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ABSTRACT

The field of observer based fault diagnosis for nonlinear systems has become an

important topic of research in the control community over the last three decades.

In this thesis, the issues of robust fault detection, isolation and estimation of actuator

faults and sensor faults for Lipschitz nonlinear systems has been studied using sliding

mode, adaptive and descriptor system approaches.

The problem of estimating actuator faults is initially discussed. The sliding mode

observer (SMO) is constructed directly based on the uncertain nonlinear system. The

fault is reconstructed using the concept of equivalent output injection. Sensor faults

are treated as actuator faults by using integral observer based approach and then

the problem of sensor fault diagnosis, including detection, isolation and estimation is

studied. The proposed scheme has the ability of successfully diagnosing incipient

sensor faults in the presence of system uncertainties. The results are then extended

to simultaneously estimate actuator faults and sensor faults using SMOs, adaptive

observers (AO) and descriptor system approaches. H∞ filtering is integrated into the

observers to ensure that the fault estimation error as well as the state estimation error

are less than a prescribed performance level.

The existence of the proposed fault estimators and their stability analysis are

carried out in terms of LMIs. It has been observed that when the Lipschitz constant

is unknown or too large, it may fail to find feasible solutions for observers. In order

to deal with this situation, adaptation laws are used to generate an additional control

input to the nonlinear system. The additional control input can eliminate the effect of

Lipschitz constant on the solvability of LMIs.

The effectiveness of various methods proposed in this research has been demon-

strated using several numerical and practical examples. The simulation results demon-
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strate that the proposed methods can achieve the prescribed performance require-

ments.
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Chapter 1

Introduction

A fault can generally be defined as an unexpected deviation of at least one charac-

teristic property, called the feature of the system, from the normal condition which

tends to degrade the overall performance of a system and leads to undesirable but

still tolerable behavior of the system [1].

The increased productivity requirements and stringent performance specifications

have led to more demanding operating conditions in many modern engineering sys-

tems such as aircrafts, automotive vehicles, high-speed railways and power systems.

Such conditions increase the possibility of faults which will result in off-specification

production, increased operating costs, detrimental environmental impacts and even

catastrophic disasters that claim both property and human life [2, 3]. Therefore, in

order to satisfy the demands for reliability, availability, safety and maintainability of an

industrial process, it is vital to promptly detect faults and diagnose the source and

severity of each malfunction so that appropriate actions can be scheduled.

1.1 Basic concept of fault diagnosis

Faults can be of several types which may arise due to different conditions such as

malfunctions in actuators and sensors, abnormal parameter variations of the process

and hard failures in equipments due to structural changes, etc. Typical examples of

faults are:
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2 1.1. Basic concept of fault diagnosis

Figure 1.1: A faulty system which are subject to actuator faults and sensor faults

• Actuator faults, such as damages in the bearings, deficiencies in force and

momentum, defects in the gears, aging effects and stuck faults. Actuators are

used to generate the desired inputs to control the process to behave normally.

When actuator faults occur, the faulty actuators are no longer to generate the

desired control inputs.

• Sensor faults, such as scaling errors, drifts, dead zones, short cuts and contact

failures. sensors are used to provide measurements that are needed for moni-

toring the system and computing the desired inputs. When sensor faults occur,

the faulty sensors are no longer to provide accurate measurements which are

needed to generate control inputs.

• Abnormal parameter variations in the system. When some components of the

plant are faulty, the original process has changed into a different process so

that the controller designed for the original process is no longer able to achieve

the expected system performance.

• Construction defects such as cracks, ruptures, fractures, leaks and loose parts

etc.

• External obstacles such as collisions and clogging of outflows.

Throughout this thesis, a fault is defined as an additive change appearing in an actu-

ator or sensor and a faulty system is shown in Fig-1.1.

The growing demands for reliability, availability, safety and maintainability of modern

control systems call for the research of fault diagnosis. This research field has at-

tracted consideration worldwide in both theory and application in last two decades [4,

5, 6, 7, 8, 9, 10]. The role of a fault diagnosis is to detect faults and to identify their
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locations and significance in a system of interest. Such a system normally consists

of three major tasks: fault detection, fault isolation and fault estimation [11].

Fault detection is the first step of fault diagnosis which is used to make a decision re-

garding the system working conditions, namely whether or not the system is working

under normal conditions. This can be achieved from either the direct observation of

system inputs and outputs, or the use of certain types of redundant relations. After a

fault is being detected, the next step is fault isolation. In this step the locations of the

faults are determined, i.e., amongst several sensors and actuators the faulty sensor

or actuator is identified. Most practical diagnosis systems contain only fault detection

and isolation (FDI). However, FDI cannot tell the magnitude of the fault. More com-

prehensive information of the fault such as magnitude, location and nature can be

provided by the step of fault estimation, which is often referred to as fault identifica-

tion [1]. This procedure can be regarded as an extension to FDI, since accurate fault

estimation alternately implies the occurrence and location of the fault. Moreover, this

step plays an important role in fault tolerant control (FTC), which stabilizes the closed-

loop system and guarantees a prescribed performance level after the occurrence of

any fault [12, 13].

1.2 Fault diagnosis methodologies

A traditional approach for fault diagnosis is hardware-based, where a particular vari-

able is measured using multiple sensors, actuators and computers. Outputs from

identical components are compared for consistency. This method is costly and some-

times may cause complex problems when incorporated with other redundant de-

vices [7].

Another approach for fault diagnosis is the analytical redundancy method, which uti-

lizes analytical models of the plant in equation to track the changes in the plant dy-

namics. The main idea behind this method is to generate directional residuals by

failure detection filters. Different fault effects can be mapped into different directions

or planes in the residual vector space so that fault isolation can be achieved [6]. The

existing analytical redundancy fault diagnosis approaches can be broadly divided

into knowledge-based FDI methods, signal-based FDI methods and model-based

FDI methods:
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1. Knowledge-based FDI methods

The knowledge-based methods of fault diagnosis are essentially being developed

from the heuristic symptoms. These are obtained either from expert human oper-

ators, or from a qualitative model. In some of the knowledge-based methods, the

model is built up by expert reasoning [14], fuzzy reasoning [15] and neural net-

works [16, 17], for mapping the inputs and outputs of the unknown system. In

many other knowledge-based methods, measurement data is mapped to a known

pattern which includes different normal and abnormal operating conditions directly,

so that the system condition can be identified. One of the major advantages of the

knowledge-based methods is that they do not require explicit mathematical model of

the monitored system. However, they require in advance the knowledge of the mon-

itored plants, such as the training data which contains faults and the corresponding

symptoms, under different faulty conditions.

2. Signal-based FDI methods

Many signal-based FDI methods have been developed and can be divided into two

categories: spectral analysis [18] (time-frequency, time-scale analysis, etc) and sta-

tistical methods [19] (signal classification, pattern recognition, etc). These methods

extract from the system proper signals or symptoms such as spectral power densi-

ties, correlation coefficients and covariances, for the analysis of faults. Although the

signal-based techniques do not require a complete analytical model, as the knowl-

edge based methods, their efficiency is particularly limited for early fault detection

and for the detection of faults which occur during transient operation.

3. Model-based FDI methods

With the development of digital computers and the system identification techniques,

model-based FDI methods have received considerable attention in recent years [7,

20, 21, 22]. The model-based FDI methods comprise of two principal steps: residual

generation and residual evaluation. The difference between the actual system’s be-

havior and the predicted or estimated behavior forms the residual signal. This signal

is supposed to be zero when the system is free from fault and nonzero during the

occurrence of fault. After generating the residual, the next step is to evaluate the

residuals and make a decision on whether or not a fault has occured. This is carried

out by comparing the residual signal with a threshold. An alarm is triggered when the

residual exceeds the threshold. The three most popular model-based FDI methods
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are [23]:

1) Parity equation approach [1, 24]. This approach is based on the test of consis-

tency of parity equations by using measurements and inputs. Any inconsistency

of the parity equations can be used to detect the faults.

2) Parameter estimation approach [16, 25, 26]. This approach is based on the as-

sumptions that the occurrence of any fault will change the values of the physical

system parameters such as mass, friction, resistance, etc. The parameters of

the actual process can be repeatedly estimated using online parameter estima-

tion methods. A fault can be declared if there exists discrepancies between the

true values of the system parameters and their estimated values.

3) Observer-based approach [27, 28, 29, 30, 31]. The observer-based FDI ap-

proaches generally compare the actual system’s measurements with the pre-

dicted or estimated outputs by employing observers. The output estimation

errors are taken as residuals. The most commonly used observers include

Luenberger observers [32] in a deterministic setting, Kalman filters [33] in a

stochastic setting, sliding mode observers [8] and unknown-input observers

(UIO) [34].

1.3 Complexities in Model-based fault diagnosis

In the context of fault diagnosis, nonlinearities and uncertainties are two main types

of complexities.

1. Nonlinearities

As most plants are inherently nonlinear and the faults may often amplify the nonlinear-

ities by driving the plants from a relatively linear operating point into a more nonlinear

operating region, the study of fault diagnosis for nonlinear systems has become a

very active research topic for both theoretical and practical reasons. The presence of

nonlinearities in control systems constitutes a major challenge to model-based fault

diagnosis.

During the last decade, productive results have been reported on fault diagnosis

for linear time-invariant (LTI) systems, such as pseudo-inverse approach [35], adap-
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tive approach [36], descriptor approach [37] and sliding mode-based approach [38].

However, there is no universal design method available for general nonlinear systems

and the research of fault diagnosis can only be carried out systematically for some

special classes of nonlinear systems such as bilinear systems [39, 40], linearizable

systems [41] and other special types of nonlinear systems [42, 43].

Amongst these systems, Lipschitz nonlinear systems have received special attention

in recent years [44, 45, 46, 47, 48]. Many observer-based FDI approaches have

been reported for this class of nonlinear systems, such as UIOs [49], adaptive tech-

niques [50], descriptor system approaches [51] and high-gain observers [52].

Consider the following continuous-time nonlinear system:

ẋ(t) = Ax(t) + f(x, u, t)

y(t) = Cx(t) (1.1)

where x ∈ Rn are the state variables, u ∈ Rm are the inputs and y ∈ Rp are the

outputs. A ∈ Rn×n and C ∈ Rp×n are known constant matrices with C being of full

rank. Note that any system of the form ẋ(t) = ψ(x, u, t) can be expressed in the form

of (1.3) as long as ψ(x, u, t) is continuously differentiable with respect to x. Since

some nonlinearities can be treated as unknown inputs, (1.3) can represent a broader

class of nonlinear systems than it first appears.

For the nonlinear term f(x, u, t), if there exists a positive scalar Lf which is indepen-

dent of x, u and t, such that

‖f(x1, u, t)− f(x2, u, t)‖ ≤ Lf‖x1 − x2‖ (1.2)

for all x1 and x2. Then inequality (1.2) is the well-known Lipschitz condition [] and

(1.3) represents a Lipschtiz nonlinear system. Many practical systems satisfy the

Lipschtiz condition, at least locally. For example, trigonometric nonlinearities occur-

ring in robotic applications and the nonlinearities which are square or cubic in nature,

can be assumed to be Lipschitz. The main advantage of Lischitz nonlinear systems is

that the observer design can be carried out in a systematic way by simply extending

linear observer design technique.

In this thesis, we will only focus on this type of nonlinear systems.
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2. Uncertainties

Due to the high dependence of the model-based FDI to the corresponding mathe-

matical models, a major downside of this approach is that this approach requires

an accurate mathematical model of the system which is difficult to obtain in many

practical situations. Moreover, the system parameters often vary during the process

and the characteristics of disturbances are unknown. The existence of system un-

certainties and disturbances can cause a misleading alarm and therefore make the

model-based fault diagnosis system ineffective [53]. Consequently, it is vital to take

the issue of robustness into account when designing a model-based fault diagnosis

system. A robust fault diagnosis system should have the ability to be sensitive to the

fault signals and insensitive to other unknown signals.

Uncertainties can be broadly divided into two classes: non-parametric uncertain-

ties [8, 54], which include modelling errors and disturbances, and parametric uncer-

tainties [55, 56], which are characterized in terms of unknown parameters. In this

thesis, only non-parametric uncertainties will be studied.

A nonlinear state-space system with non-parametric uncertainties can be formulated

as:

ẋ(t) = Ax(t) + f(x, u, t) + η(t)

y(t) = Cx(t) (1.3)

where the unknown term η(t) represents the uncertainty.

In the fault diagnosis literature, efforts to boost the robustness of FDI schemes can

be made either by decoupling the fault from the uncertainty, or by minimizing the

effects of the uncertainty on the state and fault estimation. In the first method, it

is often assume that the uncertainty is structured, i.e., the uncertainty has the form

η(t) = E∆ψ(t), where E is known (or approximately known) and represents the un-

certainty distribution matrix, ∆ψ(t) is an unknown function of time. This structured

uncertainty allows the use of linear and nonlinear state transformations to exactly

decouple faults from uncertainties [8, 46, 57, 58]. However, the distribution of uncer-

tainties is normally unknown and the construction of the state transformation is not an

easy task. In such a case, decoupling faults from uncertainties is no longer possible

and this can be solved by integrating H∞ filtering into observers [45, 48, 59] or using

the adaptive threshold approach [50, 60].
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The fault diagnosis of nonlinear systems with structured uncertainties or unstructured

uncertainties will both be studied in this thesis.

1.4 Sliding mode observer based fault diagnosis: an

overview

During past decade, several robust fault diagnosis methods have been developed,

such as observer-based robust FDI [61, 62, 63, 64], unknown input observer (UIO)

based approach [34, 65, 66] and eigenstructure assignment approach [67, 68]. Amongst

these approaches, the observer-based robust FDI is deemed most promising due to

several advantages, such as it can be implemented using only the on-line measure-

ments and offers more design freedom, compared with other approaches.

One of the particular interesting techniques among all observer-based FDI is the

sliding mode observer (SMO)-based approach. In recent years, the SMO has been

widely studied and considerable success has been achieved in many areas [8, 53,

61, 69, 70, 71, 72, 73, 74]. The main characteristic of the SMO is that, despite system

uncertainties and disturbances, the output estimation errors between the system and

the SMO can be forced to and maintained at zero during sliding.

Early work of applying the SMO for fault diagnosis was shown in [75] where a SMO is

designed with the assumption that the states of the system are available. In [70, 71],

the authors attempted to design a SMO for systems with uncertainties. When a fault

occurs, the sliding motion will be destroyed and the residual will deviate from zero.

On the contrary, the SMO proposed in [8], which is similar to that of [76], can maintain

the sliding mode even after the presence of faults by selecting an appropriate gain.

Therefore, the constant actuator faults and sensor faults can be reconstructed by

the so-called equivalent output injection under certain conditions. This result was

extended to a more general case in [77] where the derivative of the sensor fault is

nonzero. However, the requirement of a complicated coordinate transformation and

that the system is accurately known limits its application. The assumption of open

loop stability in [77] was later relaxed in [72] to achieve robust sensor fault estimation

using a linear matrix inequality (LMI) formulation. In [78], a nonlinear diffeomorphism

was introduced to explore the system structure and the sensor fault was transformed
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into a pseudo-actuator fault scenario using a filter. A SMO was then designed to

estimate the sensor fault based on the filtered system. In [79], the authors proposed

a scheme to estimate incipient sensor faults for both open-loop stable and unstable

systems. The problem of early detection of incipient faults using SMOs is also studied

in [58]. A high-order SMO was designed in [73] to estimate sensor faults. It has

been shown in [46, 80] that if certain conditions on fault and uncertainty distribution

matrices are met, then the system uncertainties can be perfectly decoupled from

faults and the reconstruction of actuator faults can be achieved. If this condition is

not satisfied, the approach must settle for minimizing the effect of the uncertainties on

the fault estimation. In [72], a FDI scheme which can minimize the L2 gain between

the uncertainty and the fault reconstruction signal was proposed for a class of linear

systems with uncertainties.

In this thesis, the issues of robust fault detection, isolation and estimation of actuator

faults and sensor faults for Lipschitz nonlinear systems will be studied mainly based

on this technique. Several ideas presented in above references are applied, such as

the concept of equivalent output injection introduced in [8], LMI technique used in [72]

and coordinate transformations used in [58].

1.5 Objectives of the thesis

Motivated by the success of observer based methods of fault diagnosis in various

systems, the present study focus on developing effective and robust solutions for

fault detection, isolation and estimation for a class of nonlinear systems (Lipschitz

nonlinear systems).

The thesis sets the following main objectives:

1. Develop SMO based method to reconstruct actuator faults;

2. Develop effective algorithms to detect and isolate sensor faults;

3. Develop novel schemes based on SMOs and adaptive technique to estimate

sensor faults.

4. Develop robust schemes based on SMOs and adaptive technique to estimate

coinstantaneous actuator faults and sensor faults.
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5. Simultaneously estimate the actuator and sensor faults using descriptor system

approach.

1.6 Thesis outline

The thesis is organized as follows:

The thesis starts with an introduction of actuator fault detection and isolation in chap-

ter 2. A sliding mode observer is proposed based on a constrained Lyapunov equa-

tion and the sufficient conditions for the design of such an observer have been de-

rived. The fault signal is estimated by employing the concept of equivalent output

error injection. The estimated fault signal provides information about the occurrence

of a fault as well as about the size and severity of the fault. Under certain conditions,

the actuator fault can be precisely reconstructed. The example of a single-link flexible

joint robot system is tested to show the effectiveness of the proposed scheme.

Compared with actuator fault detection and isolation, very little research has been

carried out on the sensor fault diagnosis, especially for the incipient sensor fault diag-

nosis. Therefore, a robust sensor fault detection and isolation scheme is proposed in

chapter 3. The essential idea behind the proposed scheme is to employ a coordinate

transformation such that the sensor faults can be separated from system uncertain-

ties. More specifically, after the coordinate transformation of the original system, one

of the subsystems is only subject to sensor faults, but without modelling uncertain-

ties, which only appears in another subsystem. Based on the transformed system

and the integral observer based approach, multiple sensor faults are detected by us-

ing the classical Luenberger observer and then isolated by using a bank of sliding

mode observers.

It follows in chapter 4 that after the detection and isolation of multiple sensor faults,

they are further estimated by using two methods. In the first method, the sensor fault

is estimated by using sliding mode observers while in the second method, the sensor

fault is estimated based on adaptive technique. The most attractive feature of the

schemes proposed in chapters 3 and 4 is that by using a coordinate transformation,

sensor faults are completely decoupled from modelling uncertainties and therefore

the diagnosis of small sized sensor faults can be successfully carried out.
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Chapters 2, 3 and 4 deal separately with the actuator faults and sensor faults. In

other words, it is assumed that there occur only actuator faults or sensor faults at a

particular time. In chapter 5, the situation when both actuator faults and sensor faults

happen in a process simultaneously is studied. It is worth noting that uncertainties

considered in previous chapters are structured and the uncertainty distribution matrix

is known. In this chapter, the case that the uncertainty is unstructured is studied. By

integrating H∞ criteria, the proposed observer is not only capable of estimating the

states and faults, but also minimizes the H∞ gain between the estimation error and

system uncertainties. Since the integrated H∞ filtering ensures more accurate state

estimations, the fault estimation is much more robust against the system uncertain-

ties, compared with the fault estimation obtained from observers without H∞ filtering.

An illustrative example is given to show that the proposed method can preserve the

shape of the actuator fault and sensor fault effectively.

A descriptor system approach is introduced to investigate the simultaneous estima-

tion of actuator fault and sensor fault in chapter 6. The descriptor system is con-

structed by taking sensor faults as auxiliary states. An observer together with adap-

tive technique is designed for the augmented system to estimate faults. Asymptotic

estimates of the original system states and the sensor faults can be directly obtained

from the descriptor observer. Meanwhile, the actuator faults are obtained by using

adaptive observer-based approach. The difference between the method developed in

this chapter and those proposed in chapters 2,3,4 and 5 is that, this approach does

not require any coordinate transformation which may increase the design difficulty.

Besides, the assumption that the unstructured uncertainty is bounded in chapter 5 is

removed in this chapter.

Concluding remarks and suggestions for future research are discussed in chapter 7.
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Chapter 2

Reconstruction of actuator faults for

uncertain nonlinear systems

In this chapter, a scheme based on SMOs is proposed for the reconstruction of actua-

tor faults for Lipschitz nonlinear systems with matched non-parametric uncertainties.

2.1 Introduction

The demand for a safer and more reliable automatic control system stimulates the

research on fault diagnosis and this topic has received considerable attention during

the last two decades. The related literature can be found in [4, 5, 20, 21, 22, 23, 81]

and the references there in.

The approaches of FDI developed in the past can essentially be grouped into three

main categories: knowledge-based FDI methods [14], signal-based FDI [18] and

model-based FDI [7]. In knowledge-based FDI, both the dynamic behaviors of the

process and heuristic symptoms are characterized by a small number of symbols, or

by qualitative values. Signal-based FDI approaches employ statistical operations on

the measurements or train some artificial network to extract the information regard-

ing faults. The model-based FDI approaches generally compare the actual system’s

behavior with the predicted or estimated behavior based on its mathematical model.

The difference of these behaviors, referred to as residuals, are very sensitive to any

13
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faults and therefore being used for fault detection. An alarm is triggered when the

actual process behavior deviates from its expected behavior; more precisely, when

the residuals exceed some predefined thresholds. However, due to the high depen-

dence of the residual generation FDI to the corresponding mathematical model, any

uncertainties existing in the model can cause a misleading alarm, which often make

the FDI ineffective.

One of the methods to deal with the uncertainty such as system deviation, distur-

bances and unknown nonlinearities is to use the idea of sliding mode techniques.

Several authors have reported sliding mode observer design methods in an FDI con-

text. In [61], a discontinuous observer strategy has been used where the error be-

tween the estimated and measured outputs is forced to exhibit a sliding mode and

the effects of measurement noises are reduced. In [76] a Lyapunov-based approach

has been used to formulate an observer design where asymptotic stability can be

obtained under certain assumptions in the presence of bounded nonlinearities or

uncertainties. Early work of applying the SMO for FDI was shown in [75] where a

sliding mode observer approach is considered with the assumption that the states

of the system are available. In [71] Hermans and Zarrop attempted to design an ob-

server such that in the presence of a fault the sliding motion was destroyed. However,

the observer proposed in [8], which is similar to that of [76] can maintain the sliding

mode even after the presence of faults. The actuator fault can therefore be recon-

structed by the so-called equivalent output injection under certain conditions. Later

it was extended to sensor fault reconstruction in [77]. Notice that the precise fault

reconstruction shown in [8] and [77] was only for linear systems without uncertain-

ties. When there are uncertainties, [82] provides a method to reconstruct faults for

linear systems. It should be emphasized that the above work only considers linear

systems. For nonlinear systems, the synthesis and computation of the switching gain

of the SMO are much more difficult. [83] designed an adaptive method to update the

sliding mode observer gain for counteracting uncertainty, so the upper bound of the

uncertainty was not needed. In [84], a bank of observers were designed to isolate

actuator faults for both linear and nonlinear systems. LMI techniques were used in

[46] to design the SMO for a class of nonlinear systems with uncertainties.

In general, the SMO-based FDI techniques can be classified into two categories. The

first category uses SMOs to generate residuals which are sensitive to faults, but in-

sensitive to uncertainties [21, 75]. The second category uses SMOs to reconstruct or

estimate the faults [8, 54, 77, 85]. The main content of this chapter falls into the sec-
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ond category and the objective is to propose an SMO-based fault estimation scheme

for actuator fault reconstruction for Lipschitz nonlinear systems with matched non-

parametric uncertainties. The developed method is inspired by the work presented

in [80], in which a robust SMO is established in the presence of uncertainties and

actuator faults based on a constrained Lyapunov equation. However, [80] does not

explicitly give a systematic solution for computing the parameters of the observer.

This problem is solved in this chapter by transforming the sufficient condition of the

stability of the observer into a convex optimization problem and expressing in LMI

form. Moreover, Unlike in above mentioned papers where the bound of the system

uncertainty is a constant and independent of states, the bound in this chapter is as-

sumed to have a more general form. Under certain geometric conditions, the fault

can be completely decoupled from system uncertainties and an accurate estimation

can be achieved.

The remainder of the chapter is organized as follows: Section-2.2 briefly describes

the mathematical preliminaries required for designing SMO. Section-2.3 describes

the design procedure of the proposed SMO and derives the sufficient condition for

the existence and stability of the SMO, and expresses the condition in LMI form.

Section-2.4 explores under what conditions the fault can be reconstructed with arbi-

trary accuracy in the presence of uncertainty. The results of simulation considering

the example of single-link flexible joint robot system is shown in section-2.5 with con-

clusions in section-2.6.

2.2 Problem Formulation

Consider a nonlinear system described by

ẋ(t) = Ax(t) + f(x, t) + Bu(t) + E∆ψ(x, t) + Dfa(t)

y(t) = Cx(t) (2.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp denote respectively the state variables, inputs

and outputs ; A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rn×q and E ∈ Rn×r(q ≤
p < n) are known constant matrices with C and D both being of full rank and the

nonlinear term f(x, t) is assumed to be known. The unknown nonlinear term ∆ψ(x, t)

models lumped uncertainties and disturbances experienced by the system and fa(t)
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represents actuator faults. Note that the assumption that the matrix D has full column

rank q is not a restriction and can always be met by redefining the fault vector [86].

The objective is to design an asymptotic observer from the measurement y(t) to

estimate both the state x(t) and the actuator fault fa(t). The following assumptions

are made throughout the chapter:

Assumption 2.1 The matrix pair (A,C) is detectable.

It follows the assumption that there exists a matrix L ∈ Rn×p such that A − LC is

stable, and thus for any Q > 0 the Lyapunov equation

(A− LC)T P + P (A− LC) = −Q (2.2)

has an unique solution P > 0 [80].

Assume that P ∈ Rn×n, Q ∈ Rn×n are in the form:

P =

[
P1 P2

P T
2 P3

]
, Q =

[
Q1 Q2

QT
2 Q3

]
(2.3)

It is obvious that P1 ∈ R(n−p)×(n−p) > 0, P3 ∈ Rp×p > 0, Q1 ∈ R(n−p)×(n−p) > 0 and

Q3 ∈ Rp×p > 0 if P > 0 and Q > 0.

Assumption 2.2 rank(C[D E])=rank(D)+rank(E).

This assumption implies that rank [D E] ≤ p. A necessary condition for this assump-

tion to hold is that the number of measurements is greater than or equal to the sum

of the number of unknown inputs (system uncertainties and disturbances) and the

number of actuator faults.

Assumption 2.3 The nonlinear term f(x, t) is assumed to be known and Lipschitz

about x uniformly, i.e., ∀x, x̂ ∈ X ,

‖f(x, t)− f(x̂, t)‖ ≤ Lf‖x− x̂‖ (2.4)

where Lf is the known Lipschitz constant. Many nonlinearities can be assumed to

be Lipschitz, at least locally.

Assumption 2.4 The function ∆ψ(x, t) representing the structured uncertainty is
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unknown but bounded, and it satisfies

‖∆ψ(x, t)‖ ≤ ξ(x, t) (2.5)

where the bounding function ξ(x, t) is known and Lipschitz about x uniformly, i.e.,

‖ξ(x, t) − ξ(x̂, t)‖ ≤ Lξ‖x − x̂‖. Also the actuator fault fa is bounded by a known

function: ‖fa(t)‖ ≤ ρ(t). This assumption is quite general when the actuator fault is

constant or time-varying at a limited rate.

Without loss of generality, it is assumed that the output matrix C has the form:

C =
[

0 Ip

]
(2.6)

If C does not have such a structure, we can always find a nonsingular transformation

matrix Tc such that CT−1
c = [0 Ip] since C has full row rank [87].

Assume that the triple (A,E,D) has the following structure:

A =

[
A1 A2

A3 A4

]
, E =

[
E1

E2

]
, D =

[
D1

D2

]
(2.7)

where A1 ∈ R(n−p)×(n−p), A4 ∈ Rp×p, E1 ∈ R(n−p)×r, E2 ∈ Rp×r, D1 ∈ R(n−p)×q and

D2 ∈ Rp×q. Then system (2.1) can be rewritten as:

ẋ1 = A1x1 + A2x2 + f1(x, t) + B1u(t) + E1∆ψ + D1fa

ẋ2 = A3x1 + A4x2 + f2(x, t) + B2u(t) + E2∆ψ + D2fa

y = x2 (2.8)

where x = col(x1, x2) with x1 ∈ Rn−p, f1(x, t) ∈ Rn−p is the first n−p rows of f(x, t)

and f2(x, t) ∈ Rp represents the remaining rows.

In order to introduce SMO design in the next section, two important lemmas are given

as follows:

Assumption 2.5 There exist arbitrary matrices F1 ∈ Rr×p and F2 ∈ Rq×p such that:

[
ET

DT

]
P =

[
F1

F2

]
C (2.9)
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Lemma 2.1 There exists a solution P = P T > 0 such that (2.9) holds if and only if

Assumption 2.2 is satisfied.

Proof . See Appendix-A.

Lemma 2.2 If P and Q have been partitioned as in (2.3), then the following two

conclusions are obvious :

1. P−1
1 P2E2 + E1 = 0 and P−1

1 P2D2 + D1 = 0 if (2.9) is satisfied;

2. The matrix A1 + P−1
1 P2A3 is stable if Lyapunov equation (2.2) is satisfied.

Proof. See Appendix-B and [80].

Remark 2.1 The equation (2.9) in the Assumption 2.5 is commonly called as the

matching condition. This assumption seems to be restrictive, but fortunately, for many

practical control systems, particularly mechanical systems, it is often satisfied. The

satisfaction of this assumption allows to decouple the dynamics of the observer error

from the system uncertainties and faults.

