
 

 

http://researchspace.auckland.ac.nz 
 

ResearchSpace@Auckland 
 

Copyright Statement 
 
The digital copy of this thesis is protected by the Copyright Act 1994 (New 
Zealand).  
 
This thesis may be consulted by you, provided you comply with the 
provisions of the Act and the following conditions of use: 
 

� Any use you make of these documents or images must be for 
research or private study purposes only, and you may not make 
them available to any other person. 

� Authors control the copyright of their thesis. You will recognise the 
author's right to be identified as the author of this thesis, and due 
acknowledgement will be made to the author where appropriate. 

� You will obtain the author's permission before publishing any 
material from their thesis. 

 
To request permissions please use the Feedback form on our webpage. 
http://researchspace.auckland.ac.nz/feedback 
 

General copyright and disclaimer 
 
In addition to the above conditions, authors give their consent for the 
digital copy of their work to be used subject to the conditions specified on 
the Library Thesis Consent Form and Deposit Licence. 
 

Note : Masters Theses  
 
The digital copy of a masters thesis is as submitted for examination and 
contains no corrections. The print copy, usually available in the University 
Library, may contain corrections made by hand, which have been 
requested by the supervisor. 
 

https://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
https://researchspace.auckland.ac.nz/docs/uoa-docs/depositlicence.htm


Simulation Optimisation and

Markov Models for Dynamic

Ambulance Redeployment

Lei Zhang

A thesis submitted in fulfilment of the requirements for the degree of Doctor of

Philosophy in Engineering Science

The University of Auckland

2012

0_frontmatter/figures/empty.eps


Abstract

The study of dynamic ambulance redeployment, also known as move-up or sys-

tem status management, is the main concern of this investigation. Move-up

is a practice of dynamically deciding stand-by locations for free ambulances in

attempt to achieve quick response times.

In the first part of the investigation, we study optimal move-up policies based

on three small-scale Markov models to gain insights. The first Markov model

considers one ambulance and aims to maximise the benefit of move-up for just

the next call. The second Markov model still considers one ambulance, but

aims to maximise the average benefit per unit time over an infinite horizon.

The third Markov model extends the second Markov model by considering two

ambulances. Numerical experiments are used to gain insights into optimal move-

up policies based on the three models.

In the second part of the investigation, we present three move-up models for

realistic-sized problems. The first two of these models extend existing work

by proposing a new simulation-based optimisation algorithm. The third move-

up model is a new integer programming model which incorporates some of the

insights obtained from the small-scale Markov models. Simulation-based numer-

ical optimisation is employed to tune the model parameters and consequently,

the model can also be viewed as an approximate dynamic programming model.

Artificial call data generated for the city of Auckland, New Zealand, are used

for computational experiments. We find that when move-up is performed ap-

propriately, it can significantly improve the system performance. Moreover, the

integer program proposed in this work gives the best performance.
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1

Introduction

1.1 Background and Motivation

Emergency medical services (EMS) are organisations that are dedicated to providing acute

medical care on site and/or transport to hospitals for follow-up evaluation. The core of EMS

operations is the response process for each emergency call. Undoubtedly, timely response

to an emergency call is the essence of planning EMS operations. When a patient suffers a

cardiac attack, the chance of survival decreases by 10% every minute until care is received

[1]. Therefore, it is not surprising that almost all performance targets EMS providers are

contracted to meet have response time taken into account; response time is the duration

from when a call is received until ambulance crew reach the accident scene. For example,

a common performance target in North America is to have response times below 9 minutes

for at least 90% of calls related to life-threatening conditions [18].

Planning EMS operations involves many interrelated decisions. These are classified at

three different levels: (1) strategic decisions involve location and construction of fixed facil-

ities, the purchase of equipment, and the hiring and training of specialised staff; (2) tactical

decisions involve staff scheduling, ambulance stand-by locations and dispatch policies; and

(3) operational decisions involve procedures to be followed by ambulance crew depending

on the nature of calls.

Improving the design and operations of EMS systems has attracted much attention from

operations research practitioners for many years. The primary reason is the importance

of high-quality EMS operations to society; in addition, EMS systems are typically com-

plex and involve uncertainties with respect to many aspects, which present interesting and

challenging mathematical problems.

1



1. INTRODUCTION

The core of EMS operations is the response process for each emergency call; a typical

one is described in Figure 1.1. When an emergency call is received, a dispatcher chooses an

ambulance (waiting at/returning to a stand-by location) to respond to the call; typically,

the ambulance closest to the accident scene is dispatched.

Once the ambulance crews reach the scene, they perform an initial at-scene treatment

of the patient. If no more medical care is required then the ambulance becomes free at the

scene, and travels to a stand-by location, e.g. an ambulance base. More typically, however,

transportation is required to a hospital and the ambulance travels to a stand-by location

after completing a patient ‘hand-over’. The duration from when a call is received until the

dispatched ambulance completes service/becomes free is referred to as service time. It is

easy to see that response time is part of service time.

This response process can be complicated by dispatch delay, mobilisation delay, calls

of different priorities, ambulances with different capabilities, the need to dispatch multiple

ambulances to some high priority calls, the use of lights and sirens for some calls to reduce

travel times, and the possible diversion of an ambulance from one call to a higher priority

one, etc. Dispatch delay refers to time spent on the phone gathering information and time

taken to notify the ambulance crew. Mobilisation delay refers to time taken for the crew

to reach the ambulance and prepare for departure. Mobilisation delay is often associated

with ambulances that are standing by at ambulance bases; ambulances may also stand by

at street corners or drive on the road before getting dispatched in which case mobilisation

delay is typically zero.

Clearly, stand-by locations of ambulances have a major impact on response times and

the research on designing ambulance location policies in order to respond to calls in a timely

manner has been active since at least the 1970’s. An ambulance location policy determines

the stand-by location of each ambulance. A common ambulance location policy is to have

every ambulance return to its pre-determined ‘home base’ at the conclusion of every call;

this is known as a static ambulance location policy. In the past, this approach has been

popular and is still used by some today.

Two static models, which are considered as the cornerstones in this research area, are

2



1.1 Background and Motivation

Receive a call

Dispatch an 
ambulance

Ambulance 
arrives at 

scene

Treat patient 
at scene

Travel to 
hospital

Hand over at 
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becomes free

Response 
time

Service 
time

Travel to 
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Figure 1.1: A typical response process for an emergency call

the location set covering model (LSCM) by Toregas et al. [43] and the maximal covering

location problem (MCLP) by Church and Revelle [14]. Both models, which are formulated

as integer programs, are viewed as deterministic models; they assume that each ambulance

is always available at its home base when a call arrives. Since the development of LSCM

and MCLP, there has been a surge of research aiming to develop more realistic models for

optimsing static policies. For a good account of static models prior to 2003, we refer the

reader to Swersey [42] and Brotcore et al. [10].

More recently, EMS providers have started to employ more dynamic ambulance loca-

tion policies, known as move-up, system-status management, or ambulance redeployment.

3
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1. INTRODUCTION

Move-up is the practice of dynamically deciding the stand-by location of each free am-

bulance in an attempt to better position ambulances for future calls. A move-up policy

uses real-time information, such as the location and status of each ambulance, to decide

appropriate stand-by locations. Surveys conducted by Cady [12] in 2001 and Williams [46]

in 2009 showed that the percentage of North American EMS providers using static policies

has decreased from 41% to 30%, while those using move-up policies has increased from 23%

to 37%; the proportion using a hybid strategy has changed from 36% to 33%.

The primary goal of implementing a move-up policy is to make better use of scarce am-

bulance resources in order to achieve better response times. Numerous operations research

models have been developed to evaluate a fixed static policy or seek a high-quality static

policy. In contrast to the rich literature on the static problem, the move-up problem has

received less attention. To our knowledge, the first journal paper for designing a move-up

policy for real-world ambulance operations was published in 2000 by Gendreau [20]. As

stated by Gendreau [20], one primary reason behind the lack of motivation for exploring

the move-up problem is that

“... limitations of past technology did not allow for real-time solutions of dy-

namic large-scale problems. ”

Entering the 21st century, advanced computing resources and technologies have enabled

EMS providers to use software-based tools to manage their operations. For example, EMS

providers can track the location of an ambulance through the Global Positioning System

(GPS) and visualise their operations on a computerised map. New technologies make it

possible to develop models that make use of a large amount of real-time data, which can

be collected and processed with ease. Meanwhile, in the operations research community,

the advent of new theories/methodologies and powerful solution techniques opens up many

opportunities to solve problems of realistic dimensions in real time.

Although many EMS providers are implementing some form of move-up, most of the

policies are constructed in ad-hoc ways, leading to limited performance gains and crew

frustration at what are perceived as ‘pointless moves’. For example, Alanis et al. [2] tested

a set of move-up policies using realistic but artificial data from Edmonton, Canada. Un-

4



1.2 Outline of the Thesis

surprisingly, performance of the policies varied significantly in their test; the percentage of

calls that are reached within the associated response time target is 15.3% lower using the

worst move-up policy than the best one.

The need to design high-performance move-up strategies is reinforced by the challenges

that EMS providers face nowadays. On one hand, “with the population growth, changing

social habits (including greater alcohol-related problems), an aging population and more

patients having chronic illnesses” [40], demand for emergency services is growing at a rapid

rate. For example, the city of Auckland, New Zealand, has seen a consistent increase in

demand of 4% each year; this growth is expected to continue in the future [1]. On the other

hand, EMS providers are facing problems such as rising equipment costs, underfunding,

understaffing, and increasing congestion on urban roads. The consequence is that EMS

providers have difficulty meeting their performance targets, e.g. the local ambulance service

operator for Auckland failed to meet its contracted targets in 2011 [40].

From an ambulance-logistics software provider’s perspective, the ability to offer high-

performance move-up strategies can increase their chance of securing contracts from EMS

providers. This research is supported by The Optima Corporation, specialising in the

development of software for ambulance logistics; we give more details about their software

in Chapter 6. A move-up model by Richards [39] has been embedded into Optima’s software.

However, Optima sees the value of move-up and is always interested in seeking and exploring

alternative move-up approaches. In this thesis, we present three move-up models in response

to their request.

Summarising, this research is motivated by the value of efficient EMS operations to

society and the lack of systematic approaches to form high-quality move-up policies for

large-scale operations. Our approach is outlined in the next section.

1.2 Outline of the Thesis

In the first chapter, we introduce the move-up problem that motivates this research, and

summarise the main contributions in this thesis.

5



1. INTRODUCTION

In Chapter 2, we give a review on the existing move-up models and provide the reader

with a road map of subsequent chapters.

Chapters 3, 4 and 5 are focused on the formulation of three dynamic programming

move-up models. These models quickly become intractable for realistic-sized problems so

the main purpose of developing these models is to gain insights from (near) optimal move-up

policies involving one and two ambulances in small-scale settings.

Chapter 6 is a transition chapter, taking us to practical move-up models. All of the

large-scale move-up models studied in this research involve simulation-based optimisation.

This chapter introduces Optima’s simulation package used for these models. We present

the simulation environment which we use to test and compare different ambulance location

policies. We then familiarise the reader with the simulation package through the demon-

stration of three ‘optimised’ static policies under three simplified scenarios. The static

policies are used to benchmark the move-up policies in the next two chapters.

In Chapter 7, we present two move-up models, which we refer to as the ranked-base

free-ambulance move-up model and the ranked-base all-ambulance move-up model. As

the names suggest, a key input parameter for both models is a set of rankings of stand-

by locations (ambulance bases). A simulation-based local search algorithm is proposed to

optimise the rankings for use under each of the two move-up models. Empirical comparisons

between the optimised move-up policies obtained from the local search algorithm and the

benchmark static policies are conducted from various aspects.

Chapter 8 proposes an integer programming (IP) model to make move-up decisions.

Some of the move-up insights obtained from the small-scale DP models are employed in the

IP model. In addition, a numerical optimisation scheme is suggested to tune some of the

model parameters in the hope that the resulting move-up policy is of high performance.

Similar empirical comparisons, as in Chapter 7, are conducted with the addition of the

optimised IP move-up policies.

6



1.3 Contributions

1.3 Contributions

The main contributions of this thesis are:

• Establishment of a set of theoretical results for the single-ambulance next-

call move-up model. The model is formulated as a discrete-time dynamic program

to approximate a continuous optimisation problem. Besides the mathematical proper-

ties for optimal move-up policies, an error upper-bound for the move-up performance

based on our discrete model with respect to that based on the continuous model is

also presented.

• Development of a label-setting algorithm to solve the single-ambulance

next-call move-up model. The algorithm is more effective than a standard solution

technique – value iteration.

• Formulation of infinite-horizon move-up models for one and two ambu-

lances under the DP framework. The models are an extension of a DP model in

the literature, which provide more realistic settings to gain move-up insights.

• Reduction in state space size for the single-ambulance infinite-horizon

move-up model. By exploiting the structure of the model, an alternative formula-

tion is proposed with a much reduced state space dimension.

• Development of a simulation package to analyse ambulance behaviors based

on the two-ambulance infinite-horizon move-up model. The package (which

is is written in C# ) helps us to gain new insights into move-up strategies.

• Development of a simulation-based local search algorithm for the two

move-up models presented in Chapter 7. For the ranked-base free-ambulance

move-up model, computational experiments suggest that our algorithm gives solu-

tions that are at least as good as those generated by an algorithm proposed in the

literature. For the ranked-base all-ambulance move-up model, our simulation-based

algorithm has the advantage of more accurate performance estimation compared to

the mathematical approximations used in the literature.

7



1. INTRODUCTION

• Formulation of an IP move-up model. Empirical results suggest that the op-

timised move-up policies based on this IP model and optimised ranked-base all-

ambulance move-up policies give similar performance in terms of maximising the

percentage of calls reached within a specified target time, both of which dominate the

(benchmark) static policies and the optimised ranked-base free-ambulance move-up

policies.

8



2

Literature Review

In this chapter, we give a review on the existing move-up models and provide the reader

with a broad summary of the motivations for the subsequent chapters.

Berman [5] made the first attempt to solve the move-up problem using dynamic pro-

gramming (DP). The model aimed to find the optimal move-up policy for twomobile servers

in order to minimise the expected travel time between two consecutive events; a event can

be a dispatch to a call or a completion of service. Note that we use the term mobile servers

as the model was developed for more generic move-up problems involving severs that travel

to demand points. The second and third models proposed by Berman [6, 7] are a natural

extension of his first model. The models consider move-up for multiple mobile severs under

the same framework. The main difference between these two models is that where a server

becomes available. In [6], a server becomes free at a pre-determined home base while in

[7], a server becomes free at the nearest vacant location from its associated demand point.

A vacant location refers to one that is not occupied or going to be occupied by any server

according to previous move-up decisions.

One advantage of DP is that it models the stochastic nature of the EMS operations

directly; however, this approach quickly becomes infeasible for any realistic-sized problems.

Therefore the main use of the DP approach is to provide insights into the structure of

optimal move-up policies for very small instances (e.g. one or two ambulances). Then one

attempts to use these insights in approximate models for practical move-up problems. For

example, Delasay et al. [16] developed a dynamic programming model to study the optimal

dispatching of two trucks to shovels in surface mines; then they used the insights from the

small model in the development of a heuristic model for multiple trucks.

Berman’s models were developed in a more generic setting in which mobile servers travel

9



2. LITERATURE REVIEW

to ‘customers’. Consequently, some important characteristics unique to EMS operations

were not incorporated. There is a need to develop new models that are specifically designed

to approximate EMS operations. We then can gain insights of (near) optimal move-up

policies in more realistic scenarios. We take a ‘start-from-scratch’ approach by starting with

the study of optimal move-up policies for only one ambulance. Chapters 3 and 4 propose

two dynamic programming move-up models, each of which only involves one ambulance in

service. The first move-up model aims to maximise the expected reward for the next call

while the second model aims to maximise the expected reward in an infinite horizon. In

Chapter 5, we consider optimal move-up policies for two ambulances in an infinite horizon,

which is a natural extension of the move-up model for a single ambulance in an infinite

horizon presented in Chapter 4. We contrast our model assumptions to those used by

Berman in [5].

The first move-up model, the dynamic double standard (DDSM) model, for realistic-

sized EMS operations was proposed by Gendreau et al. [20]. The model is formulated

as an integer program, which is an extension of their previous work [19] for generating

static ambulance location policies. It takes some current ambulance configuration (i.e. a

set of ambulance stand-by locations) and produces a set of moves for the ambulances.

The objective is to maximise a score function measuring the benefit of a final ambulance

configuration minus a cost function of the travel required to achieve that configuration.

The call demand is aggregated into a set of demand points on the network. A demand

point is considered covered if it can be reached by at least one ambulance within a specified

response time target. The benefit of an ambulance configuration in this model is the sum of

demand-weighted backup coverage. The backup coverage refers to the set of demand points

that can be covered by at least two ambulances. Recent ambulance move-up history is used

to impose practical constraints such as avoiding round trips, repeated movements of the

same ambulance, etc.

A move-up decision is recommended whenever the number of free ambulances changes.

A parallel tabu search algorithm was developed to speed up the solution process. This tabu

search continuously pre-computes the solution for every possible future scenario in which
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one of the free ambulances is dispatched to the next call; however, there is no attempt

to pre-compute solutions for scenarios in which busy ambulances become available. The

computational results for the DDSM model provided in [20] were more focused on the

ability to generate real-time solutions with the tabu search and efficient implementation

with parallel computing technology. No results on the performance improvements generated

by this model were provided, i.e. no comparison with (optimised) static policies.

Richards [39] revisited the DDSM model and proposed a different score function mea-

suring the benefit of an ambulance configuration. Recall that in the DDSM model, the

benefit collected from a demand point is either zero or the demand at this point. In [39],

for each demand point, each additional ambulance that can cover the point, up to a target

number, contributes to a concave increasing reward function. The score function is the

sum of the reward functions over all demand points. In addition, under the assumption of

perfect information, busy ambulances, which are likely to be available at some ‘look-ahead’

time, also contribute rewards around the location at which they will become free. This

model has been embedded into Optima’s software and experiments using simplified histor-

ical data from a client (whose identity cannot be disclosed for confidentiality reasons) of

Optima were performed. The results showed that in comparison with a static policy used

in practice, a move-up policy based on this move-up model can improve the percentage of

calls reached within a target time of 8 minutes by 4.1% and a target time of 13 minutes by

3.6%.

Andersson et al. [3] proposed an integer program for move-up. They introduced a score

function, namely preparedness, which is used in non-linear constraints; the constraints

are designed to ensure that for each demand point, some minimum preparedness level is

achieved. The target configuration is the one that minimises the maximum travel time of

the ambulances being moved. When measuring preparedness at each demand point for a

given ambulance configuration, ambulances are ranked according to increasing travel time

to each demand point; the closer an ambulance, the more contribution. The model is solved

whenever the preparedness for at least one demand point falls below a specified minimum

level; to obtain a move-up decision in a short computation time, a heuristic was developed.

11



2. LITERATURE REVIEW

A simulation package was developed to evaluate the performance of their move-up

model. Artificial call data were generaged based on the city of Stockholm, Sweden; calls were

prioritised from 1 to 3 where priority-1 calls are the most urgent calls with life-threatening

conditions. Varying arrival rates and minimum preparedness levels were used for compar-

isons. The mean time to solve the move-up model was 2.24 seconds and the maximum solve

time was 5.59 seconds. For each tested instance, the performance of a static policy was

used as the benchmark; the authors did not state whether the static policy was optimised

or not. Results for three response time targets (which were 10 minutes, 15 minutes, and

20 minutes) with respect to priority-1 calls were reported. To summarise, the benefit of

move-up increased as the minimum preparedness level increased; the trade-off to maintain

a high minimum preparedness level was a large number of relocations, where a relocation

refers to changing the stand-by location of a free ambulance.

The integer programs discussed above consider a set of feasible solutions (typically more

than one feasible solution) and find the ‘optimal’ solution. The location of each ambulance

plays a key role to decide the optimal solution because there is a cost associated with

moving from one location to another; in other words, a move-up policy based on these

models considers all free ambulances for move-up and chooses an appropriate ambulance

configuration from a set of candidate configurations in real time. We refer to such a policy as

a dynamic move-up policy to distinguish it from other forms of move-up policies introduced

below.

The second type of move-up policy studied in the literature is referred to as compliance-

table move-up policy. A compliance-table move-up policy defines, for each number n of free

ambulances, a pre-determined ambulance configuration C(n), which is listed in a so-called

compliance table C. Whenever the number of free ambulances changes, the dispatcher

decides a set of moves to reach the corresponding configuration, which is usually determined

by solving an assignment problem to minimise total travel times. The main difference

between a compliance-table move-up policy and a dynamic move-up policy is that the

former forces n ambulances into a unique configuration while the latter does not. The

similarity is that all free ambulances are considered for move-up.
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Gendreau et al. [21] proposed an integer program to generate compliance-table move-

up policies. Their objective is to maximise a score function, computed by multiplying

the demand-weighted coverage with n ambulances by the probability p(n) of having n free

ambulances. The coverage refers to the set of demand points that can be covered by at least

one ambulance assuming that n ambulances are at the stand-by locations defined by C(n).

The value of p(n) is obtained by means of a binomial distribution. When formulating the

optimisation model, they restrict the number of new stand-by locations that can be used

when going from configuration C(n) with n free ambulances to an ‘adjacent’ configuration

C(n+ 1). This gives configurations that are similar meaning adjacent configurations share

common standby locations.

The performance of this model was tested on data from Montreal and Laval with a

varying total number, N , of ambulances on duty (N = 3, 4, 5, 6) and a varying number

of different standby locations allowed between adjacent configurations. Each optimised

compliance-table move-up policy was compared with a static policy. The static policy

was constructed by assigning an ambulance to each of the stand-by locations defined in

configuration C(N). Simulation experiments showed that their model can improve on the

static policies with respect to the expected percentage of calls reached within a specified

response time target; the improvements ranged from about 2% to about 13%. However,

these static policies were not optimised; each static policy was ‘simply’ defined based on

configuration C(N). Therefore the ‘best’ performances the static strategy can produce were

not used for comparison, which means the relative improvement may not be as high as the

results suggested.

In the same vein, Alanis et al. [2] proposed a Markov chain model to quickly approximate

the performance of a given compliance-table move-up policy for large-scale EMS operations.

In their model, the state space contains two states for each number, n, of free ambulances:

an ‘in-compliance’ state and an ‘out-of-compliance’ state. An ‘in-compliance’ state means

that all free ambulances are at standby locations defined by configuration C(n); an ‘out-

of-compliance’ state is an aggregation state representing configurations in which one of

the free ambulances is not at the stand-by location in C(n). These configurations are as

13



2. LITERATURE REVIEW

follows. (1) when an ambulance has just became free, the n − 1 other ambulances are at

the stand-by locations in C(n− 1) and the additional ambulance is free either at one of the

demand points or at a hospital, (2) when an ambulance has just become busy, the n free

ambulances are at stand-by locations defined by removing, in turn, each one of the stand-

by locations in C(n + 1). This model was tested using data from the city of Edmonton,

Canada. Several metrics, including the response time distribution, were compared between

using this model and simulation. The results suggested that it is able to provide close-to-

simulation estimations. An important use of this model, envisioned by the authors of [2],

is as a surrogate for simulation to screen a large number of compliance tables and then

carefully evaluate only the ‘good’ ones via simulation.

Note that in practice, a compliance table can contain more than one configuration for

each number of free ambulances. For example, the city of Edmonton, Canada, is employ-

ing a compliance-table move-up policy for its EMS operations [2]. The table contains as

many as 144 configurations when there are 8 ambulances available. This means that the

dispatcher needs to choose a target configuration and decide ambulance moves to reach the

configuration. The mechanism of constructing the table and choosing the appropriate con-

figuration is not publicly available. In this thesis, we consider that it is more appropriate

to refer to such a compliance-table move-up policy as a dynamic move-up policy.

The third type of move-up policy, which we refer to as newly-freed-ambulance move-

up policy, was first explored by Restrepo [30] using an approximate dynamic program-

ming(ADP) model. Under such a policy, a stand-by location for the newly-freed ambulance

is determined and the ambulance then follows the fastest path to this location.

In the language of (exact) dynamic programming, a value function defined for all possible

states is needed for the decision-making process. The value function can be interpreted

as a look-up table containing values for all possible states. This look-up table quickly

becomes intractable for many real-world stochastic optimisation problems, which is one of

the main reasons limiting the use of dynamic programming. Under the ADP framework,

one seeks to estimate the true value function using some form of approximate architecture.

Restrepo [30] used a linear approximation architecture for his move-up problem. The
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general approximation form can be summarised as below

V (S) =
∑

f∈F

θfφf (S),

where S represents a state variable, V is the approximate value function, F is called a set of

features that aim to capture the important characteristics of the state variable, each φf (S)

is called a basis function to quantity the value of the corresponding feature at state S and

each θf is a tunable parameter. The best approximation is found by tuning parameters

θf , f ∈ F via simulation-based regression; for a general explanation of ADP theories and

solution techniques, see Powell [38]. Similar ideas have been developed in control theory [8],

the computer science and artificial intelligence communities [41]. The linear approximation

architecture eliminates the need to explicitly store a function value for every state and can

thus model much more complex EMS operations such as an ambulance going to the scene,

treating at the scene, and transporting to a hospital.

This ADP model was tested using artificial but realistic data from the cities of Edmonton

in Canada and Melbourne in Australia. However, the simulation environment contained

significant errors [34], so we do not report on the computational results.

Maxwell [34] extended this ADP model in various aspects. Firstly, Maxwell removed

the errors in the simulation environment and updated the computational results. The static

strategy was used to benchmark the performance of the Restrepo ADP model. For each case

study, the static policy was found by screening a large number of solutions and selecting the

one that gave the best performance, i.e. the expected percentage of calls reached within a

specified response time target. In the case of Edmonton, the performances using the static

policy and Restrepo’s ADP move-up policy were 71.6% and 74.5%, respectively; the move-

up policy led to an extra 2.9% of calls reached within the response time target. Maxwell

notes that “A city-wide increase of just 1% is quite a significant improvement in the context

of ambulance redeployment. A city the size of Edmonton would have to purchase, maintain,

and staff an additional ambulance at a cost of approximately 1 million dollars a year to

sustain such an improvement”. In the case of the Melbourne case, they were 73.3% and
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73.1%, respectively, meaning that the Restrepo ADP move-up policy did not provide an

improvement on the static policy.

Maxwell [34] then proposed a different set of basis functions under the linear approx-

imation architecture. For the computational experiments, the same data from Edmonton

and Melbourne were used to test the performance of this new ADP model. The per-

formance of Maxwell’s ADP move-up policies (newly-freed-ambulance move-up policies)

obtained from implementing the regression algorithm used by Restrepo [30] and two di-

rect search algorithms, which are discussed in more detail in Chapter 7. For both cases,

Maxwell’s ADP move-up policies based on the regression approach were unable to outper-

form the benchmark static policies; Maxwell’s ADP move-up policies obtained from the

direct search approach performed better than both the static policies and Restrepo’s ADP

move-up policies based on the the approximation architecture in [30].

In addition, Maxwell [34] also made the first attempt to bound the performance of any

ambulance location policy, i.e. an upper bound for the expected percentage of calls reached

within a response time target under any ambulance location policy.

Recently, Schmid [44] proposed an ADP model for the ambulance move-up and dispatch

problem. Recall that both Restrepo and Maxwell used the linear approximation architecture

to tackle the challenge of an intractable state space dimension; the present author took

another approach – aggregation to reduce the size of the state space. Aggregation does not

simplify the state of the system (the system in the ADP model ‘moves forward’ as in the

real-world system); rather it simplifies how the value function is approximated. A set of

aggregation states is identified and one seeks to approximate the value function over these

states. Assume that state S is the real state of the system: according to some aggregation

rule, it is mapped to an aggregate state Sa and V (S) is approximated to be equal to V (Sa).

The Schmid ADP model assumes that the operations on distinct days are independent.

The entire service area is partitioned into a set of grid cells. The length of the planning

horizon (24 hours) is split into several intervals. An aggregation state consists of two pieces

of information: the number of at-base ambulances and the number of pending calls in each

cell and each time interval. So a real state S comprised of many parameters is mapped
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to an appropriate aggregation state Sa according to these two pieces of information. Here

an at-base ambulance refers to an ambulance that is standing by at a base; a pending call

refers to a call that has arrived but not yet received a response ambulance.

The performance of the Schmid ADP model was tested using 42 days of historical data

from an EMS provider in Austria. Training datasets, which were derived from the real data,

were used to approximate values for the aggregation states. Results for two scenarios were

presented in [44]: for both scenarios, the objective was to minimise the average response

time. For one scenario, a fixed dispatch policy (dispatching the closest at-base ambulance)

was used while for the other scenario, the dispatch policy itself was part of the optimisation

problem where any one of the at-base ambulances can be dispatched. For both scenarios, a

target base was required whenever there was a newly-freed ambulance. So, considering the

move-up problem alone, the model forms newly-freed ambulance move-up policies.

For the scenario where the dispatch policy was fixed, the optimised move-up policy was

able to reduce the average response time compared to an optimised static policy. When

the dispatch policy was not fixed, the optimised move-up-and-dispatch policy was able to

further improve performance. However, we do not think this model appropriately describes

real-world EMS operations: the model assumes that an ambulance can be dispatched to a

call only if it is standing by at a base or has just became free; a newly-freed ambulance is

either dispatched to a pending call immediately or moves to a target base. If an ambulance

is driving towards a base on the road, it cannot be dispatched to any call. This is a very

unreasonable assumption to make, so we question the validity of these results. In addition,

the author of [44] commented that the ADP model of Maxwell [34] considers moving ambu-

lances between ambulance bases. This comment is incorrect, as Maxwell’s model generates

newly-freed-ambulance move-up policies; there is no base-to-base ambulance moves.

In this thesis, Chapters 7 and 8 present three move-up models aimed for real-world

EMS systems. All three move-up models are largely motivated by Maxwell’s ADP model.

Maxwell made several observations on newly-freed-ambulance move-up policies derived from

his ADP model. A key observation is that a newly-freed-ambulance move-up policy deter-

mined by his ADP model can be stated in an alternative way using a so-called priority list.
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Briefly, a priority list ranks stand-by locations. In Chapter 7, we describe in detail how

to construct a newly-freed-ambulance policy using a priority list, which we refer to as a

ranked-base free-ambulance move-up policy. Our contribution is to propose a simulation-

based local search algorithm which sorts the items in the priority list in order to maximise

the performance of the resulting move-up policy. Computational experiments in Chapter 7

suggest that this sorting algorithm is slightly more effective than the numerical optimisation

approach taken by Maxwell under the ADP framework.

The concept of making move-up decisions using a priority list also motivates us in

the development of compliance-table move-up policies. In Chapter 7, we show how to

construct a compliance-table move-up policy using a priority list, which we refer to as a

ranked-base all-ambulance move-up policy. Naturally, the simulation-based local search

algorithm proposed to find a good ranked-base free-ambulance move-up policy can be used

to seek a high-quality ranked-base all-ambulance move-up policy. In other words, the same

sorting method is applied in order to find the locally optimal priority list for use under a

ranked-base free-ambulance move-up policy or a ranked-base all-ambulance move-up policy.

