833 1.5000

0.2500 −1.2500 1.0000 −2.6389 0.5000

−1.5000 −0.5000 2.0000 −2.1666 −2.0000




SCT−1 =




0.7500 0 0 0.0000 0

0 1.0000 0 −0.5556 0

0.0000 0 1.0000 0.1111 0

−0.0000 0 0 1.3333 0




TB =




4.0000

0

0

0

0




, TE =




0

1

0

0

1




, SD =




0

0

0

2.9999




Select µ = 1e − 4, then from the LMI synthesis, the design parameters of the first

fault estimation scheme can be obtained as:

P1 = 0.2159

As
1 = −2.3458

P01 =




0.0812 −0.0069 −0.0353 −0.0779

−0.0069 0.1362 −0.0123 0.0070

−0.0353 −0.0123 0.1294 0.0346

−0.0779 0.0070 0.0346 0.0804




P02 =




−0.0761 −0.5994 −0.0000

0.7510 0.0422 0.0000

−0.0246 0.5459 −0.0000

−0.5174 −0.3473 −0.0000




P̄03 =




0.1251 0.0009 0.0203

0.0009 0.1320 −0.0039

0.0203 −0.0039 0.1169



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Figure 5.3: State x1 and its estimated value x̂1

L =



−1.4530 0.0189 0.2502

0.0236 −1.2920 −0.0466

0.3489 −0.0595 −1.5372




F0 =
[

0.0610 −0.0116 0.3505
]

For the sake of comparison, we select the same values for the parameters of the

second scheme and also select

Γ =

[
10 0

0 10

]
(5.93)

to complete the adaptive observer design.

Fig 5.3-5.7 show the true states and their estimates using SMO-based method and

AO-based method, respectively. The results of fault estimation are depicted in Fig-

5.8 and 5.9. It shows that despite the presence of system uncertainties ∆Ψ, both

methods can estimate the actuator fault and sensor fault with high accuracy.
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Figure 5.4: State x2 and its estimated value x̂2
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Figure 5.5: State x3 and its estimated value x̂3
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Figure 5.6: State x4 and its estimated value x̂4
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Figure 5.7: State x5 and its estimated value x̂5
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Figure 5.8: Actuator fault fa and its estimated value f̂a
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Figure 5.9: Sensor fault fs and its estimated value f̂s
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5.6 Conclusions

In this chapter, two schemes for simultaneously estimating actuator fault and sen-

sor fault for uncertain Lipschitz nonlinear systems are proposed. The first scheme is

based on the matching condition and consists of two SMOs. Each of them is used

to estimate the actuator fault and sensor fault respectively. However, the matching

condition is very restrictive and sometimes it is difficult to find such matrices to satisfy

both the Lyapunov equation and the matching condition. The second scheme relaxes

the constraint of the first method and employs an adaptive observer to estimate the

sensor fault. Moreover,H∞ is integrated into both schemes to attenuate the effects of

the system uncertainties on state estimation and fault estimation. The effectiveness

of the proposed methods is illustrated by considering a numerical example. Simula-

tion results show that both methods can accurately estimate the actuator fault and

sensor fault simultaneously.

It is worth noting that the uncertainty considered in this chapter is assumed to be

unstructured. This type of uncertainty is usually modelled as norm-bounded pertur-

bations and refers to the aspects of system uncertainty associated with unmodelled

system dynamics, truncation of high frequency models, nonlinearities and the effects

of linearization, etc. In practice, it is quite common that the uncertainties are given as

a disturbance system whose elements in a disturbance matrix are not known exactly.

Therefore, the methods developed in this chapter have a wide range of applications,

such as aircrafts, high-speed railways and power systems.



Chapter 6

Estimation of actuator and sensor

faults for uncertain nonlinear

systems using a descriptor system

approach

In previous chapters, sensor fault is transformed into the form of actuator fault. In

this chapter, it is treated as an auxiliary state and an augmented descriptor system

is constructed. Based on this system, an estimator is designed and the sensor fault

can be obtained directly.

6.1 Introduction

Methods that are introduced in Chapter-4 and 5 all use an integral observer to trans-

form sensor faults into the form of actuator faults and the design of observers is based

on the transformed system. In this chapter, the sensor fault is treated in a different

way. More specifically, sensor faults are taken as auxiliary states and an augmented

descriptor system is therefore constructed. An estimator which is based on the de-

scriptor system approach [51, 85, 113, 114, 115, 116, 117, 118] is designed for the

augmented system, so that the simultaneous estimation of the system state and the

sensor fault can directly be obtained.

131
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In [119], a descriptor system approach has been introduced to investigate fault di-

agnosis for linear multi-variable systems with measurement noises. For Lipschitz

nonlinear descriptor systems, the result of sensor fault estimation is shown in [116]

and the work in [118] focuses on actuator fault signals. Note that the approaches

proposed in [116, 118, 119] are for descriptor systems and only deal with one kind of

faults at a time (either actuator fault or sensor fault). This motivates the present study

to develop a novel fault estimation approach for a class of nonlinear state-space sys-

tems when faults occur at both sensors and actuators coincidentally. To cope with

the actuator faults, the result of using adaptive observer-based approach to estimate

actuator faults in Chapter-5 is extended in this chapter to yield the actuator fault es-

timation. The effects of the system uncertainties on the estimation errors of states

and faults are reduced by integrating a prescribed H∞ disturbance attenuation level

into the observer. As a consequence of H∞ filtering integrated into the descriptor

observer, the estimation of states and faults is robust against uncertainties and can

preserve the shape of fault signal effectively.

The main contributions of the present work are the following: 1. The uncertainty

considered is unstructured and not necessarily bounded; 2. The proposed method is

not only applicable for nonlinear state-space systems but also for nonlinear descriptor

systems; 3. Not only simultaneous estimation of states, actuator faults and sensor

faults can be obtained, but also the L2 gain minimization can be guaranteed at the

same time; 4. Different types of faults such as unbounded faults, incipient faults and

abrupt faults can be successfully estimated by the proposed method.