2.3 Sliding mode observer design

The design of sliding mode observer begins by introducing a new linear change of

coordinates z = Tx so as to impose specific structures on the uncertainty and fault

distribution matrices, where

T :=

[
In−p P−1

1 P2

0 Ip

]
(2.10)

Then the system (2.1) can be transformed into the new coordinate system z as:

ż(t) = TAT−1z(t) + Tf(T−1z, t) + TBu(t) + TE∆ψ(T−1z, t) + TDfa(t)

y(t) = CT−1z(t) (2.11)
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where

TAT−1 =

[
Ā1 Ā2

Ā3 Ā4

]

=

[
A1 + P−1

1 P2A3 A2 − A1P
−1
1 P2 + P−1

1 P2(A4 − A3P
−1
1 P2)

A3 A4 − A3P
−1
1 P2

]

TB =

[
B̄1

B̄2

]
=

[
B1 + P−1

1 P2B2

B2

]

Tf(T−1z, t) =




[
In−p P−1

1 P2

]
f(T−1z, t)

f2(T
−1z, t)




CT−1 = C̄ =
[

0 Ip

]

and f2(T
−1z, t) is the last p rows of f(T−1z, t).

Using the conclusion (1) of Lemma 2.1, we can further get that

Ē = TE =

[
0

E2

]
, D̄ = TD =

[
0

D2

]

Therefore the system (2.11) can be rewritten as:

ż1 = Ā1z1 + Ā2z2 + B̄1u(t) +
[

In−p P−1
1 P2

]
f(T−1z, t)

ż2 = Ā3z1 + Ā4z2 + B̄2u(t) + f2(T
−1z, t) + E2∆ψ(T−1z, t) + D2fa (2.12)

y = C̄z

where z = col(z1, z2) with z1 ∈ Rn−p and z2 ∈ Rp.

It is interesting to note that in the new coordinate, the Lyapunov matrix P which is in

the form of (2.3), can be proved to have the following quadratic form:

P̄ = (T T )−1PT−1 =

[
P1 0

0 P0

]
(2.13)

where P0 = −P T
2 P−T

1 P2 + P3.

Substituting P = T T P̄ T , C = C̄T , E = T−1Ē and D = T−1D̄ into the matching
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condition (2.9) yields

[
ĒT

D̄T

]
P̄ =

[
F1

F2

]
C̄ (2.14)

From the structure of D̄, Ē, P̄ and C̄, it can be obtained that F1 = ET
2 P0 and F2 =

DT
2 P0, which provides an easy way to determine the value of F1 and F2 in Assumption

2.5.

Based on the transformed system (2.12),the sliding mode observer is designed as :

˙̂z1 = Ā1ẑ1 + Ā2z2 + B̄1u(t) +
[

In−p P−1
1 P2

]
f(T−1ẑ, t)

˙̂z2 = Ā3ẑ1 + Ā4ẑ2 + B̄2u(t) + f2(T
−1ẑ, t) + (Ā4 − A0)(y − ŷ) + ν (2.15)

ŷ = C̄ẑ

where ẑ1, ẑ2 and ŷ denote respectively the estimated states and output, A0 ∈ Rp×p

is a stable design matrix and plays the role of a Luenberger observer gain, and the

discontinuous vector ν is defined by

ν =





k(t, y, u) P0(y−ŷ)
‖P0(y−ŷ)‖ if y − ŷ 6= 0

0 otherwise
(2.16)

where k(t, y, u) is the gain to be determined and P0 ∈ Rp×p is the symmetric definite

Lyapunov matrix for A0. Note that a similar form of the discontinuous vector ν has

been used in linear systems [8]. The result has been extended to nonlinear systems

in this study.

If the state estimation errors are defined as e1 = z1 − ẑ1 and ey = e2 = z2 − ẑ2, then

the state estimation error dynamics can be obtained as:

ė1 = Ā1e1 +
[

In−p P−1
1 P2

] (
f(T−1z, t)− f(T−1ẑ, t)

)
(2.17)

ėy = Ā3e1 + A0ey + f2(T
−1z, t)− f2(T

−1ẑ, t)

+ E2∆ψ(T−1z, t) + D2fa − ν (2.18)

The sliding surface is defined as:

S = {(e1, ey)|ey = 0} (2.19)
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Proposition 2.1 Under the Assumption 2.1-2.5, the system (2.17)-(2.18) is asymp-

totically stable if there exist matrices P0 > 0, P1 > 0, A0, P2 and a positive scalar α

satisfying

[
ĀT

1 P1 + P1Ā1 + 1
α
P̄1P̄

T
1 + α(Lf )

2I AT
3 P0

P0A3 AT
0 P0 + P0A0

]
< 0 (2.20)

where P̄1 = P1

[
In−p P−1

1 P2

]
.

Proof. Consider V (e1, ey) = V1(e1) + V2(ey) as the Lyapunov candidate, where

V1(e1) = eT
1 P1e1 and V2(ey) = eT

y P0ey.

The time derivative of V1 along the trajectories of system (2.17) can be shown to be

equal to:

V̇1 = ėT
1 P1e1 + eT

1 P1ė1

= eT
1 (ĀT

1 P1 + P1Ā1)e1 + 2eT
1 P̄1

(
f(T−1z, t)− f(T−1ẑ, t)

)
(2.21)

Since the inequality 2XT Y ≤ 1
α
XT X + αY T Y is true for any scalar α > 0 [46], then

V̇1 ≤ eT
1 (ĀT

1 P1 + P1Ā1)e1 +
1

α
eT
1 P̄1P̄

T
1 e1 + α

(
f(T−1z, t)− f(T−1ẑ, t)

)T

· (f(T−1z, t)− f(T−1ẑ, t)
)

= eT
1 (ĀT

1 P1 + P1Ā1)e1 +
1

α
eT
1 P̄1P̄

T
1 e1 + α‖f(T−1z, t)− f(T−1ẑ, t)‖2 (2.22)

From the fact that ẑ := col(ẑ1, y), we have:

∥∥T−1z − T−1ẑ
∥∥ =

∥∥∥∥∥T−1

[
e1

0

]∥∥∥∥∥ = ‖e1‖
∥∥f

(
T−1z, t

)− f
(
T−1ẑ, t

)∥∥ ≤ Lf ‖e1‖∥∥f2

(
T−1z, t

)− f2

(
T−1ẑ, t

)∥∥ ≤ Lf2 ‖e1‖ (2.23)

therefore

V̇1 ≤ eT
1 (ĀT

1 P1 + P1Ā1)e1 +
1

α
eT
1 P̄1P̄

T
1 e1 + α(Lf )

2‖e1‖2

= eT
1

(
ĀT

1 P1 + P1Ā1 +
1

α
P̄1P̄

T
1 + α(Lf )

2In−p

)
e1 (2.24)
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The time derivative of V2 along the trajectories of system (2.18) can be obtained as:

V̇2 = eT
y (AT

0 P0 + P0A0)ey + 2eT
y P0Ā3e1 + 2eT

y P0

(
f2(T

−1z, t)− f2(T
−1ẑ, t)

)

+ 2eT
y P0E2∆ψ(T−1z, t) + 2eT

y P0D2fa − 2eT
y P0ν (2.25)

From the definition of ν, it can be obtained as:

2eT
y P0ν = 2k‖P0ey‖ (2.26)

then

V̇2 = eT
y (AT

0 P0 + P0A0)ey + 2eT
y P0Ā3e1 + 2eT

y P0

(
f2(T

−1z, t)− f2(T
−1ẑ, t)

)

+ 2eT
y P0E2∆ψ(T−1z, t) + 2eT

y P0D2fa − 2k‖P0ey‖ (2.27)

From the Cauchy-Schwartz inequality, we can impose a bound on the last four terms

of (2.27):

2eT
y P0

(
f2(T

−1z, t)− f2(T
−1ẑ, t)

)
+ 2eT

y P0E2∆ψ(T−1z, t) + 2eT
y P0D2fa − 2k‖P0ey‖

≤ 2 ‖P0ey‖
(‖f2(T

−1z, t)− f2(T
−1ẑ, t)‖+ ‖E2‖‖∆ψ(T−1z, t)‖+ ‖D2‖‖fa‖ − k

)

≤ 2 ‖P0ey‖
(Lf2 ‖e1‖+ ‖E2‖ξ(T−1z, t) + ‖D2‖ρ− k

)
(2.28)

It follows from ‖ξ(x, t)− ξ(x̂, t)‖ ≤ Lξ‖x− x̂‖ that

‖ξ(T−1z, t)− ξ(T−1ẑ, t)‖ ≤ Lξ‖T−1z − T−1ẑ‖ = Lξ‖e1‖ (2.29)

then ξ(T−1z, t) ≤ ξ(T−1ẑ, t) + Lξ‖e1‖.

If k is chosen to satisfy:

k ≥ ‖E2‖ξ(T−1ẑ, t) + Lξ‖E2‖‖e1‖+ ‖D2‖ρ + Lf2‖e1‖+ η (2.30)

where η is a positive constant which needs to be determined to ensure that the state

error dynamics can be driven to the pre-defined sliding surface (2.19) in finite time.

Then it follows from (2.27) that

V̇2 ≤ eT
y (AT

0 P0 + P0A0)ey + 2eT
y P0Ā3e1 + 2‖P0ey‖(Lf2‖e1‖

+ ‖E2‖ξ(T−1ẑ, t) + Lξ‖E2‖‖e1‖+ ‖D2‖ρ− k)

≤ eT
y (AT

0 P0 + P0A0)ey + 2eT
y P0Ā3e1 − 2η‖P0ey‖
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≤ eT
y (AT

0 P0 + P0A0)ey + 2eT
y P0Ā3e1 (2.31)

Combining (2.24) and (2.31) yields

V̇ = V̇1 + V̇2

≤ eT
1

(
ĀT

1 P1 + P1Ā1 +
1

α
P̄1P̄

T
1 + α(Lf )

2In−p

)
e1 + eT

1 AT
3 P0ey + eT

y P0A3e1

+ eT
y (AT

0 P0 + P0A0)ey

=

[
e1

ey

]T [
ĀT

1 P1 + P1Ā1 + 1
α
P̄1P̄

T
1 + α(Lf )

2I AT
3 P0

P0A3 AT
0 P0 + P0A0

][
e1

ey

]

< 0 (2.32)

If (2.20) holds, then e → 0 exponentially, namely, the error dynamical systems (2.17)-

(2.18) are asymptotically stable.

This completes the proof.

Remark 2.2 The inequality (2.20) can be transformed into the following LMI problem:

the state estimation error dynamics (2.17)-(2.18) are asymptotically stable if there

exist matrices P0 > 0, P1 > 0, P2, Y and a positive scalar α such that:




Π + α(Lf )
2In−p P1 P2 AT

3 P0

P T
1 −αIn−p 0 0

P T
2 0 −αIp 0

P0A3 0 0 Y + Y T




< 0 (2.33)

has a solution. Where Π = AT
1 P1 + P1A1 + AT

3 P T
2 + P2A3 and Y = P0A0. If Lf is

known, then the problem of finding P0, P1, P2, Y to satisfy (2.33) is a standard LMI

feasibility problem. Alternatively, if the value of Lf is unknown, then the admissible

Lipschitz constant of the nonlinear function can be maximized through LMI optimiza-

tion.

Remark 2.3 From Assumption 2.4 and the conclusion of Lemma 2.1, it can be ob-

tained that

ET
1 P1 + ET

2 P T
2 = 0

DT
1 P1 + DT

2 P T
2 = 0 (2.34)
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The problem of finding matrix P > 0 to satisfy both (2.9) and (2.20) simultaneously

can be transformed into the following optimization problem:

min(γ)

s.t.

(2.33) and



γI

[
ET

1 P1 + ET
2 P T

2

DT
1 P1 + DT

2 P T
2

]

[
ET

1 P1 + ET
2 P T

2

DT
1 P1 + DT

2 P T
2

]T

γI




> 0 (2.35)

Lemma 2.3 (Bellman-Gronwall inequality [88]) Let t0 be a given time instant, γ0, γ1, γ2

and a nonnegative constants and g(t) a nonnegative piecewise continuous function

of time. If f(t) satisfies

f(t) ≤ γ0 + γ1e
−a(t−t0) + γ2

∫ t

t0

e−a(t−τ)g(τ)f(τ)dτ, ∀t ≥ t0 (2.36)

then

f(t) ≤ (γ0 + γ1)e
−a(t−t0)e

γ2

∫ t
t0

g(s)ds
+ γ0a

∫ t

t0

e−a(t−τ)eγ2

∫ t
τ g(τ)dτ, ∀t ≥ t0 (2.37)

Lemma 2.4 Consider the system descried in (2.12) and the observer described in

(2.15). Let a0 and c0 be positive constants such that ‖eĀ1t‖ ≤ c0e
−a0t. If a0 ≥

c0Lf‖[ In−p P−1
1 P2 ]‖, then the bound of the state estimation error e1(t) is indepen-

dent of the system input and output and satisfies:

‖e1(t)‖ ≤ c0‖e1(0)‖ exp{(c0Lf‖[ In−p P−1
1 P2 ]‖ − a0)t} (2.38)

Proof. According to conclusion (2) of Lemma 2.1, Ā1 is stable. Therefore there

always exist constants a0 and c0 such that ‖eĀ1t‖ ≤ c0e
−a0t [88].

From (2.17), we can obtain:

e1(t) = eĀ1te1(0) +

∫ t

0

eĀ1(t−τ)
[

In−p P−1
1 P2

]
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· (f (
T−1z, τ

)− f
(
T−1ẑ, τ

))
dτ (2.39)

From the triangle inequality, for any t > 0

‖e1(t)‖ ≤ ‖eĀ1t‖‖e1(0)‖+

∫ t

0

‖eĀ1(t−τ)‖
∥∥∥
[

In−p P−1
1 P2

]∥∥∥

· ‖ (
f

(
T−1z, τ

)− f
(
T−1ẑ, τ

)) ‖dτ

≤ c0e
−a0t ‖e1(0)‖+

∫ t

0

c0e
−a0(t−τ)

∥∥∥
[

In−p P−1
1 P2

]∥∥∥

· Lf ‖e1(τ)‖ dτ (2.40)

Applying Gronwall-Bellman inequality to (2.40) with t0 = 0, γ0 = 0, γ1 = c0‖e1(0)‖,
γ2 = c0Lf‖[ In−p P−1

1 P2 ]‖ and g(t) = 1, the bound of e1 (2.38) can be obtained

immediately as (2.38).

This completes the proof.

In general, the design of a sliding mode observer involves two steps. The first step is

to determine the sliding surface that represents the desired stable dynamics, and the

second step is to choose the control gain that ensures the trajectories be driven to the

sliding surface and maintained on it thereafter. After getting the sufficient condition

for the error system (2.17)-(2.18) to be asymptotically stable, the next objective is

to choose the observer switching gain to satisfy the reaching condition [61]. This

switching gain not only forces the output errors ey to be zero, but keeps the output

errors at zero as well.

Proposition 2.2 Under the Assumptions 2.1-2.5, the error dynamics (2.17)-(2.18)

are driven to the sliding surface (2.19) in finite time if η in (2.30) is chosen to satisfy

η ≥ ‖A3‖δ + σ (2.41)

where σ is a positive scalar.

Proof. Consider the Lyapunov candidate function V2(ey) = eT
y P0ey.

Then the time derivative of V2 can be obtained as

V̇2 = eT
1 AT

3 P0ey + eT
y P0A3e1 + eT

y (AT
0 P0 + P0A0)ey
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+ 2eT
y P0

(
f2(T

−1z, t)− f2(T
−1ẑ, t)

)

+ 2eT
y P0E2∆ψ(T−1z, t) + 2eT

y P0D2fa − 2eT
y P0ν (2.42)

Since A0 is a stable matrix by design, therefore

AT
0 P0 + P0A0 < 0 (2.43)

It follows from (2.23), (2.16) and (2.43) that

V̇2 ≤ eT
1 AT

3 P0ey + eT
y P0A3e1 + 2eT

y P0

(
f2(T

−1z, t)− f2(T
−1ẑ, t)

)

+ 2eT
y P0E2∆ψ(T−1z, t) + 2eT

y P0D2fa − 2eT
y P0ν

≤ 2 ‖P0ey‖ (‖A3‖‖e1‖+ Lf2 ‖e1‖+ ‖E2‖ ξ(T−1z, t)

+ ‖D2‖ ρ− k)

≤ 2 ‖P0ey‖ (‖A3‖‖e1‖+ Lf2 ‖e1‖+ ‖E2‖ ξ(T−1ẑ, t)

‖E2‖Lξ‖e1‖+ ‖D2‖ ρ− k) (2.44)

If the condition (2.41) holds, then

V̇2 ≤ −2σ ‖P0ey‖
≤ −2σ

√
λmin(P0)V

1/2
2 (2.45)

where λmin(P0) is the smallest eigenvalue of P0. This shows that the reachability

condition [61] is satisfied. As a consequence, an ideal sliding motion will take place

on the surface S and after some finite time,

ey = ėy = 0, ∀t > ts (2.46)

This completes the proof.

2.4 Estimation of actuator fault

Given a sliding mode observer which satisfies (2.20) and (2.41), the task in this sec-

tion is to reconstruct the actuator fault using the so-called equivalent output injection

[8]. Firstly, the following assumption is needed to completely decouple the actuator

fault and the system uncertainty.
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Assumption 2.6 There exists a nonsingular matrix G ∈ Rp×p such that

G
[

E2 D2

]
=

[
H1 H2

0 H3

]
(2.47)

where H1 ∈ R(p−q)×r and H3 ∈ Rq×q is nonsingular.

From Proposition 2.2, it is known that if the gain k(.) is chosen to satisfy (2.41),

the state estimation error dynamics (2.17)-(2.18) will be driven to the sliding surface

defined by (2.19) and a sliding motion will be maintained thereafter. Since during the

sliding motion ey = 0 and ėy = 0, then

0 = A3e1 +
(
f2(T

−1z, t)− f2(T
−1ẑ, t)

)

+
[

E2 D2

] [
∆ψ(T−1z, t)

fa

]
− νeq (2.48)

where νeq is the equivalent output error injection signal representing the average

behavior of the discontinuous function ν and it can be approximated to any degree of

accuracy by

νeq = k(t, y, u)
P0ey

‖P0ey‖+ δ
(2.49)

where δ is a small positive scalar to reduce the chattering effect.

Case-1. If Assumption 2.6 is satisfied, the following equation can be obtained after

multiplying G on both sides of (2.48):

0 = GA3e1 + G
(
f2(T

−1z, t)− f2(T
−1ẑ, t)

)

+

[
H1 H2

0 H3

][
∆ψ(T−1z, t)

fa

]
−Gνeq (2.50)

Since limt→∞ e1 = 0, f2(T
−1z, t) − f2(T

−1ẑ, t) will also tends to zero. This implies

from (2.50) that

fa(t) → H−1
3 G2veq as t →∞ (2.51)

where G2 represents the last q rows of G.

Therefore the reconstruction of the actuator fault can be obtained from

f̂a(t) = k(t, y, u)H−1
3 G2

P0ey

‖P0ey‖+ δ
(2.52)
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Figure 2.1: Schematic of the actuator fault reconstruction using (2.52)

The proposed actuator reconstruction scheme is shown in Fig-2.1.

Case-2. Alternatively, if Assumption 2.6 is not satisfied, we can approximately esti-

mate the actuator fault fa(t) as

f̂a(t) ≈ k(t, y, u)D+
2

P0ey

‖P0ey‖+ δ
(2.53)

where D+
2 is the left pseudo-inverse of D2. Since D is of full column rank, such an

inverse matrix always exists. D+
2 is given by D+

2 = (DT
2 D2)

−1DT
2 .

It follows from (2.48) that

fa(t)−D+
2 νeq = −D+

2 A3e1 −D+
2

(
f2(T

−1z, t)− f2(T
−1ẑ, t)

)−D+
2 E2∆ψ(T−1z, t)

(2.54)

From the definition of f̂a(t) in (2.53) and substitute f̂a(t) for D+
2 νeq in (2.54), we can

obtain that

‖fa(t)− f̂a(t)‖ = ‖ −D+
2 A3e1 −D+

2

(
f2(T

−1z, t)− f2(T
−1ẑ, t)

)

−D+
2 E2∆ψ(T−1z, t)‖

≤ (‖D+
2 A3‖+ Lf2‖D+

2 ‖)‖e1‖+ ‖D+
2 E2‖ξ(x, t) (2.55)

and

lim
t→∞

‖fa(t)− f̂a(t)‖ ≤ ‖D+
2 E2‖ξ(x, t) (2.56)
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Remark 2.4 The existence of the matrix G in Assumption 2.6 guarantees that the

actuator fault can be distinguished from the system uncertainty, which results in a

precise reconstruction of the actuator fault. Otherwise the actuator can only be ap-

proximated and the estimation error satisfies (2.55) and (2.56). Since f̂a(t) is only

dependent on on-line measruements, therefore the this FDI scheme is practical for

real implementation.

Remark 2.5 If the Assumption 2.6 is not satisfied, it follows from (2.56) that the actu-

ator fault estimation error will mainly depend on the bound ξ(x, t). One way to reduce

the effect of the uncertainty on the fault estimation is to choose an appropriate matrix

D+
2 such that ‖D+

2 E2‖ is minimized [46].

Remark 2.6 The good feature of the proposed observer is that it not only enables

fault detection, but also provides the amplitudes of faults, which is very useful for fault

accommodation [89].

2.5 Simulation Results

The example of a single-link flexible joint robot system has been considered to demon-

strate the effectiveness of the proposed SMO in reconstructing actuator faults. A

dynamical model for the robot can be described by ([46, 90])

θ̇1 = ω1

ω̇1 =
1

J1

(k1(θ2 − θ1) + k2(θ2 − θ1)
3)− Bv

J1

ω1 +
Kτ

J1

u

θ̇2 = ω2

ω̇2 = − 1

J2

(k1(θ2 − θ1) + k2(θ2 − θ1)
3)− mgh

J2

sinθ2

+ ψ(θ1, ω1, θ2, ω2, t) (2.57)

where θ1 and ω1 are the motor position and velocity, respectively; θ2 and ω2 are the

link position and velocity; J1 is the inertia of the DC motor, J2 is the inertia of the link,

2h is the length of the link while ml represents its mass, Bv is the viscous friction,

k1 and k2 are positive constants and Kτ is the amplifier gain. It is assumed that

the motor position, motor velocity and the sum of link velocity and link position can

be measured. The values of the parameters used in this simulation are: J1 = 3.7 ×
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10−3kg ·m2, J2 = 9.3×10−3kg ·m2, h = 1.5×10−1m, m = 0.21kg, Bv = 4.6×10−2m,

k1 = k2 = 1.8× 10−1Nm/rad and Kτ = 8× 10−2Nm/V .

To illustrate the effectiveness of the prosed SMO and to reconstruct the actuator

faults, a nonlinear uncertainty ∆ψ is added to the system, which satisfies the bound

‖∆ψ‖ ≤ 0.023(sinθ2)
2. The uncertainty distribution matrix E is assumed to be E =

[0 1 0 0]T . For the illustration purpose, a linear state feedback controller u = [−14.1−
25.6 − 16.2 − 12.1]z has been utilized to stabilize the system. Suppose that a fault

fa occurs in the input channel, namely, the fault distribution matrix D is equal to the

input matrix. fa is given as:

fa =

{
0.05t , t ≤ 2s

0.1 + 0.5sin(2πt) , t > 2s

By reordering the system variables and defining x = col(θ2, ω2, θ1, ω1), the output

distribution matrix C becomes:

C =




1 1 0 0

0 0 1 0

0 0 0 1




Notice that C does not have the form in (2.6). A nonsingular transformation matrix

Tc =




1 0 0 0

1 1 0 0

0 0 1 0

0 0 0 1




is therefore introduced to obtain CT−1
c = [0 Ip]. This gives

A =




−1.0000 1.0000 0 0

−20.3548 1.0000 19.3548 0

0 0 0 1.0000

48.6486 0 −48.6486 −12.4324




f(x) =




0

−19.3548(x1 − x3)
3 − 33.1935sinx1

0

48.6486(x1 − x3)
3



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C =
[

0 I3

]
, E =




0

1

0

0




, D =




0

0

0

21.6216




Imposing the stability constraint to the transformed system, as described in (2.20),

and formulating the problem in an LMI framework gives the following solutions:

α = 0.9328

P1 = 0.7071

P2 = 10−6 ×
[

0.0000 −0.9657 0.0025
]

P0 =




0.7072 0.0001 0.2933

0.0001 0.8300 0.0001

0.2933 0.0001 0.1289




A0 =



−23.6365 0.0277 38.3086

−0.0001 −0.5002 0.0003

55.4219 −0.0665 −92.3582




F1 =
[

0.7072 0.0001 0.2933
]

F2 =
[

6.3426 0.0014 2.7861
]

It is verified that the conclusion of Lemma 2.1 and Proposition 2.1 are all satisfied.

The transformation matrix T is determined and the system is transformed into a new

coordinate z and all the parameters of the proposed SMO (2.15) are obtained.

Fig 2.2-2.5 show the trajectories of the true states and their estimates. It can be seen

from the figures that the proposed SMO can estimate the states very accurately,

before and after the occurrence of a actuator fault. The result of fault estimation is

depicted in Fig-2.6. It shows that despite the presence of system uncertainties ∆ψ,

the actuator fault can be reconstructed.

In addition, the proposed method can also work properly when considering measure-

ment noise. This is shown in Fig-2.7 and Fig-2.8, where two noise environments are

considered respectively, i.e., 30dB noise and 40dB noise. The measurement noise is

added to the output signal so that the measured signal which is used by the SMO is

corrupted. Arbitrarily large values of η would be needed to sustain a sliding motion,

since the noise constitutes a large disturbance. From the figures, it can be seen that
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Figure 2.2: State x1 and its estimated value x̂1
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Figure 2.3: State x2 and its estimated value x̂2
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Figure 2.4: State x3 and its estimated value x̂3
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Figure 2.5: State x4 and its estimated value x̂4
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Figure 2.6: Actuator fault fa and its estimated value f̂a

the proposed SMO can still preserve the shape of the actuator fault at different noise

level.

2.6 Conclusions

A robust actuator fault estimation scheme for a class of Lipschitz nonlinear systems

with matched non-parametric uncertainties has been put forward in this chapter. The

proposed scheme is based on SMO technique and use the concept of equivalent

output injection to estimate the actuator fault. The chapter reveals that under what

conditions, the fault can be reconstructed with arbitrary accuracy in the presence of

system uncertainty. The stability and reachability condition of the proposed SMO

has been studied. The LMI based sufficient condition enables the designers to use

Matlab’s LMI toolbox, which makes the observer design applicable. The design pa-

rameters of the observer are obtained by LMI techniques. The effectiveness of the

SMO has been demonstrated considering the example of a single-link flexible joint

robot system.
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Figure 2.7: Reconstructed fault signal with sensor noise of 30dB
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Figure 2.8: Reconstructed fault signal with sensor noise of 40dB
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Chapter 3

Detection and isolation of incipient

sensor faults for uncertain nonlinear

systems

In this chapter, a sensor FDI scheme based on SMOs is proposed for the same class

of nonlinear systems considered in Chapter 2. The research is carried out to solve

not only sensor fault detection, but also sensor fault isolation problems by employing

SMOs design.

3.1 Introduction

With the development of modern technology, autonomous systems are more and

more dependent on sensors to acquire system information and signals from sensors

often carry the most important information in automated/feedback control systems.

A sensor fault may lead to poor regulation or tracking performance, or even affect

the stability of the control system. Therefore the study of sensor FDI is becoming

increasingly important. However, compared with the study of actuator FDI using

SMOs, the research on sensor FDI is less studied in this realm.

Almost all the SMO-based approaches develpoed in the past mainly focus on rela-

tively large-sized faults [8, 12, 72, 77, 78, 91]. The research on the detection and

37
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isolation of incipient faults has been less studied and still remains a challenge to

model-based FDI techniques because they are almost unnoticeable during their ini-

tial stage and their effects to residuals are most likely to be concealed by system

uncertainties. Incipient faults can cause very serious problems although they may

develop slowly and be tolerable when they first appear. Hence it is necessary to de-

tect and isolate incipient faults as early as possible to maintain the reliability of the

system and this motivates the research reported in this chapter.

The proposed idea is inspired by the work presented in [58]. In [58], two coordinate

transformations are introduced such that the original system can be decomposed

into two subsystems. Based on the transformed systems, an SMO and a Luenberger

observer are designed to eliminate the effects of disturbances and to detect incip-

ient actuator faults, respectively. However, the proposed method is only applicable

for linear systems and the problem of fault isolation still remains unsolved. In this

chapter, the result in [58] for actuator fault detection for LTI systems is extended to

sensor fault detection and isolation for Lipschitz nonlinear systems. The proposed

method essentially transforms the original system into two subsystems (subsystem-1

and 2) where subsystem-1 includes the effects of system uncertainties but is free

from sensor faults and subsystem-2 has sensor faults but without any uncertainties.

Sensor faults in subsystem-2 are treated as actuator faults by using integral observer

based approach [92]. For the purpose of fault detection, a traditional Luenberger

observer is designed for this subsystem. The sensor fault is detected by consider-

ing the output estimation error of subsystem-2 as the residual. When this residual

goes over a predefined threshold, a fault is detected. The most distinct feature of the

proposed FDI scheme is that, by imposing a coordinate transformation to the original

system, the effects of system uncertainties to the residual of subsystem-2 are com-

pletely de-coupled, which makes the scheme sensitive to incipient faults while robust

to modelling uncertainty. Thus, early detection can be achieved and a false alarm

caused by modelling uncertainties can be totally avoided.

After a fault is being detected, the next step is to determine the location of the fault,

namely fault isolation. In principle the use of one single observer may permit the

isolation of faults if their effect has independent projections onto the residual space.

However if the system has significant nonlinearities, it is difficult to assure this inde-

pendence. Therefore, a bank of observers is needed to isolate faults if they occur

on different sensors. There are two schemes for fault isolation. The first one is

called dedicated observer scheme [93]. In this scheme, N observers are designed
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to generate N residuals and the ith residual is expected to be only sensitive to the

ith fault but insensitive to others. The other scheme is called generalized observer

scheme [5], where N observers are also designed to produce N residuals. However,

the difference is that the ith residual is sensitive to all possible faults except the ith

one. In this chapter, the sensor fault isolation is carried out using the modified ded-

icated observer scheme to subsystem-2. Multiple observers, one for each possible

sensor fault, are used to generate the estimated output vector. The estimated output

vector is then compared with the actual output vector in order to determine which

sensor is affected by the fault.

