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Abstract

Embedded systems include a broad range of electronic systems, from household appliances to
safety critical systems such as medical systems, automotive electronics and avionics. Due to
growing complexity of the applications, these systems consist of a number of computational
intensive units running concurrently. They also interact with each other and with environment,
repeatedly reading inputs, doing computations and responding appropriately. These computa-
tional units may have different response times; hence, they may need to run concurrently at
different speeds. These systems may be considered as GALS (Globally Asynchronous Locally
Synchronous), which typically consist of a collection of components that execute concurrently
and communicate using possibly slow or unreliable channels. Systeml] is a system level pro-
gramming language based on GALS model of computation allowing the asynchronous coupling
of synchronous reactive modules at the top level, which execute at different speeds. It extends
Java with Esterel-like constructs for the synchronous concurrency and reactivity, and CSP-like
constructs for the asynchronous concurrency. SystemlJ targets a large range of heterogeneous
embedded systems that combine data-intensive and control-dominated computations (heteroge-

neous) in addition to synchronous and asynchronous concurrency.

Although, the problem of modeling complex systems has largely been solved by raising level
of abstraction, there is still need for efficient execution platforms to realize such applications.
While, there have been efforts towards supporting heterogeneous applications, they primarily
focused on the reactive part of applications. In summary, developing architectural support for

heterogeneous embedded applications has been the main focus of this research.

This thesis proposes improvements to some existing architectures as well as developing new
architectures that make use of the formal underlying structure of the language to achieve higher
execution efficiency in the GALS paradigm. These architectures execute control and data-driven
operations along with asynchronous and synchronous concurrent processes in an efficient way.
Our novel solutions range from extensions to a single CPU architecture to multiprocessor ar-
chitectures, all while considering computational demands and resource constraints. We started
with the deployment of Java Optimized Processor (JOP) to execute System] programs com-
piled to Java and improved it by extending its architecture to include the reactive features. We

suggested novel architectures which efficiently execute the SystemlJ programs compiled by sep-
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v

arating control and data-operations on a single core by embedding control operations inside the
data-operation represented in Java by translating them to custom bytecodes. We refined this ap-
proach by providing two separate modes of execution for control and data-oriented operations.
This approach is further extended to multiprocessor architecture to speed up the execution and
meet the computational demands required by high-end embedded systems. We experimentally
evaluated all proposed architectures to validate their effectiveness. Better performance, lower
code density and resources usage have been achieved compared to previous approaches for

SystemJ execution, thus proving its suitability for heterogeneous embedded applications.
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Chapter 1
Introduction

We are living in a world which is evolving at a faster pace than ever before. This is for a large
part, happening since we stepped into the digital revolution marking the beginning of the infor-
mation age changing the analog mechanical and electronic technology into digital technology.
Central to this never-ending era is the mass production of the digital logic circuits which is at
the heart of the computer. Almost every modern home and workplace contains many comput-
ers. Some of these computers are immediately recognizable as laptops and desktop PCs, but
many are hidden within intelligent devices that use software to implement functionality. These

computers are embedded systems.

An embedded system is a combination of computer hardware and/or software, and perhaps ad-
ditional mechanical or other parts, designed to perform a dedicated function [1]. The cellular
smart phones and tablets are couple of recent examples which have widespread use and signifi-
cant impact on our daily lives. There are almost no areas of modern technology which could do
without embedded systems. They appear in all areas of industrial applications and process con-
trol, in cars, in home appliances, entertainment electronics, cellular phones, video and photo
cameras, and many more places. Embedded systems are becoming increasingly prevalent in
everyday life. The growth rate in embedded systems is more than 10% per annum and it is
forecast that by 2020 there will be over 40 billion devices (5 to 10 embedded devices per person
on earth) worldwide. Today 20% of the value of each car is attributed to embedded electronics
and this will increase to an average of 35-50% by 2020. The market for embedded computer
systems, which already generates more than US$1 trillion in revenue annually, will double in

size over the next four years, according to a report released by research company IDC [2].

The data in Figure 1.1 shows that the embedded computers dominate the computer market and

have already surpassed traditional PC market share in terms of number of units.
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Figure 1.1: ASIC prototypes and verification on applications destined for the embedded systems market
vs the traditional PC market

1.1 Characteristics of Modern Embedded Systems

The embedded systems are deployed to execute a wide range of ever changing applications. The
nature of application is a ever changing phenomenon and new applications keep on emerging,
including many that have not yet been envisioned, with features which were never the charac-
teristics of the traditional embedded system. Recently, application complexity has increased

significantly and traditional design approaches are unable to cope with these demands.

1.1.1 Computation Power

The semiconductor technology has grown rapidly resulting in larger die sizes and shrinking
feature sizes largely surfing on Moore’s law [3]. This enormous rise in computation power has
enabled the designer to realize the computational intensive applications on the embedded sys-
tems that were not possible a few years ago. Compute-intensive is a term that applies to any
computer application that demands a lot of computation. Previously, embedded systems were
limited in computational capability, memory size, and power consumption, the focus of the
research was to make the best use of the limited system resources. The system performance is-
sues, such as execution time, were traded off with system resources. Modern embedded devices
are usually equipped with significant computation capabilities. With more available computa-
tional capability in embedded system devices, and more complicated requirements demanding
more intensive computation, the most critical design concerns are changing in some important
application domains. Now, it is possible to produce chips with much more logic tremendously
increasing the computational power available in the appliances. But to realize this performance,

we need to apply smarter methods to improve system execution time.
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1.1.2 Interaction with the Environment

Modern embedded systems interact with the environment more than ever making them reactive

in nature, which are different from transformational and interactive systems.

Transformational Systems

The transformational systems, on providing the input, compute the output and then stop. These
systems acquire some data as input at the beginning of execution and produces some data as a

result, on termination. A compiler is a typical example of transformational system.

Interactive Systems

The interactive systems communicate with the environment at their own speed. They get the
input from the environment and compute the results. The environment has to wait for the result

before entering the input. An operating system is a typical example of interactive system.

Reactive Systems

The reactive systems [4] are also interactive but slightly differ in the sense that they have to
respond at a speed dictated by the environment and cannot make it wait. The system reads
the inputs and performs the computation and makes the result available before the next set
of inputs is available. The examples of such systems are lift controller and vehicles automa-
tion systems. The reactive systems can be divided into two categories: data-dominated and
control-dominated. The reaction time is less important for the data dominated systems, which
contains intense data computations, operating on samples arriving in regular intervals from the
environment. On the other hand, the control-dominated systems do not perform intensive data
computation. The systems which have mix of control and data are termed as heterogeneous
systems. Criticality, parallelism and determinism are some of the most essential features of a
reactive system [5]. The reactive systems are usually modeled using synchronous languages
which express reactive control flow patterns in a concise manner, with a clear semantics that

imposes deterministic program behavior under all circumstances.

The examples of typical target areas for such systems are: automotive (e.g. engine controllers,
anti-lock brake controllers); consumer electronics (e.g. microwave ovens, digital cameras, com-
pact disc players); plant control (e.g. robots, plant monitors, airplane control systems, missile

guidance systems) and telecommunications (e.g. telephone switches, cellular phones).
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1.1.3 Real-time Processing

Real-time systems are those systems in which the correctness of the system depends not only
on the logical results of computation but also the time at which the results are produced [6].
A real-time embedded system that must meet at least one hard deadline is called a hard real-
time embedded system or a safety-critical real-time embedded system. Safety-critical systems
are those systems whose failure could result in loss of life, significant property damage, or
damage to the environment. Missing a hard deadline means a total system failure. If no hard
deadline exists, then the system is called a soft real-time embedded system. The design of a
hard real-time system is fundamentally different from the design of a soft real-time system.
While a hard real-time computer system must sustain a guaranteed temporal behavior under
all specified load and fault conditions, it is permissible for a soft real-time embedded system
to miss a deadline occasionally. Timing correctness requirements in a real-time system arise
because of the physical impact of the controlling system’s activities upon its environment. The
most common timing constraints for tasks are periodic, aperiodic, and sporadic. A task is an
execution path through address space. A periodic task is one that is activated every T units. The
deadline for each activated instance may be less than, equal to, or greater than the period T. An
aperiodic task is activated at unpredictable times. A sporadic task is an aperiodic task with the
additional constraint that there is a minimum interarrival time between task activations. Real-
time systems need a time-predictable execution platform so that the Worst Case Execution Time
(WCET) can be estimated statically. Predictable system is one in which timing requirements
can be guaranteed a priori. WCET of a computational task is the maximum length of time the
task could take to execute on a specific hardware platform. Knowing worst-case execution times
is of prime importance for the schedulability analysis of hard real-time systems. The distributed
nature of the system makes it easier to design but wiritng applications for such systems becomes

harder.

1.1.4 Distributed Nature

New application areas of embedded systems such as networked computing are composed of
several computing units thus making them distributed systems in nature. There are various rea-
sons to distribute embedded systems for example: the high performance enabled by the use of
several computation units for a better response time, sometimes the geographical delocalization
of the system elements or the replication of systems for fault tolerance. A distributed system
consists of a collection of autonomous components, connected through a network and distribu-
tion middleware, which enables them to coordinate their activities and to share the resources
of the system, so that users perceive the system as a single, integrated computing facility. The

software part may run as concurrent processes on different processors which may have multiple
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points of failure and control. The systems can also be decomposed into smaller specific units
carrying out a particular task efficiently and run concurrently offering different services at the
same time. They may run at the same or different clock speed in which case they are termed
as multi-clock systems. Applications modeling for such distributed systems is hard but they are

easy to test and maintain.

1.1.5 Globally Asynchronous Locally Synchronous Systems

A wide range of embedded systems today consist of a number of computational intensive units
running concurrently. They also tend to interact with each other and with the environment
making them reactive by repeatedly reading inputs, doing computations and generating out-
puts. These computational units have different response times; hence, they may need to run
concurrently at different speeds avoiding the higher operating frequencies which result in re-
duced power consumption. These systems are called GALS (Globally Asynchronous Locally
Synchronous) systems [7] and typically consist of a collection of sequential, deterministic com-
ponents that execute concurrently and communicate using slow or unreliable channels. Hence,
a GALS system consists of two or more processes (or processors) running concurrently and
asynchronously, i.e., they run at unrelated clock speeds, at the top-level. Each of these asyn-
chronous processes can themselves consist of one or more processes all running concurrently
but synchronously, i.e., in lockstep with the parent process clock speed. GALS paradigm is used
both in software and hardware. In software GALS systems, different processes run concurrently
whereas in hardware GALS systems different physical processing modules run concurrently.
The GALS paradigm unites the advantage of synchronous designs (for determinism) and asyn-
chronous designs (for flexibility) to obtain more efficient and powerful system descriptions and
implementations. Examples of GALS applications are distributed control applications, indus-
trial process controllers, aircraft and automobile controllers, ATM networks and multi-agent

robotics etc.

Let us consider the example of a track controller controlling the tranportation of multiple trains
onto the track divided into multiple blocks as shown in Figure 1.2. The trains can enter and
exit these blocks. The trains cannot enter any block without permission and cannot exit any
block without indication. The safety requirements demand that no two trains can be present in
the same block at any time. The trains can move from one block to another. The problem is
to design appropriate controllers for each block. The solution of such a problem is a GALS
system having distributed network of controllers with one controller per block. Each controller
is locally reactive and can sense entry/exit of trains and exchanges signals with the train on the

block. The adjacent controllers can talk to each other for controlling entry/exit of trains.
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Figure 1.2: Exampe of GALS application: track controlling

1.2 Modelling GALS System

Modelling GALS applications typically requires the use of non-standard control flow constructs,
concurrency and exception handling. The technological advancements certainly opens up vast
possibilities for innovation, but only provided that the attendant complexity can be managed.
It should be kept in mind that if product complexity is measured on a linear scale, Moore’s
law. In order to avoid exponentially increasing development costs, it is suggested that overall
productivity of designed functions must itself improve exponentially on the time axis. Given
the importance of embedded systems, it is important to overcome bottlenecks represented by

current development practices in the face of increasing complexity [3].

1.2.1 Modelling with Traditional Languages

Among the programming languages, C, C++ and Java are the most commonly used in embed-
ded systems and are familiar to designers. Java’s expressive power is comparable to C++; it is
a much simpler language, which reduces the difficulty of program analysis and optimization.
It has the edge over C due to standard language and library support for concurrency. Its treat-
ment of arrays permits better static and dynamic error checking than is conveniently feasible
in C and C++. Using Java’s widespread adoption by the science and engineering community
promises a large base of support in the form of compilers, debuggers, development environ-
ments, and class libraries. Java’s higher level of abstraction allows for increased programmer
productivity. It is relatively secure and has support for dynamic loading of new classes, compo-
nent integration and reuse, which provides platforms to support application portability as well
as distributed applications. But, these traditional languages lack high level parallelism and use
of asynchronous parallelism typically leads to non-deterministic program behavior with respect
to time and functionality [8]. It is hard to certify the correctness of the programs modelled in
such languages which is a must for safety critical systems. The lack of statements for modelling
reactive control structures and frequent occurrence of context switching to support concurrency

reduces their efficiency.
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1.2.2 Modelling with System Level Design Languages

Modelling GALS applications using traditional languages is complex, time consuming and ex-
pensive thus leading to large designer productivity gap. Thus, we need to move to higher level
of abstraction in order to manage the ever increasing complexity and heterogeneity in the em-
bedded systems. The new design challenges can be tackled by moving to the higher level of
abstraction, called system level. The designer specifies a model at the highest available level
of abstraction which can be translated to a lower level subsequently. The lower levels such as
behavior, register-transfer, circuit and physical (in descending order) differ from each other by
their execution semantics often referred to as a model of computation (MoC) and the modeling
details [9]. For example, the MoC for the logic level may be thought as including Boolean
equations to describe the data-path and Finite State Machines (FSMs) to describe the control.
The MoC of the RTL may be a combination of FSMs with data-path [10] or as a micro-program
to describe the register transfer level operations. The semantics of the behavioral level has of-
ten been that of discrete event systems [9]. The system level distinguish itself from the lower
levels of abstractions by providing separation of computation from communication, mix of a
range of semantics or models of computation, behavioral hierarchy, support for exceptions and
exception handling, mix of data-dominated and control-dominated processing and support for
formal verification. The system level approach provides an abstract way to capture many im-
portant features such as modularity, hierarchy and concurrency, which can be, both behavioral
and structural, external communication between the modeled system and its environment and,
finally, communication between concurrent processes within the designed system. The use of
system level design languages is vital as it enables us to specify the model at an abstract, system

level, and reduce productivity gap and time-to-market pressure.

SystemC [11], SystemVerilog [12], SpecC [13] are examples of system level design languages
which provide an abstract way to model embedded systems. These languages use a well-known
syntax with powerful constructs, enabling the modelling and simulation of complex systems.
But, they are informal languages as they are not based on formal mathematical model of com-
putation and do not follow formal semantic rules. It is hard to prove the correctness of designs
modelled using these languages which is an essential property of the embedded systems thus
making them less suited to model such systems. Although a subset of these languages can be

formally described but they are unable to describe complex heterogeneous systems [8].

1.2.3 Modelling with Synchronous Languages

The synchronous languages [14] such as Esterel [15], lustre [16], signal [17], statecharts [18],
sml [19] synccharts [20], argos [21] and SR [5] are system level design languages with syn-

chronous semantics. Esterel is imperative, while lustre and signal are declarative in style; state-
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charts and argos are graphical languages that allow one to program by constructing hierarchical
automata. They support control flow constructs and express it in a user friendly manner. They
have simple formal model and are based on synchrony hypothesis, which states in essence that a
system responds in zero time to environmental requests [15]. The key advantage of synchronous
languages is that the synchronous approach has a rigorous mathematical semantics which al-
lows the programmers to develop critical software faster and easier. But, synchronous languages

show poorly when performing data computation and communicating asynchronously.

1.2.4 Modelling with Asynchronous Languages

The asynchronous languages (also called multi-clock languages) such as CSP [22], OCCAM
[23] and ADA [24] are capable of handling concurrency as well as asynchronous communi-
cation but they suffer from same drawback of poor data handling. Communicating Sequential
Processes (CSP) is a formal language for describing patterns of interaction in concurrent sys-
tems. It is a member of the family of mathematical theories of concurrency known as process
algebras, or process calculi. OCCAM [23] is built on CSP [22] and shares many of its fea-
tures. ADA is an extension of PASCAL and other languages. It is capable of handling data

computation unlike other asynchronous language but is an informal language.

Due to inability of system level design languages to model multi-clock heterogeneous systems,
the productivity gap remains there which requires a way to model such complex systems with
ease and quickly. An ideal programming language should have the capability of efficiently

handling intensive data computation, concurrency and asynchronous communication.

1.2.5 Modelling with SystemJ: A System Level Design Language

Systeml]J [25,26] is a system level programming language based on the Globally Asynchronous
Locally Synchronous (GALS) model of computation and allows the asynchronous coupling of
synchronous reactive modules at the top level, which execute at different speeds. It extends
Java with Esterel-like [15] constructs for the synchronous concurrency and reactivity, and CSP-
like [22] constructs for the asynchronous concurrency. The Java has been used in the past for
writing reactive programs such as PureSR [27], Java-Time [28], Jester [29] and Junior [30]
which are the reactive extensions of Java. SystemJ goes one step further and we view System]
as an ideal environment for specifying, modelling, implementing and formally verifying GALS

based embedded systems.

Systeml] targets a large range of heterogeneous embedded systems that combine data-intensive
and control-dominated computations in addition to synchronous and asynchronous concurrency.

System] is based on the synchrony hypothesis which makes the assumption that the computer is
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infinitely fast, each reaction is instantaneous and atomic, dividing time into a sequence of dis-
crete instants, different reactions cannot interfere with one another, and a system’s reaction to
an input appears at the same instant as the input. The synchrony hypothesis is a generalization
of the synchronous model used for digital circuits where each reaction must be finished during
one clock tick. The perfect synchrony paradigm of synchronous languages considers the com-
putation of reactions to be infinitely fast, so that the reaction appears at the same point of time
when the action requests for it. This is achieved by an idealized view where the execution of
most statements does not require time. Consumption of time must be explicitly programmed:
every atomic statement consumes either none or exactly one unit of a logical time. Hence,
by the semantics of these languages, all threads run synchronously to each other, since they

automatically synchronize at the next time consuming statement.

Our work focuses on the System] language, which combines the data-computation with con-
trol and asynchronous communication to model the complex and heterogeneous multi-clock

embedded systems.

1.3 Motivation

Systeml] is a system level design language which models applications targetting Globally Asyn-
chronous Locally Synchronous (GALS) heterogeneous systems. System]J models the control
computations using a combination of both the synchronous and the asynchronous model of
computations. SystemlJ consists of asynchronous processes running concurrently at individual
speeds at the top level, similar to CSP, while each of these asynchronous processes may consist
of one or more synchronous processes running in lock step, similar to Esterel. SystemJ uses Java
to describe data computations because of its powerful constructs for traditional sequential pro-
gramming. A system described using SystemJ language communicates with the environments
through the signals. GALS MoC implements both synchronous and asynchronous concurrency

and also has the built in feature of signal broadcasting and rendezvous.

The languages based on GALS MoC can be implemented as software programs to run on tradi-
tional general purpose processors to achieve the desired behavior. This kind of implementation
may provide better data handling but, these traditional processors and classical programming
languages do not have similar structures or statements (instructions) to handle the corresponding
synchronous and asynchronous features. Hence, implementation on commercial off-the-shelf
(COTS) processors is problematic since it must be simulated. Therefore, a general purpose
processor based software solution can hardly enhance the application performance or reduce
resource usage. Furthermore, the compilation techniques targeting such processor or languages
suffers from the drawbacks such as large generated code size [31] and reduced runtime perfor-

mance.
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Since traditional processors have difficulties to handle synchronous and asynchronous features
of GALS MoC, it gives rise to a natural question whether reactive processors can be deployed as
alternative. Reacitve processors [32-36] and the Esterel Virtual Machine (EVM) [31] are a few
examples of execution platforms which provide support for reactivity and concurrency. While
all these approaches provide efficient execution of reactive control parts and modest support for
concurrency, they provide very poor support or have practically no support for complex data-
driven operations. There have been efforts towards supporting heterogeneous applications [37],
but they primarily focus on reactive part of applications. Therefore, the architectural support for
heterogeneous embedded applications based on GALS MoC is lacking and demands a serious

attention.

Furthermore, embedded systems are different from traditional desktop computers in the sense
that they are constrained by the size, weight, power, cost and response time. Most embedded
systems execute in response to external events, both periodic and aperiodic. The correctness
of operation often depends on the response time staying within a given time limit. Also, the
suitability of the target platform depends upon the nature of the applications. For example,
data-dominated embedded systems such as video games often require high computation per-
formance and large program memories. The mid-end embedded systems may be for example
engine control systems typically demand a medium level of computing performance and mem-
ory. Low-end embedded systems are typically low cost and high volume consumer devices.
They have low computing requirements and a program memory of some kilobytes. The growth
in complexity may have a significant impact on implementation constraints such as cost, size,
performance as well as power. Cost is, with few exceptions, an important issue in embedded
systems. Many embedded systems are produced in large quantities; the need to reduce costs is
a major concern. Embedded systems often have significant energy constraints, and many are
battery-powered. As a result of these constraints, embedded systems use a slow processor and
small memory size to minimize costs and energy consumption thus making it hard to deploy in
embedded system with stringent response time requirement. Therefore, embedded-computing
applications involve unique challenges, as they must be performed in real time in the face of

resource constraints.