In Chapter 8, we explore dynamic move-up policies based on an integer programming

(IP) model. For our IP model, the score function to measure the benefit of an ambulance

configuration is different from those presented in [20], [39], and [3], which are discussed in

Chapter 8. Briefly, our score function is constructed based on the approximation archi-

tecture of Maxwell’s ADP model and the insights gained from our DP models for small

problems. In addition, we employ a simulation-based numerical optimisation algorithm

to tune some of the model parameters associated with the score function and the cost

function in order to find the best possible move-up policy. A key input to initialise the

parameters associated with the score function is the optimised priority list for a ranked-

base all-ambulance policy. Therefore, the IP model can be viewed as an extension of this

base-ranking move-up model.
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3

Optimal Move-up of

Single-Ambulance Next-Call

Model

3.1 Overview

The first move-up problem we study in this thesis is called single-ambulance next-call move-

up model: assuming there is only one ambulance in service, we aim to find an optimal

move-up policy in order to maximise the expected reward for the next call.

The most relevant work to the models we study in this chapter and the next two chapters

is the dynamic programming (DP) model proposed by Berman [5]. The Berman model

considers the move-up problem for two ambulances as discussed in Chapter 2. Because we

only consider one ambulance at this stage, we feel that the best place to contrast our DP

approach to Berman’s is in Chapter 5 where we present a new DP move-up model for two

ambulances.

It may seem strange that we start by exploring the (short-term) benefit of move-up for

only the next call as it makes more sense to optimise move-up that focuses on the benefit for

an infinite number of calls. Intuitively, we think, under some circumstances, a short-term

optimal move-up policy might be very similar to a long-term optimal move-up policy. For

example, in a system with a low arrival rate, an ambulance typically has time to reach

any location before becoming busy again, so focusing on just the next call may give good

results. However, we expect that an optimised static policy would also perform well for the
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same reason. In other words, there is little performance difference between an optimised

short-term move-up policy, an optimised long-term move-up policy, and an optimised static

policy. It becomes hard to predict the performance of different location strategies when the

ambulance is more likely to become busy while travelling to a stand-by location due to a

higher arrival rate. Therefore, we are motivated to formally develop the next-call move-up

model in this chapter and then investigate the performance of this model, the static model

and the infinite-horizon move-up model, which is presented in Chapter 4.

The remaining sections of this chapter are organised as follows. In Section 3.2, we

present the assumptions and formulation of a DP model. In practice, this move-up problem

is a continuous optimisation problem: an ambulance travels on a continuous transportation

network. We model this problem in a discrete-time manner, i.e. a discrete network consisting

of nodes and arcs is used as an approximation. We provide a bound on the difference

between the performances of an optimal move-up policy based our discrete model and that

of the true but unknown optimal move-up policy. In Section 3.3, we use simple examples

to show insights into the structure and characteristics of optimal move-up policies based on

our DP model. We then establish a set of theoretical results regarding an optimal move-up

policy and the associated value function. In Section 3.4, we describe a label-setting solution

technique as an alternative to the standard value iteration. We end this chapter with a

summary in Section 3.5.

3.2 Single-Ambulance Next-Call Model Assumptions and For-

mulation

As discussed in Chapter 1, real-world ambulance operations are very complex due to many

factors such as varying call priorities, changing travel times, the possible diversion of an

ambulance from one call to a higher priority one, etc. In this thesis, we study move-up in

simplified systems.

Consider a road networkG on which call arrivals follow a Poisson process with a constant

arrival rate λ. All calls are assumed to be of the same type with a common response time
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target W . The next call to arrive is located at position u ∈ G, which has a density function

p(u); in other words, a spatial distribution p of call demand is defined on G. Here for

convenience u is assumed to be in R, but our model can be extended to accommodate call

locations in two-dimensional domains. Let τ(u, v) denote the travel time along the shortest

path from position u to position v which we assume is symmetric. This implies that τ(u, v)

is a metric on G. With respect to this metric we assume the existence of a Lipschitz function

r on G, where r(x) describes the expected reward earned for a call when the ambulance is

dispatched from position x. This is calculated based on a set of “reward” rules and p(u).

In our model, we define r(x) to be the probability of reaching a call on time given the

ambulance is dispatched from position x ∈ G . A call is considered reached on time if

its response time is within a specified target W . We assume that there is no queueing,

so call-arrivals when the ambulance is busy are lost to the system. This means when the

ambulance has just become free, it will serve the next call-arrival. In addition, we ignore

dispatch delay and mobilisation delay for simplicity1. Therefore, the response time is the

duration of the trip from the dispatch location to the next call’s location along an shortest

path. We further assume deterministic travel speeds at each position for all possible driving

directions. Let

N(x,W ) = {u | τ(x, u) ≤W}.

Then we have

r(x) =

∫

N(x,W )
p(u)du.

It is easy to show that r(x), x ∈ G is a Lipschitz function as long as p(u) is bounded. This

means there is some constant K such that

|r(x)− r(y)| ≤ Kτ(x, y) x, y ∈ G (3.1)

We are interested in finding a policy that defines, for any starting position x ∈ G,

where the ambulance should stand by and which path it should travel along to the stand-

1We give more discussions about the possible impact of including these two delays in move-up models
in Chapter 6.

21



3. OPTIMAL MOVE-UP OF SINGLE-AMBULANCE NEXT-CALL

MODEL

by location in order to maximise the expected reward for the next call. It is easy to see

that in practice we have a continuous optimisation problem to solve. In this model, we aim

to find an optimal move-up policy defined on a discretised network as an approximation to

this continuous optimisation problem.

We discretise the network G into a set N of nodes and let L denote the set of arcs, where

L consists of (i, i), ∀i ∈ N, representing a directed arc to node i itself and (i, j) representing

a unique directed arc from node i to j, i, j ∈ N , i 6= j. Let Ni = {k ∈ N : (i, k) ∈ L}

denote the set of possible successor nodes of node i ∈ N . Without loss of generality, we

will use the term ‘policy’ to mean a ‘next node’ policy π defined on the discrete network

(N,L) that specifies a successor node π(i) of i, ∀i ∈ N . We approximate the performance

of a policy π using a ‘wait-then-jump’ scheme on the discrete network. More specifically,

given the ambulance is at node i and the successor node is π(i), we assume the ambulance

waits for a time interval ∆t(i,π(i)) which equals the travel time τ(i, π(i)) if π(i) 6= i or a

strictly positive constant ∆t otherwise. During this time interval, if the next call occurs,

the ambulance is dispatched from node i with a reward r(i). Otherwise the ambulance

jumps instantaneously to node π(i) at the end of this time interval.

Note that the time duration ∆t associated with π(i) = i is just a symbolic term, so

that the move-then-jump scheme can be used without loss of generality; if π(i) = i, the

ambulance just stays at node i until it gets dispatched with reward r(i).

In practice, the ambulance may not always be at a node defined in our model, and

moreover, it moves along a continuous path. We interpret our discrete policy π for the con-

tinuous problem as follows. If the ambulance’s initial location is at node k, the ambulance

just follows the continuous path that visits nodes defined by π() starting from k. If the

ambulance’s initial location is on an arc between node k and k′, there are three possible

scenarios. The first scenario is π(k) = k′ in which case the ambulance moves to node k′ and

then follows the the continuous path that visits nodes defined by π() starting from k′. The

second scenario is π(k′) = k in which case the ambulance moves to node k and then follows

the continuous path that visits nodes defined by π() starting from k. The third scenario is

π(k) 6= k′ and π(k′) 6= k in which case the ambulance moves to the closer node and then
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follows the continuous path that visits nodes defined by π() starting from the closer node.

Implicit in our definition of π is that there is a discrete path consisting of a series of wait-

then-jump moves starting from any node k ∈ N . Let dπk denote the discrete path starting

from node k under the control of policy π, where dπk(0) = k, dπk(i) = π(dπk(i−1)), i = 1, 2, ....

The ‘wait’ time interval for (dπk(i), d
π
k(i + 1)) is denoted by ∆tπk(i) = ∆t(dπ

k
(i),dπ

k
(i+1)), and

the time elapsed starting from node k after i steps under policy π is denoted by tπk(i) which

is defined as below.

tπk(i) =







0 i = 0
∑i−1

j=0∆tπk(j) i = 1, 2, ...

We aim to determine a policy π∗ such that the expected reward for the next call starting

from every node is maximised. Let Jπ(k) denote the expected reward given the ambulance

is starting from node k under the control of policy π, then we have

Jπ(k) =
i=∞
∑

i=0

e−λtπ
k
(i)(1− e−λ∆tπ

k
(i))r(dπk(i)) (3.2)

where e−λtπ
k
(i) represents the probability that the next call has not occurred before the

ambulance jumps to node dπk(i). The immediate reward is (1 − e−λ∆tπ
k
(i))r(dπk(i)) which

is the probability that the next call occurs during the ‘wait’ interval ∆tπk(i) at node dπk(i)

times the expected reward from node dπk(i).

Equation (3.2) can be written in the recursive form as

Jπ(k) = (1− e−λ∆tπ
k
(0))r(k) + e−λ∆t(k,π(k))

i=∞
∑

i=0

e
−λtπ

π(k)
(i)
(1− e

−λ∆tπ
π(k)

(i)
)r(dππ(k)(i))

= (1− e−λ∆tπ
k
(0))r(k) + e−λ∆t(k,π(k))Jπ(π(k)).

Let V (k) be the maximum expected reward at node k ∈ N under policy π∗, i.e. V (k) =

maxπ J
π(k). We now have a DP model, and the Bellman optimality equation [8] for the
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maximum expected reward V (k) at node k ∈ N is

V (k) = max
k′∈Nk

((1− e−λ∆t(k,k′))r(k) + e−λ∆t(k,k′)V (k′)). (3.3)

The state space for this DP model is the set N of nodes on the network. At each node

(state) k ∈ N , a move-up decision k′ ∈ Nk is made. The ambulance then waits for time

∆t(k,k′) at its current location k. If the next call occurs during this interval, the ambulance

is dispatched from node k giving a reward r(k). If no call arrives, the ambulance jumps

to node k′. Note that to ensure a policy is unique, we break ties in (3.3) by assuming the

ambulance only makes a move if this gives a strict improvement in the objective.

It is worth noting that this problem can be viewed as a stochastic shortest path problem

[9] if we reformulate the problem with the objective of minimising the probability of not

getting to the next call within the target response time. We construct a network of nodes

N and arcs L as we defined for our model plus a termination node T and an arc from

each node i ∈ N to T . The length associated with an arc (i, j) ∈ L is zero. The length

associated with each arc(i, T ), ∀i ∈ N , is 1− r(i). At each node i ∈ N , the ambulance can

stay at node i or move to any node j ∈ Ni; the probability of reaching node j as a result

of this decision is e−λ∆t(i,j) and the probability of reaching node T instead is 1− e−λ∆t(i,j) .

We seek the shortest expected path from each node i ∈ N to T , which gives an optimal

move-up policy π.

For each node i ∈ N , it is natural to consider the difference between following the

optimal continuous path which is unknown and the optimal discrete path found by our

model. If we let c∗ be the optimal continuous path starting from node i and d∗ be the

optimal discrete path starting from node i, we establish the following theorem.

Theorem 1.

|R(c∗)−R(d∗)| ≤ K∆τ

where R(c∗) is the expected reward when following the optimal continuous path starting

from node i, R(d∗) is the expected reward when following the optimal discrete path d∗, ∆τ

is the maximum travel time along any arc in the discrete network and K is as given in 3.1
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The proof of Theorem 1 is given as follows. Let d denote a discrete path along which the

ambulance performs a series of ‘wait-and-jump’ steps starting from node k at time t = 0.

Let c denote a continuous path starting from node k that visits the same sequence of nodes,

and denote by ct the location of the ambulance at time t, t ≥ 0 along path c. Let D define

a transformation that maps any continuous path c to a unique discrete path D(c). The

path D(c) describes a series of ‘wait-and-jump’ moves following the nodes that path c visits.

Here we denote by D(c)t the last node visited by path c visits at time t.

The mapping D is not 1-1: any discrete path d can be the image under D of many

continuous paths. Each of these continuous paths visits the nodes in the order defined by

path d and the last node it visits is the last node that path d visits. Let C(d) denote the

inverse image of d under D, i.e. C(d) = {c : D(c) = d}.

The probability of a call occurring in the interval [0, t] is
∫ t

0 q(y)dy, where q(t) is the

probability density of arrival time. Given q(t), we can compute the expected reward if the

ambulance follows a continuous path c as

R(c) =

∫ ∞

0
r(ct)q(t)dt.

Similarly R(d) denotes the expected reward along a discrete path d. Finally, let c∗ be the

optimal continuous path starting from node k and d∗ be the optimal discrete path starting

from node k. To simplify our notation, we let ǫ denote the term K∆τ . We have the

following results.

Lemma 2.

|r(ct)− r(D(c)t)| ≤ ǫ, (3.4)

Proof. Clearly, the maximum travel time between position ct and D(c)t is at most ∆τ

whence the result follows by (3.1).

Corollary 3.

|r(dt)− r(ct)| ≤ ǫ, ∀c ∈ C(d) (3.5)

Proof. Similar to the proof for Lemma 2, the travel time between position dt and ct is at
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most ∆τ . Therefore the difference of the reward for the next call is bounded by ǫ.

Lemma 4. The difference between the expected reward when following path c and path D(c)

is bounded by ǫ, i.e.

|R(c)−R(D(c))| ≤ ǫ (3.6)

Proof.

|R(c)−R(D(c))| = |

∫ ∞

0
q(t)r(ct)dt−

∫ ∞

0
q(t)r(D(c)t)dt)|

≤

∫ ∞

0
q(t)|(r(ct)− r(D(c)t))|dt.

Using lemma 2, we have

∫ ∞

0
q(t)|(r(ct)− r(D(c)t)|dt ≤ ǫ

∫ ∞

0
q(t)dt = ǫ

Corollary 5. The difference between the expected reward when following path d and any

associated continuous path c ∈ C(d) is bounded by ǫ, i.e.

|R(d)−R(c)| ≤ ǫ, ∀c ∈ C(d) (3.7)

Proof.

|R(d)−R(c)| = |

∫ ∞

0
q(t)r(dt)dt−

∫ ∞

0
q(t)r(ct)|

≤

∫ ∞

0
q(t)|(r(dt)− r(ct))|dt

Using Corollary 3, we have

∫ ∞

0
q(t)|(r(dt)− r(ct)|dt ≤ ǫ

∫ ∞

0
q(t)dt = ǫ
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We recall theorem 1 is stated as below.

|R(c∗)−R(d∗)| ≤ K∆τ

Proof. Using Lemma 4 and Corollary 5, we have

|R(c∗)−R(D(c∗))| ≤ ǫ (3.8)

|R(d∗)−R(c)| ≤ ǫ, ∀c ∈ C(d∗) (3.9)

Based on the condition for optimality, we also have

R(D(c∗)) ≤ R(d∗) (3.10)

R(c) ≤ R(c∗), ∀c ∈ C(d∗) (3.11)

First suppose that R(c∗)−R(d∗) ≥ 0. Then

R(c∗) ≥ R(d∗) ≥ R(D(c∗))

Therefore, (3.8) can be written as

0 ≤ R(c∗)−R(D(c∗)) ≤ ǫ

0 ≤ R(c∗)−R(d∗) +R(d∗)−R(D(c∗)) ≤ ǫ

Since R(d∗)−R(D(c∗)) ≥ 0 from(3.10), we must have

0 ≤ R(c∗)−R(d∗) ≤ ǫ (3.12)

27



3. OPTIMAL MOVE-UP OF SINGLE-AMBULANCE NEXT-CALL

MODEL

Now suppose that R(c∗)−R(d∗) < 0. Then from (3.11) we have

R(c) ≤ R(c∗) < R(d∗), ∀c ∈ C(d∗)

Therefore, (3.9) can be written as

0 < R(d∗)−R(c) ≤ ǫ, ∀c ∈ C(d∗)

0 < R(d∗)−R(c∗) +R(c∗)−R(c) ≤ ǫ, ∀c ∈ C(d∗)

Since R(c∗)−R(c) ≥ 0, ∀c ∈ C(d∗) (3.11), we must have

0 < R(d∗)−R(c∗) ≤ ǫ (3.13)

Therefore, from (3.12) and (3.13) we have |R(c∗)−R(d∗)| ≤ ǫ

A corollary of Theorem 1 is that the maximum expected reward at any node i ∈ N

when following the optimal discrete path converges to the maximum expected reward when

following the optimal continuous path as ∆τ → 0.

3.3 Examples and Insights

We now consider two simple examples to gain insights into the properties of the optimal

policy and the value function in this model. The first example considers move-up on a

single road. The second example considers a small network.

Example 1: Single-Ambulance Next-Call Move-up Model on a Line

The horizontal axis in Figure 3.1 represents a network consisting of 30 nodes located along

a line with one minute spacing. We assume ∆t, the time step when the ambulance stays at

its current node, also equals to 1 minute. Using a target response time of W = 4 minutes,

each node k has a reward of r(k) as shown on the vertical axis. Solving (3.3) with λ = 0.5

calls/hour gives an optimal policy in which, given the ambulance’s current location (node
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1,2,...,20), the free ambulance always moves to the adjacent node that is closer to node 20

and eventually stops at node 20. The maximum expected reward V (k) under this policy is

shown on the plot.
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Figure 3.1: Plot of reward function r(k), value function V (k) and the optimal move-up policy
for Example 1 with λ = 0.5 calls/hour. There is one optimal stand-by location, node 20. Note
that r(k) gives the expected reward if the ambulance stays at its initial node k, while V (k)
gives the maximum expected reward under the optimal move-up policy.

Figure 3.2 shows the optimal policy and its associated value function when the call-

arrival rate increases to λ = 3 calls/hour. We can see that a new move-up policy is formed

in which there are two stand-by locations, nodes 5 and 20. If the ambulance is initially

located between node 1 and node 10, then it keeps moving to the adjacent node that is

closer to node 5 and eventually stops at node 5; otherwise the ambulance moves to stand-by

node 20 in a similar manner.

We can see that different optimal move-up policies arise from the two call-arrival rates.

With λ = 3 calls/hour, we note that driving to node 20 is no longer optimal for an initial

ambulance location between node 1 and 10, but instead the closer stand-by location (node

5) is optimal. This occurs because, for the higher call-arrival rate, there is too great a
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Figure 3.2: Plot of reward function r(k), value function V (k) and the optimal move-up policy
for Example 1 with λ = 3 calls/hour. There are two optimal stand-by locations, nodes 5 and
20.

chance of the next call occurring during the move-up while the ambulance is at a location

with a low expected reward for the next call.

Figures 3.1 and 3.2 suggest the following propositions:

Proposition 1. For an optimal policy π∗,

(i) π∗(k) = k ⇒ V (k) = r(k) ∀ k ∈ N .

(ii) π∗(k) 6= k ⇒ V (π∗(k)) > V (k) > r(k) ∀ k ∈ N .

Proof. From (3.3) we have the optimality equation

V (k) = (1− e−λ∆t(k,π∗(k)))r(k) + e−λ∆t(k,π∗(k))V (π∗(k)). (3.14)

The proof of (i) follows by putting π∗(k) = k in (3.14) and using e−λ∆t(k,k) = e−λ∆t > 0.

To prove the strict inequality V (k) > r(k) in (ii) given π∗(k) 6= k is straightforward given
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our assumption of moving only if this gives a strict improvement, i.e. the expected reward

generated by moving at node k as given by (3.14) must be greater than the reward generated

by staying at node k, which by (i) is r(k). Furthermore, the fact that V (k) > r(k) naturally

leads to V (π∗(k)) > V (k) in (ii) as follows. From (3.14), we have V (π∗(k)) − r(k) =

1
q
(V (k) − r(k)) where q = e−λ∆t(k,π∗(k)) . Because λ > 0 and ∆t(k,π∗(k)) > 0, we have the

strict inequality 0 < q < 1. Furthermore, V (k) > r(k) and 1/q > 1 imply V (π∗(k))−r(k) >

V (k)− r(k), proving V (π∗(k)) > V (k).

Our definition of policy π does not prevent the ambulance from driving forever around

a cycle on the network. However we now show we do not have to consider policies of this

form.

Proposition 2. For any starting node, the ambulance, under the optimal policy, always

travels along a non-cyclic path to a node where it then stops.

Proof. We prove this by contradiction. Assume for some starting node under the optimal

policy, the ambulance travels around a subset Z of nodes in a cycle. Let k∗ be the node

with the maximum expected reward in this cycle, i.e., k∗ = argmaxk∈Z(r(k)). It is easy to

see that V (k∗) is a convex combination of the rewards in this cycle because the next call

must occur when the ambulance is at some node k ∈ Z. Then we must have V (k∗) ≤ r(k∗)

which violates our assumption of moving only if this gives a strict improvement.

Proposition 3. Under an optimal policy, the reward r(k) at a stand-by location k : k =

π∗(k) is a local maximum, i.e. r(k) ≥ r(k′), ∀ k′ ∈ Nk.

Proof. We prove this by contradiction. Assume r(k) is not a local maximum, and so there

is at least one adjacent node k′ ∈ Nk with r(k′) > r(k). The policy of staying at location

k gives an expected reward of V (k) = r(k). But, moving to k′ and waiting there gives

an expected reward of (1 − e−λ∆t(k,k′))r(k) + e−λ∆t(k,k′)r(k′) > r(k). Hence we have a

contradiction.

Proposition 4. Suppose an ambulance starting at node u travels along some path and stops

n nodes later at node v where it waits for the next call. Let the nodes be re-numbered as
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0, 1, ..., n− 1, n along this move-up path, and let J(c, n), c = 0, 1, ..., n, denote the expected

reward when an ambulance following this move-up path to node n is at node c. The following

conditions are necessary for this move-up path to occur in an optimal policy π∗.

(i) J(c+ 1, n) > r(c), ∀ c = 0, 1, ..., n− 1

(ii) r(n) > r(c), ∀ c = 0, 1, ..., n− 1

Proof. If this path describes an optimal policy, then we must have J(c, n) = V (c), c =

0, 1, ..., n and π∗(c) = c + 1, c = 0, 1, 2, ..., n − 1. Condition (i) above then follows from

Proposition 1 (ii). Proposition 1 (i) and (ii) give r(n) = J(n, n) > J(n − 1, n) > · · · >

J(c+1, n) > J(c, n) > r(c) for c = 0, 1, 2, ..., n−1, from which (ii) follows immediately.

Proposition 5. For any move-up path satisfying the necessary conditions in Proposition

4, J(c, n), c = 0, 1, ..., n− 1 is a strictly decreasing function of λ.

Proof. Note that, by definition, we have

J(c, n) =







r(n), c = n

(1− e−λ∆t(c,c+1))r(c) + e−λ∆t(c,c+1)J(c+ 1, n) c = 0, 1, ..., n− 1

so

dJ(c, n)

dλ
= ∆t(c,c+1)e

−λ∆t(c,c+1)(r(c)− J(c+ 1, n))

+e−λ∆t(c,c+1)
dJ(c+ 1, n)

dλ
, c = 0, 1, ..., n− 1.

When c = n− 1, the term J(c+ 1, n) = r(n) does not depend on λ, and so

dJ(n− 1, n)

dλ
= ∆t(n−1,n)e

−λ∆t(n−1,n)(r(n− 1)− r(n)) < 0

by Proposition 4 (ii).

Now suppose for some c < n− 1, we have dJ(c+1,n)
dλ

< 0, and so

dJ(c, n)

dλ
< ∆t(c,c+1)e

−λ∆t(c,c+1)(r(c)− J(c+ 1, n)) < 0
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by Proposition 4 (i). The result for every c = 0, 1, ..., n− 1 then follows by induction.

Proposition 6. V (k) is a non-increasing function of λ for all nodes k ∈ N .

Proof. Given a call-arrival rate λ, let D(k, λ) be the set of destination nodes for all paths

C(k, λ) starting from node k that satisfy the necessary conditions in Proposition 4. Modify-

ing our notation to explicitly show the dependence on λ, we note that Proposition 5 shows

λ1 < λ2 ⇒ J(k, n, λ1) > J(k, n, λ2) for all destination nodes n ∈ D(k, λ1). We will shortly

show that as λ increases, the set D(k, λ) reduces in the sense that λ1 < λ2 ⇒ D(k, λ2) ⊆

D(k, λ1). Thus, for λ1 < λ2 we have maxn∈D(k,λ1) J(k, n, λ1) > maxn∈D(k,λ2) J(k, n, λ2).

By definition, V (k, λ) = max(maxn∈D(k,λ) J(k, n, λ), rk), and so our result follows.

To show that λ1 < λ2 ⇒ D(k, λ2) ⊆ D(k, λ1), we recall that D(k, λ) is the set of desti-

nation nodes of paths satisfying the conditions in Proposition 4. Only the first condition,

J(c+1, n) > r(c), depends on λ. Proposition 5 shows that J(c+1, n) is strictly decreasing

in λ. Given that r(c) is constant, the result follows immediately.

Proposition 7. Let π∗
λ(k) be an optimal move-up policy for a call-arrival rate λ. An

optimal stand-by location k : k = π∗
λ1
(k) for arrival rate λ1 is also an optimal stand-by

location for a higher call-arrival rate λ2 > λ1, i.e. π
∗
λ1
(k) = k, λ2 > λ1 ⇒ π∗

λ2
(k) = k.

Proof. If π∗
λ(k) = k, then we must have V (k) = r(k), and V (k′) ≤ V (k), ∀ k′ ∈ Nk. As we

increase λ, the policy of not moving will continue to give a reward of r(k), while the rewards

associated with neighbouring nodes V (k′), k′ ∈ Nk, will be non-increasing (Proposition 6).

Thus the optimal decision will not change, and so the result follows.

Example 2: Single-Ambulance Next-Call Move-up Model on a Network

We now apply the model to an undirected network of 35 nodes with a call-arrival rate λ = 6

calls/hour and one minute travel time for each arc. The target response time is assumed to

be 2 minutes. The expected reward r(k) at each node k for the next call is shown Table 3.1.

Figure 3.3 illustrates the optimal move-up policy. The two solid circles at nodes 24 and

33 represent two optimal stand-by locations. Under this optimal policy, the successor node
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r(1) 0.0646 r(10) 0.0669 r(19) 0.0644 r(28) 0.2227

r(2) 0.1077 r(11) 0.0673 r(20) 0.0458 r(29) 0.1226

r(3) 0.1398 r(12) 0.0635 r(21) 0.0404 r(30) 0.1942

r(4) 0.2142 r(13) 0.0055 r(22) 0.0211 r(31) 0.3088

r(5) 0.2865 r(14) 0.0056 r(23) 0.0164 r(32) 0.3090

r(6) 0.1677 r(15) 0.0535 r(24) 0.3698 r(33) 0.3131

r(7) 0.1422 r(16) 0.0774 r(25) 0.3696 r(34) 0.2497

r(8) 0.0662 r(17) 0.0588 r(26) 0.3615 r(35) 0.1643

r(9) 0.0554 r(18) 0.0700 r(27) 0.3184

Table 3.1: The expected reward r(k), k = 1, 2..., 35 for Example 2.
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Figure 3.3: The optimal move-up policy indicated by arrows on a discrete network of 35
nodes. There are two optimal stand-by nodes, nodes 24 and 33.

given the current node is indicated by the arrow. We make the following two observations.

Remark 1 The move-up policy divides the network into separate trees with each optimal

stand-by node forming the root of a tree.

Remark 2 An optimal move-up path may not be a shortest path. For example, for an

ambulance at node 13, the shortest path in Figure 3.3 to node 24 is 13-1-2-3-4-5-24, but
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the optimal move-up path is 13-14-15-16-29-28-27-26-25-24. In our model, an ambulance

can respond to the next call during move-up, and so the reward values r(k) at both the

destination and along the move-up path are important. From Table 3.1, we can see that

the optimal move-up path is longer, but it includes more nodes (e.g. nodes 29, 28, 27, 26,

25, 24) with good expected reward values r(k).

3.4 Solution Techniques

Algorithm 1 A label-setting algorithm for solving the single-ambulance next-call move-up
problem

1 Assign an initial policy of staying put at every node k, i.e. put V (k) = r(k), ∀ k ∈ N .

2 Define T to be the set of nodes with temporary labels. Initialise T = V .

3 Repeat

3.1 Set current node u = argmaxk∈T (V (k)). Designate the label on node u as
permanent and remove u from set T .

3.2 For current node u, consider each temporary labeled adjacent node h ∈ T ∩Nu\u
and update V (h):

V (h)← max(V (h), (1− e−λ∆t(h,u))r(h) + e−λ∆t(h,u)V (u))

Until every node is permanently labeled

To find an optimal policy π∗, we can use value iteration [22] to solve our DP model

given by Equation (3.3). A sequence of value functions V n is produced by starting from an

arbitrary V 0, and defining

V i+1(k) = max
k′∈Nk

((1− e−λ∆t(k,k′))r(k) + e−λ∆t(k,k′)V i(k′)), ∀k ∈ N.

The sequence of functions V i converges to V in the limit. A sensible set of starting values

are V 0(k) = r(k), ∀k ∈ N . In this case, the complexity of value iteration is |N |2. However,

the fact that this problem is a stochastic shortest path problem [9] leads us to develop

the label-setting procedure given in Algorithm 1 which can be viewed as a modification
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of Dijkstra’s algorithm. At each iteration, the node with the maximum value is given a

permanent label and used to update the values of its neighboring nodes. In this way, the

trees rooted at each optimal stand-by locations are calculated node by node. Step 3 of the

algorithm requires sorting and searching elements in a heap data structure. This leads to

the complexity of O(log|N |) for each iteration. This algorithm finds the objective value

node by node in descending order of V (k) with an overall complexity of |N |log|N |. The

validity of this solution technique is proven in Appendix 1.

3.5 Summary

This chapter has been devoted to the study of a DP move-up model, which involves only

one ambulance and aims to maximise the expected reward for the next call. Some insights

were showed and a set of theoretical results were established. A label-setting algorithm was

developed as an alternative to the standard DP solution technique – value iteration.

Maximising the benefit for just the next call may or may not be the ‘right’ thing to

do. In the next chapter, we continue to follow the DP approach to study maximising the

long-term performance when there is still only one ambulance in service.
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4

Optimal Move-up of

Single-Ambulance Infinite-Horizon

Model

4.1 Overview

In the previous chapter, we presented a DP model for the single-ambulance next-call move-

up problem. In this chapter, we consider a single-ambulance move-up problem which aims

to maximise the average reward per unit time over an infinite horizon.

The problem is treated as a Semi-Markov dynamic programming model. In Section

4.2, we present the model assumptions and briefly discuss the difference between Markov

Decision Processes(MDPs) and Semi-Markov Decision Processes(SMDPs). In Section 4.3,

we describe the states in the model and how the system ‘moves forward’ over an infinite

horizon. In Section 4.4, we formulate the optimality equations for the states in this model.