The rest of the chapter is organized as follows: Following the introduction, section-

3.2 briefly describes the mathematical preliminaries required for designing observers.

Section-3.3 proposes a sensor fault detection scheme and derives the stability con-

dition of the proposed observers based on Lyapunov approach. The scheme of iso-

lating multiple sensor faults is presented in section-3.4. The results of simulation are

shown in section-3.5 with conclusions in section-3.6.

3.2 Problem Formulation

Consider a nonlinear system described by

ẋ(t) = Ax(t) + f(x, t) + Bu(t) + E∆ψ(t)

y(t) = Cx(t) + Dfs(t) (3.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp denote respectively the state variables, inputs

and outputs. fs ∈ Rq denotes the sensor fault. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

D ∈ Rp×q and E ∈ Rn×r (p ≥ q + r) are known constant matrices with C and D

both being of full column rank. The nonlinear continuous term f(x, t) is assumed to

be known. The unknown nonlinear term ∆ψ(t) models the lumped uncertainties and

disturbances experienced by the system.

For the objective of achieving sensor fault detection and isolation, the following as-

sumptions are made throughout:

Assumption 3.1 rank(CE) = rank(E).
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Lemma 3.1 Under Assumption 3.1, there exist state and output transformations

z =

[
z1

z2

]
= T

[
x1

x2

]
, w =

[
w1

w2

]
= S

[
y1

y2

]
(3.2)

such that in the new coordinate, the system matrices become:

TAT−1 =

[
A1 A2

A3 A4

]
, TB =

[
B1

B2

]
, TE =

[
E1

0

]
,

SCT−1 =

[
C1 0

0 C4

]
, SD =

[
0

D2

]
(3.3)

where T ∈ Rn×n, S ∈ Rp×p, z1 ∈ Rr, w1 ∈ Rr, A1 ∈ Rr×r, A4 ∈ R(n−r)×(n−r),

B1 ∈ Rr×m, E1 ∈ Rr×r, C1 ∈ Rr×r, C4 ∈ R(p−r)×(n−r) and D2 ∈ R(p−r)×q. E1 and

C1 are invertible and D2 has the structure D2 =

[
0

D̄2

]
, D̄2 ∈ Rq×q

Proof. See Appendix-C. Similar transformation procedure can be found in [91], in

which the input and uncertainty distribution matrices after the transformation become

TB =

[
B1

0

]
and TE =

[
E1

E2

]
.

Assumption 3.2 For every complex number s with nonnegative real part:

rank

[
sIn − A E

C 0

]
= n + rank(E) (3.4)

This assumption is known as the minimum phase condition.

Lemma 3.2 If there exist nonsingular matrices T and S such that the equation (3.3)

holds, then the pair (A4, C4) is detectable if and only if Assumption 3.2 holds.

Proof. See [94, 95].

Assumption 3.3 The nonlinear term f(x, t) is assumed to be known and Lipschitz

about x uniformly, i.e., ∀x, x̂ ∈ X ,

‖f(x, t)− f(x̂, t)‖ ≤ Lf‖x− x̂‖ (3.5)

where Lf is the known Lipschitz constant.
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Assumption 3.4 The function ∆ψ(t) representing the structured modeling uncer-

tainty is unknown but bounded, and it satisfies ‖∆ψ(t)‖ ≤ ξ. Also the unknown

sensor fault is norm bounded, i.e., ‖fs(t)‖ ≤ ρ.

After introducing the state and output transformations (3.2), the original system (3.1)

is converted into two subsystems:

ż1 = A1z1 + A2z2 + f1(T
−1z, t) + B1u + E1∆ψ

w1 = C1z1 (3.6)

ż2 = A3z1 + A4z2 + f2(T
−1z, t) + B2u

w2 = C4z2 + D2fs (3.7)

Partition T and S as:

T =

[
T1

T2

]
, S =

[
S1

S2

]
(3.8)

where T1 ∈ Rr×n, S1 ∈ Rr×p. Then f1(T
−1z, t) = T1f(T−1z, t), f2(T

−1z, t) =

T2f(T−1z, t) and the state z1 can be obtained by the measured output y as:

z1 = C−1
1 S1y (3.9)

For subsystem (3.7), define a new state z3 =
∫ t

0
w2(τ)dτ so that ż3(t) = C4z2 +D2fs,

and the augmented system with the new state z3 is given as:

[
ż2

ż3

]
=

[
A4 0

C4 0

][
z2

z3

]
+

[
A3

0

]
z1 +

[
f2(T

−1z, t)

0

]

+

[
B2

0

]
u +

[
0

D2

]
fs

w3 = z3 (3.10)

The augmented system (3.10) can then be rewritten in a more compact form as:

ż0 = A0z0 + A01z1 + F (z0) + B0u + D0fs

w3 = C0z0 (3.11)

where z0 =

[
z2

z3

]
∈ Rn+p−2r, w3 ∈ Rp−r, A0 =

[
A4 0

C4 0

]
∈ R(n+p−2r)×(n+p−2r),
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A01 =

[
A3

0

]
∈ R(n+p−2r)×r, B0 =

[
B2

0

]
∈ R(n+p−2r)×m, D0 =

[
0

D2

]
∈

R(n+p−2r)×q, C0 =
[

0 Ip−r

]
∈ R(p−r)×(n+p−2r), F (z0) =

[
f2(T

−1z, t)

0

]
.

Accordingly, subsystem (3.6) is rewritten as:

ż1 = A1z1 + Ā2z0 + f1(T
−1z, t) + B1u + E1∆ψ

w1 = C1z1 (3.12)

where Ā2 =
[
A2 0r×(p−r)

]
.

Lemma 3.3 The pair (A0, C0) is observable if Assumption 3.2 holds.

Proof. From the Popov-Belevitch-Hautus (PBH) test, the pair (A0, C0) is observable

if and only if

rank

[
sI − A0

C0

]
= rank




sI − A4 0

−C4 sI

0 I


 = n + p− 2r (3.13)

for all s ∈ C. If s = 0, it is obvious that

rank




sI − A4 0

−C4 sI

0 I


 = rank

[
−A4

−C4

]
+ p− r (3.14)

If Assumption 3.2 holds, it follows that (A4, C4) is observable and thus

rank

[
sI − A4

−C4

]
= n− r for all s ∈ C (3.15)

It follows that the rank test (3.13) holds when s = 0.

Moreover, since (A4, C4) is observable, if s 6= 0,




sI − A4 0

−C4 sI

0 I




[
a1

a2

]
= 0 ⇒

[
a1

a2

]
= 0 (3.16)
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It means that the columns of




sI − A4 0

−C4 sI

0 I


 are linearly independent and its rank

is n + p− 2r. This completes the proof.

It follows from Lemma 3.3 that there exists a matrix L0 ∈ R(n+p−2r)×(p−r) such that

A0 − L0C0 is stable, and thus for any Q0 > 0, the Lyapunov equation

(A0 − L0C0)
T P0 + P0(A0 − L0C0) = −Q0 (3.17)

has a unique solution P0 > 0 [80].

Assumption 3.5 There exists an arbitrary matrix F0 ∈ Rq×(p−r) satisfying:

DT
0 P0 = F0C0 (3.18)

Remark 3.1 The robustness of the SMO to bounded uncertainties inevitably makes

it also robust to incipient faults. If Assumption 3.1 holds, then there exist coordi-

nate transformations T and S such that sensor faults can be completely decoupled

from uncertainties in the new coordinate. After the transformation, subsystem-1

formulated in (3.12) is free from sensor faults but subject to system uncertainties,

and subsystem-2 formulated in (3.11) is prone to sensor faults but free from sys-

tem uncertainties. Assumption 3.3 implies that there exists an asymptotic estimator

for the system (3.11). In Assumption 3.4, the bound on uncertainty is assumed to

be a constant, while in Chapter 2 the bound takes a nonlinear form. Assumption

3.5 together with the Lyapunov equation (3.17) is a passivity condition for system

((A0 − L0C0), D0, C0) [80]. It follows form Lemma 2.1 that the sufficient and neces-

sary condition for the existence of F0 satisfying (3.18) is rank(C0D0) = rank(D0).

From the structure of C0 and D0, it is easy to see that C0D0 = D2. Therefore

rank(C0D0) = rank(D2) = rank(D0) is always satisfied since D is of full column

rank.

3.3 Sensor fault detection scheme

Fault detection is the first step of fault diagnosis to determine whether a fault has oc-

curred or not. The decision on the occurrence of a fault can be made if a significant
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residual change is observed. If we design sliding mode obervers directly for the orig-

inal system, then the effect of incipient sensor faults on state estimation errors could

be attenuated or even eliminated by the variable structure term [58] (the magnitude

of the residual obtained will be within the chattering amplitude or smaller than the

predefined threshold for a certain length of time if the gain k(.) in (3.20) is chosen

too large). The early detection, even detection of incipient sensor faults therefore be-

comes difficult. Observing the structure of subsystem-2 in (3.11), it is found that the

state z0 is neither subject to system uncertainties nor faults before the occurrence of

any sensor fault. If we can design an observer for this particular subsystem and take

the output estimation error w3 − ŵ3 (ŵ3 is the estimation of w3) as the residual, then

the problem caused by designing conventional sliding mode observers for the origi-

nal system can be solved. This intuition inspires the proposed fault detection scheme

which is described in this section.

For subsystem-1, the proposed sliding mode observer has the form:

˙̂z1 = A1ẑ1 + Ā2ẑ0 + f1(T
−1ẑ, t) + B1u + (A1 − As

1)C
−1
1 (w1 − ŵ1) + ν1

ŵ1 = C1ẑ1 (3.19)

where As
1 ∈ Rr×r is a stable matrix which needs to be determined. For any Q1 > 0

the Lyapunov equation As
1
T P1 + P1A

s
1 = −Q1 has a unique solution P1 > 0. The

discontinuous output error injection term ν1, that is used to eliminate the effects of

uncertainties, is defined by

ν1 =





k1
P1(C−1

1 S1y−ẑ1)

‖P1(C−1
1 S1y−ẑ1)‖ if C−1

1 S1y − ẑ1 6= 0

0 otherwise
(3.20)

where k1 is a positive scalar. It is worth noting that the state z1 can be obtained by

the measured output y as z1 = C−1
1 S1y.

For subsystem-2, a Luenberger observer with the following form is proposed:

˙̂z0 = A0ẑ0 + A01C
−1
1 w1 + F (ẑ0) + B0u + L0(w3 − ŵ3)

ŵ3 = C0ẑ0 (3.21)

where L0 ∈ R(n+p−2r)×(p−r) is the gain of a traditional Luenberger observer which

is used to make (A0 − L0C0) stable. If the state estimation errors are defined as



3.3. Sensor fault detection scheme 45

e1 = z1 − ẑ1 and e0 = z0 − ẑ0, then the state estimation error dynamics before the

occurrence of sensor faults can be obtained as:

ė1 = As
1e1 + Ā2e0 +

(
f1(T

−1z, t)− f1(T
−1ẑ, t)

)
+ E1∆ψ − ν1 (3.22)

ė0 = (A0 − L0C0)e0 + (F (z0)− F (ẑ0)) (3.23)

Define the sliding mode surface as:

S = {(e1, e0)|e1 = 0} (3.24)

The condition of stability and reachability of the state estimation error dynamics (3.22)

and (3.23) associated with the sliding motion (3.24) will be studied in the next.

Proposition 3.1 Under the Assumptions 3.1-3.4 and that the system is free of faults,

the error dynamical system (3.22) and (3.23) are asymptotically stable if there exist

matrices As
1 < 0, L0, P1 > 0, P0 > 0 such that:

[
−Q1 + 1

α1
P1P1 P1Ā2

ĀT
2 P1 −Q0 + 1

α0
P0P0 + aI

]

︸ ︷︷ ︸
−Q̃

< 0 (3.25)

where −Q0 = (A0 − L0C0)
T P0 + P0(A0 − L0C0), −Q1 = As

1
T P1 + P1A

s
1, a1 =

L2
f1
‖T−1‖2, a0 = L2

f2
‖T−1‖2, α0 and α1 are two positive scalars, a = a1α1 + a0α0.

Proof. Assume V1(e1) = eT
1 P1e1, V0(e0) = eT

0 P0e0 and consider V (e1, e0) = V1(e1) +

V0(e0) as a Lyapunov candidate. The time derivative of V1, V0 along the trajectories

of system (3.22)-(3.23) can be shown to be:

V̇1 = eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1Ā2e0 + 2eT
1 P1E1∆ψ

+ 2eT
1 P1

(
f1(T

−1z, t)− f1(T
−1ẑ, t)

)− 2eT
1 P1ν1

Since the inequality 2XT Y ≤ 1
α
XT X + αY T Y is true for any scalar α > 0 [46], then

V̇1 ≤ eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1Ā2e0 + 2eT
1 P1E1∆ψ

+
1

α1

eT
1 P1P

T
1 e1 + α1

(
f1(T

−1z, t)− f1(T
−1ẑ, t)

)T

· (f1(T
−1z, t)− f1(T

−1ẑ, t)
)− 2eT

1 P1ν1 (3.26)
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Note that ẑ := [(C−1
1 S1y)T , (ẑ0)

T ]T , then before the occurrence of sensor faults we

have

z − ẑ =

[
0

e2

]
(3.27)

It is easy to see that

‖T−1z − T−1ẑ‖ =

∥∥∥∥∥T−1

[
0

e2

]∥∥∥∥∥ = ‖T−1e2‖ ≤ ‖T−1e0‖

‖f(T−1z, t)− f(T−1ẑ, t)‖ ≤ Lf‖T−1‖‖e0‖
‖f1(T

−1z, t)− f1(T
−1ẑ, t)‖ ≤ Lf1‖T−1‖‖e0‖

‖f2(T
−1z, t)− f2(T

−1ẑ, t)‖ ≤ Lf2‖T−1‖‖e0‖ (3.28)

where Lf1 = ‖T1‖Lf and Lf2 = ‖T2‖Lf .

Moreover from the definition of ν1, it can be obtained that

eT
1 P1ν1 = k1‖P1e1‖ (3.29)

Then equation (3.26) can be simplified as:

V̇1 ≤ −eT
1 Q1e1 + 2eT

1 P1Ā2e0 +
1

α1

eT
1 P1P1e1 + α1L2

f1
‖T−1‖2‖e0‖2

+ 2‖P1e1‖‖E1‖ξ − 2k1‖P1e1‖ (3.30)

If the positive scalar gain k1 is chosen to satisfy:

k1 ≥ ‖E1‖ξ + η1 (3.31)

where η1 is a positive constant which needs to be determined to ensure that the state

error dynamics (3.22) can be driven to the sliding surface (3.24).

Then it follows from (3.30) that

V̇1 ≤ −eT
1 Q1e1 + 2eT

1 P1Ā2e0 +
1

α1

eT
1 P1P1e1 + α1L2

f1
‖T−1‖2‖e0‖2 − 2η1‖P1e1‖

≤ −eT
1 Q1e1 + 2eT

1 P1Ā2e0 +
1

α1

eT
1 P1P1e1 + α1L2

f1
‖T−1‖2‖e0‖2 (3.32)
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Similarly, the derivative of V0 can be obtained as:

V̇0 = −eT
0 Q0e0 + 2eT

0 P0 (F (z0)− F (ẑ0))

≤ −eT
0 Q0e0 +

1

α0

eT
0 P0P0e0 + α0L2

f2
‖T−1‖2‖e0‖2 (3.33)

Combining (3.32) and (3.33) yields

V̇ = V̇1 + V̇0 ≤ −eT Q̃e

≤ −λmin(Q̃)‖e‖2 = −ω(t) (3.34)

where λmin(Q̃) denotes the minimum eigenvalue of the matrix Q̃, e =
[
eT
1 eT

0

]T
.

Integrating (3.34) from 0 to t yields

V (0) ≥ V (t) +

∫ t

0

ω(τ)dτ ≥
∫ t

0

ω(τ)dτ (3.35)

Therefore 0 <
∫ t

0
ω(τ)dτ ≤ V (0). Since V (0) is positive and finite, lim

t→∞
∫ t

0
ω(τ)dτ

exists and is finite. According to the Barbalat Lemma [96], then

lim
t→∞

ω(t) = λmin(Q̃) lim
t→∞

‖e‖2 = 0 (3.36)

which implies that lim
t→∞

e(t) = 0, namely, the error dynamical systems (3.22) and

(3.23) are asymptotically stable. This completes the proof.

Remark 3.2 The inequality (3.25) can be transformed into the following LMI feasibility

problem: there exist matrices X , Y0, P1 > 0, P0 > 0 and positive scalars α0, α1 such

that:




Θ1 P1 P1Ā2 0

P1 −α1I 0 0

ĀT
2 P1 0 Θ0 − CT

0 Y T
0 − Y0C0 + aI P0

0 0 P0 −α0I




< 0 (3.37)

where Θ1 = X + XT , X = P1A
s
1, Θ0 = AT

0 P0 + P0A0, Y0 = P0L0, a = a1α1 + a0α0.

Remark 3.3 Assume that P0 in the new coordinate has the diagonal structure like:

P0 =

[
P01 0

0 P02

]
(3.38)
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where P01 ∈ R(n−r)×(n−r) and P02 ∈ R(p−r)×(p−r) are symmetric positive definite

matrix. Then the inequality (3.25) can be transformed into the following LMI feasibility

problem: there exist matrices X , Y02, P1 > 0, P01 > 0, P02 > 0 and positive scalars

α0, α1 such that:




Θ1 P1 P1A2 0 0 0

P1 −α1I 0 0 0 0

AT
2 P1 0 AT

4 P01 + P01A4 + aI CT
4 P02 P01 0

0 0 P02C4 −Y T
02 − Y02 + aI 0 P02

0 0 P01 0 −α0I 0

0 0 0 P02 0 −α0I




< 0

(3.39)

where Y02 = P02L02, L0 =

[
0

L02

]
, L02 ∈ R(p−r)×(p−r).

Substituting diagonal block matrix P0 into (3.18) yields F T
0 = P02D2, which can be

used to facilitate the design of sliding mode observers for subsystem-2 in Section-3.4.

Remark 3.4 If P0 in the new coordinate does not have the diagonal structure in (3.38),

then the problem of finding matrices P0, F0 to simultaneously satisfy both (3.25) and

(3.18) can be transformed into the following LMI optimization problem: Minimize γ

subject to P0 > 0, P0 > 0, (3.37) and

[
γI DT

0 P0 − F0C0

(DT
0 P0 − F0C0)

T γI

]
> 0 (3.40)

Proposition 3.1 implies that the error dynamical system (3.22)-(3.23) associated with

the sliding surface (3.24) is asymptotically stable. The objective now is to choose the

observer gain k1(.) in (3.20) such that the error dynamical system of (3.22) can be

driven to the sliding surface and a sliding motion can be maintained thereafter. The

following conclusion is presented.

Proposition 3.2 Under the Assumption 3.1-3.4, the error dynamics (3.22) is driven

to the sliding surface given by (3.24) in finite time if the gain η1 is chosen to satisfy

η1 ≥
(‖As

1‖+ ‖Ā2‖+ Lf1‖T−1‖) ‖e‖+ η0, η0 > 0 (3.41)
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Proof. Consider a Lyapunov candidate function V1 = eT
1 P1e1. Then its time derivative

can be obtained as:

V̇1 ≤ 2eT
1 P1A

s
1e1 + 2eT

1 P1Ā2e0 − 2‖P1e1‖η1 + 2eT
1 P1

(
f1(T

−1z, t)− f1(T
−1ẑ, t)

)

≤ 2‖P1e1‖
(
(‖As

1‖+ ‖Ā2‖+ Lf1‖T−1‖)‖e‖ − η1

)

It follows from (3.41) that

V̇1 ≤ −2η0‖P1e1‖ ≤ −2η0

√
λmin(P1)

√
V1 (3.42)

This shows that the reachability condition [61] is satisfied and a sliding motion is

achieved and maintained after some finite time ts > 0.

This completes the proof.

Lemma 3.4 Consider the system described by (3.11) and the observer described

by (3.21). Let a0 and c0 be positive constants such that ‖e(A0−L0C0)t‖ ≤ c0e
−a0t. If

a0 ≥ c0Lf2‖T−1‖, then the state estimation error e0(t) is bounded by

‖e0(t)‖ ≤ c0‖e0(0)‖e(c0Lf2
‖T−1‖−a0)t (3.43)

Proof. From (3.23), the solution of e0(t) can be obtained as:

e0(t) = e(A0−L0C0)te0(0) +

∫ t

0

e(A0−L0C0)(t−τ) · (F (z0)− F (ẑ0)) dτ (3.44)

Applying the triangle inequality to (3.44), we can obtain

‖e0(t)‖ ≤ c0e
−a0t‖e0(0)‖+ c0Lf2‖T−1‖

∫ t

0

e−a0(t−τ)‖e0(τ)‖dτ (3.45)

where positive constants a0 and c0 are chosen such that ‖e(A0−L0C0)t‖ ≤ c0e
−a0t.

Such a0 and c0 can always be found since A0 − L0C0 is Hurwitz [88]. Applying

Gronwall-Bellman inequality [88] to (3.45) yields:

‖e0(t)‖ ≤ c0‖e0(0)‖e(c0Lf2
‖T−1‖−a0)t (3.46)

This completes the proof.

After any sensor fault occurs at time instant tf , the state estimation error dynamics
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(3.22) and (3.23) become:

ė1 = As
1e1 + Ā2e0 +

(
f1(T

−1z, t)− f1(T
−1ẑ, t)

)
+ E1∆ψ − ν1 (3.47)

ė0 = (A0 − L0C0)e0 + (F (z0)− F (ẑ0)) + D0fs (3.48)

Observing (3.48), one can find out that e0 is only affected by sensor faults, but not

subject to system uncertainties ∆ψ as well as the error injection term. Note that the

sensor fault distribution matrix D0 =

[
0

D2

]
. Thus the sensor fault fs affects the last

p− r components of e0, namely ez3 directly. More specifically, if there occurs a fault,

ez3 will definitely change. The situation that the sensor fault only affects the first n-r

components of e0 does not exist. From Lemma 3.4, e0 will approach to zero if there is

no sensor fault. After the occurrence of any sensor fault, the last p−r components of

e0 will deviate from zero. Therefore ‖ew3‖ = ‖C0e0‖ = ‖ez3‖ provides a good choice

as the residual to detect the occurrence of sensor faults. Accordingly, the sensor fault

detection scheme can be devised as follows:

Sensor fault detection scheme : Sensor faults can be detected if the residual ‖ew3‖
exceeds a predefined threshold ς . Otherwise the system is healthy within the consid-

ered time. The detection time td (td ≥ tf ) is defined as the first time instant such that

‖ew3‖ is observed greater than ς .

Remark 3.5 From (3.46), it is easy to see that before the occurrence of any sensor

fault, the norm bound of the state estimation error e0(t) depends on the bound of

the unknown initial condition e0(0). Since ‖e0(0)‖ is multiplied by e(c0Lf2
‖T−1‖−a0)t, the

effect of this bound will decrease exponentially and e0 will approach to zero. It implies

that a small threshold ς can be selected and the value does not significantly affect

the performance of the fault detection scheme.

3.4 Sensor fault isolation scheme

After detecting a sensor fault, the next objective is to determine their locations if

the system suffers from multiple faults instantaneously, which is referred to as fault

isolation. Notice that fs = [f 1
s

T
, f 2

s
T
, . . . , f q

s
T ]T , if we can decide whether or not

f i
s = 0, i = 1, 2, . . . , q, then the sensor fault isolation can be achieved according to
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the known structure of D which describes the location of sensor faults. The objective

of this section is to design a scheme that is capable of isolating multiple sensor faults

even if they occur at the same time.

In the present work, the dedicated observer scheme which can only be used to detect

and isolate one single fault has been modified and adopted. More specifically, to

isolate one fault (f i
s 6= 0) among q possible faults (fs ∈ Rq), a total number of 2q

sliding mode observers is designed to generate q residuals (the original system is

transformed into two subsystems under the new coordinate, that is why two sliding

mode observers are needed). The SMOs are designed such that the ith residual is

only sensitive to f i
s but is insensitive to all other faults.

For subsystem-1, the proposed isolation observer designed for f i
s, i = 1, 2, . . . , q has

the following form:

˙̂zi
1 = A1ẑ

i
1 + Ā2ẑ

i
0 + f1(T

−1ẑi, t) + B1u + (A1 − As
1)C

−1
1 (wi

1 − ŵi
1) + νi

1

ŵi
1 = C1ẑ

i
1 (3.49)

where ẑi and ŵi denote respectively the estimated state and output obtained by the

ith isolation estimator. The output error injection term νi
1 is defined as:

νi
1 =





k1
P1(C−1

1 S1y−ẑi
1)

‖P1(C−1
1 S1y−ẑi

1)‖ if C−1
1 S1y − ẑi

1 6= 0

0 otherwise
(3.50)

For subsystem-2, the proposed sliding mode observer designed for f i
s, i = 1, 2, . . . , q

has the following form:

˙̂zi
0 = A0ẑ

i
0 + A01C

−1
1 wi

1 + F (ẑi
0) + B0u + L0(w

i
3 − ŵi

3) + D̄i
0ν

i
2

ŵi
3 = C0ẑ

i
0 (3.51)

Partition D0 and F0 into D0 = (D1
0, . . . , D

q
0) and F0 = (F 1

0
T
, . . . , F q

0
T )T . Di

0 repre-

sents the ith column of D0 and the rest columns are denoted as D̄i
0. Similarly, F i

0 is

the ith row of F0 and F̄ i
0 consists of all other rows. The discontinuous output error

injection term νi
2 is defined by

νi
2 =





ρ
F̄ i

0ei
w3

‖F̄ i
0ei

w3
‖ if ew3 6= 0

0 otherwise
(3.52)
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where ei
w3

= wi
3 − ŵi

3.

Note that for subsystem-2, a sliding mode observer is proposed instead of a normal

Luenberger observer that being used in section-3.3 only for fault detection. The ap-

plication of a bank of sliding mode observers associated with the proposed isolation

scheme can successfully isolate multiple sensor faults even if they occur at the same

time, which will be shown in the following. The property of the proposed sliding mode

observer is characterised by the following result:

Proposition 3.3 Under the Assumptions 3.1-3.5 and if there exist matrices As
1, L0,

P1 > 0, P0 > 0 such that:

[
−Q1 + 1

α1
P1P1 P1Ā2

ĀT
2 P1 −Q0 + 1

α0
P0P0 + aI

]
< 0 (3.53)

where P1, P0, Q0, Q1 are the same as that in Proposition 3.1, then the state estimation

error of the ith isolator, ei
0 will exponentially tend to zero if f i

s = 0; otherwise ei
0

satisfies ėi
0 = (A0 − L0C0)e

i
0 + (F (z0)− F (ẑi

0)) + Di
0f

i
s + D̄i

0(f̄s
i − νi

2) if f i
s 6= 0.

Proof. By using the ith isolation observer which is designed for f i
s, the state estima-

tion error dynamics after the occurrence of sensor faults can be obtained as:

ėi
1 = As

1e
i
1 + Ā2e

i
0 +

(
f1(T

−1z, t)− f1(T
−1ẑi, t)

)
+ E1∆ψ − νi

1 (3.54)

ėi
0 = (A0 − L0C0)e

i
0 +

(
F (z0)− F (ẑi

0)
)

+ D0fs − D̄i
0ν

i
2

= (A0 − L0C0)e
i
0 +

(
F (z0)− F (ẑi

0)
)

+ Di
0f

i
s + D̄i

0(f̄s
i − νi

2) (3.55)

Assume V i
1 = ei

1
T
P1e

i
1 and V i

0 = ei
0
T
P0e

i
0. Consider V i = V i

1 + V i
0 as a Lyapunov

candidate. The time derivative of V i
1 , V i

0 along the trajectories of system (3.54)-(3.55)

can be shown to be:

V̇ i
1 = ei

1

T
(As

1
T P1 + P1A

s
1)e

i
1 + 2ei

1

T
P1Ā2e

i
0 + 2ei

1

T
P1E1∆ψ

+ 2ei
1

T
P1

(
f1(T

−1z, t)− f1(T
−1ẑi, t)

)− 2ei
1

T
P1ν1

≤ −ei
1

T
Q1e

i
1 + 2ei

1

T
P1Ā2e

i
0 +

1

α1

ei
1

T
P1P1e

i
1 + α1L2

f1
‖T−1‖2‖ei

0‖2 (3.56)

If f i
s = 0, the error dynamics of ei

0 of (3.55) can be rewritten as:

ėi
0 = (A0 − L0C0)e

i
0 +

(
F (z0)− F (ẑi

0)
)

+ D̄i
0(f̄s

i − νi
2) (3.57)
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The derivative of V i
0 becomes

V̇ i
0 = −ei

0

T
Q0e

i
0 + 2ei

0

T
P0

(
F (z0)− F (ẑi

0)
)

+ 2ei
0

T
P0D̄

i
0(f̄s

i − νi
2)

≤ −ei
0

T
Q0e

i
0 + 2ei

0

T
P0

(
F (z0)− F (ẑi

0)
)

+ 2‖F̄ i
0e

i
w3
‖(‖f̄s

i‖ − ρ)

≤ −ei
0

T
Q0e

i
0 + 2ei

0

T
P0

(
F (z0)− F (ẑi

0)
)

≤ −ei
0

T
Q0e

i
0 +

1

α0

ei
0

T
P0P0e

i
0 + α0L2

f2
‖T−1‖2‖ei

0‖2 (3.58)

Combining (3.56) and (3.58) yields

V̇ i = V̇ i
1 + V̇ i

0 < 0

This concludes that ei tends to zero exponentially if f i
s = 0 even after the occurrence

of sensor faults f j
s 6= 0, j ∈ {1, 2, . . . , q}\{i}. On the other hand, if f i

s 6= 0, the term

Di
0f

i
s in (3.55) can not be attenuated by D̄i

0(f̄s
i − νi

2), because D0 is of full column

rank. Therefore we can conclude that limt→∞ ei
0 6= 0 if f i

s 6= 0.