The rest of the chapter is organized as follows: section-6.2 introduces the problem

and some mathematical preliminaries required for designing observers. In section-

6.3, the observer is proposed and design parameters are formulated in LMI form. The

stability condition of the proposed observers based on Lyapunov approach is derived.

The results of simulation are shown in section-6.4 with conclusions in section-6.5.

6.2 Problem Formulation

Consider a nonlinear system described by

ẋ(t) = Ax(t) + f(x, t) + B(u(t) + fa(t)) + ∆ψ(t)
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y(t) = Cx(t) + Dfs(t) (6.1)

where x ∈ Rn are the state variables, u ∈ Rm are the inputs and y ∈ Rp are the

outputs. fa ∈ Rm and fs ∈ Rq denote the actuator fault and sensor fault, respectively.

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×q (p ≥ q) are known constant

matrices with C and D both being of full rank. The nonlinear continuous term f(x, t)

is assumed to be known. The unstructured uncertainty ∆ψ(t) ∈ Rn is more general

than structured uncertainty that have been considered for fault diagnosis of Lipschitz

nonlinear systems in literature (e.g.,[85, 117]).

Throughout the paper, the following assumptions are made:

Assumption 6.1 The matrix pair (A,C) is detectable.

Assumption 6.2 The nonlinear term f(x, t) is assumed to be known and Lipschitz

about x uniformly, i.e., ∀x, x̂ ∈ X ,

‖f(x, t)− f(x̂, t)‖ ≤ Lf‖x− x̂‖ (6.2)

where Lf is the known Lipschitz constant. Many nonlinearities can be assumed to

be Lipschitz, at least locally.

Suppose that the sensor fault fs(t) is smooth and assume σ := ḟs(t), then an aug-

mented nonlinear system with states z :=

[
x

fs

]
∈ Rn+q can be constructed as

follows

Ēż = Āz + f̄(x, t) + B̄(u + fa) + Ḡ∆̄ψ

y = C̄z (6.3)

where

Ē =

[
In×n 0n×q

0q×n Iq×q

]
∈ R(n+q)×(n+q)

Ā =

[
A 0n×q

0q×n 0q×q

]
∈ R(n+q)×(n+q)

B̄ =

[
B

0q×m

]
∈ R(n+q)×m
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Ḡ =

[
In×n 0n×q

0q×n Iq×q

]
∈ R(n+q)×(n+q)

C̄ =
[

C D
]
∈ Rp×(n+q)

f̄(x, t) =

[
f(x, t)

0q×1

]
∈ R(n+q)×1

∆̄ψ =

[
∆ψ

σ

]
∈ R(q+r)×1

6.3 Design of the fault estimation observer

For the augmented system formulated in (6.3), the objective of the section is to design

an observer to simultaneously estimate the states, actuator faults and sensor faults.

The developed observer has the following form:

ẇ = (Ā− L1C̄)ẑ + B̄(u + f̂a) + L1y + f̄(x̂, t) (6.4)

ẑ = (Ē + L2C̄)−1(w + L2y) (6.5)

ŷ = C̄x̂ (6.6)

where ẑ ∈ Rn+q represents the estimated states of the augmented system, L1 ∈
R(n+q)×p and L2 ∈ R(n+q)×p are two observer gains. L2 is selected to make S̄ =

Ē + L2C̄ nonsingular, f̂a is the actuator fault estimation with the dynamics:

˙̂
fa = ΓF (ey + ėy) (6.7)

where Γ ∈ Rm×m is a symmetric positive definite matrix representing the learning

rate, F ∈ Rm×p is a design matrix which needs to be determined and ey = y − ŷ is

the output estimation error.

It follows from (6.5) that the derivative of ẑ can be obtained as:

˙̂z = S̄−1(ẇ + L2ẏ) (6.8)

Substituting (6.4) into (6.8) yields:

˙̂z = S̄−1((Ā− L1C̄)ẑ + B̄(u + f̂a) + L1y + L2ẏ + f̄(x̂, t)) (6.9)
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Note that system (6.3) can be rewritten as:

ż = S̄−1((Ā− L1C̄)z + B̄(u + fa) + L1y + L2ẏ + f̄(x, t) + Ḡ∆̄ψ) (6.10)

Define the state estimation error and actuator fault estimation error as e = z − ẑ and

ef = fa − f̂a, respectively. Then after the occurrence of any faults, the dynamics of

the state estimation error e = z − ẑ can be obtained by comparing (6.9) and (6.10):

ė = S̄−1((Ā− L1C̄)e + (f̄(x, t)− f̄(x̂, t)) + B̄ef + Ḡ∆̄ψ) (6.11)

Lemma 6.1 There exists an asymptotic estimator in the form of (6.4)-(6.5) for the

system (6.3) if and only if Assumption 6.1 holds.

Proof. From the Popov-Belevitch-Hautus (PBH) test for observability, the pair (S̄−1Ā, C̄)

is detectable if and only if

rank

[
sIn+q − S̄−1Ā

C̄

]
= n + q (6.12)

for all s ∈ C.

From the definition of S̄, Ā and C̄,

rank

[
sIn+q − S̄−1Ā

C̄

]

= rank

{[
S̄ 0(n+q)×p

0p×(n+q) Ip

][
sIn+q − S̄−1Ā

C̄

]}

= rank

[
sS̄ − Ā

C̄

]

= rank

[
sĒ + sL2C̄ − Ā

C̄

]

= rank

{[
In+q sL2

0p×(n+q) Ip

][
sĒ − Ā

C̄

]}

= rank

[
sĒ − Ā

C̄

]
= rank




sIn+q − A 0(n+q)×q

0q×(n+q) sIq

C D



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= rank

[
sIn − A

C

]
+ q (6.13)

It follows that if Assumption 6.1 is satisfied, then

rank

[
sIn − A

C

]
= n ⇒ rank

[
sIn+q − S̄−1Ā

C̄

]
= n + q (6.14)

which implies that the pair (S̄−1Ā, C̄) is detectable and the gain L can be chosen as

L = S̄−1L1 such that the error dynamics (6.11) is stable.