In Section 4.5, we provide an alternative model with a reduced state space dimension.

In Section 4.6, we compare results for optimal static policies, single-ambulance next-call

move-up policies and single-ambulance infinite-horizon move-up policies under simplified

scenarios. This chapter ends with a summary in Section 4.7.

4.2 Model Assumptions

We adopt the notations used for the single-ambulance next-call move-up model. In the next-

call model, we restrict the ambulance’s location to be a node on a discretised network. For
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the infinite-horizon move-up problem, we need to model the full response process including

an ambulance driving to a call location and to a hospital. Thus we further assume that calls

can only originate from the nodes on the network and hospitals must be located at nodes

on the network. We redefine p(k) to be the function that describes the spatial distribution

of call demand at node k ∈ N with
∑

k∈N p(k) = 1.

The single-ambulance operating system evolves in a discrete-time manner with a time-

step size of one unit time. We assume that the travel time on each arc is an integral multiple

of the unit time and the size of one time-step is small enough that the probability of more

than one event occurring in this interval is insignificant. Here an event refers to a call

arrival, a completion of on-site treatment or at-hospital hand-over.

As before, we use move-then-jump to model an ambulance traversing an arc (i, j) ∈ L:

the ambulance waits at node i for a duration of ∆t(i,j), then it jumps to node j; for a

self-directed arc (i, i), we assume that the travel time is equal to one unit time.

We view the model, detailed shortly, as a Semi-Markov Decision Process based on

the terminology used by White [45]. In [45], White discussed Markov Decision Processes

(MDPs) and Semi-Markov Decision Processes (SMDPs). Briefly, a MDP refers to the case

in which an action is taken at some time-step t, then at time-step t + 1, the system ‘im-

mediately’ moves to a state according to the associated transition probability distribution.

On the contrary, the system in a SMDP may not immediately move to a state after one

time-step. Instead, it can take multiple time-steps, which may not be deterministic, to

make a transition. Informally speaking, one can think that a MDP has no ‘holding times’

once an action is taken, while a SMDP is associated with possible holding times.

As stated above, the travel time for each arc (i, j) ∈ L is an integral multiple of one

time-step. This means that if the ambulance moves from node i to j, it may take one

time-step or multiple time-steps to make a transition of reaching node j. Therefore, it is

suitable to describe our model as a SMDP.

Regarding the at-scene service time, it is assumed to follow an exponential distribution

with rate µ. At the conclusion of the at-scene treatment, we assume that the ambulance

may, with probability ptransport, transport the patient to the closest hospital, or it may
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become free at the scene. Any service time required at hospital h, h ∈M , where M denotes

a set of nodes to represent hospitals, is also assumed to follow an exponential distribution

with rate µh.

We assume that there is no queueing, so calls that arrive while the ambulance is busy

are lost to the system. Finally, for simplicity, we assume that the travel time for each arc,

arrival rate, response time target, on-site service rate, and at-hospital service rate are scaled

according to one unit time.

4.3 State Space and Control

Idle at node k

Travel from k to call 

at node i 

At scene (node i)

Travel from i to hospital

At hospital (node h)

(k,Free)

(k,i)

(i,i)

(i,H)

(h,H)

k-1 k k+1 i hospital

Figure 4.1: Example of the state space for the single-ambulance infinite-horizon move-up
model.

Consider now the states required in our model. These states, as illustrated in Figure 4.1,

track the steps in the typical response process described earlier in a discrete-time manner.

State (k,Free), k ∈ N indicates that the ambulance is free at node k. In such a state, we

must determine the successor node k′ ∈ Nk which the ambulance moves to next. For each
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action, if there is no call arriving during the wait interval ∆t(k,k′), the ambulance jumps to

node k′ after ∆t(k,k′) time-steps. Otherwise, after γ time-steps where γ = 1, ...,∆t(k,k′), the

ambulance is dispatched to the random call location i with probability e(γ−1)λ(1− eλ)p(i)

and reward r(k). The system then enters state (k, i), meaning that the ambulance is at

node k travelling on a shortest path to a call at location i. Arrival at the scene i is

denoted by the state (i, i). This state indicates that treatment is being undertaken at

the scene. Under the assumption of an exponential at-scene service time, after one time-

step, the system will still be in state (i, i) with probability e−µ, or the treatment will have

been completed. If the treatment completes, the system enters either state (i,Free) with

probability 1− ptransport, indicating the ambulance is now free at the scene, or state (i,H),

indicating that the ambulance is at node i transporting a patient to the closest hospital

along the shortest path. Assuming the closest hospital is at node h = h(i), arrival at

the hospital leads the system into state (h,H), indicating that the ambulance is at node

h handing over the patient. After one time-step, the system may still be in state (h,H)

with probability e−µh , or enter the free state (h,Free). Keep in mind that we model the

ambulance movement using wait-then-jump not just for move-up but also for travelling

towards a call location or a hospital.

4.4 Objective and Optimality Equations

We choose to maximise the average reward per time step over an infinite horizon as our

objective. Therefore, we have an undiscounted DP model. For our problem, the state space

forms a single recurrent class in which case the average reward is independent of the starting

state [31]. Given a set of states S, let g denote the maximum average reward per time step,

and r(s, a) be the immediate reward given the system is at state s ∈ S and action a from

some action set A(s) is taken. Using the theory of SMDP’s [45], the optimality equation

for each state s ∈ S can be written as follows:

g = max
a∈A(s)

[r(s, a) +
∑

w∈S,1≤γ≤L P (s, a, w, γ)V (w)− V (s)
∑

w∈S,1≤γ≤L P (s, a, w, γ)γ

]

. (4.1)
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The term r(s, a) is the immediate reward given the system is at state s and action a from

action set A(s) is taken. The term γ denotes the time-steps taken to the next state, where

γ = 1, ..., L and L is the maximum possible number of time-steps required to make a

transition. The term P (s, a, w, γ) denotes the probability of making a transition to state

w after γ time-steps for action a at state s. The (non-zero) denominator in (4.1) is the

expected number of time-steps taken to the next state.

The value function V (s) is often referred to as the relative value function. The difference

V (s1) − V (s2) represents the extra gain (loss) in the long term by starting in state s1 as

opposed to state s2. Note that the difference V (s1)− V (s2) is independent of any absolute

level. For a good interpretation of relative values, we refer the reader to Howard [22].

The second form is a rearrangement of the first form as follows:

V (s) = max
a∈A(s)

[

r(s, a) +
∑

w∈S,1≤γ≤L

P (s, a, w, γ)V (w)

−g
∑

w∈S,1≤γ≤L

P (s, a, w, γ)γ)
]

. (4.2)

We now provide the optimality equation (4.2) for every state in our model. First we

consider each ‘Free’ state (k,Free), ∀k ∈ N – the ambulance is available at node k. The

ambulance can move to any node k′ ∈ Nk in which case the non-zero transition probabilities

associated with such a state are:

P{(k′,Free)|(k,Free)} = e−λ∆t(k,k′) ,

P{(k, i)|(k,Free)} = (1− e−λ∆t(k,k′))p(i) ∀i ∈ N,

where e−λ∆t(k,k′) is the probability of no call arriving during the time interval ∆t(k,k′) while

the ambulance is still at node k, and (1−e−λ∆t(k,k′))p(i) is the probability that a call arrives

at node i during the time interval ∆t(k,k′). The immediate reward when in state (k,Free)

is

(1− e−λ∆t(k,k′))r(k).
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The expected number E(k, k′) of time-steps to either get dispatched to a call from node k

or reach node k′ is

e−λ∆t(k,k′)∆t(k,k′) +

∆t(k,k′)
∑

γ=1

e−λ(γ−1)(1− e−λ)γ,

where the term e−λ(γ−1)(1−e−λ) represents the probability that the ambulance is dispatched

at time-step γ. Therefore (4.2) gives:

V (k,Free) = max
k′∈Nk

[

(1− e−λ∆t(k,k′))r(k) + (1− e−λ∆t(k,k′))
∑

i∈N

p(i)V (k, i)

+ e−λ∆t(k,k′)V (k′,Free)− gE(k, k′)
]

, ∀k ∈ N. (4.3)

Consider next states (k, i), ∀k, i ∈ N, k 6= i, and states (k,H), ∀k ∈ N, k 6= h(k), in which

the ambulance is travelling from node k to (but has not yet reached) i to serve a call, or

travelling to (but has not yet reached) the closest hospital at node h. There is only one

transition state from each of these states, being to move to the next node along the shortest

path. There is no immediate reward for either of these states, Thus (4.2) gives

V (k, i) = V (next(k, i), i)− g∆t(k,next(k,i)), ∀k ∈ N, i ∈ N, k 6= i. (4.4)

V (k,H) = V (next(k, h(k)),H)− g∆t(k,next(k,h(k))), ∀k ∈ N, k 6= h(k) (4.5)

where next(k, j) represents the successor of node k along the shortest path from k to j.

For states (i, i), ∀i ∈ N , in which the ambulance is treating at the scene, the non-zero

transition probabilities are:

P{(i, i)|(i, i)} = e−µ

P{(i,Free)|(i, i)} = (1− e−µ)(1− ptransport)

P{(i,H)|(i, i)} = (1− e−µ)ptransport.

42



4.5 Optimality Equations with State Space Reduction

There is no immediate reward for such states and so (4.2) gives

V (i, i) = e−µV (i, i) + (1− e−µ)((1− ptransport)V (i,Free)

+ptransportV (i,H))− g, ∀i ∈ N. (4.6)

The last states (h,H), ∀h ∈M , in which the ambulance is at hospital node h handing over

the patient, have the following associated non-zero transition probabilities:

P{(h,H)|(h,H)} = e−uh ,

P{(h,Free)|(h,H)} = 1− e−uh .

There is no immediate reward for such states and so (4.2) gives:

V (h,H) = e−uhV (h,H) + (1− e−uh)V (h,Free)− g, ∀h ∈M. (4.7)

4.5 Optimality Equations with State Space Reduction

The state space for the DP model above includes a state (k, i) for every pair of nodes k ∈ N ,

i ∈ N , and so the state space size is of order |N |2. We now show that this state space can be

reduced to a size of order |N |, eliminating the need to store many intermediate states and

therefore allowing problems with a large number of nodes to be solved more efficiently. By

carefully observing Equations (4.3)-(4.7), we can see that if the ambulance gets dispatched

from some node k to a call at node i, it follows a deterministic path to the call location and

then becomes free again either at the call location or at a hospital after some service time.

Therefore, using (4.4)-(4.7), we can rewrite V (k, i) in terms of the average reward g, the

value V (i,Free), and the value V (h(i),Free) corresponding to the closest hospital location
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h(i):

V (k, i) = (1− ptransport)V (i,Free) + ptransportV (h(i),Free)

−(dk,i +
1

1− e−µ
)g

−ptransport(di,h(i) +
1

1− e−µh(i)
)g, (4.8)

where dk,i is the number of time steps needed to travel from node k to node i along a

shortest path. This equation can be interpreted as follows. The first two terms on the right

hand side show possible transitions from the point of being dispatched to becoming free

upon the completion of a service. If no transport to hospital is required, the ambulance

will become free at the scene (node i); otherwise the ambulance will become free at the

closest hospital to the scene (node h(i)). The third and fourth terms give the loss of reward

due to ambulance unavailability. The third term shows the loss arising from time spent

travelling to the call location and completing the on-site treatment, while the fourth term

gives the further losses that occur while travelling to the hospital and handing over the

patient at the hospital. Note that in Equation (4.8), the term 1
1−e−µ is an approximation

of the expected number of time steps 1
µ
required to complete the on-site treatment. This

approximation arises from our earlier use of discrete time steps. As the service rate µ

reduces (corresponding to a finer time discretisation), the approximate value gets closer to

the exact value. Similarly, 1
1−e−µh

is also an approximation of 1
µh

.

We can substitute (4.8) into (4.3), to give

V (k,Free) = max
k′∈Nk

[

(1− e−λ∆t(k,k′))
[

r(k) + (1− ptransport)
∑

i∈N

p(i)V (i,Free)

+ ptransport
∑

i∈N

p(i)V (h(i),Free))−

(

∑

i∈N

p(i)dk,i +
1

1− e−µ

)

g

− ptransport

(

∑

i∈N

p(i)(di,h(i) +
1

1− e−µh(i)
)

)

g
]

+ e−λ∆t(k,k′)V (k′,Free)− gE(k, k′)

]

, ∀k ∈ N. (4.9)
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This gives a set of optimality equations (4.9) that more concisely describe our infinite-

horizon single-vehicle model. We now have a much reduced state space S = {(k,Free), k ∈

N} with only |N | states that is more computationally attractive to solve. Solutions gener-

ated using this model are presented next.

4.6 Computational Experiments and Insights

In this section, we perform experiments with a set of simplified scenarios. Using the (long-

term) objective of the infinite-horizon move-up model as the performance measure, the

results for the optimised static policies, next-call move-up policies and infinite-horizon move-

up policies are compared, and empirical findings and insights are discussed. Similar analysis

is performed in the next chapter involving two ambulances in service.

In total, 250 scenarios are constructed for the experiments. All scenarios use: a network

consisting of 50 nodes on a single road G with 1 minute spacing and a hospital at node

25; a response time target W of 3 minutes; a transport probability ptransport of 0.7; an

on-site service rate µ of 1
4 calls/min, and an at-hospital service rate µh of 1

20 calls/min.

The arrival rate λ is varied from 1
600 calls/min to 1

120 calls/min with a step size of 1
600

calls/min, i.e. λ = 0.1, ..., 0.5 calls/hr. A set of 50 spatial distributions of call demand are

generated randomly. Each combination of arrival rate λ and spatial distribution p stated

above creates one scenario – therefore, we have 250 scenarios for experiments.

To create one spatial distribution p of call demand, we choose 6 nodes 1, 14, 24, 36,

47, 50 and randomly choose values for these nodes sampled from a continuous uniform

distribution. We then construct a piece-wise linear interpolant using the function values

at the 6 nodes. After normalising the interpolated values at the 50 nodes, the spatial

distribution p of call demand is uniquely determined and the reward function r can also be

computed.

For all the 250 scenarios, we assume that the size of one time-step is equal to 1 minute.

Therefore, the infinite-horizon move-up model (SMDP) for each scenario becomes a simpler

MDP. To solve optimality equations for a MDP/SMDP, one can use value iteration, policy
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iteration, or linear programming (LP) as discussed in White [45]. For our experiments, we

choose to use LP as the solution technique. The LP formulation is as below.

maximise g

s.t. V (k,Free) ≥ (1− e−λ∆t)
[

r(k) + (1− ptransport)
∑

i∈N

p(i)V (i,Free)

+ptransport
∑

i∈N

p(i)V (h(i),Free))−

(

∑

i∈N

p(i)dk,i +
1

1− e−µ

)

g

−ptransport

(

∑

i∈N

p(i)(di,h(i) +
1

1− e−µh(i)
)

)

g
]

+e−λ∆tV (k′,Free)− gE(k, k′), ∀k ∈ N, ∀k′ ∈ Nk

V (k0,Free) = 0,

where (k0,Free) ∈ S is a reference state.

The code for this LP problem is written in AMPL and solved using CPLEX 11.0.0.

We compare the performance of the single-ambulance infinite-horizon move-up model, the

simpler next-call move-up model and the static model. For each scenario, we modify the

infinite-horizon model (code) to determine the best static policy by nominating each node

in turn as the home base. Similarly, we modify the model (code) to evaluate the optimal

next-call move-up policy (obtained from the model in the previous chapter) over an infinite

horizon.

The utilisation varies between, approximately, 0.3 and 0.55 for these scenarios. To cal-

culate the utilisation under a given move-up/static policy, we evaluate the average number

of calls reached per time-step using the reward function r(k) = 1, k = 1, ..., 50. Let ge be

generic notation for the result of this evaluation process; as the modified reward function

implies that every call is reached on time, ge is equivalent to the average number of calls

served per time-step. Therefore, the probability of a call being lost due to the ambulance

being busy is 1 − ge

λ
; in queueing theory, this probability is referred to as the Erlang loss

probability. Since there is only one ambulance in service, it also represents the utilisation

of the ambulance.
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To measure the effectiveness of each next-call/infinite-horizon move-up policy, we com-

pute the relative improvement which is defined as g−gb

gb
where g is the average number of

calls reached on time per time-step under the move-up policy and gb is the corresponding

average under the static policy 1. Table 4.1 summarises the statistics for relative improve-

ment; the 250 scenarios are divided into 5 groups based on their respective arrival rate.

Obviously, with respect to the objective of the infinite-horizon move-up model, an op-

timal infinite-horizon move-up policy will always perform at least as well as a next-call

move-up policy and a static policy; its relative improvement is always non-negative. From

Table 4.1, we see that on average, the next-call move-up model performs worse than the

static model in 4 out of 5 scenario groups; the infinite-horizon move-up model gives better

performance than the static model in all 5 groups and the benefit increases as λ increases.

The number of scenarios for which the associated next-call move-up policy gives the same

performance as the static policy is 48, 43, 40, 40 and 38 out of 50, respectively, for each λ;

the number of scenarios for which the infinite-horizon move-up policy and the static policy

perform equally well is 48, 46, 46, 45 and 43 out of 50, respectively.

We find that if the optimal infinite-horizon move-up policy performs better than the

corresponding static policy for a given call distribution p(), it is also true for the scenarios

that have higher arrival rates while all other input parameters are the same. We do not

see such a pattern for the next-call move-up model. Furthermore, for a scenario whose

performance is improved using the infinite-horizon move-up model, the next-call move-up

model may not improve the performance on the static model and may even worsen the

performance.

We also observe that when the next-call/infinite-horizon move-up model performs better

than a static model, the move-up policy involves multiple optimal stand-by nodes. The

ambulance moves to one of the stand-by nodes and avoids travelling through low reward

sections of the road. This behavior was observed in the previous chapter as well.

The results suggest that when the home base is chosen properly, the associated static

policy is expected to perform as well as an optimised next-call move-up policy while an

1For simplicity, we overload the term g to represent the average reward over an infinite horizon under a
next-call policy.
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optimised infinite-horizon move-up policy is expected to be the most beneficial. Meanwhile,

we see that the chance that the three types of location strategies give the same performance

is relatively high when λ is low (which was expected when introducing the next-call move-up

model) and decreases as λ increases. The observation of ‘pointless moves’ with respect to

the next-call move-up model may seem discouraging, as our goal is to improve performance

with move-up. However, it is important to know that a move-up strategy may actually

worsen the performance, so alternatives such as the infinite-horizon move-up model deserve

to be explored.

The small relative improvement (the average is less than 0.08% and the maximum is

less than 1.1%) using the infinite-horizon move-up model is explained as follows. When the

ambulance becomes free at the hospital (with probability 0.7), the optimal stand-by node

starting from the hospital location is the same under the move-up policy and the static

policy. In other words, the benefit derived from move-up is solely from the 30% of calls

where the ambulance becomes free on site.

We follow the same argument to consider the case in which the probability ptransport

is 1.0: although an optimal infinite-horizon move-up policy specifies the optimal stand-by

node for every node at which the ambulance becomes free, the ambulance can only become

free at the hospital after a completion of service; then it drives from the hospital to the

optimal stand-by node. This is exactly the same way an ambulance behaves under a static

policy. Therefore, the move-up policy and the static policy must always lead the ambulance

to the same optimal stand-by node, meaning that they perform equally well in the long

term.

On the other hand, if we reduce ptransport, meaning that the ambulance is more likely

to become free on site, then a more intelligent move-up policy is expected to provide an

increased benefit. Table 4.2 shows the statistics of the relative improvement with ptransport =

0 in which case the ambulance always becomes free on site. All the infinite-horizon move-up

policies, next-call move-up policies and static policies are re-optimised. We see that the

average and maximum relative improvement figures for the infinite-horizon model are both

increased compared to the results in Table 4.1.
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λ (calls/min) 1/600 1/300 1/200 1/150 1/120

Policy Next-call Infinite Next-call Infinite Next-call Infinite Next-call Infinite Next-call Infinite

Min. RIM -0.00295 0 -0.00130 0 -0.00723 0 -0.01218 0 -0.01632 0

Avg. RIM -0.00003 0.00006 0.00006 0.00012 -0.00003 0.00023 -0.00009 0.00036 -0.00029 0.00080

Max. RIM 0.00169 0.00169 0.00377 0.00378 0.00581 0.00581 0.00778 0.00779 0.00971 0.01044

No. of RIM> 0 1 2 3 4 4 4 5 5 6 7

No. of RIM< 0 1 0 4 0 6 0 5 0 6 0

No. of RIM= 0 48 48 43 46 40 46 40 45 38 43

Table 4.1: The statistics for relative improvement (RIM) for the optimal next-call and infinite-horizon move-up policies when
compared with the optimal static policies based on the 250 scenarios. The scenarios are divided into 5 groups of 50 scenarios
according to the arrival rate λ.
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Note that the assumption of the ambulance always becoming free on site is not realistic,

it is simply used to show that the infinite-horizon move-up model is expected to be more

beneficial when there are more opportunities to behave differently with respect to the static

model.

We also make a note regarding the performance of the re-optimised next-call move-up

policies: on average, the next-call model performs better than the static model in all 5

scenario groups. Recall that it performed worse than the static model in 4 out of 5 groups

before (Table 4.1). Therefore, it is hard to draw conclusions about the performance of

this model. It is clear that focusing on the next call will never outperform an optimal

infinite-horizon move-up policy. However, the next-call move-up model can be extended to

multiple ambulances in an approximate manner for realistic-sized problems; the infinite-

horizon move-up model is hard to extend for practical problems.

We envision one form of approximate next-call move-up for large-scale EMS operations

as follows. For each number of free ambulances, a set of ‘good’ configurations (stand-by

locations) are generated based on some heuristic method. The reward for the next call in

each configuration is therefore treated as input. At each move-up time instant, we evaluate

the expected reward for moving to each configuration associated with the current number

of free ambulances in a similar manner to the one-ambulance case which uses Equation 3.2;

the configuration giving the best reward is the ‘optimal’ decision. A mechanism of allo-

cating ambulances into a configuration is needed for this evaluation process. A reasonable

mechanism would be minimising the total travel times.

4.7 Summary

This chapter has been devoted to the study of optimal move-up for one ambulance in order

to maximise long-term performance. A DP model was developed for this infinite-horizon

move-up problem. The structure of the states in the DP model was explored to formulate

an alternative model which reduces the size of the state space from |N |2 to |N | where N

is the set of nodes on the network. A modified value iteration algorithm was developed to
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λ (calls/min) 1/600 1/300 1/200 1/150 1/120

Policy Next-call Infinite Next-call Infinite Next-call Infinite Next-call Infinite Next-call Infinite

Min. RIM 0 0 -0.00215 0 -0.00904 0 -0.01521 0 -0.02067 0

Avg. RIM 0.00011 0.00018 0.00024 0.00037. 0.00034 0.00071 0.00049 0.00114 0.00067 0.00202

Max. RIM 0.00554 0.00556 0.123 0.0123 0.01878 0.01879 0.02499 0.025 0.03093 0.03095

Table 4.2: The statistics for relative improvement (RIM) for the optimal next-call and infinite-horizon move-up policies when
compared with the optimal static policies based on the 250 scenarios after reducing the value of ptransport from 0.7 to 0. The
scenarios are divided into 5 groups of 50 scenarios according to the arrival rate λ.
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solve this alternative model.

Simplified scenarios were used to compare the performance of the optimal static policies,

next-call move-up policies, and infinite-horizon move-up policies. The results suggested that

the performance of the ‘short-term’ next-call move-up model was hard to appraise; on the

other hand, the infinite-horizon move-up model could provide increasing benefit compared

with the static model as the arrival rate increases. This encourages us to extend the infinite-

horizon move-up model to two ambulances in the next chapter.
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Optimal Move-up in a

Two-Ambulance Infinite-Horizon

Model

In the previous chapter, we presented the single-ambulance infinite-horizon move-up model.

In this chapter, we consider the extension to a two-ambulance infinite-horizon move-up

model under the DP framework. Because the system with two ambulances is more compli-

cated than that with only one ambulance, the two-ambulance model is based on a simpler

Markov Decision Process, i.e. the travel time on each arc is equal to one unit time. We use

this model to gain some understanding of interactions/cooperations between ambulances,

which cannot be investigated using the single-ambulance move-up models discussed in the

previous two chapters. Note that, it is an easy modification to model the two-ambulance

SMDP (in which the travel time on each arc is an integral multiple of one unit time). How-

ever, we expect to see insights that are similar to those gained from the simpler Markov

dynamic programming model.

The most relevant work in the literature is the two-server move-up model by Berman

[5]. That model was developed in a more generic setting involving mobile servers traveling

to ‘customers’. In other words, it was not specifically designed to approximate ambulance

operations. Consequently, some important characteristics unique to ambulance operations

were not incorporated. We summarise the model assumptions in [5] below and then contrast

them to our model assumptions.

In Berman’s work [5], each server has a pre-determined home base. After an expo-
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nentially distributed service time, it returns to its home base and only then is considered

available. The service rate associated with each ambulance depends on its home base loca-

tion. Note that the service time includes the duration of travelling back to a home base.

A move-up policy based on Berman’s model can be summarised as below. When only

one ambulance is free, it can move to any location on the network along a shortest path

for stand-by; moreover, it must arrive at the target location before it is allowed to move

to another location (assuming it is not dispatched while travelling to the target location).

When both ambulances are free, they must stand by at their respective home bases.

In contrast to solving a move-up problem in a generic mobile-server setting, we construct

our DP model to specifically approximate ambulance operations. Our model assumes that

an ambulance becomes free either on site or at a hospital, which is a key characteristic of

ambulance operations. There are no home bases. As in the single-ambulance models, a

move-up decision for each ambulance is made node-by-node instead of deciding a target

node and then following a shortest path to that node. In addition, we model the service

process for a call more carefully, i.e. the location and status of the dispatched ambulance

is tracked step-by-step. Instead of assuming an exponentially distributed service time as

in [5], travel times to a call location, on-site treatment times, travel times to a hospital,

and at-hospital hand-over times are modelled separately. Overall, we think the model we

propose gives a more realistic environment for the study of optimal move-up policies.

This chapter is organised as follows. In Section 5.1, we describe the problem assump-

tions. In Section 5.2, we present the state space in this DP model. In Section 5.3, we use

simple examples to discuss insights obtained from the optimal move-up policies, followed

by a summary in Section 5.4.

5.1 Problem Assumptions

We follow the notation that we used for the single-ambulance infinite-horizon move-up

model. Because we now have two ambulances in the system, we introduce a new reward

function r(k1, k2), ∀k1, k2 ∈ N which is the probability of reaching the next call on time
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given that the two ambulances are free at nodes k1 and k2 when a call arrives. We assume

the two ambulances are identical and if both ambulances are free when a call arrives, the

closest ambulance is dispatched. If there is a tie, each ambulance has an equal probability

(0.5) of getting dispatched. As before, we assume no queueing, so calls that arrive while

both ambulances are busy are lost to the system.

The reward function r(k) used in the previous two chapters now is redefined as the

probability of reaching the next call on time given that there is only one free ambulance

and it is at node k.

5.2 State Space and Control

The state space S for two ambulances is a natural extension of the state space for the

single-ambulance infinite-horizon move-up model presented in the previous chapter. A

state is denoted by a vector of two elements, (a1, a2), where a1 represents the state of the

first ambulance and a2 represents the state of the second ambulance. The state space for

a single ambulance, as described in Section 4.3, tracks the steps in the typical response

process. The state space S for two ambulances consists of all possible pairs of states for a

single ambulance. The size of S is in the order of |N |4 where N is the set of nodes on the

network. The states that require a move-up decision are those in which both ambulances

are free or just one ambulance is free. A free ambulance at some node k can move to any

adjacent node k′ ∈ Nk.

We leave the optimality equations for this DP model in Appendix 2, as it is a trivial

extension from the single-ambulance infinite-horizon move-up model. The objective is the

same as that for the single-ambulance infinite-horizon move-up model – to maximise the

average (undiscounted) reward per time-step. Keep in mind that the optimality equations

yield an optimal move-up policy, the corresponding objective value, and relative values

representing the difference in the long-term total reward by starting from one state as

opposed to another.

Theoretically, this DP model can be further extended for more ambulances. However,
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it is computationally infeasible even for two ambulances on realistic networks. The main

use of this DP approach is to gain insights into the properties of optimal move-up policies

and value functions on a small scale. We then use these insights to guide the development

of large-scale approximate models with the hope that performance can be improved on the

static ambulance location strategy.

5.3 Computational Experiments and Insights

In this section, we construct a set of scenarios for computational experiments. Firstly, we

compare the performance of the optimised move-up policies and static policies. Secondly, we

present some moves sampled from the optimised move-up policies, which we would expect to

observe in practical problems and then we show some characteristics of the relative values.

In total, 120 scenarios are constructed for the experiments. All scenarios use: a network

consisting of 15 nodes on a single road with 1 minute spacings; a spatial distribution

p(k), k = 1, ..., 15, of call demand shown in Figure 5.1; a response time target W of 2

minutes; a transport probability ptransport of 0.8; an on-site service rate µ of 7
12 calls/min; a

hospital with an at-hospital service rate µh of 0.5 calls/min. The difference between these

scenarios is the arrival rate λ and/or the hospital location h. The arrival rate λ is varied

from 1
60 calls/min to 1 call/min with a step size of 1

60 calls/min; the hospital location h is

either node 4 or node 11. Each combination of λ and h creates one scenario.

We make a few notes regarding the response time target, on-site and at-hospital service

rates. The response time target is relatively small compared to that in reality, so that we

have distinguishable rewards for a call at different nodes on this small network.

The on-site and at-hospital service rates are considerably higher than the rates encoun-

tered in practice. We find that if the service rates are close to reality, when one ambulance

gets dispatched and the other one remains free, the dispatched ambulance is typically busy

for long enough that the free ambulance behaves as under an optimised single-ambulance

infinite-horizon move-up policy. In other words, the busy ambulance has no impact on

where the free ambulance should stand by. We do not think this is an interesting case to
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Figure 5.1: Spatial distribution p(k) of call demand and the reward function r(k), k = 1, ..., 15.

study.

For typical large-scale EMS operations, we expect that (1) the chance of freeing up (at

least) one ambulance in the near future is relatively high because of the ambulance fleet size

and the workload, and (2) where a busy ambulance is expected to become free may play

an important role in an optimal move-up policy. Therefore,we purposely choose these high

rates to increase the chance of a busy ambulance becoming free in the near future. So in

some sense, we are attempting to imitate the real-world ambulance operations by speeding

up the service process in the small-scale setting.

To obtain an optimal move-up policy, we use the value iteration algorithm [45]. To

obtain an optimal static policy, we modify the DP model to allow fixed base locations to be

given, and the policy iterations are performed to evaluate the system performance. Every

pair of nodes k1 = 1, ..., 15 and k2 = k1, ..., 15 is tested as the home bases for the two

ambulances. The pair that gives the best performance defines the optimal static policy.