This completes the proof.

Proposition 3.3 characterises the property of the proposed sliding mode observer

and also forms the intuitive principle of the fault isolation scheme as follows: the

decision on which sensor is faulty can be made by jointly determining the value of

f i
s, i = 1, 2, . . . , q and the fault distribution matrix D (Note that the sensor fault vec-

tor is denoted as fs = [f 1
s

T
, f 2

s
T
, . . . , f q

s
T ]T ). Since D is known, the objective of

finding faulty sensors moves to find which f i
s is not equal to zero. After the sys-

tem is detected to be faulty at some time instant td, a bank of 2q sliding mode ob-

servers is designed according to the possible faulty model. More specifically, for each

f i
s, i = 1, 2, . . . , q, two observers given by (3.49) and (3.51) are designed to estimate

states and outputs. It can be seen from the proof of Proposition 3.3 that the effect

of f j
s , j ∈ {1, 2, . . . , q}\{i} is attenuated by the output error injection term νi

2, which

can not eliminate the effect of f i
s to the residual, then the state estimation error ei

0

obtained by observers which are designated for f i
s will converge to zero if f i

s = 0. On

the other hand, the state estimation error ei
0 will go beyond a predefined threshold for

some finite time ti > td if f i
s 6= 0. As a result, choosing ‖ei

w3
‖ = ‖C0e

i
0‖ as the resid-

ual and comparing it with the corresponding threshold ςi which is associated with the

observers designed for f i
s, the location of sensor faults can be concluded.

In order to clearly illustrate the above strategy, an example of a system with three
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possible faulty models is given:

1. All ‖ei
w3
‖, i = 1, 2, . . . , q are below the corresponding threshold ςi during the

experiment time, in which case it implies that all sensors are healthy;

2. There exist some finite time t1i > td and t3i > td, such that ‖e1
w3
‖ > ς1 and

‖e3
w3
‖ > ς3 respectively, whereas others do not, in which case it implies that f 1

s

and f 3
s do not equal to zero while others do;

3. All ‖ei
w3
‖ > ςi, i = 1, 2, . . . , q after some finite time, in which case it implies that

all f i
s do not equal to zero.

Based on this intuitive idea, the sensor fault isolation scheme can be summarized as

follows:

Sensor fault isolation scheme : Multiple sensor faults can be isolated by comparing

the residual ‖ei
w3
‖, (i = 1, 2, . . . , q) with a predefined threshold ςi, if ‖ei

w3
‖ goes

over the threshold for some finite time ti > td, then it is concluded that f i
s 6= 0.

Otherwise if ‖ei
w3
‖ is always below the threshold ςi during the time studied, then

f i
s = 0. Considering the structure of D0, the decision on which sensor is faulty can

then be made.

Remark 3.6 The selection of the isolation threshold ςi is similar to the selection of the

detection threshold ς . Since the residual ‖ei
w3
‖ obtained from the observer, which is

designed to isolate f i
s, is close to zero only if f i

s = 0, the small value of ςi can chosen.

The complete sensor FDI scheme is shown in Fig-3.1. The occurrence of fault can be

declared if the residual ‖ew3‖ exceeds the pre-defined threshold ς at time instant td.

After detecting a fault, its location can be isolated by designing a bank of SMOs. By

comparing the residual ‖ei
w3‖ obtained from each SMO with the pre-defined threshold

ςi, f 1
s and f 3

s are isolated at time t1 and t3 respectively.

3.5 Simulation results

In this section, the effectiveness of the proposed scheme in detecting and isolating

sensor faults has been demonstrated considering an example of a single-link robotic
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Figure 3.1: Sensor fault detection and isolation scheme

arm with a revolute elastic joint (see Fig-3.2). The dynamics is described by

Jlq̈1 + Flq̇1 + k(q1 − q2) + mglsinq1 = 0

Jmq̈2 + Fmq̇2 − k(q1 − q2) = u (3.59)

where q1 and q2 denote the link position and the rotor position, respectively; u is the

torque delivered by the motor; m is the link mass, l is the center of mass, Jm is the

link inertia, Jl is the motor rotor inertia, Fm is the viscous friction coefficient, Fl is

the viscous friction coefficient, k is the elastic constant and g is the gravity constant.

In the simulation, the values of these parameters are chosen as: m = 4, l = 0.5,

Jm = 1, Jl = 2, Fm = 1, Fl = 0.5, k = 2 and g = 9.8 (all in SI units).

Choosing x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2 and assuming that the link position,

the link velocity and the rotor position can be measured, the dynamics (3.59) can be

represented in state-space form as:




ẋ1

ẋ2

ẋ3

ẋ4




=




0 1 0 0
−k
Jl

−Fl

Jl

k
Jl

0

0 0 0 1
k

Jm
0 −k

Jm

−Fm

Jm







x1

x2

x3

x4




+




0
−mgl

Jl
sinx1

0

0




+




0

0

0
1

Jm




(u + fa)
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Figure 3.2: Single-link robotic arm with a revolute elastic joint, rotating in a vertical
plane.

+




0

1

0

0




∆ψ

y =




1 0 0 0

0 0 1 0

0 0 0 1







x1

x2

x3

x4




+




1 0

2 0

0 1


 fs (3.60)

Clearly, (3.60) is in the form of (3.1). The nonlinear term f(x, t) = −mgl
Jl

sinx1 has a

Lipschitz constant of mgl
Jl

. ∆ψ(t) denotes the system uncertainty and fs = [fT
s1

, fT
s2

]T

represents the sensor fault. These two external signals are included in the original

system to testify the effectiveness of the proposed observers in detecting and isolat-

ing incipient sensor faults for a nonlinear system with uncertainties. In the simulation,

the system uncertainty ∆ψ is assumed to be −0.045mgl
Jl

sin(t). It is easy to see that

this uncertainty is bounded.
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Two transformations z = Tx and w = Sy with

T =




1.0000 0 −0.5000 0

−1.0000 1.0000 0 0

0 0 1.0000 0

0 0 0 1.0000




S =




1.0000 −0.5000 0

0 1.0000 0

0 0 1.0000




are introduced such that under the new coordinate, the system matrices become:

TAT−1 =




1 1 0.5 −0.5

−2.25 −1.25 −0.125 0

0 0 0 1

2 0 −1 −1




SCT−1 =




1 0 0 0

0 0 1 0

0 0 0 1




TB =




0

0

0

1




, TE =




1

0

0

0




, SD =




0 0

2 0

0 1




Imposing the stability constraint described in (3.25) to the transformed system and

formulating the problem in an LMI framework gives the following solutions:

P1 = 0.2930

As
1 = −2.3063

P01 =




0.5620 0.0347 0.0251

0.0347 0.6723 0.3164

−0.0251 0.3164 0.7064




P02 =

[
0.2254 0.0402

0.0402 0.2814

]
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L0 =




0 0

0 0

0 0

3.4774 −0.4917

−0.5056 2.7565




F0 =

[
0.4508 0.0804

0.0402 0.2814

]

Case-1 In this case the sensor faults are given as:

fs1 =

{
0 , t ≤ 18s

0.05 exp(0.01t) , t ≥ 18s

fs2 = 0, ∀t

The residual for fault detection is defined as the norm of the output estimation error

ew3, namely, ‖ew3‖. Lemma 3.4 states that the residual ‖ew3‖ will approach zero

if there is no sensor fault. This result is shown in Fig-3.3 and the residual is very

close to zero after about 10s. After the occurrence of any sensor faults, the residual

will deviate from zero. Since the threshold used to detect the occurrence of a fault

depends on its magnitude and the fault considered in this simulation is small in size,

we choose the threshold to be 0.02 in the simulation. From Fig-3.3, a significant

change of the residual can be observed at about 18s. The residual exceeds the

threshold 0.02 at around t = 18.25s (the fault occurs at 18s), which implies that at

least one of the sensors is faulty.

After the detection of a fault, the next stage is to determine which sensor amongst

the various sensors is faulty. For this specific example, this is achieved by designing

two isolation observers and determining whether or not f i
s = 0, i = 1, 2. Results

of the simulation are shown in Fig-3.4 and 3.5. The residual generated by the first

isolation observer, which is designed for f 1
s is compared with the threshold that is

set to 0.02 in Fig-3.4. From the figure it is observed that the residual exceeds the

threshold at about 18.23s, which implies that f 1
s can be concluded to be nonzero after

approximately 18.25s. Further, from Fig-3.5 it is seen that the residual generated by

the second isolation observer always remains at zero, thus the possibility of f 2
s = 0

can be excluded. It can therefore be concluded that the first and second sensors are

faulty after some time instant, while the third sensor is healthy according to the fault
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distribution D.

Case-2 In this case the sensor faults are given as:

fs1 =

{
0 , t ≤ 18s

0.05 exp(0.01t) , t ≥ 18s

fs2 =

{
0 , t ≤ 25s

0.07 exp(0.03t) , t ≥ 25s

The detectability of the proposed scheme is shown in Fig-3.6. Significant changes of

the residual can be observed at about 18s and 25s. The residual firstly exceeds the

threshold 0.02 at around t = 18.25s (the fault occurs at 18s), which implies that an

incipient sensor has occurred to the system at around t = 18.25s.

The simulation result obtained by the isolation observer designed for f 1
s is shown in

Fig-3.7. It is observed from the figure that the residual exceeds the threshold 0.02

at about 18.25s, which implies that f 1
s 6= 0 after about 18.25s. Fig-3.8 shows the

simulation result when the isolation observer designed for f 2
s is used. The residual

obtained by the this observer exceeds the threshold (0.02) at approximately 25.17s,

which denotes that f 2
s can be found to be nonzero at about 25.17s. Thus, it can

be concluded that sensor faults appear in the first and second sensors after about

18.25s and in the third sensor after about 25.17s.

3.6 Conclusions

A new residual-based scheme for robustly detecting and isolating incipient sensor

faults for Lipschitz nonlinear systems is proposed in this chapter. The proposed

FDI scheme essentially transforms the original system into two subsystems where

subsystem-1 includes system uncertainties but is free from sensor faults and subsystem-

2 has sensor faults but without uncertainties. By using the integral observer based

approach, sensor faults in subsystem-2 are transformed into actuator faults and de-

tected by designing a Luenberger observer for this subsystem. After being detected,

multiple transformed sensor faults are then isolated based on the modified dedicated

observer scheme using a bank of sliding mode observers. The sufficient condition

of stability of the proposed FDI scheme has been studied and represented in the
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Figure 3.3: Detection of an incipient sensor fault using ‖ew3‖ as the residual. Thresh-
old=0.02. An incipient sensor fault is introduced at 18.0s and is detected at about
18.25s
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w3‖ exceeds the threshold at about 18.23s
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Figure 3.6: Detection of an incipient sensor fault using ‖ew3‖ as the residual. Thresh-
old=0.02. An incipient sensor fault is introduced at 18.0s and is detected at about
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Figure 3.8: Residual generated by the second isolation observer which is designed
for f 2
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w3‖ is selected as the residual and the corresponding threshold is chosen

to be 0.02. ‖e2
w3‖ exceeds the threshold at about 25.17s
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form of LMI. Its effectiveness has been demonstrated considering the example of a

single-link robotic arm with a revolute elastic joint. Simulation results confirm that

the proposed method can effectively detect and isolate incipient sensor faults in the

presence of system uncertainties.
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Chapter 4

Estimation of sensor faults for

uncertain nonlinear systems

The problem of incipient sensor FDI using residual-based observers has been dis-

cussed in Chapter 3. Specifically, we use a Luenberger observer to detect the oc-

currence of sensor faults and then design a bank of SMOs to exactly indicate which

sensor is faulty. However, the developed FDI scheme cannot tell the amplitude, du-

ration and shape of the fault, which are important to fault accommodation in the later

process. Also, the use of multi-diagnostic observers will make the whole FDI system

more complex. This problem can be addressed by fault estimation (FE) and will be

studied in this chapter.

4.1 Introduction

FE is different from the majority of FDI methods in the sense that it not only detects

and isolates the fault, but also provides details of the fault. Since FE directly gives

an estimate of the location, size and duration of the fault, it is very useful for incip-

ient faults and slow drifts, which are very difficult to detect. Also this approach is

very useful for fault tolerant control systems. After estimating the sensor fault, the

sensor compensation can be carried out by simply subtracting the estimated sensor

fault from the measurement outputs. If the accuracy of the sensor fault estimation is

satisfactory, then compensated measurement outputs will track the original measure-

65
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ments. Therefore the plant can still function normally without the need for controller

reconfiguration after the occurrence of sensor faults.

Considerable research results have been reported on sensor fault estimation, see [97,

51, 98] and the references therein. In [97], an online estimation approach based on

adaptive observer technique was adopted to reconstruct the sensor fault with an in-

cipient time profile. A descriptor system approach was introduced to investigate sen-

sor fault diagnosis for nonlinear systems in [51]. The proposed method is applicable

for sensor faults of any forms. In [98], a sensor fault tolerant control scheme was

presented for a crane system.

Among these approaches developed in the past, the SMO-based methods is the one

that has been most extensively studied and considerable success has been achieved:

[77] introduced two methods to estimate sensor faults for systems without uncertain-

ties. In both methods, two SMOs were used in cascade. The second approach of [77]

was later improved to achieve robust sensor fault estimation in [72] using an LMI for-

mulation. The open loop stability required in [77] is no longer a necessary condition.

The upper bound on the effect of the uncertainty on the reconstructed fault signals

is minimized by using H∞ concepts. However, for open loop unstable systems with

certain classes of faults, the proposed method may not be applicable. This restric-

tion was addressed in [79], where a new method for sensor fault reconstruction was

proposed. The proposed observer designs are applicable for both open-loop stable

and unstable systems. A high-order SMO was designed to reconstruct sensor faults

in [73], where both disturbances and uncertainties were considered. For descriptor

systems with actuator faults and sensor faults, the FE was carried out by using SMOs

with feedforward signals in [99]. In [78], a nonlinear diffeomorphism was introduced

to explore the system structure and a simple filter was presented to transform the

sensor fault into a pseudo-actuator fault scenario. A SMO was designed to recon-

struct the sensor fault precisely if the system does not experience any uncertainty,

and to estimate the sensor fault when uncertainty exists.

In this chapter two sensor fault estimation schemes are developed. The proposed

methods essentially transform the original system into two subsystems (subsystem

1 and 2), where subsystem-1 includes the effects of system uncertainties, but is

free from sensor faults and subsystem-2 has sensor faults but without any uncertain-

ties. Sensor faults in subsystem-2 are treated as actuator faults by using integral

observer based approach. The effects of system uncertainties in subsystem-1 can
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be completely eliminated using a SMO. In the first scheme, the sensor faults present

in subsystem-2 are reconstructed with arbitrary accuracy by a SMO. In the second

scheme, the sensor faults are estimated by an adaptive observer (AO) instead of by

a SMO. The most distinct feature of the proposed FDI schemes is that by imposing a

coordinate transformation to the original system, the effects of system uncertainties

are completely separated from subsystem-2. This makes the scheme only sensitive

to faults while robust to modelling uncertainty. The method can not only reconstruct

a time-varying sensor fault with relatively high amplitude, as well as can accurately

estimate a sensor fault with trivial amplitude which is difficult to be detected using

residual approaches.

The rest of the chapter is organized as follows: Section-4.2 briefly describes the

mathematical preliminaries required for designing observers. Section-4.3 proposes a

scheme using sliding mode observer to estimate sensor faults. The stability condition

of the proposed observers based on Lyapunov approach is derived. In section-4.4, a

scheme based on an adaptive estimator is proposed to estimate the fault. The results

of simulation are shown in section-4.5 with conclusions in section-4.6.

4.2 Problem Formulation

Consider a nonlinear system described by

ẋ(t) = Ax(t) + Wf(x, t) + Bu(t) + E∆ψ(t)

y(t) = Cx(t) + Dfs(t) (4.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp denote respectively the state variables, inputs

and outputs. fs ∈ Rq is the sensor fault vector. A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

D ∈ Rp×q, E ∈ Rn×r (p ≥ q + r) and W ∈ Rn×j are known constant matrices with

C and D both being of full rank. The nonlinear continuous term f(x, t) ∈ Rj is as-

sumed to be known. The unknown nonlinear term ∆ψ(t) represents the uncertainty

in system dynamics that includes parameter perturbations, external disturbances,

unmodeled dynamics, etc.

Assumption 4.1 rank(CE) = rank(E).



68 4.2. Problem Formulation

Lemma 4.1 Under Assumption 4.1, there exist state and output transformations

z =

[
z1

z2

]
= T

[
x1

x2

]
, w =

[
w1

w2

]
= S

[
y1

y2

]
(4.2)

such that in the new coordinate, the system matrices become:

TAT−1 =

[
A1 A2

A3 A4

]
, TB =

[
B1

B2

]
, TE =

[
E1

0

]
,

SCT−1 =

[
C1 0

0 C4

]
, SD =

[
0

D2

]
, TW =

[
W1

W2

]
(4.3)

where T ∈ Rn×n, S ∈ Rp×p, z1 ∈ Rr, w1 ∈ Rr, A1 ∈ Rr×r, A4 ∈ R(n−r)×(n−r), B1 ∈
Rr×m, E1 ∈ Rr×r, C1 ∈ Rr×r, C4 ∈ R(p−r)×(n−r), D2 ∈ R(p−r)×q and W1 ∈ Rr×j . C1

is invertible.

Proof. See Appendix-B.

Assumption 4.2 For every complex number s with nonnegative real part:

rank

[
sIn − A E

C 0

]
= n + rank(E) (4.4)

This assumption is known as the minimum phase condition.

Lemma 4.2 The pair (A4, C4) is detectable if and only if Assumption 4.2 holds.

Proof. See [94, 95].

Assumption 4.3 The nonlinear term f(x, t) is assumed to be Lipschitz about x uni-

formly, i.e., ∀x, x̂ ∈ X ,

‖f(x, t)− f(x̂, t)‖ ≤ Lf‖x− x̂‖ (4.5)

where Lf is the Lipschitz constant and assumed unknown in the present work.

Assumption 4.4 The function ∆ψ(x, t) representing the structured modeling uncer-

tainty is unknown but bounded by ‖∆ψ(t)‖ ≤ ξ. Also the unknown sensor fault

satisfies ‖fs(t)‖ ≤ ρs and its time derivative ‖ḟs(t)‖ ≤ ρss.
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After introducing the state and output transformations T =

[
T1

T2

]
, S =

[
S1

S2

]
as

that have been defined by (4.2), the original system is converted into two subsystems:

ż1 = A1z1 + A2z2 + f1(T
−1z, t) + B1u + E1∆ψ

w1 = C1z1 (4.6)

ż2 = A3z1 + A4z2 + f2(T
−1z, t) + B2u

w2 = C4z2 + D2fs (4.7)

where T1 ∈ Rr×n, S1 ∈ Rr×p, f1(T
−1z, t) = W1f(T−1z, t) and f2(T

−1z, t) =

W2f(T−1z, t).

For subsystem (4.7), define a new state z3 =
∫ t

0
w2(τ)dτ so that ż3(t) = C4z2 +D2fs,

and the augmented system with the new state z3 is given as:

[
ż2

ż3

]
=

[
A4 0

C4 0

][
z2

z3

]
+

[
A3

0

]
z1 +

[
f2(T

−1z, t)

0

]

+

[
B2

0

]
u +

[
0

D2

]
fs

w3 = z3 (4.8)

The augmented system (4.8) can then be rewritten in a more compact form as:

ż0 = A0z0 + Ā3z1 + W̄2f(T−1z, t) + B0u + D0fs

w3 = C0z0 (4.9)

where z0 ∈ Rn+p−2r, w3 ∈ Rp−r, A0 =

[
A4 0

C4 0

]
∈ R(n+p−2r)×(n+p−2r), Ā3 =

[
A3

0

]
∈ R(n+p−2r)×r, B0 =

[
B2

0

]
∈ R(n+p−2r)×m, D0 =

[
0

D2

]
∈ R(n+p−2r)×q,

C0 =
[

0 Ip−r

]
∈ R(p−r)×(n+p−2r), W̄2 =

[
W2

0

]
.

Accordingly, subsystem (4.6) is rewritten as:

ż1 = A1z1 + Ā2z0 + f1(T
−1z, t) + B1u + E1∆ψ

w1 = C1z1 (4.10)
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where Ā2 =
[
A2 0r×(p−r)

]
.

Lemma 4.3 The pair (A0, C0) is observable if Assumption 4.2 holds.

Proof. See Lemma 3.3.

Assumption 4.5 There exist arbitrary matrices F0 ∈ Rq×(p−r) and H0 ∈ Rj×(p−r)

such that:

DT
0 P0 = F0C0 (4.11)

W̄ T
2 P0 = H0C0 (4.12)

Remark 4.1 Assumption 4.1 ensures the existence of coordinate transformations

T and S, such that in the new coordinate sensor faults can be completely decou-

pled from uncertainties. After the transformation, subsystem-1 which is formulated in

(4.10) is free from sensor faults but subject to system uncertainties, and subsystem-2

which is formulated in (4.9) is prone to sensor faults but free from system uncertain-

ties. The satisfaction of this assumption makes the accurate fault estimation (i.e., fault

reconstruction) become possible, which is the most distinct feature of the proposed

schemes. Assumption 4.2 implies that an asymptotic estimator can be designed for

the system (4.9). In Assumption 4.4, the sensor fault is assumed to be non-zero

and differentiable after its occurrence. This assumption is quite general either for

constant faults or time-varying faults at limited rates [7, 100, 101]. The assumption

of ‖fs(t)‖ ≤ ρs is used in section-4.3 when designing SMOs, while the assumption

‖ḟs(t)‖ ≤ ρss is used in section-4.4 when designing an AO. In Assumption 4.5, if

an arbitrary matrix H0 satisfying (4.12) can be found, then an adaptation law can

be integrated into the estimator such that the situation that the Lipschitz constant

is unknown or too large can be solved. This adds another important feature of the

proposed schemes.

4.3 Sensor fault reconstruction using sliding mode

observers with adaption laws

In this section, two sliding mode observers are designed for subsystem-1 (4.10) and

subsystem-2 (4.9) respectively. One of the SMOs is being designed to eliminate the
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effects of system uncertainties on the state estimation while the other one is used

to reconstruct the sensor fault. The sufficient condition of stability of the proposed

scheme and the selection of design parameters of the observers will be discussed in

this section.

For subsystem-1, the proposed sliding mode observer has the form:

˙̂z1 = A1ẑ1 + Ā2ẑ0 + f1(T
−1ẑ, t) + B1u +

1

2
k̂1P1C

−1
1 (S1y1 − ŵ1)

+ (A1 − As
1)C

−1
1 (w1 − ŵ1) + ν1 (4.13)

ŵ1 = C1ẑ1 (4.14)

where As
1 ∈ Rr×r is a stable matrix which needs to be determined. For any Q1 > 0,

the Lyapunov equation As
1
T P1 + P1A

s
1 = −Q1 has a unique solution P1 > 0. The

discontinuous output error injection term ν1 that is being used to eliminate the effects

of uncertainties is defined by

ν1 =





(‖E1‖ξ + l1)
P1(C−1

1 S1y−ẑ1)

‖P1(C−1
1 S1y−ẑ1)‖ if C−1

1 S1y − ẑ1 6= 0

0 otherwise
(4.15)

where l1 is a positive scalar to be determined later. It is worth noting that the state z1

can be obtained by the measured output y as z1 = C−1
1 S1y.

k̂1 satisfies an adaption law as follows:

˙̂
k1 = lk1‖P1(C

−1
1 S1y − ẑ1)‖2 (4.16)

where lk1 is a positive constant.

For subsystem-2, the designed sliding mode observer has the form:

˙̂z0 = A0ẑ0 + Ā3C
−1
1 w1 + W̄2f(T−1ẑ, t) + B0u + L0(w3 − ŵ3)

+
1

2
k̂2W̄2H0(w3 − ŵ3) + D0ν2 (4.17)

ŵ3 = C0ẑ0 (4.18)

where L0 =

[
L01

L02

]
∈ R(n+p−2r)×(p−r) is a traditional Luenberger observer gain

used to make (A0 − L0C0) stable. The sliding mode control law ν2 which is being
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used to estimate the sensor fault is defined by

ν2 =





(ρs + l2)
F0ew3

‖F0ew3‖
if ew3 6= 0

0 otherwise
(4.19)

where ew3 = w3 − ŵ3 and l2 is a positive scalar to be determined later.

k̂2 also satisfies an adaption law as:

˙̂
k2 = lk2‖H0ew3‖2 (4.20)

where lk2 is a positive constant.

If the state estimation errors are defined as e1 = z1 − ẑ1 = C−1
1 S1y − ẑ1 and e0 =

z0− ẑ0, then the state estimation error dynamics after the occurrence of sensor faults

can be obtained from:

ė1 = As
1e1 + Ā2e0 +

(
f1(T

−1z, t)− f1(T
−1ẑ, t)

)− 1

2
k̂1P1e1

+ E1∆ψ − ν1 (4.21)

ė0 = (A0 − L0C0)e0 + W̄2(f(T−1z, t)− f(T−1ẑ, t))− 1

2
k̂2W̄2H0C0e0

+ D0(fs − ν2) (4.22)

Note that ẑ := [(C−1
1 S1y)T , (ẑ0)

T ]T , it is easy to see that

‖f(T−1z, t)− f(T−1ẑ, t)‖ ≤ Lf‖T−1‖‖e0‖
‖f1(T

−1z, t)− f1(T
−1ẑ, t)‖ ≤ Lf1‖T−1‖‖e0‖

‖f2(T
−1z, t)− f2(T

−1ẑ, t)‖ ≤ Lf2‖T−1‖‖e0‖ (4.23)

where Lf1 = ‖W1‖Lf and Lf2 = ‖W2‖Lf .

With proper choice of positive constants l1 and l2, the error dynamics (4.21)-(4.22)

can be driven to the sliding surface defined as:

S1 = {(e1, C0e0)|e1 = 0, C0e0 = 0} (4.24)

The condition of stability and reachability of the state estimation error dynamics (4.21)

and (4.22) associated with the sliding motion (4.24) will be studied next.
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Proposition 4.1 Under the Assumptions 4.1-4.5, the error dynamical system (4.21)

and (4.22) are asymptotically stable if there exist matrices As
1 < 0, L0, P1 > 0, P0 > 0

such that:

[
−Q1 P1Ā2

ĀT
2 P1 −Q0 + 2I

]
< 0 (4.25)

where −Q1 = As
1
T P1 + P1A

s
1, −Q0 = (A0 − L0C0)

T P0 + P0(A0 − L0C0).

Proof. Consider the Lyapunov function as:

V = V1(e1) + V2(e0) + V3(ek1) + V4(ek2) (4.26)

where V1(e1) = eT
1 P1e1, V2(e0) = eT

0 P0e0, V3(ek1) = l−1
k1

e2
k1

/2, V4(ek2) = l−1
k2

e2
k2

/2,

ek1 = k1− k̂1 and ek2 = k2− k̂2. k1 and k2 are two constants which can be determined

by (4.34). The time derivative of V1 and V2 along the trajectories of system (4.21)-

(4.22) can be shown to be:

V̇1 = eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1Ā2e0 + 2eT
1 P1E1∆ψ

+ 2eT
1 P1

(
f1(T

−1z, t)− f1(T
−1ẑ, t)

)− 2eT
1 P1ν1 − k̂1‖P1e1‖2

For any scalar α > 0, since the inequality 2XT Y ≤ 1
α
XT X + αY T Y holds ([46]),

then

V̇1 ≤ eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1Ā2e0 + 2eT
1 P1E1∆ψ

+
1

α1

eT
1 P1P

T
1 e1 + α1

(
f1(T

−1z, t)− f1(T
−1ẑ, t)

)T

· (f1(T
−1z, t)− f1(T

−1ẑ, t)
)− 2eT

1 P1ν1 − k̂1‖P1e1‖2

≤ −eT
1 Q1e1 + 2eT

1 P1Ā2e0 +
1

α1

‖P1e1‖2 + α1L2
f1
‖T−1‖2‖e0‖2

− k̂1‖P1e1‖2 + 2eT
1 P1E1∆ψ − 2eT

1 P1ν1 (4.27)

Using (4.15), the last two terms of (4.27) can be expressed as :

2eT
1 P1E1∆ψ − 2eT

1 P1ν1 = −2l1‖P1e1‖ ≤ 0 (4.28)

Letting α1 = 1/L2
f1
‖T−1‖2 and substituting (4.28) into (4.27) yields

V̇1 ≤ −eT
1 Q1e1 + 2eT

1 P1Ā2e0 + ‖e0‖2 + (L2
f1
‖T−1‖2 − k̂1)‖P1e1‖2 (4.29)
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Similarly, the derivative of V2 can be obtained as:

V̇2 ≤ −eT
0 Q0e0 + 2e0P0W̄2(f(T−1z, t)− f(T−1ẑ, t))

− k̂2‖H0C0e0‖2 + 2eT
0 P0D0(fs − ν2)

≤ −eT
0 Q0e0 +

1

α0

‖H0C0e0‖2 + α0L2
f2
‖T−1‖2‖e0‖2

− k̂2‖H0C0e0‖2 + 2eT
0 P0D0(fs − ν2) (4.30)

From (4.19), it is easy to see

eT
0 P0D0(fs − ν2) ≤ 0

Let α0 = 1/L2
f2
‖T−1‖2, it follows that

V̇2 ≤ −eT
0 Q0e0 + (L2

f2
‖T−1‖2 − k̂2)‖H0C0e0‖2 + ‖e0‖2 (4.31)

Moreover, the time derivatives of V3 and V4 can be computed as:

V̇3 = l−1
k1

ek1 ėk1 = −ek1‖P1e1‖2 (4.32)

V̇4 = l−1
k2

ek2 ėk2 = −ek2‖H0C0e0‖2 (4.33)

Setting

k1 = L2
f1
‖T−1‖2 and k2 = L2

f2
‖T−1‖2 (4.34)

From (4.29), (4.31), (4.32) and (4.33), the time derivative of V can then be obtained

from:

V̇ = V̇1 + V̇2 + V̇3 + V̇4

≤ −eT
1 Q1e1 + 2eT

1 P1Ā2e0 − eT
0 Q0e0 + 2‖e0‖2

=

[
e1

e0

]T [
−Q1 P1Ā2

ĀT
2 P1 −Q0 + 2I

][
e1

e0

]
(4.35)

It follows from (4.25) that V̇ < 0, which implies that the observer error dynamics

(4.21) and (4.22) is asymptotically stable.