In summary, we need a target platform which could efficiently handle GALS MoC and at the
same time should be very competitive with other implementations in terms of performance and
resource usage. Thus motivation of this thesis is to explore and develop an efficient execution
platform for System]J based applications. The architecture should be capable of efficient execu-
tion of control and data-computations as the embedded applications are heterogeneous in nature
and consist of a mix of control and data parts. The solution should minimize logic resources so
that it is economical enough cost wise. Furthermore, the capability of being time-predictable is
essential in real-time systems. With a lot of functionality being added, the need for high perfor-

mance in embedded systems has become inevitable. The architecture must be scalable towards
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multiprocessors so that it is able to support increasingly complex applications, since it is not

possible to rely on single core frequency improvement.

1.4 Research Contributions

The focus of this thesis is the development of an efficient architecture for the execution of
GALS programs. The project was driven by the desire to achieve predictable, competitive
execution speeds at minimal resource usage, in terms of processor size. This work has resulted
in proposing several novel processor architectures that improve the performance and efficiency
while consuming less resources and guaranteeing the time predictability offered by the base

processor architecture.

In summary, the contributions of this research are:

* Accelerated and Time Predictable Execution of GALS Programs: We demonstrate the
effectiveness of a new predictable execution of GALS program on GALS programs de-
scribed in SystemJ on a Java processor, called Java Optimized Processor (JOP). Pre-
viously, the SystemJ programs were translated to Java which are further compiled for
execution on the targeted general purpose processor. This approach was slow due to in-
terpreting nature of Java Virtual Machine and require large memories. However, the use
of JOP eliminates the overheads of the interpreter as it is done natively by the processor
itself. This intermediate step in the design process with SystemJ enables us to prototype

and to verify the specifications on a predictable architecture.

* A Reactive Java Processor for the Execution of GALS Programs: We also propose a novel,
high performance and low cost execution architecture for SystemJ. The new core, which
is called RJOP (Reactive JOP), facilitates efficient execution of both data dominated and
control dominated embedded applications described in System]. It extends JOP to effi-
ciently handle reactivity and signal manipulation. It also maintains the time-predictable
execution of the applications intended for real-time embedded systems and calculation of
Worst Case Reaction Time (WCRT) as provided by the original core.

* A Heterogeneous Tandem Processor Architecture for GALS Programs Execution: We
propose a high performance solution in the form of a tandem processor with JOP, or
TP-JOP, in which control processor (CP) and JOP work together to implement control
flow and data operations, separated during compilation of GALS programs, respectively.
TP-JOP is built on TVM/TP approach [38, 39] which are based on the idea of tandem
execution of two processors, one that controls the flow of SystemJ program (CP, control

processor) and one that executes operations that are within our GALS MoC (which are
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considered instantaneous and expressed in standard Java). The data oriented part of the
code which is in Java was executed on a general purpose processor with JVM in previous
implementation of the TP. We demonstrate the effectiveness of the architecture through

experimental evaluation against a range of suitable benchmark.

* Efficient Merging of Control and Data-computations: Multiple heterogeneous cores have
their own design complexity issues. Special purpose cores have significant impact on the
memory hierarchy of the system, and require specially designed communication proto-
cols for fast data exchange among them. A major challenge is the design of a suitable
high-performance and flexible communication interface between them. We propose a
novel GALS-JOP processor where JOP and the CP functionalities are merged into a sin-
gle processor by enriching JOP with some key constructs and abstractions for efficient
implementation of SystemJ GALS Programs. The concurrency and reactivity control
flow presented as special instructions is translated to Java statements which are mapped
to custom bytecodes. This core has acceptable performance considering that it is more

economical in terms of resource usage compared to the previous implementations.

» Execution of Control and Data computations with Distinct Modes of Executions: The
focus of the research has been the trade-off between performance and complexity of the
microarchitecture. Devoting precious silicon area to special purpose execution hardware
or processor does not lead to an optimal solution. We have developed a solution which
extracts the desired functionality and execution speed without consuming precious re-
sources. We have presented an approach to efficiently mix Java with asynchronous and
synchronous concurrency and execute it on a specialized Java processor extended with
capabilities for concurrency and reactivity. A new processor, which uses JOP (Java Op-
timized Processor) as its base, executes concurrent programs that comply with GALS
formal model of computation by clearly distinguishing between concurrency and reactiv-
ity control flow and Java control flow. The new processor, called JOP-Plus, can be used
for embedded and even real-time applications in which the majority of application code
is written in Java and the overall programs specified and structured in SystemJ system-
level concurrent programming language. We have implemented a processor core where
two virtual processors share one data-path. The virtual processors operate independently

although not in parallel.

* A Homogeneous Multiprocessor Architecture for Concurrent Execution of GALS Pro-
grams: A new, scalable, multiple processor architecture is proposed for execution of
SystemJ programs based on GALS model of computation. The proposed architecture
GALS-CMP, based on JOP-Plus, is suitable for implementation of embedded systems
that contain reactive or control dominated parts that interact with external environment.

It allows concurrent execution of clock-domains improving the response time.
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* Compiler Modifications: We have made several modifications to the SystemJ compiler
back-end to produce compatible Java codes for the new target platforms. We also pro-

posed several optimizations to produce more efficient code in future.

» Experimental evaluation: We evaluate the different architectures and validate their effec-
tiveness by running benchmarks on them. Better performance, code density and resources
usage has been found and compared to previous approaches for SystemJ execution, thus

proving its suitability for heterogeneous embedded applications.

1.5 Thesis Organization

The remainder of this thesis is organized as shown in Figure 1.3. Chapter 2 gives an overview of
the System)J language. The chapter starts with the arguments on the need of such a language and
introduces its syntax and structure through an example program. Next, the compilation strate-
gies used for target platforms are discussed in detail. Finally, the execution of code produced

by the SystemJ compiler on existing platforms is discussed.

Chapter 3 presents a detailed description of Java Virtual Machine (JVM) specifications and
its structure. Then, we discuss different hardware solutions from both academia and industry
for accelerating Java in embedded systems. The details of a Java processor, called Java Op-
timized Processor (JOP), and its architecture are also presented. JOP, which is the basic tool
of this research, is introduced as the execution platform for GALS programs and its effective-
ness is demonstrated through experimental results. This chapter also describes Reactive-JOP,
an enhanced version of JOP which incorporates reactive features. This chapter ends with short

description in the form of summary.

Chapters 4 presents two different execution platforms for the efficient execution of SystemlJ
compiled in a way that separates control from data-computations. The heterogeneous multi-
processor architecture TP-JOP is an improved version of existing TP and uses two specialized
processors for native execution of both control and data-computations. The novel uniproces-
sor approach, called GALS-JOP, executes both control and data-computations by translating
the programing model of control into the program model of the data-computations processor.
This chapter contains a detailed architecture description of both processors and their imple-
mentations. The experimental results are provided to evaluate the performance of the proposed

architectures.
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Chapter 5 also uses a single processor for the execution of control and data computations sim-
ilar to GALS-JOP. The proposed processor, called JOP-Plus, has two distinct execution modes
for executing control and data parts. This chapter describes the background for the proposed
approach, related work and their shortcomings. Next, it gives a description of the strategy to
remove these shortcomings. JOP-Plus design flow, memory organization and implementation
details are presented next. Finally, the evaluation of JOP-Plus’s performance through experi-

mental set up is discussed.

Chapter 6 presents a homogeneous multiprocessor system in order to meet the processing power
requirement and response time constraints imposed by the modern applications. This chapter
starts with the discussion on performance limits of uniprocessor approach and dwells on the
ways to boost performance or processing power beyond the uniprocessor limits. Then we de-

scribe GALS-CMP architecture and its compilation and execution flow with the help of an
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example. The experimental results and related discussion are presented towards the end of
chapter.
Finally, Chapter 7 gives a short discussion on the implementation platforms developed during

the course of this research and their performance comparison is carried out. In the end, con-

cluding remarks and possible future directions for the research are presented.
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Chapter 2
SystemJ Overview

The main goal of System] is to provide a specification mechanism, a language, that allows a
system designer to use well-known programming constructs. SystemJ covers all the impor-
tant criteria of a system level design language. System] is based on formal semantics, which
may allow partial automated formal verification of a SystemJ program. The System] is expres-
sive enough to incorporate both data and control flow information and includes a well known
programming language Java that is easy to use. This chapter gives an overview of the Sys-
temJ language. It introduces the SystemJ Model of Computation (MoC), syntax, synchronous
and asynchronous kernel statements. It also presents a System] program example, different

approaches to compile it and existing execution platforms.

2.1 The System]J MoC

The system-level programming language System] [25,26] extends Java with synchronous and
asynchronous concurrency and reactivity, making it suitable for designing complex embedded
programs. The language allows use of full Java and discourages the use of Java concurrency
(threading library). Instead, SystemJ provides its own concurrency model based on the formal

Globally Asynchronous Locally Synchronous (GALS) model of computation (MoC).

A System] program consists of multiple asynchronous processes, called clock-domains (CD),
which are described at the top design level. The clock-domains are composed together with the
asynchronous parallel operator (><). Each clock-domain consists of a number of synchronous
concurrent processes, called reactions, which execute in lock-step, driven by a logical clock,
called tick. Transitions in Esterel are also based on the same logical and discrete lock event.
A synchronous program reacts to its environment in a sequence of ticks, and computations
within a tick are assumed to be instantaneous, i.e., as if the processor executing them was in-

finitely fast. The reactions communicate within a clock-domain, as well as with the external
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environment (input/output) through signals, which are broadcast and present within the current
tick and comply with synchronous reactive MoC [15,40—42]. The reactions are represented as
concurrent processes within a clock-domain using the synchronous parallel operator (II). Com-
munication between reactions in different clock-domains, which are asynchronous each to the
other, is carried out through the exchange of messages over channels, which are semantically
the same as channels used in CSP MoC [8, 22]. Besides operations on signals and channels,
System]J allows free use of Java data objects and statements in its reactions, and those state-
ments are considered instantaneous in terms of logical time (i.e. they do not consume logical
time or ticks). Control flow of a SystemJ program incorporates scheduling of all reactions and
clock-domains, as well as communication between reactions, and communication with the ex-
ternal environment. The data-driven computations and transformations are performed in Java.
The SystemlJ is amenable to verification as it is based on mathematical semantics and can be

deployed in mission critical systems.

2.2 The System]J Entities

The SystemlJ has three types of high-level design entities called system, clock-domain and re-

action.

2.2.1 System

The system is the top level entity through which a SystemJ program sees its environment and
vice verse. In the declarative part of the system entity, the interface with the environment (which
are input/output signals) and channels are declared. The clock-domains are declared inside the
body of the system. The channels serve as the communication medium between the clock-
domains. Multiple clock-domains, which are asynchronous processes, are also declared in the
body of this entity. Within a system, each clock-domain executes at its own tick, and any two

clock-domain ticks are unrelated.

2.2.2 Clock-domains

A System] program consists of a set of clock-domains executing at unrelated logical clock ticks.
Each clock-domain consists of a number of synchronous concurrent processes called reactions.
The clock-domain can be given some name or can be unnamed. The clock-domains can com-
municate with each other and with the environment using their own set of channels and signals,
respectively. Two clock-domains synchronizing with each other using CSP style communica-

tion are called partner clock-domains. The data structures cannot be shared among the reactions
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and among the clock-domains using mutual exclusion as it will provide another source of com-
munication which is not safe. This prohibition allows communication only through the signals

and channels, which is safer and easier to validate.

2.2.3 Reactions

Reactions are combined and controlled within a clock-domain using the synchronous parallel
operator (Il). Reactions can be either named or unnamed and may have child reactions. Reac-
tions use sequential and concurrent statements to specify their operation and those statements
are from both SystemlJ and Java repertoire. Reactions communicate within a clock-domain, as
well as with the external environment (input/output) through signals, which are broadcast and
present within the current tick if emitted, otherwise they are absent. Communication between
reactions in different clock-domains is carried out through the exchange of messages over chan-
nels, which are semantically the same as channels used in the CSP MoC [8,22]. When any of the
time consuming statements is executed by a reaction, it consumes one tick of time. Hence, by
the semantics of synchronous languages, all reactions with in a clock-domain run synchronously
to each other, since they automatically synchronize at the next time consuming statement. The
reaction stops its own execution after executing time consuming statement and waits until other
synchronous reactions in the same clock-domain consume their own tick. Behaviors of the

reactions fully comply with the synchronous reactive (SR) MoC [5,9,15,41,42].

2.3 SystemJ Objects

The SystemlJ has three main types of objects namely signals, channels and Java objects. The
channels and signals are used for inter clock-domain and intra clock-domain communication,

respectively.

2.3.1 Signals

The signals are used for communication among reactions within a clock-domain as well as with
the external environment (input/output). The signals communicating with the environment,
whether input or output, are called inferface signals and are declared in the interface part of the
body of the system. The signals which are used to communicate among the reactions in the
clock-domain are termed as local signals and are declared within the body of a clock-domain.
The signals are always broadcast and present within the current tick if emitted, otherwise they
are absent. A signal has a default status of unknown only during the first pass of program

execution. After the first pass, its default status is absent and not the unknown. The signal can
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be either a pure signal or a valued signal. A pure signal has a status only, while a valued signal
has both status as well as value of any Java data-type. A signal can be emitted by the multiple

reactions of the same clock-domain.

We use signals for communication with enevironment and not the channels because clock-
domains in System]J are complete deterministic but their asynchrnous composition leads to non-
deterministic behavior. Therefore, if we use channel for communication with the environment,

it will introduce non-determinsim.

2.3.2 Channels

As mentioned earlier, communication between reactions of different clock-domains is carried
out through the exchange of messages over channels. They are used to synchronize the clock-
domains. The channels can be of any Java type and are declared in the interface body of the
system. The clock-domains are synchronized through channels using CSP style rendezvous
mechanism. The idea is that two clock-domains rendezvous at a point of execution, and neither
is allowed to proceed from that point until both have arrived, but they can proceed to execute
other reactions of the same clock-domain if needed. The channels are point-to-point i.e., for
every sending channel port there needs to be a corresponding receiving channel. The channels
are unidirectional, therefore, they are always declared in pairs (input and output). No two input
channel can read the same output channel or vice versa. Every channel has status and value
buffers which are used to implement the rendezvous communication. The input and output
channels are composed of signals channel_receive and channel_sent respectively and both are
of type integer. If the sending channel’s clock-domain is faster than the receiving channel’s
clock-domain, it sends the data through the channel and increments the channel_sent signal.
The receiving channel samples the channel_sent signal at the start of tick, if it is greater than
the channel_receive, it receives data and increments the channel_receive signal which is an ac-
knowledgment for the sending channel. The sending channel samples the channel_receive at the
start of tick. If both are equal, then the sending channel sends the data again, otherwise sending
channel blocks producing internal ticks. If the receiving channel’s clock-domain is faster than
the sending channel’s clock-domain, the receiving channel will block for channel_sent signal.
Only the reaction receiving data from the channel is blocked producing internal ticks whereas
other sibling reactions run normally. The implementation of rendezvous communication in Sys-
temJ is based on blocking reads and writes i.e., they wait for each other to synchronize and get

ready to exchange data.
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2.3.3 Java Objects

Besides signals and channels, System] allows free use of Java data objects in the program. The
System]J objects declared are global but they cannot be used for the communication among the

clock-domains as it is allowed through channels only.

The pictorial explanation of a simple SystemJ example program that consists of three clock-
domains CD1, CD2 and CD3 is presented in Figure 2.1. The green shaded rectangles indicate
the clock-domains while blue shaded areas show the reactions inside the clock-domain. The

arrows indicate the interface signals, local signals and channels as labeled in Figure 2.1.
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Figure 2.1: A graphical equivalent of SystemJ example program

2.4 The System]J Kernel Statements

The System] kernel statements comprise of both the synchronous and asynchronous statements
which deal with the synchronous and asynchronous parts of GALS MoC, respectively. The
complex statements can be derived by combining the kernel statements.

2.4.1 Synchronous Kernel Statements Descriptions

The description of the synchronous kernel statements is given below.

Dummy statements: There are two dummy statements, ’;” and pause. The ’;’ does not perform
any operation. The pause statement also does not perform any operation but differs from the ’;’
statement as pause consumes one tick and the following instruction is executed only in the next

tick. It is the only explicit statement which consumes a tick. If a reaction does not have a pause
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statement; it consumes a tick by default after it has executed all the instantaneous statements.

The reaction will be executed again in the next tick.

Signal declarations: The statement for the declaration of signals in a SystemJ program is given

below:
[input] [output] [type] signal Signal Name

The signal statement may have a prefix of input or output and a type associated with it. If the
signal statement has input or output as prefix, then the signal SignalName is declared as the
interface signal to communicate with the environment. In the absence of these prefixes, the
signal is declared as a local signal and is used for communications between reactions in the
same clock-domain. If the signal has a prefix type, which can be any Java type, then it is a
valued signal otherwise it is a pure signal which has status only. When a signal is declared, its

status is set to unknown (J-) and value is initialized to zero.

Signal emission: The signal emission statement is used to emit the status of signal as well as
the value, if it is a valued signal the value can be of any Java type. The syntax of the kernel

statement for signal emission is given below:
emit Signal Name

The status of the signal can either be present ( + ), absent () or unknown( 1 ).The default status
of a signal is absent and the value (for valued signal) can be determined in any instant, even if
the signal is absent. The signals remain absent until they are explicitly set to present. Whenever
signal emitting instruction is executed, it sets the status and value of the signal. A signal can
be emitted multiple times during the same tick whose value can be combined by using the hook
provided by SystemlJ. This hook can call the function attached to it which is provided by the
designer to set the value of the emitted signal at every emission.

Sequential statements: The System] allows the combining of synchronous reactive statements
by using the ’;’ operator, making them execute sequentially one after the other. Here p1 and p2

represent arbitrary SystemJ statements.

pl; p2

Infinite loop: The SystemlJ programs run forever and this feature is implemented by using while
statement which provides an infinite loop mechanism. All the finite or infinite loops enclos-
ing the synchronous reactive statements need to consume at least one logical tick to avoid
schizophrenic signal behavior. It occurs when compound statements can be run and exited
or terminated and reentered inside the same reaction within the same tick [15,41,42]. This may
result in signals involved ending up having two distinct occurrences in the same reaction, with

differing values.
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while (true) p

Conditional statements: The present statement checks the status of a signal expression at any
given instant of time. The signal can only be present if it is emitted or it is coming from the

environment. The syntax of the present statement is given below:
present Signal Name pl else p2

Preempt watchdogs: The abort statement acts as watchdog and provides an exception mecha-
nism based on signal expression. If the watchdog signal expression is evaluated to true in any

given tick, this statement preempts the body of the abort construct. The abort syntax is
[weak]abort[immediate]Signal Name{p}

The abort can be performed on immediate or non-immediate signals. In the former case, the
expression is evaluated in the very first tick when the statement is executed; otherwise the
checking of signal expression is delayed until the next tick. The abort can also be weak or
strong. In case of weak abort, the preemption of the enclosed computation occurs at the end of

logical tick; otherwise the enclosed computation is preempted even before entering the node.

Halt watchdog: The suspend statement acts as a halt watchdog and is very similar to abort
except that this statement causes its body to pause instead of preempting the body if the signal is
present. The suspend statement can also be weak and strong and accompanied by the immediate

signal predicate as shown by its syntax.
(weak]suspend([immediate]Signal Name{p}

Trap exception mechanism: The trap and exit statements are a user controlled preemption unlike
the abort and suspend preemptions which are based on the signal. The trap statement is similar
to the Java’s try-catch but has different semantics as Java’s try-catch semantics is incompatible
with SystemJ semantics. The computations are enclosed inside the trap statement, which can be
preempted by the exit statement. If no exit statement is executed then the frap statement finishes
processing the enclosing block and continues forward. The frap statements can be nested where

highest priority is given to outermost trap construct.

trap (T') {p}

The exit from the trap is made by using the exit statement given below:

trap (T){P exit (T)}
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FParallel statements: The synchronous concurrency causes reactions to run in parallel and in
lockstep. This is done by using the synchronous concurrency primitive construct (Il). Both
pl and p2 are not necessarily instantaneous. pl and p2 may have Java statements for data
computation and several "pause" statements allowing them to synchronize on tick boundaries.

The synchronous statements also consist of statements for Java data-driven computations.

pl || p2

Each reaction in the clock-domain finishes with a termination code having an integer value
ranging from O to infinity (co). A reaction terminates with the code of 0 if it is completed
and will never run again. A termination code of 1 indicates that the reaction has paused and
will resume execution in the next tick. All reactions which have not finished execution due
to unresolved signal dependency are assigned termination code of co (represented by special
code depending on the platform) and are used for the cyclic scheduling of the reactions. The
rest of the termination codes are reserved for the traps. Higher the termination code, higher is
the priority of the trap. The collective termination code of the reactions combined using the
synchronous parallel operator is the termination code of the reaction having maximum value.
For example, if reaction p/ completes with a termination code of ‘m’ and p2 with ‘n’ then the
composition plll p2 completes with a termination code of max(m, n). Each clock-domain is

both deterministic and causal by construction.

Java data-driven computation: As mentioned earlier, the program may have Java data-driven

computation in the following form:

jterm(p)

The write-write concurrency of Java data-driven computation is prohibited while read-write

concurrency is allowed.

Obtaining signal value: The signal values can be of any Java type.
jterm(p) = #Signal Name
Obtaining a channel value: The channel can be of any Java type object.

jterm(p) = #Channel Name

2.4.2 Asynchronous Kernel Statements Descriptions

The asynchronous statements given below are specific to SystemJ and represent the asyn-

chronous Model of Computation implemented in SystemJ.
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Sending channel declaration: The syntax of the statement used for declaring the output channels
in System]J is implemented using Java variables. The output channels are declared only inside

the interface of a SystemlJ program.
output [type] channel Channel Name

The output channels can be considered as a composition of value only. The output channel is
used to synchronize and send data of any Java type to input channels of other clock-domain.
The SystemlJ requires a pair of input and output channels to have the same name. The output

channel can only send the data as it is a simplex channel.