To analyse our move-up policies in detail, we have developed a simulation tool in C#.

The tool is also used to estimate the utilisation associated with each static/move-up policy,

using a set of artificial calls generated based the assumptions above for each scenario. The

utilisations range from about 0.03 to about 0.85 for our experiments.
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5.3.1 Performance Comparisons of the Optimised Move-up and Static

Policies

We plot the objective values associated with the optimal move-up policies and the optimal

static policies in Figure 5.2 (a)-(b). Figure 5.2 (a) corresponds to a group of 60 scenarios,

which have the hospital at node 11 but varying arrival rates; Figure 5.2 (b) corresponds

to the other 60 scenarios, which have the hospital at node 4. The x-axis shows the arrival

rate for each scenario; the y-axis shows the objective value. Recall that the objective value

represents the average number of calls reached per unit time (minute).

In Figure 5.2 (a), we see that both of the objective values, under the move-up and static

policies, increase first, and then decrease. However, although it is not shown here, the ratio

g(λ)/λ where g(λ) is the objective function value for each move-up/static policy, being the

average number of calls reached on time per time-step, decreases as λ increases. This ratio

represents the expected percentage of calls reached on time, and we expect that the ratio

keeps decreasing as the system workload increases. It is easy to see that when λ is large

enough, the average number of calls reached per time-step becomes a constant under any

move-up/static policy. This is because a newly-freed ambulance immediately becomes busy

again from where it becomes free; there is little time to perform move to any location.

In Figure 5.2 (b), we also see that the objective values increase and then decrease. How-

ever, this pattern is more pronounced in Figure 5.2 (b) than Figure 5.2 (a). Furthermore,

give the same strategy, i.e. static or move-up, Figure 5.2 (a) and 5.2 (b) show that the

performance under scenarios with h = 11 is better (or no worse) than that under scenarios

with h = 4 for any given λ value.

More specifically, when λ is low, the performance is insensitive to the hospital location

h. This is because the two ambulances are predominantly free and have enough time to

reach the nodes giving the best reward for the next call regardless of where they become

free. When λ increases, we find that the scenarios with h = 11 give better performance

than those with h = 4. This is because, with an increased λ, it is more likely that only one

ambulance is free for the next call-arrival and it may not have enough time to reach the

best-reward location before the call-arrival. The location at which each ambulance becomes
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Figure 5.2: Objective values under the optimal move-up policies and static policies for the
120 scenarios
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free is more important to the overall performance. Given the relatively high probability

of transportation, i.e. ptransport = 0.8, a busy ambulance is most likely to become free at

the hospital. As shown in Figure 5.1, when h = 4, the ambulance that has just finished

transportation is at the fourth worst location (node 4) in terms of r(k) (the one-free-

ambulance reward), 2 minutes away from the second best location (node 6) and 6 minutes

away from the best location (node 10). On the other hand, when h = 11, the ambulance

that has just finished transportation (at node 11) is only 1 minute away from the best

location (node 10) and the rewards near node 11 are also reasonably high.

To summarise, when a busy ambulance becomes free under scenarios with h = 11, it is

closer to high-reward locations than under scenarios with h = 4. Therefore, the performance

under scenarios with h = 11 is generally better.

As in Section 4.6, we compute the relative improvement to quantify the benefit from

move-up. Recall that the relative improvement is equal to g−gb

gb
where g and gb represent

the objective value under an optimal move-up policy and the corresponding optimal static

policy, respectively. For all the scenarios, we find that move-up always leads to better

performance. The relative improvement figures also increase first and then decrease as λ

increases. Intuitively speaking, when λ is small, both ambulances are most likely to be free

and stand by at the nodes giving the best reward for the next call, which are the same under

both the static and move-up policies. Therefore, move-up makes little difference. When

λ is large, as discussed earlier, there is little opportunity for performing more intelligent

move-up, which is why the size of the improvement is also small.

Summarising, the minimum relative improvement is 0.7%, which occurs with λ = 1

call/min and h = 11; the average relative improvement over all scenarios is 2.1%; the

maximum relative improvement is 9.8%, which occurs with λ = 4
15 calls/min and h = 11.

5.3.2 Example Moves Using Optimal Move-up Policies

The move-up policies even for these small-scale problems contain a large number of decisions

and they are difficult to report. Therefore, we review some moves that occur under the

optimal move-up policies, which we expect to see in systems with more ambulances. The
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Figure 5.3: Definitions for the icons used in Figures 5.4, 5.5 and 5.6.

methodology of the review is to start with a specified state and show the sequential moves

according to a common sample path. Here a sample path refers to a sequence of events

in a certain period of time. The sample path we use is defined as follows: at time-step 1,

a call occurs at node 12 and there is no call arrival for at least the next 14 minutes; the

on-site treatment duration for the call is 1 minute and transportation is required with the

at-hospital hand-over duration being 1 minute as well. We choose our starting state to be

((6,Free), (13,Free)) – one ambulance is standing by at node 6 and the other ambulance

is at node 13 at time-step 0. To help the reader visualise the sampled moves, plots using

icons defined in Figure 5.3 are provided.

For all the optimal move-up policies, we find that there is only one target stand-by

configuration for two ambulances, which is node 6 and node 13; in other words, when two

ambulances are at nodes 6 and 13, they stay put. This is expected because r(6, 13) is the

global maximum of r(k1, k2), ∀k1, k2 ∈ N .

Consider the scenario shown in Figure 5.4 where λ = 1/15 calls/min and h = 4. The

utilisation associated with the move-up policy is about 0.34. At time-step 1, the ambulance

at node 13 is dispatched to the call at node 12; under the optimal move-up policy, the free

ambulance immediately moves from node 6 to node 10 for stand-by, which is expected as

r(10) is the global maximum of r(k), ∀k ∈ N ; once the busy ambulance becomes free at

time-step 13, it moves from node 4 to node 6 and meanwhile, the other ambulance moves

from node 10 to node 13.

Next consider the scenario shown in Figure 5.5 where λ = 1/15 calls/min and h = 11.

The utilisation associated with the move-up policy is about 0.32. This scenario differs from
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Figure 5.4: An example of ambulance moves under the optimal move-up policy with λ = 1/15
calls/min and h = 4.

62

two-veh/figures/sim-1.eps


5.3 Computational Experiments and Insights

the scenario we just reviewed in the hospital location. At time-step 1, the ambulance at

node 13, as before, is dispatched to node 12. However, unlike the earlier case, the ambulance

at node 6 stays put. The busy ambulance becomes free at time-step 5 and then it moves

from node 11 to node 13.

Recall that the ambulance at node 6 would immediately move to node 10 under the

scenario where λ = 1/15 calls/min and h = 4 (Figure 5.4). The change in the ambulance’s

behavior at node 6 is because the busy ambulance is likely to become free at node 11 or node

12 very soon due to the changed hospital location, the short travel times to the hospital,

and the short service times on site and at the hospital.

If the free ambulance moves towards 10, overlapping coverage around node 10 is likely to

form in the near future, which is suboptimal in this case. Here overlapping coverage refers

to the case where some nodes are covered by multiple ambulances while some nodes are

not covered by any ambulances. Note that overlapping coverage is not always suboptimal;

we expect a certain amount of overlapping coverage for large-scale problems. Intuitively,

a high-demand location requires coverage by multiple ambulances for the near future to

have quick response times. To summarise based on the two scenarios reviewed above, we

see that where a hospital is located may play a major role in determining the moves that

occur under an optimal move-up policy.

The third scenario we review as shown in Figure 5.6 has λ = 1/4 calls/min and h = 4.

The utilisation associated with the move-up policy is about 0.68. At time-step 1, the

ambulance at node 13 is dispatched to node 12; the free ambulance at node 6 stays put

until the busy ambulance has reached node 8 at time-step 7 while travelling to the hospital

at node 4. At this moment, the free ambulance at node 6 starts travelling to node 10 for

stand-by. At time-step 12, the busy ambulance becomes free at node 4 and then the two

ambulances reach nodes 6 and 13, respectively, at time-step 15 for stand-by.

We see that when the ambulance at node 13 gets dispatched, the ambulance at node

6 waits until the busy ambulance is ‘close enough’ to the hospital. This ‘wait-and-see’

behaviour is caused by the high arrival rate and the lower rewards at nodes 7, 8 and 9 in

comparison with those at node 6 (the ambulance’s current location) and node 10 (giving
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Figure 5.5: An example of ambulance moves under the optimal move-up policy with λ = 1/15
calls/min and h = 11.
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the best one-free-ambulance reward). Compared to the first two scenarios we just reviewed,

the arrival rate under this scenario is increased about 4 times. The high arrival rate (on

average 1 call per 4 minutes) means that an ambulance is likely to get dispatched while

travelling to a target stand-by node. So the ambulance could get a worse reward, e.g. r(8),

than the guaranteed reward, r(6), of staying put and than the optimistically high reward,

r(10), of moving to node 10. This is why the free ambulance at node 6 prefers to wait in

the hope that the busy ambulance becomes free on site. If not, it ‘reluctantly’ moves from

node 6 to node 10 when the busy ambulance is close enough to the hospital at node 4; this

move-away-from-hospital is again to avoid coverage overlapping around the hospital, as the

busy ambulance is expected to become free at node 4 very soon.

The last scenario we review has λ = 1/4 calls/min and h = 11. The utilisation associated

with the move-up policy is about 0.65. After the ambulance at node 13 gets dispatched to

node 12 at time-step 1, the free ambulance at node 6 stays put regardless of the status of

the other ambulance; the busy ambulance becomes free at time-step 5 and reaches node 13

at time-step 7 for stand-by. These moves are the same as those presented in Figure 5.5 for

the second scenario we reviewed.

This scenario differs from the previous scenario in the hospital location. Recall that

under the previous scenario (Figure 5.6), the ambulance at node 6 moves to 10 once the

busy ambulance has reached node 8 while travelling to the hospital at node 4. Because

the hospital is now at node 11, the free ambulance at node 6 is even more reluctant to

travel through nodes 7, 8 and 9 to node 10, as the busy ambulance is likely to become free

around node 10 very soon. These moves reinforce the observation of reluctant moves for

the previous scenario and they also suggest that the hospital location may play a major

role in determining moves under an optimal move-up policy.

We are aware that the utilisations (0.68 and 0.65) for the last two scenarios reviewed

above are probably very high compared to those encountered in reality. However, when

the arrival rate is relatively high in realistic-sized problems for which the travel time to a

high-reward location is much larger than just a few minutes, we expect similar behaviours,

i.e. an ambulance may be reluctant to move from its initial location to a higher-reward
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location along a path on which the reward at some location is worse than those at the

initial location and the final location,

To our knowledge, the moves of the forms described in Figures 5.4 - 5.6 have never been

discussed before and they offer new insights into optimal move-up policies. We emphasise

that a high-reward location may not be an optimal stand-by location because of a high

arrival rate and low rewards along a path on which an ambulance moves towards the loca-

tion. This feature is not commonly recognised in the literature where the reward collected

by move-up is, typically, equal to the reward at the final destination.

5.3.3 Insights into Relative Values

Besides studying the properties of optimal move-up policies, we are also interested in the

characteristics of the relative values obtained by solving the optimality equations via value

iteration.

Let V , as before, denote the relative value function over S under an optimal move-up

policy. In the context of our move-up problem, the difference, V (s1) − V (s2), s1, s2 ∈ S,

represents the extra number of calls that can be reached on time in the long term (assuming

V (s1) > V (s2)) by starting in state s1 rather than in state s2.

A principal empirical finding is that the relative value, under an optimal move-up policy,

follows an increasing trend if there is no event occurring in the system and at least one

ambulance is moving either due to move-up or serving a call. Here an event refers to a

call arrival, a completion of on-site or at-hospital service. We now sample some states to

demonstrate this insight more carefully.

First, consider the case in which two ambulances are free at nodes k1 and k2; in addition,

at least one ambulance does not stay put under an optimal move-up policy. Then we have

V ((k1,Free), (k2,Free)) < V ((k′1,Free), (k
′
2,Free)),

where k′1 and k′2 are the successors of nodes k1 and k2, respectively, under the optimal

move-up policy.
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Figure 5.7: The relative values associated with the optimal move-up policy given both ambu-
lances being free when λ = 1/60 calls/min and h = 11.

This observation is expected because the system is still moving towards an ‘optimal’

configuration (stand-by nodes) in which both ambulances stay put under an optimal move-

up policy; state ((k′1,Free), (k
′
2,Free)) is one-step closer to achieve the optimal configuration

and so the system is in a better state.

Figure 5.7 shows an example of the relative values given both ambulances are free when

λ = 1/60 calls/min and h = 11. We see that the plot is symmetric along the pairs of

locations (k,k), k=1,...,15, which is expected by the two ambulances being indistinguish-

able. We also see that there are two ‘peaks’ which represent the relative values for state

((6,Free), (13,Free)) and state ((13,Free), (6,Free)); the two peaks are expected, as they

correspond to the optimal stand-by configuration given both ambulances being free.

Next, consider the case in which the first ambulance is free at node k and the second

ambulance is travelling to (but not yet reach) a call location for on-site service or a hospital
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for hand over. Then we have

V ((k,Free), (i, j)) < V ((k′,Free), next(i, j)), i 6= j,

and

V ((k,Free), (i,H)) < V ((k′,Free), (next(i, h(i)),H)), i 6= h(i),

where k′ is the successor of node k under an optimal move-up policy, next(i, j) is the

successor of node i along an shortest path from i to j and h(i) is the hospital that is closest

to node i.

Regarding the free ambulance, it is possible that k′ = k. Nevertheless, as the busy

ambulance is one-step closer to the scene or a hospital, it is expected to be one-step closer

to become free. Therefore, the system is in a better state after one time-step.

For the states in which both ambulances are busy, we also see similar results. For

example, we have

V ((i, j), (x, y)) < V ((next(i, j), j), (next(x, y), y)), i 6= j and/or x 6= y,

and

V ((i,H), (j,H)) < V ((next(i, h(i)),H), (next(j, h(j)),H)), i 6= h(i) and/or j 6= h(j).

Overall, we think the investigation of relative values provides useful insights which can

be used to guide the development of approximate models for practical move-up problems.

5.4 Summary

This chapter has been devoted to the study of optimal move-up for two ambulances in order

to maximise the system performance over an infinite horizon. A DP model was formulated

for this move-up problem. In contrast to the single-ambulance move-up models discussed

in the previous two chapters, this model, which involves two ambulances, allows us to gain
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some understanding of the impact of ambulance interactions on determining ambulance

moves under an optimal move-up policy.

A set of simplified small-scale scenarios was used for computational experiments. The

optimised move-up policies were shown to provide extra benefits compared to the optimised

static policies. Insights into optimal move-up policies and relative value functions were also

discussed. Some of the insights presented in Section 5.3 are employed in the integer program

presented in Chapter 8. We plan to incorporate more insights gained from this model in

future research.

The performance improvement with move-up presented in this chapter is an encourage-

ment to continue our research for the development of large-scale move-up models presented

in the subsequent chapters.
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Simulating Static Ambulance

Location Policies for Large-Scale

Ambulance Operations

6.1 Overview

The previous two chapters were focused on the formulation of more realistic exact dynamic

programming models for move-up than those in the literature. Exact dynamic programming

move-up models, which can provide useful insights, quickly become intractable for prob-

lems of realistic size. Exploring and developing ambulance move-up models for large-scale

ambulance operations is the main focus of the second part of this thesis.

The most realistic approach for evaluating an ambulance location policy (a static policy

or a move-up policy) is simulation. In practice, many EMS providers are already using com-

mercial simulation packages for their strategic planning. As briefly mentioned in Chapter 1,

The Optima Corporation based in Auckland, New Zealand, specialises in the development

of software for ambulance logistics. Their simulation software, called Optima Predict, is

now used to improve operational efficiency in ambulance operations in a number of different

countries including the UK, Denmark, Australia and New Zealand.

The first version of this software, called BartSim, was developed by Andrew Mason1 from

the Engineering Science Department at the University of Auckland, working in collaboration

with Shane Henderson (now at Cornell University) [33]. Optima Predict is a sophisticated

1Mason [32] gives a review on the development and applications of this software in a forthcoming book
chapter.
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package written in C++ for simulating ambulance operations. It provides feedback for

complex decision-making, such as recommending the location of a new ambulance base,

staff rostering, etc.

A move-up model by Richards [39], which was discussed in Chapter 2, has been em-

bedded into Optima Predict. Optima sees the value of move-up and is always interested

in seeking and exploring alternative move-up approaches. They support this research by

providing the authors with access to Optima Predict and its source code. Our research has

benefited from the existing analytic tools in Optima Predict, and the system has provided a

platform for the development of additional features. In fact, all large-scale move-up models

presented in this thesis involve simulation-based optimisation: Optima Predict plays a key

role in this research.

The purpose of chapter is to familiarise the reader with Optima Predict through the

demonstration of three ‘optimised’ static ambulance location policies under three simplified

scenarios. Moreover, these static policies are used to benchmark the performance of the

move-up models in the next two chapters. The rest of this chapter is divided as follows. Sec-

tion 6.2 presents the assumptions and major input parameters used to conduct simulation

experiments in Optima Predict. Section 6.3 describes a methodology using a simulation-

based local search algorithm to find high-quality static policies. Section 6.4 constructs three

simplified scenarios and analyses the results of the corresponding optimised static policies.

Similar analysis is performed on the ‘optimised’ move-up policies for comparison in the

following chapters. This chapter ends with a summary in Section 6.5.

6.2 Simulation Environment

In this section, we explain the major assumptions and input parameters used to conduct

our simulation experiments in Optima Predict. First, the road network and the allocation

of ambulance bases and hospitals on the network are described. Second, key operational

rules regarding the dispatch policy and ambulance locating strategy are discussed. We also

explain the procedure to create artificial call datasets, which are used for our simulation-
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based optimisation and evaluation.

Auckland, which is the largest city in New Zealand, is used for simulation experiments.

The road network that we use models the actual road network on the avenue level. It

is comprised of a set of vertices and arcs. Along each arc we define two ‘tiers’ of travel

speeds that are constant over time. One tier defines the ‘normal’ travel speed, at which

an ambulance is either free and travelling along an arc towards a base or is transporting a

patient to a hospital. The second tier defines the ‘faster’ speed, at which an ambulance is

travelling along an arc to a call location with lights and sirens turned on. We assume an

ambulance always travels from one location to another along the fastest path.

All four major hospitals in Auckland are included in our experiments. The ambulance

base locations approximate real ambulance base locations around Auckland. However,

most of the ambulance bases and call demand in rural and remote areas are excluded in

the simulation experiments.

Our focus on the performance of EMS operations in urban areas is motivated by chal-

lenges faced by the local EMS provider, St John. In Auckland, calls are prioritised into two

categories [33]:

Priority 1: Calls involving life-threatening symptoms for which an ambulance should

respond at maximum possible speed with the use of lights and sirens.

Priority 2: Other calls for which an ambulance may respond at standard traffic speeds.

St John published their response targets and actual performance regarding priority 1 calls

in 2011 [1] which are summarised in Table 6.1. Call locations are divided into three groups:

(1) urban areas, (2) rural areas, and (3) remote areas. For each category, there are two

response targets to meet. For example, the second row of Table 6.1 indicates that 50%

of priority-1 calls in urban areas are expected to be reached within 8 minutes, while the

actual performance for 2011 was 46%. The data suggest that St John does reasonably well

in rural and remote areas, but has difficulty meeting the two targets in urban areas. Thus

we focus on the performance of their operations around urban areas covering approximately

600 km2 in total. The geographical allocation of hospitals and ambulance bases is shown in
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Target time Target success Actual success

Urban 8 min 50% 46%

Urban 20 min 95% 93%

Rural 12 min 50% 52%

Rural 30 min 95% 92%

Remote 25 min 50% 60%

Remote 60 min 95% 95%

Table 6.1: St John Ambulance’s response time targets and actual success for priority-1 calls
in urban, rural, and remote areas of Auckland, 2011 [1].

Figure 6.1. The number above each ambulance base represents the base index. In total, 16

ambulance bases are included in our experiments. Note that for the more dynamic move-up

approach, an ambulance may also stand by at a street corner, which is controversial in EMS

operations: it is possible that ambulance crews may sit idle in the vehicle for a long time,

which may cause discomfort and frustration from the crews’ frustration . At this stage, we

do not consider street corners for stand-by in our experiments.

The dispatch policy implemented here involves dispatching the closest ambulance to a

call if there is at least one free ambulance. Otherwise, the call is entered into a queue and

served in a first-in-first-out fashion. This closest-ambulance dispatch policy is commonly

used in EMS operations. Research that investigates the impact of different dispatch policies

is becoming an active area, e.g. see Lim et al. [29]. As in the DP models studied in the

previous chapters, we assume that there is no dispatch delay or mobilisation delay, as

discussed in Chapter 1. If there is dispatch delay, it is associated with every call and we

do not expect that it would alter an optimised ambulance location policy which does not

consider dispatch delay. Therefore, we do not include such delay for simplicity. If there is

mobilisation delay, an improvement using move-up can be achieved by putting ambulances

on the road to eliminate such delay. We do not think that purposely eliminating mobilisation

delay is the correct motivation for performing move-up. Therefore, we do not include any

mobilisation delay at this stage of the research; if a move-up strategy is beneficial in our

experiments, we can reasonably expect it to be more effective than the static strategy.

One of the main objectives of this research is to develop move-up strategies that reduce
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Figure 6.1: Locations of ambulance bases and hospitals for computational experiments.
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response times for large-scale EMS operations. Major factors that justify move-up are

changes in ambulance availability, travel times, arrival rate, and the spatial distribution of

call demand. In this research, we investigate and compare the performance of static and

move-up strategies applied to simplified systems in which travel times, arrival rate and the

spatial distribution of call demand do not change over time.

The ambulance availability is changed solely due to serving calls; the number of ambu-

lances on duty is fixed throughout the entire simulation period. In practice, the number of

ambulances on duty typically changes over time according to the changes in call demand,

travel times, etc. A scheduling problem naturally arises and research on this problem is

also becoming active, see Erdoğan et al. [17].

We assume that all calls are of the same type (priority-1 calls from urban areas) with a

response time target of 8 minutes, and that the call arrivals follow a Poisson process with

a constant arrival rate λ. In future research, we plan to test varying ambulance location

strategies in more complicated systems which consider changing travel times, multiple call

priorities, dispatch and mobilisation delays, etc.

Artificial call data are created using code written in R by Bulog and Frankovich. R is a

software package used for statistical computing and graphics. The purpose of this module

is to generate artificial call data on a realistic network. Currently, data can be generated

for Auckland, Edmonton, Toronto and New York. The use of call data for the static model

and the move-up models presented later can be summarised by two steps. The first step is

to use a common training dataset to seek the best policy and the second step is to use a

set of test datasets to estimate the policy’s performance. We briefly explain the R module

and its assumptions as follows.

The spatial distribution of call demand is based on the population distribution around

Auckland obtained from Statistics New Zealand [47]. Auckland is divided into 399 suburbs

and the population in each is recorded in the population dataset. As call demand in

rural and remote areas is not considered in our experiments, we set the population in

these suburbs to zero. The normalised population represents the spatial distribution of call

demand on the suburb level. We further assume that in each suburb there are 1000 possible
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call locations, which are uniformly distributed in the suburb; each call location has an equal

probability of being chosen if a call occurs in that suburb.

The treatment time, which is the time that an ambulance spends on site, has an ex-

ponential distribution with mean 12 minutes. After treating the patient at the call scene,

the ambulance transports the patient to the closest hospital with probability 0.8, which

was used in the experiments by Maxwell [34]. Transporting to the closest hospital is not

always the case in practice; the choice of hospital depends on several factors such as the

location and type of the emergency call, the medical resources at different hospitals, etc.

The hand-over time an ambulance spends at a hospital also has a exponential distribution

with mean 12 minutes. These service-time related parameters used for our experiments are

default inputs for the R module.

Note that ambulance bases, hospitals, and call arrivals are allowed to be located off

the road network and we calculate the off-network travel time using the Euclidean distance

from the closest node on the network and a specified off-network driving speed. Therefore,

each path between two points may have off-network travel at the beginning and/or the end

of the path.

In our research, we do not have a ‘warm-up’/transient period for simulations, i.e. every

call in a call dataset is used for the purpose of policy evaluation. The last day of a call

dataset contains no calls, which is a ‘wind-down’ period to allow ambulances to complete

services and return to bases. The simulation is completed at the end of the wind-down

period.

One may argue that the transient period should not be included for performance evalu-

ation. However, for our experiments presented later, the optimisation for a static/move-up

model uses the same training dataset to evaluate each policy; the starting configuration

when using the training dataset to seek an optimised move-up policy and using each test

dataset to evaluate the optimised move-up policy is always the same as the configuration

defined by the optimised static policy. To summarise, we make fair comparisons when

selecting the best static/move-up policy and estimating the performance of the optimised

static and move-up policies. As we are more interested in the performance difference be-
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tween varying policies rather than the performance for each policy, we think the transient

period has little impact on making comparisons.

6.3 Optimising a Static Ambulance Location Policy

We remind the reader that a static ambulance location policy includes the assignment of

each ambulance to a home base. Whenever an ambulance becomes free at the conclusion of

a call, it returns to its home base. As discussed in Chapter 1, finding good static policies has

received a great deal of interest. Early models assumed that each ambulance is always free

at its home base when a call arrives, which is not the case in reality. More recently, many

models aiming to optimise static policies in more realistic settings have been developed.

A majority of recent mathematical models employs the idea of approximate hypercube

(AH) when calculating ambulance busy probabilities. Such models are typically nonlinear

and heuristics were therefore developed to solve them. The original AH model is an approx-

imation of the ‘exact’ hypercube model, both of which were proposed by Larson [25, 26]

to estimate a set of performance measures under a fixed static policy. Larson’s models,

which are based on the queueing theory, assumed a system-wide exponentially distributed

service time and a single server per base. The first assumption was relaxed by Jarvis [23].

Jarvis’s AH model allowed one to consider general service times that depend on both de-

mand locations and server locations. The second assumption was relaxed by Budge et al.

[11]. Their AH model allows multiple servers per base. Erdoğan et al. [17] proposed a tabu

search which uses the AH model in [11] to optimise static policies.

For the large-scale move-up models presented in the next two-chapters, we use the static

strategy to benchmark their performance. Static policies were also used to benchmark the

performance of a move-up model proposed by Maxwell [34], which is discussed in the next

chapter.

To seek a high-quality static policy (which we refer to as an optimised static policy),

we present a hill-climbing (local search) algorithm which uses the neighborhood definition

given in [17]. Furthermore, instead of using a mathematical model (AH) to evaluate the
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performance of a solution, we use simulations in Optima Predict, so our evaluation is more

accurate. In the hope of finding a globally optimum solution, we use repeated hill climbing

with multiple initial solutions; the details are given shortly.

We emphasise that during this optimisation process, a common training dataset is used

to evaluate a solution at each iteration while running the local search algorithm with each

initial solution. The percentage of calls reached on time, i.e. within 8 minutes, is used as

the performance measure. Next, we briefly outline the main components of this simulation-

based local search algorithm before stating the algorithm step-by-step.

6.3.1 Solution and Objective

We first define the notation that we use in order to introduce the model and our solution

technique. Let N denote the total number of ambulances on duty. Let B denote the number

of bases which are indexed by numbers from 1 to B. At any iteration of the algorithm, a

solution is specified by a vector A = (n1, ..., nB) where nb, b = 1, ..., B represents the number

of ambulances assigned to base b. The solution must satisfy
∑B

b=1 nb = N . The objective

f(A) to maximise is the number (percentage) of on-time calls measured via simulation on

a common training call dataset. A call is reached on time if the response time is within 8

minutes. Note that since a common training call dataset is used, i.e. we evaluate a solution

on a deterministic call dataset, the number and percentage of on-time calls are equivalent

objectives.

6.3.2 Initial Solution

An initial solution is created using a simple random allocation scheme. More specifically,

given there are B bases and N ambulances on duty, we randomly generate N integers

between 1 and B. The number of ambulances assigned to base b, b = 1, ..., B is equal to the

number of times the value b appears in this series of N integers.
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6.3.3 Local Search Operations

There is only one operation, assign, for this local search algorithm. A neighbour solution

of A is y=assign(A, i, j) – the result of reassigning one ambulance from base i to base j .

6.3.4 Neighborhood Structure

The neighbourhood of a solution is constructed by performing assign on pairs of bases. It

is obvious that this operation can only be performed on base i and j if there is at least one

ambulance at i prior to the reassignment.

6.3.5 Updating Rule

In our algorithm, the current solution is updated as soon as an improved neighbour solution

is found. The scanning of the neighbourhood of the new solution starts where the scanning

of the previous was interrupted.

6.3.6 Step-by-Step Description of the Algorithm

Algorithm 2 A simulation-based local search algorithm to optimise the ambulance-to-
home-base solution

Create a training call dataset for use in simulation. Create an initial solution A
as described in Section 6.3.2. Evaluate f(A) via simulation using the training call
dataset and set LocalOptimal = False

While LocalOptimal = False

LocalOptimal = True

For i = 1 to B

For j = 1 to B

if i 6= j and ni ≥ 1 and f(assign(A, i, j))> f(A) then

set A =assign(A, i, j)

set LocalOptimal = False

We now present this simulation-based local search method in Algorithm 2. Note that

the run times of the algorithm are expected to be reduced by storing evaluated solutions,
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so that if a solution has been evaluated before, a simulation is no longer required. For our

experiments below, storing evaluated solutions is not implemented yet. However, we do

plan to add this enhancement to the algorithm, which is clearly desirable for commercial

use.

6.4 Computational Experiments

In this section, we report the results for the optimised static policies for varying arrival rates

and ambulance fleet sizes. Three scenarios are generated for the experiments. The baseline

scenario, namely Scenario 1A, has an arrival rate of 9 calls/hr and 12 ambulances on duty.

The arrival rate and the ambulance fleet size for this scenario are calibrated such that the

expected percentage of calls reached on time using the optimised static policy will be similar

to that in St John’s 2011 annual report, i.e. approximately 47% (Table 6.1). Scenarios 1B

and 2 are variations of this baseline scenario. Scenario 1B has the same arrival rate as

Scenario 1A but has 4 more ambulances on duty, i.e. ambulances are operating in a less

busier environment. Scenario 2 has the same number of ambulances on duty as Scenario

1B but its arrival rate is 12 calls/hr such that the ambulance utilisation will be similar to

the one in Scenario 1A. For each of the three scenarios, the (λ,N), i.e. the arrival rate and

the number of ambulances on duty, is listed in Table 6.2. In the next two chapters, the

optimised static policies are used to benchmark the performance of the move-up models for

each scenario. Results in this section are revisited for comparative analysis.

Scenario Arrival rate Number of ambulances on duty

1A 9 calls/hr 12

1B 9 calls/hr 16

2 12 calls/hr 16

Table 6.2: The arrival rate and the number of ambulances on duty in Scenarios 1A, 1B and
2.