This completes the proof.
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Remark 4.2 The problem of finding matrices P1 = P T
1 > 0, P0 = P T

0 > 0, L,

As
1 < 0 to satisfy both the inequality (4.25) and the matching condition (4.11) can be

transformed into the following LMI optimization problem:

Minimize γ1 + γ2 subject to P1 > 0, P0 > 0, X < 0 and

[
X + XT P1Ā2

ĀT
2 P1 P0A0 + AT

0 P0 − Y0C0 − CT
0 Y T

0 + 2I

]
< 0,

[
γ1I DT

0 P0 − F0C0

(DT
0 P0 − F0C0)

T γ1I

]
> 0,

[
γ2I W̄ T

2 P0 −H0C0

(W̄ T
2 P0 −H0C0)

T γ2I

]
> 0 (4.36)

where X = P1A
s
1 and Y0 = P0L0.

Remark 4.3 In practice, the Lipschitz constant in (4.5) is difficult to be obtained pre-

cisely. And if this parameter is too large, the LMIs which represent the stability of the

observer may not be feasible. In the present work, the Lipschitz constant is assumed

to be unknown and an adaptive sliding mode observer is proposed to deal with this

situation. Specifically, the Lipschitz constants Lf1 and Lf2 are injected into the con-

stants k1 and k2 which can be adjusted by the adaptation law (4.16) and (4.20). The

asymptotical estimation of states can be guaranteed even if the estimate of k1 and k2

do not approach to their real values. It is worth noting that Lipschitz constant terms

are not appearing in (4.36), which makes the above LMI optimization problem more

solvable.

Proposition 4.1 implies that the error dynamical system (4.21)-(4.22) associated with

the sliding surface (4.24) is asymptotically stable. The objective now is to choose

the constants l1 and l2 such that the error dynamics can be driven to the sliding

surface and a sliding motion can be maintained thereafter. The following conclusion

is presented.

Proposition 4.2 Under the Assumptions 4.1-4.5, the error dynamics (4.21)-(4.22) is

driven to the sliding surface given by (4.24) in finite time if the gain l1 and l2 satisfy

l1 ≥
(‖Ā2‖+ Lf1‖T−1‖) ‖e0‖+ η1 (4.37)

l2 ≥ Lf2‖T−1‖‖e0‖
‖D0‖ + η2 (4.38)
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where η1 and η2 are two positive scalars.

Proof. Consider the Lyapunov function as

V (t) = V1(t) + V2(t) (4.39)

where V1 = eT
1 P1e1 and V2 = eT

0 P0e0.

Then

V̇1 ≤ eT
1 (P1A

s
1 + As

1
T P1)e1 + 2eT

1 P1(Ā2e0 + f1(T
−1z, t)− f1(T

−1ẑ, t)

+ E1∆ψ − ν1) (4.40)

Since by design, As
1 is a stable matrix which implies that P1A

s
1 +As

1
T P1 < 0, therefore

V̇1 ≤ 2eT
1 P1(Ā2e0 + f1(T

−1z, t)− f1(T
−1ẑ, t) + E1∆ψ − ν1)

≤ 2‖P1e1‖
(‖Ā2‖‖e0‖+ Lf1‖T−1‖‖e0‖ − l1

)

It follows from (4.37) that

V̇1 ≤ −2η1‖P1e1‖ ≤ −2η1

√
λmin(P1)V

1
2

1 (4.41)

Similarly, if (4.38) is satisfied, then we have

V̇2 ≤ −2η2‖P0e0‖ ≤ −2η2

√
λmin(P0)V

1
2

2 (4.42)

This shows that the reachability condition ([61]) is satisfied and a sliding motion is

achieved and maintained after some finite time ts > 0.

This completes the proof.

After reaching the sliding surface, the sliding motion will be maintained even after the

occurrence of any fault, i.e., C0e0 = 0 and C0ė0 = 0. Therefore it is clear to see from

(4.22) that

0 = C0A0e0 + C0 (F (z0, t)− F (ẑ0, t)) + D2(fs − ν2eq) (4.43)

where ν2eq is the equivalent output error injection signal representing the average

behavior of the discontinuous function ν2.
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Figure 4.1: Schematic of the sensor fault estimation using (4.46)

According to Proposition 1, lim
t→∞

e0 = 0 and also lim
t→∞

(F (z0, t) − F (ẑ0, t)) = 0. This

implies (from (4.43)) that

fs → ν2eq as t →∞ (4.44)

The equivalent output error injection signal ν2eq can be approximated as:

ν2eq = (l2 + ρs)
F0ew3

‖F0ew3‖+ δ
(4.45)

where δ is a small positive scalar to reduce the chattering effect. It can be shown that

ν2eq can be approximated to any degree of accuracy by (4.45) ([61]). Therefore the

sensor fault can be approximated as

f̂s ≈ (l2 + ρs)
F0ew3

‖F0ew3‖+ δ
(4.46)

The complete sensor fault estimation scheme is shown in Fig-4.1.

4.4 Sensor fault estimation using adaptive observer

In section-4.3, a sensor fault estimation scheme using two sliding observers is pro-

posed. One of which is used to eliminate the effect of the system uncertainty on the

state estimation error, while the other one is being used to estimate the sensor fault.

An adaption law is integrated in both sliding observers to tackle the situation when

the Lipschitz constant is unknown. In this section, an alternative method which is
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based on using an adaptive observer (AO) technique [101] is proposed. More specif-

ically, the proposed scheme combines one sliding mode observer and one adaptive

observer, in which the sliding mode observer is used for subsystem-1 to remove the

effect of the system uncertainty on the state estimation and the adaptive observer is

used to directly estimate the sensor fault.

For subsystem-1, the sliding mode observer has the similar form as that being used

in Section-4.3, i.e.,

˙̂z1 = A1ẑ1 + Ā2ẑ0 + f1(T
−1ẑ, t) + B1u +

1

2
n1P1C

−1
1 (w1 − ŵ1)

+ (A1 − As
1)C

−1
1 (w1 − ŵ1) + ν (4.47)

ŵ1 = C1ẑ1 (4.48)

where As
1 ∈ Rr×r is a stable matrix. n1 is a positive constant which satisfies n1 ≥

L2
f1
‖T−1‖2. The discontinuous output error injection term ν which is used to eliminate

the effects of uncertainties is defined by

ν =





l(.)
C−1

1 S1y−ẑ1

‖C−1
1 S1y−ẑ1‖ if e1 6= 0

0 otherwise
(4.49)

where l(.) is a positive scalar gain to be determined.

The sliding surface is redefined as:

S2 = {e1|e1 = 0} (4.50)

For subsystem-2, the proposed adaptive observer has the form:

˙̂z0 = A0ẑ0 + Ā3C
−1
1 w1 + W̄2f(T−1ẑ, t) + B0u + L0(w3 − ŵ3)

+
1

2
n2W̄2H0(w3 − ŵ3) + D0f̂s (4.51)

ŵ3 = C0ẑ0 (4.52)

where n2 is a positive constant which satisfies n2 ≥ L2
f2
‖T−1‖2 and f̂s is the sensor

fault estimation whose dynamics is defined as:

˙̂
fs = ΓF0ew3 − σΓf̂s (4.53)
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where Γ ∈ Rq×q is a symmetric positive definite matrix representing the learning rate

and σ is a positive scalar.

Denote ef = fs− f̂s, then the state estimation error dynamics after the occurrence of

faults can be obtained from:

ė1 = As
1e1 + Ā2e0 +

(
f1(T

−1z, t)− f1(T
−1ẑ, t)

)− 1

2
n1P1e1

+ E1∆ψ − ν (4.54)

ė0 = (A0 − L0C0)e0 + W̄2

(
f(T−1z, t)− f(T−1ẑ, t)

)

− 1

2
n2W̄2H0C0e0 + D0ef (4.55)

Define

Ω1 =

{
(ew1 , ew3 , f̂s)

∣∣λmin(P1)

‖C1‖2
‖ew1‖2 +

λmin(P0)

‖C0‖2
‖ew3‖2 +

λmin(Γ−1)

2
‖f̂s‖2

≤ λmin(Γ−1)ρ2
s +

µ4

µ7

}

Ω2 =

{
(ew1 , ew3 , f̂s)

∣∣λmin(P1)

‖C1‖2
‖ew1‖2 +

λmin(P0)

‖C0‖2
‖ew3‖2 +

λmin(Γ−1)

2
‖f̂s‖2

> λmin(Γ−1)ρ2
s +

µ4

µ7

}

µ1 = λmin(−As
1
T P1 − P1A

s
1)

µ2 = λmin(−(A0 − L0C0)
T P0 − P0(A0 − L0C0)− 2I) > 0

µ3 = λmin(σI −G) > 0

µ4 = ρ2
ssλmax(Γ

−1G−1Γ−1) + σρ2
s

µ5 = min(µ1, µ2, µ3)

µ6 = max(λmax(P1), λmax(P0), λmax(Γ
−1))

µ7 = µ5/µ6

where G ∈ Rq×q is a symmetric positive definite matrix.

Proposition 4.3 Under the Assumptions 4.1-4.5, if there exist matrices As
1 < 0, L0,

P1 > 0, P0 > 0 such that:

[
−Q1 P1Ā2

ĀT
2 P1 −Q0 + 2I

]
< 0 (4.56)
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where −Q1 = As
1
T P1 + P1A

s
1, −Q0 = (A0 − L0C0)

T P0 + P0(A0 − L0C0). Then for a

given matrix Γ and a positive scalar σ, the error dynamics (4.54)-(4.55) are uniformly

bounded and (ew1 , ew3 , f̂s) converges to Ω1 at a rate greater than e−µ7t.

Proof. Consider the Lyapunov function as:

V = eT
1 P1e1 + eT

0 P0e0 + eT
f Γ−1ef (4.57)

Its time derivative along the trajectories of system (4.55) and (4.53) can be shown to

be:

V̇ ≤ −eT
1 Q1e1 + 2eT

1 P1Ā2e0 + ‖e0‖2 + (L2
f1
‖T−1‖2 − n1)‖P1e1‖2

− eT
0 Q0e0 + ‖e0‖2 + (L2

f2
‖T−1‖2 − n2)‖H0C0e0‖2

+ 2eT
f Γ−1ḟs + 2σeT

f fs − 2σeT
f ef

≤ −eT
1 Q1e1 + eT

0 (−Q0 + 2I)e0 + 2eT
1 P1Ā2e0 + 2eT

f Γ−1ḟs

+ 2σeT
f fs − 2σeT

f ef (4.58)

Since 2XT Y ≤ 1
α
XT GX + αY T G−1Y holds for any scalar α > 0 and symmetric

positive definite matrix G [102], therefore

2eT
f Γ−1ḟs ≤ eT

f Gef + ḟT
s Γ−1G−1Γ−1ḟs

≤ eT
f Gef + ρssλmax(Γ

−1G−1Γ−1) (4.59)

Moreover,

2σeT
f fs ≤ σ‖ef‖2 + σρ2

s (4.60)

Substituting (4.59) and (4.60) into (4.58) gives

V̇ ≤ −eT
1 Q1e1 − eT

0 (Q0 − 2I)e0 + eT
f (G− σI)ef

+ ρssλmax(Γ
−1G−1Γ−1) + σρ2

s

≤ −µ1‖e1‖2 − µ2‖e0‖2 − µ3‖ef‖2 + µ4

≤ −µ5(‖e1‖2 + ‖e0‖2 + ‖ef‖2) + µ4 (4.61)

Further from (4.57)

V ≤ λmax(P1)‖e1‖2 + λmax(P0)‖e0‖2 + λmax(Γ
−1)‖ef‖2
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≤ max(λmax(P1), λmax(P0), λmax(Γ
−1))(‖e1‖2 + ‖e0‖2 + ‖ef‖2)

= µ6(‖e1‖2 + ‖e0‖2 + ‖ef‖2) (4.62)

Then

V̇ ≤ −µ7V + µ4 (4.63)

On the other hand

V ≥ λmin(P1)‖e1‖2 + λmin(P0)‖e0‖2 + λmin(Γ−1)‖ef‖2

≥ λmin(P1)

‖C1‖2
‖ew1‖2 +

λmin(P0)

‖C0‖2
‖ew3‖2 + λmin(Γ−1)(

‖f̂s‖2

2
− ρ2

s) (4.64)

If (ew1 , ew3 , f̂s) ∈ Ω2, then V > µ4/µ7 and consequently V̇ < 0. Therefore it can be

concluded that (ew1 , ew3 , f̂s) is uniformly bounded and converges to Ω1 exponentially

at a rate greater than e−µ7t.

This completes the proof.

Proposition 4.4 Under the Assumptions 4.1-4.5, the error dynamics (4.54) is driven

to the sliding surface given by (4.50) in finite time if the gain l(.) satisfies

l(.) ≥ (‖Ā2‖+ Lf1‖T−1‖)‖e0‖+ ‖E1‖ξ + η3 (4.65)

where η3 is a positive scalar.

Proof. Consider the Lyapunov candidate function V1 = eT
1 e1, then

V̇1 = eT
1 (As

1 + As
1
T )e1 + 2eT

1 (Ā2e0 + f1(T
−1z, t)− f1(T

−1ẑ, t) + E1∆ψ − ν)

≤ 2eT
1 (Ā2e0 + f1(T

−1z, t)− f1(T
−1ẑ, t) + E1∆ψ − ν)

≤ 2‖e1‖
(‖Ā2‖‖e0‖+ Lf1‖T−1‖‖e0‖+ ‖E1‖ξ − l(.)

)
(4.66)

It follows from (4.65) that

V̇1 ≤ −2η3‖e1‖ ≤ −2η3

√
V1 (4.67)

This shows that the reachability condition is satisfied and a sliding motion is achieved

and maintained after some finite time ts > 0.
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Figure 4.2: Schematic of the sensor fault estimation using (4.53)

This completes the proof.

The second sensor fault estimation scheme is shown in Fig-4.2.

4.5 Simulation results

Example-1. In this section, The effectiveness of the proposed schemes in estimating

sensor faults has firstly been demonstrated by an example of a modified seventh-

order aircraft model used in [103, 104], in which the states are defined as:

x1 = φ− bank angle(rad)

x2 = r − yaw rate(rad/s)

x3 = p− roll rate(rad/s)

x4 = δ − sideslip angle(rad)

x5 = x7 − washout filter state

x6 = δr − rudder deflection(rad)

x7 = δa − aileon deflection(rad)

the inputs are:

u1 = δrc − rudder command(rad)
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u2 = δac − aileon command(rad)

and outputs are:

y1 = ra − roll acceleration(rad/s)

y2 = pa − yaw acceleration(rad/s)

y3 = φ− bank angle(rad)

y4 = x7 − washout filter state

The system is in the form of (4.1) with

A =




0 0 1 0 0 0 0

0 −0.154 −0.04 1.54 0 −0.744 −0.032

0 0.249 −1 −5.2 0 0.337 −1.12

0.0386 −0.996 0 −2.117 0 0.02 0

0 0.5 0 0 −4 0 0

0 0 0 0 0 −20.000 0

0 0 0 0 0 0 −25




B =

[
0 0 0 0 0 20 0

0 0 0 0 0 0 25

]T

C =




0 −0.154 −0.04 1.54 0 −0.744 −0.032

0 0.249 −1 −5.2 0 0.337 −1.12

1 0 0 0 0 0 0

0 0 0 0 1 0 0




D =




0.83 0

0 1.2

1 0

0 2




E =
[

1 1 0 0 1 0 0
]T

f(x, t) =
[

sin x3 sin x3 0 0 sin x3 0 0
]T

∆ψ = 2 sin t

Notice that in [103], the original model is linear with the nonlinear function f(x, t) = 0

and the system uncertainty ∆ψ = 0. These two terms are added in the simulation

example to show the effectiveness of the proposed methods on the sensor fault re-
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construction of uncertain nonlinear systems.

The sensor fault fs =
[

fT
s1

fT
s2

]T

is applied to the system and defined as:

fs1 =





0 , t ≤ 15s

sin(0.5t) + 0.2sin(2t) , 15s < t < 30s

0 , t ≥ 30s

fs2 =

{
0 , t ≤ 20s

0.6sin(2t) , t > 20s

The nonsingular transformation matrices T and S are chosen as follows:

T =




0.8440 0.1560 0.0405 −1.5598 0 0.7535 0.0324

−1.0000 1.0000 0 0 0 0 0

0 0 1.0000 0 0 0 0

0 0 0 1.0000 0 0 0

−1.0000 0 0 0 1.0000 0 0

0 0 0 0 0 1.0000 0

0 0 0 0 0 0 1.0000




S =




1.0000 0 −0.8333 0

−1.4359 1.0000 −0.4701 0

1.0128 0 0.1560 0

1.0128 0 −0.8440 1.0000




The system matrices under the new coordinate become:

TAT−1 =




1.4794 1.3088 0.7373 5.6393 0 −16.3183 −0.9083

−0.1540 −0.1300 −1.0338 1.2998 0 −0.6280 −0.0270

0.2490 0.2102 −1.0101 −4.8116 0 0.1494 −1.1281

−0.9574 −0.8466 0.0388 −3.6104 0 0.7414 0.0310

−3.5000 1.0460 −0.8583 −5.4593 −4.0000 2.6372 0.1134

0 0 0 0 0 −20.0000 0

0 0 0 0 0 0 −25.0000




SCT−1 =




−0.9873 0.0000 −0.0000 0.0000 0 −0.0001 −0.0000

0.0000 0.4701 −0.9426 −7.4112 0 1.4053 −1.0741

0.0000 −0.1560 −0.0405 1.5598 0 −0.7535 −0.0324

0.0000 −0.1560 −0.0405 1.5598 1.0000 −0.7535 −0.0324



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TB =




15.0700 0.8100

0 0

0 0

0 0

0 0

20.0000 0

0 25.0000




, TE =




1

0

0

0

0

0

0




, SD =




−0.0033 0

−1.6619 1.2000

0.9966 0

−0.0034 2.0000




Imposing the stability constraint to the transformed system, as described in (4.36),

and formulating the problem in an LMI framework gives the following solutions for the

SMO:

P1 = 0.0239

As
1 = −14.5082

F0 =

[
−0.7885 0.4797 0.0026

0.5646 0.0005 0.9426

]

H0 = 1e− 15×
[

0.0002 0.0918 −0.2619
]

P0 =




2.1546 −0.2331 0.9203 0.1433 −0.0337 0.0306

−0.2331 1.4204 −1.5329 −0.0615 −0.0472 −0.0612

0.9203 −1.5329 2.8120 −0.0828 0.0414 0.0726

0.1433 −0.0615 −0.0828 0.3196 0.0253 0.0074

−0.0337 −0.0472 0.0414 0.0253 0.0754 0.0022

0.0306 −0.0612 0.0726 0.0074 0.0022 0.0544

−0.5318 −0.0796 0.0188 −0.1035 0.0104 −0.0048

−0.8857 −0.1326 0.0313 −0.1725 0.0174 −0.0079

0.3191 0.0478 −0.0113 0.0621 −0.0063 0.0029

−0.5318 −0.8857 0.3191

−0.0796 −0.1326 0.0478

0.0188 0.0313 −0.0113

−0.1035 −0.1725 0.0621

0.0104 0.0174 −0.0063

−0.0048 −0.0079 0.0029

0.6355 0.2683 −0.0990

0.2683 0.9281 −0.1607

−0.0990 −0.1607 0.5307



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L0 =




3.8300 0.8530 −1.2908

−5.0129 1.9586 0.9128

−5.5068 0.7652 1.5223

−1.6720 4.2462 1.8103

9.7810 −6.9812 −5.5098

−8.8265 1.6490 −1.0835

3.4895 0.3753 −0.1203

1.4576 3.1855 −0.2212

−0.5177 −0.2265 2.6942




For the sake of comparison, the same design parameters are assigned to the adap-

tive observer. Select

σ = 0.02, G = 0.01I8

Γ =

[
100 0

0 100

]

to complete the adaptive observer design.

Fig-4.3-4.8 show the trajectories of the true states and their estimates provided by

SMO-based method and AO-based method, respectively. It can be seen from the

figures that both schemes can estimate the states accurately, before and after the

occurrence of sensor faults. The results of sensor fault estimation are depicted in Fig-

4.10 and Fig-4.11. It shows that the two proposed methods have similar performance

in estimating sensor faults fs1 and fs2 , therefore we only analyze the results of the

SMO-based method in the following. During the time period 0s − 15s, there is no

sensor fault and both estimations f̂s1 and f̂s2 approximate zero after an initial reaching

phase. At time instant 15s, sensor fault fs1 occurs abruptly. The estimation of fs1

converges very quickly to the actual value and the estimation of fs2 oscillates between

15s − 17s and finally goes back to zero after 17s. After 20s, sensor fault fs2 also

happens. Between the time period 20s−30s, the estimation accuracy of fs1 becomes

a little lower and the estimate of fs2 approaches to its actual value quickly after an

initial transient. At time instant 30s, fs1 becomes zero immediately and this causes

a transient deviation of f̂s2 from its actual value. The estimation of fs1 preserves a

sinusoidal curve since fs2 still exists after 30s.

Example-2. Consider the model of a single-link robotic arm with a revolute elastic

joint [105] to further test the effectiveness of the proposed schemes. The dynamics
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Figure 4.3: State x1 and its estimated value x̂1
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Figure 4.4: State x2 and its estimated value x̂2
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Figure 4.5: State x3 and its estimated value x̂3
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Figure 4.6: State x4 and its estimated value x̂4
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Figure 4.7: State x5 and its estimated value x̂5
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Figure 4.8: State x6 and its estimated value x̂6
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Figure 4.9: State x7 and its estimated value x̂7
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Figure 4.10: Sensor fault fs1 and its estimated value f̂s1
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Figure 4.11: Sensor fault fs2 and its estimated value f̂s2

for this system can be described by

Jlq̈1 + Flq̇1 + k(q1 − q2) + mglsinq1 = 0

Jmq̈2 + Fmq̇2 − k(q1 − q2) = u (4.68)

This example has been used in Chapter 3 and the same values are assigned to the

parameters.

Choosing x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2 and assuming that the link position, the

rotor position and the rotor velocity can be measured, the dynamics (4.69) can be

represented in state-space form as:




ẋ1

ẋ2

ẋ3

ẋ4




=




0 1 0 0
−k
Jl

−Fl

Jl

k
Jl

0

0 0 0 1
k

Jm
0 −k

Jm

−Fm

Jm







x1

x2

x3

x4




+




0

0

0
1

Jm




u

+




0
−mgl

Jl
sinx1

0

0




+




1

1

0

0




∆ψ
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y =




1 0 0 0

0 0 1 0

0 0 0 1







x1

x2

x3

x4




+




1 0

2 0

0 1


 fs (4.69)

where ∆ψ = mgl
Jl

sin(t) is the uncertainty. fs = [fT
s1

fT
s2

]T denotes the sensor fault:

fs1 =





0 , t ≤ 18s

0.05 exp(0.01t) , 18s < t < 35s

0 , t ≥ 35s

fs2 =





0 , t ≤ 15s

sin(0.5t) + 0.2sin(2t) , 15s < t < 30s

0 , t ≥ 30s

It should be emphasized that fs1 is an incipient fault and the system uncertainty is

relatively large. The input to the system is given by u = 4sin(t/3).

The nonsingular transformations T and S are chosen as:

T =




1 0 −0.5 0

−1 1 0 0

0 0 1 0

0 0 0 1




, S =




1 −0.5 0

0 1 0

0 0 1




From the LMI synthesis, the design parameters can be obtained as:

P1 = 0.0061

As
1 = −5.9559× 104

P0 = 103 ×




0.0008 −0.0000 −0.0000 0.0000 −0.0000

−0.0000 5.1446 2.5070 0.0000 −0.0000

−0.0000 2.5070 2.7057 0.0000 0.0000

0.0000 0.0000 0.0000 0.6363 −0.0000

−0.0000 −0.0000 0.0000 −0.0000 0.6362




F0 = 103 ×
[

1.2726 −0.0001

−0.0000 0.6362

]

H0 = 10−4 ×
[

0.1376 −0.0920
]
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L0 =




−0.0000 0.0000

0.2255 −0.2089

−0.2090 0.4287

0.5014 0.0000

0.0000 0.5015




It can be shown that both the conditions of Proposition 4.1 and 4.3 are satisfied.

The parameters of the adaptive observer are selected as:

σ = 0.02, G = 0.01I5

Γ =

[
100 0

0 100

]

It can be seen from Fig-4.12, 4.13, 4.14 and 4.15 that both schemes can estimate the

states accurately. It is worth noting that incipient sensor faults are considered in this

simulation. The fault estimation results are depicted in Fig-4.16 and 4.17. It shows

that both proposed methods produce similar results. In the following, only the results

obtained by SMOs are discussed. During the time period 0s − 15s both estimations

f̂s1 and f̂s2 approximate zero after an initial reaching phase. After fs1 occurs at 15s

and fs2 occurs at 18s, both estimations converge very quickly to their actual values

after a short-time oscillation. The sensor fault fs2 vanishes at time instant 35s. An

initial transient appears before the estimation finally reaches its actual value.

4.6 Conclusions

Two schemes for estimating sensor faults for a class of nonlinear Lipschitz systems

is proposed in this chapter. The proposed schemes essentially transform the original

system into two subsystems where subsystem-1 includes system uncertainties but is

free from sensor faults and subsystem-2 has sensor faults but without uncertainties.

By using the integral observer based approach, sensor faults in subsystem-2 are

transformed into actuator faults. In the first scheme, two sliding mode observers are

designed. One of which is to eliminate the effect of system uncertainties while the

other one is to estimate sensor faults using the concept of equivalent output injection.

In the second scheme, an adaptive observer is adopted combined with a sliding mode
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Figure 4.12: State x1 and its estimated value x̂1
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Figure 4.13: State x2 and its estimated value x̂2
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Figure 4.14: State x3 and its estimated value x̂3
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Figure 4.15: State x4 and its estimated value x̂4
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Figure 4.16: Sensor fault fs1 and its estimated value f̂s1
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Figure 4.17: Sensor fault fs2 and its estimated value f̂s2
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observer that is also used to reduce the effect of the system uncertainty. The sensor

fault is directly estimated by the adaptive observer instead of using a sliding mode

observer. Adaptation laws are integrated into both schemes to deal with the situation

when the Lipschitz constant is unknown or too large, which may cause the failure of

solving LMIs to find design parameters for observers. Two examples have been used

to demonstrate the effectiveness of the proposed sensor fault estimation schemes.

Simulation results confirm that both methods can accurately estimate sensor faults

,including the incipient faults, in the presence of large system uncertainties.
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Chapter 5

Robust H∞ filtering for uncertain

nonlinear systems with fault

estimation synthesis

The problem of actuator fault and sensor fault diagnosis has been discussed in pre-

vious chapters. However, it is assumed that there is no sensor fault when dealing

actuator fault (chapter 2), or there is no actuator fault when dealing with sensor val-

idation (chapters 3 and 4). In this chapter, the simultaneous estimation of actuator

and sensor faults is studied.

5.1 Introduction

Almost all the approaches proposed in the past deal separately with actuator faults

and sensor faults [19, 51, 56, 77, 82, 104]. In other words, it is usually assumed that

there is no actuator fault when dealing with sensor validation, or sensors are healthy

when faults occur in actuators. However, in many practical systems, both actuators

and sensors are simultaneously prone to faults. Misinterpretation of actuator faults

and sensor faults may cause a high rate of false alarm and unnecessary mainte-

nance. Therefore, it would be desirable to consider actuator faults and sensor faults

under one unified framework, and coincidentally detect and isolate them. This moti-

vates the present study of estimating actuator faults and sensor faults which occur at

99
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the same time.

In this chapter, two schemes are developed for a class of uncertain nonlinear sys-

tems. The proposed methods essentially transform the original system into two sub-

systems (subsystem-1 and 2). Subsystem-1 includes the effects of actuator faults but

is free from sensor faults and subsystem-2 only has sensor faults. Sensor faults in

subsystem-2 take the appearance of actuator faults by using integral observer based

approach [92]. The augmented subsystem-2 is further transformed by a linear co-

ordinate transformation such that a specific structure can be imposed to the sensor

fault distribution matrix. The first scheme is based on the matching condition and two

sliding mode observers (SMOs) are designed to estimate actuator faults and sensor

faults, respectively. However, this assumption is restrictive and sometimes it is difficult

to find such matrices to satisfy both the Lyapunov equation and matching condition.

In order to reduce this conservativeness, we remove the assumption of matching

condition in the second scheme and use an adaptive observer (AO) to estimate the

sensor fault.

It is worth emphasizing that unlike in chapters 2,3 and 4 where the uncertainty un-

der consideration is assumed to be structured, the uncertainty considered in this

chapter is assumed to be unstructured and can be a high-frequency noise or a slow-

varying signal. For the case of structured uncertainty, certain rank conditions of the

uncertainty distribution matrix should be satisfied such that the uncertainty can be

completely decoupled from the fault. However, this additional assumption often limits

the application of FDI schemes. For the case of unstructured uncertainty, the com-

plete decoupling uncertainties from faults is not possible, but fortunately its effects on

the estimation errors of states and faults can still be minimized. This can be done by

integrating a prescribed H∞ disturbance attenuation level into fault estimators. The

H∞ control problem is able to address the issue of system uncertainties, and also be

applied to the typical problem of disturbance input control. It was initially formulated

in [106] where the H∞ norm from the norm-bounded exogenous disturbance signals

to the observer error is guaranteed to be below a prescribed level. In this chapter,

the sufficient condition for the stability of both proposed fault estimation observers is

presented in an LMI form. By solving the LMI optimization problem, the L2 gain of

the transfer from system uncertainties to the estimation errors can be minimized and

observer parameters can be obtained.