Receiving channel declaration: The syntax of the statement used for declaring the input chan-
nels in SystemlJ is given below. The input channels can be considered as a composition of
valued-only signals implemented using Java variables. The input channels are declared only

inside the interface of a SystemJ program.
input [type| channel Channel Name

The input channel is used to receive data of any Java type from the output channel of same
name but from other clock-domain. The input channel can only receive data as it is a simplex

channel.

Asynchronous parallel: The clock-domains are spawned out by using the asynchronous parallel
operator, ><, and run at their individual clocks. Each clock-domain samples the input signals
from the environment at the start of the tick. The synchronous parallel reactions inside a clock-
domain run simultaneously. They compute the output and emit it instantly in zero time and then
wait for the next tick. In other words, each clock-domain behaves like a synchronous Finite
State Machine model. When a clock-domain has finished transition, it is called End of Tick.
The System] clock-domains can be executed using different scheduling disciplines and cyclical

is default, one after the other, according to an integral speed ratio.
pl >< p2

sending data on channel: The send statement is used to send data over the output channel
between the partner clock-domains by using rendezvous mechanism. The syntax for the send

statement is shown below, where data is being sent over an arbitrary output channel C.
send C([exp])

The send statement is blocking and waits for output channel to get ready for the exchange of

the data. Once the send statement is executed, the reaction that contains the send statement, just
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blocks. It waits for an acknowledgment from the partner clock-domain and consumes internal
ticks meanwhile. The other reactions of the clock-domain may proceed in a normal way. When
acknowledgment is received from the receiver channel indicating that it is ready, the blocking is
released and the next sequential statement after the send statement is executed. A send statement
can only be used once on a channel in any given clock-domain as a channel cannot be used by

two concurrent reactions to send data at the same time.

Receiving data on channel: The receive statement receives the data from the input channel sent
by the output channel. The receive statement, like send statement, waits for the other input

channel to synchronize and get ready to exchange data.
receive C()

If the receiving clock-domain is faster than the sending clock-domain, then receiver is blocked
and produces internal ticks unless it receives signal from the corresponding sending channel
that data had been sent. After receiving this acknowledge signal it will unblock and execute
next sequential statement. A receive statement can only be used once on a channel in any given

clock-domain.

2.5 SystemJ Example Program

The application code for SystemJ example described in Figure 2.1 is given in Figure 2.2. The
system entity is declared on line 3 followed by the environment signals A, B, C and channels
chl and ch2 (line 5 — 9). Next, clock-domains CD1, CD2 and CD3 are initialized (line 12).
The clock-domain CDI1 (line 15 — 17) contains two unnamed synchronous parallel reactions
identified as R11 (line 20) and R12 (line 27) in the comments. The reaction declaration contains
the input signal (A), output signal (B) and channel (chl) passed to the clock-domain by the
system interface. Next, the signals local to the clock-domain (s/ and s2) are declared (line 18).
The reaction R11 sends value 2 to its partner clock-domain via its output channel (line 22).
Once the reaction has completed the data transfer to the CD2, it emits the local signal s1 (line
23) and then waits for the signal s2 (line 24). The reaction R/2 waits for the signal sl to be
emitted (line 23) and upon receiving this signal, R12 does some data computation (line 30) and
emits signal s2. Meanwhile, reaction R/2 waits for the input signal A from the environment. If
A is present (line 34), it emits B with the value of 2; otherwise, it emits B with the value of 5
and is terminated (line 35 — 36). The reaction R/ is terminated as soon as s2 is emitted in R12.
The details of the clock-domain CD2 and CD3 are abstracted out.
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1 //example.sysj

2 import MyLibrary.*;

3 system {

4 interface{ //environment interface
5 input signal A;

6 output int signal B, C;

7 //channel points

8 input int channel chl,ch2;
9 output int channel chl,ch2;
10 }

11 //initializing clock-domains

12 CD1 (A,B,chl)><CD2 (chl,ch2)><CD3(C, ch2)
13 } // end of system entity

14 // clock-domain 1

15 reaction CDI (input Signal A,

16 output int signal B,

17 output int channel chl){

18 Signal sl1,s2; //local Signals

19

20 //Reaction R11

21 {

22 send chl (2);

23 emit sl; //emit signal sl

24 await (immediate s2);

25 }

26 I //synchronous parallel operator
27

28 //Reaction R12

29 {

30 await (sl);

31 //some data computations

32 MyLibrary.MyClass.dataCall();

33 emit s2;

34 present (A)

35 emit B(2);

36 else emit B(5);

37 } // end of reaction R12

w
e

} // end of CD1
Figure 2.2: System]J example program

2.6 The SystemJ Compilation Approaches

The System] programs can be compiled using various approaches given in Figure 2.3.

We will discuss these approaches in detail in the next sections.

2.6.1 Library Based Compilation

System]J’s compilation target is Java source code as Java is used for data-driven computations
and transformations in SystemJ and, hence, Java is the most natural compilation target. Fur-
thermore, it is highly portable and Java compilation allows the use of Java compiler for further
optimizations and checking. It provides SystemJ with the ability to use standard Java tools and
execute exclusively in a Java run-time environment (unlike Jester [29]). Therefore, the neces-
sary functionality had to be implemented as Java libraries. A Java package, named TReK (True
Reactive Kernel) implements a kernel of reactive constructs with identical semantics as in Es-

terel (unlike PureSR [27]). The compiling of SystemJ program is merely the translation to Java
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Figure 2.3: Compilation strategies for SystemJ programs

and TReK calls [25]. TReK comprises only sixteen classes and it employs Java thread schedul-
ing, try-catch mechanism and generics. In this approach, support for some reactive constructs

was missing and dependence on Java multithreading introduced undesirable non-determinism.

2.6.2 AGRC Approach

In this approach [26], the “front-end” of SystemJ compiler transforms a SystemJ program to
an intermediate representation called Asynchronous Graph Code (AGRC) which extends the
GRaph Code (GRC) format for compiling Esterel [43] with asynchrony and, thus, has similari-
ties with the GRC intermediate format. During the translation into AGRC, structural translation
rules [26] are followed and each statement is translated into one or multiple nodes of AGRC.
The resulting sub-graphs are then composed together to build the complete AGRC representa-
tion of SystemJ source code. The detailed description of AGRC can be found in [38]. AGRC

based compilation approach adopts two different ways to generate the code:

¢ Standard Java code

* A mixture of Java and Control Virtual Machine (CVM) assembly constructs [38]

We will discuss both of these approaches in detail in the next sections.
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2.6.3 Standard Java Code

The SystemJ compiler back-end [26] generates the pure Java code. The threads are scheduled
using the algorithm proposed in [28, 44] resulting in reduced code size when compared to stat-
ically scheduling synchronous threads. It also makes the back-end code portable to multiple
processor architectures in future work. The compiler back-end generates the single threaded
Java code which is much more efficient in terms of memory consumption and execution time
compared to using Java threads like in TReK [25]. The generated code is operating system
(OS) dependent as Java threads are mapped to native threads and thus the implementation de-
pends upon the underlying OS scheduler. The verification techniques like model-checking can
be applied more easily to a single threaded Java program as compared to a multi-threaded one.
systen {
interface(

input signal C;
output signal F;

signal A;

{
present (C)
emit A;
pause;

I

{
enit F;
System.out.println(“data computations”);
pause;

Figure 2.4: Simple SystemJ code showing syntax

A simple System]J program shown in Figure 2.4 is compiled using the Java only approach. The
resultant Java code is shown in Figure 2.5. The system entity is compiled to Java class that
bears the same name as SystemJ code file. The signals are compiled to Java objects. The clock-
domains are compiled into the methods (line 28 — 34) which are called by the main method (line
46 & 50) recursively inside a while (this is Java while loop which is different from System] while
loop as mentioned earlier) loop as SystemlJ programs are reactive in nature and run forever. The
clock-domain CDO consists of two reactions shown as reaction0 and reactionl, respectively.
The synchronous concurrency of the reactions is emulated using Java switch-case statements.
The switch statement (line 9) has three cases: the case 0 (line 13) represents the very first

transition of the reaction, case 1 (line 19) represents all other transitions and case2 (line 10)
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represents termination of the reaction. During the execution, it enters first into the case 0. Here
it checks the presence of signal C and if it is present, A is emitted and reaction pauses with
termination-code 1 as indicated by array ends[0] (line 17). The signal A is emitted by setting
its status to true (A.setPresent()). The program then communicates with the environment by
emitting the output signals to the environment. The Java program then proceeds to carry out
the next tick. The second clock-domain is empty and it is necessary as SystemJ syntax does not

allow to declare a system with one clock-domain only.

It should be pointed out that the different instances of the same signal A (example A0 and A7) are
used to avoid schizophrenic behavior. The compiler also generates signal and Channel classes
to support the generic (Object type) data transfers and emissions. The clock-domains specified
in SystemJ code are scheduled in a round robin fashion. Weighted round robin scheduling
can also be applied where designer chooses a single clock-domain as a reference and all other
clock-domains run at an integral multiple of this clock-domain’s tick. The clock-domains can

be deployed to run at unrelated speeds if they are executed on separate machines.

The single threaded Java code suffers from slow execution speed. During the compilation of
the intermediate AGRC format into back-end Java code both synchronous and asynchronous
concurrency is compiled away to produce single threaded Java program. The synchronous con-
currency is emulated using state variables whereas asynchronous concurrency is emulated by
using the scheduling schemes stated above. In case the clock-domains are scheduled cycli-
cally, any unfinished clock-domain will have to wait for the other clock-domains to finish their
execution thus causing unnecessary delays. The synchronous concurrency of the reactions is
emulated by cyclic scheduling, which requires jump in the back-end generated Java code. Due
to absence of goto in Java, this behavior is emulated using if-else and switch statements resulting
in large code size. Also, Java is compiled to bytecodes and generally executed by interpreting
JVM running on a processor, which have slower execution as they do not run natively in gen-
eral. This demands an improvement in the compilation technique so that the above mentioned

demerits in pure Java compilation approach may be avoided.

2.6.4 Separation of Control and Data-computations

In order to overcome the above mentioned problems in Java only approach, another approach
is adopted which is inspired from earlier works on reactive processors such as REMIC [33],
REFLIX [32], KEP [35] and the Esterel Virtual Machine (EVM) [31]. Both REMIC and KEP
provide hardware support for the reactive programs. The SystemJ code is translated to AGRC
and then data-driven operations and control-driven operations are separated [38]. The former is
translated to Java, whereas the latter uses custom instructions to provide direct reactive support.
Both can be executed by using the Java Virtual Machine (JVM) and the Control Virtual Machine
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1 public class example {

2 ...

3 private static Signal F;
4 private static Signal C;
5 private static Signal AO;
6 private static Signal Al;
7 ..

8 reactionO (tdone, ends, gotocond) {
9 switch (S0) {

10 case 2:

11 S0=2;

12 break;

13 case O:

14 AQ.setClear () ;

15 if (C.getStatus())

16 AQO.setPresent () ;

17 ends [0]=1;S0=1;

18 break;

19 case 1:

20 Al.setClear () ;

21 ends [0]=0;S0=2;

22 break;

23 }

24 }

25 reactionl (tdone, ends, gotocond) {
26 ...

27 }

28 public static void CDO () {
29 reactionO (tdone, ends, gotocond) ;
30 reactionl (tdone,ends, gotocond) ;
31 }

32 public static void CD1 () {
33 ...

34 }

35 public static void main(String argsl[]) {
36

37 F = new Signal () ;

38 C = new Signal () ;

39 AO = new Signal () ;

40 Al = new Signal () ;

41

42 while (true) {

43 ...

44 {

45 C.gethook () ;

46 cdo () ;

477 }

48 .

49 {

50 cdl () ;

51 }

52 }

53}

Figure 2.5: The single threaded pure Java code generated by the AGRC based SystemJ compiler for
System]J example given in 2.2
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(CVM), respectively. The control-driven operations represent the concurrency and control flow
(CRCF) and data-driven operations represent control flow of Java data-computations described
in Java (also called JCF). The CRCF always leads the JCF and calls JCF as and when required.
This approach, thus, not only reduces the code size drastically, but it also improves the run-time

efficiency.
SystemJ
\
AGRC Intermediate
Formate
\
A Yy
Java code for Control instructions
data-driven part for reactive-construct

Figure 2.6: A SystemJ compilation approach separating control from data-computations

When building the AGRC, all “action nodes” [38] with pure Java data-computations are marked
as Java data-driven action nodes or simply Java Action Nodes (JANs). Each JAN is given the
unique identity code (JAN_ID). The emit statements are decomposed into two action nodes:
one setting the value (if any) and the other setting the status of the signal. The former is marked
as a Java action node. All Java action nodes which are not separated by the control flow are
grouped together as one action node called a macro action node (or simply Java action node).
During back-end code generation, for each clock-domain, a separate Java switch-case statement
encapsulated by a Java method is generated where the case-number represents the macro action

nodes to be executed and the method represents the clock-domain being executed.

Both asynchronous clock-domains and synchronous reactions are executed in a cyclic manner.
Additional test-nodes called data-locks are inserted after each macro action node. When a
control point comes across a macro action node, it makes a call to the JVM with the required
case-number. Once all the sibling reactions are either suspended (with a termination code of
00) or completed (with termination code of 1 or 0), the current reaction is checked again to see
if the data-lock condition has been satisfied. The signals checked in the data-lock test-nodes
are emitted by the JVM once it has completed processing the requested case-number. The JVM

also sends back the result of the completed case-number processing.
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The data structure for the CRCF is implemented in CVM data-memory (DM) which is arranged
in a unique manner for fast computations. The input/output signals statuses (1-bit each) are
stored first in the data memory and are word (16—bit) aligned, thus if we have 16 or less signals
we use at least one memory space (word) in the DM. The internal signals are stored next.
Internal signals can be emitted from multiple synchronous reactions in a given clock-domain
and thus we assign 1-bit lock status for each signal per synchronous reaction. Next, data-locks
are stored which inform if the calls made for data-computations (Java action node in AGRC) to
the JVM have been returned. A complete DM word (16-bits) is used for data-locks and program
counters (PC) for the various synchronous reactions in a clock-domain which are stored in the
following locations. Then up to four terminate nodes, four-bits each, are stored in a single DM
word. The switch nodes used for state selection of the currently executing SystemJ program are
stored next. The switch nodes can have varying number of children/branches, each indicating
the next state of the program. The switch nodes and their children are stored together with
children arranged in an ascending order after the switch node. This arrangement of DM is

repeated for each clock-domain [38]. Figure 2.7 below shows the data structures for the CVM.

Input signals 16-bits
1 bit per signal
Output signals 16-bits
1 bit per signal
Declared signals n-words
1 bit per signal
Signal locks n-words
1 bit per signal per reaction
data locks n-words
1-word per reaction
PC n-words
1-word per reaction
Termination codes n-words
4-bits per reaction
Switch node 1
16-bits (1 word)
Switch child 1/1-word
Switch child 2/1-word

Switch child n/1-word

Switch node N
16-bits (1 word)
Switch children

Join Hode 1
16-bits (1 word)
Join child 1/1-word

Join child 16th/1-word
Join node N
16-bits (1 word)
Join children

Repeat for CD2, CD3, ..., CDnNn

Computation space

Figure 2.7: CVM data structure

The CVM has fourteen instructions namely load (LDR), store (STR), add (ADD), subtract
(SUB), jump (JMP), and (AND), or (OR), clear flag (CLF), present, switch, seot/ceot, sendata
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and chkend. The instruction set has four addressing modes: immediate (instruction has an
immediate operand value), inherent (instruction does not contain any operand or register), reg-
istered (instruction has one or more registers as operand), and indirect (instruction contains an
operand as a pointer into the memory). The description of some specific instructions is provided

while others are regular instructions.

» present: The present instruction checks the status of the signal. If status is true, the
program executes the next instruction, otherwise the program counter gets reset to the
false branch. All present and preemptive statements (abort and suspend) of System]
are mapped to this present instruction (test nodes in AGRC representation). The present
instruction also provides direct support for the environment signal (mapped to memory)

checks and thus, reduces the code size.

* sendata: This instruction is used to make Java data calls to the JVM by providing the

case number and a pointer into memory which holds the data lock position.

* chkend: This instruction is a special instruction which acts as the synchronizer for the
Il operator. It compares the termination codes of the synchronous concurrent reactions

within a clock-domain and makes the decision regarding the continuation context.

» switch: The switch instruction is used to directly decode the switch nodes in the AGRC.

Like present, this instruction reduces the code size.

* seot/ceot: The seot/clfeot are special instructions used to implement the environment
communication semantics of clock-domains and setting the boundaries of instants of time
i.e., tick. The seot instructions sets the register indicating the end of tick. The ceot

instruction clears it before starting next tick.

Figure 2.8 shows the result of compilation of SystemJ code in the previous example for the
approach in which control and data-computations are separated. The data-computations are
translated to Java and control is compiled into assembly code. The Java code does not contain
any data-computations but the compiler inserts a data-call in order to synchronize with the
machine executing the data-computation. This is done during the initialization. The compiled
Java class contains a method CD0, which represents the ‘test’ clock-domain. It contains a
switch statement whose case-numbers represent the various Java instantaneous action-nodes.
The control instructions are responsible for the complete control-flow of SystemlJ program.
Assuming that multiple clock-domains are synchronized, the output signals located at memory
location $0 are initialized first. Next, we check for the presence of the input signal. If present
signal A is emitted, otherwise it jumps to the BBO and skips the emission of signal. After
that the reaction pauses with termination code of / and the resume address of the reaction /

indicated label AAO is stored. Once, we are finished with the execution of reactionl, execution
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of reaction2 starts which emits the signal F. The data-lock position and the case-number (each
one byte long) are concatenated to be sent to the JVM. SENDATA instruction sends this word
at the output. The second reaction also pauses with termination code of / which is stored in
the second nibble of the memory location. After storing the resume address of reaction2, the
instruction CHKEND checks for the termination code of the reactions and, if any reaction has

not completed (terminated or paused), it is executed again.

Java Code

Control Assembly Code

public class test({
public static void main() {

while (true) {
/*polling on native C method
to get the casenumber*/
int casenum = poll();
boolean ret = CDO (casenum);
/*sending result using C*/
send_res (ret) ;
}
}
public boolean CDO (int cnum) {
boolean ret = false;
switch (cnum) {
case 0:
// dummy method inserted
// before CD starts execution
System.out.println (“cd0”) ;

LDR R1 #0;

STR R1 $1; output signals

// reaction 1
AAO LDR RO $0;

AND RO RO #32768;

PRESENT RO BBO; checking signal C

LDR RO $6; loading from mem

OR RO RO #32768; signal mask

STR RO $6; emit local signal A
BBO LDR RO #1;

LDR R1 Sa

AND R1 R1 #$FFFO

OR R1 R1 RO

STR R1 $a; reaction terminates with 1

LDR RO $1;

LDR RO #AAO; store PC

STR RO $8; stored in memory
//reaction 2
FF1 OR RO RO #32768 ; signal mask

STR RO $1; emitted the signal F

break; LDR RO #2; lock position
} ADD R1 R6 #0
return ret; STR R1 #0;
} SENDATA RO; data call
} LDR RO #16; reaction terminates
LDR R1 $a

AND R1 R1 #S$FFOF

OR R1 R1 RO

STR R1 S$a;

LDR RO #FF; store PC

STR RO $9; stored in memory
CHKEND R2 RO;

Figure 2.8: SystemJ compilation to mixture of Java and assembly

2.7 The System]J Execution Platforms

In the last section, we have introduced the SystemJ compilation approaches which are divided
into two categories: one which compiles SystemJ program to Java only, and another one sepa-
rates the data-computations from control computation and translate them to Java and assembly
code respectively. The resulting code from these two categories can be executed on different
platforms ranging from desktop to multiprocessor based embedded systems. We will restrict

our discussion to the execution of SystemJ programs on embedded platforms only.
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2.7.1 Execution Platforms for Standard Java Approach

In Java only compilation approach, System]J is fully compiled to Java. The translated Java code
is compiled into an intermediate representation called Java byte-code. The Java byte-codes are
not compiled directly to platform-specific machine code due to the portability reasons which
provides the capability to the computer programs written in Java language to run similarly on
any hardware/operating-system platform. Java byte-code instructions are analogous to machine
code, but they need to be interpreted by a virtual machine (VM) written specifically for the
host hardware. The simplest realization of the JVM is a program that interprets the byte-code

instructions.

A Java virtual machine starts execution by invoking the method main of some specified class,
passing it a single argument, which is an array of strings. The Java virtual machine dynamically
loads, links, and initializes classes and interfaces. Initialization of a class or interface consists
of executing the class or interface initialization method. Initialization consists of execution of
any class variable initializers and static initializers of the class, in textual order. But before class
can be initialized, its direct superclass must be initialized, as well as the direct superclass of
its direct superclass, and so on, recursively. The class initialization is a recursive process that

initializes all superclasses in the inheritance hierarchy.

Embedded systems have traditionally been differentiated from desktop systems on the basis
of functionality: desktop systems provide a wide spectrum of technologies to serve a broad
range of application needs, while embedded devices are fitted with just enough software to
handle a specific application. Unlike desktop systems, embedded systems use different user
interface technologies; have significantly smaller memories and screen sizes; use a wide variety
of embedded processors; and have tight constraints on power consumption, user response time,

and physical space.

