A Class of Nonlinear Stochastic Volatility Models

Jun Yu* Zhenlin Yang†

*University of Auckland, j.yu@auckland.ac.nz
†University of Auckland, ecsyzl@nus.edu.sg
This paper is posted at ResearchSpace@Auckland.
http://researchspace.auckland.ac.nz/ecwp/229
A Class of Nonlinear Stochastic Volatility Models\(^*\)

Jun Yu\(^†\) and Zhenlin Yang\(^‡\)

April 3, 2002

Abstract

This paper proposes a class of nonlinear stochastic volatility models based on the Box-Cox transformation which offers an alternative to the one introduced in Andersen (1994). The proposed class encompasses many parametric stochastic volatility models that have appeared in the literature, including the well known lognormal stochastic volatility model and has an advantage of the ease with which different specifications on stochastic volatility can be tested. Furthermore, as a byproduct of this general way of modeling stochastic volatility, one obtains the functional form of transformation which induces marginal normality of volatility. The efficient method of moments approach is used to estimate model parameters. Empirical applications are performed using an individual stock price series and a stock index series. Empirical results reveal that the lognormal stochastic volatility model is rejected for the index returns but not for the stock returns. Moreover, our results suggest that all the stochastic volatility models previously used in the literature are rejected for the index returns. As a consequence, the stock volatility can be well described by the lognormal distribution as its marginal distribution, consistent with the result found in a recent literature (cf Andersen et al (2001a)). However, the index volatility does not follow the lognormal distribution as its marginal distribution.

JEL classification: C22, C52, G12

Key words: Auxiliary Model; Box-Cox Transformation; GARCH; EMM; Stochastic Volatility; Structural Model.

\(^*\)We have benefited greatly from conversations with Ronald Gallant, Genshiro Kitagawa and Xibin Zhang, and from comments and suggestions of Charles Corrado, Steve Heston, Neil Shephard and Yiu Kuen Tse. The first author gratefully acknowledges financial support from the Royal Society of New Zealand Marsden Fund under number 01-UOA-015. This research was started while the first author was visiting National University of Singapore in 2001 and he would like to thank Department of Economics at National University of Singapore for hospitality. We also thank Calvin Chan and Shirley Huang for computing support.

\(^†\)Department of Economics, University of Auckland, Private Bag 92019, Auckland, New Zealand; email: j.yu@auckland.ac.nz

\(^‡\)Department of Economics, National University of Singapore, Singapore; email: ecsyzl@nus.edu.sg
1 Introduction

Modeling the volatility of financial time series via stochastic volatility (SV) models has received a great deal of attention in the theoretic finance literature as well as in the empirical finance literature. Prices of options based on SV models are shown to be more accurate than those based on the Black-Scholes model (see, for example, Melino and Turnbull (1990)). Moreover, the SV model offers a powerful alternative to GARCH-type models to explain the well documented time varying volatility. Empirical successes of the lognormal SV model relative to GARCH-type models are documented in Danielsson (1994), Geweke (1994), and Kim, Shephard and Chib (1998) in terms of in-sample fitting, and in Yu (2001) in terms of out-of-sample forecasting.

In the theoretical finance literature on option pricing, the SV model is often formulated in terms of stochastic differential equations. For instance, Wiggins (1987), Chesney and Scott (1989), and Scott (1991) specify the following model for the asset price $P(t)$ and the corresponding volatility $\sigma^2(t)$,

$$dP(t)/P(t) = \alpha dt + \sigma(t)dB_1(t),$$ \hspace{1cm} (1.1)

$$d\ln \sigma^2(t) = \lambda(\xi - \ln \sigma^2(t))dt + \gamma dB_2(t),$$ \hspace{1cm} (1.2)

where $B_1(t)$ and $B_2(t)$ are two standard Brownian motions.

In the empirical literature, the above continuous time model is often discretized. The discrete time SV model may be obtained, for example, via the Euler-Maruyama approximation. The approximation, after a location shift and reparameterization, leads to the so-called lognormal SV model given by

$$X_t = \sigma_t e_t,$$ \hspace{1cm} (1.3)

$$\ln \sigma_t^2 = \mu + \phi(\ln \sigma_{t-1}^2 - \mu) + \sigma v_t,$$ \hspace{1cm} (1.4)

where X_t is a continuously compounded return and e_t, v_t are two uncorrelated sequences of independent and identically distributed (iid) $N(0, 1)$ random variables. The above model is equivalently represented, in a majority of empirical literature, by

$$X_t = \exp(\frac{1}{2}h_t)e_t,$$ \hspace{1cm} (1.5)
\[h_t = \mu + \phi(h_{t-1} - \mu) + \sigma v_t. \] (1.6)

The most widely used SV model is the lognormal model built upon the models of Clark (1973) and Tauchen and Pitt (1983) and first introduced by Taylor (1982, 1986 and 1994) (cf. Andersen (1994)). One implication of its specification is that the marginal distribution of logarithmic volatility is normal. This assumption has very important implications for financial economics and risk management.

Alternative SV models have appeared in the theoretical literature as well as in the empirical literature. For example, Stein and Stein (1991) and Johnson and Shanno (1987) assume \(\sigma(t) \) follows, respectively, an Ornstein-Uhlenbeck process and a geometric Brownian motion, while Hull and White (1987) and Heston (1993) assume a geometric Brownian motion and a square-root process for \(\sigma^2(t) \). In the discrete time case, various SV models can be regarded as generalizations to corresponding GARCH models. For example, a polynomial SV model is a generalization of GARCH(1,1) (Bollerslev (1986)) while a square root polynomial SV model is a generalization of standard deviation (SD)-GARCH(1,1). Andersen (1994) introduces a general class of SV models, of which a class of polynomial SV models has been emphasized. This class encompasses most of the discrete time SV models in the literature. Other more recent classes of SV models include those described by Barndorff-Nielsen and Shephard (2001b) and by Meddahi (2001).