This completes the proof.

Define that

r(t) = H

[
z(t)

fa(t)

]
, r̂(t) = H

[
ẑ(t)

f̂a(t)

]
, and r̄ = H

[
e

ef

]
(6.15)

where r(t) ∈ Rn+q+m is a linear combination of the augmented state variables and

actuator faults, r̂(t) is the estimation and r̄ is the estimation error, H is the pre-

specified weight matrix which is assumed to have the form:

H :=

[
H1 0

0 H2

]
(6.16)

where H1 ∈ R(n+q)×(n+q) and H2 ∈ Rm×m.

The objective of this section is to design an observer in the form of (6.4)-(6.5) such

that the observer error dynamics is asymptotically stable and r̄ satisfies the following

H∞ tracking performance:

J =

∫ T

0

‖r̄‖2dt ≤ µ

∫ T

0

(‖ḟa‖2 + ‖∆̄ψ‖2)dt (6.17)

The sufficient condition of stability of the proposed fault estimator is as follows:

Proposition 6.1 Under the Assumptions 6.1-6.2, the observer error dynamics (6.11)

and ėf are asymptotically stable with an H∞ disturbance attenuation level
√

µ > 0

subject to ‖r̄‖L2 ≤
√

µ(‖∆̄ψ‖L2 + ‖ḟa‖L2), if there exist matrices P ∈ R(n+q)×(n+q) >
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0, Y ∈ R(n+q)×p, F ∈ Rm×p and positive scalars α1 and α2 such that:

Ω :=




Π1 + 1
α1

PS̄−1S̄−T P Π2 + C̄T Y T P−1C̄T F T 0 PS̄−1Ḡ

ΠT
2 + FC̄P−1Y C̄ Π3 + 1

α2
FC̄S̄−1S̄−T C̄T F T Γ−1 −FC̄S̄−1Ḡ

0 Γ−T −µIm 0

ḠT S̄−T P −ḠT S̄−T C̄T F T 0 −µIn+q




< 0

(6.18)

where Π1 = PS̄−1Ā + ĀT S̄−T P − Y C̄ − C̄T Y T + α1L2
fIn+q + α2L2

fIn+q + HT
1 H1,

Π2 = PS̄−1B̄ − C̄T F T − ĀT S̄−T C̄T F T , Π3 = −2FC̄S̄−1B̄ + HT
2 H2. The matrix gain

L1 can be obtained as L1 = S̄P−1Y .

Proof. Consider the Lyapunov function as

V (t) = V1(t) + V2(t) (6.19)

where V1(t) = eT Pe and V2(t) = eT
f Γef .

The time derivative of V1(t) along the trajectories of state estimation error dynamics

(6.11) can be shown to be:

V̇1 = eT P ė + ėT Pe

= eT P ((S̄−1Ā− S̄−1L1C̄)e + S̄−1(f̄(x, t)− f̄(x̂, t)) + S̄−1B̄ef + S̄−1Ḡ∆̄ψ)

+ ((S̄−1Ā− S̄−1L1C̄)e + S̄−1(f̄(x, t)− f̄(x̂, t)) + S̄−1B̄ef + S̄−1Ḡ∆̄ψ)T Pe

= eT (PS̄−1Ā + ĀT S̄−T P − Y C̄ − C̄T Y T )e + 2eT PS̄−1(f̄(x, t)− f̄(x̂, t))

+ 2eT PS̄−1B̄ef + 2eT PS̄−1Ḡ∆̄ψ (6.20)

≤ eT (PS̄−1Ā + ĀT S̄−T P − Y C̄ − C̄T Y T )e +
1

α1

eT PS̄−1S̄−T Pe

+ α1L2
f‖e‖2 + 2eT PS̄−1B̄ef + 2eT PS̄−1Ḡ∆̄ψ

= eT (PS̄−1Ā + ĀT S̄−T P − Y C̄ − C̄T Y T +
1

α1

PS̄−1S̄−T P + α1L2
fIn+q)e

+ 2eT PS̄−1B̄ef + 2eT PS̄−1Ḡ∆̄ψ (6.21)

The time derivative of V2(t) can be shown to be:

V̇2 = 2eT
f Γ−1ėf

= 2eT
f Γ−1ḟa − 2eT

f Γ−1 ˙̂
fa
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= 2eT
f Γ−1ḟa − 2eT

f FC̄e− 2eT
f FC̄ė

= 2eT
f Γ−1ḟa − 2eT

f FC̄e− 2eT
f FC̄(S̄−1Ā− S̄−1L1C̄)e− 2eT

f FC̄S̄−1(f̄(x, t)

− f̄(x̂, t))− 2eT
f FC̄S̄−1B̄ef − 2eT

f FC̄S̄−1Ḡ∆̄ψ

≤ 2eT
f Γ−1ḟa − 2eT

f FC̄e− 2eT
f FC̄(S̄−1Ā− S̄−1L1C̄)e +

1

α2

eT
f FC̄S̄−1S̄−T C̄T F T ef

+ α2L2
f‖e‖2 − 2eT

f FC̄S̄−1B̄ef − 2eT
f FC̄S̄−1Ḡ∆̄ψ

= eT
f (−2FC̄S̄−1B̄ +

1

α2

FC̄S̄−1S̄−T C̄T F T )ef + 2eT
f (−FC̄ − FC̄S̄−1Ā

+ FC̄S̄−1L1C̄)e + α2L2
f‖e‖2 + 2eT

f Γ−1ḟa − 2eT
f FC̄S̄−1Ḡ∆̄ψ (6.22)