In order to run SystemJ programs translated to Java on an embedded system implementing a
JVM, we need Java API package, and associated native-code libraries alongside the JVM. All
these add to the overall size of platform to be resided in the memory. Current Java API pack-
ages tend to be large, so the specific API selected will significantly impact its size. Added
components can also affect platform size. Desktop JVMs usually can’t execute Java code di-
rectly from ROM. Normally; Java classes are first loaded into RAM, verified, and then executed
by the JVM. This approach is impractical for many embedded systems because it increases
the use of expensive RAM beyond the cost constraints of the embedded system. A tool called
ROMizer [45] can be used to create ROM-based executable images of Java classes. To exe-
cute Java code out of ROM instead of RAM, a ROMizer utility processes Java class files into a
run-time format that can be run directly out of ROM or flash memory by the JVM. The ROMiz-
ing process frees the JVM from the class-file loading and byte code—verification phases, and

improves the performance and start-up time of Java applications.
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In the current implementation, Systeml] applications compiled to Java are executed on KVM
port of an interpreting JVM running on a general purpose Nios II Soft-Core Processor [46,47].
The processor has a 32-bit Instruction Set Architecture, 32 general-purpose registers, single-
instruction 32x32 multiply and divide operations, and dedicated instructions for 64-bit and 128-
bit products of multiplication. It has Harvard memory architecture and is a Reduced Instruction
Set Computer (RISC) processor core widely used with Altera FPGAs and SOPC Builder. The
processor has three versions: economy, standard and fast. These versions have varying number
of pipeline stages; instruction and data cache; memories and hardware components for multiply
and divide operations. In addition, each version varies in size and performance depending on
the features that are selected. Adding peripherals to the Nios II Processors is done through the
Avalon Interface Bus [48] which contains the necessary logic to interface the processor with
other components. Furthermore, it is hard to predict the worst case execution time due to the

complex nature of general purpose processor running JVM.

An interpreting JVM is simple to implement as it imposes no perceivable interruption and does
not need to store the code compiled to native code during execution. However, interpreted
JVMs can be orders of magnitude slower than compiled code and waste significant resources,
e.g., CPU, memory, battery etc. In addition to the standard interpreted JVM implementation,
a variety of execution techniques have been proposed to reduce the execution time of Java
programs. These accelerating techniques along with the JVM structure are explained in the
Chapter 3.

2.7.2 Execution Platforms for Separation of Control and Data-computations

Approach

The System] program compiled using the approach where control computations and data-
computations are separated, can be executed in two ways. It can be executed by using virtual

machines or processor. Both these approaches are discussed next.

Tandem Virtual Machine

The execution approach which uses virtual machines for the execution of SystemJ programs is
called Tandem Virtual Machine as two virtual machines, Java Virtual Machine (JVM) and Con-
trol Virtual Machine (CVM), are operating in tandem [38]. The JVM executes data-computations
and can be either a full standard Java virtual machine (J2SE) or a standard Java micro edition
(J2ME) running on microprocessor platforms. The CVM performs control computations and
consists of a program memory, data memory, the ALU, and the instruction sequencer. The
program memory contains the compiled and assembled SystemJ control statements that are ex-

ecuted by CVM. The program memory of CVM is implemented as a linked-list with each node
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capable of holding an assembler word of 32-bit each. The ALU performs only the most basic
instructions like addition, subtraction, and certain custom instructions providing direct support
for AGRC execution. The CVM data structure resides in the data memory as explained in
Section 2.6.4.

Both JVM and CVM are run as two operating system processes. CVM is responsible for the
control flow and starts the processing always leading the JVM. The JVM, after starting the
execution, always polls the CVM for the data calls. Once a data call is received, it performs
the required computation and sends the result back to the CVM. The communication interface
between the CVM and the JVM is shown in Figure 2.9. As mentioned earlier in the text, various
data-computations that need to be processed by the JVM are enclosed in a switch-case statement
wrapped in a method. The data call is made through the sendata instruction which provides the
case-number and a pointer into memory which holds the data lock position. During processing
of the sendata instruction, the CVM clears memory pointed to by the data lock position to ensure
that the current reaction does not proceed further without the completion of the requested data
call. CVM uses two pointers into the FIFO buffer called the “tail pointer” (¢ptr) and the “head
pointer” (hptr) which indicate the data call made and data call in process, respectively. CVM
checks fptr, if it is pointing to the memory location in data-memory, #ptr is reset to the start of
the FIFO, otherwise the contents of data calls are transferred into the data-memory pointed to

by the tptr and the #ptr is incremented (effectively implementing a circular FIFO).

ENVIRONMENT

g3l
=~
S
g &
16-bit SIP IR
il  RQ
JVM
16-bit SOP CVM DPC exceuting | 32-bit value
<+———— Executing > Data -
Control .
16-bit SVOP Case_number . computation Control signal
8-bit
VM

Figure 2.9: TVM execution platform with communication interface between virtual machine and with
the environment

CVM communicates with the JVM through DPC, DPCR, and the IRQ registers. When CVM
makes a data call to JVM by providing the case-number and data-lock position in the DPCR
register. The DPC register is set high indicating to the JVM that a data-call request has been
made. When JVM finishes the requested computation, it sets the IRQ register high. The JVM
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and CVM are two system processes executing asynchronously and time for the result from JVM
is unknown to CVM, therefore, result returned by the JVM is managed through interrupt. The
CVM fetches next instruction from the memory only if it has not made a data call or there is
no pending call. If there is a pending call, DPC is set, then it checks IRQ bit which is set if
JVM has entertained the data call. If IRQ is high, CVM reads the result from JVM and writes
into the data-memory location pointed to by the Aptr. Next the hptr is checked to see if it has
reached the last memory position, if so it is reset otherwise it is incremented. Then the hptr and
the tptr are compared to check if there are any pending calls in the FIFO. If they are equal, all
data-calls are considered finished else the next data call is made to the JVM. If the IRQ bit is
not set, then the data call is made to the JVM and the procedure returns. SIP and SOP registers
hold the statuses of input and output signals. The SVOP register holds the status of valued
signals wheresa values are handled by the JVM. EOT regsiter indicates the end of tick to the

environment.

Drawbacks of TVM Approach

The TVM execution platform discussed above has many advantages such as smaller memory
footprint and executes the compiled SystemJ programs faster than Java only approach. But
this execution platform is only suitable for desktop computers and high-end embedded systems.
The TVM platform uses two virtual machines which imposes a high penalty on the memory and
computing power requirement. Thus, this approach is not suitable for the low-end embedded
systems, which cannot meet the aforementioned requirements. Furthermore, the CVM and JVM
communicate through Java Native Interface (JNI) sharing the same virtual address space on the
same processor which is a hurdle in multiprocessor chip (MPSoC) implementation. These
problems led to development of new execution platform, called Tandem Processor (TP), which

is well suited to the low-end embedded systems.

Tandem Processor

TP [39] is based on the hardware implementation of TVM, where CVM and JVM are replaced
by the Control Processor (CP) and Data Processor (DP), respectively. They run in tandem and
perform control and data-computations. The main components of the CP are the program and
data memories, the ALU, the MAX unit, the register file and the instruction sequencer. The
data-memory is arranged in the same way as the CVM. The ALU is 16-bit and performs simple
arithmetic operations. The MAX unit is a special hardware unit and is used to find the maximum
termination code. The program memory of the CP holds the compiled and assembled SystemJ

assembly instructions. CP is a hardware implementation of CVM and shares the instruction set
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architecture (ISA) with the CVM. Only few instructions are added to ISA which are required to

communicate with the environment as give below:

* LSIP: This instruction loads the input signals statuses from the environment.
* SOP: Present output signal statuses to environment.

* SVOP: Present output signal values to environment.

The CP guides the control flow of System]J program. It starts the processing and always leads
the DP. The Java based data-driven operations are executed on the JVM running on the DP
which, once started, keeps on polling the CP for the data calls. After receiving the data call,
DP computes the results and responds by providing the result back to the CP. The Java data-
computations are wrapped in a switch-case statement where each case number represents a
Java macro action node. The CP sends the case number to be processed to the DP along with
the data lock address using the SENDATA instruction which provides the case-number and the
data lock address in a register as upper and lower bytes respectively. The currently executing
clock-domain number (four bit) is initialized in a register (16-bits) at the start of processing a
clock-domain. During the execution of the sendata instruction, the sendata instruction register
and the clock-domain register are concatenated together. Upon receiving the request, the DP
uses the clock-domain number to find the appropriate (clock-domain) method and the case-
number to execute the correct macro action-node. The result of this computation is a two bit
result vector ObX1, where the zero bit shows the completion of this data call and the first bit
is the result of the computation. Upon availability of the result, CP is halted and result vecotr
is directly stored in the data-memory of CP without requiring any FIFO. The The data-lock

address, bits [0..7] of the sendata register, is used for this store operation.

—> FIFO —>

CP DP

Results

>
-

Figure 2.10: TP execution platform with FIFO as communication interface between control and data
processor

In System] each clock-domain communicates with the environment once at the start of its tick.
The CP reads the input signal statuses from the environment and emits the output signal statuses

to the environment at the end of tick (EOT). The DP reads the input signal values and emits the
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Instruction | Register Transfer | Mode
Rx&&Operand — Rz immediate
AND Rz Rx Operand Rx&& Rz — Rz indirect
Rz||Operand — Rz immediate
OR Rz Rx Operand Rz||Rz — Rz indirect
Rx + Operand — Rz immediate
ADD Rz Rx Operand Rr+ Rz — Rz indirect
SUBV Rz Rx Operand Rx — Operand — Rz immediate
SUB Rz Rx Operand Rz — Operand immediate
Operand — Rz immediate
LDR Rz Rx Operand MI|Rx] — Rz indirect
M[Operand] — Rz direct
Operand — M[Rz] immediate
STR Rz Rx Operand Rx — MIRZ] indirect
Rz — M [Operand) direct
Operand — PC immediate
JMP Rx Rx — PC direct
ifRz(0) = 1thenOperand — . :
PRESENT Rz Operand PCelse NEXT immediate
SENDATA Rx Rx — FIFO indirect
MAX{Rz[15:12], Rz[11 : 8],
CHKEND Rz Rx Rzx[7: 4], Rz[15: 12], Rz[3 : 0]} indirect
— Rz
M|[Rz] - Rz,Rz+ Rx + 1 — o
SWITCH Rz Rx Rz, M[R:] — PC indirect
1fZ = 1thenOperand — . .
SZ Operand PCelseNEXT immediate
CLFZ 0 — Rz inherent
CER 0— FER inherent
CEOT 0— EOT inherent
SEOT 1— FEOT inherent
LER Rz ER — Rz indirect
SSVOP Rx Rx — SVOP indirect
LSIP Rz SIP — Rz indirect
SSOP Rx Rx — SOP indirect
NOOP No Operation inherent

Table 2.1: Control processor instructions and their description
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values of the output signals to the environment. The environment communication interface in
CP consists of the Signal Input Port (SIP) and Signal Output Port (SOP), used to communicate
the status of the signals and Signal Value Output Port (SVOP) for indicating to the environment
that the emitted output signal is a valued signal. The CP also utilizes the EOT and EREADY
(Environment Ready) ports as control signals to coordinate the communication with the envi-
ronment. Current implementation of CP consists of a single set of SIP, SOP and SVOP ports
for all the clock-domains implemented on this CP. The maximum number of the environment
interface signals is restricted to 16 in the complete SystemJ system. All the clock-domains share
the interface ports and data-memory locations 0x0, Ox1 to store their interface signals statuses.
The signals statuses loaded and stored from/to the interface ports for different clock-domains
are separated using bit masking. The signals are stored in the ports/memory locations in their
order of appearance in SystemJ program from the least significant to the most significant bit.

The system also has the draback of not being predictable.

2.8 Summary

In this chapter, we have provided an overview of important features of a system level design
language for modeling the GALS systems. It described SystemJ MoC which is actually GALS
MoC, SystemJ program entities and its kernel statements. The System]J programming model
was explained in detail with help of a sample program. The SystemJ program can be compiled
either using library or AGRC based approach. The latter can produce a standard Java code or
splitting the source code into CRCF code and Java based JCF code. Different execution plat-
forms along with pros and cons for the resultant codes are discussed. The System] program
compiled to single threaded pure Java code is executed on general purpose processor. The Sys-
temJ code compiled separating control and data-computations are executed on a heterogeneous

multiprocessor architecture resulting in improved performance and reduced memory footprint.



Chapter 3
Java and System]J Execution

The SystemJ compiler translates the programs described in System] language to Java. The
Java compiler reads Java language source (.java) files, translates the source into Java bytecodes,
and places the bytecodes into class (.class) files. The compiler generates one class file per
class in the source. The Java bytecodes runs on top of Java Virtual Machine. This chapter
gives an introduction of the Java Virtual Machine (JVM), its implementation approaches, Java
processors and, in particular, Java Optimized Processor (JOP). The JOP is introduced as an
execution platform for SystemJ program. Then a new core, called RJOP is described which
extends JOP by incorporating reactivity for more efficient execution of the SystemJ programs.

The performance evaluation is presented in the end to show the effectiveness of the approach.

3.1 Java Virtual Machine

The Java Virtual Machine (JVM) is a definition of an abstract computing machine that executes
bytecode programs. The JVM specifications [49] defines an instruction set, called bytecodes,
and the meaning of those instructions. It also defines the class file format which consists of the
bytecodes, a symbol table and other ancillary information and an algorithm to verify whether a
class file contains valid programs or not. The instruction set of the JVM is stack-based and can
be seen as CISC (complex instruction set computer). Unlike processor of contemporary design
which use registers a stack machine uses stack. Stack is a LIFO (last in first out) storage with
two abstract operations : push, pop. Push will put an item into stack at the top. Pop retrieve an
item at the top of stack. Stack doesn’t need addressing as it is implicit in the operators which
use stack. All operations take their arguments from the stack and put the result back onto the
stack. Addition operation takes top two elements from stack, adds them and push the result
back to stack. Store operation takes one value and one address from stack and store value to
address.

43
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3.1.1 JVM Instruction Set

Each JVM instruction is one byte in length, although some require parameters, resulting in
some multi-byte instructions. They usually do not contain any information about the location
of the operands as they are bound to be the top two elements of the stack. Most of the JVM
instructions operate on one specific operand type and all such instructions have the type they
operate on encoded in their name. The JVM instructions can be categorized in the following

way:

Constant Loading Instructions

These instructions are used to load constants onto the top of the stack. Constants can be of type
long, integer, float, string and null. There are unique instructions for each basic type (int, long,

float, double and reference).

Variable Access Instructions

Variables are located in the run-time stack frame of a JVM method stack. Most of them take
two bytes except for double and long values, which take four bytes. In JVM, there are not many
instructions which deal directly with the variables (the only exception is iinc). The values of

variables are loaded onto or stored from the top of the stack by using load and store instructions.

Array Operation Instructions

Arrays are objects in the JVM and Array elements can have all Java types and can also be
boolean, byte, char and short. JVM has dedicated instructions to deal with their attributes
and data elements. They create a new array, load an array component from memory onto the
operand stack, store a value from the operand stack to an array component and provide the

length of array.

Data Member Access Instructions

A JVM class can have class-wide (static) and instance-wide (non-static) data members.

Type conversion

The type conversion instructions perform numerical conversions between all Java types.
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float
Floating — point
Types
double
Numeric Types
byte
Primitive Types
short
boolean
Integeral Types
int
return address
long
Class reference char
References Types reference Interface reference

Array reference

Figure 3.1: Java Data types

Object Creation Instructions

The instruction new ClassName creates an instance of that class on the stack. It must be initial-

ized by an explicit call to one of its constructors.

Arithmetic and Logical Instructions

These instructions do arithmetic calculations on the parameters from the stack and store the
result back on the stack. There are arithmetic instructions for int, float and double. There is no
direct support for byte, short or char types. These values are handled by int operations and have

to be converted back before being stored in a local variable or an object field.

Stack Manipulation Instructions

There are a number of instructions to manipulate the stack top of JVM and, therefore, JVM is
stack based and uses no registers; these instructions are helpful in speeding up certain opera-

tions.
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Method Invocation Instructions

Four instructions are used to invoke different kinds of methods: invokestatic is used to call static
methods, invokeinterface is used to call interface methods, invokevirtual is used to call methods
of object instances; and invokespecial is used to call special methods such as constructors or

methods of the super classes.

Un-conditional Jump Instructions

The program execution can be unconditionally changed to a location that may not be the next
instruction in the flow. JVM adds the offset to the current program counter and resulting address

must point to an instruction in the current method.

Conditional Jump Instructions

The JVM provides a complete set of branch conditions for int values and references. They
provide integer comparison with zero, comparison of two integers and comparison of longs,
floats, and doubles. Branch target addresses are specified relative to the current address with a
signed 16-bit offset.

Other Instructions

The nop instruction does nothing. It can be used as a placeholder for testing purposes. There
are two synchronization instructions, monitorenter and monitorexit, to implement object-based
synchronization. They both take an object on the stack as their parameter. Method synchroniza-
tion is denoted by the synchronize attribute. athrow instruction throws an exception; note that

other JVM instructions can also throw exceptions when they detect an abnormal condition.

The JVM bytecode set has 212 opcodes, with 4 more reserved for future use/expansion. For
full details of all the different types of constants, as well as the instruction set, refer to the Java
Virtual Machine Specification [49]. A complete list of JVM bytecodes is provided in Appendix
B.

3.1.2 C(lass File Format

The Java class file contains everything the JVM needs to know about one Java class or interface.
Information stored in it often varies in length as actual length of the information is available only
during the loading of the class file. For instance, the number of methods listed in the methods

component can differ among class files, because it depends on the number of methods defined
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in the source code. Such information is organized in the class file by prefacing the actual
information by its size or length. This way, when the class is being loaded by the JVM, the
size of variable-length information is read first. Once the JVM knows the size, it can correctly
read in the actual information. The order of class file components is defined and is also strict.
It provides the JVM with a way to find the location of different components during the loading
of a class file. The first eight bytes of a class file contain the magic and version numbers. The
items in the ClassFile structure are shown in Figure 3.2. The constant pool starts on the ninth
byte followed by the access flags. Then follows the constant pool because the constant pool has
variable-length and doesn’t know about the exact location of the access flags until it has finished

reading in the constant pool.

ClassFile {
ud magic;
u2 minor version;
u2 major version;
u2 constant pool count;
cp_info ¢ onstant pool[constant pool count-1];
u2 access flags;
u2 this class;
u2 super class;
u2 interfaces count;
u2 interfaces[interfaces count];
u2 fields count;
field info fields[fields count];
u2 methods count;
method info methods[methods count];
u2 attributes count;
attribute info attributes[attributes count];
}

Figure 3.2: Class file format showing all components in orderly fashion

3.1.3 JVM Run-time Data Areas

When JVM runs a program, it needs memory to store many things, including bytecodes and
other information it extracts from loaded class files, objects of the program instantiated, pa-
rameters to methods, return values, local variables, and intermediate results of computations.
The JVM organizes the memory it needs to execute a program into several run-time data areas.
Some of these areas are shared between threads, whereas other data areas exist separately for
each thread. Although the same run-time data areas exist in some form in every JVM imple-
mentation, their specification is quite abstract. Many decisions about the structural details of
the run-time data areas are left to the designers of individual implementations. The internal

architecture of JVM with all the run-time data areas is given in Figure 3.3.
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Stack

The JVM creates a new Java stack for each new thread launched. A thread’s stack stores the state
of Java method invocations for the thread and includes its local variables, invoking parameters,
its return value, and intermediate calculations as shown in Figure 3.3. The stack frame for each
method call is placed in the overall stack in the last-in, first-out fashion. Each stack frame in turn
consists of the operand stack for that method call, a section for arguments and local variables,
and some other data. The area in the stack where the operands are stored is called operand
stack. This is the area on which the method’s instructions operate. All the local variables and
arguments for the method are also stored in the local variable section of a stack frame with the
arguments stored first and then the locals. The arguments and locals are stored in the order of
their declaration. The Frame Data section of a stack frame contains a pointer to the caller’s
stack frame. This enables return to the caller when the called method finishes, and enables it to
put the return value, if any, into the caller’s stack frame. The JVM performs only push and pop
operations directly on Java stacks. The data on a thread’s Java stack can only be accessed by

that thread and other threads cannot access or alter the Java stack.

Method Area

Method area is shared among all the threads. It contains static class information such as field and
method data, the code for the methods and the constant pool. JVM restricts the maximum size
of a method to 64K bytes. The classes used for the execution program are stored in the method
area which includes bytecodes of the methods of the class. For each type it loads, the JVM
stores the fully qualified name of the type, the fully qualified name of the direct superclass, the
information that a type is a class or an interface, the type’s modifiers, an ordered list of the fully
qualified names of any direct superinterfaces, the constant pool for the type, field information,
method information, class (static) variables declared in the type, except constants, reference to
class ClassLoader and reference to class Class. The constant pool is a per-class table, containing
various kinds of constants such as numeric values or method and field references. The constant
pools contain the strings and numeric literals used by the program and field references. The
method area size may or may not be fixed. When Java application runs, the JVM can increase
and decrease the method area to meet the application’s needs. Since the method area is shared
with all the threads, access to the data structures of method area should be thread-safe. The type
information stored in the method area must be organized in a way that it can be accessed quickly.
It may include other data structures such as method table to speed up the access. A method table
consists of an array of direct references to all those instance methods that can be invoked on a

class instance, and includes instance methods which are inherited from superclasses.
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Heap

Heap is the run-time data area where Java objects exist and memory to all class instances and
arrays are allocated from here. Whenever an object is created as a result of the invoking of
Java new operation, the necessary memory for the object is allocated within the heap. This
space is shared among all threads as there is only one heap in JVM. Heap memory for objects is
reclaimed by an automatic memory management system which is known as a Garbage Collector
(GC). The heap may be of a fixed size or may be expanded and shrunk, depending on the strategy
of GC.