The chapter is organized as follows: section-5.2 briefly describes the mathematical
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preliminaries required for designing observers. Section-5.3 proposes the first fault

estimation scheme based on the matching condition. The stability condition of the

proposed observers are derived and expressed in LMIs. If the matching condition is

not satisfied, the second fault estimation scheme is given in section-5.4. The results

of simulation are shown in section-5.5 with conclusions in section-5.6.

5.2 Problem Formulation

Consider a nonlinear system described by

ẋ(t) = Ax(t) + f(x, t) + B(u(t) + fa(t)) + ∆ψ(t)

y(t) = Cx(t) + Dfs(t) (5.1)

where x ∈ Rn are the state variables, u ∈ Rm the inputs and y ∈ Rp the out-

puts. fa ∈ Rm and fs ∈ Rq denote the actuator fault and sensor fault, respectively.

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×q (p ≥ q) are known constant matri-

ces with C and D both being of full rank. The nonlinear continuous term f(x, t) ∈ Rn

is assumed to be known. Note that nonlinear term ∆ψ(t) which represents the mod-

elling errors or external disturbances is unstructured.

For the objective of achieving simultaneous fault estimation, the following assump-

tions are made throughout:

Assumption 5.1 rank(CB) = rank(B).

This assumption implies that the number of measurements is at least equal to the

number of effective inputs.

Lemma 5.1 Under Assumption 5.1, there exist state and output transformations

h =

[
h1

h2

]
= T

[
x1

x2

]
, w =

[
w1

w2

]
= S

[
y1

y2

]
(5.2)

such that in the new coordinate, the system matrices become:

TAT−1 =

[
A1 A2

A3 A4

]
, TB =

[
B1

0

]
, SCT−1 =

[
C1 0

0 C4

]
, SD =

[
0

D2

]
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where T ∈ Rn×n, S ∈ Rp×p, h1 ∈ Rm, w1 ∈ Rm, A1 ∈ Rm×m, A4 ∈ R(n−m)×(n−m),

B1 ∈ Rm×m, E1 ∈ Rm×r, C1 ∈ Rm×m, C4 ∈ R(p−m)×(n−m) and D2 ∈ R(p−m)×q. B1

and C1 are invertible.

Proof. See [91, 94, 107].

Remark 5.1 Notice that in Chapter 4 a similar coordinate transformation has been

used. The transformation is chosen such that the uncertainty distribution matrix after

the transformation becomes TE =

[
E1

0

]
. While in this chapter, the transformation

is chosen to make TB =

[
B1

0

]
.

Assumption 5.2 For every complex number s with nonnegative real part:

rank

[
sIn − A B

C 0

]
= n + m (5.3)

This assumption is known as the minimum phase condition.

Lemma 5.2 The pair (A4, C4) is detectable if and only if Assumption 5.2 holds.

Proof. See [94, 95].

Assumption 5.3 The nonlinear function f(x, t) is Lipschitz about x uniformly, that is,

∀x, x̂ ∈ X ,

‖f(x, t)− f(x̂, t)‖ ≤ Lf‖x− x̂‖ (5.4)

where Lf is the Lipschitz constant.

Assumption 5.4 The function ∆ψ(x, t) ,which represents the modeling uncertainty,

is unknown but bounded, and it satisfies ‖∆ψ‖ ≤ ξ. Also the unknown actuator fault

fa, sensor fault fs and the derivative of fs with respect to time are norm bounded,

i.e., ‖fa(t)‖ ≤ ρa, ‖fs(t)‖ ≤ ρs, ‖ḟs(t)‖ ≤ ρss.

After introducing the state and output transformations T =

[
T1

T2

]
and S =

[
S1

S2

]
,

the original system is converted into two subsystems:

ḣ1 = A1h1 + A2h2 + f1(T
−1h, t) + B1(u + fa) + ∆ψ1
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w1 = C1h1 (5.5)

ḣ2 = A3h1 + A4h2 + f2(T
−1h, t) + ∆ψ2

w2 = C4h2 + D2fs (5.6)

where (5.5) is referred to as subsystem-1 and (5.6) is referred to as subsystem-2,

T1 ∈ Rm×n, S1 ∈ Rm×p, f1(T
−1h, t) = T1f(T−1h, t), f2(T

−1h, t) = T2f(T−1h, t),

∆ψ1 = T1∆ψ and ∆ψ2 = T2∆ψ.

For subsystem-2, define a new state h3 =
∫ t

0
w2(τ)dτ so that ḣ3(t) = C4h2 + D2fs,

then the augmented system with the new state h3 is given as:

ḣ0 = A0h0 + Ā3h1 + T̄2f(T−1h, t) + D0fs + T̄2∆ψ

w3 = C0h0 (5.7)

where h0 =

[
h2

h3

]
∈ Rn+p−2m, w3 ∈ Rp−m, A0 =

[
A4 0

C4 0

]
∈ R(n+p−2m)×(n+p−2m),

Ā3 =

[
A3

0

]
∈ R(n+p−2m)×m, T̄2 =

[
T2

0

]
∈ R(n+p−2m)×n, D0 =

[
0

D2

]
∈

R(n+p−2m)×q and C0 =
[

0 Ip−m

]
∈ R(p−m)×(n+p−2m).

Lemma 5.3 The pair (A0, C0) is observable if Assumption 5.2 holds.

Proof. From the Popov-Belevitch-Hautus (PBH) test, the pair (A0, C0) is observable

if and only if

rank

[
sI − A0

C0

]
= rank




sI − A4 0

−C4 sI

0 I


 = n + p− 2m (5.8)

for all s ∈ C. If s = 0, it is obvious that

rank




sI − A4 0

−C4 sI

0 I


 = rank

[
−A4

−C4

]
+ p−m (5.9)

If Assumption 2 holds, then

rank

[
sI − A4

−C4

]
= n−m for all s ∈ C (5.10)
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It follows that the rank test (5.8) holds when s = 0.

When s 6= 0




sI − A4 0

−C4 sI

0 I




[
a1

a2

]
= 0 ⇒

[
a1

a2

]
= 0 (5.11)

since (A4, C4) is observable, which implies that the columns of




sI − A4 0

−C4 sI

0 I


 are

linearly independent and its rank is n + p− 2m.

This completes the proof.

It follows from Lemma 5.3 that there exists a matrix L0 ∈ R(n+p−2m)×(p−m) such that

A0 − L0C0 is stable, and thus for any Q0 > 0, the Lyapunov equation

(A0 − L0C0)
T P0 + P0(A0 − L0C0) = −Q0 (5.12)

has an unique solution P0 > 0 [80].

Partition P0 ∈ R(n+p−2m)×(n+p−2m) and Q0 ∈ R(n+p−2m)×(n+p−2m) as:

P0 =

[
P01 P02

P T
02 P03

]
, Q0 =

[
Q01 Q02

QT
02 Q03

]
, (5.13)

It follows from P0 > 0 and Q0 > 0 that P01 ∈ R(n−m)×(n−m) > 0, P03 ∈ R(p−m)×(p−m) >

0, Q01 ∈ R(n−m)×(n−m) > 0 and Q03 ∈ R(p−m)×(p−m) > 0. If P0 and Q0 have the

structure as shown in (5.13), then the following conclusion is obvious:

Lemma 5.4 The matrix A4 + P−1
01 P02C4 is stable if Lyapunov equation (5.12) is satis-

fied.

Proof. According to the structure of A0, C0, P0 and Q0, it is easy to see that the first

n−m columns of A0 − L0C0 are independent of L0. After the block multiplication to

(5.12), the following equation can be obtained as

AT
4 P01 + CT

4 P T
02 + P01A3 + P02C4 = −Q01
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This equation can be rewritten as

(A4 + P−1
01 P02C4)

T P01 + P01(A4 + P−1
01 P02C4) = −Q01

Since P01 > 0 and Q01 > 0, it follows that A4 +P−1
01 P02C4 is stable from the Lyapunov

theory.

In the next two sections 5.3 and 5.4, two schemes will be proposed to simultaneously

estimate actuator faults and sensor faults. The design of fault estimation schemes

begins by employing the nonsingular state transformation z := [zT
1 zT

2 ]T = T0h0 to

subsystem (5.7). T0 is defined as:

T0 =

[
In−m P−1

01 P02

0 Ip−m

]
(5.14)

After the transformation z = T0h0, the subsystem (5.7) becomes

ż = T0A0T
−1
0 z + T0Ā3h1 + T0T̄2f(T−1h, t) + T0D0fs + T0T̄2∆ψ

w3 = C0T
−1
0 z (5.15)

5.3 Fault estimation using SMOs

In this section, two sliding mode observers are developed to simultaneously estimate

multiple actuator faults and sensor faults for the system described by (5.1).

5.3.1 Design of SMOs

Prior to the design of sliding mode observers, the following assumption is made.

Assumption 5.5 There exists an arbitrary matrix F0 ∈ Rq×(p−m) such that:

DT
0 P0 = F0C0 (5.16)

Lemma 5.5 If Assumption 5.5 holds, then P−1
01 P02D2 = 0.
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Proof. See Lemma 2.1.

It is worth noting that a specific structure on the sensor fault distribution matrix T0D0

can be imposed in the new coordinate. If Assumption 5.5 is satisfied, then we can

have

Dz = T0D0 =

[
P−1

01 P02D2

D2

]
=

[
0

D2

]

The system (5.15) can be rewritten as

ż1 = Ā1z1 + Ā2z2 + A3h1 + f2(T
−1h, t) + ∆ψ2

ż2 = Ā3z1 + Ā4z2 + D2fs

w3 = Czz (5.17)

where

Ā1 = A4 + P−1
01 P02C4

Ā2 = −A4P
−1
01 P02 − P−1

01 P02C4P
−1
01 P02

Ā3 = C4 (5.18)

Ā4 = −C4P
−1
01 P02

Cz = C0T
−1
0 =

[
0 I

]

The Lyapunov matrix P0 in the new coordinate can be proved to have the following

quadratic form:

Pz = (T T
0 )−1P0T0

−1 =

[
P01 0

0 P̄03

]
(5.19)

where P̄03 = −P T
02P

−T
01 P02 + P03.

Substituting P0 = T T
0 PzT0, C0 = CzT0 and D0 = T−1

0 Dz into the matching condi-

tion (5.16) yields

DT
z Pz = F0Cz (5.20)

From the structure of Dz, Cz and Pz, it is easy to obtain that DT
2 P̄03 = F0.
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Since

[
h2

h3

]
= T−1

0

[
z1

z2

]
=

[
z1 − P−1

01 P02z2

z2

]
(5.21)

then subsystem (5.5) can be rewritten as

ḣ1 = A1h1 + A2h2 + f1(T
−1h, t) + B1(u + fa) + ∆ψ1

= A1h1 + A2z1 − A2P
−1
01 P02z2 + f1(T

−1h, t)

+ B1(u + fa) + ∆ψ1 (5.22)

For subsystem (5.22), the proposed sliding mode observer has the form:

˙̂
h1 = A1ĥ1 + A2ẑ1 − A2P

−1
01 P02w3 + f1(T

−1ĥ, t) + B1(u + ν1)

+ (A1 − As
1)C

−1
1 (w1 − ŵ1)

ŵ1 = C1ĥ1 (5.23)

where As
1 ∈ Rm×m is a stable matrix which needs to be determined.

The discontinuous output error injection term ν1 which is used to estimate the actuator

fault is defined as

ν1 =





(ρa + l1)
BT

1 P1(C−1
1 S1y−ĥ1)

‖BT
1 P1(C−1

1 S1y−ĥ1)‖ if C−1
1 S1y − ĥ1 6= 0

0 otherwise
(5.24)

where P1 ∈ Rm×m is the symmetric definite Lyapunov matrix for As
1 and l1 is a positive

scalar. It is worth noting that the state h1 can be computed from the measurement y

as h1 = C−1
1 S1y.

For subsystem (5.17), the proposed sliding mode observer has the form:

˙̂z1 = Ā1ẑ1 + Ā2w3 + A3C
−1
1 w1 + f2(T

−1ĥ, t)

˙̂z2 = Ā3ẑ1 + Ā4ẑ2 + (Ā4 − L)(w3 − ŵ3) + D2ν2

ŵ3 = ẑ2 (5.25)

where L ∈ R(p−m)×(p−m) is the observer gain. The discontinuous output error injec-
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tion term ν2 is used to estimate the sensor fault and is defined as:

ν2 =





(ρs + l2)
DT

2 P̄03(w3−ŵ3)

‖DT
2 P̄03(w3−ŵ3)‖ if w3 − ŵ3 6= 0

0 otherwise
(5.26)

where l2 is a positive constant which needs to be determined.

If the state estimation errors are defined as e1 = h1−ĥ1, e2 = z1− ẑ1 and e3 = z2− ẑ2,

then their dynamics after the occurrence of faults can be obtained as:

ė1 = As
1e1 + A2e2 +

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ B1(fa − ν1)

+ T1∆ψ (5.27)

ė2 = Ā1e2 +
(
f2(T

−1h, t)− f2(T
−1ĥ, t)

)
+ T2∆ψ (5.28)

ė3 = Ā3e2 + Le3 + D2(fs − ν2)

e3 = Cze0 (5.29)

Define

r(t) = H




h1(t)

z1(t)

z2(t)


 , and r̄ = He = H




e1

e2

e3


 (5.30)

where r(t) ∈ Rn+p−m is a linear combination of state variables to be estimated over

the horizon [0, T ]. H is a pre-specified weight matrix and assumed to have full rank:

H :=




H1 0 0

0 H2 0

0 0 H3


 (5.31)

Consider the following worst-case performance measure:

J := sup
‖∆ψ‖L2

6=0

‖r̄‖2
L2

‖∆ψ‖2
L2

(5.32)

The objective of this section is to design sliding mode observers in the form of (5.23)

and (5.25) such that the observer error dynamics (5.27)-(5.29) is asymptotically sta-

ble and the performance measure satisfies J ≤ µ, where µ is a small positive con-

stant. In other words, theH∞ gain of the transfer function from the system uncertainty
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∆ψ to the state estimation error r̄ is bounded by
√

µ.

In the next, the stability of the proposed fault estimators is studied and the sufficient

condition is summarized as follows:

Proposition 5.1 Under the Assumptions 5.1-5.5, the observer error dynamics is

asymptotically stable with an H∞ disturbance attenuation level
√

µ > 0 subject to

‖r̄‖L2 ≤
√

µ‖∆ψ‖L2 if there exist matrices As
1, L, P01 > 0, P02 and P̄03 > 0 such that:




Π1 + 1
α1

P1P1 P1A2 0 P1T1

AT
2 P1 Π2 + 1

α2
P01P01 CT

4 P̄03 P01T2

0 P̄03C4 Π3 0

T T
1 P1 T T

2 P01 0 −µIr




< 0 (5.33)

where Π1 = As
1
T P1 + P1A

s
1 + HT

1 H1, Π2 = AT
4 P01 + P01A4 + P02C4 + CT

4 P T
02 +

α1L2
f1
‖T−1‖2I +α2L2

f2
‖T−1‖2I +HT

2 H2, Π3 = P̄03L+LT P̄03 +HT
3 H3, Lf1 = ‖T1‖Lf

and Lf2 = ‖T2‖Lf .

Proof. Based on the quadratic form of Pz, we consider the Lyapunov function as:

V (t) = V1(t) + V2(t) + V3(t) (5.34)

where V1(t) = eT
1 P1e1, V2(t) = eT

2 P01e2 and V3(t) = eT
3 P̄03e3.

The time derivative of V1(t) along the trajectories of state estimation error dynamics

(5.27) can be shown to be:

V̇1(t) = eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ

+ 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ 2eT

1 P1B1(fa − ν1)

Since for any scalar α > 0, the inequality 2XT Y ≤ 1
α
XT X + αY T Y [46], then

V̇1(t) ≤ eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ +

1

α1

‖P1e1‖2

+ α1‖f1(T
−1h, t)− f1(T

−1ĥ, t)‖2 + 2eT
1 P1B1(fa − ν1)

≤ eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ +

1

α1

‖P1e1‖2

+ α1L2
f1
‖T−1‖2‖e2‖2 + 2eT

1 P1B1(fa − ν1) (5.35)



110 5.3. Fault estimation using SMOs

It follows from (5.24) the last term of (5.35) can be calculated as:

eT
1 P1B1(fa − ν1) = eT

1 P1B1fa − (ρa + η1)
‖BT

1 P1e1‖2

‖BT
1 P1e1‖

≤ −l1‖BT
1 P1e1‖ < 0 (5.36)

Therefore

V̇1(t) ≤ eT
1 (As

1
T P1 + P1A

s
1 +

1

α1

P1P1)e1 + 2eT
1 P1A2e2

+ 2eT
1 P1T1∆ψ + α1L2

f1
‖T−1‖2‖e2‖2 (5.37)

Similarly, the derivatives of V2(t) and V3(t) with respect to time can be obtained as:

V̇2(t) = eT
2

(
ĀT

1 P01 + P01Ā1

)
e2 + 2eT

2 P01

(
f2(T

−1h, t)− f2(T
−1ĥ, t)

)

+ 2eT
2 P01T2∆ψ

≤ eT
2 (AT

4 P01 + P01A4 + P02C4 + CT
4 P T

02 +
1

α2

P01P01 + α2L2
f2
‖T−1‖2I)e2

+ 2eT
2 P01T2∆ψ (5.38)

V̇3(t) = eT
3 (P̄03L + LT P̄03)e3 + 2eT

3 P̄03C4e2 + 2eT
3 P̄03D2(fs − ν2)

≤ eT
3 (P̄03L + LT P̄03)e3 + 2eT

3 P̄03C4e2 − 2l2‖DT
2 P̄03e3‖

≤ eT
3 (P̄03L + LT P̄03)e3 + 2eT

3 P̄03C4e2 (5.39)

Therefore, the derivative of V (t) can be obtained from:

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t)

≤ eT
1 (As

1
T P1 + P1A

s
1 +

1

α1

P1P1)e1 + eT
2 (AT

4 P01 + P01A4 + P02C4 + CT
4 P T

02

+
1

α2

P01P01 + α1L2
f1
‖T−1‖2I + α2L2

f2
‖T−1‖2I)e2 + eT

3 (P̄03L + LT P̄03)e3

+ 2eT
1 P1A2e2 + 2eT

3 P̄03C4e2 + 2eT
1 P1T1∆ψ + 2eT

2 P01T2∆ψ (5.40)

To attain the robustness of the proposed observer to the uncertainty ∆ψ inH∞ sense,

the following stability constraint is imposed instead of V̇ < 0:

V̇ + r̄T r̄ − µ∆ψT ∆ψ ≤ 0 (5.41)

If this constraint holds, then the state estimation error dynamics is stable and the H∞
gain of the transfer function from ∆ψ to r̄ is norm bounded by

√
µ [108, 107]. In other
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words, (5.41) minimizes the worst case effect of the system uncertainty ∆ψ on the

state estimation error r̄.

V̇ + r̄T r̄ − µ∆ψT ∆ψ ≤




e1

e2

e3

∆ψ




T 


Π1 + 1
α1

P1P1

AT
2 P1

0

T T
1 P1

P1A2 0 P1T1

Π2 + 1
α2

P01P01 CT
4 P̄03 P01T2

P̄03C4 Π3 0

T T
2 P01 0 −µIr







e1

e2

e3

∆ψ




< 0 (5.42)

Under zero initial conditions, it follows that

∫ T

0

(r̄T r̄ − µ∆ψT ∆ψ)dt ≤
∫ T

0

(r̄T r̄ − µ∆ψT ∆ψ)dt + V

=

∫ T

0

(r̄T r̄ − µ∆ψT ∆ψ + V̇ )dt

≤ 0 (5.43)

which implies that

∫ T

0

(r̄T r̄)dt ≤ µ

∫ T

0

(∆ψT ∆ψ)dt (5.44)

namely,

‖r̄‖L2 ≤
√

µ‖∆ψ‖L2 (5.45)

This completes the proof.

Remark 5.2 The effect of the system uncertainty on the state estimation error is de-

cided by the value of µ. The smaller value of µ is, the more accurate fault estimation

can be obtained. The minimization of µ can be found by solving the following LMI

optimization problem:

min(µ)

subject to

X < 0, P1 > 0, P01 > 0, P̄03 > 0
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and


Π1 P1A2 0 P1T1 P1 0

AT
2 P1 Π2 CT

4 P̄03 P01T2 0 P01

0 P̄03C4 Π3 0 0 0

T T
1 P1 T T

2 P01 0 −µI 0 0

P1 0 0 0 −α1I 0

0 P01 0 0 0 −α2I




< 0 (5.46)

where Π1 = X+XT +HT
1 H1, Π2 = AT

4 P01+P01A4+P02C4+CT
4 P T

02+α1L2
f1
‖T−1‖2I+

α2L2
f2
‖T−1‖2I+HT

2 H2, Π3 = Y +Y T +HT
3 H3, X = P1A

s
1, Y = P̄03L. Once the LMIs

are solved, As
1 and L can be obtained from As

1 = P−1
1 X and L = P̄−1

03 Y , respectively.

Remark 5.3 The convergence speed of the observer can be imposed by using a

more restrictive condition V̇ ≤ −2βV , instead of V̇ < 0. This implies that the state

estimation error e will have a decay rate of at least β. It follows that there exists a

positive scalar

κ :=

√
λmax(P )

λmin(P )
(5.47)

where

P =




P1 0 0

0 P01 0

0 0 P̄03




such that ‖e(t)‖ ≤ κ‖e(0)‖ exp(−βt). Following the same procedure of the proof as

that has been carried out for Proposition 5.1, it can easily be proved that the observer

error dynamics is asymptotically stable with an H∞ disturbance attenuation level
√

µ

and a prescribed decay rate of β if there exist matrices X, Y , P1, P01, P02 and P̄03

such that the following LMI optimization problem is solvable:

min(µ)

s.t.

X < 0, P1 > 0, P01 > 0, P̄03 > 0,

and
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


Π1 + 2βP1 P1A2 0 P1T1 P1 0

AT
2 P1 Π2 + 2βP01 CT

4 P̄03 P01T2 0 P01

0 P̄03C4 Π3 + 2βP̄03 0 0 0

T T
1 P1 T T

2 P01 0 −µI 0 0

P1 0 0 0 −α1I 0

0 P01 0 0 0 −α2I




< 0 (5.48)

Remark 5.4 Without integrating the H∞ filtering feature into the proposed observers,

it can be proved that the error dynamics (5.27)-(5.29) is ultimately bounded if there

exist matrices X, Y , P1, P01, P02 and P̄03 such that




Π1 + 1
α1

P1P1 P1A2 0

AT
2 P1 Π2 + 1

α2
P01P01 CT

4 P̄03

0 P̄03C4 Π3




︸ ︷︷ ︸
−Σ

< 0 (5.49)

The magnitude of the state estimation error is ultimately bounded with respect to the

set

Ω = {e : ‖e‖ <
2(‖P1T1‖+ ‖P01T2‖)

λmin(Σ)
ξ + η0} (5.50)

where η0 is an arbitrarily small positive scalar.

Proposition 5.1 proves that the error dynamics is asymptotically stable. The objective

now is to determine the constant gain l1 in (5.24) and l2 in (5.26) such that the trajec-

tories (5.27)-(5.29) can be directed toward to the sliding surface which is defined as

S1 = {(e1, e2, e3)|e1 = 0, e3 = 0}.

Proposition 5.2 Under the Assumptions 5.1-5.5, an ideal sliding motion will take

place after some finite time on the hyperplane S1 if

l1 ≥ ‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ + η1 (5.51)

l2 ≥ ‖C4‖‖e‖
‖DT

2 P̄03e3‖
+ η2 (5.52)

where η1 and η2 are positive scalars.

Proof. Consider the Lyapunov candidate functions V1(t) = eT
1 P1e1 and V3(t) =
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eT
3 P̄03e3. The time derivative can be obtained as:

V̇1(t) = eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ

+ 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ 2eT

1 P1B1(fa − ν1)

It is easy to see that As
1
T P1 + P1A

s
1 < 0 since P1A

s
1 is symmetric negative definite by

design. Furthermore, from the Cauchy-Schwartz inequality and (5.24), we obtain

V̇1(t) < 2eT
1 P1A2e2 + 2eT

1 P1T1∆ψ + 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)

+ 2eT
1 P1B1(fa − ν1)

≤ 2‖P1e1‖(‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ)− 2l1‖BT
1 P1e1‖

≤ 2‖BT
1 P1e1‖‖B−T

1 ‖(‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ − l1) (5.53)

It follows from (5.51) that

V̇1 ≤ −2η1‖P1e1‖ ≤ −2η1

√
λmin(P1)V

1
2

1

Similarly, it can be verified that if (5.52) is satisfied, then

V̇3 ≤ −2η2‖P̄03e0‖ ≤ −2η2

√
λmin(P̄03)V

1
2

3

This shows that the reachability condition [61] is satisfied and a sliding motion is

achieved and maintained after some finite time ts > 0.

This completes the proof.

5.3.2 Estimation of actuator and sensor faults using SMOs

Given observers which are in the form of (5.23) -(5.26), the objective in this subsec-

tion is to estimate the actuator faults and sensor faults simultaneously.

From Proposition 5.2, we know that an ideal sliding motion S1 will take place after

some finite time ts if the conditions (5.51)-(5.52) are satisfied. Therefore during the

sliding motion,

e1 = ė1 = 0, ∀t > ts (5.54)
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and the error dynamics (5.27) becomes

0 = 0 + A2e2 + (f1(T
−1h, t)− f1(T

−1ĥ, t)) + B1(fa − ν1eq) + T1∆ψ (5.55)

where ν1eq denotes the equivalent output error injection signal to maintain the sliding

motion [8]. We further rewrite (5.55) as:

fa − ν1eq = −B−1
1

(
A2e2 + (f1(T

−1h, t)− f1(T
−1ĥ, t)) + T1∆ψ

)
(5.56)

Computing the L2 norm of(5.56) yields

‖fa − ν1eq‖L2 = ‖B−1
1 (A2e2 + (f1(T

−1h, t)− f1(T
−1ĥ, t)) + T1∆ψ)‖L2

≤ (σmax(B
−1
1 A2) + σmax(B

−1
1 )Lf1‖T−1‖)‖e2‖L2 + σmax(B

−1
1 T1)‖∆ψ‖L2

≤ (σmax(B
−1
1 A2) + σmax(B

−1
1 )Lf1‖T−1‖)‖e‖L2 + σmax(B

−1
1 T1)‖∆ψ‖L2

(5.57)

Since ‖e‖L2 ≤ σmax(H
−1)
√

µ‖∆ψ‖L2 , we can obtain

‖fa − ν1eq‖L2 ≤ (
√

µ(σmax(B
−1
1 A2) + σmax(B

−1
1 )Lf1‖T−1‖)σmax(H

−1)

+ σmax(B
−1
1 T1))‖∆ψ‖L2 (5.58)

It follows that

sup
‖∆ψ‖L2

6=0

‖fa − ν1eq‖L2

‖∆ψ‖L2

=
√

µβ1 + β2 (5.59)

where β1 = (σmax(B
−1
1 A2)+σmax(B

−1
1 )Lf1‖T−1‖)σmax(H

−1) and β2 = σmax(B
−1
1 T1).

Thus for a small (
√

µβ1 + β2)‖∆ψ‖L2 , the actuator fault can be approximated as

f̂a(t) ≈ ν1eq (5.60)

The equivalent output error injection signal can be approximated as:

ν1eq ≈ (ρa + l1)
BT

1 P1(C
−1
1 S1y − ĥ1)

‖BT
1 P1(C

−1
1 S1y − ĥ1)‖+ γ1

(5.61)

where γ1 is a small positive scalar to reduce the chattering effect. It can be shown

that ν1eq can be approximated to any degree of accuracy by (5.61) for a small enough
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choice of γ1 [53]. Therefore the actuator fault can be estimates as:

f̂a(t) ≈ (ρa + l1)
BT

1 P1(C
−1
1 S1y − ĥ1)

‖BT
1 P1(C

−1
1 S1y − ĥ1)‖+ γ1

(5.62)

Similarly,

sup
‖∆ψ‖L2

6=0

‖fs − ν2eq‖L2

‖∆ψ‖L2

=
√

µσmax(H
−1)σmax(D

+
2 Ā3) (5.63)

where D+
2 is the left pseudo-inverse of D2. Such a matrix always exists because D2

is of full column rank. ν2eq is the equivalent output error injection signal and can be

approximated as

ν2eq ≈ (ρs + l2)
DT

2 P̄03(w3 − ŵ3)

‖DT
2 P̄03(w3 − ŵ3)‖+ γ2

(5.64)

where γ2 is a small positive scalar to reduce the chattering effect.

Therefore for small
√

µσmax(H
−1)σmax(D

+
2 Ā3)‖∆ψ‖L2 , the sensor fault can be esti-

mated as

f̂s(t) ≈ (ρs + l2)
DT

2 P̄03(w3 − ŵ3)

‖DT
2 P̄03(w3 − ŵ3)‖+ γ2

(5.65)

The proposed actuator and sensor fault estimation scheme based on SMOs is shown

in Fig-5.1.