Therefore

V̇ ≤ eT (Π1 +
1

α1

PS̄−1S̄−T P )e + eT
f (−2FC̄S̄−1B̄ +

1

α2

FC̄S̄−1S̄−T C̄T F T )ef

+ 2eT (PS̄−1B̄ − C̄T F T − ĀT S̄−T C̄T F T + C̄T LT
1 S̄−T C̄T F T )ef

+ 2eT PS̄−1Ḡ∆̄ψ + 2eT
f Γ−1ḟa − 2eT

f FC̄S̄−1Ḡ∆̄ψ (6.23)

Let

V0 = V̇ + r̄T r̄ − µ$T $ (6.24)

where $ =

[
ḟa

∆̄ψ

]
.

Substituting (6.23) and (6.15) into (6.24) yields

V0 ≤




e

ef

ḟa

∆̄ψ




T 


Π1 + 1
α1

PS̄−1S̄−T P Π2 + C̄T Y T P−1C̄T F T

ΠT
2 + FC̄P−1Y C̄ Π3 + 1

α2
FC̄S̄−1S̄−T C̄T F T

0 Γ−T

ḠT S̄−T P −ḠT S̄−T C̄T F T

0 PS̄−1Ḡ

Γ−1 −FC̄S̄−1Ḡ

−µIm 0

0 −µIq+r







e

ef

ḟa

∆̄ψ




(6.25)

It follows from (6.18)that

V0 = V̇ + r̄T r̄ − µ$T $ < 0 (6.26)
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Under zero initial conditions, it is easy to see that

∫ T

0

(r̄T r̄ − µ$T $)dt ≤
∫ T

0

(r̄T r̄ − µ$T $)dt + V

=

∫ T

0

(r̄T r̄ − µ$T $ + V̇ )dt

≤ 0 (6.27)

which implies that
∫ T

0
‖r̄‖2dt ≤ µ

∫ T

0
(‖ḟa‖2 + ‖∆̄ψ‖2)dt. This function minimizes

the worst case effect of the disturbance $ on the state estimation error r̄. If this

constraint holds, then the state estimation error dynamics is stable and the H∞ gain

of the transfer function from $ to r̄ is norm bounded by
√

µ [107, 108]. It is clear that

the smaller the µ is, the more robust the observer becomes.

This completes the proof.

To obtain matrices P , Y , F and positive scalars α1, α2 and ε in (6.18), we firstly recall

the following lemma.

Lemma 6.2 (See [120, 121]) Given matrices Q = QT , F , M and N of appropriate

dimensions, then

Q + MFN + NT F T MT < 0 (6.28)

for all F satisfying F T F ≤ I if and only if there exists a scalar ε > 0 such that

Q + εMMT + ε−1NT N < 0 (6.29)

It is easy to show that the matrix inequality Ω < 0 in (6.18) can be rewritten as




Π1 + 1
α1

PS̄−1S̄−T P Π2 0 PS̄−1Ḡ

ΠT
2 + FC̄P−1Y C̄ Π3 + 1

α2
FC̄S̄−1S̄−T C̄T F T Γ−1 −FC̄S̄−1Ḡ

0 Γ−T −µIm 0

ḠT S̄−T P −ḠT S̄−T C̄T F T 0 −µIq+r




+




C̄T Y T

0

0

0




P−1
[

0 C̄T F T 0 0
]

+




0

FC̄

0

0




P−1
[

Y C̄ 0 0 0
]

< 0

(6.30)
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Applying Lemma 6.2 to (6.30) with M =




C̄T Y T

0

0

0




, N =
[

0 C̄T F T 0 0
]

and

F = P−1 gives that the satisfaction of (6.30) is equivalent to the following two in-

equalities:

P−2 < In+q, (6.31)




Π1 + 1
α1

PS̄−1S̄−T P Π2 0 PS̄−1Ḡ

ΠT
2 + FC̄P−1Y C̄ Π3 + 1

α2
FC̄S̄−1S̄−T C̄T F T Γ−1 −FC̄S̄−1Ḡ

0 Γ−T −µIm 0

ḠT S̄−T P −ḠT S̄−T C̄T F T 0 −µIq+r




+ ε




C̄T Y T

0

0

0




[
0 Y C̄ 0 0 0

]
+ ε−1




0

FC̄

0

0




[
0 C̄T F T 0 0

]
< 0

(6.32)

where ε is a positive scalar.

Using Schur complement, (6.32) can further be written as




Π1 + 1
α1

PS̄−1S̄−T P Π2 0

ΠT
2 Π3 + 1

α2
FC̄S̄−1S̄−T C̄T F T Γ−1

0 Γ−T −µIm

ḠT S̄−T P −ḠT S̄−T C̄T F T 0

0 C̄T F T 0

Y C̄ 0 0

PS̄−1Ḡ 0 C̄T Y T

−FC̄S̄−1Ḡ F C̄ 0

0 0 0

−µIq+r 0 0

0 −εIn+q 0

0 0 −ε−1In+q




< 0 (6.33)

It is worth noting that (6.31) and (6.33) are non-convex feasibility problems. The
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problem of finding P > 0, Y , F and positive scalars α1, α2, ε, µ to satisfy both

(6.31) and (6.33) can be converted into the following nonlinear minimization problem

using cone complementary linearization (CCL) algorithm [122]. This method is easy

to implement, however, the performance extremely depends on initial point and the

specific problem to be solved so that the method often fails to converge in practice.

min trace(PP̄ + εε̄In+q + µIn+q)

s.t.