3.2 JVM Implementations

JVM can be implemented in following different ways [50]:

3.2.1 Interpreter

The simplest realization of the JVM is a program that interprets the bytecode instructions. In-
terpreting JVM is simple to implement, imposes no perceivable interruption and does not need
to store the code compiled to native code during execution. However, interpreted JVM can be
orders of magnitude slower than compiled code and wastes significant resources, e.g., CPU,
memory, battery etc. The CACAO [51] and Squawk Virtual Machine [52] are the two examples

of two open source interpreters for embedded systems.

3.2.2 Just-In-Time Compilation

JIT compiler translates Java bytecodes to native instructions during run-time. A Just-In-Time
(JIT) compiler translates Java bytecode into native machine language. It does this while it is
executing the program. Just as for a normal interpreter, the input to a JIT compiler is a Java
bytecode program, and its task is to execute that program. But, as it is executing the program,
it also translates parts of it into machine language. The translated parts of the program can
then be executed much faster than they could be interpreted. Since a given part of a program
is often executed many times as the program runs, a JIT compiler can significantly speed up
the overall execution time. Typical JIT and Dynamic Adaptive Compiler (DAC) solutions are
highly complex pieces of software and require significant effort to tune for the target platform,
increasing cost of ownership. KAFFE JIT compiler [53], CACAO JIT [51], AJIT [54] and
FAJITA [55] are few examples.
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3.2.3 Batch Compilation

Java can be compiled, in advance, to the native instruction set of the target. Like traditional
high-level language compilers, a direct Java compiler starts with an application’s Java source
code (or, alternatively, with its bytecode) and translates it directly into the machine language
of the target processor. Unlike JIT compilation, batch compilation is done statically and can
apply time-consuming techniques which are not possible in former case. The benefit is the
increased performance as system relies more on the mature native compiler rather than bytecode
based Java compiler. Although it provides good performance, it can be extremely costly in
terms of memory code bloat. Also, for device updates we have to rely on native code patches
to selectively update certain aspects of the application. Caffeine [56] and JaNi [57] are two

examples which translate the bytecode directly into machine language.

3.2.4 Hardware Implementation

A Java processor is the implementation of the JVM in hardware where bytecodes serve as the
native instructions set. The bytecode interpretation is performed in hardware without incurring
any of the extra execution overheads and memory usage, as compared with software solutions,
thus making it an interesting execution system for embedded systems programmed in Java. This
hardware implementation of JVM is also referred to as Java processor and executes bytecodes

faster than the interpreter JVM.

3.3 Java Processors

Two different approaches can be found to improve Java bytecode execution by hardware. In
the first type, a Java coprocessor is introduced in the instruction fetch path of a general purpose
processor which translates the Java bytecodes to sequences of instructions for the host CPU or
directly executes basic Java bytecodes whereas complex instructions are emulated by the main
processor. In the second category, all the Java bytecodes are executed by the Java processor. We

will discuss some of the important processors proposed by the industry and academia till date.

picoJava-I

picoJava-I [58] is a configurable processor core that supports the JVM specification. It has
a RISC-style pipeline executing the JVM instruction set. However, only the most common
instructions that most directly impact the program execution are implemented in hardware.

Some moderately complicated but performance critical instructions are implemented through
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microcodes. The remaining instructions are trapped and emulated in software by the processor
core. The hardware design is thus simplified since the complex instructions are implemented in

software as they are not executed frequently. It does not have any instructions cache.

picoJava-I1

The picoJava-II core [59, 60] is the successor to the picoJava-I processor and augments the
bytecode instruction set with a number of extended instructions which manipulate the caches,
control registers, and absolute memory addresses. These extended instructions are useful for
non-Java application programs that are run on this core. The programs are compiled to Java
bytecodes first as these bytecodes are the processor’s native instruction set. The pipeline is
extended to 6 stages compared with the 4 stages in the picoJava-I pipeline. It does not have

instructions cache either.

microJava

The Sun microJava 701 microprocessor [61] is based on the picoJava-II core. It is supported by
a complete set of software and hardware development tools. It also has a six-stage pipeline and
it can execute instructions without stalls. Also added is the folding ability that lets the processor

combine up to four instructions.

Ignite, Patriot PSC1000

This microprocessor [62] is a general-purpose 32-bit, stack-oriented architecture whose instruc-
tion set is very similar to the JVM bytecodes and it can efficiently execute Java programs. It
is one of the family of low-power, low-cost, stack architecture processors targeted specifically
for embedded applications. The PSC1000 CPU instruction sets are hardwired and most of the
instructions are executed in a single cycle without using the pipelines or superscalar architec-
ture. The PSC1000 family also runs C and C++ efficiently as they are semantically similar to
Java. It can also run stack-architecture based languages such as Forth [63] and Postscript™.
The PSC1000 was later renamed to Ignite.

aJ-100

The aJile Systems aJ-100 [64] is the first device in the family of single-chip Java microcon-
trollers that directly execute JVM bytecodes, real-time Java threading primitives and a number
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of extended bytecodes for embedded operations. This processor operates at 100 MHz, uses 32-
bit direct execution, incorporates five 8-bit discrete general-purpose I/O ports, and integrates 48
Kbytes of SRAM and a memory controller for ROM, SRAM or flash memory.

Komodo

This core [65] features the direct execution of Java bytecode, a zero-cycle context switch over-
head and hardware support for scheduling and garbage collection. It is designed for embedded
applications; therefore, the target architecture has a simple pipelined processor kernel, which
is able to issue one instruction per cycle. The multithreading is supported through a hardware
event handling mechanism that allows handling of simultaneous overlapping events with hard
real-time requirements. Real-time Java threads are used as interrupt service threads (ISTs) in-
stead of interrupt service routines (ISRs) for event handling. It has zero-cycle context switching
allowing the Komodo microcontroller to react very fast on external events. ISTs are triggered
without the typical overhead of ISRs in conventional processors. This helps in embedding the
hardware scheduler late in the processor pipeline. It enables the scheduling on an instruction-per

instruction basis due to a hardware-implemented real-time scheduling scheme.

Jamuth

Jamuth [66] is a Java multithreaded processor core for embedded real-time systems and is an
enhancement of the Komodo [65]. It features a real-time capable incremental garbage collec-
tion, integrated real-time scheduling schemes and full compatibility to Java CDC standard. Due
to its design as an IP core for Altera’s System-on-Programmable-Chip (SoPC) environment, it
can easily be combined with other (peripheral) components to a whole system on a single chip.
In addition, the usage of Java decreases the effort of software development and maintenance in

a significant way.

femtoJava

This [67] is a stack-based microcontroller that executes Java bytecodes. Its key attributes are
reduced instruction set, Harvard architecture and small size. It was designed specifically for
the embedded system market. It has both multi-cycle and pipelined versions. The multi-cycle
version takes three to fourteen cycles to execute an instruction. The pipelined architecture [68]
has five stages: instruction fetch, instruction decoding, operand fetch, execution, and write back.

The operand stack and local variable pool are implemented using registers.
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MAJC

The Sun Microsystems MAJC architecture [69] exploits the parallelism in multiple levels: in-
struction, data, thread and process, through vertical and speculative multithreading, chip multi-
processing and VLIW. Other VLIW processors aimed at DSP were developed, like Viper [70],
Fujitsu FR500 [71] and Texas TMS320C6x [72].

Ciip

The Cjip [73] is a CISC/WISC processor for embedded applications featuring native Java byte
code execution as well as Assembler/C/C++ support. Java byte code is to a very large extent
implemented directly in microcode, providing native Java execution speeds. The Cjip uses 72
bit wide microcode instructions, providing a high degree of parallelism to efficiently control
all the processor’s hardware logic. The microcode in the internal ROM and RAM controls the
processor hardware logic and resources. The application program is in DRAM, external to the

Gjip chip.

Moon

The Moon processor core, designed by Vulcan ASIC Ltd. [74,75] is a stack-based, von Neu-
mann architecture. This is a synthesizable core and implements Sun Microsystems’ JVM, de-
signed to run ROM-driven embedded system-on-chip (SOC) applications. The core has been
optimized for the area through a unique partitioning of Java bytecode for direct, microcoded
and external execution allowing it to easily fit into CPLD devices for both production and pro-

totyping solutions

Lightfoot

The Lightfoot 32-bit core [76], is a hybrid 8/32-bit stack-based processor executing Java byte-
codes in the hardware. It is 3-stage pipelined Harvard architecture. The instruction memory is
8 bits wide and data memory is 32 bits wide. It has an integer ALU, a barrel shifter, and a 2-bit
multiply step unit. The processor architecture supports three different instruction formats: soft
bytecodes, non-returnable instructions, and single-byte instructions that can be folded with a re-
turn instruction. Special instructions are provided for supporting the complex JVM bytecodes.
This group includes instructions for creating stack frames. There are two different stacks, data
stack and return stack, with the top elements implemented as registers and memory extension.
The data stack is used to hold temporary data and the return stack holds return addresses for

subroutines and can also be used as an auxiliary stack. The core is available in VHDL and can
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be implemented in less than 30K gates. Lightfoot is now part of the VS2000 Typhoon Family

Microcontroller [77].

LavaCORE

LavaCORE [78] is a 32-bit configurable processor core developed by Xilinx AllianceCORE,
partner of Derivation Systems, Inc.; and is targeted at Xilinx FPGA architectures. The Lava-
CORE processor has 32-bit address and data buses designed to add optional modules including
local memory, a floating point unit, DES encryption engine, and garbage collector. The proces-
sor core consists of an integer unit, programmable timers, register file, and interrupt controller.
Configuration options allow cache sizes, and 32, 16, or 8-bit data widths. It also allows selecting
Java bytecode instructions which are required to be omitted or moved from hardware to soft-
ware. The processor also incorporates three 8-bit instruction registers, an instruction pre-fetch

buffer to reduce memory access, and a 32-bit ALU to compute integer and logical operations.

JHISC

JHISC [79] is a RISC based processor with some Object-Oriented (OO) feature enhancements.
It also provides object manipulation instructions to handle the related operations. Excluding 64-
bit operation instructions, Java bytecodes are fully supported, with 91% of bytecodes and 75%
of OO related bytecodes implemented in hardware directly. The other performance sensitive

bytecodes not implemented in hardware are executed through software traps.

Azul

Azul Systems provides an impressive multiprocessor system for transactions oriented server
workloads [80]. A single Vega chip contains 54 64-bit RISC cores, optimized for the execution
of Java programs. Up to 16 Vega processors can be combined to a cache coherent multiprocessor

system with 864 processors cores, supporting up to 768 GB of shared memory.

JOP

JOP [81]is a hardware implementation of the JVM targeted for small real-time embedded sys-
tems where instruction set of JVM (bytecodes) becomes the native instructions of the processor.
It should be noted that the JOP does not implement all the bytecodes in hardware as some of
the bytecodes are too complex to be implemented in the hardware e.g., new. Therefore, their

functionalities are emulated using the Java. In fact, JOP has a single native instruction set, the
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so-called microcode. During execution, every Java bytecode is translated to either one, or a
sequence of microcode instructions. This translation merely adds one pipeline stage to the core
processor and results in no execution overheads. The JOP is implemented as a small soft core
that fits in an FPGA. It executes Java bytecodes much faster without JIT-Compiler [50]. As JOP

is used as basis for research, it is discussed in more details in Section 3.4.

SHAP

The embedded Java multi-core architecture is based on JOP and enhances it with a hardware
object manager. SHAP also implements the method cache [82]. The access to the shared heap
is provided through a full duplex bus with pipelined transactions. Each core is equipped with
local on-chip memory for the Java operand stack (8 KB) and the method cache (2 KB) to further

reduce the memory bandwidth requirements. It supports synchronization on a per object basis.

3.4 Java Optimized Processor-JOP

Numerous important Java processors from both industry and academia were mentioned in the
previous section, but most of them are either not available or do not provide enough tool support
to be used as basis for the ongoing research. Of these, it was found that JOP is the most
suitable as it is available as the open source, technology independent and most importantly easy
customizable making it perfectly suitable for use in our research. The most significant and

appreciable features of the JOP are:

* Availability as open source
» Extendibility

* Time predictability

The open source nature of JOP makes it an attractive choice for the research. The extendibility
is essential to support the convergence of multiple functionalities to the existing core. In a lot
of cases fixed hardware blocks are inadequate to provide required performance because of their
lack of flexibility, reusability and ability to deal with multiple modes and standards. For a lot of
specific tasks standard processors have challenges of their own in terms of meeting the perfor-
mance and power consumption requirements. The extendibility allows to add special registers,
specialized execution units that efficiently perform task-specific algorithms and customized sys-
tem specific I/Os that can connect directly to neighboring blocks of dedicated hardware. This

design approach does not affect clock rates and keeps energy consumption low.
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3.4.1 JOP Overview

The JOP architecture consists of the processor core, a memory interface and a number of 10
peripherals as shown in Figure 3.4. The processor core interacts with the memory through a
memory interface. The processor core contains the three pipeline stages i.e., microcode fetch,
decode and execute and an additional translation stage bytecode fetch. The JOP has a stack
cache as a substitution for the data cache and a method cache to cache the instructions. The
method cache [83] is organized such that it caches entire Java method. A cache fill from main
memory is only performed on a miss on method invocation or return. Therefore, all other
bytecodes have a guaranteed cache hit. The default configuration is 4 KB, divided into 16
blocks of 256 bytes. The memory interface provides a connection between the main memory
and the processor core. The request for a method to be placed in the cache is performed through
the extension module, but the cache hit detection and load is performed by the memory interface

independently from the processor core (and therefore concurrently).

The IO interface contains peripheral devices, such as the system time and timer interrupt, a
serial interface and application specific devices. JOP uses a simple and efficient system-on-chip
interconnection called SimpCon [84] to connect the memory controller and peripheral devices to
the processor pipeline. SimpCon is a fully synchronous standard for on-chip interconnections.

It is a point-to-point connection between a master and a slave device.

3.4.2 Instruction Set

A Java program is translated to bytecode instructions upon compilation. These bytecode instruc-
tions are executed by the JVM which does not assume any particular implementation technol-
ogy. Java processors usually do not execute Java bytecodes directly, because some instructions
are too complex to be implemented in hardware. Therefore, JOP translates the bytecodes into
its own RISC based instruction set called microcodes. The JOP microcodes are 10-bits long,
opcode is 8-bit and two extra bits (labeled as opd & nxt) are added for fetching the immediate
operands embedded in microcode and indicating the end of microcode sequence for the current

bytecode so that new Java bytecode could be fetched.

The instruction set contains different types of microcodes [S0]. The bytecode equivalent mi-
crocodes are direct implementations of bytecodes and result in one cycle execution time for the
bytecode (except st and Id). They are: pop, and, or, xor, add, sub, st<n>, st, ushr, shl, shr,
nop, ld<n>, Ild, and dup. The local memory access microcodes are used to access the first 32
locations of the internal stack RAM which contains the internal variables and the constants. The
microcodes are: stm, stmi, l[dm, [dmi and Idi. The register manipulation microcodes are used to
manipulate the contents of the registers in the core. The contents of the stack pointer register,

the variable pointer register and the Java program counter registers are accessed and modified by
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using stvp, stjpc, stsp, ldvp, ldjpc, ldsp and star microcodes. The bytecode operand microcodes
are used to load operands from the bytecode RAM. They are converted to a 32-bit word and
pushed on the stack by using the ld_opd_8s, ld_ opd_8u, ld_opd_I16s and ld_opd_I16u mi-
crocodes. The external memory access instructions such as: stmra, stmwa, stmwd, wait ldmrd,
stberd, ldbcstart, stald, stast, stgf, stpf and stcp are used to access memory subsystem and the
IO subsystem. The mul microcode accesses the optional hardware multiplier. Two branch mi-
crocodes provide the conditional jumping using bz and bnz. The branch bytecodes are mapped
to one microcode: jbr. The complete microcode set along-with the operations performed by it

is given in [50].

3.4.3 Translation of Bytecodes to Microcode

The JOP translates the CISC JVM bytecodes into RISC stack based sequence of microcodes.
The translation of bytecodes to microcodes takes exactly one cycle and microcodes are executed
in 3 stage pipeline. The next bytecode is fetched only when the current bytecode has finished its
execution. No time dependencies between bytecodes result in a simple processor model for the
low-level WCET analysis [85]. The mapping between the Java bytecode and the JOP microcode
is done using a translation-table generated during application building. Each bytecode acts
as an address for the jump-table and the corresponding location contains the start address of
microcode sequence for that bytecode. This address is loaded into the JOP program counter
for every bytecode executed. Every bytecode is translated to an address in the microcode ROM
that implements the JVM. If there exists an equivalent JOP microcodes for the bytecode, it is
executed in one cycle and the next bytecode is translated. For more complex bytecodes, JOP
just continues to execute microcode in the subsequent cycles. The end of this sequence is coded
in the microcode (as the nxt bit) as shown in Figure 3.5. Interrupts are implemented as special
bytecodes. These bytecodes are inserted by the hardware in the Java instruction stream in the
translation stage as special bytecodes and are transparent. Interrupts and exceptions are handled

by redirection of the microcode address to the handler code.

The JOP is not a pure stack machine. Method parameters and local variables are defined as
locals. These locals can reside in a stack frame of the method and are accessed with an offset
relative to the start of this local area. Additional local variables (16) are available at the mi-
crocode level. These variables serve as scratch variables, like registers in a conventional CPU.
However, arithmetic and logic operations are performed on the stack. For optimum use of the
available memory resources, all microcode opcodes are 8 bits long. There are no variable-
length microcode opcodes and every microcode, with the exception of wait, is executed in a

single cycle.
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Figure 3.5: Bytecode to microcode mapping example and microcode fetching mechanism

3.4.4 Memory Organization

The JOP consists of a number of physical memories to store different types of data as discussed

below.

Main Memory

The largest memory is the main memory where the application program is stored and remaining
space is allocated to the heap for object storage. The JOP is connected to off-chip main memory

via SimpCon [86] interface.

Stack Cache

In a JVM, stack is a heavily accessed memory region and it is placed in the upper level of the
memory hierarchy to provide good performance and is referred to as stack cache. The stack
cache is used both as an operand stack and as the storage place for local variables placed deeper
inside a stack. The stack cache [87] of JOP is organized at two levels: first level as two discrete
registers for the top two elements of the stack; second level as on-chip memory with one read
and one write port. With the two top elements of the stack as discrete registers, these values are
read, operated on and written back in the same cycle. Read and write access to a local variable is
also performed in the same pipeline stage. The top element of the stack (TOS) resides in register
named as A and next to top element (TOS-1) resides in the register named as B in Figure 3.6.
Whenever an ALU operation is performed, the operands are A and B which are the top two
elements of the stack. The result of the operation is stored in A and the next element in the stack
is read and stored in the B. Similarly, when we store a local variable on the stack, the contents
of B is transferred to A and, B is written with the contents of next element in the stack. When
we push some value on the stack, the new value is stored in A and old value of the A of the is

written to B, and old value of the B is written to the stack.
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Method Cache

The JOP has a novel instruction cache [83], called method cache, which holds one complete
method at any given time. This is possible because typical Java programs comprise of short
methods with no branches out of the method and all branches inside are relative. Hence it is
possible to load bytecodes of a complete method into the cache from main memory on method
invocation and the return. Only filling the cache on method invocation and return simplifies
WCET analysis [85] and removes another source of uncertainty, as there is no competition for
the main memory access between instruction cache and data cache. In the method cache, sev-
eral cache blocks (similar to cache lines) are used for a method. The main difference from a
conventional cache is that the blocks for a method are all loaded at once and need to be consec-
utive. The time needed to load a complete method is calculated using the memory properties
(latency and bandwidth) and the length of the method. On method invoke, the length of the
invoked method is used, and on a return, the method length of the caller is used to calculate
the load time. The full loaded method and relative addressing inside a method also result in a

simpler cache. Tagged memory and address translation are not necessary.

Microcode ROM

The microcode is the native instruction of the JOP. Microcode ROM is used to hold the mi-
crocode sequences for each bytecode and has a single cycle access latency. Apart from the
microcode sequence for the bytecodes, the microcode ROM also contains microcode sequence

for loading the Java application program and booting the JOP.

3.4.5 JOP Datapath

The JOP datapath shown in Figure 3.6, has four pipeline stages: Bytecode Fetch, Fetch, De-
code and Execution (or Stack). In the first stage, the Java bytecodes are fetched from the internal
RAM, which serves as the instruction cache, from the address stored in jpc register. The byte-
code is mapped through the translation-table into the address (jpaddr) for the microcode ROM.
The fetched bytecode results in an absolute jump in the microcode (the second stage). The
microcode ROM address provided by the translation-table is stored in a register, named pc.
The bytecode is also stored in a register for later use as an operand (requested by signal opd)
as shown in Figure 3.6. If the bytecode is a complex one having more than one microcodes,
JOP continues to execute those microcodes. At the end of this microcode sequence, the next

bytecode, and therefore the new jump address, is requested (signal nxt).

The second pipeline stage fetches JOP microcode from the internal microcode memory and

executes microcode branches. The program counter pc is incremented during normal execution.
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If the microcode is labeled with nxt a new bytecode is requested from the first stage and pc is
loaded with jpaddr which is the starting address for the implementation of that bytecode. The
label nxt is the flag that marks the end of the microcode instruction stream for one bytecode.
Another flag, opd, indicates that a bytecode operand needs to be fetched in the first pipeline

stage. Both flags are stored in a table that is indexed by the program counter.