We use the methodology introduced in section 6.3 to obtain the three optimised static

policies. For each scenario, the training dataset used for Algorithm 2 contains 49 days of

call data plus one call-free day. We generate 15 initial ambulance-to-home-base assignment
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solutions, as described in Section 6.3.2, and the final best solution obtained by running

Algorithm 2 with each of these initial solutions, is chosen to form the optimised static policy.

The policy selection process introduces a selection bias. We estimate the true performance

of an optimised policy using 40 independent test datasets. All the test datasets, which are

generated in the same way as the training datasets, contain 89 days of call data plus one

call-free day.

As Scenarios 1A and 1B have the same arrival rate, we use the same training dataset

for optimisation and the same 40 test call datasets for statistical analysis. The training

dataset in Scenarios 1A and 1B contains 10459 calls. For Scenario 2, the training dataset

contains 13930 calls. Note that the training dataset for Scenarios 1A and 1B is not a subset

of the training dataset for Scenario 2 which has a higher arrival rate; they are generated

independently. Similarly, the test datasets for Scenario 2 are also generated independently

with respect to those for the other two scenarios.

Algorithm 2 is implemented in C++ and embedded in Optima Predict. We conduct our

experiments on a Windows workstation with a 2.4GHz 32-bit Quad Core Intel CPU and

4 GB of RAM. For each of the three scenarios, the associated 15 initial solutions used in

Algorithm 2 all lead to the same locally optimal solution. This result suggests that there are

only a few locally optimal solutions and that the locally optimal solution obtained may also

correspond to the globally optimal solution for the associated training dataset. Therefore,

the static policies are expected to be of high quality.

Table 6.3 reports the CPU time for each iteration of Algorithm 2 and the total CPU

time to obtain each optimised static policy. Note that the total CPU time is for 15 runs of

Algorithm 2.

Scenario 1A Scenario 1B Scenario 2

CPU time/iteration 34 seconds 34 seconds 49 seconds

Total CPU time 32.3 hours 98.3 hours 102.2 hours

Table 6.3: The CPU time for each iteration of Algorithm 2 and the total CPU time to obtain
each optimised static policy using the corresponding training dataset.

Table 6.4 summarises the following performance measures for each static policy: (1)
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the 95% confidence interval for the expected percentage of calls reached on time, (2) the

95% confidence interval for the expected average response time, (3) the 95% confidence

interval for the expected utilisation and (4) the 95% confidence interval for the expected

queueing-up probability (the probability that a call is entered into a queue). Keep in mind

that the statistics are estimated using the test datasets associated with each scenario1.

From Table 6.4, we see that, for the same arrival rate, the percentage of calls reached

on time is higher in Scenario 1B than in Scenario 1A. This is expected, as more ambulances

are available in the system and thus more calls are expected to be reached on time. As

we increase the arrival rate (Scenario 2) for the same number of ambulances on duty, the

percentage of calls reached on time drops by about 9.23%. The same reasoning applies to

the difference in the values for the average response time, utilisation and the queueing-up

probability for the three scenarios.

The optimised ambulance-to-home-base assignment solution for each of the three sce-

narios is listed in Table 6.5. In Scenario 1A, 5 ambulance bases are not assigned any

ambulance, 10 ambulance bases are assigned one ambulance, respectively, and 1 ambulance

base is assigned two ambulances. For the same arrival rate, Scenario 1B has 4 more am-

bulances than Scenario 1A. From Table 6.5, we see that 3 ambulance bases, i.e. bases 5, 9

and 16, not assigned an ambulance in Scenario 1A are now assigned one ambulance each.

There are also two ambulance bases, i.e. bases 7 and 12, assigned 2 ambulances each. How-

ever, base 10, which is assigned 2 ambulances in Scenario 1A, is assigned one ambulance

in Scenario 1B. Comparing the solutions for Scenario 1B and Scenario 2, which have the

same number of ambulances on duty but different arrival rates, the number of ambulances

assigned to each base is the same except for bases 15 and 16.

We now introduce the reader to both existing and new analysis tools in Optima Predict.

These tools are designed to provide useful feedback for an ambulance location strategy.

Similar analysis is performed in the next two chapters when we present our move-up models.

This provides a consistent basis for comparisons of different ambulance location strategies.

1When calcuating a confidence interval for a performance measure introduced in Sections 6.4, 7.6, and
8.5, we follow the procedure outlined in [27], which assumes that each observation for the performance
measure based a test dataset is a sample point from a normal distribution.
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Scenario 1A Scenario 1B Scenario 2

Expected percentage of calls reached on time 47.39%± 0.2% 66.34%± 0.1% 56.1%± 0.1%

Expected average response time (minutes) 10.3± 0.03 7.66± 0.02 8.93± 0.01

Expected utilisation 46.2%± 0.3% 31.2%± 0.2% 45.3%± 0.2%

Expected queueing-up prob. 0.018± 0.001 0 0.006± 0.002

Table 6.4: The 95% confidence intervals for the expected percentage of calls reached on time, average response time, utilisation
and queueing-up probability under each of the three optimised static policy, estimated using the corresponding test datasets.
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Base index Scenario 1A Scenario 1B Scenario 2

1 0 0 0

2 0 0 0

3 1 1 1

4 1 1 1

5 0 1 1

6 1 1 1

7 1 2 2

8 1 1 1

9 0 1 1

10 2 1 1

11 1 1 1

12 1 2 2

13 1 1 1

14 1 1 1

15 1 1 2

16 0 1 0

Table 6.5: The ambulance-to-home-base assignment solution associated with the optimised
static policy for each of the three scenarios, i.e. the number of ambulances assigned to each
base.

Optima Predict allows a user to visualise an optimised ambulance-to-home-base assign-

ment solution on a computerised map. We use Scenario 1A as an example; Figure 6.2 shows

the solution along with the spatial distribution of call demand on the Auckland road net-

work. The bracketed number next to each base index indicates the number of ambulances

assigned to that base. A set of 500x500 grid cells is used to show the spatial distribution of

call demand. Each cell has dimensions of approximately 400x400 meters. The spatial dis-

tribution of call demand over this layer is estimated by evenly distributing the normalised

population for each suburb into the set of grid cells whose centroids are contained within

the suburb. The low call density around bases 1, 2, 5, 9 and 16 is consistent with the disuse

of these bases.

Next we employ Optima Predict to estimate statistics for a set of performance measures

in which both operations researchers and EMS providers are interested, which are

• At-base dispatch proportion: the proportion of calls being responded to by an at-base

85



6. SIMULATING STATIC AMBULANCE LOCATION POLICIES FOR

LARGE-SCALE AMBULANCE OPERATIONS

Figure 6.2: Optimised ambulance-to-home-base assignment solution under the static policy
and spatial distribution of call demand for Scenario 1A.
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ambulance. An at-base ambulance is one that is free and standing by at a base.

• On-road dispatch proportion: the proportion of calls being responded to by an on-

road ambulance. An on-road ambulance is one that is free and driving towards a

base.

• At-base coverage proportion: for calls served by at-base ambulances, the proportion

that is reached on time.

• On-road coverage proportion: for calls served by on-road ambulances, the proportion

that is reached on time.

• Average driving distances per vehicle per day: total driving distances divided by the

number of days and the number of vehicles on duty.

As before, the test datasets under the corresponding scenario are used to generate the 95%

confidence intervals for the performance measures described above, which are reported in

Table 6.6. An important observation is that for each of the three scenarios, the number

of calls served by on-road ambulances is a significant proportion of the total calls, i.e.

the on-road dispatch proportions are about 35.4%, 22.8% and 35.1%. To our knowledge,

existing mathematical models aiming to evaluate a fixed static policy or to optimise the

static policy ignore those calls served by on-road ambulances. Our empirical results suggest

that taking into account those calls that are served by on-road ambulances is important for

both evaluation and optimisation of the static strategy, which is also true regarding any

move-up strategy.

One means of understanding an ambulance location strategy is to visualise the corre-

sponding geographical coverage. We use Scenario 1A to introduce three new geographical

coverage plots that we have added into Optima Predict. Figure 6.3 is a coverage probability

plot that illustrates the probability, estimated from the training dataset, of covering a cell

by at least one free ambulance. A cell is considered covered if its centroid can be reached on

time, i.e. 8 minutes, by at least one ambulance. The call coverage probability for each cell

is estimated by sampling coverage at each time instant that a call arrives. Here coverage
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Scenario 1A Scenario 1B Scenario 2

Expected at-base dispatch proportion 64.6%± 0.2% 77.2%± 0.1% 64.9%± 0.2%

Expected on-road dispatch proportion 35.4%± 0.2% 22.8%± 0.1% 35.1%0.1%

Expected at-base coverage proportion 50.5%± 0.2% 68.5%± 0.2% 59.8%± 0.1%

Expected on-road coverage proportion 41.7%± 0.2% 58.8%± 0.2% 49.2%± 0.1%

Expected average driving distances per ambulance per day (km) 433± 2 297± 1 415± 1

Table 6.6: The 95% confidence intervals for the expected at-base dispatch proportion, on-road dispatch proportion, at-base coverage
proportion, on-road coverage proportion and average driving distances per day under each of the three optimised static policies,
estimated using the corresponding test datasets.
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refers to cells that are covered at some time instant. This estimation process is equivalent to

a random sampling approach as call arrivals follow a Poisson process for which inter-arrival

times are independent. Therefore, a number of independent observations from the same

probability distribution are taken for the estimation.

Figure 6.3 contrasts coverage in different areas. Briefly, areas around bases 4, 7, 10 and

13 have good coverage and there is no coverage in areas around bases 1, 2, 5, 9 and 16; the

maximum coverage probability is less than 0.8.

The next two plots are a decomposition of the coverage probability plot. The first one is

the at-base coverage probability plot and the second one is the on-road marginal-coverage

probability plot. The at-base coverage probability plot shown in Figure 6.4 illustrates the

probability of covering a cell by at least one at-base ambulance. The on-road marginal-

coverage probability plot shown in Figure 6.5 illustrates the probability of covering a cell by

at least one on-road ambulance and it is not covered by any at-base ambulances. These two

probabilities are also estimated using the same methodology that estimates the coverage

probability for each cell. Note that the sum of these two probabilities for a cell is equal to

the coverage probability for the cell.

We observe that there is notable on-road marginal-coverage in areas around the three

hospitals near bases 7 and 13. This is because about 74% of calls which require transporta-

tion to the closest hospital are transported to one of these three hospitals. This means that

most ambulances become free at one of these hospitals and then return to their home base.

Therefore, on-road marginal-coverage around these three hospitals is a notable feature in

the plot.

6.5 Summary

This chapter has been devoted to the introduction of the simulation platform, Optima

Predict, used to conduct computational experiments for testing and comparing varying

ambulance location strategies in large-scale EMS operations. The major assumptions and

input parameters were presented in the experimental setup section. A methodology for
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Figure 6.3: Coverage probability plot for the optimised static policy under Scenario 1A,
estimated using the training dataset. The number in each bracket indicates the number of
ambulances assigned to each base.

90

Predict/figures/12-static-location-cover.eps
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Figure 6.4: At-base coverage probability plot for the optimised static policy under Scenario
1A, estimated using the training dataset.
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Figure 6.5: On-road marginal-coverage probability plot for the optimised static policy under
Scenario 1A, estimated using the training dataset.
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optimising static ambulance location policies was also discussed.

Finally, computational results using the optimised static policies for three simplified

scenarios with varying arrival rates and ambulance fleet sizes were analysed. The results

will be compared to those using three move-up models presented in the next two chapters.
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7

Large-Scale Ambulance Move-up

Models Using a Priority List

7.1 Overview

In Chapter 6, we introduced the simulation software we will use to conduct our research on

large-scale move-up models. We also set up three scenarios and the associated static policies

to benchmark the performance of the move-up models we will study. We are interested in

seeking move-up models that can reduce response times when compared to the static model.

This chapter and the next chapter are devoted to the formulation of three move-up models

for practical problems.

In Chapter 2, we surveyed a set of move-up models which have been developed for

realistic-sized EMS operations. Three types of move-up policies can be derived from the

models in the literature:

• Newly-freed-ambulance move-up policy: whenever there is a newly-freed ambulance, a

target base is decided; a move-up event is triggered at the conclusion of each call; typ-

ically, the ambulance then follows the fastest path to the base. For models generating

such a policy, see Restrepo [30], and Maxwell [34]

• Compliance-table move-up policy: for each number n of free ambulances, there is a

pre-defined ambulance configuration C(n) – a set of stand-by locations. Whenever

the number of free ambulances changes, the dispatcher chooses a set of moves to reach

the target configuration. Typically, the moves are decided by minimising total travel

times. For models generating/evaluating such a policy, see Gendreau et al. [21] and
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Alanis et al. [2].

Comparing a compliance-table move-up policy and a newly-freed-ambulance move-

up policy, the former considers all free ambulances for move-up while the latter only

considers one ambulance for move-up. In addition, under a compliance-table move-up

policy, a move-up decision is required not just at the conclusion of a call but also at

an initiation of a call.

It is also worth mentioning that a compliance table typically has nested configurations

in the sense that some or all of the stand-by locations defined in configuration C(n)

are also included in configuration C(n + 1). In practice, ambulance crews often find

frequent changes of their target stand-by location extremely frustrating. In the case

of using a fully-nested compliance table, i.e. all the stand-by locations in C(n) are

included in C(n + 1), a target configuration can be achieved by changing the target

stand-by location of at most one ambulance when the number of free ambulances

changes. This feature of nesting is designed in the hope to reduce ambulance crews’

frustration.

• Dynamic move-up policy: at each move-up time instant (which may be at the initia-

tion/conclusion of a call, or determined by some rules), free ambulances are moved to

an appropriate configuration according to the location and status of every ambulance

using real-time information. Compared to a compliance-table move-up policy, it does

not force free ambulances into a pre-determined configuration contained in the com-

pliance table; it is a generalisation of the first two types of move-up approaches. We

give more discussions about this type of policy in the next chapter.

In this chapter, we explore the development of newly-freed-ambulance policies and

compliance-table move-up policies. The motivation for this chapter originates from the

work by Maxwell [34]. As discussed in Chapter 2, Maxwell proposed an ADP model to opti-

mise newly-freed-ambulance move-up policies. An interesting observation made by Maxwell

is that, assuming the arrival rate is constant over time (which is one of our assumptions

in this research), a newly-freed-ambulance move-up policy based on the ADP model can
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be fully characterised using a so-called priority list derived from weighted basis functions.

Informally speaking, a priority list ranks the ‘attractiveness’ of assigning n, n = 1, 2, ...

ambulances to each stand-by location (which is always an ambulance base according to our

assumptions). We give its exact definition shortly.

The follow-up observation we can make is that optimising the tunable parameters in the

Maxwell ADP model is equivalent to optimising the order of the items in the priority list. A

major drawback of this numerical optimisation scheme is that changing tunable parameters

may not change the order of the items in the priority list. This means the same priority list

can be derived from different sets of tunable parameters. Consequently, identical policies

can be evaluated multiple times and unnecessary plateaus may be encountered, which can

have a negative impact on the numerical optimisation scheme. Furthermore, in the Maxwell

ADP model, the attractiveness of having n, n = 1, 2, ... ambulances stand by at a given base

is determined by the same tunable parameter. This means the searching space may not

be rich enough in the sense that some priority lists may not be generated based on the

Maxwell ADP model. Since the more general optimisation problem is to find an optimised

priority list, we consider that optimising numerical values (tunable parameters) associated

with the Maxwell ADP model is not addressing the optimisation problem in the most direct

way. We therefore propose an alternative method which is a simulation-based local search

algorithm that directly sorts the items in the priority list.

The concept of making move-up decisions using a priority list has also motivated us

in the development of compliance-table move-up policies. Intuitively, when we have n

ambulances available, we attempt to move the n ambulances into a configuration consisting

of the stand-by locations having priorities from 1 to n in the list. Consequently, a fully-

nested compliance table is formed; details are given shortly. Obviously, one can seek a high-

quality priority-order based compliance-table move-up policy by optimising the underlying

priority list using our simulation-based local search algorithm presented in this chapter.

As discussed in Chapter 2, Gendreau et al. [21] proposed an integer program aiming

to form high-quality compliance tables. The degree of nesting, i.e. the minimum number

of stand-by locations in C(n) that must be included in C(n + 1), is an input parameter.
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The model assumes that given n ambulances available at some move-up time instant, these

ambulances are always in the stand-by locations defined by configuration C(n) before the

next call-arrival. We think this assumption oversimplifies the complex EMS operations,

which is avoided in our simulation-based local search algorithm.

An alternative to using simulations for the evaluation process in our local search algo-

rithm is to use the Markov chain model by Alanis et al. [2] which can reduce run times

substantially. The Markov chain model is designed to approximate the performance of a

given compliance table. The computational results, involving response time statistics, us-

ing their model were shown to be close to using simulations based on data from the city

of Edmonton, Canada. However, we prefer to use simulations for three reasons: (1) we

have a highly advanced simulation package, Optima Predict, readily available for use which

offers more accurate policy evaluations, (2) the analytic tools in Optima Predict allow us to

obtain insights into the characteristics of ambulance location policies, and (3) an optimised

compliance-table move-up policy is determined before it is used in practice, and so long run

times are not as important as the accuracy of the performance estimation.

The remaining sections of this chapter are organised as follows. In Section 7.2, we

define the form of a priority list. In Section 7.3, we detail the construction of a newly-

freed-ambulance move-up policy using a priority list, which is referred to as a ranked-base

free-ambulance move-up policy. In Section 7.4, we show how to construct a compliance table

move-up policy based on a priority list, which is referred to as a ranked-base all-ambulance

move-up policy. In Section 7.5, we describe a simulation-based local search algorithm to seek

a high-quality priority list used to construct a ranked-base free-ambulance move-up policy

or ranked-base all-ambulance move-up policy. In Section 7.6, we perform computational

experiments to compare the move-up policies optimised using our local search algorithm

to the (benchmark) static policies for the three scenarios that we already presented in the

previous chapter; in addition, we show that our local search algorithm is expected to yield

solutions that are as good as the ones based on the ADP approach by Maxwell [34] with

respect to the ranked-base free-ambulance move-up strategy. This chapter ends with a

summary and a discussion about motivations for the next chapter.
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7.2 Definition of a Priority List

In this section, we define the form of a priority list. Let B denote the number of ambulance

bases which are indexed from 1 to B. Let L = (b1 ← m1, b2 ← m2, ..., bN ← mN ) denote

a priority list consisting of N entries where N is the total number of ambulances on duty

and entries are indexed from 1 to N . An entry bk ← mk, k = 1, ..., N has two elements

where bk represents a base index and mk is an integer equaling the number of times base

bk has appeared in L between the first entry and the kth entry (inclusive). An entry

bk ← mk, k = 1, ..., N is considered ‘satisfied’ by some ambulance configuration if at least

mk ambulances are assigned to base bk. The priority of an entry refers to the index of

the entry in L. The lower the index, the higher the priority. For example, the first entry

b1 ← m1 has priority 1 and the fifth entry b5 ← m5 has priority 5. Then we can say the

first entry has a higher priority than the fifth entry.

We would like to note a structural property of a priority list. If base b ∈ {1, ..., B} is

contained in a priority list more than once, the priority of entry b ← m must be higher

than the priority of entry b← m′ where m′ > m.

To give an example of a priority list, assume N = 9, and B = 3. A priority list may

look like the one shown in Table 7.1.

Priority list

1 ← 1

2 ← 1

1 ← 2

3 ← 1

2 ← 2

3 ← 2

1 ← 3

3 ← 3

2 ← 3

Table 7.1: An example of a priority list given that there are 9 ambulances on duty and 3
ambulance bases
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7.3 Ranked-base Free-ambulance Move-up Policy

In this section, we explain how to construct a newly-freed-ambulance move-up policy using

a priority list, which we refer to as a ranked-base free-ambulance move-up policy.

Assume there is a newly-freed ambulance, we first calculate the number of free ambu-

lances nb assigned to each base b, b = 1, ..., B excluding this newly-freed ambulance, which

is denoted by a vector (n1, n2, ...nB). A free ambulance is considered assigned to a base if it

is driving to the base or already standing by at the base. Given (n1, n2, ...nB), we then find

which entries in the priority list are satisfied. The entry bk ← mk, k = 1, ..., N is satisfied if

mk ≤ nbk . The base to which the newly-freed ambulance is assigned is the associated base

for the ‘unsatisfied’ entry with the highest priority.

We use the priority list shown in Table 7.1 as an example of how to implement this policy.

Assume before the newly-freed ambulance is assigned to a base, we have n1 = 1, n2 = 1 and

n3 = 1 in which case each base is assigned one ambulance. Therefore entries 1← 1, 2← 1

and 3← 1 are satisfied. Then the unsatisfied entry with the highest priority is entry 1← 2

with priority 3. Therefore, the newly-freed ambulance is assigned to base 1, resulting in

this base having two assigned ambulances.

7.4 Ranked-base All-Ambulance Move-up Policy

In this section, we show how to construct a compliance-table move-up policy using a priority

list, which we refer to as a ranked-base all-ambulance move-up strategy. Recall that under

a compliance-table move-up, a compliance table specifies, for any given number of free

ambulances n, a pre-defined ambulance configuration C(n) that gives a base for each of the

free ambulances. Whenever the number of free ambulances changes, first the dispatcher

decides a set of moves regarding free ambulances in order to reach a target configuration.

The compliance table is constructed by simply selecting the bases associated with entries

having priorities from 1 to n in a given priority list to define configuration C(n), n =

1, ..., N . The main feature of this table is that configurations are nested in the sense that

bases associated with configuration C(n) are also included in configuration C(n + 1), for
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n = 1, ..., N − 1. We solve an assignment problem to decide the set of moves to be made by

the free ambulances in order to reach a target configuration, where the cost of assigning an

ambulance to a base is the travel times from the ambulance’s current location to the base’s

location along the fastest path.

7.5 Simulation-based Local Search on the Priority List

In the previous two sections, we have discussed how to use a priority list to construct a

ranked-base free-ambulance move-up policy or a ranked-base all-ambulance move-up policy.

In this section, we propose a simulation-based local search algorithm to sort the priority

list for use under the associated move-up strategy. The main components of the algorithm

will be explained followed by a step-by-step description of the algorithm.

7.5.1 Solution and Objective

Under the assumption that there are no capacity constraints, each base can accommodate

all N ambulances. This means that all entries b ← n, b = 1, ...B, n = 1, ...N, should be

considered in the local search algorithm to seek an optimised priority list. However, we

impose an artificial capacity constraint for each base to limit run times of our algorithm.

The artificial capacity M is set to be the maximum number of ambulances assigned among

all bases under an optimised static policy. We expect that the artificial capacity constraints

have little impact on the quality of the final solution because we do not think a base would

get assigned with a large number of ambulances in an optimised move-up policy for large-

scale EMS operations. Therefore, at any iteration of the algorithm, a solution is fully

specified by an extended priority list Le. An extended priority list Le has the same form

as a priority list, but with more entries. More specifically, M entries corresponding to

b = 1, ..., B are included in Le.

Regarding the objective, the objective, f(Le), to maximise is the number (percentage)

of calls reached on time measured via simulation on a common training call dataset, which

is the same objective as we used in Algorithm 2 in the previous chapter.
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7.5.2 Initial solution

We follow the approach taken by Maxwell [34] for creating an initial solution. Maxwell

[34] showed a transformation algorithm which uses basis functions weighted by the tunable

parameters to construct the corresponding priority list. The initial solution is created by

setting the tunable parameters to be 1. The algorithm is presented as follows.

Each ambulance base b = 1, ..., B contributes one basis function φb. Each basis function

φb is an Erlang loss function specifying the probability of a call-arrival being refused for

service; the queuing capacity is nb where nb is the number of ambulances assigned to base

b1. We can write φb(nb) as

φb(nb) =
(λb/µb)/nb!

∑nb

m=0(λb(nb)/µ(nb))m/m!
,

where λb and µb are the arrival rate and service rate of emergency calls for base b, re-

spectively. The arrival rate λb is approximated by summing the arrival rates of locations

(centroids of cells) for which base b is the closest base (assuming lexicographical ordering

on b to break ties). The average service time 1/µb is estimated by summing the demand-

weighted average response time, at-scene treatment time, transportation time and hospital

transfer time for locations served by base b.

Let constant φb(nb)
+ = φb(nb)− φb(nb − 1) and then we rank φ+

b (nb), b = 1, ..., B, nb =

1, ...,M, in non-increasing order (assume lexicographical ordering on b then nb to break

ties) where M is the maximum artificial capacity at each base. The initial solution can

be extracted by copying the corresponding base b and nb from the first BM entries in this

ranking in the form of b← nb.

7.5.3 Local Search Operations

There are two operations for our local search algorithm. One operation in this algorithm

is called move which is to move an entry from its current position into a new position in

the extended priority list Le. Thus, we let move(Le, i, j) denote the solution resulting from

1Recall that an ambulance is considered assigned to a base b if it is at base b or driving to base b.
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moving entry i in Le into a new position which is just above entry j. The other operation

is called swap which is to swap the positions of two entries. We let swap(Le, i, j) denote

the solution resulting from swapping entry i and j in Le.

7.5.4 Neighbourhood Structure

The neighbourhood of Le is constructed by performing the two operations on pairs of entries

in Le. However, not all pairs of entries need to be considered. First of all, if any move or

swap on a pair of entries leads to the priority of entry b← m being higher than b← m′ for

some base b and m > m′, then we consider such a solution as an infeasible solution, and

we exclude it from the neighbourhood. This is because such a solution does not satisfy the

structural property of an extended priority list. Secondly, all neighbouring solutions of Le

should differ from Le and each other in the sense that at least one of the top N entries is

different between any pair of these solutions. This is because, as we mentioned earlier, if

the top N entries of two extended priority lists are the same, then they lead to the same

policy.

7.5.5 Updating Rule

The current solution is updated as soon as a better neighbour solution is found. The

scanning of the neighbourhood of the new solution starts where the scanning of the previous

one was interrupted.

7.5.6 Stopping Rule

The algorithm stops when no neighbouring solution leads to a better objective value. The

optimised priority list for use is extracted from the locally optimal solution by selecting the

first N entries.

7.5.7 Step-by-Step Description of the Algorithm

We now present this simulation-based local search scheme in Algorithm 3. The neighbour-

hood of a solution is scanned by performing move on all possible pairs of entries that lead to
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feasible and different solutions followed by performing swap on all possible pairs of entries

that lead to feasible and different solutions.

As in Algorithm 2, storing evaluated solutions can be added to Algorithm 3 and the

run times are expected to be reduced. The experiments below do not employ this feature

yet and we also plan to add it to the algorithm for commercial use.

Algorithm 3 A simulation-based local search algorithm to optimise the priority list

Create a training call dataset for use in simulation. Create an initial solution Le as
described in Section 7.5.2 and let |Le| denote the number of entires in Le. Evaluate
f(Le) via simulation and set LocalOptimal = False.

Define a Boolean function F which returns True if a solution created by a move or
swap operation is feasible; Otherwise False.

While LocalOptimal = False

LocalOptimal = True

For i = 1 to |Le|

if i < N then set u = 1, v = N + 1

else set u = 1, v = N

For j = u to v

if i 6= j and i+1 6= j and F (move(Le, i, j))=True and f(move(Le, i, j))>
f(Le) then

set Le =move(Le, i, j)

set LocalOptimal = False

For i = 2 to |Le|

if i ≤ N then set u = 1, v = i− 1

else set u = 1, v = N

For j = u to v

if F (swap(Le, i, j))=True and f(swap(Le, i, j))> f(Le) then

set Le =swap(Le, i, j)

set LocalOptimal = False
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7.6 Computational Experiments

We perform computational experiments for the three scenarios studied in Section 6.4. The

arrival rate and the number of ambulances on duty for each scenario is shown in Table 6.2

on page 81. The experiments are conducted with two aims in mind. Firstly, we compare

the performance of the move-up policies obtained from Algorithm 3, (i.e. the optimised

ranked-base free-ambulance move-up policies and ranked-base all-ambulance move-up poli-

cies) to the (benchmark) static policies from several perspectives. Secondly, we compare

the effectiveness of Algorithm 3 and a numerical optimisation method similar to that used

in Maxwell’s ADP model aiming to optimise ranked-base free-ambulance move-up policies.

7.6.1 Results

For each of three scenarios, we use Algorithm 3, which is coded in C++ and embedded

into Optima Predict, to obtain an optimised ranked-base free-ambulance move-up policy

and ranked-base all-ambulance move-up policy. We use the Coin-OR-branch-and-cut (Cbc)

solver to address the assignment problems arising during the simulation of a ranked-base

all-ambulance move-up policy. The training dataset used in Algorithm 3 to obtain the two

move-up policies is the same to that used in Algorithm 2 to obtain the benchmark static

policy. For simplicity, we refer to the benchmark static policies as static policies.

We conduct our experiments on a Windows workstation with a 2.4GHz 32-bit Intel Quad

Core CPU and 4 GB of RAM. The CPU time per iteration (i.e. per function evaluation),

the number of evaluations, and the total CPU time to obtain each optimised move-up policy

are displayed in Table 7.2. Here a function evaluation means measuring the number of calls

reached on time in the corresponding training dataset for a given solution.

As shown in Table 7.2, evaluating a ranked-base all-ambulance move-up policy takes

significantly longer than evaluating a ranked-base free-ambulance move-up policy; the extra

CPU time is about 2 to 3 minutes. This is mainly because there are twice the number of

move-up decisions to make per function evaluation in a ranked-base all-ambulance move-up

policy compared to a ranked-base free-ambulance move-up policy. A secondary reason is
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that making a move-up decision, i.e. solving an assignment problem, in the former takes

slightly longer than the simple look-up process needed for the latter. Nevertheless, it takes

no more than 20 milliseconds to make a move-up decision in both policies. The total CPU

time ranges from about 11 hours to 14 hours to obtain the optimised ranked-base free-

ambulance move-up policies, while it ranges from about 59 hours to 108 hours to obtain

the optimised ranked-base all-ambulance move-up policies.

The policy selection in Algorithm 3 leads to a selection bias. Therefore, for each scenario,

we use 40 independent test datasets to estimate the performance under the two optimised

base-ranking move-up policies. These are the same test datasets that were used to evaluate

the static policy in Section 6.4.

Figures 7.1 (a) - (c) depict the performance of all three policies for the three scenarios.

The horizontal axis in each of these figures indicates the index of each test dataset, whereas

the vertical axis gives the percentage of calls reached on time. For each scenario, the test

datasets are indexed in an increasing order of the percentage of calls reached on time under

the static policy.

The results for the expected percentages of calls reached on time and the expected

average response times, expressed in 95% confidence intervals, are reported in Table 7.3.

Keep in mind that they are estimated based on the sample observations from the 40 test

datasets under the corresponding sceanrios.