Despite all these alternative specifications, there is a lack of procedure for selecting appropriate functional form for the stochastic volatility.\footnote{It is well known that a GARCH process converges to a relevant stochastic volatility process (Nelson, 1990). A specification test based on a GARCH family can be suggestive of an appropriate stochastic volatility specification; see for example, Hentschel (1995). Such a test, however, is by no mean a direct test of stochastic volatility specifications.} The specification of correct stochastic volatility function, on the other hand, is very important in several respects. First, different functional forms lead to different formulae for option pricing. Misspecification of the stochastic volatility function can result in incorrect option prices. Second, the marginal distribution of volatility depends upon the function form of the stochastic volatility.

In this paper, we propose a new class of SV models, namely, nonlinear SV models. Like the class of Andersen (1994), it includes as special cases many discrete time SV
models that have appeared in the literature. It overlaps with but does not encompass the
class of Andersen. An advantage of our proposed class is the ease with which different
specifications on stochastic volatility can be tested. In fact, the specification test is based
on a single parameter. Another advantage of our proposed class is that, as a byproduct
of this general way of modeling stochastic volatility, one obtains the functional form of
transformation which induces marginal normality of volatility. Section 2 presents this
class of nonlinear SV models. In Section 3, we use an efficient method of moments
(EMM) approach to estimate the proposed class of models. In Section 4, the class is
fitted to daily observations on an individual stock return and a stock index return and
in Section 5 we present conclusions and possible extensions.

2 A Class of Nonlinear SV Models

The lognormal SV model specifies that the logarithmic conditional variance follows an
AR(1) process. However, this relationship may not always be warranted by the data.
A natural generalization to this relationship is to allow a general (nonlinear) smooth
function of conditional variance to follow an AR(1) process. That is,

\[
X_t = \sigma_t e_t, \quad (2.7)
\]

\[
h(\sigma_t^2, \delta) = \mu + \phi [h(\sigma_{t-1}^2, \delta) - \mu] + \sigma v_t, \quad (2.8)
\]

where \(e_t\) and \(v_t\) are two uncorrelated \(N(0,1)\) sequences, and \(h\) is a smooth function
indexed by a parameter \(\delta\). A nice choice of this function is the Box-Cox power function
(Box and Cox (1964)):

\[
h(t, \delta) = \begin{cases}
(t^\delta - 1)/\delta, & \text{if } \delta \neq 0, \\
\log t, & \text{if } \delta = 0.
\end{cases} \quad (2.9)
\]

As the function \(h\) is specified as a general nonlinear function, the model is thus termed
in this paper the nonlinear SV model. Several attractive features of this new class of
SV models include: i) as we will show below it includes the lognormal SV model and the
other “classical” SV model as special cases, ii) it adds great flexibility on the functional
form, and iii) it allows a simple test for the lognormal SV specification, i.e., a test of
$H_0: \delta = 0$, and some other “classical” SV specifications. If we write $h_t = h(\sigma_t^2, \delta)$, then we can re-write the nonlinear SV models as

$$X_t = \left[g(h_t, \delta)\right]^{1/2} \epsilon_t, \quad (2.10)$$

$$h_t = \mu + \phi(h_{t-1} - \mu) + \sigma v_t, \quad (2.11)$$

where $g(h_t, \delta)$ is the inverse Box-Cox transformation of the form

$$g(h_t, \delta) = \begin{cases} (1 + \delta h_t)^{1/\delta}, & \text{if } \delta \neq 0, \\ \exp(h_t), & \text{if } \delta = 0. \end{cases} \quad (2.12)$$

Equivalently we can re-write them in a form of

$$X_t = \sigma_t \epsilon_t, \quad (2.13)$$

$$\frac{(\sigma_t^2)^{\delta} - 1}{\delta} = \mu + \phi\left[\frac{(\sigma_{t-1}^2)^{\delta} - 1}{\delta} - \mu\right] + \sigma v_t. \quad (2.14)$$

Denote the parameters of interest by $\theta = (\mu, \delta, \phi, \sigma)$.

The idea of our proposed SV models is similar to that made in Higgins and Bera (1992) from the linear ARCH model (Engle (1982)) to the nonlinear ARCH (NARCH) model. Obviously, our model provides a stochastic volatility generalization of a nonlinear GARCH(1,1) model.

It can be seen as $\delta \to 0$, $(1 + \delta h_t)^{1/(2\delta)} \to \exp(0.5 h_t)$ and $\frac{(\sigma^2)^{\delta} - 1}{\delta} \to \ln \sigma_t^2$. Hence the proposed nonlinear SV model includes the lognormal SV model as a special case. If $\delta = 1$, the variance equation (2.14) becomes

$$\sigma_t^2 = \mu' + \phi(\sigma_{t-1}^2 - \mu') + \sigma v_t, \quad (2.15)$$

where $\mu' = \mu + 1$. This is a polynomial SV model in Andersen (1994). According to this specification, volatility follows a normal distribution as its marginal distribution. If $\delta = 0.5$, the variance equation (2.14) becomes

$$\sigma_t = \mu'' + \phi(\sigma_{t-1} - \mu'') + 0.5 \sigma v_t, \quad (2.16)$$

where $\mu'' = 0.5 \mu + 1$. This is a square root polynomial SV model in Andersen (1994) and can be regarded as a discrete time version of the continuous time SV model in Stein...
and Stein (1991). As a result, the marginal distribution of the square root of volatility is Gaussian. For a general \(\delta \), however, our model is different from any polynomial SV model and \(\delta \) provides some idea about the degree of departure from a “classical” parametric SV model. See Figure 1 for the comparison of the square root of inverse Box-Cox transformation, \((1 + \delta h_t)^{1/\delta}\), for various values of \(\delta \) over the interval \([-2, 2]\), a possible range that actual \(h_t \) may lie within in the framework of lognormal SV model.

The Box-Cox transformation has been applied in various areas in time series econometrics. One of the most relevant applications to our work may be that proposed by Higgins and Bera (1992) who introduce the nonlinear ARCH model. Another relevant application is Hentschel (1995) who introduces a family of GARCH models by applying the Box-Cox transformation to the conditional standard deviation. Other applications include Granger and Newbold (1976), Hopwood, McKeown and Newbold (1984), Pankratz (1987) and Guerrero (1993). A nice feature of our proposed class is that it provides a simple way to test the null hypothesis of polynomial SV specifications, including the lognormal SV specification, against a variety of non-polynomial alternatives. In fact, this specification test is based entirely on a single parameter, \(\delta \). Moreover, as a consequence of specification testing, our proposed class provides an effective channel to check the marginal distribution of unobserved volatility. Therefore, our method serves as an alternative approach to studying marginal distribution of daily volatility from that which appeared in a recent literature based on ultra-high frequency data (cf Andersen et al (2001a, b)).