P > 0, P̄ > 0, α1 > 0, α2 > 0, µ > 0, ε > 0, ε̄ > 0, (6.34)




Π1 Π2 0 PS̄−1Ḡ 0 C̄T Y T

ΠT
2 Π3 Γ−1 −FC̄S̄−1Ḡ F C̄ 0

0 Γ−T −µIm 0 0 0

ḠT S̄−T P −ḠT S̄−T C̄T F T 0 −µIq+r 0 0

0 C̄T F T 0 0 −εI 0

Y C̄ 0 0 0 0 −ε̄I

S̄−T P 0 0 0 0 0

0 S̄−T C̄T F T 0 0 0 0

PS̄−1 0

0 FC̄S̄−1

0 0

0 0

0 0

0 0

−α1I 0

0 −α2I




< 0, (6.35)

[
P I

I P̄

]
≥ 0 and

[
ε I

I ε̄

]
≥ 0 (6.36)

where P̄ and ε̄ are two new variables which are defined as P̄ = P−1 and ε̄ = ε−1.

The LMI optimization problem derived here seeks two objectives. The first one is to

obtain the matrices P , Y and F from the LMIs and compute the observer gain L1 from

L1 = S̄P−1Y ; while the second objective is to boost the robustness of the observer

against uncertainties $ by minimizing theH∞ gain between the controlled estimation

error r̄ and $. To solve this LMI optimization problem, the following iterative algorithm



142 6.3. Design of the fault estimation observer

is being used:

• Step 1. Set i=0 and solve (6.34)-(6.36) to obtain the initial solutions

(P 0, P̄ 0, Y 0, F 0, α0
1, α

0
2, ε

0, ε̄0, µ0)

• Step 2. Solve the minimization problem: Minimize trace(PP̄ i + P̄P i + εε̄iI +

ε̄εi + µi) subject to (6.34)-(6.36). The obtained solutions are denoted as

(P i+1, P̄ i+1, Y i+1, F i+1, αi+1
1 , αi+1

2 , εi+1, ε̄i+1, µi+1).

• Step 3. Check if the obtained solutions satisfy (6.31) and (6.33). If they do,

then Li+1
1 = S̄P i+1−1

Y i+1 is the desired observer gain and EXIT. Otherwise,

set i=i+1 and return to step 2.

Remark 6.2 If there exists an estimator in the form of (6.4)-(6.5) for the system

(6.3), then the estimation of the original system state x and sensor fault fs can

be obtained simultaneously. More specifically, the state estimation x̂ can be ob-

tained as x̂ =
[

In 0n×q

]
ẑ and the sensor fault estimation f̂s can be obtained as

f̂s =
[

0q×n Iq

]
ẑ. From (6.7), the actuator fault can be calculated as

f̂a(t) = ΓF

(
ey(t) +

∫ T

tf

ey(t)dt

)
(6.37)

where tf is the time when an actuator fault occurs.

Remark 6.3 The result of the Proposition 6.1 for a state-space system in the form of

(6.1) can easily be extended to a descriptor system with the following form

Eẋ(t) = Ax(t) + f(x, t) + B(u(t) + fa(t)) + ∆ψ(t)

y(t) = Cx(t) + Dfs(t) (6.38)

where E ∈ Rn×n is singular or nonsingular. Accordingly, the matrix Ē of the aug-

mented system (6.3) changes to

Ē =

[
E 0n×q

0q×n Iq×q

]
∈ R(n+q)×(n+q) (6.39)
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6.4 Simulation results

Case-1. The effectiveness of the proposed fault estimation method for a class of

nonlinear state-space system is illustrated by considering the following system

[
ẋ1

ẋ2

]
=

[
−1 0

1 −3

] [
x1

x2

]
+

[
0

0.5 sin x1

]
+

[
1

0.2

]
(u + fa) + ∆ψ

y =

[
2 1

−1 2

][
x1

x2

]
+

[
2

4

]
fs (6.40)

For illustration purpose, the input to the system is given by u = 4sin(t/3). ∆ψ =[
0.02 sin(20t)

0.05 cos(10t)

]
denotes the high-frequency unstructured uncertainty. The actuator

fault fa and sensor fault fs have the form

fa =





0 , t ≤ 20s

sin(0.5t) + 0.2 sin(5t) , 20s < t < 30s

0 , t ≥ 30s

fs =

{
0 , t ≤ 15s

0.2(t− 15) + 0.1 sin(5t) , t > 15s

Choosing

L2 =




1.2 0.4

0.2 2.5

0 5


 , H1 =




0 0 0

0 0 0

0 0 1


 , H2 = 0.2, Γ = 100

and solving the LMI optimization problem described in (6.34)-(6.36) gives

µ = 0.0335

P =




1.4393 −0.4951 −0.3172

−0.4951 2.2044 1.0691

−0.3172 1.0691 2.0125




P̄ =




1.2685 −0.5183 −0.5237

−0.5183 2.1502 1.2908

−0.5237 1.2908 2.5450



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Y =




0.4213 −0.2107

0.4378 −0.2273

−0.1135 0.3243




F =
[

0.0943 −0.0412
]

ε = 0.9493, ε̄ = 1.0534

α1 = 16.0370, α2 = 13.0040

It can be verified that PP̄ = I3 and εε̄ = 1, and the guaranteed disturbance attenua-

tion level is ‖H‖∞ ≤ √
µ = 0.1831.

By using L1 = S̄P−1Y , the observer gain L1 can be obtained as

L1 =




1.4570 −0.2004

−0.0729 1.0460

−1.4924 2.9949




The state estimation results are shown in Fig-6.1 and 6.2. The state estimations can

track their true values before and after the occurrence of any fault. The results of

sensor fault estimation and actuator fault estimation are shown in Fig-6.3 and 6.4. It

is worth noting that the sensor fault considered in the simulation is unbounded, which

is often assumed in many fault diagnosis methods that the fault is bounded and the

upper bound is known (e.g.,[46, 123]). It can be seen from the figures that despite

the presence of disturbances $, the proposed scheme can still estimate sensor faults

and actuator faults accurately.