From Figures 7.1 (a) - (c), we observe that for each of the three scenarios, the optimised

ranked-base all-ambulance move-up policy outperforms both the static policy and the opti-

mised ranked-base free-ambulance move-up policy for all test datasets. The three optimised

ranked-base all-ambulance move-up policies improve the percentage of calls reached on time

over the corresponding static policies by about 3.54%, 5.24% and 5.58%, respectively (Table

7.3). For each of the three optimised ranked-base free-ambulance move-up policies, we see

that the improvement figure (less than 0.6%) is much smaller; the number of test datasets

for which it outperforms the static policy is 26, 36 and 37 out of 40, respectively.

The second response-time performance measure that we use to compare these ambulance

location policies is the average response time. From Table 7.3, we see that the optimised
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CPU time/evaluation (seconds) Total No. of evaluations Total CPU time (hours)

Policy RBFA RBAA RBFA RBAA RBFA RBAA

Scenario 1A 38 147 1022 1428 10.79 58.31

Scenario 1B 30 173 2685 2246 22.37 107.93

Scenario 2 44 182 1071 1114 13.09 56.32

Table 7.2: The CPU time per function evaluation, the number of evaluations and the total CPU time required to obtain the opti-
mised ranked-base free-ambulance move-up policy (RBFA) the ranked-base all-ambulance move-up policy (RBAA) from Algorithm 3
for each of the three scenarios.
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(c) Scenario 2

Figure 7.1: The percentage of calls reached on time using the optimised static policy,
ranked-base free-ambulance move-up policy (RBFA), ranked-base all-ambulance move-up policy
(RBAA) for each of the test datasets under Scenarios 1A, 1B and 2, respectively.
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Exp. percentage of calls reached on time Exp. Avg. response time (minutes)

Policy Static RBFA RBAA Static RBFA RBAA

Scenario 1A 47.39%± 0.2% 47.64%± 0.2% 50.97%± 0.2% 10.3± 0.03 10.13± 0.03 9.65± 0.03

Scenario 1B 66.34%± 0.1% 66.91%± 0.1% 71.58%0.1% 7.66± 0.02 7.67± 0.02 7.1± 0.02

Scenario 2 56.1%± 0.1% 56.67%± 0.1% 61.67%± 0.1% 8.93± 0.02 8.88± 0.02 8.22± 0.02

Table 7.3: The 95% confidence intervels for the expected percentage of calls reached on time and average response time under the
optimised static policy, ranked-base free-ambulance move-up policy (RBFA) and ranked-base all-ambulance move-up policy (RBAA)
fore each scenario, estimated using the associated test datasets.
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ranked-base all-ambulance move-up policies lead to the smallest average response times

for all three scenarios. Using the average response times under the three static policies

as the yardstick, the decreases are about 39 seconds, 34 seconds, and 20 seconds; under

the optimised ranked-base free-ambulance move-up policies, there is a decrease of about

10 seconds for Scenario 1A and a decrease of about 3 seconds for Scenario 2, while there

is no noticeable difference for Scenario 1B. In practice, reduction in response times by

even a few seconds can be the difference between life and death for patients with life-

threatening conditions. Based on our empirical results, the ranked-base all-ambulance

move-up strategy is more effective than the ranked-base free-ambulance move-up strategy

in terms of improving the percentage of calls reached on time and reducing the average

response time.

Next we use Optima Predict’s analytic tools we introduced in Section 6.4 to explore

these move-up policies and compare them with the static policies in various aspects.

Tables 7.4 - 7.6 extend Table 6.6, reporting the results for the performance measures

using the two move-up policies and the static policy for each of the three scenarios for

comparisons. Regarding the driving distances, we change to measure the average extra

driving distances per ambulance per day under each move-up policy with respect to the

corresponding static policy.

Furthermore, the ranked-base all-ambulance move-up strategy involves moving ambu-

lances out of bases and changing the target bases for on-road ambulances. Therefore, we

also report results for four additional performance measures, which are estimated using

the sample observations on the 40 test datasets for each scenario, regarding this move-up

strategy. The additional performances are:

• Average number of attempted idle-at-base moves per vehicle per day: an attempted

idle-at-base move refers to moving an at-base ambulance to another base.

• Average number of redirections per vehicle per day: a redirection refers to the case in

which an on-road ambulance that is driving to a target base is redirected to a different

target base. Note that the ambulance may not reach the newly assigned target base.
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• Average number of back-to-base redirections per vehicle per day: a back-to-base

redirection refers to the case in which an on-road ambulance is redirected to the base

where it started moving due to an attempted idle-at-base move. Such a redirection is

perhaps one of the most frustrating moves from the crews’ point of view.

• Average number of relocations per vehicle per day: a relocation refers to the case in

which the target base for a free ambulance is changed. Clearly, each sample result

based on a test dataset for this performance measure is the sum of the sample results

based on the same test dataset for the average number of attempted idle-at-base

moves per vehicle per day and the average number of redirections per vehicle per day.

Tables 7.4 - 7.6 show that, for each of the three scenarios, the ranked-base all-ambulance

move-up policy and the static policy lead to the lowest and the highest proportions of

dispatching at-base ambulances to calls; in other words, the ranked-base all-ambulance

move-up policy results in the highest proportions of dispatching on-road ambulances to

calls. Specifically, the proportions of dispatching on-road ambulances to calls using the

three static policies are about 35.4%, 22.8%, and 35.1%, respectively. For the ranked-base

free-ambulance move-up policies, these proportions are about 45.6%, 29.9%, and 46.1%,

respectively, and for the ranked-base all-ambulance move-up policies, they are about 50.8%,

31.9% and 46.5%, respectively. These figures reinforce the observation made in the previous

chapter: consideration of the on-road-ambulance performance is important in designing

ambulance location policies.

Moreover, recall that Alanis et al. [2] proposed a Markov chain model for evaluating a

fixed ranked-base all-ambulance (compliance-table) move-up policy. We consider it as an

alternative to the simulation evaluation. The model, as discussed in Chapter 2, assumes

that there is at most one on-road ambulance whenever the number of free ambulances

changes. For each of our three scenarios, we find that under the optimised ranked-base all-

ambulance move-up policy, the average percentage of on-road ambulances is about 48.3%,

34.8%, and 46.5%, respectively. We see that there is a signifcant proportion of ambulances

being on the road whenever the number of free ambulances changes for our experiments.
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Therefore, we think the Markov model may not be adequate as a performance estimation

tool given the complexity of our problems.

When a call arrives, it is either responded to by an at-base ambulance or an on-road am-

bulance. Here an on-road ambulance may just have become free before serving a call in the

queue. It is easy to see that the at-base coverage proportion times the at-base dispatch pro-

portion plus the on-road coverage proportion times the on-road dispatch proportion is the

overall percentage of calls reached on time. We observe that the ranked-base free-ambulance

move-up policies yield a pretty small increase (no more than 2%) in each of these two cover-

age proportions compared to the static policies. For the ranked-base all-ambulance move-up

policies, we see a greater improvement in both of the two proportions; the improvement in

at-base coverage proportion is approximately between 5% and 8% on the static policies and

the on-road coverage proportion is improved by at least 3%. To summarise, the ranked-

base all-ambulance move-up strategy improves both the at-base coverage proportion and

on-road coverage proportion more than the ranked-base free-ambulance move-up strategy.

The two move-up strategies result in approximately 80km to 90 extra driving per am-

bulance per day compared to the static ambulance location strategy for the three scenarios.

In addition, the ranked-base all-ambulance move-up strategy also involves ambulances be-

ing moved out of bases and redirected on the road, which often lead to crew frustrations

in practice. We observe that for each of the three scenarios, there are about 6, 5, and

6 attempted idle-at-base moves per ambulance per day, respectively; there are about 29,

28, and 39 redirections per ambulance per day, respectively; the number of back-to-base

redirections per ambulance per day is about 3; in total, the number of relocations is about

35, 33 and 44 per ambulance per day, respectively. We notice that as the number of ambu-

lances on-duty and the arrival rate increase, the number of relocations increases, which is

expected, as more move-up decisions involving more ambulances are required.

It is also interesting to see that the number of redirections is much larger than the

number of attempted idle-at-base moves. We think this is mainly because many ambulances

are on the road when a move-up decision is made, as suggested by the statistics of on-road

dispatch proportions.
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Static RBFA RBAA

Expected at-base dispatch proportion 64.6%± 0.2% 54.4%± 0.2% 49.2%± 0.2%

Expected on-road dispatch proportion 35.4%± 0.2% 45.6%± 0.2% 50.8%± 0.2%

Expected at-base coverage proportion 50.5%± 0.2% 52.5%± 0.2% 57.2%± 0.2%

Expected on-road coverage proportion 41.7%± 0.2% 41.8%± 0.2% 45.1%± 0.2%

Expected Avg. extra driving distances per vehicle per day (km) 0 85.4± 0.3 76.4± 0.3

Expected Avg. number of attempted idle-at-base moves per vehicle per day N/A N/A 5.7± 0.2

Expected Avg. number of redirections per vehicle per vehicle day N/A N/A 29.2± 0.1

Expected Avg. number of back-to-base redirection per vehicle per day N/A N/A 2.9± 0.1

Expected Avg. number of relocations per vehicle per day N/A N/A 34.9± 0.1

Table 7.4: The 95% confidence intervals for the performance measures (defined on pages 87 and 110) under the optimised static
policy, ranked-base free-ambulance move-up (RBFA) policy and ranked-base all-ambulance move-up (RBAA) policy, estimated using
the test datasets for Scenario 1A with 12 ambulances and 9 calls/hr.
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Static RBFA RBAA

Expected at-base dispatch proportion 77.2%± 0.1% 70.1%± 0.1% 68.1%± 0.2%

Expected on-road dispatch proportion 22.8%± 0.1% 29.9%± 0.1% 31.9%± 0.2%

Expected at-base coverage proportion 68.5%± 0.2% 68.4%± 0.2% 74.3%± 0.1%

Expected on-road coverage proportion. 58.8%± 0.2% 61.2%± 0.2% 65.2%± 0.1%

Expected Avg. extra driving distances per vehicle per day (km) 0 86.2± 0.2 87.3± 0.3

Expected Avg. number of attempted idle-at-base moves per vehicle per day N/A N/A 5.0± 0.1

Expected Avg. number of redirections per vehicle per day N/A N/A 28.1± 0.1

Expected Avg. number of back-to-base redirections per vehicle per day N/A N/A 2.5± 0.1

Expected Avg. number of relocations per vehicle per day N/A N/A 33.1± 0.1

Table 7.5: The 95% confidence intervals for the performance measures (defined on pages 87 and 110) under the optimised static
policy, ranked-base free-ambulance move-up (RBFA) policy and ranked-base all-ambulance move-up (RBAA) policy, estimated using
the test datasets for Scenario 1B with 16 ambulances and 9 calls/hr.
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Static RBFA RBAA

Expected at-base dispatch proportion 64.9%± 0.2% 53.9%± 0.1% 53.5%± 0.1%

Expected on-road dispatch proportion 35.1%± 0.2% 46.1%± 0.1% 46.5%± 0.1%

Expected at-base coverage proportion 59.8%± 0.1% 61.6%± 0.1% 67.7%± 0.1%

Expected on-road coverage proportion 59.2%± 0.1% 50.8%± 0.2% 54.6%± 0.2%

Expected Avg. extra driving distances per vehicle per day (km) 0 92.9± 0.2 70.4± 0.3

Expected Avg. number of attempted idle-at-base moves per vehicle per day N/A N/A 5.6± 0.1

Expected Avg. number of redirections per vehicle per day N/A N/A 38.7± 0.1

Expected Avg. number of back-to-base redirections per vehicle per day N/A N/A 3.0± 0.1

Expected Avg. number of relocations per vehicle per day N/A N/A 44.3± 0.1

Table 7.6: The 95% confidence intervals for the performance measures (defined on pages 87 and 110) under the optimised static
policy, ranked-base free-ambulance move-up (RBFA) policy and ranked-base all-ambulance move-up (RBAA) policy, estimated using
the test datasets for Scenario 2 with 16 ambulances and 12 calls/hr.
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Overall, the four additional performance measures introduced above for a ranked-base

all-ambulance move-up policy plus the extra driving distances are viewed as the criteria

to quantify the move-up ‘costs’ in this research. In practice, trade-offs between reduced

response times and move-up costs need to be considered carefully. Nair and Miller-Hooks

[35] proposed a multi-objective model to quantify the benefit of move-up. The idea is that

if one move-up strategy results in the same or a better percentage of calls reached on time

while having smaller move-up costs than another, it is certainly a more viable strategy.

Following their methodology, the ranked-base free-ambulance move-up strategy leads to

a smaller improvement in the percentage of calls reached on time than the ranked-base

all-ambulance move-up strategy. Meanwhile, it is also associated with smaller move-up

costs in the sense that driving distances for this strategy are similar to the ranked-base all-

ambulance move-up strategy, but no costs are incurred in the other three criteria. Therefore,

it is hard to judge, between these two move-up strategies, which one is superior to the other.

In Section 6.4, we introduced three geographical coverage plots to help understand

ambulance location policies from the coverage perspective. We think this approach is

useful to summarise the difference between different policies in an easy-to-see and easy-to-

understand format. We use Scenario 1A’s training dataset to introduce these plots using

the static policies. Here we continue to use Scenario 1A’s training dataset and provide a

pair-wise comparison of the plots for the ranked-base all-ambulance move-up policy and the

static policy. We do not compare all the policies, as our intention is to merely emphasise the

usefulness of this approach for providing ‘simple’ summaries of ambulance location policies

to EMS managers.

The coverage probability plot and its two decomposition plots which are paired with the

respective plot for the static policy are shown in Figures 7.2, 7.3 and 7.4. All these plots are

based on the training dataset. For each plot with respect to the associated static policy, the

number in each bracket indicates the number of ambulances assigned to the corresponding

base. For each plot with respect to the associated ranked-base all-ambulance move-up

policy, the priority of each base is presented, e.g. P (4) = 3 means that the priority of base

4 is 3.
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Regarding the coverage probability plots as shown in Figure 7.2, we see that in order

to improve the percentage of calls reached on time under the ranked-base all-ambulance

move-up policy, there is a reduction in coverage around bases 3, 11 and 14 while areas

around bases 6, 8, 12, and 15 get improved coverage.

Regarding the at-base coverage probability plots as shown in Figure 7.3, we observe

that under the ranked-base all-ambulance move-up policy, areas around bases 4, 8, 12, and

15 get increased at-base coverage, indicating that the probability of having at least one

ambulance available at each of these bases when a call arrives is increased due to move-up.

We also see that although bases 3, 5, and 11 are included in the underlying priority list

for the ranked-base all-ambulance move-up policy, there is no noticeable at-base coverage

around these bases. This is because they have low priorities, i.e. P (3) = 12, P (5) = 10 and

P (11) = 11, and rarely get assigned an ambulance due to the relatively heavy workload,

i.e. 12 ambulances on duty with the utilisation of approximately 0.46. In other words,

the higher the priority is for a base, the higher the at-base coverage probabilities in areas

around that base are expected to be.

In the on-road marginal-coverage probability plots as shown in Figure 7.4, we see that

under the ranked-base all-ambulance move-up policy, there is a notable increase in on-

road marginal-coverage around the central areas of Auckland compared to the static policy,

indicating that more ambulances are on the road due to move-up.

7.6.2 Effectiveness Comparison Between Algorithm 3 and Numerical Op-

timisation

As mentioned earlier, a newly-freed-ambulance move-up policy based on Maxwell’s ADP

model [34] can be transformed into a ranked-base free-ambulance move-up policy, which

motivates us to develop Algorithm 3 to ‘directly’ optimise this move-up problem, instead

of optimising a value function in [34]. Here we compare these two optimisation approaches.

For simplicity, we refer to a newly-freed-ambulance move-up policy based on Maxwell’s

ADP model as a ranked-base free-ambulance move-up policy.

Maxwell [34] investigated two streams of search methods to find an optimised ranked-
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]
(a) Coverage probability for the static policy. The number
in each bracket is the number of ambulances assigned to each
base.

(b) Coverage probability for the ranked-base all-ambulance
move-up policy. The priority of each base b is indicated by
P (b).

Figure 7.2: Coverage probability comparisons between the static policy and the ranked-base all-ambulance move-up policy for
Scenario 1A, estimated using the training dataset.
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(a) At-base coverage probability plot for the static policy.
The number in each bracket is the number of ambulances
assigned to each base.

(b) At-base coverage probability plot for the ranked-base all-
ambulance move-up policy. The priority of each base b is
indicated by P (b).

Figure 7.3: At-base coverage probability comparisons between the static policy and the ranked-base all-ambulance move-up policy
for Scenario 1A, estimated using the training dataset.
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(a) On-road marginal-coverage probability for the static pol-
icy. The number in each bracket is the number of ambulances
assigned to each base.

(b) On-road marginal-coverage probability for the ranked-
base all-ambulance move-up policy. The priority of each base
b is indicated by P (b).

Figure 7.4: On-road marginal-coverage probability comparisons between the static policy and the ranked-base all-ambulance
move-up policy for Scenario 1A, estimated using the training dataset.
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base free-ambulance move-up policy: (1) the least-squares method, and (2) two direct

search methods: Nelder-Mead and unconstrained-optimisation-by-quadratic-approximation

(NUOBYQA). The least-squares method is a regression method aiming to get a good fit to

the true value function, which is a standard approach for approximate dynamic programs.

The approximate value function is then used in lieu of the true value function for the

decision-making process.

In contrast to the regression method, direct search methods tune the parameters so

as to maximise the performance of the resulting policy rather than to better approximate

the true value function. For a good review of direct search methods, see Lewis et al. [28].

Briefly, direct search methods are derivative-free search methods which are guided solely

by the function values.

The Nelder-Mead algorithm that we refer to is the deterministic version originally devel-

oped by Nelder and Mead [36] in the 1960s. It aims to find a local optimum in an iterative

fashion. The term deterministic emphasises that the function to be optimised is a deter-

ministic function. Although this ‘old’ algorithm is a heuristic which does not guarantee

convergence, it is one of the most popular direct search methods, which has enjoyed a lot of

successes in many fields including statistics, engineering, and the physical and medical sci-

ences [15]. To extend its use in stochastic settings, a stochastic Nelder-Mead algorithm has

recently been proposed by Chang [13]. Here the term stochastic emphasises that the func-

tion to be optimised involves uncertainties. Additional work on the Nelder-Mead algorithm

with stochastic functions can also be found in [4].

The NUOBYQA method, proposed by Powell [37], is a relatively new direct search

algorithm based on quadratic approximation.

The computational experiments by Maxwell [34] involved two case studies – Edmonton

and Melbourne. The deterministic Nelder-Mead algorithm was used to optimise the ranked-

base free-ambulance move-up policies for Edmonton and Melbourne. The NUOBYQA

method was used only for Edmonton but not Melbourne. This is because NUOBYQA is

computationally infeasible given the number of tunable parameters for Melbourne.

For the case of Edmonton, the results for the first 250 function evaluations using the
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three numerical tuning algorithms were compared. The CPU time per function evaluation

for each algorithm was approximately the same. (The CPU time to determine the set

of tunable parameters to evaluate next for each algorithm was insignificant.) The results

showed that the least-squares method found a reasonably good solution very quickly, but

there was no significant improvement with further tuning. Using the performance of the

least-squares method as the yardstick, Nelder-Mead found a better solution with a fewer

number of evaluations in comparison with NUOBYQA, but was eventually outperformed by

NUOBYQA. For the case of Melbourne, Nelder-Mead dominated the least-square method

very quickly (after one function evaluation).

Overall, the results suggest that the direct search approach seems to be more effec-

tive. Therefore, we are motivated to test the performance of direct search for Maxwell’s

ADP model under each of the three scenarios introduced in Section 6.4. As our goal is

to implement move-up for large-scale problems, we choose to examine the performance of

the deterministic Nelder-Mead algorithm in this work rather than the NUOBYQA method

which is not suitable for high-dimensional tuning.

Since the deterministic Nelder-Mead algorithm is also employed for the move-up model

presented in the next chapter, it is worth summarising the algorithm here. For a careful

and modern description of the algorithm, we refer the reader to Lagarias [24].

The algorithm is a simplex direct search method to optimise a given function f : Rn → R

. The term simplex should not be confused with the simplex algorithm for linear program-

ming. A simplex here refers to a polytope of n+ 1 vertices in n dimensions where n is the

number of tunable parameters. For example, a simplex in R
2 is a triangle, and a simplex

in R
3 is a tetrahedron.

The algorithm works with a set of n+1 points x0, ..., xn ∈ R
n that are considered as the

vertices of a working simplex and the corresponding set of function values f(xi), i = 0, ..., n.

To crate a working simplex, vertex x0 is decided by the user and the other n vertices are

created based on some heuristics utilising x0. Typically, a right-angled simplex at x0 is

created by setting

xj := x0 + hjej , j = 1, .., n,
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where hj is a step-size in the direction of unit vector ej in R
n.

A sequence of transformations of the working simplex is then performed by ‘moving’ one

or multiple vertices. Each transformation is determined by one of the following operations:

(1) reflection, (2) expansion, (3) outside/inside contraction, and (4) shrinking. An operation

of (1), (2), or (3) creates a new test point and hence, only one function evaluation is

performed; an operation of shrinking is more computationally expensive, as it creates n

new test points and n function evaluations are required for a transformation. A number of

input parameters are needed to control transformations of the simplex, which are detailed

in [24].

A practical implementation of the algorithm needs some criteria to ensure termination

in a finite amount of time. Some or all of the following four termination conditions are often

used: (1) the working simplex is sufficiently small, i.e. some or all vertices are close enough,

(2) the function values of the vertices are close enough, (3) the number of iterations ex-

ceeds some pre-determined value, and (4) the number of function evaluations exceeds some

pre-determined value. Note that one iteration refers to performing one of the operations

mentioned above, i.e. one transformation, which requires one or n function evaluations.

For each of our scenarios, the function to maximise is the number of calls reached on

time in the corresponding training dataset. The vertex x0 is defined by setting the tunable

parameters to be 1 in Maxwell’s ADP model, which is also the initial solution used in

our local search algorithm. A right-angled simplex at x0 is created as the initial working

simplex.

We use termination conditions (2), (3) and (4) for the experiments. For termination

condition (2), function values are close enough if the root-mean-square deviation is less

than ǫ, i.e.
√

∑i=n
i=0 (f(xi)− f)2)

n+ 1
< ǫ

where f =
∑i=n

i=0 f(xi)
n+1 and ǫ is set to 10−4.

The maximum allowable value for the number of iterations is set to 1000 and that for

the number of function evaluations is set to 2500.
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Figures 7.5 - 7.7 compare the performance of the Nelder-Mead algorithm and Algo-

rithm 3 for our three scenarios. The x-axis represents the function evaluation index and

the y-axis represents the best function value found after the Kth function evaluation.

Table 7.7 reports, for each scenario, the performance of the Nelder-Mead algorithm

and Algorithm 3 with respect to the total CPU time required to obtain an optimised

ranked-base free-ambulance move-up policy, the percentage of calls reached on time in

the training dataset under the optimised policy, and the 95% confidence interval for the

expected percentage of calls reached on time under the optimised policy, measured using

the test datasets. The CPU time per function evaluation for the Nelder-Mead algorithm

is not reported, as it is the same as that for Algorithm 3. Note that for the Nelder-Mead

algorithm, the lowest indexed set of the tunable parameters that gives the best function

value is selected to define an optimised ranked-base free-ambulance move-up policy; there

are multiple sets of the tunable parameters leading to the same best function value.

From Figures 7.5 - 7.7, we observe that Algorithm 3 requires more CPU time before

termination than the Nelder-Mead algorithm for all three scenarios. However, we think

Algorithm 3 is slightly more effective. For each of the three scenarios, Algorithm 3 finds

a better solution after no more than 350 evaluations with respect to the Nelder-Mead

algorithm. Furthermore, when Nelder-Mead is terminated under Scenarios 1B and 2, Algo-

rithm 3 continues to make improvements. Note that for all three scenarios, the Nelder-Mead

search is completed because termination condition (2) is met, i.e. function values are close

enough.

From Table 7.7, we see that Algorithm 3 takes as many as 15 extra hours before termi-

nation compared to Nelder-Mead. For each of the three scenarios, the best function value

found by Algorithm 3 is slightly better than the one found by Nelder-Mead; approximately,

an extra 0.6%, 1.6%, and 1.1% of calls can be reached on time, respectively, using the

the optimised ranked-base free-ambulance move-up policy obtained from Algorithm 3. In

terms of the expected percentage of calls reached on time, there is no significant difference

between the policies derived from the two algorithms for Scenario 1A. For Scenario 1B

and 2, the policies obtained from Algorithm 3 are slightly better than those obtained from

124



7.7 Summary and Remarks

0 100 200 300 400 500 600 700 800 900 1000
4700

4750

4800

4850

4900

4950

5000

5050

5100

Function evaluation index

N
o.

 o
f o

n−
tim

e 
ca

lls

 

 

Nelder−Mead
Algorithm 4

Figure 7.5: Comparisons between Nelder-Mead and Algorithm 3 with respect to the best
function value for the training dataset found after the Kth function evaluation when seeking
an optimised ranked-base free-ambulance move-up policy for Scenario 1A.

Nelder-Mead; the improvement figures are approximately 1.04% and 0.54%, respectively.

The results suggest that Algorithm 3 is more effective than the Nelder-Mead algorithm.

The trade-off is more CPU time. Given that the total run times are not a primary concern

for this optimisation problem, we therefore recommend Algorithm 3.

7.7 Summary and Remarks

This chapter has been devoted to the analysis of the ranked-base free-ambulance move-up

model and ranked-base all-ambulance move-up model. The former decides a target base

for a newly-freed ambulance, while the latter allocates n = 1, 2... free ambulances into

a pre-determined configuration C(n) whenever the number of free ambulances changes.

The fundamental element to form move-up policies based on both models is a priority list

which ranks the ‘benefit’ of assigning n = 1, 2, ... ambulances to each base. Naturally, a

simulation-based local search algorithm was proposed aiming to find the ‘best’ priority list

for use in each of these two move-up models.

Computational results for three simplified scenarios were examined from various per-
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Figure 7.6: Comparisons between Nelder-Mead and Algorithm 3 with respect to the best
function value for the training dataset found after the Kth function evaluation when seeking
an optimised ranked-base free-ambulance move-up policy for Scenario 1B.
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Figure 7.7: Comparisons between Nelder-Mead and Algorithm 3 with respect to the best
function value for the training dataset found after the Kth function evaluation when seeking
an optimised ranked-base free-ambulance move-up policy for Scenario 2.
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(a) Scenario 1A

Nelder-Mead Algorithm 3

Total CPU time (hours) 4.34 10.79

Percentage of calls reached on time in the training dataset 47.93% 48.57%

Expected percentage of calls reached on time 47.60%± 0.2% 47.64%± 0.2%

(b) Scenario 1B

Nelder-Mead Algorithm 3

Total CPU time (hours) 7.33 22.38

Percentage of calls reached on time in the training dataset 65.92% 67.35%

Expected percentage of calls reached on time 65.86%± 0.2% 66.91%± 0.1%

(c) Scenario 2

Nelder-Mead Algorithm 3

Total CPU time (hours) 2.73 13.01

Percentage of calls reached on time in the training dataset 57.51% 58%

Expected percentage of calls reached on time 56.1%± 0.1% 56.64%± 0.1%

Table 7.7: The total CPU time to obtain the optimised ranked-base free-ambulance move-up policy from Nelder-Mead, the
optimised ranked-base free-ambulance move-up policy from Algorithm 3, the percentage of calls reached on time in the corresponding
training dataset under each policy, and the 95% confidence interval for the expected percentage of calls reached on time under each
policy, estimated using the corresponding test datasets for each of the scenarios introduced in Section 6.4.
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spectives. All the move-up and static policies for these scenarios were optimised in an

attempt to maximise the percentage of calls reached on time. Average response times

were also used to compare these policies. Our empirical results suggest that the ranked-

base all-ambulance move-up policies give the best performance, whereas the ranked-base

free-ambulance move-up policies are only marginally better than the static policies.

Although the ranked-base all-ambulance move-up polices were superior to the ranked-

base free-ambulance move-up policies and the static policies as far as response time statistics

are concerned, they were associated with higher ‘costs’. The costs resulted from extra

driving distances relative to the static policies, ambulances being moved from one base to

another, on-road ambulances being redirected to different target bases, etc. In practice, the

benefits of move-up need to be balanced with associated costs. Therefore, it is challenging

to judge the viability of different ambulance location policies.

The effectiveness of Algorithm 3 and the (deterministic) Nelder-Mead algorithm applied

to Maxwell’s ADP model was also compared with respect to optimising the ranked-base

free-ambulance move-up policies under our simplified scenarios. Results suggested that

Algorithm 3 is more effective than the Nelder-Mead algorithm in terms of the solution

quality vs CPU time.

As discussed in Section 7.1, a ranked-base all-ambulance move-up policy specifies a

pre-determined configuration C(n) (stand-by locations) for n = 1, 2, ... free ambulances. In

other words, such a policy suggests that there is only one ‘good’ configuration for any given

number of free ambulances. However, we believe that for any large-scale EMS operations,

there should be multiple ‘good’ configurations given a number of free ambulances. Recall

the simplified examples involving one and two ambulances on small networks in Chapters

3, 4 and 5, where we showed that the optimal stand-by location for each free ambulance

may vary depending on many factors such as the arrival rate, the spatial distribution of

call demand, the location and the status of a busy ambulance, etc. We expect that a true

optimal move-up policy for more ambulances on large networks follows similar behaviours.

It is unlikely to find a true optimal move-up policy given the highly stochastic and complex

nature of EMS operations. However, our research results on small-scale instances that
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we discuss next suggest that an optimal move-up policy fits the description of a dynamic

move-up policy. Therefore, the next chapter explores dynamic move-up policies based on

an integer program.
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8

Integer Programming Move-up

Model

8.1 Overview

In this chapter, we propose an integer linear programming (IP) model to form dynamic

move-up policies. In contrast to a compliance-table move-up policy, a dynamic move-

up policy does not force ambulances into a unique configuration given a number of free

ambulances. Instead, it decides the appropriate configuration according to the location and

status of every ambulance using real-time information.

As discussed in Chapter 2, Gendreau et al. [20] first proposed an IP model to form

dynamic move-up policies, which was later revisited by Richards [39]. Andersson [3] also

proposed an IP model in the same vein. All these models share a common feature in terms

of computing the ‘reward’ of a given configuration (stand-by locations). The reward of

a configuration is computed by summing up rewards collected from demand points. In

contrast to these models, we compute the reward of a configuration based on the number of

ambulances assigned to each base; this is inspired by the approximation architecture of the

ADP move-up model by Maxwell [34], which was also the motivation for the two move-up

models presented in the previous chapter.

In Section 5.3, we used simplified examples to show move-up insights involving two

ambulances under the DP framework. One main insight is that the (relative) value of

moving free ambulances into a target configuration is increasing as the ambulances get

closer to the target configuration. We utilise this insight in our IP model by having a cost

function based on ambulance travel times; the reward of a target configuration is offset by
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the cost function. Furthermore, we also observed that busy ambulances which are likely

to become free in the near future, such as at-hospital ambulances, may have an impact on

where free ambulances should move; this insight is also employed in our IP model, which

is discussed shortly.