To conclude this section, we establish some basic properties of the proposed class of SV models. It is easy to see that \(h_t \) is stationary and ergodic if \(\phi < 1 \) and that if so

\[
\mu_h \equiv E(h_t) = \mu, \quad \sigma_h^2 \equiv Var(h_t) = \frac{\sigma^2}{1 - \phi}, \quad \text{and} \quad \rho(\ell) \equiv Corr(h_t, h_{t-\ell}) = \phi^\ell.
\]

It follows that \(X_t \) is stationary and ergodic as it is the product of two stationary and ergodic processes. For the moments of \(X_t \), a distributional constraint has to be imposed on \(v_t \) or \(h_t \). As \(\sigma_h^2 \) is nonnegative, the exact normality of \(v_t \) is incompatible unless \(\delta = 0 \) or \(1/\delta \) is an even integer.\(^2\) Although our experience suggests that, in terms of

\(^2\)This is the well known truncation problem with the Box-Cox power transformation. The truncation effect is negligible if \(\delta \sigma_h/(1 + \delta \mu) \) is small, which is achieved when i) \(\delta \) is small, or ii) \(\mu \) is large, or iii) \(\sigma_h \) is small. See Yang (1999) for a discussion on this.
parameter estimation, the assumption of the exact normality of \(\nu_t \) works well for all the empirically possible values of \(\delta \) that we have encountered, to derive some theoretical results, we assume in general that \(u_t = \sigma_t^2 = (1 + \delta h_t)^{1/\delta} \) follows a generalized lognormal distribution as defined in Chen (1995) with pdf

\[
f(u_t; \delta, \mu, \sigma_h) = \begin{cases}
\sigma_h^{-1} \psi([u_t(\delta) - \mu] / \sigma_h) u_t^{k-1} / \Psi(\theta), & \text{if } \delta > 0, \\
\sigma_h^{-1} \psi([u_t(\delta) - \mu] / \sigma_h) u_t^{k-1}, & \text{if } \delta = 0, \\
\sigma_h^{-1} \psi([u_t(\delta) - \mu] / \sigma_h) u_t^{k-1} / \Psi(-\theta), & \text{if } \delta < 0,
\end{cases}
\]

where \(u_t(\delta) \) is the Box-Cox power transformation of \(u_t \), and \(\psi \) and \(\Psi \) are, respectively, the standard normal pdf and cdf with \(\theta = (1 + \delta \mu) / \delta \sigma_h \). Chen (1995) shows that

If \(\delta = 0 \), \(E(u_t^k) = \exp(k \mu + \frac{1}{2} k^2 \sigma_h^2), k = 1, 2, \ldots, \)

If \(\delta > 0 \), \(E(u_t^k) = \frac{1}{\sqrt{2\pi}} \int_0^\infty \exp(-\frac{1}{2} v^2) [1 + \delta (\mu + \sigma_h v)]^{k/\delta} dv < \infty \), for \(k = 1, 2, \ldots, \)

If \(\delta < 0 \), \(E(u_t^k) = \frac{1}{\sqrt{2\pi}} \int_\infty^0 \exp(-\frac{1}{2} v^2) [1 + \delta (\mu + \sigma_h v)]^{k/\delta} dv < \infty \), iff \(\delta < -k \).

Combining Chen’s results with Gaussianity of \(\epsilon_t \) and independence between \(\epsilon_t \) and \(\nu_t \), moments of \(X_t \) can easily be found. In particular, all the odd moments are zero and the even moments are

\[
E(X_t^k) = E(u_t^{k/2}) E(\epsilon_t^k) = \frac{k!}{2^{k/2}(k/2)!} E(u_t^{k/2}), k = 2, 4, \ldots.
\]

As a result, the expression for kurtosis is easily derived. Of particular interest are cases where \(1/\delta \) is a positive, even integer, which give rise to some polynomial SV models of Anderson (1994). In these cases, no truncation is necessary and exact normality assumption can be given to the distribution of \(\nu_t \). Under Gaussianity of \(\nu_t \), we have \(h_t \sim N(\mu, \sigma_h^2) \), and hence \(1 + \delta h_t \sim N(1 + \delta \mu, \delta^2 \sigma_h^2) \). The recursive formulas of Katz (1999) can be used for finding the moments of \(u_t \) as well as the product moments of \(u_t \) and \(u_{t-\ell} \), which can then be converted to give moments and product moments for the \(X_t \) process. Define

\[
\gamma(i, j) = E(Z_i Z_j^2), i, j = 0, 1, \ldots,
\]

where \(Z_1 \) and \(Z_2 \) are two normal random variables with means \(\mu_1 \) and \(\mu_2 \), standard deviations \(\sigma_1 \) and \(\sigma_2 \), and the correlation coefficient between them \(\rho \). The recursive
The square root polynomial SV model. When $\delta = 0.5$, the model for the conditional variance becomes $u_t = (1 + 0.5h_t)^2$, which is a squared normal random variable. Let $Z_1 = 1 + 0.5h_t$ and $Z_2 = 1 + 0.5h_{t-1}$. Then, we have $\mu_1 = \mu_2 = 1 + \mu/2$, $\sigma_1^2 = \sigma_2^2 = \sigma^2/4$ and $\rho = \phi^2$. The odd moments of X_t are zero. The even moments can be found from the expression of $\gamma(i, 0)$. In particular,

$$E(X_t^2) = (1 + \mu/2)^2 + \sigma^2/4, \quad E(X_t^4) = 3[(1 + \mu/2)^4 + (1 + \mu/2)^2\sigma^2/2 + 3\sigma^4/16].$$

Further, the autocorrelation function of X_t^2 is found using expressions of $\gamma(4, 0)$ and $\gamma(2, 2)$, which is

$$\frac{(1 + \mu/2)^4 + (1 + \mu/2)^2\sigma^2\phi^2 + \sigma_1^4\phi^2/8 + \sigma_2^2((1 + \mu/2)^2 + \sigma^2/4)}{3[(1 + \mu/2)^4 + (1 + \mu/2)^2\sigma^2/2 + 3\sigma^4/16]}.$$

The lognormal SV model. The moments and dynamic properties of other polynomial SV models with $1/\delta$ an even integer can be found in a similar way (though more tedious) to the above. It should be pointed out that the popular lognormal SV model can also be considered as a special case of the above model with $1/\delta$ being a very large, positive, even integer. Its moment and dynamic properties can be found in Shephard (1996) and Knight, Satchell and Yu (2001).