In the decode stage, microcode is decoded and control signals are generated. The address for
the stack RAM is also generated in the same stage. When an address relative to the stack pointer
is used (either as read or as write address, never for both) the stack pointer is also decremented
or incremented in the decode stage. Stack machine instructions can be categorized from a stack
manipulation perspective as either pop or push. This allows us to generate fill or spill TOS-1

addresses for the following instruction during the decode stage

In the execution stage, arithmetic or logical operations are performed. The operands for the
arithmetic/logical operations are the contents of registers A and B and the result is stored back in
register A. All load operations (local variables, internal register, external memory and periphery)
result in a value being loaded into register A without requiring a write-back pipeline stage. Only
the data in the register A is stored into the memory during a store operation. Register B is never
accessed directly. It is read as an implicit operand or used for stack spill on push instructions.
It is written during the stack spill with the content of the stack RAM or in the case of stack fill

with the contents of register A.

3.4.6 Boot Up

The application start-up process involves configuring an FPGA with an image containing JOP
processor and downloading the application. The FPGA can be configured via a download cable
(with JTAG commands) performed within the IDEs from Altera and Xilinx or with command
line tools such as quartus_pgm or jbi_32. For automatic boot-up on power-up, the configuration
can be stored in nonvolatile flash memory. When the configuration has finished, an internal re-
set signal is generated. After reset, microcode instructions are executed starting from address 0.
At this stage, application program (Java bytecode) has not been loaded yet. The first sequence
of microcodes in ROM performs this task. The Java application can be loaded from an external
memory or Flash memory, via a PC serial line, or a USB-port. For VHDL simulation in Model-
Sim, the Java application is loaded by the test bench instead of JOP. In the next step, a minimal
stack frame is generated and the special method Startup.boot() is invoked, even though some
parts of the JVM are not yet setup. From now on JOP runs in Java mode. The method boot( )
sends a greeting message, detects the size of the main memory, initializes the data structures for
GC, initializes java.lang.System, invokes the static class initializers in a predefined order and

finally invokes the main method of the application class.
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3.4.7 Extending JOP

Java bytecode is the form of instructions that the JVM executes. Each bytecode opcode is
one byte in length, there are possible 256 opcodes and not all of them are used. In fact, Sun
Micro systems have set aside 3 values to be permanently unimplemented. The instruction set
of the JVM contains 201 different instructions [49]. Of the remaining 52 bytecodes, around 20
opcodes have been used by JOP to implement specific functions. The remaining opcodes can
be used to implement the further user-specific bytecodes. These bytecodes are used for data
transfer among the existing and extended hardware components and perform arithmetic and

logic operations.

The native language of JOP is microcode. The newer microcode could be introduced inside
the instruction.java file in the tools. This is accompanied by VHDL file editing to modify the
functionality to support the microcode. A native method is implemented in JOP microcode.
The interface to this native method is through a special bytecode. The mapping between native
methods and the special bytecode is performed by JOPizer, a JOP tool which converts the class
file generated by the Java compiler into a format compatible with JOP. The real microcode is
added in jvm.asm file (microcode implementation of JVM) against the label for the bytecode.
The code in Native.java file provides a method signature for the Native method and the mapping
between this signature and the name is provided in jvm.asm and in JopInstr.java files. The native
method is accessed by the method provided in Native.java. The native method gets substituted
by JOPizer with a special bytecode. The detailed information about the JOP related tools can
be found in [50].

The JOP also allows the addition of new peripheral devices which involves some VHDL coding.
All peripheral components in JOP are connected using the SimpCon interface. For a device that

implements the Wishbone [88] bus, a SimpCon-Wishbone bridge is provided.

3.5 JOP as System]J Execution Platforms

Previously, System]J programs compiled to Java were executed on JVM running on the NIOS
IT processor. Executing SystemJ compiled on an interpreting JVM is slow, thus lacking the
performance required to run the more complex applications. The fastest way to execute SystemJ
programs compiled to Java bytecodes is by using a Java Processor such as JOP which brings
the following benefits [50]:

* The hardware JVM shows much better performance and can be up to 500 times faster

than the programs running on an interpreting JVM [50].



3.5 JOP as SystemJ Execution Platforms 65

* JOP is the smallest hardware implementation of the JVM available to date. This fact
enables low-cost FPGAs to be used in embedded systems. The resource usage of JOP can

be configured to trade size against performance for different application domains.

* The JOP is capable of calculating the worst-case execution time (WCET) estimates of
tasks which is crucial for designing real-time systems. This information also helps to

schedule clock-domains using various strategies.

SystemJ Progam

A4

SystemJ compiler — front end

A4

AGRC program graph

A4

SystemJ compiler backend

Java Code

Java compiler

JOP

Figure 3.7: SystemlJ execution on JOP

Figure 3.7 illustrates the design flow of SystemJ on JOP. The SystemJ program is transformed to
an intermediate format called Asynchronous GRaph Code (AGRC) and the compiler back-end
produces a single threaded Java code [8] where concurrency and reactivity is emulated in Java.
The SystemJ programs also interact with the environment through signals which can be either
Boolean or valued as mentioned earlier. The synchronous reactive constructs operate on these
signals. All Java variables and signals declared in the SystemJ source are global variables in

the generated Java source code. JOP interacts with the environment through the IOs provided.
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3.6 JOP Performance Evaluation for System]

We evaluate the performance of JOP for executing the SystemJ program by running benchmark

examples on it.

3.6.1 Benchmarks

There is no standard benchmark suite available covering both the GALS and synchronous mod-
els with heavy data-computations. The benchmarks used here have been developed by [8] .
Although we have large number of System]J benchmarks, we have selected only those which
have been used in all other implementations. The benchmarks include both synchronous and

asynchronous examples as shown in Table 3.1.

The demoloop (dl) example represents the synchronous MoC of SystemJ and has the following
features:

It has the two input signals and four output signals.

* The output signals are emitted in an orderly fashion when a particular input is present and

abort if the other input signal is present.
* Hence, this example is control dominated with very little data-computations.

* It consists of a single clock-domain comprising of four reactions.

The runner benchmark gives the behavior description of a runner and has the following features:

* It belongs to the heterogeneous class of applications as not only it contains reactive state-

ments, but also includes arithmetic and logical data handling.

* It consists of a single clock-domain and four reactions combined using Il operator.

The synchronous examples were borrowed from the Esterel test-bench suite [89]. The asyn-
chronous case is represented by asynchronous protocol stack (aps) taken from [90]. The aps
example is discussed in detail in chapter 6. The features of all chosen benchmarks are given in

Table 3.1. The benchmark example codes are given in Appendix D.

3.6.2 Hardware Platform

All presented data has been collected from the experiments carried out by using the cycle-

accurate ModelSim simulator and executing them on Altera Cyclone II FPGA with 70k logic
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Examples Lines of code Total number of Number of
SystemJ | Java synchronous CDs
dl 51 12 reacfions 1
runner 91 10 4 1
cl 85 0 4 1
aps 154 31 6 >

Table 3.1: Features of experiment set

elements, 2MB of RAM and running at 50 MHz clock. The system is capable of running at 100
MHz but the results presented are for 50 MHz clock for fair comparison with earlier published

results.

3.6.3 Execution Time Comparison

The execution speed comparisons are given in terms of the average execution time between two
consecutive ticks for each clock-domain, which are indications of the throughput of the plat-
forms. The average tick execution time is obtained by averaging one million ticks. Figure 3.8a
shows the comparison of execution time in terms of average tick times for a Java Optimized
Processor (JOP) against general purpose processor implementing a interpreting JVM against
and the TP platform. The results are normalized to the smallest value and their logarithmic val-
ues are presented. The clock-domain aps cd0 has smallest execution time which is normalized
to 1 and its logarithmic value will be zero. An interpreting JVM is easy to implement but the
execution speed suffers from interpreting and is much slower than the JOP as shown in Figure
3.13a. This clearly demonstrates the benefit of use of a Java processor as SystemJ execution

platform when compared with GPP.

The JOP out-performs the TP and is upto 11 times faster than the TP despite the fact that the TP
benefits from the compilation approach where control-oriented operations are separated from
the data-oriented operations. The JOP performs better than the TP system due to two reasons.
First, it is due to data-calls by CP to DP in a TP system as the TP system is loosely coupled
and incurs large communication overhead. Second, all the data computations are performed
by the data-processor (NIOS II in this case) which is a general-purpose processor and has a
software interpretation of bytecodes which is much slower than the hardware implementation.
Hence, JOP is expected to outperform the TP system when running applications involving data-
dominated computations as the extensive data calls would slow down the system. In the case of
TP, the scheduling of the reactions takes place in CP which is more efficient than the scheduling

in single threaded Java code.
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Figure 3.8: JOP performance comparison

3.6.4 Resource Usage Comparison

Figure 3.8b shows the resource utilization for different target platforms in terms of the logic
elements used when implemented on an Altera Cyclone II FPGA. The JOP uses 32% and 104%
fewer resources when compared with GPP and TP, respectively. These results presented show
the superiority of a Java processor over the interpreting JVM running on a general purpose
processor and TP and uses fewer resources at the same time. This clearly suggests that it should

be deployed as an execution platform for System] applications compiled to Java.

3.7 Limitations of SystemJ Execution on JOP

Although using a Java processor results in higher performance, it also inherits some limitations.
The JOP has a special kind of instruction cache, called method cache, as discussed in Section
3.4.4. The default configuration for this cache is 4KB, providing optimal performance. This
puts a constraint on the System] application compiled to Java for execution on it. The size of
all Java method should be less than 4KB. This requires some minor modifications in compiler

back-end to generate the Java code with method size of less than 4KB.

In JOP, the heap area resides inside the main memory located external to JOP which is usually
slower and requires multiple cycles to access it. All signals, valued or non-valued, are stored in

this heap. The signals in the heap are accessed in the following cases:

* When reading input signals from the environment at the end of the tick, the signals are

read and stored in the heap.
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* When sending the output signals to the environment, the signals are read from the heap

and sent to the output port.
* The heap is also accessed when status of a local signal is set.

» The signals are also accessed to check the status of the input and control signals during

the control flow of the program.

The compiler creates a Signal class that is used to hold signal values and statuses. The signal and
channel classes provide methods which are called while communicating with the environment
and updating channels statuses. The following table shows the methods of signal class which

are used to manipulate the signals.

Java methods
Description

setStatus() It sets the status of an input or a local signal
to true

getStatus() It reads the status of an input or a local signal

sethook() It writes the output signals to the
environment

gethook() It reads the input signals from the
environment

setClear() It sets the status of an input or a local signal
to false

tick(); It indicates the end of tick to environment

Table 3.2: Signal manipulation methods in single threaded Java code

Let us consider the example where we set the status of a signal S. This is done by using the
Java statement S.getStatus() in the main method. As a result of execution of this statement, the
method cache is filled with the bytecode for getStatus() method and object signal is accessed
from the heap. When returning from the gerStatus() method, the method cache is again loaded
with bytecodes of main method from the main memory of the JOP. High access latency to ex-
ternal main memory and frequently loading of cache results in the degradation of performance.
This cannot be afforded as reactive systems are bound to react at a pace determined by the

environment.

The reactive programs constantly interact with the environment and often access the signals
resulting the substantial Java code used in performing these operations. The frequent occurrence
of these constructs, which are slow to execute, make them candidates for acceleration because

by making the common case fast, significant improvement in performance can be achieved.
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3.8 Reactive-JOP - RJOP

The use of JOP has resulted in higher performance and predictability of execution time but sup-
port for reactivity and control flow is missing. JOP lacks the architectural features to efficiently
execute the signal manipulation and control constructs required to implement the reactivity and
control flow in synchronous part of SystemJ. The RJOP [91] is a novel, high performance and
low cost execution architecture based on a customizable processor core aimed at providing bet-
ter support for concurrency and reactivity of SystemJ. It also maintains the time-predictable
execution of the applications intended for real-time embedded systems and calculation of Worst
Case Reaction Time as provided by the original core. The JOP, inherently suited to data-driven
transformational operations, is extended to efficiently execute the reactive constructs in Sys-
temJ. As such, the new core becomes suitable for both data-dominated and control-dominated
applications in embedded system domain. The benchmark results show significant performance
improvement and lower resource requirements over the existing architectures used for the Sys-
temJ execution. It allows calculating the WCRT of synchronous clock-domains, which further

can be used in efficient scheduling of full multiclock-domain GALS System]J programs.

3.8.1 Related Work

The idea of extending processor to support reactivity and control is not new and a number
of instances exist where support for reactivity is incorporated into general purpose processors.
The traditional general purpose microcontroller core is combined with a custom hardware block
that extends the instruction set of the traditional microcontroller by certain new instructions to
support reactivity. The existing processors such as RePIC [92], ReMIC [33] and ReFLIX [32]
can handle reactivity, but they require the specific compiler for the target and porting of JVM to
execute SystemlJ. Doing so, often leads to a very poor performance of SystemlJ applications. To
avoid that, same technique could be applied to systems that have to offer both Java capability

and high performance such as Java processor.

3.8.2 Reactivity and RJOP

The synchronous reactive constructs operate on signals which can have status only or both value
and status. The placement of these signals in data structures is a critical issue. Currently, the
signals are translated to objects of Signal Class and the status of the signals is set by calling
methods of this class, incurring calling overheads which results in slow execution. The signals
are stored in heap and any operation on the signals requires memory access which can incur

multi-cycle latency depending on the hardware platform and memory used. Also, it does not
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perform ALU operations on the memory operands, so they need to be loaded into some tem-
porary storage which increases the latency. In addition, access to the large memory blocks has

always been expensive in terms of power consumption, thus should be avoided.

The reactive systems are characterized by the frequent interaction with the environment or
with other clock-domains through signals. The frequent access to the signals requires that
they should be cached locally. In the new proposed approach, the signal statuses are stored in
an array of processor registers, called Signal-File (SF), for easy, symmetrical and less power
hungry access. It is parameterized upto 256 signals. Similarly, if there exists any signal depen-
dency in System] reactions, the execution of current reaction is suspended and another reaction
is scheduled. Once the signal dependency is resolved, the reaction is resumed from the same
location where it left. This is done by using the signal locks. When compiled to Java, these
locks are translated to array which require access to the main memory. They are also moved to

the Signal-File as they need to be accessed quite frequently.

3.8.3 RJOP Architecture

The JOP architecture is extended by introducing new specific bytecodes to efficiently support
the signal manipulation and control flow in SystemlJ. Each bytecode opcode is one byte in
length. The instruction set of the JVM contains 201 different instructions [9]. Few additional
opcodes have been used by the JOP to implement specific functions and the remaining can
be used to implement the desired custom bytecodes. The introduction of the new bytecodes
requires modification of javainstrjava and Native.java as mentioned earlier in Section 3.4.7.

Table 3.3 lists the new bytecodes introduced in the RJOP and their description.

| Bytecode | Task |
Jjopsys_emit Asserts the signal in a Signal-File
Jjopsys_demit Clear a signal in Signal-File
Jjopsys_initsf Initializes the Signal-File contents if required
jopsys_present Checks the presence of the signal
Jjopsys_lsip Loads input signal from port to Signal-File
Jjopsys_lsop Loads output Signal from Signal-File to port
jopsys_seot Sets the register indicating end of logical tick
jopsys_ceot Clears the end of logical tick register
jopsys_cer Clears environment ready signal

Table 3.3: List of extended bytecodes specific to RIOP

The existing set of microcodes is also extended with new microcodes to support these bytecodes
as shown in Table 3.4. These microcodes are cost-effective, because they share the resources
of the existing processor. They are used for data transfers among the existing and extended

hardware components and perform arithmetic and logic operations. Here 77 and 72 are two
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temporary registers introduced as an alternative to registers A and B in JOP data-path which

hold top two elements of the stack.

| Microcode | Task | Register Transfer
readsf Loads the contents of SF into register | SF[A] — T'1, B — A, stack[sp] —
T1 B,sp—1—sp
loadormask Loads the "or" mask into T2 ormask — T2
reor ORing of operands from T1 & T2 T1|T2 = T1
writesf Write the contents of T1 into T1 — SF[A], B — A, stack[sp] —
Signal-File B,sp—1— sp
loadandmask | Loads the "and" mask into T2 andmask — T2
reand ANDing of operands from T1 & T2 T1&&T2 — T1
loadopd Loads contents from A into Tland A—T1,T1 -T2, B — A,stack|sp]| —
Tlinto T2 B,sp—1— sp
pushonstack | Load from T1 to top of stack TN —- A A— B,B—
stack[sp + 1],sp+1 — sp
popfromstack | Store top of stack in T1 A—T1,B — A, stack[sp] — B,sp— 1 —
sp

Table 3.4: Register transfer description of RIOP specific microcodes

Figure 3.9 shows the mapping of a new bytecode to the microcodes. The method Native.emit is
replaced by the jopsys_emit bytecode which is mapped to a sequence of six microcodes and the
last one containing the nxt field indicates the fetching of a new bytecode. This bytecode is used
to set the status of a signal to true. The loadopd microcode loads an operand in the register.
The operand contains the signal location comprising of register address in the Signal-File and
the bit number which corresponds to the signal emitted. The readsf reads the Signal-File into
register T1. The loadormask loads the mask into T2 to set bit representing the emitted signal
and OR operation is performed on the operands in T1 and T2 by reor microcode. The result is

stored back to Signal-File by writesf microcode with the bit corresponding to signal set to high.

jopsys_emit:
loadopd
readst
loadormask
reor

writetesf nxt
Figure 3.9: Mapping of emit bytecode to microcode

The JOP is extended with a custom hardware unit, called Reactive Unit to support new mi-
crocodes as shown in Figure 3.10. The decoder logic is modified to generate appropriate con-

trol signals for new microcodes and the ALU in the Stack unit is used to perform arithmetic
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and logic operations. This extension allows the RJOP to efficiently deal with the reactive ap-
plications along with the data-dominated computationally intensive applications. The bytecode

fetch and microcode branch units are modified to provide branching for the new unit.

Byte-code branch condition

Next bytecode signal Micro-code branch condition

Microcode decode Microcode execution

Bytecode fetch, ‘ Microcode fetch
translate and branch and branch

Micro-code branch

Bytecode branch control signal

Stack address

generation Stack RAM

Figure 3.10: RJOP architecture with reactive unit shown as Grey

3.8.4 Compiler Modifications

The System]J compiler back-end is modified to generate the Java code compatible for execution
on RJOP. The modified compiler, still generating single threaded Java code, translates the pure
SystemlJ signals into simple Java variables instead of objects of a class and they are assigned a
unique identity code. The signal emission and signal status checking statements, which resulted
in Java method calls in earlier version of compiler, are translated into Java methods with the Na-
tive prefix recognizable by the JOP tool and are subsequently replaced by custom bytecodes. All
of the control flow constructs are translated into if - else statements which check the presence
(true status) of the signal or the signal expression. The signal checks are carried out on these
signal variables without invoking the methods of another class. Communication with the envi-
ronment is provided through memory mapped I0. This includes loading input signals from the
environment, emitting output signals and indicating end of tick etc. In the current implementa-
tion, acceleration of scheduling and asynchronous communication is omitted and is carried out
in the existing way. The translation of SystemJ reactive constructs into Java statements using

the original and the modified compiler is shown in Table 3.5.
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| SystemJ Constructs

| Standard Java \

RJOP Java

system {} public class system {} public class system {}
signal S Signal S = new Signal(); int S;

emit S S.setStatus() Native.emit(S);

present S if(S.getStatus()) term(p) else; | Var=Native.present(S);
abort S if(S.getStatus()) term(p) else; | Var= Native.present(S);
suspend S if(S.getStatus()) term(p) else; | Var= Native.present(S);

Reaction p(:){term(q)}

public static void p(){}

public static voidp(){}

synchronous/concurrency

Switch{case...}

Switch{case...}

environment S.sethook(), Native.cer(id,0),
Native.lsop(id)
environment S.gethook(); Native.lsip(id);
resetting S.setClear() Native.demit(S);
logical tick tick(); Native.seot(id, 1),
Native.ceot(id,0);

Table 3.5: Translation of SystemJ reactive constructs into Java statements

Figure 3.11 shows the example of translation of SystemJ code to the standard Java source and

the Java source compatible with the RJOP. A small SystemJ code example is given which checks

for the input signal A and if it is present then it emits signal B, otherwise C is emitted. The

equivalent Java code is given next where input signals are declared as objects of the Signal

class. The checking and setting of signals is done by calling the methods of the class. The

modified Java code for the RJOP is provided on the right where signals are declared as integers

and the setting and checking of the signals is performed by the respective newly introduced

bytecodes.

// SystemJ Code
system{
interface{
input Signal A;
output Signal B,C;
}
{
present (A)
emit B;
else
emit C;

// Java source for JOP
import Signal;

public class ... {
private static Signal A;
private static Signal B;
private static Signal C;

static void main () {
A = new signal();

if (A.getStatus()){
B.setStatus ()

}
else {locks[]=1;}

// starting new tick
A.setClrear();

// Java source for RJIOP

Import com.jopdesign.sys.*;
public class ... {
private static int A=0;
private static int B=1;
private static int C=2;

static void main () {
int flag = Native.present (A)
if (flag > 0){
Native.emit (B);
}
else {
Native.emit (lockid) ;

}

// starting new tick
Native.demit (A) ;

Figure 3.11: SystemJ program compiled targeting JOP and RJOP
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3.8.5 Reactive Unit

Figure 3.12 shows the internal architecture of the Reactive Unit. It is composed of the Signal-
File to store signal statuses, temporary registers to hold intermediate values (also act as an
alternative for stack registers A and B) and a mask generation unit to mask or unmask a particular
bit of a signal word. The masks are used for the setting or resetting the status of a signal. The
Reactive Unit is interfaced with decoder, stack and internal stack cache. All of the signals
handling bytecodes modify the status of the signals. The signal id is passed as a parameter
in the Native method which is replaced by the corresponding bytecode. The arguments are
available in the stack from where they are read into register A. The least significant byte is
loaded from A into T1 by the microcode loadopd. The Isb 5 bits give the byte address whereas
msb 3-bits indicate the location of the signal inside the byte and are also used to generate the
mask for that signal. The signal word and mask are loaded into temporary registers T1 and T2
by readsf and loadormask microcodes respectively. The contents of both registers are ORed by
reor microcode and the result is stored back into T1. The contents of T1 are written back to
the Signal-File by the microcode writesf. The destination address is available in the register A

which holds the top element of the stack.