5.4 Fault estimation using SMO and AO

Most of the existing robust FDI methods based on sliding mode techniques [80, 84,

104, 109] and adaptive techniques [36, 92, 102, 110, 111] have the assumption that

the fault distribution matrix is matched. The solvability of Lyapunov equation together

with the matching condition is called Constrained Lyapunov Problem (CLP). Neces-

sary and sufficient conditions for solving CLP can be found in [112]. However, it is

difficult to find matrices to satisfy both the Lyapunov equation and the matching con-

dition. Therefore Assumption 5.5 is quite restrictive. In this section, an alternative

method which does not need this assumption is developed. More specifically, the ac-



5.4. Fault estimation using SMO and AO 117

Figure 5.1: Schematic of the fault estimation using SMOs

tuator faults in subsystem (5.5) are estimated by a sliding mode observer, while the

estimates of sensor faults in subsystem (5.7) is obtained by designing an adaptive

observer.

5.4.1 Design of observers

The subsystems (5.15) and (5.5) in the new coordinate z := [zT
1 zT

2 ]T = T0h0 become:

ḣ1 = A1h1 + A2z1 − A2P
−1
01 P02z2 + f1(T

−1h, t) + B1(u + fa) + T1∆ψ

w1 = C1h1 (5.66)

ż1 = Ā1z1 + Ā2z2 + A3h1 + f2(T
−1h, t) + T2∆ψ + P−1

01 P02D2fs

ż2 = Ā3z1 + Ā4z2 + D2fs (5.67)

w3 = z2

where Ā1, Ā2, Ā3 and Ā4 are defined in (5.18).

For subsystem (5.66), the proposed sliding mode observer has the form:

˙̂
h1 = A1ĥ1 + A2ẑ1 − A2P

−1
01 P02w3 + f1(T

−1ĥ, t) + B1(u + ν)

+ (A1 − As
1)C

−1
1 (w1 − ŵ1)
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ŵ1 = C1ĥ1 (5.68)

where As
1 ∈ Rm×m is a stable matrix, the discontinuous output error injection term ν

is defined by

ν =





(ρa + l)
BT

1 P1(C−1
1 S1y−ẑ1)

‖BT
1 P1(C−1

1 S1y−ẑ1)‖ if C−1
1 S1y − ẑ1 6= 0

0 otherwise
(5.69)

where P1 ∈ Rm×m is the Lyapunov matrix for As
1 and l is a positive scalar.

For subsystem (5.67), the proposed adaptive observer has the form:

˙̂z1 = Ā1ẑ1 + Ā2w3 + A3C
−1
1 w1 + f2(T

−1ĥ, t) + P−1
01 P02D2f̂s

˙̂z2 = Ā3ẑ1 + Ā4ẑ2 + (Ā4 − L)(w3 − ŵ3) + D2f̂s

ŵ3 = ẑ2 (5.70)

where L ∈ R(p−m)×(p−m) is a traditional Luenberger observer gain. f̂s is the sensor

fault estimates with the dynamics:

˙̂
fs = ΓDT

2 P̄03(e3 + ė3) (5.71)

If the state estimation errors are defined as e1 = h1 − ĥ1, e2 = z1 − ẑ1, e3 = z2 − ẑ2

and ef = fs − f̂s, then the state estimation error dynamics after the occurrence of

faults can be obtained as:

ė1 = As
1e1 + A2e2 +

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ B1(fa − ν) + T1∆ψ (5.72)

ė2 = Ã1e1 +
(
f2(T

−1h, t)− f2(T
−1ĥ, t)

)
+ T2∆ψ + P−1

01 P02D2ef (5.73)

ė3 = Ā3e2 + Le3 + D2ef (5.74)

Define

r(t) = H




h1(t)

z1(t)

z2(t)

fs(t)




, and r̃ = H




h1 − ĥ1

z1 − ẑ1

z2 − ẑ2

fs − f̂s




(5.75)

where r(t) ∈ Rn+p+q−m is a linear combination of state variables to be estimated over
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the horizon [0, T ]. H is a full rank known matrix and assumed to have the structure:

H :=




H1 0 0 0

0 H2 0 0

0 0 H3 0

0 0 0 H4




(5.76)

We now present Proposition 5.3 which gives the sufficient condition for the existence

of the proposed observers with a prescribed H∞ performance.

Proposition 5.3 Under the Assumptions 5.1-5.4, the observer error dynamics is

ultimately bounded with an H∞ disturbance attenuation level
√

µ > 0 subject to

‖r̄‖L2 ≤
√

µ‖∆ψ‖L2 if there exist matrices X, Y , P01, P02, P̄03, G and positive scalars

α1 and α2 such that the following LMI optimization problem has a solution:

min(µ)

s.t.

X < 0, P1 > 0, P01 > 0, P̄03 > 0, G > 0 and



Π1 P1A2 0 0 P1T1 P1 0

AT
2 P1 Π2 CT

4 P̄03 P02D2 − CT
4 P̄03D2 P01T2 0 P01

0 P̄03C4 Π3 −Y T D2 0 0 0

0 DT
2 P T

02 −DT
2 P̄03C4 −DT

2 Y Π4 0 0 0

T T
1 P1 T T

2 P01 0 0 −µI 0 0

P1 0 0 0 0 −α1I 0

0 P01 0 0 0 0 −α2I




< 0 (5.77)

where Π1 = X+XT +HT
1 H1, Π2 = AT

4 P01+P01A4+P02C4+CT
4 P T

02+α1L2
f1
‖T−1‖2I+

α2L2
f2
‖T−1‖2I + HT

2 H2, Π3 = Y + Y T + HT
3 H3, Π4 = G − 2DT

2 P̄03D2 + HT
4 H4,

X = P1A
s
1 and Y = P̄03L. Once the problem is solved, As

1 and L can be obtained

from As
1 = P−1

1 X and L = P̄−1
03 Y , respectively.

Proof. Consider the Lyapunov function as

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (5.78)

where V1(t) = eT
1 P1e1, V2(t) = eT

2 P01e2, V3(t) = eT
3 P̄03e3 and V4(t) = eT

f Γ−1ef .
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The time derivative of V1(t), V2(t), V3(t) and V4(t) can be shown to be:

V̇1(t) = eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ

+ 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ 2eT

1 P1B1(fa − ν)

≤ eT
1 (As

1
T P1 + P1A

s
1 +

1

α1

P1P1)e1 + 2eT
1 P1A2e2

+ 2eT
1 P1T1∆ψ + α1L2

f1
‖T−1‖2‖e2‖2 (5.79)

V̇2(t) = eT
2

(
ĀT

1 P01 + P01Ā1

)
e2 + 2eT

2 P01

(
f2(T

−1h, t)− f2(T
−1ĥ, t)

)

+ 2eT
2 P01T2∆ψ + 2eT

2 P02D2ef

≤ eT
2 (AT

4 P01 + P01A4 + P02C4 + CT
4 P T

02 +
1

α2

P01P01 + α2L2
f2
‖T−1‖2I)e2

+ 2eT
2 P01T2∆ψ + 2eT

2 P02D2ef (5.80)

V̇3(t) = eT
3 (P̄03L + LT P̄03)e3 + 2eT

3 P̄03C4e2 + 2eT
3 P̄03D2ef (5.81)

V̇4(t) = 2eT
f Γ−1ḟs − 2eT

f Γ−1 ˙̂
fs

= 2eT
f Γ−1ḟs − 2eT

f DT
2 P̄03e3 − 2eT

f DT
2 P̄03(C4e2 + Le3 + D2ef ) (5.82)

For a positive definite matrix G it follows that

2eT
f Γ−1ḟs ≤ eT

f Gef + ḟT
s Γ−1G−1Γ−1ḟs

≤ eT
f Gef + ρ2

ssλmax(Γ
−1G−1Γ−1) (5.83)

Substituting (5.83) into (5.82) yields

V̇4(t) ≤ eT
f (G− 2DT

2 P̄03D2)ef − 2eT
f DT

2 P̄03e3 − 2eT
f DT

2 P̄03C4e2

− 2eT
f DT

2 P̄03Le3 + ρ2
ssλmax(Γ

−1G−1Γ−1) (5.84)

Therefore, the derivative of V (t) can be obtained as:

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t)

≤ eT
1 (As

1
T P1 + P1A

s
1 +

1

α1

P1P1)e1 + eT
2 (AT

4 P01 + P01A4 + P02C4 + CT
4 P T

02

+
1

α2

P01P01 + α1L2
f1
‖T−1‖2I + α2L2

f2
‖T−1‖2I)e2 + eT

3 (P̄03L + LT P̄03)e3

+ eT
f (G− 2DT

2 P̄03D2)ef + 2eT
1 P1A2e2 + 2eT

1 P1T1∆ψ + 2eT
2 P01T2∆ψ

+ 2eT
2 P02D2ef + 2eT

3 P̄03C4e2 − 2eT
f DT

2 P̄03C4e2 − 2eT
f DT

2 P̄03Le3

+ ρ2
ssλmax(Γ

−1G−1Γ−1) (5.85)
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To attain the robustness of the proposed observers to the disturbances ∆ψ in L2

sense, we impose the following constraint on the stability criteria:

V̇ + r̃T r̃ − µ∆ψT ∆ψ < 0 (5.86)

Substituting (5.85) and (5.75) into the constraint (5.86) yields

V̇ + r̃T r̃ − µ∆ψT ∆ψ ≤




eh1

ez1

ez2

ef

∆ψ




T 


Π1 + 1
α1

P1P1 P1A2 0

AT
2 P1 Π2 + 1

α2
P01P01 CT

4 P̄03

0 P̄03C4 Π3

0 DT
2 P T

02 −DT
2 P̄03C4 −DT

2 P̄03L

T T
1 P1 T T

2 P01 0

0 P1T1

P02D2 − CT
4 P̄03D2 P01T2

−LT P̄03D2 0

Π4 0

0 −µIr







eh1

ez1

ez2

ef

∆ψ




+ ρ2
ssλmax(Γ

−1G−1Γ−1)

= −wT Φw + ε

≤ 0 (5.87)

where w = [eT
1 , eT

2 , eT
3 , eT

f , ∆ψ]T , ε = ρ2
ssλmax(Γ

−1G−1Γ−1) and −Φ is the inner

matrix.

When −Φ < 0, one can obtain that V̇ (t) ≤ −λmin(Φ)‖w‖2 + ε− r̃T r̃ + µ∆ψT ∆ψ. It

follows that V̇ (t) < 0 if

‖w‖ >

√
ε− r̃T r̃ + µ∆ψT ∆ψ

λmin(Q)
(5.88)

which implies that (e1, e2, e3, ef ) will converge to a small set according to Lyapunov

stability theory. Using Schur complement, −Φ < 0 can be expressed in the LMI form

by (5.77).

This completes the proof.

Define the sliding mode surface as S2 = {(e1, e2, e3)|e1 = 0}, the objective now is to

determine the observer gain l in (5.69) such that the error dynamical system (5.72)

can be driven to this the sliding surface.
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Proposition 5.4 Under the Assumptions 5.1-5.4, an ideal sliding motion will take

place after some finite time on the hyperplane S2 if

l1 ≥ ‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ + η (5.89)

where η is a positive scalar and e = [eT
1 , eT

2 , eT
3 , eT

f ]T .

Proof. Consider the Lyapunov candidate function V (t) = eT
1 P1e1. Its time derivative

can be obtained as:

V̇ (t) = eT
1 (As

1
T P1 + P1A

s
1)e1 + 2eT

1 P1A2e2 + 2eT
1 P1T1∆ψ

+ 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)
+ 2eT

1 P1B1(fa − ν)

< 2eT
1 P1A2e2 + 2eT

1 P1T1∆ψ + 2eT
1 P1

(
f1(T

−1h, t)− f1(T
−1ĥ, t)

)

+ 2eT
1 P1B1(fa − ν)

≤ 2‖P1e1‖(‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ)− 2l‖BT
1 P1e1‖

≤ 2‖BT
1 P1e1‖‖B−T

1 ‖(‖A2‖‖e‖+ Lf1‖T−1‖‖e‖+ ‖T1‖ξ − l) (5.90)

It follows from (5.89) that

V̇ ≤ −2η‖P1e1‖ ≤ −2η
√

λmin(P1)V
1
2

1

This shows that the reachability condition is satisfied.

The proof completes.

5.4.2 Estimation of actuator and sensor faults using SMO and

AO

Following the same procedure as that is given in subsection-5.3.2, one can get

that for small values of (
√

µβ1 + β2)‖∆ψ‖L2 and γ, where β1 = (σmax(B
−1
1 A2) +

σmax(B
−1
1 )Lf1‖T−1‖)σmax(H

−1) and β2 = σmax(B
−1
1 T1), the actuator faults can be

estimated as:

f̂a(t) ≈ (ρa + l)
BT

1 P1(C
−1
1 S1y − ĥ1)

‖BT
1 P1(C

−1
1 S1y − ĥ1)‖+ γ

(5.91)
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Figure 5.2: Schematic of the fault estimation using SMO and AO

From (5.71), the sensor faults can be estimated as:

f̂s(t) ≈ ΓDT
2 P̄03e3(t) + ΓDT

2 P̄03

∫ t

tf

e3(τ)dτ (5.92)

where tf is the time instant when a sensor fault occurs.

The proposed fault estimation scheme using SMO and AO is shown in Fig-5.2.

5.5 Simulation results

The effectiveness of the two proposed fault estimation schemes is illustrated by a

numerical example in this section. The considered nonlinear system is in the form of

(5.1) with

A =




−5 −1 0 1 −2

−1 −4 1 −1 1

0 −1 −2 −2 1

−1 −2 1 −2 −1

−2 −1 2 −1 −3



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C =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




B =




4

3

1

3

2




, E =




0

1

0

0

1




, D =




1

2

0

3




f(x, t) =
[

0 0 0 0 2 sin x1

]T

∆ψ = 0.2 sin t

The actuator fault fa and sensor fault fs are chosen as:

fa =





0 , t ≤ 10s

0.8 , 10s < t < 20s

−1 , 20s ≤ t < 30s

0 , t ≥ 30s

fs =





0 , t ≤ 15s

0.2t− 3 , 15s < t < 20s

−0.2t + 5 , 20s ≤ t < 25s

0 , t ≥ 25s

Nonsingular transformations T and S are given as:

T =




1.3333 0 0 −0.4444 0

−0.7500 1.0000 0 0 0

−0.2500 0 1.0000 0 0

−0.7500 0 0 1.0000 0

−0.5000 0 0 0 1.0000




S =




1.0000 0 0 −0.3333

−0.3333 1.0000 0 −0.5556

−0.3333 0 1.0000 0.1111

−1.0000 0 0 1.3333



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such that in the new coordinate

TAT−1 =




−6.1111 −0.4445 −0.4444 −0.4937 −2.2222

0.5000 −3.2500 1.0000 −1.5278 2.5000

−0.7500 −0.7500 −2.0000 −2.5833 1.5000

0.2500 −1.2500 1.0000 −2.6389 0.5000

−1.5000 −0.5000 2.0000 −2.1666 −2.0000




SCT−1 =




0.7500 0 0 0.0000 0

0 1.0000 0 −0.5556 0

0.0000 0 1.0000 0.1111 0

−0.0000 0 0 1.3333 0




TB =




4.0000

0

0

0

0




, TE =




0

1

0

0

1




, SD =




0

0

0

2.9999




Select µ = 1e − 4, then from the LMI synthesis, the design parameters of the first

fault estimation scheme can be obtained as:

P1 = 0.2159

As
1 = −2.3458

P01 =




0.0812 −0.0069 −0.0353 −0.0779

−0.0069 0.1362 −0.0123 0.0070

−0.0353 −0.0123 0.1294 0.0346

−0.0779 0.0070 0.0346 0.0804




P02 =




−0.0761 −0.5994 −0.0000

0.7510 0.0422 0.0000

−0.0246 0.5459 −0.0000

−0.5174 −0.3473 −0.0000




P̄03 =




0.1251 0.0009 0.0203

0.0009 0.1320 −0.0039

0.0203 −0.0039 0.1169



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Figure 5.3: State x1 and its estimated value x̂1

L =



−1.4530 0.0189 0.2502

0.0236 −1.2920 −0.0466

0.3489 −0.0595 −1.5372




F0 =
[

0.0610 −0.0116 0.3505
]

For the sake of comparison, we select the same values for the parameters of the

second scheme and also select

Γ =

[
10 0

0 10

]
(5.93)

to complete the adaptive observer design.

Fig 5.3-5.7 show the true states and their estimates using SMO-based method and

AO-based method, respectively. The results of fault estimation are depicted in Fig-

5.8 and 5.9. It shows that despite the presence of system uncertainties ∆Ψ, both

methods can estimate the actuator fault and sensor fault with high accuracy.
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Figure 5.4: State x2 and its estimated value x̂2
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Figure 5.5: State x3 and its estimated value x̂3
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Figure 5.6: State x4 and its estimated value x̂4

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50

Time

M
ag

ni
tu

de

 

 

State x
5

State estimation by SMO
State estimation by AO

Figure 5.7: State x5 and its estimated value x̂5
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Figure 5.8: Actuator fault fa and its estimated value f̂a

0 5 10 15 20 25 30 35 40
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

M
ag

ni
tu

de

 

 

Actualt sensor fault
Fault estimation by SMO
Fault estimation by AO

Figure 5.9: Sensor fault fs and its estimated value f̂s
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5.6 Conclusions

In this chapter, two schemes for simultaneously estimating actuator fault and sen-

sor fault for uncertain Lipschitz nonlinear systems are proposed. The first scheme is

based on the matching condition and consists of two SMOs. Each of them is used

to estimate the actuator fault and sensor fault respectively. However, the matching

condition is very restrictive and sometimes it is difficult to find such matrices to satisfy

both the Lyapunov equation and the matching condition. The second scheme relaxes

the constraint of the first method and employs an adaptive observer to estimate the

sensor fault. Moreover,H∞ is integrated into both schemes to attenuate the effects of

the system uncertainties on state estimation and fault estimation. The effectiveness

of the proposed methods is illustrated by considering a numerical example. Simula-

tion results show that both methods can accurately estimate the actuator fault and

sensor fault simultaneously.

It is worth noting that the uncertainty considered in this chapter is assumed to be

unstructured. This type of uncertainty is usually modelled as norm-bounded pertur-

bations and refers to the aspects of system uncertainty associated with unmodelled

system dynamics, truncation of high frequency models, nonlinearities and the effects

of linearization, etc. In practice, it is quite common that the uncertainties are given as

a disturbance system whose elements in a disturbance matrix are not known exactly.

Therefore, the methods developed in this chapter have a wide range of applications,

such as aircrafts, high-speed railways and power systems.



Chapter 6

Estimation of actuator and sensor

faults for uncertain nonlinear

systems using a descriptor system

approach

In previous chapters, sensor fault is transformed into the form of actuator fault. In

this chapter, it is treated as an auxiliary state and an augmented descriptor system

is constructed. Based on this system, an estimator is designed and the sensor fault

can be obtained directly.

6.1 Introduction

Methods that are introduced in Chapter-4 and 5 all use an integral observer to trans-

form sensor faults into the form of actuator faults and the design of observers is based

on the transformed system. In this chapter, the sensor fault is treated in a different

way. More specifically, sensor faults are taken as auxiliary states and an augmented

descriptor system is therefore constructed. An estimator which is based on the de-

scriptor system approach [51, 85, 113, 114, 115, 116, 117, 118] is designed for the

augmented system, so that the simultaneous estimation of the system state and the

sensor fault can directly be obtained.

131
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In [119], a descriptor system approach has been introduced to investigate fault di-

agnosis for linear multi-variable systems with measurement noises. For Lipschitz

nonlinear descriptor systems, the result of sensor fault estimation is shown in [116]

and the work in [118] focuses on actuator fault signals. Note that the approaches

proposed in [116, 118, 119] are for descriptor systems and only deal with one kind of

faults at a time (either actuator fault or sensor fault). This motivates the present study

to develop a novel fault estimation approach for a class of nonlinear state-space sys-

tems when faults occur at both sensors and actuators coincidentally. To cope with

the actuator faults, the result of using adaptive observer-based approach to estimate

actuator faults in Chapter-5 is extended in this chapter to yield the actuator fault es-

timation. The effects of the system uncertainties on the estimation errors of states

and faults are reduced by integrating a prescribed H∞ disturbance attenuation level

into the observer. As a consequence of H∞ filtering integrated into the descriptor

observer, the estimation of states and faults is robust against uncertainties and can

preserve the shape of fault signal effectively.

The main contributions of the present work are the following: 1. The uncertainty

considered is unstructured and not necessarily bounded; 2. The proposed method is

not only applicable for nonlinear state-space systems but also for nonlinear descriptor

systems; 3. Not only simultaneous estimation of states, actuator faults and sensor

faults can be obtained, but also the L2 gain minimization can be guaranteed at the

same time; 4. Different types of faults such as unbounded faults, incipient faults and

abrupt faults can be successfully estimated by the proposed method.

The rest of the chapter is organized as follows: section-6.2 introduces the problem

and some mathematical preliminaries required for designing observers. In section-

6.3, the observer is proposed and design parameters are formulated in LMI form. The

stability condition of the proposed observers based on Lyapunov approach is derived.

The results of simulation are shown in section-6.4 with conclusions in section-6.5.

6.2 Problem Formulation

Consider a nonlinear system described by

ẋ(t) = Ax(t) + f(x, t) + B(u(t) + fa(t)) + ∆ψ(t)
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y(t) = Cx(t) + Dfs(t) (6.1)

where x ∈ Rn are the state variables, u ∈ Rm are the inputs and y ∈ Rp are the

outputs. fa ∈ Rm and fs ∈ Rq denote the actuator fault and sensor fault, respectively.

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×q (p ≥ q) are known constant

matrices with C and D both being of full rank. The nonlinear continuous term f(x, t)

is assumed to be known. The unstructured uncertainty ∆ψ(t) ∈ Rn is more general

than structured uncertainty that have been considered for fault diagnosis of Lipschitz

nonlinear systems in literature (e.g.,[85, 117]).

Throughout the paper, the following assumptions are made:

Assumption 6.1 The matrix pair (A,C) is detectable.

Assumption 6.2 The nonlinear term f(x, t) is assumed to be known and Lipschitz

about x uniformly, i.e., ∀x, x̂ ∈ X ,

‖f(x, t)− f(x̂, t)‖ ≤ Lf‖x− x̂‖ (6.2)

where Lf is the known Lipschitz constant. Many nonlinearities can be assumed to

be Lipschitz, at least locally.

Suppose that the sensor fault fs(t) is smooth and assume σ := ḟs(t), then an aug-

mented nonlinear system with states z :=

[
x

fs

]
∈ Rn+q can be constructed as

follows

Ēż = Āz + f̄(x, t) + B̄(u + fa) + Ḡ∆̄ψ

y = C̄z (6.3)

where

Ē =

[
In×n 0n×q

0q×n Iq×q

]
∈ R(n+q)×(n+q)

Ā =

[
A 0n×q

0q×n 0q×q

]
∈ R(n+q)×(n+q)

B̄ =

[
B

0q×m

]
∈ R(n+q)×m
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Ḡ =

[
In×n 0n×q

0q×n Iq×q

]
∈ R(n+q)×(n+q)

C̄ =
[

C D
]
∈ Rp×(n+q)

f̄(x, t) =

[
f(x, t)

0q×1

]
∈ R(n+q)×1

∆̄ψ =

[
∆ψ

σ

]
∈ R(q+r)×1

6.3 Design of the fault estimation observer

For the augmented system formulated in (6.3), the objective of the section is to design

an observer to simultaneously estimate the states, actuator faults and sensor faults.

The developed observer has the following form:

ẇ = (Ā− L1C̄)ẑ + B̄(u + f̂a) + L1y + f̄(x̂, t) (6.4)

ẑ = (Ē + L2C̄)−1(w + L2y) (6.5)

ŷ = C̄x̂ (6.6)

where ẑ ∈ Rn+q represents the estimated states of the augmented system, L1 ∈
R(n+q)×p and L2 ∈ R(n+q)×p are two observer gains. L2 is selected to make S̄ =

Ē + L2C̄ nonsingular, f̂a is the actuator fault estimation with the dynamics:

˙̂
fa = ΓF (ey + ėy) (6.7)

where Γ ∈ Rm×m is a symmetric positive definite matrix representing the learning

rate, F ∈ Rm×p is a design matrix which needs to be determined and ey = y − ŷ is

the output estimation error.

It follows from (6.5) that the derivative of ẑ can be obtained as:

˙̂z = S̄−1(ẇ + L2ẏ) (6.8)

Substituting (6.4) into (6.8) yields:

˙̂z = S̄−1((Ā− L1C̄)ẑ + B̄(u + f̂a) + L1y + L2ẏ + f̄(x̂, t)) (6.9)



6.3. Design of the fault estimation observer 135

Note that system (6.3) can be rewritten as:

ż = S̄−1((Ā− L1C̄)z + B̄(u + fa) + L1y + L2ẏ + f̄(x, t) + Ḡ∆̄ψ) (6.10)

Define the state estimation error and actuator fault estimation error as e = z − ẑ and

ef = fa − f̂a, respectively. Then after the occurrence of any faults, the dynamics of

the state estimation error e = z − ẑ can be obtained by comparing (6.9) and (6.10):

ė = S̄−1((Ā− L1C̄)e + (f̄(x, t)− f̄(x̂, t)) + B̄ef + Ḡ∆̄ψ) (6.11)

Lemma 6.1 There exists an asymptotic estimator in the form of (6.4)-(6.5) for the

system (6.3) if and only if Assumption 6.1 holds.

Proof. From the Popov-Belevitch-Hautus (PBH) test for observability, the pair (S̄−1Ā, C̄)

is detectable if and only if

rank

[
sIn+q − S̄−1Ā

C̄

]
= n + q (6.12)

for all s ∈ C.

From the definition of S̄, Ā and C̄,

rank

[
sIn+q − S̄−1Ā

C̄

]

= rank

{[
S̄ 0(n+q)×p

0p×(n+q) Ip

][
sIn+q − S̄−1Ā

C̄

]}

= rank

[
sS̄ − Ā

C̄

]

= rank

[
sĒ + sL2C̄ − Ā

C̄

]

= rank

{[
In+q sL2

0p×(n+q) Ip

][
sĒ − Ā

C̄

]}

= rank

[
sĒ − Ā

C̄

]
= rank




sIn+q − A 0(n+q)×q

0q×(n+q) sIq

C D



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= rank

[
sIn − A

C

]
+ q (6.13)

It follows that if Assumption 6.1 is satisfied, then

rank

[
sIn − A

C

]
= n ⇒ rank

[
sIn+q − S̄−1Ā

C̄

]
= n + q (6.14)

which implies that the pair (S̄−1Ā, C̄) is detectable and the gain L can be chosen as

L = S̄−1L1 such that the error dynamics (6.11) is stable.

This completes the proof.

Define that

r(t) = H

[
z(t)

fa(t)

]
, r̂(t) = H

[
ẑ(t)

f̂a(t)

]
, and r̄ = H

[
e

ef

]
(6.15)

where r(t) ∈ Rn+q+m is a linear combination of the augmented state variables and

actuator faults, r̂(t) is the estimation and r̄ is the estimation error, H is the pre-

specified weight matrix which is assumed to have the form:

H :=

[
H1 0

0 H2

]
(6.16)

where H1 ∈ R(n+q)×(n+q) and H2 ∈ Rm×m.

The objective of this section is to design an observer in the form of (6.4)-(6.5) such

that the observer error dynamics is asymptotically stable and r̄ satisfies the following

H∞ tracking performance:

J =

∫ T

0

‖r̄‖2dt ≤ µ

∫ T

0

(‖ḟa‖2 + ‖∆̄ψ‖2)dt (6.17)

The sufficient condition of stability of the proposed fault estimator is as follows:

Proposition 6.1 Under the Assumptions 6.1-6.2, the observer error dynamics (6.11)

and ėf are asymptotically stable with an H∞ disturbance attenuation level
√

µ > 0

subject to ‖r̄‖L2 ≤
√

µ(‖∆̄ψ‖L2 + ‖ḟa‖L2), if there exist matrices P ∈ R(n+q)×(n+q) >
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0, Y ∈ R(n+q)×p, F ∈ Rm×p and positive scalars α1 and α2 such that:

Ω :=




Π1 + 1
α1

PS̄−1S̄−T P Π2 + C̄T Y T P−1C̄T F T 0 PS̄−1Ḡ

ΠT
2 + FC̄P−1Y C̄ Π3 + 1

α2
FC̄S̄−1S̄−T C̄T F T Γ−1 −FC̄S̄−1Ḡ

0 Γ−T −µIm 0

ḠT S̄−T P −ḠT S̄−T C̄T F T 0 −µIn+q




< 0

(6.18)

where Π1 = PS̄−1Ā + ĀT S̄−T P − Y C̄ − C̄T Y T + α1L2
fIn+q + α2L2

fIn+q + HT
1 H1,

Π2 = PS̄−1B̄ − C̄T F T − ĀT S̄−T C̄T F T , Π3 = −2FC̄S̄−1B̄ + HT
2 H2. The matrix gain

L1 can be obtained as L1 = S̄P−1Y .

Proof. Consider the Lyapunov function as

V (t) = V1(t) + V2(t) (6.19)

where V1(t) = eT Pe and V2(t) = eT
f Γef .