Case-2. The effectiveness of the proposed observer for estimating actuator faults

and sensor faults for a class of nonlinear state-space system has been illustrated in

Case-1. In this case, we will further test effectiveness of the proposed observer for

descriptor systems. Consider the following plant

[
0 0

0 2

][
ẋ1

ẋ2

]
=

[
−1 0

1 −3

][
x1

x2

]
+

[
0

0.5 sin x1

]
+

[
1

0.2

]
(u + fa)

+ ∆ψ

y =

[
2 1

−1 2

] [
x1

x2

]
+

[
2

4

]
fs (6.41)
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Figure 6.1: State x1 and its estimated value x̂1
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Figure 6.2: State x2 and its estimated value x̂2
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Figure 6.3: Sensor fault fs and its estimated value f̂s
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Figure 6.4: Actuator fault fa and its estimated value f̂a
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where ∆ψ =

[
0.02 sin(t)

0.05 cos(t)

]
denotes the low-frequency uncertainty. This system is

in the form of (6.38) with E =

[
0 0

0 2

]
. The actuator fault fa and sensor fault fs are

represented as

fa =

{
0 , t ≤ 15s

exp(0.01t) , t > 15s

fs =

{
0 , t ≤ 20s

1− exp(−0.04(t− 20)) , t > 20s

It should be emphasized that both actuator fault and sensor fault are incipient. This

kind of faults are difficult to detect because their sizes are small during the initial

phase.

Choosing

L2 =




1.2 0.4

0.2 2.5

0 5


 , H1 =




0 0 0

0 0 0

0 0 1


 , H2 = 0.2, Γ = 200

and formulating the LMIs described in (6.34)-(6.36) with Ē =

[
E 0

0 I

]
gives the

following solutions:

µ = 0.0094

P =




1.4988 −0.0870 −0.1187

−0.0870 1.4693 0.4727

−0.1187 0.4727 1.4957




P̄ =




0.6723 0.0252 0.0454

0.0252 0.7586 −0.2377

0.0454 −0.2377 0.7473




Y =




0.4724 −0.2362

0.1768 −0.1026

0.0297 0.2875




F =
[

0.1128 −0.0491
]

ε = 0.8468, ε̄ = 1.1810
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Figure 6.5: State x1 and its estimated value x̂1

α1 = 11.7127, α2 = 10.3196

The observer gain L1 can be computed as

L1 =




0.9310 0.3132

0.3380 1.5928

−0.1939 4.0195




Fig-6.5-6.8 exhibit the states, sensor faults and actuator faults and their estimated

trajectories, respectively. It can be seen from the figures that the estimates of sensor

faults and actuator faults can still preserve the fault signal shape even in the presence

of comparatively large system uncertainties.

6.5 Conclusion

In this chapter, a fault estimation scheme based on a descriptor system approach has

been presented to simultaneously estimate system states, actuator faults and sen-

sor faults of Lipschitz nonlinear systems. Specifically, the sensor faults are taken as

auxiliary states and the original state-space system is transformed into a descriptor
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Figure 6.6: State x2 and its estimated value x̂2
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Figure 6.7: Sensor fault fs and its estimated value f̂s
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Figure 6.8: Actuator fault fa and its estimated value f̂a

system accordingly. The estimation of sensor faults are obtained from the observer

which is designed for this descriptor system, as a part of the augmented state vector.

While the estimation of actuator faults is obtained using an adaptive observer. The

design procedure has been presented by using the LMI approach. The efficiency

of the proposed fault estimation scheme has been illustrated by considering two nu-

merical examples. It shows from the results, the proposed method is not only able

to successfully estimate the states and faults for nonlinear state-space systems, but

also for nonlinear descriptor systems. The tracking performance of our approach is

satisfactory for different types of faults, such as unbounded faults, incipient faults and

abrupt faults.



Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis proposes novel observer-based methods to diagnose faults for a class of

nonlinear systems. Detection, isolation and estimation of actuator faults and sensor

faults are three main topics which have been investigated in this study.

The nonlinear systems under consideration are assumed to be Lipschitz about the

state uniformly, and are contaminated by modelling discrepancies and external dis-

turbances, which are lumped as additive uncertainties. These unknown inputs may

also cause changes in residuals such that the variations caused by real faults are

concealed, and therefore make the model-based FDI ineffective. In order to deal with

various uncertainties encountered in the problem of fault detection, isolation and esti-

mation, robust observer based fault diagnosis schemes have been proposed by using

sliding mode observers, adaptive observers and descriptor system approaches.

Initially, the estimation of actuator fault is studied in Chapter-2 and the result forms

the basis of Chapter-5. FDI of incipient sensor faults is studied in Chapters-3 where a

traditional Luenberger observer is designed to detect the occurrence of a fault and a

bank of SMOs is used to diagnose the location. The problem of sensor fault estima-

tion is addressed by two methods in Chapter-4. One method uses a SMO to estimate

the sensor fault while the other one uses an adaptive observer to get the sensor fault

estimation. Adaptation laws are imposed into both the methods to cope with the situ-
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ation that the Lipschitz constant is unknown or too large, which may result in a failure

of finding the observer design from LMIs. In Chapter-5, two methods are developed

to explore the problem of simultaneous actuator and sensor fault estimation. The

proposed methods are not only capable of estimating sensor faults, but also actuator

faults at the same time. In the first method, it is assumed that the matching condition

holds. Based on this assumption, two SMOs can be designed and the actuator fault

and sensor fault can be estimated separately using the equivalent output injection

term. In the second method, the assumption that the matching condition needs to be

satisfied is removed. Instead of using a SMO to estimate the sensor fault in the first

method, an adaptive observer is employed here. While the estimation of the actuator

fault is still obtained by using a SMO. In both schemes, the H∞ filtering is integrated

to minimize the effects of uncertainties on the fault estimation. In Chapter-6, the prob-

lem of simultaneous estimation of actuator and sensor fault is further explored using

the descriptor system approach. Based on this approach, the sensor faults can be di-

rectly estimated as auxiliary states rather than being transformed into actuator faults.