The challenge is to determine the input parameters, detailed below, associated with

the reward function and the cost function so as to obtain a high-quality move-up policy

based on the IP model. We address this challenge by using the (determinsitic) Nelder-

Mead algorithm discussed in Section 7.6.2: some of the input parameters in our IP model

are tuned by Nelder-Mead. By employing Nelder-Mead, our IP model can be viewed as an

ADP model which is an extension of Maxwell’s ADP model [34]. From the ADP perspective,

we are constructing an approximate value function which is tuned via some numerical fitting

algorithm. In contrast to Maxwell’s ADP model, we do not require the marginal rewards

for a base to be determined by a single tunable parameter. Instead, every marginal reward

is a tunable parameter. Our approximation architecture is further extended by having a

cost for moving an ambulance to a base.

A key input parameter to create the initial working simplex for the Nelder-Mead algo-

rithm is a priority list optimised to form a ranked-based all-ambulance (compliance-table)

move-up policy for the EMS system under study. We believe that the priority list contains

valuable information that can be used to assess the ‘quality’ of each base; moreover, it is

able to capture the highly complex ambulance interactions implicitly to some extent. There-

fore, our IP model can also be viewed as a generalisation of the ranked-base all-ambulance

move-up model.

The remaining sections of this chapter are organised as follows. In Section 8.2, we

present the model assumptions. In Section 8.3, we show the formulation of the IP model.

In Section 8.4, we explain the tuning process. In Section 8.5, we perform computational

experiments to compare the performance of move-up policies based on our IP model to the

move-up policies and static policies presented in the previous chapters; we also investigate

the effectiveness of Nelder-Mead for the tuning process, followed by a discussion about

whether move-up is worthwhile or not. We then summarise this chapter in Section 8.6.
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8.2 Model Assumptions

In this section, we present the model assumptions. Recall that in Section 5.3, our experi-

ments showed that the locations of busy ambulances may play a key role when deciding the

stand-by locations of free ambulances. Undesirable overlapping coverage may be formed if

the busy ambulances are not considered. In this model, we assume that at-hospital ambu-

lances are the only busy ones that need to be considered, as they are most likely to become

free in the near future. More specifically, our model considers an at-hospital ambulance to

be free for move-up, meaning that it can be assigned to a base. This is a heuristic approach

we use to anticipate the benefit that at-hospital ambulances can provide.

We assume that for each base, there is an artificial capacity M , which is set to be the

maximum number of ambulances assigned to a base under an optimised static policy. This

is because we do not think an ‘optimised’ move-up policy will assign a very large number

of ambulances to a base.

Finally, recall that in our small-scale DP models, the move-up path to a location under

an optimal move-up policy is specified node-by-node, which may not be the fastest path

due to factors such as the arrival rate and spatial distribution of call demand. In this IP

model, we assume that an ambulance always travels along the fastest path to a base. As

the IP model does not take the rewards (collected from drive-by areas) during move-up into

account, this assumption of reaching a target location as fast as possible is appropriate at

this stage. We think it is natural to explore the impact of rewards collected on the road on

ambulance moves in future research.

8.3 Model Formulation

The objective of the IP model we propose can be viewed as a reward function minus a cost

function. As in the ranked-base all-ambulance move-up model, whenever the number of free

ambulances changes, a move-up decision that maximises the objective is made. The reward

quantifies the benefit of a target configuration while the cost quantifies the ‘loss’ due to

travel required in order to achieve the target configuration. We now define the parameters
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associated with the reward function and cost function below.

Formally, let B, as before, denote the number of ambulance bases which are indexed

by numbers from 1 to B and let φ+
b (m), b = 1, ..., B,m = 1, ...,M denote some tunable

marginal reward generated by assigning the mth ambulance to base b.

The cost of assigning ambulance v to base b, at some move-up decision time t, is the

product of a tunable weight w and a constant parameter cvb. The constant parameter cvb

is calculated using the travel time from the current location of ambulance v to base b as

follows.

In order to define cvb at a move-up decision time t, we divide the free ambulances (includ-

ing at-hospital ambulances) into three categories: (1) at-base or newly-freed ambulances,

(2) on-road ambulances, and (3) at-hospital ambulances.

For the first category, the parameter cvb is equal to the fastest path’s travel time tvxb

from the current location x of ambulance v to base b, i.e. cvb = tvxb.

For the second category, i.e. an ambulance that is on the road and driving towards a

base, to define cvb, we introduce a parameter Rvb representing a so-called regret-travel-time.

To define Rvb, we need the following parameters:

ov = the initial position where the on-road ambulance v started moving,

tvox = the fastest path’s travel time from position ov to current position x,

tvob = the fastest path’s travel time from position ov to base b for ambulance v.

The regret-travel-time Rvb is defined as

Rvb = tvox + tvxb − tvob.

If Rvb ≤ E where E is a regret-travel-time threshold, then we put cvb = αtvxb where

0 < α < 1 is a discount factor. Otherwise we put cvb = tvxb. The reason we discount the

parameter tvxb if Rvb ≤ E for an on-road ambulance is that we prefer to keep the ambulance

driving in the same general direction and yet allow the ambulance to be redirected to an
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‘underfilled attractive’ base that is located in high demand areas.

We view this discounting feature as a soft move-up constraint to prevent on-road am-

bulances from performing moves that may be considered pointless or frustrating from a

crew’s perspective, e.g. an on-road ambulance performs a U-turn and drives to a base that

is far away from its current location, but very close to where it became free for move-up.

Such moves may be able to improve the system performance, but reduce the practicality of

the policy. Experiments without this discounting feature, which are not presented in this

work, show that the system performance (percentage of calls reached on time) is similar to

that with the discounting feature. However, we find that with discounting, move-up costs

(defined in Section 7.6) are much smaller, which are detailed in Section 8.5.1.

We are aware that for practical use, soft and hard move-up constraints should be defined

after consulting with the EMS provider and ambulance crews. In this research, our focus

is mainly on the theoretical improvements based on this IP model.

For the third category, i.e. an at-hospital ambulance v that is regarded as free, we have

cvb = tvxb + tvFree

where tvFree is the remaining expected hand-over time duration estimated at move-up time t.

For our computational experiments presented in Section 8.5, we assume that the hand-over

time at any hospital follows the same exponential distribution with rate µH. Therefore, we

have cvb = tvxb +1/µH. In more realistic systems, we expect that tvFree depends on how long

an ambulance has been busy at a hospital, e.g. the longer the ambulance has been busy,

the smaller the tvFree. The addition of the remaining expected hand-over time duration

helps to counter the assumption that an at-hospital ambulance is free for move-up. Such

an ambulance takes longer to travel to a base than a truly free ambulance.

Next we define the decision variables. Let xbm, b = 1, ..., B,m = 1, , ...,M denote a

binary variable equaling 1 if at least m ambulances are assigned to base b and 0 otherwise.

Let V be the set of ambulances that are actually free at move-up time t. Let Q be the set

of at-hospital ambulances at move-up time t. Let yvb, ∀v ∈ V ∪Q, b = 1, ..., B be a binary
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variable equaling 1 if ambulance v is assigned to base b and 0 otherwise.

Now the model can be formulated as:

maximise
B
∑

b=1

M
∑

m=1

φ+
b (m)xbm − w

∑

v∈V ∪Q

B
∑

b=1

cvbyvb (8.1)

subject to

xbm ≤ xbm′ ∀b = 1, ..., B, ∀m = 2, ...,M,m′ = m− 1 (8.2)
Mb
∑

m=1

xbm =
∑

v∈V ∪Q

yvb ∀b = 1, ..., B (8.3)

B
∑

b=1

yvb = 1, ∀v ∈ V (8.4)

B
∑

b=1

yvb ≤ 1, ∀v ∈ Q (8.5)

xbm ∈ {0, 1} ∀b = 1, ..., B,m = 1, ...M (8.6)

yvb ∈ {0, 1} ∀v ∈ V ∪Q, b = 1...B (8.7)

Constraints (8.2) state that we cannot assign the mth ambulance to base b before we

assign the m − 1th ambulance to base b. Constraints (8.3) count the total number of

ambulances assigned to each base. Constraints (8.4) state that each free ambulance must

be assigned to one and only one base. Constraints (8.5) state that for an at-hospital

ambulance, it does not have to be assigned to a base in which case this ambulance does

not contribute any reward or incur any cost. In a solution, an at-hospital ambulance may

not be assigned to a base if the associated cost is very large, as might occur if, for example,

the remaining expected hand-over time is extremely long so that the ambulance is unlikely

to become free in the near future, which means the cost for any assignment regarding this

ambulance is very high. Constraints (8.6) and (8.7) are binary constraints.
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8.4 Simulation-based Optimisation of Tunable Parameters

In the previous section, we presented an IP model to form dynamic move-up policies. In

the objective function (8.1), the marginal rewards φ+
b (m), b = 1, ..., B,m = 1, ...,M , and

the weight w are the parameters to be tuned in order to find a high-quality move-up policy.

For this purpose, we employ the deterministic Nelder-Mead algorithm discussed in Section

7.6.2.

As before, we employ simulations for function evaluations in the Nelder-Mead algorithm;

each function evaluation refers to measuring the percentage of calls reached on time in a

common training dataset by running a simulation which solves the IP model whenever

needed to make move-up decisions..

Recall that to create a initial working simplex for the Nelder-Mead algorithm, one vertex

needs to be initialised by the user. We explain the initialisation process for the vertex in

the next two subsections; this vertex corresponds to the un-tuned (initialised) marginal

rewards and the weight. The move-up policy derived from the IP model using the un-

tuned parameters is referred to as the un-tuned IP move-up policy. Once Nelder-Mead

is terminated, the set of the tunable parameters giving the best performance defines the

optimised IP move-up policy; if there are ties, the first evaluated set is chosen.

We do not claim that this algorithm is the best tuning method for our model and we

do plan to test other search methods in future research.

8.4.1 Initialisation of Marginal Rewards

The initialisation process for the marginal rewards is a heuristic that utilises the optimised

priority list generated for the ranked-base all-ambulance move-up policy, as we think this

list provides valuable information to help identify attractive bases and it implicitly captures

ambulance interactions to some extent. We summarise the process in the following steps:

1 Use Algorithm 3 to find the locally optimal priority list, i.e. the optimised ranked-base

all-ambulance move-up policy.

2 Let L∗ = (b1 ← m1, ..., bN ← mN ) be the optimised priority list. Set φ+
b (m) = 0, ∀b =
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1, ..., B,m = 1, ...,M .

3 Simulate the optimised ranked-base all-ambulance move-up policy using the same

training call dataset that is used in Step 1.

3.1 Let c(bk ← mk), k = 1, ..., N be the number of calls that are reached on time and

served by entry bk ← mk in L∗. A call is considered served by entry bk ← mk in

L∗ if this call is served by the ambulance that was going to/standing by at base

bk, and there were mk ambulances assigned to base bk just before the dispatch.

3.2 Set φ+
bk
(mk) = c(bk ← mk)/D, ∀k = 1, ..., N where D is the number of hours with

call arrivals in the training call dataset. Keep in mind that for our experiments,

the last day of the training call dataset has no call arrivals, which is a ‘wind-down’

period for ambulances to finish services and return to base.

Under this initialisation scheme, the values of φ+
b (m), b = 1, ..., B,m = 1, ...,M can be

interpreted as the additional number of calls that can be reached on time per hour after

assigning an additional ambulance to each base.

8.4.2 Initialisation of Weight Applied to Travel Times

After initialising the marginal rewards as above, we perform a simulation-based discrete

linear search to initialise the weight w. We assume that the initial value for w is positive

and we start the search from ǫ with a step size of β. At iteration K,K = 0, 1, ..., we set

the value of w to be ǫ+ βK; we evaluate the move-up policy based on the IP model using

the training dataset that is used to initialise the marginal rewards. The discrete linear

search is terminated after θ iterations. The value that leads to the maximum number of

calls reached on time is set to the initial value for w. In our experiments below, we put

ǫ = 10−5, β = 0.2, and θ = 30.
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8.5 Computational Experiments

We perform computational experiments for the IP model under the three scenarios studied

in the previous two chapters. The arrival rate and the number of ambulances on duty for

each scenario are listed in Table 6.2 on page 81.

In Section 8.5.1, the results using the optimised dynamic move-up policies based on the

IP model are compared to those using the static policies and the move-up policies presented

in the previous two chapters. For simplicity, we refer to a move-up policy based on the IP

model as an IP move-up policy for analysis below. In Section 8.5.2, we investigate the

effectiveness of applying the Nelder-Mead algorithm in the tuning process. In Section 8.5.3,

we discuss whether move-up is worthwhile or not compared to the static model.

8.5.1 Results

The IP model has been coded in C++ and embedded into Optima Predict. The experiments

are conducted on a Windows workstation with a 2.4GHz 32-bit Quad Core Intel CPU and

4GB of RAM.

For all three scenarios, the discount factor α and the regret-travel-time threshold E

associated with the cost function in the IP model are set to 0.5 and 2 minutes, respectively.

The combination of this relatively heavy discount factor and a tight regret-travel-time

threshold is chosen in an attempt to keep each on-road ambulance driving in the same

general direction as before when a new move-up decision is made – a feature that we think

may reduce the frustrations from an ambulance crew’s perspective.

For each scenario, we implement the Nelder-Mead algorithm to tune the marginal re-

wards and the weight in the IP model. The one vertex needed to create the initial working

simplex involved in Nelder-Mead is constructed as explained in Section 8.4.1 and Section

8.4.2. The input parameters regarding the transformations of the working simplex and

termination conditions are the same as those used in Section 7.6.2. The training dataset

used for the initialisation process and Nelder-Mead is the same as the one used in Algo-

rithms 2 and 3 to obtain the optimised static policy, ranked-base free-ambulance move-up
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CPU time/evaluation (seconds) Total CPU time (hours)

Scenario 1A 196 136.1

Scenario 1B 234 162.5

Scenario 2 284 197.2

Table 8.1: The CPU time per function evaluation and the total CPU time for Nelder-Mead
to terminate under each scenario.

policy and ranked-base all-ambulance move-up policy. During each function evaluation in

Optima Predict, the CBC solver is used to solve the IP model whenever the number of

free ambulances changes. Once Nelder-Mead is terminated, the solution (for the tunable

parameters) that gives the best function value is used to define the optimised IP move-up

policy; if there are ties, the lowest indexed one is selected. As in Algorithms 2 and 3, the

selection of the optimised IP move-up policy based on the training dataset introduces a

bias. Therefore, independent test datasets are used to estimate the true performance of

the policy. These datasets are the same as those used to evaluate the static policy and the

other two move-up policies.

For each scenario, the CPU time per function evaluation, and the total CPU time until

the Nelder-Mead algorithm is terminated are displayed in Table 8.1. We find that for

all three scenarios, Nelder-Mead is terminated due to the number of function evaluations

reaching the limit of 2500.

We see that the CPU time per evaluation ranges from 3 minutes to 5 minutes, ap-

proximately, and the Nelder-Mead algorithm takes about 6 to 9 days to terminate. The

maximum CPU time to make a move-up decision based on the IP model is no more than

0.3 seconds for each of the three scenarios.

Figures 8.1 - 8.3 depict the tuning results for Nelder-Mead using the three training

datasets. Each index shown on the x-axis corresponds to a simulation run made using a

set of the tunable parameters for the IP model; the y-axis represents the number of calls

reached on time in the corresponding training dataset.

Table 8.2 summarises, for each of the three training datasets, the percentage of calls

reached on time arising from the un-tuned IP move-up policy (i.e. the policy based on the

initial solution for the tunable parameters in the IP model) and the optimised IP move-up

140



8.5 Computational Experiments

0 500 1000 1500 2000 2500
3000

3500

4000

4500

5000

5500

Function evaluation index

N
o.

 o
f o

n−
tim

e 
ca

lls

Figure 8.1: Tuning results by Nelder-Mead using the training dataset for Scenario 1A.

policy. We see that the solution qualities are improved by about 0.85%, 1.09% and 0.46%,

respectively, for the three training datasets. Given the small size of the improvement figures

and the large CPU time required, one may question the effectiveness of Nelder-Mead in

terms of improving the solution quality for our model. We return to this question shortly.

For now, we continue our analysis.

Figure 8.4 extends Figure 7.1 by showing, for each of the three scenarios, the percentage

of calls reached on time under the optimised IP move-up policy in each test dataset. Tables

8.3 and 8.4 extend Table 7.3 by attaching, for each of the three scenarios, the 95% confidence

intervals for the expected percentage of calls reached on time and the expected average

response time under the optimised IP move-up policy, estimated using the test datasets.

In Figure 8.4, we observe that for each of the three scenarios, the performance of the
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Figure 8.2: Tuning results by Nelder-Mead using the training dataset for Scenario 1B.

optimised IP move-up policy is similar to that of the optimised ranked-base all-ambulance

move-up policy, both of which dominate the other two policies. In terms of the expected

percentage of calls reached on time, the three IP move-up policies improve on the corre-

sponding ranked-base all-ambulance move-up policies by no more than 0.38% (Table 8.3);

these differences are statistically insignificant. The expected average response times are

also statistically equivalent.

The empirical results above suggest that there are small differences in response-time

statistics between the optimised IP move-up policies and ranked-base all-ambulance move-

up policies. However, Tables 8.5 - 8.7 show that there are significant differences in the

results for the move-up cost measures (defined in Section 7.6.1) under the optimised IP

move-up policies and ranked-base all-ambulance move-up policies, which are estimated
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Un-tuned IP move-up Optimised IP move-up Gain

Scenario 1A 51.12% 51.97% 0.85%

Scenario 1B 71.32% 72.41% 1.09%

Scenario 2 62.94% 63.4% 0.46%

Table 8.2: The percentage of calls reached on time in the training dataset using an un-tuned
IP move-up policy based on the initialisation procedure shown in Section 8.4 and the optimised
IP move-up policy when using the un-tuned policy as the initial solution for each scenario.

Static RBFA RBAA IP move-up

Scenario 1A 47.39%∓ 0.2% 47.64%∓ 0.2% 50.97%∓ 0.2% 51.31%∓ 0.2%

Scenario 1B 66.34%∓ 0.1% 66.91%∓ 0.1% 71.58%0.1% 71.84%∓ 0.1%

Scenario 2 56.1%∓ 0.1% 56.67%∓ 0.1% 61.67%∓ 0.1% 61.76%∓ 0.1%

Table 8.3: The 95% confidence intervals for the expected percentage of calls reached on
time using the optimised static policy, ranked-base free-ambulance move-up policy (RBFA),
ranked-base all-ambulance move-up policies (RBAA) and IP move-up policy for each scenario,
estimated using the associated test datasets.

Static RBFA RBAA IP move-up

Scenario 1A 10.3∓ 0.03 10.13∓ 0.03 9.65∓ 0.03 9.62∓ 0.02

Scenario 1B 7.66∓ 0.02 7.67∓ 0.02 7.10∓ 0.02 7.09∓ 0.01

Scenario 2 8.93∓ 0.02 8.88∓ 0.02 8.22∓ 0.02 8.23∓ 0.02

Table 8.4: The 95% confidence intervals for the expected average response time using the
optimised static policy, ranked-base free-ambulance move-up policy (RBFA), ranked-base all-
ambulance move-up policies (RBAA) and IP move-up policy for each scenario, estimated using
the associated test datasets.
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Figure 8.3: Tuning results by Nelder-Mead using the training dataset for Scenario 2.

using the corresponding test datasets. The last column of each of these tables shows the

95% confidence interval for the expected reduction in percetage with respect to each cost

measure, estimated by calculating the ratio of the performance difference between the IP

move-up policy and the ranked-base all-ambulance move-up polcy in each of the associated

test datasets.

From Tables 8.5 - 8.7, we see that the optimised IP move-up policies outperform the

optimised ranked-base all-ambulance move-up policies for all three scenarios, in terms of

the move-up costs. For each of the three scenarios, using the results under the ranked-base

all-ambulance move-up policy as the yardstick, the driving distances under the IP move-up

policy are reduced by at least 14.4%; the average number of attempted idle-at-base moves

per vehicle per day is reduced by at least 24.8%; the average number of redirections per
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Figure 8.4: The percentage of calls reached on time using the optimised static policy,
ranked-base free-ambulance move-up policy (RBFA), ranked-base all-ambulance move-up pol-
icy (RBAA) and IP move-up policy for each of the test datasets in Scenarios 1A, 1B and 2,
respectively. The test data are sorted by the performance under the associated static policies
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RBAA IP Exp. reduction (%)

Exp. Avg. driving distances per day (km) 76.4∓ 0.3 65.5∓ 0.2 14.4%± 0.4%

Exp. Avg. number of attempted idle-at-base moves day 5.7± 0.2 4.3± 0.2 24.8%± 0.3%

Exp. Avg. number of redirections per day 29.2± 0.1 16.9± 0.7% 41.9%± 0.2%

Exp. Avg. number of back-to-base redirections per day 2.9± 0.1 0.89± 0.1 69.1%± 0.3%

Exp. Avg. number of relocations per day 34.9± 0.1 21.3± 0.1 39.2%± 0.1%

Table 8.5: The 95% confidence intervals for the move-up costs (defined in Section 7.6.1) under the optimised ranked-base free-
ambulance move-up policy (RBFA) and IP move-up policy, estimated using the 40-test datasets for Scenario 1A with 12 ambulances
and 9 calls/hr. The reduction figure for each performance meaure in the last column is estimated based on the ratio of the
performance difference between the IP move-up policy and the ranked-base all-ambulance move-up polcy in each test dataset.
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RBAA IP Exp. reduction (%)

Exp. Avg. extra driving distances per vehicle per day (km) 87.3± 0.3 65.3± 0.3 25.3%± 0.2%

Exp. Avg. number of attempted idle-at-base moves per vehicle per day 5.0± 0.1 3.9± 0.1 22.2%± 0.3%

Exp. Avg. number of redirections per vehicle per day 28.1± 0.1 18.6± 0.1% 33.8%± 0.2%

Exp. Avg. number of back-to-base redirections per vehicle per day 2.5± 0.1 1.1± 0.1 54.3%± 0.4%

Exp. Avg. number of relocations per vehicle per day 34.9± 0.1 22.5± 0.1 31.9%± 0.1%

Table 8.6: The 95% confidence intervals for the move-up costs (defined in Section 7.6.1) under the optimised ranked-base free-
ambulance move-up policy (RBFA) and IP move-up policy, estimated using the 40-test datasets for Scenario 1B with 16 ambulances
and 9 calls/hr. The reduction figure for each performance meaure in the last column is estimated based on the ratio of the
performance difference between the IP move-up policy and the ranked-base all-ambulance move-up polcy in each test dataset.
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RBAA IP Exp. reduction (%)

Exp. Avg. extra driving distances per vehicle per day (km) 70.4± 0.3 56.0± 12.7 20.4%± 0.2%

Exp. Avg. number of attempted idle-at-base moves per vehicle per day 5.6± 0.1 4.0± 0.2 29.2%± 0.3%

Exp. Avg. number of redirections per vehicle per day 38.7± 0.1 23.1± 0.1% 40.3%± 0.1%

Exp. Avg. number of back-to-base redirections per vehicle per day 3.0± 0.1 0.9± 0.1 68.9%± 0.3%

Exp. Avg. number of relocations per vehicle per day 44.3± 0.1 27.1± .1 38.9%± 0.1%

Table 8.7: The 95% confidence intervals for the move-up costs (defined in Section 7.6.1) under the optimised ranked-base free-
ambulance move-up policy (RBFA) and IP move-up policy, estimated using the 40-test datasets for Scenario 2 with 16 ambulances
and 12 calls/hr. The reduction figure for each performance meaure in the last column is estimated based on the ratio of the
performance difference between the IP move-up policy and the ranked-base all-ambulance move-up polcy in each test dataset.
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vehicle per day is reduced by at least 33.8%; the average number of back-to-base redirections

per vehicle per day is reduced by at least 54.3%; the average number of (total) relocations

per vehicle per day is reduced by at least 31.9%.

The results for the move-up cost comparisons are encouraging, as they suggest that

the optimised IP move-up policies give equally-good response-time performance compared

to the optimised ranked-base all-ambulance move-up policies, but with reduced move-up

costs. In other words, the IP move-up policies are more intelligent and viable. In practice,

a reduction in driving distances can be translated into cost savings in fuel and vehicle

maintenance, a smaller likelihood of traffic accident occurrences, and a decreased chance

of developing health conditions such as back pains due to crews spending less time on the

road. A reduction in the number of attempted idle-at-base moves, redirections, and back-

to-base redirections means that less crew frustration due to move-up is expected. These

reductions give the corresponding move-up policy extra competitiveness when compared to

a static policy which, relatively speaking, has zero cost but produces worse response-time

performance.

The increased intelligence of move-up based on the IP move-up model compared to

the ranked-base all-ambulance move-up model is what we have hoped for based on our

insights gained from our small-scale DP models. Recall that the key difference between the

two move-up models is that the ranked-base all-ambulance move-up model forces n free

ambulances into a unique target configuration C(n), while the IP move-up model does not.

Tables 8.8 - 8.10 report, for each of the three training datasets, the percentage of move-up

decisions made with n = 1, 2... free ambulances, the number of target configurations chosen

for n = 1, 2... free ambulances, and the percentage that the most chosen (top) configuration

accounts for given there are n = 1, 2, .. free ambulances1.

Comparing the proportions of move-up decisions made with n = 1, 2... free ambulances

in Tables 8.8 and 8.9, where Table 8.8 corresponds to Scenario 1A’s training dataset with 12

ambulances and 9 calls/hr and Table 8.9 corresponds to Scenario 1B’s training dataset with

16 ambulances and 9 calls/hr, we see that a move-up decision is more likely to be made

1We only use training datasets for the following analysis, as we see similar results in the test datasets.
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with more ambulances available in Scenario 1B’s training dataset than in Scenario 1A’s

training dataset, which is expected because there are more ambulances under Scenario

1B than Scenario 1A. Table 8.10 corresponds to Scenario 2’s training dataset with 16

ambulances and 12 calls/hr. We see that a move-up decision is more likely to be made with

fewer ambulances available in Scenario 2’s training dataset than in Scenario 1B’s training

dataset, which is, again, expected because of the increased arrival rate.

An analysis of the data showed that for each of the three scenarios, the top configuration

for each number of free ambulances under the optimised IP move-up policy is the same as

the configuration defined by the corresponding optimised ranked-base all-ambulance move-

up policy. However, we see that for Scenario 1A’s training dataset (Table 8.8), a majority

(about 90.2%) of move-up decisions is made with 3 to 10 free ambulances. The percent-

age that the top configuration, for n = 3, ..., 10 ambulances, accounts for ranges from

about 29.9% to 73.3%. In other words, the percentage that the non-top configurations,

for n = 3, ..., 9 ambulances account for, ranges from about 26.7% to 70.1%. For Scenario

1B’s training dataset (Table 8.9), about 92.2% of move-up decisions are made with 7 to 14

free ambulances. The percentage that the top configuration, for n = 7, ..., 14 ambulances,

accounts for ranges from about 25.6% to 79.8%. For Scenario 2’s training dataset (Ta-

ble 8.10), about 92.7% of move-up decisions are made with 4 to 13 free ambulances. The

percentage that the top configuration, for n = 4, ..., 13 ambulances, accounts for ranges

from about 14.9% to 66.7%. These figures indicate that the non-top configurations account

for a significant proprotion of move-up decisions, which supports our belief – there are mul-

tiple ‘good’ configurations for a given number of free ambulances and the one chosen for

move-up should depend on not just the number of free ambulances, but also factors such

as the locations of free ambulances and busy ambulances.

We make a note about the tuned weights for Scenario 1B with 16 ambulances on duty

and 9 calls/hr and Scenario 2 with 16 ambulances on duty and 12 calls/hr. We find that the

tuned weight under Scenario 2 is about four times larger than that under Scenario 1B1. This

result means that it is more ‘expensive’ for an ambulance to move given the same travel

1Note that for fair comparisons, all the tunable parameters for Scenario 2 are normalised using the
highest marginal reward for Scenario 1A as the reference.
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time under Scenario 2 than Scenario 1B. Therefore, it is not surprising that the number

of chosen target configurations for each given number of free ambulances under Scenario 2

(Table 8.9) is larger than that under Scenario 1B (Table 8.10).

Finally, recall that an IP move-up model by Richards [39] has been embedded into Op-

tima Predict. This model, with its default input settings, is tested for our three scenarios.

We find that the performance using this model is worse than that under the (benchmark)

static policies, suggesting that a more careful calibration for the input settings is needed.

However, as discussed in Chapter 2, the model requires, for each demand point, two input

parameters, i.e. call demand and a target number of ambulances up to which each additional

ambulance that can cover that demand point contributes to a reward function. Typically,

the number of demand points is very large compared to the number of stand-by locations.

Consequently, it may be difficult to use a systematic mechanism such as numerical opti-

misation to find a good set of input parameters for the model by Richards. We consider

designing algorithms for the model input settings as a possible future research direction.

8.5.2 Effectiveness of the Nelder-Mead Algorithm

We now return to the question raised in Section 8.5.1: the computation required by Nelder-

Mead for the tuning process is very heavy (approximately 6 to 9 days); however, the

final best solution (for the tunable parameters) leads to a small performance improvement

compared to the initial solution generated using our procedure presented in Sections 8.4.1

and 8.4.2. This result makes it natural to question whether Nelder-Mead is an effective

algorithm for improving the solution quality for our IP model.

In this section, we show that Nelder-Mead is effective for our model and the reason

for the small performance improvement using Nelder-Mead is because our initialisation

procedure is of high quality, in which case there is little room for further improvement. To

demonstrate the effectiveness of Nelder-Mead, we perform another Nelder-Mead run but

this time, start from a poor initial solution for each of our three scenarios.