In the case of the control flow instructions, the signal address is provided, and the signal statuses
are loaded into T1. The andmask is loaded into T2 which sets all other bits of T1 to zero and
status of the required signal is extracted. T1 is then checked for the presence of the signal. If T1
is not zero, the signal is present, else it is absent. The communication with the environment is
carried out using both the existing and new microcodes. The data to be sent is pushed onto the
stack using pushonstack from where it is stored in the data port register. The address is passed
as a parameter and loaded into the port address register. Similarly, when reading the statuses
of the input signals at the end of tick, the address is provided and the statuses are loaded into
the register T1. The statuses are stored at the required location into the Signal-File in the same
way as mentioned above. The details of RJIOP specific bytecodes along with register transfer

descriptions are provided in the Appendix C.

3.9 Performance Evaluation

In order to evaluate the RJOP performance, we use the same benchmark examples as used for
JOP in Section 3.6.1. All presented data has been collected from the experiments carried out by
using the cycle-accurate ModelSim simulator and executing them on Alfera Cyclone II FPGA
with 70k logic elements, 2MB of RAM and running at 50 MHz clock. The system is capable
of running at 100 MHz but the results presented are for 50 MHz clock for fair comparison with

earlier published results.
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Figure 3.12: Detailed architecture of the reactive unit of RIOP

The performance of RJOP [91] is compared against the JOP. The results in previous section
showed that the JOP is a better execution platform for Java-based data-dominated computa-
tionally intensive applications in embedded systems. But, the SystemJ programs involving
extensive signal emission and signal check statements tend to execute slower. The RJOP incor-
porates the capability to handle both the control flow and signal manipulation. The results in
Figure 3.13a show that RJOP on average is 20% faster than JOP. The RJOP will perform even
better if the application becomes more control-oriented. Hence, RJOP is guaranteed to provide
better performance than JOP regardless of whether the application is control-dominated or data-
dominated, and supports our idea of providing the hardware support for the reactive constructs
of SystemJ language to harness its potential performance. The RJOP uses slightly less than 3%
resources (in terms of logic elements) when compared with JOP. The resource usage is found

out by synthesizing the VHDL code usgin Quartus tool for target FPGA mentioned above.

New RJOP bytecodes that support reactivity all have bounded execution times similar to JOP,
therefore the program worst case execution times (WCET) can be found for RJOP. However,
as RJOP executes System] programs and reactions in lock-step with logical tick, it allows cal-
culating the worst case reaction time (WCRT), which is the maximum time between any two
consecutive ticks in any SystemJ clock-domain, which at the same time represents the minimum

allowed time between two consecutive events from the environment.
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3.10 Summary

Java is a unique combination of the language definition, a rich class library and a runtime envi-
ronment. A Java program is compiled to bytecodes that are executed by a Java virtual machine.
The intermediate bytecode representation simplifies porting of Java to different computer sys-
tems. The Java Virtual Machine (JVM) is a definition of an abstract computing machine that
executes bytecode programs. An interpreting JVM is easy to implement and needs few system
resources. However, the execution speed suffers from interpreting. A Java processor avoids the
slow execution model of an interpreting JVM and the memory requirements of a compiler, thus
making it an interesting execution system for Java in embedded systems. A Java processor is
the implementation of the JVM as a concrete machine. JOP [81] is a hardware implementation
of the JVM targeted for small real-time embedded systems where instruction set of JVM (byte-
codes) becomes the native instructions of the processor. The most significant and appreciable
features of the JOP are: availability as open source, extendibility and time predictability. The
JOP is used as a target platform for executing SystemJ programs compiled to Java. The perfor-
mance results suggest that the JOP is a suitable platform for execution of System] programs.
JOP lacks the architectural features to efficiently execute the signal manipulation and control
constructs required to implement the reactivity in synchronous part of SystemJ. The JOP, in-
herently suited to data-driven transformational operations, is extended to efficiently execute
the reactivity constructs in SystemJ. The benchmark results validated the idea of incorporating

reactivity to achieve the performance improvement.
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Chapter 4

GALS-JOP

The aim of this research is to explore and develop an efficient embedded platform for SystmJ
program execution capable of carrying out work in minimal time with minimal resource usage.
A System]J program is translated to either pure Java or a mix of Java and special instructions
where control-driven operations are separated from data-driven operations in the form of con-
current reactive control flow (CRCF) and Java control flow (JCF) as demonstrated in [38]. The
code generated as a result of split compilation approach is executed on TP architecture, where
both CRCF and JCF are executed on two separate processors concurrently. The existing TP
platform [39], briefly discussed in Chapter 2, shows the advantage of split compilation strategy
adopted over pure Java compilation approach. The TP architecture deploys a custom control
processor (ReCOP - REactivity and Concurrency Processor) to handle the CRCF in a better way
but JCF suffers from poor execution due to the use of a general purpose processor (interpreting
JVM) as discussed in Chapter 2. The long interpretation time is an important drawback, at least
several times longer than in case of the program native execution. It is also hard to estimate
execution cycle time due to complex nature of underlying micro-architecture components. One
can greatly reduce execution time of the code by replacing software-implemented virtual ma-
chine with its hardware equivalent. The JOP processor introduced in Chapter 3 is a suitable
hardware platform for executing the programs described in Java [93]. This promptly led us to
replace general purpose processor with JOP in TP approach to efficiently handle the JCF. The
resulting architecture will not only benefit from the split compilation strategy and but also effi-
cient hardware platform. This, being a two processor approach, uses too many logic resources.
This problem is solved by introducing a novel approach which efficiently executes both CRCF

and JCF on a single processor and also brings economy in terms of resource usage.

This chapter starts with the discussion on the deficiencies of existing approaches and highlights
the problem areas. Next, we present a solution in the form of TP-JOP and its design flow, ar-
chitecture and expected performance outcomes. Then, we present a uniprocessor solution in

the form of GALS-JOP processor for efficient execution of SystemJ programs. We introduce
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the global aspects of the proposed approach, which positions the presented work and its con-
tributions. The new processor is described and qualitative comparisons with related processors
and execution models are presented. The details about compilation strategy, tools developed,
architecture, implementation details and performance evaluation are also discussed in the later

part of the chapter.

4.1 Introduction

One of the key goal in embedded systems design is efficient exploitation and implementation of
concurrency as the way of reducing design complexity of the system and at the same time ability
to deal with the requirements of timely response to the events coming from external environ-
ment. Significant research efforts have been made in tailoring Java and its execution environ-
ment to facilitate its use in embedded systems [94]. However, dealing with concurrency is still
left to the inefficient Java thread model. Java threads, besides low efficiency, are relatively un-
safe model that demands programmers to deal with low-level details of thread synchronization
and communication resulting in programs with very little guarantees on worst case execution

time. Also, Java memory model makes it difficult to implement it on simple processors.

4.2 Deficiencies in the Existing Approaches

In its original implementation, SystemJ was compiled to Java and then executed on a processor
that has a JVM or some variation of it, such as J2ME. The JVM is normally interpretive in nature
resulting in slower execution. In order to overcome this problem, we deployed a Java processor,
JOP, to exacerbate the execution of SystemJ programs compiled to Java as discussed in Chapter
3. Furthermore, we presented RJOP [91] approach to enhance the efficiency of execution of
System] programs by extending the instruction set of JOP [93] to support reactive statements
of the language and abstraction of signals used in synchronous parts of System] programs.
It maintains portability of SystemJ compiler generated code, and at the same time, exhibits
higher execution speed for a typical SystemJ programs. It is important to mention that back-end
compiler used for RJOP does not take advantage of AGRC and does not address concurrency
directly as defined in SystemJ. Furthermore, SystemlJ’s powerful concurrency model in that case
is implemented in Java and inherits some deficiencies of Java, particularly those related to the

lack of efficient program flow control in the form of goto mechanism.

The disadvantages associated with the implementation of concurrency and reactivity in SystemJ
program compiled to Java can be averted by separating the SystemJ program concurrency and

reactive control flow (CRCF) from the ordinary Java control flow (JCF) and then implementing
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them on two disjoint machines, such as Tandem Virtual Machine [38] or Tandem Processor [39].
These approaches have significant curtailment of memory footprint and boost the performance
of SystemJ program execution when compared to JVM only approach. These implementations
rely on the use of JVM on a standard processor to execute Java computations, and a special-
ized processor for execution of CRCF. The non-native execution of Java bytecode on a general

purpose processor suffers from slower execution speed.

We exploit JOP’s ability to efficiently execute the Java and replace the existing general purpose
processor within TP with JOP. The tandem processor architecture is now based on JOP, called
TP-JOP, integrates JOP with the existing control processor (ReCOP) to speed up the execution
of SystemJ programs. The approach exactly follows the existing idea of combining Java Virtual
Machine (JVM) and Control Virtual machine (CVM) into a Tandem Virtual Machine (TVM)
[38], but replaces the interpreting JVM with JOP, a hardware implementation of JVM. We go a
step farther and propose an approach that results in a significant breakthrough towards the use

of SystemJ for embedded applications and is discussed in detail in Section 4.5.

4.3 TP-JOP

TP-JOP is a solution that is implemented based on the idea of tandem execution of two proces-
sors [39], one that controls the flow of SystemJ program (CP, control processor) and the other
performs data-computations. The data driven part of the code (JCF) which is in Java was ex-
ecuted on a general purpose processor in previous implementation of the TP. The TP-JOP, as
the name indicates, uses JOP, a full Java processor which replaces general purpose processor
without interfering with native execution of CRCF on the CP. The deployment of JOP facilitates
the native execution of the data-computations presented in Java. The native execution of both
CRCEF and JCF code in resulting TP-JOP architecture removes the performance bottleneck due

to non-native execution of data-computations in existing TP architecture.

4.3.1 TP-JOP Design flow

The TP-JOP design flow is akin to the TP except TP-JOP makes a step forward by introducing
JOP instead of interpreting JVM for Java computations. TP-JOP has strict separation of control
(CRCF) from data-computations (JCF) as shown in Figure 4.1. Both are executed on two dif-
ferent processors with CRCF leading JCF. At any time, each reaction as described in Chapter 2,
can be executing either pure CRCF statements or waiting on the result of Java action node to be
communicated to it by Data Processor (JOP in this case) which executes this node. However,
if a reaction is waiting for the result of data-computations (JCF) from the DP, the execution

point of control can be transferred to another reaction, thus actually not blocking the execution
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of CRCF. The only point when control flow can be suspended occurs only if all the reactions
of the system have requested the execution of JCF and none of them has received the result of
data-computation. This suggests that communication mechanism should be capable of holding
the requests in orderly fashion. This is achieved through a queue (FIFO) which stores the Java
call requests and releases them in the order of their occurrences once DP becomes ready to

execute them. The effectiveness of the mechanism has been demonstrated on both virtual and

physical implementation of tandem operation of CRCF and JCF.
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Figure 4.1: Abstract view of TP-JOP design flow and communication

4.3.2 TP-JOP Architecture

The TP-JOP architecture is shown in Figure 4.2 and resembles to the TP architecture explained
in the Chapter 2 with few modifications. In case of tandem processor, the Control Processor
(CP), Data Processor (DP) and FIFO are connected through Avalon bus [48]. In TP-JOP case,

GALS-JOP



4.3 TP-JOP 83

CP (ReCOP) and DP (JOP) communicate through the FIFO and memory controller without
employing the Avalon bus. The memory controller is instilled to control the access to the data
memory of the CP which is shared with the DP to write the result of the computation. The FIFO
is connected to memory-mapped IO of the JOP and also has connection with the CP where the
former can only read and the latter can write. The FIFO is 32-bit wide and depth is parametrized
depending on the maximum number of data calls which can be made by the CP at the same time
(within in a single tick). The FIFO has no special way to indicate a data call to the JOP and
this is achieved by embedding 1-bit information, called call-bit, in the data call itself. When
CP makes a data call, the case-number, data-lock location, clock-domain number and a call-bit
are concatenated and written in the FIFO. The case-number and data-lock represent the case
to be executed and the memory location of the CP where result will be written, respectively.
The data-computation for each clock-domain reside inside the JCF, wrapped in switch-case
statement. The case-number, together with the clock-domain number, help in identifying the

case containing the required computation.

The JOP polls the FIFO all the time by reading its location pointed to by the read pointer of
the FIFO and checks for the call-bit. The presence [95] of call-bit informs that a data call has
been made and JOP performs the corresponding data-computations. The JOP concatenates 1-
bit Result of the data-computations, 1-bit result_available indicating availability of result, and
data-lock pointer and writes them into the DPRR (Data Processor Result Register) register. The
memory controller receives the contents of DPRR and writes the result of the data-computations
provided by the DP (JOP) to the data memory location of CP pointed to by data-lock in the FIFO
by halting the CP. The JOP uses existing bytecode to read the FIFO contents and write the result
to the DPRR connected to I0s. Both FIFO and DPRR are mapped to same address with former

is read only and latter is write only.

4.3.3 Compiler Modification

The compiler requisites minor modifications to generate the code compatible with TP-JOP ex-
ecution. The JOP makes use of specific bytecodes, instead of using utility function provided
by the DP [39], to communicate with the FIFO. Figure 4.3 shows the JCF code generated for
the JOP with the data-computations wrapped in a switch-case statement. There is no change
in assembly code representing CRCFE. The boolean variable result is the result of the compu-
tation (line 12) and resword contains the completion bit and the result of data-computation.
The resword is concatenated with the data-lock pointer and stored in the DPRR register. If the
result of computation is true, then dprr variable has value 3 (line 31) as both result and result-
available are true. If the result is false, the dprr is written with the value 2 (line 32). The dprr
variable is written to DPRR register (line 33). The contents of the DPRR (2-bit) are stored in

the data memory of control processor at location pointed to by the data-lock pointer.
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import java.util.*;

import java.io.*;

import com.jopdesign.sys.Const;
import com.jopdesign.sys.Native;

public class exampletpjop {

W J oy O WN P

public static void main(String args|[]) {

10 while (true){ //polling

11

12 boolean result = false;

13 int resword, dprr=0;

14 int data_call word = Native.rd(Const.FIFO_ADDR) ;
15 int data_call = (data_call word >> 20)&0x001;
16

17 if(data call == 1){

18

19 int data lock = (data_call word) & OxFF;
20 int case_number = (data_call word >> 8) & OxFF;
21 int clock_domain = (data_call word >> 16) & O0x000F;
22

23 switch (clock domain ){

24 case 0:

25 result = cbackcallO (case number) ;

26 break;

27 case 1:

28 result = cbackcalll (case number) ;

29 break;

30 }

31 if (result==true){ resword = 0x0003;}

32 else { resword = 0x0002;}

33 dprr = (data lock << 2)& resword;

34 Native.wr (dprr, (Const.FIFO ADDR)) ;

35 }

36 }

37 private static boolean cbackecallO (int var) {

38

39 switch (case number) {

40 case 0 :

41 .

42 case 1 :

43 .

44 }

45 '}

46 }

Figure 4.3: TP-JOP example code in Java representing data-computation

4.3.4 TP-JOP Performance Evaluation

We demonstrate the effectiveness of the proposed architecture by running benchmark examples
on it. Although we have a large number of benchmark examples, but we have selected only those
SystemJ benchmarks which have been used in previous implementations. The characteristics
of the benchmarks have been described in Chapter 3 and the SystemJ codes are given in the

Appendix D.

All presented data for evaluation has been collected from the experiments carried out by using
the cycle-accurate ModelSim simulator targeting Altera Cyclone I FPGA with 70k logic ele-
ments and running at 50 MHz clock. The system is capable of running at 100 MHz but the

results presented are for 50 MHz clock for fair comparison with earlier published results.

The solution presented in the form of TP-JOP outperforms the TP thanks to the use of JOP
(hardware implementations of JVM). The JOP performs better than the software JVM imple-
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mentations [50], because the bytecodes are directly executed as native instructions in hardware.
In TP, the control computations (CRCF) were run natively on a control processor whereas the
data-computations (JCF) were run on an interpreting JVM and therefore exhibited inadequate
performance. The deployment of JOP removes this bottleneck as both CRCF and JCF are run
on processors natively. The extent of the overall performance gain depends on the amount
of data-computation performed by JOP which is a function of JCF embedded in the SystemlJ

program.

The results in Figure 4.4a show that TP-JOP [95] is 6 to 50 times faster than the TP for the
given set of the benchmarks. Both TP and TP-JOP use same compilation approach which sep-
arates control from data-computation (CRCF and JCF). Both approaches use the same control
processor (CP) to execute the CRCF and different processor to handle JCF (data-computation).
The former uses interpreting JVM and the latter uses hardware JVM. It means both will try to
match each other for applications with no data-computations involved at all. The disparity in
the performance grows with the introduction of data-computation and is directly proportional
to the amount of data-computations involved. The combinational lock is more control-oriented;
therefore, the performance gain is less compared to demoloop and runner which have reason-
able amount of data-computations. The resource usage comparison given in Figure 4.4b shows
that TP-JOP uses 15% fewer resources than TP. Therefore, TP-JOP is more efficient platform

when compared to TP both in terms of execution times and resources used.
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Figure 4.4: TP-JOP performance evaluation

4.4 Limitations of TP-JOP

TP-JOP has strict separation of execution of control (CRCF) from data-computations (JCF),

which inevitably results in duplication of some of the computation resources. The two major
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downsides to this approach are (1) increased hardware complexity since there is little design
reuse between the two types of processors and (2) poor resource utilization when the applica-
tion mix contains a balance different than that ideally suited to the underlying heterogeneous
hardware. Although the CP (ReCOP) used in TP is very simple, it duplicates basic instruc-
tions for data movement and arithmetic operations, and also requires two program memories in
which CRCF and JCF part of programs are stored. Also, major data-structures that represent
clock-domains, reactions and signals, are contained in the data memory of CP. Only handfuls of
instructions are specialized instructions that operate on these objects or are dedicated to support
control operations related to AGRC-based control flow. This was a major motivation to look
more closely at how functions of the program control flow and interactions with the environ-
ment could be merged with JOP’s processor functionalities resulting in a more economical and
efficient implementation. Also, TP-JOP as a two processor approach suggests that data must
transfer between the processors over some sort of interconnects. It is exorbitant and incurs per-
formance overheads due to adopted communication mechanism. Furthermore, there are cases
when only one processor is busy and the other one is not doing any useful task. These cases may
arise when JOP is polling on CP for data call or CP is waiting for results of data-computations,

resulting in under-utilization of processors and unnecessary consumption of power.

The need of a peculiar CP can be avoided as its functions can be built right into the JOP proces-
sor itself - eliminating inter-processor data transfers over a slow communication medium. We
analyze the TP-JOP and carefully merge a minimal set of features of the CP into JOP by extend-
ing JOP’s instruction set, memory model and data-path. The CP instructions are mapped to the
unused bytecodes, the hardware support for the new bytecodes and its associated control is pro-
vided by extending the JOP’s data-path. As mentioned in Chapter 3, JVM has only 256 bytecode
and JOP uses around 230 of them. This number of free available bytecodes is less than the in-
struction set of CP. Therefore, it requires some thinking to map the ISA of CP to available byte-
codes The new processor, called GALS-JOP, facilitates efficient execution of synchronous and
asynchronous concurrency and reactivity (CRCF) and Java oriented data-computations (JCF)
by merging best of both worlds at low cost. Importantly, the design approach does not need
any essential modifications in the compilation flow of SystemlJ [26], which is based on a formal
semantics, giving advantages over non-formal programming languages and their compilation

approaches.

4.5 GALS-JOP

The GALS-JOP subjugates the impediments offered by the two processor approaches as dis-
cussed in Section 4.4. It can be viewed as a merger of JOP and CP for the improved SystemlJ

program execution on a single processor. The GALS-JOP approach is thus a common answer
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to questions from two different worlds and offers the following improvements when compared
to the TP-JOP approach:

It takes the advantage of already demonstrated compilation approach where CRCF and

JCF are separated from each other.
» Executes them on a single processor without the need of a separate CP.

* It is a single processor approach, hence, eliminates the communication between the pro-

cessors and associated communication hardware.

 Saves the logic resources used to implement the CP and communication among the pro-

CESSOrs.

* Significantly raises the cost-effectiveness of the resulting solution compared to TP and
TP-JOP approach.

* Achieves the goal of more conducive execution of SystemJ programs on small, embedded

platform.

* This approach has better utilization of available time when compared to multiprocessor

approach as the processor is always busy

The approach to use JOP as a base of the new processor utilizes the fact that JOP is a complete
Java processor and allows extensions of its instruction set, as well as the data-path. Also,
the decision to preserve System]J compiler and JOP tools in their entirety has been another
motivation for this approach. The goal of this system is to achieve performance and efficiency

approaching that of application specific systems.