In each chapter, the sufficient condition for the existence of observers is derived

based on the Lyapunov method. The effectiveness of the proposed methodologies

are verified by practical and numerical examples in each chapter. Simulation results

show that the methods developed in this thesis can successfully detect, isolate and

estimate the fault signals, and can achieve the prescribed performance.

The main contributions of this study are as follows:

1. Fault diagnosis for Lipschitz nonlinear systems with structured non-parametric

uncertainties

• For a class of Lipschitz nonlinear systems with matched non-parametric un-

certainties, the scheme of actuator fault estimation is proposed. Based on

the matching condition, a state transformation is introduced to impose spe-

cific structures on the uncertainty and fault distribution matrices. The proposed

scheme can only estimate actuator faults, but also reconstruct them under cer-

tain geometric conditions.

• For a class of Lipschitz nonlinear systems with unmatched non-parametric un-

certainties, the incipient sensor FDI scheme based on SMOs are developed.

Incipient faults are almost unnoticeable and their effects to residuals are most

likely to be concealed by system uncertainties. Using the proposed method,
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sensor faults can be completely separated from uncertainties and easily de-

tected and isolated.

• For the same class of uncertain Lipschitz nonlinear systems, two sensor fault

estimation schemes, based on SMOs and AO respectively, are proposed. Adap-

tation laws are integrated into the design of observers, which makes the pro-

posed schemes more applicable for the situation when the Lipschitz constant is

large or unknown. Without the adaptation laws, the LMI solver may not provide

a feasible solution when Lipschitz constant is too large.

2. Fault diagnosis for Lipschitz nonlinear systems with unstructured non-parametric

uncertainties

• For a class of Lipschitz nonlinear systems with unstructured non-parametric un-

certainties, nonsingular coordinate transformations are first introduced to split

the original system into two subsystems. One subsystem only has actuator

faults while the other only has sensor faults. Based on the transformed sys-

tems, several fault estimation schemes, based on SMOs, AO and descriptor

system approaches respectively, are developed.

• By integrating H∞ filtering into the design of fault estimators, fault estimation

errors as well as the state estimation errors can be guaranteed to be less than

a prescribed performance level, irrespective of uncertainties. It is shown that

by by adjusting a single design parameter, it becomes possible to trade off

between fault reconstruction performance and robustness to unknown inputs.

3. Sufficient conditions for the existence and stability of the proposed fault estima-

tors are expressed in the form of LMIs. The problem of finding matrices to satisfy

both Lyapunov equation and matching condition is modelled as a convex optimiza-

tion problem and an LMI design procedure, which is solvable using commercially

available software package, is presented.

In summary, the research in this thesis demonstrates that the proposed fault diagno-

sis schemes based on sliding mode observers, adaptive techniques and descriptor

system theory are effective in dealing with fault detection, isolation and estimation for

uncertain Lipschitz nonlinear systems.
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7.2 Future work

The robust observer-based fault diagnosis has been studied extensively over the last

two decades. However, this research area still remains open. The following are some

of the directions that could be pursued in the future research:

• The thesis assumes that the system uncertainties are additive unknown terms.

This is questionable because the model uncertainty describes internal property

of the dynamic systems. The future work will extend the results of the proposed

schemes in the thesis to systems with parametric uncertainties and other types

of uncertainties.

• Networked control systems (NCSs) have advantageous over traditional sys-

tems in many aspects such as efficiency, practicality, energy consumption, in-

stallation , etc. However, one of the major problems of NCSs is the channel

time delay and quantization error due to the limited communication capacity.

The network-induced delay, including sensor-to-controller delay and controller-

to-actuator delay, will deteriorate the system performance as well as stability.

Therefore it is desirable to develop fault diagnosis schemes for networked con-

trol systems and for nonlinear systems with fixed or varying time delay in the

states, outputs. The schemes proposed in this thesis are believed to have the

potential to be extended to such systems.

• In this thesis, only fault detection, isolation and estimation were studied. How-

ever, successful fault diagnosis is not the ultimate goal for real applications.

Fault-tolerant control (FTC) is needed to preserve the stability and reliability of

the system when it is subject to a set of possible faults. The existing strate-

gies of fault compensation control are based on adding an additional control

input to the original control input in order to reduce or compensate the effects

of faults, so that the controlled system can still continue to operate according to

its original specifications. The additional input signal can be obtained from fault

estimation and therefore the fault estimation schemes proposed in this thesis

forms the foundation for FTC systems.

• As engineering plants grow in size and complexity, and the popularity of dis-

tributed systems, FDI for large scale nonlinear systems becomes increasingly

important. In general, a fault that occurs in one subsystem will not only affect
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the behavior of this system, but it will also affect the behavior of the neighboring

subsystems. It is believed that the results of this thesis can be extended to FDI

for large scale nonlinear systems by taking interactions between subsystems

into account.

• This thesis assumes that the output equation is linear. More complicated sys-

tems with both state dynamics and output dynamics being nonlinear can be

studied in the future.
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Appendix A

Proof of lemma 2.1

Lemma 2.1 There exist arbitrary matrices F1 ∈ Rr×p and F2 ∈ Rq×p such that:

[
ET

DT

]
P =

[
F1

F2

]
C (A.1)

if and only if Assumption 2.2 holds.

