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Abstract

An investigation has been carried out into the operation of a mode-locked

argon laser at a wavelength of 514.5 nm and a repetition rate of 76.8 MHz. The

characteristics of the pulses from the laser have been found to depend on the intra-

cavity power level in the laser, and at average inffa-cavity power levels exceeding

4 W, the pulses from the laser have a duration of typically 35 psec accompanied by a

characteristic double-peaked spectrum with a spectral width of t3 GHz These

pulse durations are approximately three times shorter than expected based on the

inhomogeneously broadened transition bandwidrh of 4 GHz.

The dependence of the pulse characteristics on the intra-cavity power level
has been explained by a model of pulse propagation where the coherent coupling

between the pulse and the atomic polarisation in the laser gain medium is included.

Detailed examination of the pulse structure reveals the presence of afterpulses that

have a typical intensity two orders of magnitude lower than the main pulse. These

aftelpulses are interpreted as ringing arising from coherent Rabi-type oscillation of
the atomic polarisation associated with the circulating pulse in the laser.

Numerical simulations of the mode-locked laser have also been developed

based on the fully coherent Maxwell-Bloch equations, and the results from the

simulations reproduce well the experimentally observed variation in pulse

characteristics. Based on results from the simulations, the short pulses observed

at high intra-cavity powers are interpreted as the superfluorescent n -pulse
solutions predicted in the long distant limit of pulse propagation in a swept-gain

amplifying medium.

The laser operation has also been studied in a mode-locked cavity dumped

configuration. In this case the combination of the coherent mode-locking processes

described above with the cavity dumped operation at a repetition rate of 3.8 MHz
results in the observation of stable pulses with peak power of 1.6 kW.
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