3 Estimation by Efficient Method of Moments

The literature on estimating SV models is vast. This is in part due to the fact that the likelihood function has no closed form expression for the SV model and hence the
maximum likelihood approach is extremely difficult to implement. As a consequence, the SV model becomes a central example to compare the relative merits of alternative estimation procedures.

To estimate the discrete time SV model, Melino and Turnbull (1990) propose generalized method of moments (GMM) which is further improved by Andersen and Sorensen (1996). For the continuous time SV model, a GMM approach is developed by Hansen and Scheinkman (1995). The idea behind GMM is to match a number of sample moments with model moments. Harvey, Ruiz and Shephard (1994) and Ruiz (1994) suggest the quasi maximum likelihood (QML) approach. The main idea is to approximate non-normal disturbances by normal disturbances and then maximize the Gaussian likelihood function. Observing that the joint and conditional characteristic functions of the SV model have closed form expression, Yu (1998), Knight, Satchell and Yu (2001) proposed to estimate the discrete time SV model via the empirical characteristic function, while Singleton (2001) and Jiang and Knight (2001) use the empirical characteristic function method to estimate the continuous time SV model. More efficient estimation methods involve the whole family of simulation based methods. These include the simulated maximum likelihood method proposed by Danielson and Richard (1993) and Danielsson (1994); the Markov Chain Monte Carlo (MCMC) method proposed by Jacquier, Polson and Rossi (1994) and improved by Kim et al (1998); the maximum likelihood Monte Carlo (Sandmann and Koopman (1998)); the simulation method using important sampling and antithetic variables proposed by Durbin and Koopman (2000); and the efficient method of moments (EMM) procedure by Gallant and Tauchen (1996).

The relative merits of the alternative methods depend not only on the finite sample efficiency but also on the flexibility to adapt to modifications of model specification. Moreover, in the framework of SV models, a good method should also allow one to extract the unobserved volatility model with a low cost and to do simple but useful model diagnostics. Judged by these criteria, EMM is our choice for inferences since it provides a flexible and reasonably efficient approach to analyzing the SV model. The asymptotic efficiency of EMM is provided in Gallant and Tauchen (1996) for Markov processes, and Gallant and Long (1997) and Tauchen (1997) for non-Markov processes. Andersen, Chung and Sorensen (1999) document a finite sample comparison of various
methods for estimating the lognormal SV model in Monte Carlo studies and find that the EMM procedure performs quite well in comparison with other estimation procedures. Gallant, Hsieh, and Tauchen (1997) and Gallant and Tauchen (2001c) discuss flexibility of modeling modifications of the SV model. Using a nonlinear Kalman filtering technique, Gallant and Tauchen (1998) propose a reprojection method to infer the unobserved state vector. One advantage of the EMM approach lies in its diagnostics. For example, it allows for a model diagnostic suggestive of the dimension along which the model may be inadequate and provides simple overall model specification checking (cf Gallant and Tauchen (1996) and Tauchen (1997)).

EMM is first introduced by Gallant and Tauchen (1996) and has now found many successful applications in economics and finance; see Gallant and Tauchen (2001a) for a brief review of the literature. It is closely related to GMM of Hansen (1982). An important difference between them is that while GMM relies on an ad hoc chosen set of moment conditions, EMM is based on a judiciously chosen set of moment conditions. The moment conditions EMM employs is the expectation of the score of an auxiliary model which is often referred to as the score generator.

Let the SV model of interest be the structural model. The conditional density of the structural model is defined by

\[p_t(x_t|y_t, \theta), \]

where the true value of \(\theta \) is \(\theta_0 \) and \(\theta_0 \in \Theta \subset \mathbb{R}^{\ell_\theta} \) with \(\ell_\theta \) being the length of \(\theta_0 \). Denote the conditional density of an auxiliary model by

\[f_t(x_t|w_t, \beta), \beta \in \mathbb{R}^{\ell_\beta} \]

where \(y_t \) and \(w_t \) are vectors of lagged \(x_t \) and they may differ in length. Further define the expected score of the auxiliary model under the structural model as

\[m(\theta, \beta) = \int \cdots \int \frac{\partial}{\partial \beta} \ln f(x|w, \beta)p(x|y, \theta)dx p(y|\theta)dy. \]

Obviously, in the context of the SV model, the integration cannot be solved analytically since \(p(y|\theta) \) does not have a closed form expression. However, it is easy to simulate from an SV model so that one can approximate the integral by Monte Carlo simulations.
That is
\[m(\theta, \beta) \approx m_n(\theta, \beta) = \frac{1}{N} \sum_{r=1}^{N} \frac{\partial}{\partial \beta} \ln f(\hat{x}_r(\theta)|w_r(\theta), \beta), \]
where \(\hat{x}_r \) is simulated from the structural model. The EMM estimator is a minimum chi-squared estimator which minimizes the following quadratic form,
\[\hat{\theta}_n = \arg \min_{\theta \in \Theta} m'_n(\theta, \hat{\beta}_n)(I_n)^{-1} m_n(\theta, \hat{\beta}_n), \]
where \(\hat{\beta}_n \) is a quasi maximum likelihood estimator of the auxiliary model and \(I_n \) is an estimate of \(I_0 = \text{Var}(\sqrt{n} \frac{\partial}{\partial \theta} m_n(\theta, \beta)) \). Under regularity conditions, Gallant and Tauchen (1996) show that the EMM estimator is consistent and has the following asymptotic normal distribution,
\[\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} N(0, \frac{\partial}{\partial \theta} m(\theta_0, \beta^*)^{-1} \frac{\partial}{\partial \theta'} m(\theta_0, \beta^*)), \]
where \(\beta^* \) is the pseudo true value of \(\beta \).