The vertex (initial solution) required to create the initial working simplex for each sce-

nario is now defined by setting all the tunable parameters to 1. For the following analysis,
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No. of free ambulances Move-up decisions (%) No. of target configurations Top configuration (%)

1 1.92% 6 47.63%

2 3.85% 14 34.62%

3 7.01% 26 29.88%

4 10.66% 40 34.50%

5 13.79% 49 48.73%

6 15.80% 54 45.49%

7 15.81% 45 53.72%

8 13.52% 58 50.62%

9 9.00% 74 73.33%

10 4.60% 64 23.16%

11 1.72% 43 17.22%

12 0.31% 24 12.31%

Table 8.8: The percentage of move-up decisions made with n = 1, ..., 12 free ambulances, the number of target configurations
chosen for n = 1, .., 12 free ambulances, and the percentage that the most chosen (top) configuration accounts for given there are
n = 1, ..., 12 free ambulances in Scenario 1A’s training dataset under the associated optimised IP move-up policy.
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No. of free ambulances Move-up decisions (%) No. of target configurations Top configuration (%)

1 0.04% 2 66.67%

2 0.11% 6 31.82%

3 0.29% 14 24.59%

4 0.65% 28 24.26%

5 1.36% 48 30.53%

6 2.91% 72 24.18%

7 5.69% 114 25.61%

8 9.36% 118 28.65%

9 13.09% 116 28.62%

10 15.84% 122 36.69%

11 16.88% 110 51.36%

12 15.19% 59 51.07%

13 10.53% 37 68.03%

14 5.60% 27 79.76%

15 2.07% 16 82.64%

16 0.39% 7 48.15%

Table 8.9: The percentage of move-up decisions made with n = 1, ..., 16 free ambulances, the number of target configurations
chosen for n = 1, .., 16 free ambulances, and the percentage that the most chosen (top) configuration accounts for given there are
n = 1, ..., 16 free ambulances in Scenario 1B’s training dataset under the associated optimised IP move-up policy.
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No. of free ambulances Move-up decisions (%) No. of target configurations Top configuration (%)

1 0.71% 7 35.42%

2 1.26% 16 23.78%

3 2.34% 35 17.37%

4 3.91% 57 14.82%

5 5.79% 78 16.29%

6 8.21% 109 21.65%

7 10.89% 140 19.85%

8 13.22% 153 27.45%

9 14.38% 144 31.69%

10 13.49% 108 31.60%

11 11.02% 127 50.03%

12 7.65% 108 66.54%

13 4.19% 94 21.16%

14 1.63% 67 15.60%

15 0.46% 38 10.32%

16 0.07% 15 15.79%

Table 8.10: The percentage of move-up decisions made with n = 1, ..., 16 free ambulances, the number of target configurations
chosen for n = 1, .., 16 free ambulances, and the percentage that the most chosen (top) configuration accounts for given there are
n = 1, ..., 16 free ambulances in Scenario 2’s training dataset under the associated optimised IP move-up policy.
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Un-tuned move-up Optimised move-up Improvement

Scenario 1A 37.12% 51.90% 14.78%

Scenario 1B 52.71% 71.46% 18.75%

Scenario 2 47.20% 62.28% 15.08%

Table 8.11: The percentage of calls reached on time in the training dataset for each scenario
using an un-tuned IP move-up policy (in which all the tunable parameters are set to be 1) and
an optimised IP move-up policy when using the un-tuned policy as the initial solution.

we refer to this simple initialisation procedure as the unit-value procedure, and our initial-

isation procedure in Section 8.4 as the simulation-based procedure.

Figures 8.5 - 8.7 compare, for each of our three scenarios, the Nelder-Mead tuning results

for the two initial solutions generated by the unit-value procedure and the simulation-based

procedure. The x-axis represents the function evaluation index and the y-axis represents,

for the associated training dataset, the best function value found after the Kth function

evaluation. Note that for each scenario, Nelder-Mead with the unit-value initial solution is,

again, terminated due to the number of function evaluations reaching the limit of 2500.

From the plots, we see that the unit-value initial solutions perform significantly worse

than the simulation-based initial solutions. Therefore, it is reasonable to consider the unit-

value initial solutions as poor starting solutions, and the simulation-based initial solutions

as good starting solutions.

We observe that when Nelder-Mead is applied to each of the three poor starting solu-

tions, it is able to make a significant improvement on the solution quality. This observation

supports our claim at the beginning of this section: Nelder-Mead is effective in improving

the solution quality for our model and our simulation-based procedure provides high-quality

initial solutions.

Table 8.11 summarises the performance of the unit-value initial solution (un-tuned IP

move-up policy) and the corresponding final best solution (optimised IP move-up policy)

with respect to the corresponding training dataset. For each scenario, Nelder-Mead is able

improve the solution quality to a great extent; at least 14.78% extra calls are reached on

time using the final best solution.

We make a comment about the solution quality vs the total run time for the two
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Figure 8.5: The best function value for the training dataset after the Kth evaluation by
Nelder-Mead with an unit-value initial solution and a simulation-based initial solution under
Scenario 1A.
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Figure 8.6: The best function value for the training dataset after the Kth evaluation by
Nelder-Mead with an unit-value initial solution and a simulation-based initial solution under
Scenario 1B.

initialisation procedures. Compared to the simple unit-value procedure, the simulation-

based procedure requires simulations (1 run for initialising the marginal rewards and 30
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Figure 8.7: The best function value for the training dataset after the Kth evaluation by
Nelder-Mead with an unit-value initial solution and a simulation-based initial solution under
Scenario 2.

runs for initialising the weight for each of our scenarios) to create a solution, while the

unit-value procedure is completed instantly. Moreover, keep in mind that the simulation-

based procedure also requires an optimised ranked-base all-ambulance move-up policy as an

input parameter, which can take days to obtain. However, as shown in Figures 8.5-8.7, when

Nelder-Mead is applied to each of the (poor) unit-value initial solutions, it takes at least

240 simulation runs before the best function value is similar to (but never better than) the

one based on the simulation-based initial solution. Therefore, if an optimised ranked-base

all-ambulance move-up policy is available, we recommend the use of the simulation-based

procedure. Otherwise, the unit-value procedure can be used, which is expected to give

similar-quality solutions.

8.5.3 Benefits of Move-up

In this section, we would like to address the question whether move-up is worthwhile or

not. Our understanding is that it is difficult to answer this question in a generic fashion;

many factors, as discussed below, need to be taken into account.
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Move-up often leads ambulance crews to spend more time on the road, resulting in an

increased chance of developing neck pains and back pains [34]. On-road ambulances may

be repeatedly redirected to different target bases in a short amount of time, which can be

perceived as frustrating and pointless moves from the crews’ perspective. Driving distances

with move-up are expected to increase, which results in higher fuel and maintenance costs.

Therefore, the willingness to implement move-up may vary significantly among different

EMS providers.

Nevertheless, if a move-up strategy is shown to help reduce response times, we think it

deserves to be considered for implementation given the social impact of EMS operations.

Besides presenting the performance improvement by move-up to an EMS manager, we think

it is also helpful to present the additional number ∆N of ambulances required in the static

location model so as to meet/exceed the service levels provided by move-up; this information

is useful, as purchasing an ambulance and maintaining it can cost up to 1 million dollars

per year [34], which is a large capital investment.

For each of the three scenarios above, it is reasonable to consider the optimised IP move-

up policy presented in Section 8.5.1 as the best policy when maximising the percentage of

calls reached on time is the primary objective. To determine ∆N , we repeatedly increase

the number of ambulances on duty by 1 and then run Algorithm 2 to obtain a re-optimised

static policy. For each re-optimised static policy, we estimate its performance using the

test datasets as before. We stop the increment when the last evaluated re-optimised static

policy exceeds the performance given by the corresponding optimised IP move-up policy.

Table 8.12 reports, for each of the three scenarios, the 95% confidence intervals for

the expected marginal increase in the percentage of calls reached on time under each re-

optimised static policy, estmated using the test datasets. The statistics for the average

response times under the re-optimised static policies are also shown in Table 8.12.

From Table 8.12, we see that for Scenario 1A, one additional ambulance is required by

the static model to outperform the optimised IP move-up policy; the extra percentage of

calls reached on time using the optimised 13-ambulance static policy compared to the 12-

ambulance IP move-up policy is about 0.67%. For Scenario 1B, two additional ambulances
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Scenario 1A Scenario 1B Scenario 2

No. of ambulances in the static model 13 17 18 17 18

Exp. marginal increase in on-time calls (%) 4.57%± 0.2% 3.12% ±0.1% 2.81% ±0.1% 5.10% ±0.2% 3.62%± 0.1%

Exp. average response time (minutes) 9.32± 0.02 7.36± 0.02 7.11± 0.01 8.32± 0.02 7.91± 0.01

Table 8.12: The number of ambulances in each re-optimised static policy, the 95% confidence intervals for the expected marginal
increase in calls reached on time, and average response time under the associated static policy for each scenario. The confidence
intervals are estimated using the results for the corresponding test datasets.
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are required and the extra percentage of calls reached on time using the optimised 18-

ambulance static policy compared to the 16-ambulance IP move-up policy is about 0.42%.

For Scenario 2, we also need two addtional ambulances in the static model to outperform

the optimised IP move-up policy by about 3.04%; however, we see that the performance

with only one addtional ambulance in the static model is close to (about 0.54% worse than)

that using the IP move-up policy. Therefore, it is arguable whether the second additional

ambulance is worth the investment in practice for Sceanrio 2.

We also observe that for the same arrival rate, as the number of ambulances increases

in the static model, the average response time decreases as expected. It is worth noting

that although the average response time is not used as the objective for the static policy

re-optimisation, we can use the average-response-time statistics to obtain the same results

on the number of additional ambulances required in the static model to outperform the IP

move-up policies.

8.6 Summary

This chapter has been devoted to the formulation of an IP move-up model. Some of the

insights obtained from the small-scale DP model in Chapter 5 were employed. Furthermore,

numerical optimisation (Nelder-Mead) was used to tune some of the model parameters in

a hope of forming a high-quality move-up policy.

Computational experiments in Section 8.5.1 showed that after the tuning process, the

optimised IP move-up policies and ranked-base all-ambulance move-up policies presented

in the last chapter gave similar performance in terms of reducing response times, both of

which outperform the optimised ranked-base free-ambulance move-up policies and static

policies. However, the IP move-up policies resulted in smaller move-up costs, which means

they were more effective than the ranked-base all-ambulance move-up policies.

The computational burden of implementing Nelder-Mead for our IP move-up model was

very heavy while the improvement of solution quality was relatively small. Consequently, in

Section 8.5.2, we investigated its effectiveness by initialising the tunable parameters in an
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ad-hoc way. The results suggested that Nelder-Mead was able to tune the parameters such

that the system performance after tuning was significantly better; the small improvement

observed in Section 8.5.1 was due to the high-quality initialisation scheme we proposed for

the tunable parameters.

Finally, we addressed the question of whether move-up is worthwhile or not. The

question is hard to answer, as move-up can lead to health issues for the crews, increased

fuel and maintenance costs, etc. Therefore, the willingness of performing move-up can

vary among different EMS providers. On the other hand, large capital investments may be

needed in order to obtain similar performance improvements using a static location strategy.
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9

Conclusions and future research

9.1 Conclusions

This thesis devoted three chapters to the study of optimal move-up under the dynamic

programming (DP) framework. The DP models are difficult to extend for practical prob-

lems. The main use of the models is to gain insights from optimal move-up policies in small

settings.

In the third chapter, optimisation of a single-ambulance move-up model to maximise

the benefit for the next call was studied. Theoretical results on the characteristics of such

optimal move-up policies and value functions were established. In the fourth chapter, a

move-up model for a single ambulance to maximise the average benefit over an infinite

horizon was presented. Numerical studies were performed for the two single-ambulance

move-up models; the static model was used to provide benchmarks. The results showed

that the single-ambulance infinite-horizon move-up model always performed at least as well

as the static model, while it was difficult to draw a conclusion about the performance of

the ‘simpler’ single-ambulance next-call move-up model. Nevertheless, it was possible to

observe that, in some conditions, the next-call model could outperform the static model

and give results similar to those of the infinite-horizon model.

The fifth chapter was an extension of the fourth chapter, considering two ambulances

for move-up in order to maximise the average benefit over an infinite horizon. Simplified

numerical experiments were analysed. We observed that the optimal move-up policies

outperformed the optimal static policies in all test instances. Furthermore, the results

provided some interesting move-up insights which were, to our knowledge, never discussed

in the literature. A principal finding was that to decide the stand-by location for each free
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ambulance, many factors such as hospital locations, arrival rate, the spatial distribution of

demand, status of busy ambulances, and rewards along a move-up path need to be taken

into account; this finding reflected the complexity of designing high-performance move-up

policies.

Chapter 6 was a transition chapter taking us to the study of three move-up models for

realistic-sized EMS operations. In this chapter, we first introduced the simulation software

Optima Predict which we used for policy evaluations. We then discussed a simulation

environment to compare and test ambulance location models. Furthermore, three scenarios

based on the simulation environment were established and results for the corresponding

static policies derived from a simulation-based local search algorithm were presented. The

static policies were used to benchmark the performance of the move-up models presented

in the subsequent chapters.

In Chapter 7, we presented a ranked-base free-ambulance move-up model and a ranked-

base all-ambulance move-up model. As the names suggest, both models are based on

a priority list that ranks stand-by locations (ambulance bases). A simulation-based local

search algorithm was proposed to optimise the list (rankings) used to form move-up policies

based on the two models. The results for the optimised move-up policies and the benchmark

static policies were compared. We observed that the ranked-base all-ambulance move-up

policies significantly improved the system performance, i.e. the percentage of calls reached

on time (which is the objective to maximise) and the average response time, while the

ranked-base free-ambulance move-up policies performed marginally better than the static

policies1. However, it was difficult to conclude that the ranked-base all-ambulance move-up

policies were the best options, as they were associated with higher move-up ‘costs’ (such as

extra driving distances, attempted base-to-base ambulance moves and on-road-ambulance

redirections) than the static policies and the ranked-base free-ambulance move-up policies.

In Chapter 8, we proposed an IP move-up model. A simulation-based initialisation

procedure was proposed to determine the initial values for some of the tunable input pa-

rameters in the IP model and numerical optimisation (Nelder-Mead) was used for tuning

1Maxwell [34] found a more significant improvement using the ranked-base free-ambulance move-up
model for data based on Edmonton.
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the parameters. Computational results showed that the optimised IP move-up policies

gave similar service levels to the ranked-base all-ambulance move-up policies. However,

the optimised IP move-up policies were associated with lower move-up costs. Therefore,

the optimised IP move-up policies were more effective. More importantly, we showed that

the optimised IP move-up policies use multiple configurations for a given number of free

ambulances, instead of a unique configuration under a ranked-base all-ambulance move-up

policy. This result supports our belief based on our insights gained from our small-scale

DP models that there are multiple good configurations for a given number of ambulances

and the target configuration should depend on not just the number of free ambulances, but

also other factors such as locations of free and busy ambulances.

The Nelder-Mead algorithm used for the tuning process led to heavy computation bur-

dens but small improvements for the solution quality. Additional experiments were con-

ducted to show that the small improvements were caused by our high-quality initialisation

procedure for the tunable parameters and Nelder-Mead was able to improve the solution

quality significantly when starting from a poor solution. Finally, we also reported, for each

of the three scenarios, the additional number of ambulances required in a re-optimised static

policy to meet/exceed the performance of the optimised IP move-up policy. As putting even

one additional ambulance in service involves a large financial commitment, this information

provides a useful reference to measure the value of move-up.

9.2 Future Research Directions

The three move-up models developed in Chapters 7 and 8, which are aimed for large-scale

EMS operations, are tested in simplified systems, as discussed in Section 6.2. A natural

extension would be to test them in more complicated systems. For example, in practice, the

arrival rate and spatial distribution of call demand can vary significantly over time. Calls

often have different priorities and travel times are different between off-peak and peak

traffic hours. Moreover, in the simplified systems, only ambulance bases are considered as

candidate stand-by locations for move-up, while in the real-world EMS operations, some
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street corners can also be used as stand-by locations.

When calls with different priorities are considered, different EMS providers may have

different perspectives for measuring the overall performance. For example, only maximising

the performance for calls with the highest priority may no longer be appropriate and a multi-

objective optimisation problem may arise. Because we use simulation-based optimisation

for our move-up models, an advantage is that it is easy to evaluate the performance with

respect to objectives that can be difficult to approximate using the mathematical modelling

approach.

When street corners are considered for move-up, the performance of a move-up model

may increase compared to the case in which only ambulance bases are considered for move-

up, as street corners in high-demand areas can lead to smaller response times. However,

standing by at a street corner is probably more ‘costly’ in terms of crew frustrations than

at a base where crews do not have to sit in the vehicle. Therefore, taking street corners

into account for a move-up policy may reduce the policy’s practicality.

Regarding the IP move-up model developed in Chapter 8, a fruitful area for future

research would be to employ the move-up insights obtained from our small-scale DP models

in a more sophisticated way. The model, as discussed, can also be viewed as an ADP

model. From the ADP perspective, more careful approximation architectures deserve to

be explored. At this stage, the cost of moving an ambulance to a base in the IP model is

mainly determined by the associated travel time. Recall that in Chapter 5, we showed that

the ‘quality’ of a move-up path can be as important as that of a final stand-by location. A

possible extension of the IP model to address this problem is to consider a multi-stage IP

model in which each stage corresponds to some time interval, so that the rewards associated

with an ambulance’s move-up path can be taken into account. However, the computation

burden for solving such a multi-stage IP model is expected to increase. Heuristic solution

techniques may be required, as the time taken to make a real-time move-up decision should

be very short.

We also envision that a possible use of the IP move-up model is to construct multi-

configuration compliance-table move-up policies, i.e. multiple target configurations for a
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given number of free ambulances, which has not been studied in the literature. One possible

mechanism for creating a multi-configuration compliance-table move-up policy is to extract

some of the frequently chosen configurations based on the IP model, and design an algorithm

(which may involve simulation-based tuning) for deciding which target configuration is the

optimal one whenever a move-up decision is required.

Finally, the performance of other numerical optimisation methods for tuning parameters

in the IP model should be investigated and compared with the Nelder-Mead method used

in this work.
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.1 Proof of Correctness of Algorithm 1

.1 Proof of Correctness of Algorithm 1

In this appendix, we prove the validity of Algorithm 1.

We proceed by induction. Let V (k) denote the value currently assigned to node k by

Algorithm 1, and V (k)∗ denote the correct value for node k. Let us renumber the n nodes

in decreasing order of their true V (k)∗ values, giving V (1)∗ ≥ V (2)∗ ≥ ... ≥ V (n)∗, where

nodes are ordered by increasing index for breaking ties. Assume nodes P = {1, 2, ..., p− 1}

currently have permanent labels, and nodes T = {p, p+ 1, ..., n} have temporary labels.

(i) If all permanently labelled nodes have their correct V (k) = V (k)∗ values, then the

next step of Algorithm 1 will permanently label node p with its correct V (p) = V (p)∗ value.

Proof: The value V (k) of any temporarily labelled node k is calculated by Algorithm 1

as:

V (k) = max
k′∈N(k)

(

r(k), (1− e−λ∆t(k,k′))r(k) + e−λ∆t(k,k′) max
j∈Nk∩P

V (j)∗
)

(1)

Comparing this with the optimality equation, (3.3), we see that this equation excludes

all neighbouring nodes of k that have temporary labels. Thus, we must have V (k) ≤

V (k)∗ ∀ k ∈ T .

Consider now node p. By our ordering assumption, any neighbouring node k excluded

in (1) for node p has V (k)∗ ≤ V (p)∗, and so excluding this node in (3.3) would not alter

the calculated value V (p)∗, making (3.3) and (1) equivalent. Therefore, V (p) = V (p)∗, and

so node p is ready to be permanently labelled. Furthermore, we have V (p) = V (p)∗ ≥

V (k)∗ ≥ V (k), ∀ k ∈ T , and so node p will be the next node selected for a permanent label

by Algorithm 1

(ii) It remains to show that the first permanent label V (1) is calculated correctly.

Proof: Algorithm 1 puts V (1) = r(1) = maxk=1..n r(k), and so V1 is the reward gained

by waiting at node 1, being the node with the largest r(k). Clearly, moving away from this

node to wait at some node with a lower r(k) cannot be a better policy, and so V (1) = V (1)∗.

This completes our proof.
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Horizon Move-up Model

In this appendix, we provide the optimality equations for all the states in the two-ambulance

infinite-horizon move-up model discussed in Chapter 5.

First we consider states ((k1,Free),(k2,Free)), ∀k1, k2 ∈ N – one ambulance is free at

node k1 and the other ambulance is free at node k2. Each ambulance can move to any node

k′i ∈ Nki , i = 1, 2 in which case the non-zero transition probabilities associated with each of

these states are:

P{((k′1,Free), (k
′
2,Free))|((k1,Free), (k2,Free))} = e−λ,

P{((k1, i), (k
′
2,Free)|((k1,Free), (k2,Free))} = (1− e−λ)p(x) x ∈ Qk1 ,

P{((k′1,Free), (k2, i)|((k1,Free), (k2,Free))} = (1− e−λ)p(x) x ∈ Qk2 .

The first transition corresponds to the state given no call-arrival during the wait interval

– ambulance i jumps from node ki to k′i, i = 1, 2, respectively, after one time-step. The

second and third transitions correspond to the states where a call arrives during the wait

interval and the closest ambulance gets dispatched. The term Qki , i = 1, 2, denotes a subset

of nodes that are closest to node ki. If there is a tie for node x, each ambulance has an

equal chance of 0.5 to get dispatched to node x.

The immediate reward is independent of which node each ambulance moves to since we use

the ‘wait-then-jump’ scheme and it is the probability of one call arriving during the wait

interval multiplied by the reward function r(k1, r2) as shown below:

(1− e−λ)r(k1, k2).
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Therefore, Equation 4.2 gives:

V ((k1,Free), (k2,Free)) + g = max
k′i∈Ni,i=1,2

[

(1− e−λ)r(k1, k2)

+ (1− e−λ(k,k′))
∑

i∈N

p(i)V (k, i)

+ e−λV ((k′1,Free), (k
′
2,Free))

]

.

Next we consider states ((k1,Free),(k2, j)), ∀k1, k2 ∈ N, ∀j ∈ N \k2 and ((k1,Free),(k2,H)),

∀k1 ∈ N, ∀k2 ∈ N \ h(k2) – one ambulance is free at node k1 and the other ambulance

is traveling from node k2 to (but not yet reach) a call location j or the closest hospital.

In each of these states, the free ambulance can move to any node k′1 ∈ Nk1 and the other

ambulance just moves to the next node towards call location j or the closest hospital along

the shortest path.

The possible transitions for each of these states after one time-step are as follows: (1) no

call arrives during the wait interval, meaning that the free ambulance jumps to node k′1 and

the other ambulance jumps to the next node along the shortest path, and (2) a call arrives

during the wait interval, meaning that the free ambulance is dispatched to the call with

reward r(k1), and the other ambulance jumps to the next node along the shortest path.

Therefore Equation 4.2 gives:

V ((k1,Free), (k2, j)) + g = max
k′1∈N1

((1− e−λ)r(k1)

+ (1− e−λ)
∑

x∈N

p(x)V ((k1, x), (next(k2, j), j))

+ e−λV ((k′1,Free), (next(k2, j), j))), k2 6= j,
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and

V ((k1,Free), (k2,H)) + g = max
k′1∈N1

((1− e−λ)r(k1)

+ (1− e−λ)
∑

x∈N

p(x)V ((k1, x), (next(k2, h(k2)),H))

+ e−λV ((k′1,Free), (next(k2, h(k2)),H)), k2 6= h(k2).

Next we consider states ((k1,Free),(j,j)), ∀k1 ∈ N, ∀j ∈ N – one ambulance is free at node

k1 and the other ambulance is providing on-site treatment. The free ambulance can move

to any node k′1 ∈ Nk1 . As we mentioned, we assume the ‘wait’ interval is small enough such

that there is only one event that can occur during this interval.

The possible transitions for each of these states after one time-step are as follows: (1) neither

a call arrives or the on-site treatment finishes during the wait interval, meaning that the

free ambulance reaches node k′1 and the other ambulance is still busy on site, (2) a call

arrives during the wait interval, meaning that the free ambulance is dispatched from node

k1 with reward r(k1, and the other ambulance is still busy on site, (3) the on-site service

finishes during the wait interval and transport is needed, meaning that the free ambulance

reaches node k′1 and the other ambulance starts travelling to the closest hospital, and (4)

the on-site service finishes during the wait interval and transport is not required, meaning

that the free ambulance reaches node k′1 and the other ambulance becomes free at node j.

Therefore, Equation 4.2 gives:

V ((k1,Free), (j, j)) + g = max
k′1∈N1

((1− e−(λ+µ))r(k1)

+
λ

λ+ µ
(1− e−(λ+µ))

∑

x∈N

p(x)V ((k1, x), (j, j))

+
µ

λ+ µ
(1− e−(λ+µ))ptransportV ((k′1,Free), (j,H))

+
µ

λ+ µ
(1− e−(λ+µ))(1− ptransport)V ((k′1,Free), (j,Free))

+ e−(λ+µ)V ((k′1,Free), (j, j))), k2 6= j.
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Next we consider states ((k1,Free),(h,H)), ∀k1 ∈ N— one ambulance is free at node k1 and

the other ambulance is handing over a patient at a hospital node h. In each of these states,

the free ambulance can move to any node k′1 ∈ Nk1 .

The possible transitions after one time-step are as follows: (1) neither a call arrives or

at-hospital hand-over finishes during the wait interval, meaning that the free ambulance

reaches node k′1 and the busy ambulance remains busy, (2) a call arrives during the wait

interval, meaning that the free ambulance gets dispatched with reward r(k1) while the busy

ambulance remains busy, and (3) the hand-over finishes during the wait interval, meaning

that the free ambulance reaches node k′1 and the busy ambulance becomes free at the

hospital. Therefore, Equation 4.2 gives:

V ((k1,Free), (h,H)) + g = max
k′1∈N1

((1− e−(λ+µh))r(k1)

+ (
λ

λ+ µh
(1− e−(λ+µh))

∑

x∈N

p(x)V ((k1, x), (h,H))

+
µh

λ+ µh

(1− e−(λ+µh))V ((k′1,Free), (h,Free))

+ e−(λ+µ)V ((k′1,Free), (h,H)), k2 6= j.

Next we show the optimality equations for states where both ambulances are busy with

a call respectively. For these ‘busy’ states, there is zero immediate reward since there

are no free ambulances. Note we assume that (1) only one event, i.e. a call-arrival or a

completion of on-site/at-hospital service may occur during a wait interval, and (2) when

both ambulances are providing an on-site/at-hospital service, if an event of freeing up an

ambulance occurs, it may happen to each ambulance with probability 0.5. This is because

the two ambulances are assumed to be identical.

Consider states ((k1, k1),(k2, k2)),∀k1, k2 ∈ N – both ambulances are providing on-site

treatment at nodes k1 and k2, respectively. The possible transitions after one-time step are:

(1) neither one of the two ambulances finishes at-scene treatment, meaning that they are in

the same state as before; (2) one of the ambulance finishes on-site service and transport is

required, meaning that one ambulance remains providing on-site treatment and the other
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ambulance starts travelling to the closest hospital; (3) one of the ambulance finishes on-

site service and transport is not required, meaning that one ambulance remains providing

on-site treatment and the other ambulance becomes free on site. Therefore, Equation 4.2

gives:

V ((k1, k1), (k2, k2))) + g = 0.5(1− e−2µ)ptransportV ((k1,H), (k2, k2))

+ 0.5(1− e−2µ)(1− ptransport)V ((k1,Free), (k2, k2)))

+ 0.5(1− e−2µ)ptransportV ((k1, k1), (k2,H))

+ 0.5(1− e−2µ)(1− ptransport)V ((k1, k1), (k2,Free)))

+ e−2µV ((k1, k1), (k2, k2))|((k1, k1), (k2, k2)).

Next we consider states ((h1,H),(h2,H)),∀h1 ∈M,h2 ∈M – both ambulances are handing

over a patient at hospital node h1 and h2 respectively. Similar to the states we just discussed,

the possible transitions are as follows: (1) neither one of the two ambulances finishes hand-

over, (2) the ambulance at node h1 finishes hand-over and becomes free at node h1, and

(3) the ambulance at node h2 finishes hand-over and becomes free at node h2. Equation

4.2 gives:

V ((h1,H), (h2,H)) + g = 0.5(1− e−2µh)V ((h1,Free), (h2,H))

+ 0.5(1− e−2µh)V ((h1,H), (h2,Free))

+ e−2µ)V ((h1,H), (h2,H)).

Now consider states ((i, i),(k2, j)), ∀i ∈ N, ∀k2 ∈ N, j ∈ N \ k2 and states ((i, i),(k2,H)),

∀i ∈ N, ∀k2 ∈ N \ h(k2) – one ambulance is providing on-site treatment, and the other

ambulance is travelling from node k2 to (but not yet reach) call location j or the closest

hospital.The possible transitions after one-time step are as follows: (1) the on-site ambu-

lance remains busy and the other ambulance jumps to the next node along the shortest

path to the call/hospital location, (2) the on-site ambulance finishes the treatment and

transport is required, meaning that the on-site ambulance starts travelling to the closest
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hospital and the other ambulance jumps to the next node along the shortest path to the

call/hospital location, and (3) the on-site ambulance finishes the treatment and transport

is not required, meaning that on-site ambulance becomes free and the other ambulance

jumps to the next node along the shortest path to the call/hospital location. Therefore, for

a state ((i, i),(k2,H)), Equation 4.2 gives:

V ((i, i), (k2, j)) + g = (1− e−µ)ptransportV ((i,H), (next(k2, j), j))

+ (1− e−µ)(1− ptransport)V ((i,Free), (next(k2, j), j))

+ e−µV ((i,Free), (next(k2, j), j)). (2)

Similarly, for a state (i, i), (k2,H), we have

V ((i, i), (k2,H)) + g = (1− e−µ)ptransportV (i,H), (next(k2, h(k2)),H)

+ (1− e−µ)(1− ptransport)V ((i,Free), (next(k2, j),H))

+ e−µV ((i,Free), (next(k2, j),H)) (3)

Next we consider states ((h1,H),(k2, j)), ∀h1 ∈M, ∀k2 ∈ N \ j and ((h1,H),(k2,H)), ∀h1 ∈

M, ∀k2 ∈ N\h(k2) – the first ambulance is handing over a patient and the second ambulance

is travelling from node k2 (but not yet reach) to call location j or the closest hospital. There

are two possible transitions: (1) the first ambulance still remains busy and the second

ambulance jumps to the next node along the shortest path, and (2) the first ambulance

becomes free and the second ambulance jumps to the next node along the shortest path.

Therefore, Equation 4.2 gives:

V ((h1,H), (k2, j)) + g = e−µhV ((h1,H), (next(j), j))

+ (1− e−µh)V ((h1,H), (next(j), j))
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and

V (((h1,H), (k2,H)) + g = e−µhV (((h1,H), (next(j),H))

+ (1− e−µh)V ((h1,Free), (next(j),H))

Lastly, we consider states ((i, i),(h,H)), ∀i ∈ N, ∀h ∈ M – one ambulance is providing on-

site treatment and the other ambulance is handing over a patient at a hospital. There are

four possible transitions: (1) the on-site ambulance remains busy treating the patient and

the at-hospital ambulance remains busy handing over the patient, (2) the on-site ambulance

transports the patient from node i to the closest hospital and the at-hospital ambulance

remains busy handing over the patient, (3) the on-site ambulance becomes free and the at-

hospital ambulance remains busy handing over the patient, and (4) the on-site ambulance

remains busy treating the patient and the at-hospital ambulance becomes free. Therefore,

Equation 4.2 gives:

V ((i, i), (h,H)) + g = e−(µ+µh)V ((i, i), (h,H))

+
µ

µ+ µh

(1− e−(µ+µh))ptransportV ((i, h(i)), (h,H))

+
µ

µ+ µh

(1− e−(µ+µh))(1− ptransport)V ((i,Free), (h,H))

+
µh

µ+ µh
(1− e−(µ+µh))V ((i, i), (h,Free)).
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