Proof. 1. Proof of sufficiency

It is shown in [8] that under Assumption 2.2, there exists a state transformation matrix

T such that in the new coordinate, the transformed system matrices become Ā =

TAT−1, B̄ = TB, C̄ = CT−1, D̄ = TD and Ē = TE, where C̄, Ē and D̄ have the

structure:

C̄ =
[

0 Ip

]
, D̄ =

[
0

D2

]
, Ē =

[
0

E2

]
(A.2)

Therefore A = T−1ĀT , B = T−1B̄, C = C̄T , D = T−1D̄ and E = T−1Ē.

If we select P = T T P̄ T , F1 = F̄1 and F2 = F̄2, then substituting C, E and D into

(A.1) yields

[
ĒT

D̄T

]
P̄ =

[
F̄1

F̄2

]
C̄ (A.3)
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Letting P̄ =

[
P̄1 0

0 P̄2

]
, F̄1 = ET

2 P̄2 and F̄2 = DT
2 P̄2, then it is clear that (A.3)

always hold.

2. Proof of necessity

It follows from that P is positive definite, the matrices E and ET PE have the same

null space and therefore rank(E) = rank(ET PE). From (2.9) it is easy to see that

ET PE = F1CE. Thus rank(ET PE) = rank(F1CE) ≤ rank(CE) ≤ rank(E)

and hence rank(CE) = rank(E). Similarly, it can be concluded that rank(CD) =

rank(D).

This completes the proof.



Appendix B

Proof of lemma 2.2

Lemma 2.2 If P and Q have been partitioned as in (2.3), then the following two

conclusions are obvious :

1. P−1
1 P2E2 + E1 = 0 and P−1

1 P2D2 + D1 = 0 if (2.9) is satisfied;

2. The matrix A1 + P−1
1 P2A3 is stable if Lyapunov equation (2.2) is satisfied.

Proof. 1. From the matrix partitions, it follows that

ET P =
[

ET
1 ET

2

] [
P1 P2

P T
2 P3

]

=
[

ET
1 P1 + ET

2 P T
2 ET

1 P2 + ET
2 P3

]

=
[

(P1(E1 + P−1
1 P2E2))

T ET
1 P2 + ET

2 P3

]

DT P =
[

(P1(D1 + P−1
1 P2D2))

T DT
1 P2 + DT

2 P3

]
(B.1)

FC =

[
0 F1

0 F2

]
(B.2)

By comparing (B.1) and (B.2), conclusion-1 can be obtained.

2. Applying block matrix multiplication to (2.2) yields

AT
1 P1 + P1A1 + AT

3 P T
2 + P2A3 = −Q1 (B.3)
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This implies that

(A1 + P−1
1 P2A3)

T P1 + P1(A1 + P−1
1 P2A3) = −Q1 (B.4)

Therefore conclusion-2 can be obtained from the fact that Q1 > 0 and P1 > 0.



Appendix C

Proof of lemma 3.1

Lemma 3.1 Under Assumption 3.1, there exist state and output transformations

z =

[
z1

z2

]
= T

[
x1

x2

]
, w =

[
w1

w2

]
= S

[
y1

y2

]
(C.1)

such that in the new coordinate, the system matrices become:

TAT−1 =

[
A1 A2

A3 A4

]
, TB =

[
B1

B2

]
, TE =

[
E1

0

]
,

SCT−1 =

[
C1 0

0 C4

]
, SD =

[
0

D2

]
(C.2)

where T ∈ Rn×n, S ∈ Rp×p, z1 ∈ Rr, w1 ∈ Rr, A1 ∈ Rr×r, A4 ∈ R(n−r)×(n−r),

B1 ∈ Rr×m, E1 ∈ Rr×r, C1 ∈ Rr×r, C4 ∈ R(p−r)×(n−r) and D2 ∈ R(p−r)×q. E1 and

C1 are invertible.

Proof. Partition D as

D =

[
D̄1

D̄2

]
(C.3)

where D̄2 ∈ Rq×q.
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Introduce a nonsingular transformation

S0 =

[
Ip−q −D̄1D̄

−1
2

0 Iq

]
(C.4)

such that S0D =

[
0

D2

]
, where D2 =

[
0

D̄2

]
.

Introducing a nonsingular transformation T0, we can obtain that

T0E =

[
E1

E2

]
(C.5)

where E1 ∈ Rr×r and is invertible.

Introduce a nonsingular coordinate transform T1 as:

T1 =

[
Ir 0

−E2E
−1
1 In−r

]
(C.6)

then

T1T0E =

[
Ir 0

−E2E
−1
1 In−r

][
E1

E2

]
=

[
E1

0

]
(C.7)

and CT−1
0 T−1

1 can be partitioned as [C̄1 C̄4]. Therefore

CE = CT−1
0 T−1

1 T1T0E =
[

C̄1 C̄4

] [
E1

0

]
= C̄1E1 (C.8)

It follows from rank(CE) = rank(E) that

rank(C̄1E1) = rank(CE) = rank(E1) (C.9)

then it can be conluded that

rank(C̄1) = rank(E1) = r (C.10)
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Denote that

S0C̄1 =

[
C11

C21

]
(C.11)

where C11 ∈ Rr×r with rank(C11) = r, C21 ∈ R(p−r)×r.

Let

S1 =

[
Ir 0

−C21C
−1
11 Ip−r

]
(C.12)

then

S1S0C̄1 =

[
Ir 0

−C21C
−1
11 Ip−r

][
C11

C21

]
=

[
C11

0

]
(C.13)

Let S = S1S0, then it can be obtained that

SCT−1
0 T−1

1 =
[

SC̄1 SC̄4

]
=

[
C11 C12

0 C22

]
(C.14)

Let

T2 =

[
Ir C−1

11 C12

0 In−r

]
(C.15)

and T = T2T1T0, then

SCT−1 =

[
C11 0

0 C22

]

TE =

[
E1

0

]

SD =

[
0

D2

]
(C.16)

Under the new coordinate, the matrices A and B can be transformed as in (3.3). This

completes the proof.
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