For specification testing, we have
\[J_n = mm'_n(\hat{\theta}_n, \hat{\beta}_n)(I_n)^{-1} m_n(\hat{\theta}_n, \hat{\beta}_n) \xrightarrow{d} \chi^2_{I(\beta - \theta_0)} \]
under the null hypothesis that the structural model is correct. When a model fails the above specification test one may wish to examine the quasi-t-ratios and/or t-ratios to look for some suggestion as to what is wrong with the structural model. The quasi-t-ratios are defined as
\[T_n = S_n^{-1} \sqrt{m}(\hat{\theta}_n, \hat{\beta}_n) \]
where \(S_n = [\text{diag}(I_n)]^{1/2} \). It is well known that the elements of \(T_n \) are downward biased in absolute value. To correct the bias one can use the t-ratios defined by
\[T_n = Q_n^{-1} \sqrt{m}(\hat{\theta}_n, \hat{\beta}_n) \]
where
\[Q_n = \left(\text{diag} \left\{ I_n - \frac{\partial}{\partial \theta'} m_n(\hat{\theta}_n, \hat{\beta}_n)[m'_n(\hat{\theta}_n, \hat{\beta}_n)(I_n)^{-1} m_n(\hat{\theta}_n, \hat{\beta}_n)]^{-1} \frac{\partial}{\partial \theta} m_n(\hat{\theta}_n, \hat{\beta}_n) \right\} \right)^{1/2}. \]
Large quasi-t-ratios and t-ratios reveal the features of the data that the structural model cannot approximate.
Furthermore, Gallant and Tauchen (1996) show that if the auxiliary model nests the data generating process, under regularity conditions the EMM estimator has the same asymptotic variance as the maximum likelihood estimator and hence is fully efficient. If the auxiliary model can closely approximate the data generating process, the EMM estimator is nearly fully efficient (Gallant and Long (1997) and Tauchen (1997)).

To choose an auxiliary model, the seminonparametric (SNP) density proposed by Gallant and Tauchen (1989) can be used since its success has been documented in many applications. As to SNP modeling, six out of eight tuning parameters are to be selected, namely, \(L_u, L_g, L_r, L_p, K_z, \) and \(K_y \). The other two parameters, \(I_z \) and \(I_x \), are irrelevant for univariate time series and hence set to be 0. \(L_u \) determines the location transformation whereas \(L_g \) and \(L_r \) determine the scale transformation. Altogether they determine the nature of the leading term of the Hermite expansion. The other two parameters \(K_z \) and \(K_y \) determine the nature of the innovation. To search for a good auxiliary model, one can use the Schwarz BIC criterion to move along an upward expansion path until an adequate model is found, as outlined in Bansal, Gallant, Hussey and Tauchen (1995). To preserve space we refer readers to Gallant and Tauchen (2001b) for further discussion about the role of the tuning parameters and how to design an expansion path to choose them.

4 Empirical Applications

In this section we consider two applications using an individual stock price series and a stock index series. The stock price data consist of 3,778 observations on the daily price of a share of Microsoft, adjusted for stock split, for the period from March 13, 1986 to February 23, 2001. The same data have been used in Gallant and Tauchen (2001a) to fit a continuous time SV model. The stock index data consist of 4044 observations on 100 times the log-first difference of the daily S&P 500 index for the period from January 4, 1977 to December 31, 1992. The same data have been used in Gallant and Tauchen (2001a) to fit the SV model of Clark (1973). Let \(P_t \) represent the stock price of Microsoft at period \(t \). Define the daily return \(X_t \) as \((\ln P_t - \ln P_{t-1})\times 100\). There are 3,777 observations for Microsoft return data.
Figure 2 displays the two return series and Table 1 reports some descriptive statistics for them. From Table 1, it can be seen that, from the maximums, minimums and variance, the Microsoft returns are more volatile than the S&P500 returns. However, the distribution of Microsoft returns is less lep kurtotic than that of S&P500 returns.

Neither return series is mean-adjusted. To allow for a possible no-zero mean and also some dynamics in the mean equation, we introduce an AR(1) structure in the mean equation. As a consequence, we fit the following two models to each of the return series:

\[X_t = \mu_0 + c(X_{t-1} - \mu_0) + \exp\left(\frac{1}{2}h_t\right)e_t, \]
\[h_t = \mu + \phi(h_{t-1} - \mu) + \sigma u_t; \]

and

\[X_t = \mu_0 + c(X_{t-1} - \mu_0) + (1 + \delta h_t)^{\frac{1}{2\delta}}e_t, \]
\[h_t = \mu + \phi(h_{t-1} - \mu) + \sigma u_t. \]

We call them the lognormal SV model and the proposed SV model respectively.

The same sets of tuning parameters in the SNP model are employed as in Gallant and Tauchen (2001a), since identical datasets are used. We report these tuning parameters in the following order

\((L_u, L_g, L_r, L_p, K_z, I_z, K_y, I_y). \)

To ensure that the chosen SNP model is reasonable, we have compared the BIC value with those from many alternative sets of tuning parameters and find that the BIC value from the chosen SNP model is one of the smallest. The set of the tuning parameters, the corresponding BIC value, the leading term in the Hermite expansion, the characterization of \(X_t \) and the number of parameters in the auxiliary model are presented in Table 2 for both series. A GARCH leading term is used for the Microsoft returns whereas an ARCH leading term is used for the S&P500 returns.

Since the sample sizes for both series are large, we believe that the choice of leading term is not crucial as long as a form of conditional heteroskedasticity has been accommodated. In a Monte Carlo study, Andersen et al (1999) find that the EMM efficiency approaches that of maximum likelihood for larger sample size when various forms of conditional heteroskedasticity are used as the leading term. Moreover, they find that
the EMM-based inferences, such as the t-statistic and J_n statistic, are robust to the choice of auxiliary model in large samples.