The time derivative of V1(t) along the trajectories of state estimation error dynamics

(6.11) can be shown to be:

V̇1 = eT P ė + ėT Pe

= eT P ((S̄−1Ā− S̄−1L1C̄)e + S̄−1(f̄(x, t)− f̄(x̂, t)) + S̄−1B̄ef + S̄−1Ḡ∆̄ψ)

+ ((S̄−1Ā− S̄−1L1C̄)e + S̄−1(f̄(x, t)− f̄(x̂, t)) + S̄−1B̄ef + S̄−1Ḡ∆̄ψ)T Pe

= eT (PS̄−1Ā + ĀT S̄−T P − Y C̄ − C̄T Y T )e + 2eT PS̄−1(f̄(x, t)− f̄(x̂, t))

+ 2eT PS̄−1B̄ef + 2eT PS̄−1Ḡ∆̄ψ (6.20)

≤ eT (PS̄−1Ā + ĀT S̄−T P − Y C̄ − C̄T Y T )e +
1

α1

eT PS̄−1S̄−T Pe

+ α1L2
f‖e‖2 + 2eT PS̄−1B̄ef + 2eT PS̄−1Ḡ∆̄ψ

= eT (PS̄−1Ā + ĀT S̄−T P − Y C̄ − C̄T Y T +
1

α1

PS̄−1S̄−T P + α1L2
fIn+q)e

+ 2eT PS̄−1B̄ef + 2eT PS̄−1Ḡ∆̄ψ (6.21)

The time derivative of V2(t) can be shown to be:

V̇2 = 2eT
f Γ−1ėf

= 2eT
f Γ−1ḟa − 2eT

f Γ−1 ˙̂
fa
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= 2eT
f Γ−1ḟa − 2eT

f FC̄e− 2eT
f FC̄ė

= 2eT
f Γ−1ḟa − 2eT

f FC̄e− 2eT
f FC̄(S̄−1Ā− S̄−1L1C̄)e− 2eT

f FC̄S̄−1(f̄(x, t)

− f̄(x̂, t))− 2eT
f FC̄S̄−1B̄ef − 2eT

f FC̄S̄−1Ḡ∆̄ψ

≤ 2eT
f Γ−1ḟa − 2eT

f FC̄e− 2eT
f FC̄(S̄−1Ā− S̄−1L1C̄)e +

1

α2

eT
f FC̄S̄−1S̄−T C̄T F T ef

+ α2L2
f‖e‖2 − 2eT

f FC̄S̄−1B̄ef − 2eT
f FC̄S̄−1Ḡ∆̄ψ

= eT
f (−2FC̄S̄−1B̄ +

1

α2

FC̄S̄−1S̄−T C̄T F T )ef + 2eT
f (−FC̄ − FC̄S̄−1Ā

+ FC̄S̄−1L1C̄)e + α2L2
f‖e‖2 + 2eT

f Γ−1ḟa − 2eT
f FC̄S̄−1Ḡ∆̄ψ (6.22)

Therefore

V̇ ≤ eT (Π1 +
1

α1

PS̄−1S̄−T P )e + eT
f (−2FC̄S̄−1B̄ +

1

α2

FC̄S̄−1S̄−T C̄T F T )ef

+ 2eT (PS̄−1B̄ − C̄T F T − ĀT S̄−T C̄T F T + C̄T LT
1 S̄−T C̄T F T )ef

+ 2eT PS̄−1Ḡ∆̄ψ + 2eT
f Γ−1ḟa − 2eT

f FC̄S̄−1Ḡ∆̄ψ (6.23)

Let

V0 = V̇ + r̄T r̄ − µ$T $ (6.24)

where $ =

[
ḟa

∆̄ψ

]
.

Substituting (6.23) and (6.15) into (6.24) yields

V0 ≤




e

ef

ḟa

∆̄ψ




T 


Π1 + 1
α1

PS̄−1S̄−T P Π2 + C̄T Y T P−1C̄T F T

ΠT
2 + FC̄P−1Y C̄ Π3 + 1

α2
FC̄S̄−1S̄−T C̄T F T

0 Γ−T

ḠT S̄−T P −ḠT S̄−T C̄T F T

0 PS̄−1Ḡ

Γ−1 −FC̄S̄−1Ḡ

−µIm 0

0 −µIq+r







e

ef

ḟa

∆̄ψ




(6.25)

It follows from (6.18)that

V0 = V̇ + r̄T r̄ − µ$T $ < 0 (6.26)



6.3. Design of the fault estimation observer 139

Under zero initial conditions, it is easy to see that

∫ T

0

(r̄T r̄ − µ$T $)dt ≤
∫ T

0

(r̄T r̄ − µ$T $)dt + V

=

∫ T

0

(r̄T r̄ − µ$T $ + V̇ )dt

≤ 0 (6.27)

which implies that
∫ T

0
‖r̄‖2dt ≤ µ

∫ T

0
(‖ḟa‖2 + ‖∆̄ψ‖2)dt. This function minimizes

the worst case effect of the disturbance $ on the state estimation error r̄. If this

constraint holds, then the state estimation error dynamics is stable and the H∞ gain

of the transfer function from $ to r̄ is norm bounded by
√

µ [107, 108]. It is clear that

the smaller the µ is, the more robust the observer becomes.

This completes the proof.

To obtain matrices P , Y , F and positive scalars α1, α2 and ε in (6.18), we firstly recall

the following lemma.

Lemma 6.2 (See [120, 121]) Given matrices Q = QT , F , M and N of appropriate

dimensions, then

Q + MFN + NT F T MT < 0 (6.28)

for all F satisfying F T F ≤ I if and only if there exists a scalar ε > 0 such that

Q + εMMT + ε−1NT N < 0 (6.29)

It is easy to show that the matrix inequality Ω < 0 in (6.18) can be rewritten as




Π1 + 1
α1

PS̄−1S̄−T P Π2 0 PS̄−1Ḡ

ΠT
2 + FC̄P−1Y C̄ Π3 + 1

α2
FC̄S̄−1S̄−T C̄T F T Γ−1 −FC̄S̄−1Ḡ

0 Γ−T −µIm 0

ḠT S̄−T P −ḠT S̄−T C̄T F T 0 −µIq+r




+




C̄T Y T

0

0

0




P−1
[

0 C̄T F T 0 0
]

+




0

FC̄

0

0




P−1
[

Y C̄ 0 0 0
]

< 0

(6.30)
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Applying Lemma 6.2 to (6.30) with M =




C̄T Y T

0

0

0




, N =
[

0 C̄T F T 0 0
]

and

F = P−1 gives that the satisfaction of (6.30) is equivalent to the following two in-

equalities:

P−2 < In+q, (6.31)




Π1 + 1
α1

PS̄−1S̄−T P Π2 0 PS̄−1Ḡ

ΠT
2 + FC̄P−1Y C̄ Π3 + 1

α2
FC̄S̄−1S̄−T C̄T F T Γ−1 −FC̄S̄−1Ḡ

0 Γ−T −µIm 0

ḠT S̄−T P −ḠT S̄−T C̄T F T 0 −µIq+r




+ ε




C̄T Y T

0

0

0




[
0 Y C̄ 0 0 0

]
+ ε−1




0

FC̄

0

0




[
0 C̄T F T 0 0

]
< 0

(6.32)

where ε is a positive scalar.

Using Schur complement, (6.32) can further be written as




Π1 + 1
α1

PS̄−1S̄−T P Π2 0

ΠT
2 Π3 + 1

α2
FC̄S̄−1S̄−T C̄T F T Γ−1

0 Γ−T −µIm

ḠT S̄−T P −ḠT S̄−T C̄T F T 0

0 C̄T F T 0

Y C̄ 0 0

PS̄−1Ḡ 0 C̄T Y T

−FC̄S̄−1Ḡ F C̄ 0

0 0 0

−µIq+r 0 0

0 −εIn+q 0

0 0 −ε−1In+q




< 0 (6.33)

It is worth noting that (6.31) and (6.33) are non-convex feasibility problems. The
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problem of finding P > 0, Y , F and positive scalars α1, α2, ε, µ to satisfy both

(6.31) and (6.33) can be converted into the following nonlinear minimization problem

using cone complementary linearization (CCL) algorithm [122]. This method is easy

to implement, however, the performance extremely depends on initial point and the

specific problem to be solved so that the method often fails to converge in practice.

min trace(PP̄ + εε̄In+q + µIn+q)

s.t.

P > 0, P̄ > 0, α1 > 0, α2 > 0, µ > 0, ε > 0, ε̄ > 0, (6.34)




Π1 Π2 0 PS̄−1Ḡ 0 C̄T Y T

ΠT
2 Π3 Γ−1 −FC̄S̄−1Ḡ F C̄ 0

0 Γ−T −µIm 0 0 0

ḠT S̄−T P −ḠT S̄−T C̄T F T 0 −µIq+r 0 0

0 C̄T F T 0 0 −εI 0

Y C̄ 0 0 0 0 −ε̄I

S̄−T P 0 0 0 0 0

0 S̄−T C̄T F T 0 0 0 0

PS̄−1 0

0 FC̄S̄−1

0 0

0 0

0 0

0 0

−α1I 0

0 −α2I




< 0, (6.35)

[
P I

I P̄

]
≥ 0 and

[
ε I

I ε̄

]
≥ 0 (6.36)

where P̄ and ε̄ are two new variables which are defined as P̄ = P−1 and ε̄ = ε−1.

The LMI optimization problem derived here seeks two objectives. The first one is to

obtain the matrices P , Y and F from the LMIs and compute the observer gain L1 from

L1 = S̄P−1Y ; while the second objective is to boost the robustness of the observer

against uncertainties $ by minimizing theH∞ gain between the controlled estimation

error r̄ and $. To solve this LMI optimization problem, the following iterative algorithm
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is being used:

• Step 1. Set i=0 and solve (6.34)-(6.36) to obtain the initial solutions

(P 0, P̄ 0, Y 0, F 0, α0
1, α

0
2, ε

0, ε̄0, µ0)

• Step 2. Solve the minimization problem: Minimize trace(PP̄ i + P̄P i + εε̄iI +

ε̄εi + µi) subject to (6.34)-(6.36). The obtained solutions are denoted as

(P i+1, P̄ i+1, Y i+1, F i+1, αi+1
1 , αi+1

2 , εi+1, ε̄i+1, µi+1).

• Step 3. Check if the obtained solutions satisfy (6.31) and (6.33). If they do,

then Li+1
1 = S̄P i+1−1

Y i+1 is the desired observer gain and EXIT. Otherwise,

set i=i+1 and return to step 2.

Remark 6.2 If there exists an estimator in the form of (6.4)-(6.5) for the system

(6.3), then the estimation of the original system state x and sensor fault fs can

be obtained simultaneously. More specifically, the state estimation x̂ can be ob-

tained as x̂ =
[

In 0n×q

]
ẑ and the sensor fault estimation f̂s can be obtained as

f̂s =
[

0q×n Iq

]
ẑ. From (6.7), the actuator fault can be calculated as

f̂a(t) = ΓF

(
ey(t) +

∫ T

tf

ey(t)dt

)
(6.37)

where tf is the time when an actuator fault occurs.

Remark 6.3 The result of the Proposition 6.1 for a state-space system in the form of

(6.1) can easily be extended to a descriptor system with the following form

Eẋ(t) = Ax(t) + f(x, t) + B(u(t) + fa(t)) + ∆ψ(t)

y(t) = Cx(t) + Dfs(t) (6.38)

where E ∈ Rn×n is singular or nonsingular. Accordingly, the matrix Ē of the aug-

mented system (6.3) changes to

Ē =

[
E 0n×q

0q×n Iq×q

]
∈ R(n+q)×(n+q) (6.39)
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6.4 Simulation results

Case-1. The effectiveness of the proposed fault estimation method for a class of

nonlinear state-space system is illustrated by considering the following system

[
ẋ1

ẋ2

]
=

[
−1 0

1 −3

] [
x1

x2

]
+

[
0

0.5 sin x1

]
+

[
1

0.2

]
(u + fa) + ∆ψ

y =

[
2 1

−1 2

][
x1

x2

]
+

[
2

4

]
fs (6.40)

For illustration purpose, the input to the system is given by u = 4sin(t/3). ∆ψ =[
0.02 sin(20t)

0.05 cos(10t)

]
denotes the high-frequency unstructured uncertainty. The actuator

fault fa and sensor fault fs have the form

fa =





0 , t ≤ 20s

sin(0.5t) + 0.2 sin(5t) , 20s < t < 30s

0 , t ≥ 30s

fs =

{
0 , t ≤ 15s

0.2(t− 15) + 0.1 sin(5t) , t > 15s

Choosing

L2 =




1.2 0.4

0.2 2.5

0 5


 , H1 =




0 0 0

0 0 0

0 0 1


 , H2 = 0.2, Γ = 100

and solving the LMI optimization problem described in (6.34)-(6.36) gives

µ = 0.0335

P =




1.4393 −0.4951 −0.3172

−0.4951 2.2044 1.0691

−0.3172 1.0691 2.0125




P̄ =




1.2685 −0.5183 −0.5237

−0.5183 2.1502 1.2908

−0.5237 1.2908 2.5450



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Y =




0.4213 −0.2107

0.4378 −0.2273

−0.1135 0.3243




F =
[

0.0943 −0.0412
]

ε = 0.9493, ε̄ = 1.0534

α1 = 16.0370, α2 = 13.0040

It can be verified that PP̄ = I3 and εε̄ = 1, and the guaranteed disturbance attenua-

tion level is ‖H‖∞ ≤ √
µ = 0.1831.

By using L1 = S̄P−1Y , the observer gain L1 can be obtained as

L1 =




1.4570 −0.2004

−0.0729 1.0460

−1.4924 2.9949




The state estimation results are shown in Fig-6.1 and 6.2. The state estimations can

track their true values before and after the occurrence of any fault. The results of

sensor fault estimation and actuator fault estimation are shown in Fig-6.3 and 6.4. It

is worth noting that the sensor fault considered in the simulation is unbounded, which

is often assumed in many fault diagnosis methods that the fault is bounded and the

upper bound is known (e.g.,[46, 123]). It can be seen from the figures that despite

the presence of disturbances $, the proposed scheme can still estimate sensor faults

and actuator faults accurately.

Case-2. The effectiveness of the proposed observer for estimating actuator faults

and sensor faults for a class of nonlinear state-space system has been illustrated in

Case-1. In this case, we will further test effectiveness of the proposed observer for

descriptor systems. Consider the following plant

[
0 0

0 2

][
ẋ1

ẋ2

]
=

[
−1 0

1 −3

][
x1

x2

]
+

[
0

0.5 sin x1

]
+

[
1

0.2

]
(u + fa)

+ ∆ψ

y =

[
2 1

−1 2

] [
x1

x2

]
+

[
2

4

]
fs (6.41)
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Figure 6.1: State x1 and its estimated value x̂1
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Figure 6.2: State x2 and its estimated value x̂2
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Figure 6.3: Sensor fault fs and its estimated value f̂s
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Figure 6.4: Actuator fault fa and its estimated value f̂a
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where ∆ψ =

[
0.02 sin(t)

0.05 cos(t)

]
denotes the low-frequency uncertainty. This system is

in the form of (6.38) with E =

[
0 0

0 2

]
. The actuator fault fa and sensor fault fs are

represented as

fa =

{
0 , t ≤ 15s

exp(0.01t) , t > 15s

fs =

{
0 , t ≤ 20s

1− exp(−0.04(t− 20)) , t > 20s

It should be emphasized that both actuator fault and sensor fault are incipient. This

kind of faults are difficult to detect because their sizes are small during the initial

phase.

Choosing

L2 =




1.2 0.4

0.2 2.5

0 5


 , H1 =




0 0 0

0 0 0

0 0 1


 , H2 = 0.2, Γ = 200

and formulating the LMIs described in (6.34)-(6.36) with Ē =

[
E 0

0 I

]
gives the

following solutions:

µ = 0.0094

P =




1.4988 −0.0870 −0.1187

−0.0870 1.4693 0.4727

−0.1187 0.4727 1.4957




P̄ =




0.6723 0.0252 0.0454

0.0252 0.7586 −0.2377

0.0454 −0.2377 0.7473




Y =




0.4724 −0.2362

0.1768 −0.1026

0.0297 0.2875




F =
[

0.1128 −0.0491
]

ε = 0.8468, ε̄ = 1.1810
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Figure 6.5: State x1 and its estimated value x̂1

α1 = 11.7127, α2 = 10.3196

The observer gain L1 can be computed as

L1 =




0.9310 0.3132

0.3380 1.5928

−0.1939 4.0195




Fig-6.5-6.8 exhibit the states, sensor faults and actuator faults and their estimated

trajectories, respectively. It can be seen from the figures that the estimates of sensor

faults and actuator faults can still preserve the fault signal shape even in the presence

of comparatively large system uncertainties.

6.5 Conclusion

In this chapter, a fault estimation scheme based on a descriptor system approach has

been presented to simultaneously estimate system states, actuator faults and sen-

sor faults of Lipschitz nonlinear systems. Specifically, the sensor faults are taken as

auxiliary states and the original state-space system is transformed into a descriptor
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Figure 6.6: State x2 and its estimated value x̂2
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Figure 6.7: Sensor fault fs and its estimated value f̂s
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Figure 6.8: Actuator fault fa and its estimated value f̂a

system accordingly. The estimation of sensor faults are obtained from the observer

which is designed for this descriptor system, as a part of the augmented state vector.

While the estimation of actuator faults is obtained using an adaptive observer. The

design procedure has been presented by using the LMI approach. The efficiency

of the proposed fault estimation scheme has been illustrated by considering two nu-

merical examples. It shows from the results, the proposed method is not only able

to successfully estimate the states and faults for nonlinear state-space systems, but

also for nonlinear descriptor systems. The tracking performance of our approach is

satisfactory for different types of faults, such as unbounded faults, incipient faults and

abrupt faults.



Chapter 7

Conclusions and future work

7.1 Conclusions

This thesis proposes novel observer-based methods to diagnose faults for a class of

nonlinear systems. Detection, isolation and estimation of actuator faults and sensor

faults are three main topics which have been investigated in this study.

The nonlinear systems under consideration are assumed to be Lipschitz about the

state uniformly, and are contaminated by modelling discrepancies and external dis-

turbances, which are lumped as additive uncertainties. These unknown inputs may

also cause changes in residuals such that the variations caused by real faults are

concealed, and therefore make the model-based FDI ineffective. In order to deal with

various uncertainties encountered in the problem of fault detection, isolation and esti-

mation, robust observer based fault diagnosis schemes have been proposed by using

sliding mode observers, adaptive observers and descriptor system approaches.

Initially, the estimation of actuator fault is studied in Chapter-2 and the result forms

the basis of Chapter-5. FDI of incipient sensor faults is studied in Chapters-3 where a

traditional Luenberger observer is designed to detect the occurrence of a fault and a

bank of SMOs is used to diagnose the location. The problem of sensor fault estima-

tion is addressed by two methods in Chapter-4. One method uses a SMO to estimate

the sensor fault while the other one uses an adaptive observer to get the sensor fault

estimation. Adaptation laws are imposed into both the methods to cope with the situ-
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ation that the Lipschitz constant is unknown or too large, which may result in a failure

of finding the observer design from LMIs. In Chapter-5, two methods are developed

to explore the problem of simultaneous actuator and sensor fault estimation. The

proposed methods are not only capable of estimating sensor faults, but also actuator

faults at the same time. In the first method, it is assumed that the matching condition

holds. Based on this assumption, two SMOs can be designed and the actuator fault

and sensor fault can be estimated separately using the equivalent output injection

term. In the second method, the assumption that the matching condition needs to be

satisfied is removed. Instead of using a SMO to estimate the sensor fault in the first

method, an adaptive observer is employed here. While the estimation of the actuator

fault is still obtained by using a SMO. In both schemes, the H∞ filtering is integrated

to minimize the effects of uncertainties on the fault estimation. In Chapter-6, the prob-

lem of simultaneous estimation of actuator and sensor fault is further explored using

the descriptor system approach. Based on this approach, the sensor faults can be di-

rectly estimated as auxiliary states rather than being transformed into actuator faults.

In each chapter, the sufficient condition for the existence of observers is derived

based on the Lyapunov method. The effectiveness of the proposed methodologies

are verified by practical and numerical examples in each chapter. Simulation results

show that the methods developed in this thesis can successfully detect, isolate and

estimate the fault signals, and can achieve the prescribed performance.

The main contributions of this study are as follows:

1. Fault diagnosis for Lipschitz nonlinear systems with structured non-parametric

uncertainties

• For a class of Lipschitz nonlinear systems with matched non-parametric un-

certainties, the scheme of actuator fault estimation is proposed. Based on

the matching condition, a state transformation is introduced to impose spe-

cific structures on the uncertainty and fault distribution matrices. The proposed

scheme can only estimate actuator faults, but also reconstruct them under cer-

tain geometric conditions.

• For a class of Lipschitz nonlinear systems with unmatched non-parametric un-

certainties, the incipient sensor FDI scheme based on SMOs are developed.

Incipient faults are almost unnoticeable and their effects to residuals are most

likely to be concealed by system uncertainties. Using the proposed method,
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sensor faults can be completely separated from uncertainties and easily de-

tected and isolated.

• For the same class of uncertain Lipschitz nonlinear systems, two sensor fault

estimation schemes, based on SMOs and AO respectively, are proposed. Adap-

tation laws are integrated into the design of observers, which makes the pro-

posed schemes more applicable for the situation when the Lipschitz constant is

large or unknown. Without the adaptation laws, the LMI solver may not provide

a feasible solution when Lipschitz constant is too large.

2. Fault diagnosis for Lipschitz nonlinear systems with unstructured non-parametric

uncertainties

• For a class of Lipschitz nonlinear systems with unstructured non-parametric un-

certainties, nonsingular coordinate transformations are first introduced to split

the original system into two subsystems. One subsystem only has actuator

faults while the other only has sensor faults. Based on the transformed sys-

tems, several fault estimation schemes, based on SMOs, AO and descriptor

system approaches respectively, are developed.

• By integrating H∞ filtering into the design of fault estimators, fault estimation

errors as well as the state estimation errors can be guaranteed to be less than

a prescribed performance level, irrespective of uncertainties. It is shown that

by by adjusting a single design parameter, it becomes possible to trade off

between fault reconstruction performance and robustness to unknown inputs.

3. Sufficient conditions for the existence and stability of the proposed fault estima-

tors are expressed in the form of LMIs. The problem of finding matrices to satisfy

both Lyapunov equation and matching condition is modelled as a convex optimiza-

tion problem and an LMI design procedure, which is solvable using commercially

available software package, is presented.

In summary, the research in this thesis demonstrates that the proposed fault diagno-

sis schemes based on sliding mode observers, adaptive techniques and descriptor

system theory are effective in dealing with fault detection, isolation and estimation for

uncertain Lipschitz nonlinear systems.
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7.2 Future work

The robust observer-based fault diagnosis has been studied extensively over the last

two decades. However, this research area still remains open. The following are some

of the directions that could be pursued in the future research:

• The thesis assumes that the system uncertainties are additive unknown terms.

This is questionable because the model uncertainty describes internal property

of the dynamic systems. The future work will extend the results of the proposed

schemes in the thesis to systems with parametric uncertainties and other types

of uncertainties.

• Networked control systems (NCSs) have advantageous over traditional sys-

tems in many aspects such as efficiency, practicality, energy consumption, in-

stallation , etc. However, one of the major problems of NCSs is the channel

time delay and quantization error due to the limited communication capacity.

The network-induced delay, including sensor-to-controller delay and controller-

to-actuator delay, will deteriorate the system performance as well as stability.

Therefore it is desirable to develop fault diagnosis schemes for networked con-

trol systems and for nonlinear systems with fixed or varying time delay in the

states, outputs. The schemes proposed in this thesis are believed to have the

potential to be extended to such systems.

• In this thesis, only fault detection, isolation and estimation were studied. How-

ever, successful fault diagnosis is not the ultimate goal for real applications.

Fault-tolerant control (FTC) is needed to preserve the stability and reliability of

the system when it is subject to a set of possible faults. The existing strate-

gies of fault compensation control are based on adding an additional control

input to the original control input in order to reduce or compensate the effects

of faults, so that the controlled system can still continue to operate according to

its original specifications. The additional input signal can be obtained from fault

estimation and therefore the fault estimation schemes proposed in this thesis

forms the foundation for FTC systems.

• As engineering plants grow in size and complexity, and the popularity of dis-

tributed systems, FDI for large scale nonlinear systems becomes increasingly

important. In general, a fault that occurs in one subsystem will not only affect
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the behavior of this system, but it will also affect the behavior of the neighboring

subsystems. It is believed that the results of this thesis can be extended to FDI

for large scale nonlinear systems by taking interactions between subsystems

into account.

• This thesis assumes that the output equation is linear. More complicated sys-

tems with both state dynamics and output dynamics being nonlinear can be

studied in the future.
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Appendix A

Proof of lemma 2.1

Lemma 2.1 There exist arbitrary matrices F1 ∈ Rr×p and F2 ∈ Rq×p such that:

[
ET

DT

]
P =

[
F1

F2

]
C (A.1)

if and only if Assumption 2.2 holds.

Proof. 1. Proof of sufficiency

It is shown in [8] that under Assumption 2.2, there exists a state transformation matrix

T such that in the new coordinate, the transformed system matrices become Ā =

TAT−1, B̄ = TB, C̄ = CT−1, D̄ = TD and Ē = TE, where C̄, Ē and D̄ have the

structure:

C̄ =
[

0 Ip

]
, D̄ =

[
0

D2

]
, Ē =

[
0

E2

]
(A.2)

Therefore A = T−1ĀT , B = T−1B̄, C = C̄T , D = T−1D̄ and E = T−1Ē.

If we select P = T T P̄ T , F1 = F̄1 and F2 = F̄2, then substituting C, E and D into

(A.1) yields

[
ĒT

D̄T

]
P̄ =

[
F̄1

F̄2

]
C̄ (A.3)
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Letting P̄ =

[
P̄1 0

0 P̄2

]
, F̄1 = ET

2 P̄2 and F̄2 = DT
2 P̄2, then it is clear that (A.3)

always hold.

2. Proof of necessity

It follows from that P is positive definite, the matrices E and ET PE have the same

null space and therefore rank(E) = rank(ET PE). From (2.9) it is easy to see that

ET PE = F1CE. Thus rank(ET PE) = rank(F1CE) ≤ rank(CE) ≤ rank(E)

and hence rank(CE) = rank(E). Similarly, it can be concluded that rank(CD) =

rank(D).

This completes the proof.
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Proof of lemma 2.2

Lemma 2.2 If P and Q have been partitioned as in (2.3), then the following two

conclusions are obvious :

1. P−1
1 P2E2 + E1 = 0 and P−1

1 P2D2 + D1 = 0 if (2.9) is satisfied;

2. The matrix A1 + P−1
1 P2A3 is stable if Lyapunov equation (2.2) is satisfied.

Proof. 1. From the matrix partitions, it follows that

ET P =
[

ET
1 ET

2

] [
P1 P2

P T
2 P3

]

=
[

ET
1 P1 + ET

2 P T
2 ET

1 P2 + ET
2 P3

]

=
[

(P1(E1 + P−1
1 P2E2))

T ET
1 P2 + ET

2 P3

]

DT P =
[

(P1(D1 + P−1
1 P2D2))

T DT
1 P2 + DT

2 P3

]
(B.1)

FC =

[
0 F1

0 F2

]
(B.2)

By comparing (B.1) and (B.2), conclusion-1 can be obtained.

2. Applying block matrix multiplication to (2.2) yields

AT
1 P1 + P1A1 + AT

3 P T
2 + P2A3 = −Q1 (B.3)
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This implies that

(A1 + P−1
1 P2A3)

T P1 + P1(A1 + P−1
1 P2A3) = −Q1 (B.4)

Therefore conclusion-2 can be obtained from the fact that Q1 > 0 and P1 > 0.



Appendix C

Proof of lemma 3.1

Lemma 3.1 Under Assumption 3.1, there exist state and output transformations

z =

[
z1

z2

]
= T

[
x1

x2

]
, w =

[
w1

w2

]
= S

[
y1

y2

]
(C.1)

such that in the new coordinate, the system matrices become:

TAT−1 =

[
A1 A2

A3 A4

]
, TB =

[
B1

B2

]
, TE =

[
E1

0

]
,

SCT−1 =

[
C1 0

0 C4

]
, SD =

[
0

D2

]
(C.2)

where T ∈ Rn×n, S ∈ Rp×p, z1 ∈ Rr, w1 ∈ Rr, A1 ∈ Rr×r, A4 ∈ R(n−r)×(n−r),

B1 ∈ Rr×m, E1 ∈ Rr×r, C1 ∈ Rr×r, C4 ∈ R(p−r)×(n−r) and D2 ∈ R(p−r)×q. E1 and

C1 are invertible.

Proof. Partition D as

D =

[
D̄1

D̄2

]
(C.3)

where D̄2 ∈ Rq×q.
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Introduce a nonsingular transformation

S0 =

[
Ip−q −D̄1D̄

−1
2

0 Iq

]
(C.4)

such that S0D =

[
0

D2

]
, where D2 =

[
0

D̄2

]
.

Introducing a nonsingular transformation T0, we can obtain that

T0E =

[
E1

E2

]
(C.5)

where E1 ∈ Rr×r and is invertible.

Introduce a nonsingular coordinate transform T1 as:

T1 =

[
Ir 0

−E2E
−1
1 In−r

]
(C.6)

then

T1T0E =

[
Ir 0

−E2E
−1
1 In−r

][
E1

E2

]
=

[
E1

0

]
(C.7)

and CT−1
0 T−1

1 can be partitioned as [C̄1 C̄4]. Therefore

CE = CT−1
0 T−1

1 T1T0E =
[

C̄1 C̄4

] [
E1

0

]
= C̄1E1 (C.8)

It follows from rank(CE) = rank(E) that

rank(C̄1E1) = rank(CE) = rank(E1) (C.9)

then it can be conluded that

rank(C̄1) = rank(E1) = r (C.10)
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Denote that

S0C̄1 =

[
C11

C21

]
(C.11)

where C11 ∈ Rr×r with rank(C11) = r, C21 ∈ R(p−r)×r.

Let

S1 =

[
Ir 0

−C21C
−1
11 Ip−r

]
(C.12)

then

S1S0C̄1 =

[
Ir 0

−C21C
−1
11 Ip−r

][
C11

C21

]
=

[
C11

0

]
(C.13)

Let S = S1S0, then it can be obtained that

SCT−1
0 T−1

1 =
[

SC̄1 SC̄4

]
=

[
C11 C12

0 C22

]
(C.14)

Let

T2 =

[
Ir C−1

11 C12

0 In−r

]
(C.15)

and T = T2T1T0, then

SCT−1 =

[
C11 0

0 C22

]

TE =

[
E1

0

]

SD =

[
0

D2

]
(C.16)

Under the new coordinate, the matrices A and B can be transformed as in (3.3). This

completes the proof.
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