Table 3 and Table 4 report the empirical results for Microsoft returns. To ensure a global minimum is obtained, we perturb starting values when minimizing quadratic expression and estimating SNP density. Furthermore, we simulate 100,000 observations from the SV models, of which first 10,000 observations are discarded in order to let the effect from initialization die off. Table 3 reports the estimates, the numerical Wald standard errors, the 95% approximate criterion-difference confidence intervals, the value of statistic J_n, and the degrees of freedom and the p-value of J_n for the lognormal SV model and for the proposed SV model. Table 4 reports the quasi-t-ratios and t-ratios from the score generator for both models.

A few results emerge from these two tables. First, the point estimate of δ in the proposed SV model is -0.0526 which is insignificantly different from 0 but significantly less than 0.5 and 1. Consequently, one cannot reject the lognormal SV model but can comfortably reject the other polynomial SV specifications, including the Stein-Stein SV specification. The marginal distributions of volatility implied from the estimated lognormal and nonlinear models are plotted in Figure 3. It appears that they are quite close to each other. Second, the point estimate of ϕ (0.9476) is close to 1 and in the stationary region when the lognormal model is fitted. In the nonlinear SV model, it decreases to 0.7260. Because ϕ and σ are closely related, a decrease in the estimate of ϕ leads to an increase in the estimate of σ. Third, although our specification test cannot reject the lognormal SV model, the minimum χ^2 criterion provides some evidence against the lognormal specification. One can reject it at the one percent level. This evidence is further reinforced by the diagnostic quasi-t-ratios and t-ratios. There are large t-ratios on the scores corresponding to the polynomial part of the SNP score when the lognormal model is fitted. These t-statistics indicate that $\exp(0.5h_t)$ may not be the correct transformation. When the nonlinear SV model is fitted, although this specification is not statistically significantly different from the lognormal specification, the minimum χ^2 criterion is quite encouraging. One can accept the proposed SV model at the 5 percent level. We are not, of course, suggesting the proposed SV model is completely satisfactory. In fact, one should note that the t-ratios are not entirely clean. However, if we
compare the t-ratios with those from the lognormal model, our model is overall superior. For example, although there are large t-ratios on the scores corresponding to the ARCH part of the SNP score in the nonlinear model, these compare with large t-ratios on the scores corresponding to both the ARCH part and the polynomial part of the SNP score in the lognormal model. Finally, \(\delta \) seems to be more difficult to estimate than other parameters with the Wald standard error being the largest.

Table 5 and Table 6 report the empirical results for S&P500 returns. As for Microsoft returns, we perturb starting values when doing the optimizations. Furthermore, we simulate 101,000 observations from the SV models, of which first 1,000 observations are discarded in order to let transients die out. Table 5 reports the estimates, the numerical Wald standard errors, the 95\% approximate criterion-difference confidence intervals, the value of statistic \(J_n \), and the degrees of freedom and the p-value of \(J_n \) for the lognormal SV model and for the proposed SV model. Table 6 reports the quasi-t-ratios and t-ratios from the score generator for both models.

A few results emerge from these two tables. First and most interestingly, the point estimate of \(\delta \) is \(-0.4597\). It is significantly less than 0 and hence significantly less than 0.5 and 1, although its Wald standard error remains the largest. As a consequence, one has to reject the lognormal SV model and all the other polynomial SV models used in the literature. Observing that \(\delta \) is not significantly different from \(-0.5\), to gain some idea about our estimated results, we approximate \(\delta \approx -0.5 \), plug the estimates into Equation (2.14) and get the following estimated variance equation:

\[
\frac{1}{\sigma_t^2} = 1.2237 + 0.984\left(\frac{1}{\sigma_{t-1}^2} - 1.2237\right) + 0.057\nu_t.
\]

This compares to the estimated variance equation in the lognormal model,

\[
\ln \sigma_t^2 = -0.3425 + 0.9846(\ln \sigma_{t-1}^2 + 0.3425) + 0.1022\nu_t.
\]

The marginal distributions of volatility implied from these two fitted models are plotted in Figure 3. It is evident that these two distributions are not close to each other and hence the lognormal distribution is not a good approximation to the marginal distribution of volatility. Furthermore, as argued in Section 2, in theory, distributional
constrains have to be imposed for general \(\delta \) in the proposed SV models to ensure non-negativeness of \(\sigma_t \). In the empirical applications, however, we still adopt the assumption of exact normality. To understand how restricted this assumption is, we calculate \[\text{Prob}(\sigma_t < 0) = \text{Prob}(1/\sigma_t < 0) \] which turns out to be 0.000065.

Second, the point estimate of \(\phi \) (0.984) is close to 1 and just in the stationary region. In the nonlinear SV model, it remains at a similar level. In fact all the estimated parameters have similar magnitude and similar standard errors across both models. The only exception is \(\mu \) which decreases from 1.4229 to 1.1781. This is because \(\mu \) is closely related to \(\delta \) in the proposed model. Since the estimated \(\delta \) is far away from 0 in the nonlinear SV model, this translates to a large discrepancy between the two estimated \(\mu \)'s. Third, the minimum \(\chi^2 \) criterion provides mild evidence against the lognormal specification. It is rejected at the 5 percent level but accepted at the 1 percent level. The evidence is consistent with the diagnostic quasi-t-ratios and t-ratios. There are large quasi-t-ratios and t-ratios on the scores corresponding the polynomial part of the SNP score. These t-statistics indicate that \(\exp(0.5h_t) \) may not be the correct transformation. When the nonlinear SV model is fitted, the \(p \)-value of \(J_n \) statistic increases by about 80%. One can accept the proposed SV model at the 5% percent level. Furthermore, all the quasi-t-ratios become insignificant in the nonlinear SV model. Although some of the t-ratios on the scores corresponding the polynomial part of the SNP score are still too large, they are clearly smaller than those in the lognormal model.

We can briefly summarize the empirical results. Although the EMM diagnostics suggest that the lognormal SV model cannot adequately capture some features in the Microsoft returns, the specification test based on the proposed nonlinear SV model indicates that the nonlinear specification is not significantly different from the lognormal specification. Therefore, the logarithmic volatility can be well approximated by the normal distribution as its marginal distribution. For S&P500 returns, although the EMM diagnostics only provide mild evidence against the lognormal SV model, the specification test based on the proposed nonlinear SV model rejects it and all the other SV specifications used in the literature. As a consequence, the logarithmic volatility does not follow the normal distribution as its marginal distribution. These results compare interestingly with those reached in Andersen et al (2001a, b), where ultra-
high frequency data are used to calibrate daily volatility via realized volatility and the distribution of daily volatility is then nonparametrically estimated. Andersen et al (2001a) have justified the approach by showing that the realized volatility constructed from ultra-high frequency data converges to daily volatility as the sampling frequency goes to infinity. Despite this appealing theoretical property, more recent studies suggest that the approach via ultra-high frequency data has to be used with caution. For example, Barndorff-Nielsen and Shephard (2001a) find that realized volatility can be a noise estimator of daily volatility even when the sampling frequency is reasonably high. The properties of realized volatility as an estimator of daily volatility are further complicated by microstructure problems in transaction data; see the interesting work of Bai, Russell and Tiao (2000) and Andreou and Ghysel (2001) in this context. Based entirely on the daily observations, not surprisingly, our approach is not subject to these criticisms.

The empirical inadequacy of lognormal SV specification for financial time series has been reported in many other works. Examples include Andersen and Lund (1997) and Gallant and Tauchen (2001c). To improve the overall specification, many extensions have been suggested. Most of these extensions are based on the introduction of a third factor into the structural model. For example, Andersen and Lund (1997) suggest the third factor should be associated with the mean level while Gallant and Tauchen (2001c) make use of another volatility factor. As an alternative way to extend the lognormal SV specification, our proposed SV model stays within the two-factor family and hence is conceptually simpler than three-factor models. Furthermore, the EMM-based diagnostics indicate that our extension is quite encouraging for the data sets that we have considered.

5 Conclusion

In this paper a class of nonlinear stochastic volatility models has been proposed. The new class is based on the Box-Cox power transformation and encompasses many parametric stochastic volatility models which have appeared in the literature, including the well known lognormal stochastic volatility model. There are two advantages of our
proposed class. First, different SV specifications in the literature can be easily tested. Second, the functional form of transformation, which induces marginal normality of volatility, is obtained. The EMM approach of Gallant and Tauchen (1996) is used to estimate model parameters. Empirical applications are performed using an individual stock return series and an index return series. Empirical results show that the lognormal SV model is not rejected for the stock returns but it has to be rejected for the index returns. In fact, our result suggests that all the polynomial stochastic volatility models previously used in the literature are rejected for the index returns. As a result, the daily logarithmic stock volatility is well described by a normal distribution as its marginal distribution, consistent with the results found in a recent literature (Andersen et al (2001a)). However, the daily logarithmic index volatility does not follow the lognormal distribution as its marginal distribution.

One of the important questions in finance is how a superior specification can lead to more accurate option prices. To address this question in the context of nonlinear SV models, one has to first estimate the continuous time SV models. The approach suggested in this paper can be applied. Based on the estimated models, comparison of option prices based on the nonlinear SV models and the “classical” SV models would be of considerable interest. There are some other possible extensions to our work. One possibility is to allow the so-called leverage effect in the SV model. This can be done by introducing a negative correlation between two disturbances (cf Harvey and Shephard (1996) and Meyer and Yu (2000)). Another interesting extension would be to incorporate jumps into the model; see for example Barndorff-Nielsen and Shephard (2001b). Finally, it would be interesting to evaluate the out-of-sample forecasting performances of the nonlinear SV models relative to other models.

References

Table 1: Summary statistics for S&P500 Returns and Microsoft Returns

<table>
<thead>
<tr>
<th></th>
<th>SP500</th>
<th>Microsoft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>4044</td>
<td>3777</td>
</tr>
<tr>
<td>Mean</td>
<td>0.03472</td>
<td>0.1503</td>
</tr>
<tr>
<td>Variance</td>
<td>0.9799</td>
<td>6.4579</td>
</tr>
<tr>
<td>Excess Kurtosis</td>
<td>40.154</td>
<td>14.999</td>
</tr>
<tr>
<td>Maximum</td>
<td>8.2470</td>
<td>17.869</td>
</tr>
<tr>
<td>Minimum</td>
<td>-19.3488</td>
<td>-35.828</td>
</tr>
</tbody>
</table>

Table 2: Tuning parameters for SNP modeling, BIC, Leading Term, Characterization of X_t and the Number of Parameters in the Auxiliary Model

<table>
<thead>
<tr>
<th>Data</th>
<th>Tuning parameter</th>
<th>BIC</th>
<th>Leading term</th>
<th>Characterization of X_t</th>
<th>ℓ_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft</td>
<td>(1, 1, 1, 1, 6, 0, 0, 0)</td>
<td>1.32087</td>
<td>GARCH</td>
<td>Semiparametric GARCH</td>
<td>11</td>
</tr>
<tr>
<td>SP500</td>
<td>(2, 0, 11, 1, 4, 0, 0, 0)</td>
<td>1.32715</td>
<td>ARCH</td>
<td>Semiparametric ARCH</td>
<td>19</td>
</tr>
</tbody>
</table>
Table 3: Parameter estimates, standard errors, confidence intervals, χ^2 criterion for Microsoft

<table>
<thead>
<tr>
<th></th>
<th>Lognormal SV model</th>
<th>Proposed SV model</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_0</td>
<td>0.1683 (0.0313) [0.1080, 0.2315]</td>
<td>0.1821 (0.0320) [0.1811, 0.1954]</td>
</tr>
<tr>
<td>c</td>
<td>0.0278 (0.0174) [-0.0066, 0.0622]</td>
<td>0.0249 (0.0174) [0.0092, 0.0366]</td>
</tr>
<tr>
<td>μ</td>
<td>1.4229 (0.0824) [1.2581, 1.5730]</td>
<td>1.1781 (0.1418) [1.0204, 1.2752]</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9476 (0.0121) [0.9053, 0.9625]</td>
<td>0.7260 (0.0177) [0.7084, 0.7372]</td>
</tr>
<tr>
<td>σ</td>
<td>0.1989 (0.0121) [0.1848, 0.2298]</td>
<td>0.4265 (0.1081) [0.3044, 0.5099]</td>
</tr>
<tr>
<td>δ</td>
<td>NA</td>
<td>-0.0526 (0.1629) [-0.2351, 0.0887]</td>
</tr>
<tr>
<td>χ^2</td>
<td>19.91</td>
<td>11.09</td>
</tr>
<tr>
<td>df</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0029</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Note: The number in parentheses is the standard error. The number in brackets is the confidence interval. The results are based on 100,000 runs with the first 10,000 runs discarded. The lognormal SV model is defined by Equations (4.18) and (4.19). The proposed SV model is defined by Equations (4.20) and (4.21).
Table 4: Quasi-t-ratios and t-ratios for Microsoft

<table>
<thead>
<tr>
<th></th>
<th>Lognormal SV model</th>
<th>Proposed SV model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quasi-t-ratio</td>
<td>T-ratio</td>
</tr>
<tr>
<td>VAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_1</td>
<td>0.108</td>
<td>0.734</td>
</tr>
<tr>
<td>b_2</td>
<td>-0.063</td>
<td>-0.292</td>
</tr>
<tr>
<td>ARCH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r_1</td>
<td>1.022</td>
<td>2.753</td>
</tr>
<tr>
<td>r_2</td>
<td>1.091</td>
<td>2.122</td>
</tr>
<tr>
<td>r_3</td>
<td>1.175</td>
<td>2.577</td>
</tr>
<tr>
<td>SNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_1</td>
<td>0.451</td>
<td>0.707</td>
</tr>
<tr>
<td>s_2</td>
<td>1.924</td>
<td>3.272</td>
</tr>
<tr>
<td>s_3</td>
<td>0.538</td>
<td>0.586</td>
</tr>
<tr>
<td>s_4</td>
<td>3.155</td>
<td>3.813</td>
</tr>
<tr>
<td>s_5</td>
<td>0.187</td>
<td>0.202</td>
</tr>
<tr>
<td>s_6</td>
<td>2.981</td>
<td>3.543</td>
</tr>
</tbody>
</table>

Note: The VAR and ARCH quasi-t-ratios and t-ratios correspond to the conditional mean equation and conditional variance equation of the SNP specification, respectively. The SNP quasi-t-ratios and t-ratios correspond to the coefficients of the polynomial of the SNP specification.
Table 5: Parameter estimates, standard errors, confidence intervals, χ^2 criterion for S&P500

<table>
<thead>
<tr>
<th></th>
<th>Lognormal SV model</th>
<th>Proposed SV model</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_0</td>
<td>0.0389 (0.0136) [0.0123, 0.0651]</td>
<td>0.0387 (0.0137) [0.0122, 0.0650]</td>
</tr>
<tr>
<td>c</td>
<td>0.0880 (0.0159) [0.0583, 0.1179]</td>
<td>0.0875 (0.0158) [0.0579, 0.1177]</td>
</tr>
<tr>
<td>μ</td>
<td>-0.3425 (0.0613) $[-0.4593, -0.2291]$</td>
<td>-0.4474 (0.0812) $[-0.5066, -0.3441]$</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.9846 (0.0120) [0.9657, 0.9966]</td>
<td>0.9840 (0.0106) [0.9736, 0.9946]</td>
</tr>
<tr>
<td>σ</td>
<td>0.1022 (0.0456) [0.0566, 0.1719]</td>
<td>0.1140 (0.0405) [0.0734, 0.1532]</td>
</tr>
<tr>
<td>δ</td>
<td>NA</td>
<td>-0.4597 (0.1807) $[-0.6316, -0.2885]$</td>
</tr>
<tr>
<td>χ^2</td>
<td>25.01</td>
<td>21.65</td>
</tr>
<tr>
<td>df</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>p-value</td>
<td>0.034</td>
<td>0.061</td>
</tr>
</tbody>
</table>

Note: The number in parentheses is the standard error. The number in brackets is the confidence interval. The results are based on 101,000 runs with the first 1,000 runs discarded. The lognormal SV model is defined by Equations (4.18) and (4.19). The proposed SV model is defined by Equations (4.20) and (4.21).
Table 6: Quasi-t-ratios and t-ratios for S&P500

<table>
<thead>
<tr>
<th></th>
<th>Lognormal SV model</th>
<th>Proposed SV model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Quasi-t-ratio</td>
<td>T-ratio</td>
</tr>
<tr>
<td>VAR</td>
<td>b₁</td>
<td>-0.096</td>
</tr>
<tr>
<td></td>
<td>b₂</td>
<td>-1.243</td>
</tr>
<tr>
<td></td>
<td>b₃</td>
<td>-0.446</td>
</tr>
<tr>
<td>ARCH</td>
<td>r₁</td>
<td>0.781</td>
</tr>
<tr>
<td></td>
<td>r₂</td>
<td>0.627</td>
</tr>
<tr>
<td></td>
<td>r₃</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>r₄</td>
<td>1.122</td>
</tr>
<tr>
<td></td>
<td>r₅</td>
<td>1.053</td>
</tr>
<tr>
<td></td>
<td>r₆</td>
<td>0.253</td>
</tr>
<tr>
<td></td>
<td>r₇</td>
<td>0.066</td>
</tr>
<tr>
<td></td>
<td>r₈</td>
<td>1.032</td>
</tr>
<tr>
<td></td>
<td>r₉</td>
<td>0.881</td>
</tr>
<tr>
<td></td>
<td>r₁₀</td>
<td>0.549</td>
</tr>
<tr>
<td></td>
<td>r₁₁</td>
<td>-0.243</td>
</tr>
<tr>
<td></td>
<td>r₁₂</td>
<td>0.257</td>
</tr>
<tr>
<td>SNP</td>
<td>s₁</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>s₂</td>
<td>0.977</td>
</tr>
<tr>
<td></td>
<td>s₃</td>
<td>0.205</td>
</tr>
<tr>
<td></td>
<td>s₄</td>
<td>2.303</td>
</tr>
</tbody>
</table>

Note: The VAR and ARCH quasi-t-ratios and t-ratios correspond to the conditional mean equation and conditional variance equation of the SNP specification, respectively. The SNP quasi-t-ratios and t-ratios correspond to the coefficients of the polynomial of the SNP specification.
Figure 1: Inversion Box-Cox Transformation for Various Values of δ
Figure 2: Time Series Plots for Microsoft Returns and S&P500 Returns
Figure 3: Marginal Densities of Volatility