4.6 GALS-JOP Compilation and Execution Strategy

Figure 4.5 shows the entire design flow adopted for compiling SystemJ program and executing it
on GALS-JOP. The SystemJ compiler front-end takes the SystemlJ application program (.sysj) as
input and produces the AGRC graph of the compiled program. The compiler back-end identifies
and separates the CRCF and JCF. The CRCF is generated in the form of assembly code (.asm)
in a usual fashion. The generation of JCF differs from the one generated for the TP and TP-
JOP as the data-computations are no longer wrapped in the swifch-case statements. Instead,
the data-computations for each case is enclosed in Java methods (.java). The original System]
compiler back-end is modified to produce the JCF code in the required form. In order to execute
the CRCEF, the JOP is extended by utilizing the unused bytecodes (bytecodes are the instruction

set of JVM). This requires the modification to the JOP tool chain as well as to its hardware.
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Each CRCEF instruction (or a group of instructions explained in detail in the next sections) is
mapped to a single bytecode (or more than one bytecode in some cases). If there exists a Java
bytecode, performing the same operation as described by the CRCF instruction, then the CRCF
instruction is mapped to the existing bytecode (or bytecodes). If no such bytecode exists, then
an unused bytecode is used to map the CRCF instruction and hardware support is provided
to implement the functionality described by the CRCF instruction which is mapped to that
particular bytecode. The data calls launched by the CP to DP in TP and TP-JOP approach are
replaced by conventional method calls to those particular methods. It should be noted that the
data computations no longer require the case_number as they are recognized by their unique
name as in conventional Java code. The JOP tool chain describes the methodology to implement
an unused bytecode. These custom bytecodes are used as native methods in Java code (with
Native prefix). These native methods are replaced by the special bytecodes by the JOP tools.
The field values embedded in a CRCEF instruction can be passed as arguments to that method.
Hence, each CRCF mapping to bytecode results in a Java statement, which is always a method
and might or might not have a Native prefix depending on it if it is conventional method call or
is meant for a bytecode mapping. The data-structures of CP is implemented in the heap in the

form of array object; hence, a Java statement declaring arrays is also the part of the code.

The outcome of CRCEF translation is a Java program comprising of array declaration statement,
native methods representing CRCF instructions and the Java methods embedded in between
the CRCEF instructions performing data-computations. Now we have a Java class with a main
method and all the Java statements generated from CRCF translation are placed inside this
main method. The methods representing data-computations are also declared and implemented
in the same class having the same name as the System]J application. The details of the tool
translating CRCF into Java are described in Section 4.6.1 and an example which guides through

the procedure is given in Section 4.6.2.

The Java class (containing SystemlJ application compiled to Java targeted for GALS-JOP) is
compiled by the Javac compiler which reads class and interface definitions and compiles them
into bytecode class file. This code cannot be executed as it contains the Native methods which
are not real functions and are substituted by special bytecodes on application building with
JOPizer. The JOPizer is a JOP specific tool based on open source BCEL, which links a Java
application and converts the class information to the format that JOP expects (.jop). Native.Java,
a JOP system class, consists of native methods for low-level functions — the code we want to
avoid in application code as they require operating system or the Java native interface (JNI) [96]
support. Some JNI implementations add significant overheads, and are not suitable for Java

processor based embedded platforms [93].

The CRCEF instruction set also contains both jump and branch instructions. Since, Java does not

have goto statement, therefore, this functionality is incorporated in GALS-JOP with the help of
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a jump-table. A tool, called Jump-Table Generator (JTG), generates the jump-table. It scans
the compiled application file generated by JOPizer and generates a jump-table implemented in
VHDL comprising of the target addresses for the jump instructions. This tool is discussed in
detail in Section 4.6.3. As an alternative, the jump-table can also be generated by modifying the

existing tool set of JOP.

The method codes for all the methods reside in a main memory external to the JOP. The JOP
uses a method cache to hold the method code which has a conventional size of 4KB. The main
method of the Java class, containing the CRCF code of a SystemJ application translated to Java
statements as mentioned above, produces too big code upon compilation to fit in the conven-
tional sized cache. The GALS-JOP overcomes this problem by introducing a separate memory
which holds the CRCF code translated to Java statements permanently and has an additional ad-
vantage as it does not need to be loaded into method cache prior to its execution. This memory
is called Control Memory (CM) and it is initialized during the start up of the SystemJ program
on GALS-JOP as discussed in Section 4.12. Once initialized, this memory is locked and its
contents cannot be modified. The other methods, apart from the main method, are loaded into
the method cache from the main memory prior to their execution. Hence, program execution
switches between the CRCF and JCF and the next bytecode is fetched either from the CM or
method cache. As a result, the return to main method (CRCF code residing in CM) is different
from the return to other Java methods as it does not need to be loaded into cache. Once, the main

method is completely executed, it returns to boot method and executes the JVM exit method.

4.6.1 AJT-Assembly to Java Translator

Assembly to Java Translator (AJT) tool converts the assembly code of CP to native method as
shown in Table 4.1. Upon compilation for JOP, the native methods are replaced by the special
bytecodes by the JOPizer tool. Our translator parses the assembly code and translates each
assembly instruction into one or more Java native methods. We further illustrate this with the
help of an example of CP instruction. It performs a logic AND operation between a register

operand and an immediate operand provided in the instruction.

Rz <+ Rx AND Operand
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| Instruction | Java Translation | Mode
Native.aluimm(Rz, rand, Rx, Operand) immediate
AND Rz Rx Operand Native.aluind(Rz, rand, Rx, Rz)p indirect
Native.aluimm(Rz, ror, Rx, Operand) immediate
OR Rz Rx Operand Native.aluind(Rz, ror, Rx, Rz)p indirect
Native.aluimm(Rz, radd, Rx, Operand) immediate
ADD Rz Rx Operand Native.aluind(Rz, radd, Rx, Rz)p indirect
SUBV Rz Rx Operand Native.aluimm(Rz, rsub, Rx, Operand) immediate
SUB Rz Rx Operand Native.subimm(Rz, Rx, Operand) immediate
Native.ldrimm(Rz, operand) immediate
LDR Rz Rx Operand Native.ldrind(Rz, operand) indirect
Native.ldrdir(Rz, Rx) direct
Native.strimm(Rz, operand) immediate
STR Rz Rx Operand Native.strind(Rz, operand) indirect
Native.strdir(Rz, Rx) direct
Native.jmpimm(label_index) immediate
IMP Rx Native.jmpdir(Rx) direct
PRESENT Rz Operand Native.present(Rz, label_index) immediate
SENDATA Rx Method_id() indirect
CHKEND Rz Rx Native.chkend(Rz, Rx) indirect
SWITCH Rz Rx Native.wr(Rz, Rx,1) indirect
SZ Operand Native.sz(label_index) immediate
CLFZ Native.clfz(); inherent
CER Native.wr(0, CONST.IO_ER) inherent
CEOT Native.wr(0, CONST.1I0_EOT) inherent
SEOT Native.wr(1, CONST.IO_EOT) inherent
LER R7 Native.ldio(Rz, CONST.IO_ER) indirect
SSVOP Rx Native.wr(Rx, CONST.10_SVOP) indirect
LSIP Rz Native.ldio(Rz, CONST.10_SIP) indirect
SSOP Rx Native.strsop(Rx, CONST.I0_SOP) indirect
NOOP Native.noop(); inherent
’ LABEL \ Native.label(), \ inherent

Table 4.1: Translation of CP instructions to Java methods representing user specific bytecodes

This instruction performs logical AND operation on the contents of the register Rx with the
immediate operand, and stores the result in the register Rz. The information provided in the
instruction consists of source operand register address, immediate operand and destination reg-
ister address. When translating to Java, for each combination of assembly instruction operation
and mode, there exists a Java method which is mapped to new or existing bytecode during com-
pilation. The instruction fields are passed as the arguments in the Java statement. An example
of translation of assembly instruction to Java is given below where instruction fields Rz, Rx and

operand are passed as arguments.

Native.andimm(Rz, Rz, Operand);
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The translation of the assembly instruction performing immediate jumps is more complicated as
these instructions need the target address for their execution. In the assembly code, the targets
are labels. The AJT tool parses the assembly code and makes an index of all the target (those
which appear) labels in the order of their appearance. The addresses specified by labels are
available only after the processing of class file by JOPizer. The index of the label is passed as
the argument during the translation of the immediate jump and conditional branch instructions.
The index is used as address for the jump-table which consists of the target jump addresses.
It is worth mentioning that each label is also translated to a Java statement and helps to build
the jump-table as explained in Section 4.6.3. The Table 4.1 shows the translation of each CP’s

machine instruction to corresponding Java statements.

It is necessary to translate the whole assembly code into Java before it can be executed. All Java
statements generated by AJT tools are placed in the main method of the Java class containing

the SystemJ application program compiled for GALS-JOP.

4.6.2 GALS-JOP Example Code

The code generated for GALS-JOP is illustrated with the help of a simple example in Figure
4.6. It has only one clock-domain comprising of two reactions (starting at line 7 and 18, respec-
tively), two pure output (status-only) signals (declared at line 4) and one local signal (line 8).
The first reaction checks the local signal (line 10), if it is present, one of output signals is emit-
ted (line 11) and a statement is printed out (line 12). Then other signal is emitted (line 14) and
variable is assigned some value (line 15). The reaction ends with the pause statement (line 16).
In the second reaction local signal is emitted (line 19) and the value of the variable is printed
out (line 20). Next, code generated by the modified System] compiler is shown in Figure 4.7
where JCF (line 1 —17) is separated from CRCF (line 18 — 38) and given in the form of Java and
assembly code respectively. The Java data-computations wrapped in a switch-case statement in
the former case are broken into small methods now. Only an excerpt of the CRCF assembly
code is shown as the purpose is to illustrate the code generation for GALS-JOP rather than ex-
plaining the functionality. Three different blocks in AGRC are identified as data-computations
and are encapsulated in three different methods (line 5 — 14). The assembly code loads the local
signal (line 26) into a register and checks if it is present (line 27). If the signal is not present,
the control flow of the program is shifted to some other location pointed to by the label. If local
signal is found present, then data-lock position in the memory is locked by storing a 0 there
(line 27 — 30). Next, a data call is made (line 31) and the code checks for the result of the
computation (line 32 — 36) and the flow of the program is shifted accordingly.
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1 system {

2 interface {

3

4 output signal RE, TE;
5 }

6 {

7 {

8 signal pipi;

9 {

10 present (pipi) {
11 emit RE;

12 System.out.println ("GALS-JOP") ;
13 }

14 emit TE;

15 int u=5;

16 pause;

16 }

17 |

18 {

19 emit pipi;

20 System.out.println (u) ;
21 pause;

22 }

23 }

24 ><

25 {

26

27 }

28 }

29 }

Figure 4.6: SystemJ example code

1 //Java code for data computation
2 Public Class galsjop/{

3 public static int u=0;

4 .

5 private static method 0 () {

6 System.out.println (“"GALS-JOP”) ;
7 }

8

9 private static method 1 () {

10 u=5;

11 }

12 private static method 2 () {

13 System.out.println (u):;

14 }

15 }

16

17 // Assembly code for Control
18 L1 SEOT

19 CER

20 LDR RO $0001

21 AND RO RO #$f00O0

22 SSOP RO

23 LSIP RO

24 AND RO RO #$0

26 LDR R1 $0002
26 AND R1 R1 #$0001
27 PRESENT R1 L4
28 LDR RO #3

29 ADD R1 R6 #0
30 STR R1 #0

31 SENDATA RO

32 ADD R4 R4 #1
33 L2 LDR RO R1
34 CLFZ

35 SUBV RO RO #0
36 Sz L3

37 JMP L7

38 L3 CLFZ ;

Figure 4.7: SystemJ program compiled by separating the CRCF and JCF represented as assembly in-
structions and Java methods, respectively
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The code generated for GALS-JOP target for the above example is shown in Figure 4.8 in
GALS-JOP Java class (line 2) consisting of JCF methods (line 4 — 13) and CRCF code is inside
the main method (line 15). The main method starts with the array declaration which reserves the
space in the heap where the data-structure of the CRCF resides and, in fact, emulates the data
memory. As mentioned earlier, each label of CRCF is translated to a native method (line 19)
and the corresponding bytecodes are looked for after compilation to build the jump-table. The
contents of the environment registers are written using the existing native methods (bytecodes)
specific to JOP. The PRESENT statement (line 29) is provided with the index of target label
as argument and performs conditional jump. The data calls implemented using SENDATA are

reduced to conventional Java method calls (line 34).

//code for GALS-JOP
public class galsjop {
int u=0;

private static void methodcall O0( ) {
System.out.println ("GALS-JOP") ;
Native.ldrimm (15, 1 );
Native.strdir (15, 0x2);

}

private static void methodcall 1( ) {

10 u=5;

11 Native.ldrimm (15, 1 );

12 Native.strdir (15, 0x2);

13 }

14

15 public static void main (String[] args) {

16 int[] CA = new int[CAsize];

17 Native.cabaseaddr () ;

18 e

19 Native.label(); //L1

20 Native.wr (1,Const.IO EOT);

21 Native.wr (0,Const.IO ER);

22 Native.ldrdir (0, 0x1);

23 Native.aluimm (0, rand, 0, 0x£f000) ;

24 Native.strsop(0,Const.IO SSOP)

25 Native.ldio(0,Const.IO_SIP);

26 Native.aluimm (0, rand, 0, 0x0) ;

27 Native.ldrdir (1, 0x2);

28 Native.aluimm (1, rand,1,0x0001) ;

29 Native.present (1,4);

30 Native.strdir (0, 0x0);

31 Native.ldrimm (0, 2) ;

(

(
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el

32 Native.aluimm (0, radd, 0, 0x0) ;
33 Native.strimm (1, 0x0) ;

34 Methodcall 0();

35 Native.aluimm(4,radd,4,1);
36 Native.label () ;

37 Native.ldrind (0, 1) ;

38 Native.clfz();

39 Native.subv (0,0);

40 Native.szjump (3);

41 Native.label ()

42 Native.jmpimm(7) ;

43 Native.clfz();

Figure 4.8: Example code ready for execution on GALS-JOP generated by AJT tool translating the
CRCEF instructions to Java
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4.6.3 JTG - Jump-Table Generator

The CRCF instruction set also consists of both conditional and unconditional jump instructions.
The jump in assembly is performed with the help of labels, which are symbols representing the
memory addresses of instructions or data. The assembler calculates the address of a label rel-
ative to the origin of the section where the label is defined during assembling. Java has no
goto statement and GALS-JOP is enriched with this functionality by using special bytecodes.
These CRCEF instructions are mapped to special bytecodes which are provided with the hard-
ware support in the form of a jump-table to emulate the jumps. The Jump-Table Generator
(JTG) generates a jump-table which contains the target addresses of all the labels as shown
in Figure 4.9. Apart from CRCEF instructions, the labels appearing in CRCF assembly code are
also translated to native methods as shown in Table 4.1 and are replaced by special bytecodes by
the JOPizer. The bytecodes for each method are available in the JOP compatible file generated
by JOP along with the start address of the method. The JTG tool scans it and looks for the main
method which contains all the special bytecodes representing the CRCF instructions including
the bytecodes for labels. The JTG looks for the bytecodes representing the source label and,
each time it comes across such a bytecode, its corresponding address is calculated by adding its
location number to start address of the method. The absolute addresses of the labels are saved
in the jump-table in the order of their appearance. The final table size depends on the number
of the label entries. Hence each jump bytecode is accompanied by an index of the label as a
parameter which is then used to read the target address from the jump-table. The jump-table is

implemented in an on-chip RAM and initialized at the start.

/lJava code Jump-table
IICRCF assembly code . 0
Native.label();
Label_0 NOOP Native.noop(); 3 Target address to
o Label index from Label_2 Java program counter
PRESENT Rz Label_ 1 Native.present(Rz, label_1); Top of Stack
Label_1 LDR RZ #operand Native.label(); | |
Native.ldrimm(Rz, operand) | |
JMP #label_0 ! !
Native.jmpimm(label_0) —
NOOP o
Native.noop(); Label n1

Figure 4.9: Jump-table generation procedure illustration

4.7 GALS-JOP Architecture

The GALS-JOP executes the code where both CRCF and JCF are merged into a single class.
The JOP architecture is augmented with memories, register and other components to provide

architectural support for the CRCF operation at register transfer level.
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4.7.1 Memory Organization

GALS-JOP has a number of functionally-specific memories, which contribute to the faster Sys-

temJ program execution.

Main Memory

The main memory is inherited from JOP and it is where SystemlJ application code compiled for
GALS-JOP resides. The size of main memory is 2 MB and, once application code is loaded,
the remaining space is reserved for the heap where all the objects reside as shown in Figure
4.10. It contains all the initialization code together with CRCF and JCF code prior to their
execution. The CRCF data-structures are implemented in an array, called Control Array (CA),
and reside in the heap part of the main memory. The CRCF data-structure is used to implement
asynchronous (clock-domains) and synchronous concurrency (reactions). The data-structures

of the CRCF program has been discussed in details in Chapter 2.

External Memory Internal Memories
Main Method code Transferred once at
inititialization
(Program and data structure
intialization) Control Memory (CM)
(main method)
(Z
T Data (Java) methods code
g IM1)
=
=]
| b ]
o
Q
o
39 ™2 JMs transferred as
B required Method cache
S All methods loaded
1< r (except main method)
o
8 next
Qo
K

Start-up methods
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Jump-Table memory
Target address
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Figure 4.10: GALS-JOP memory organization
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Besides main memory, GALS-JOP has a number of additional memories for faster access to the
program instructions. The method cache is inherited from JOP and it always contains currently
executing Java data method except the main method. On invocation of another Java method, the
method cache is loaded with the new method code to be executed. Also, not shown in Figure

4.10, is the stack that serves as a temporary local storage for all data methods.

Control Memory

This memory is used to hold the method code of the main method of the Java class targeting the
GALS-JOP. The main method of the application class, which contains the CRCF code trans-
lated to native methods, has an exception as it is not loaded into the method cache prior to its
execution. The reason for adopting this approach is twofold. Firstly, conventional method cache
is unable to hold the large CRCF code due to the size restriction. Secondly, whenever a method
is called, it is loaded into cache and on return, the method cache is loaded with caller method.
SystemJ program flow is controlled from the CRCF part of the program residing in the main
method and calls JCF as and when required. Suppose, if the cache size is modified to hold the
whole CRCF code, it will be loaded to the method cache whenever it returns after executing JCF
code enclosed in a method. The frequent loading of method cache with relatively large main
method is expensive and slows down the program execution. Therefore, CRCF code is stored in
a separate memory, called CRCF memory or Control Memory (CM). This memory is initialized
with the main method’s code during the start-up. Unlike method cache, this memory is locked
after initialization and does not change its content during the program execution. Depending on
the execution flow, the bytecodes are fetched from the CM or method cache for CRCF and JCF
code execution, respectively.

Register File

The CRCEF instructions define a set of registers which are used to stage data between memory
and the functional units. In its original implementation, the register file is implemented as
multiport memory with two read ports and single write port. In case of GALS-JOP, the reading
of the operand from the register file is sequentialized, therefore, expensive multiple read port
is not needed any more. Hence, the register file incorporated in GALS-JOP is single port in
contrast to original and allows reading only operand at a time. The register file is implemented

as an array of registers having dimensions of 16x16.
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Jump-table

Another memory incorporated in the GALS-JOP is jump-table which is implemented using a
ROM. The jump-table is essentially used to compensate a lack of goto in Java (and JVM). The

details of jump-table along with it functionality have been discussed in Section 4.6.3.

It should be noted that all GALS-JOP memories, except the main memory, are implemented as

FPGA internal memories and can be customized to the necessary application-specific size.

A number of registers are also introduced which are used to hold different addresses and some

are more important which are discussed below.

Temporary Registers

Two temporary register 7/ and 72 are used to provide the interface between new components
added and the base JOP processor without interfering the stack. They are a sort of alternate to

the top two element of the stack. The data transfer between Top of Stack and 7/ is also allowed.

MCA Registers

This register is used to hold the contents of jpc register when main method invokes another
mehtod. Under normal circumstances, whenever main method invokes another method, the
relative address of next bytecode to be executed available in Java program counter (jpc) is
pushed onto the stack. Upon return, the caller method is loaded into the method cache by the
memory subsystem. The memory subsystem also provides the start address of the method in
the cache. The relative address is popped from the stack and added to calculate the address of
the next bytecode for execution. In case of GALS-JOP, the main method is not reloaded upon
return, therefore, start address of the main method is not available and also relative address is
not pushed on the stack. Instead, the absolute address of the next bytecode of the main method
is stored in a register. The main_continue_address (MCA) is used to hold the address of next
bytecode to be executed when main invokes any method. When returning to the main method,

the address in the MCA is loaded into Java program counter to fetch the next bytecode.

CAB Register

This register is used to hold the base address of the array situated in heap implementing the
data-structure of the CRCF. Figure 4.11 shows the mechanism handling the array access. The
reference of the array object stored in the heap is read when accessing an array. The array
reference points to a handle area and the first element in the handle area points to the first

element of the array and the length of the array can be found at the offset 1 in the handle area.
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Array Handle Area
Element 0 Handle |, Array reference
Element 1 Array length
Element n-1

Figure 4.11: Accessing array elements from the heap

In order to access the array element, it is required to fetch the array reference and handle from
the main memory. This requires multiple access to the external main memory and is therefore
expensive. The access to CA is simplified and accelerated by using the control array base
(CAB) register that stores the base address of array to provide direct access to the CA. The index
of memory element is simply added to the array base address before performing the memory
read or write operation providing fast and direct access to the arrays. Otherwise; each CA access
will go for high latency read of object reference and CA base address. This is important as the

CRCEF code frequently access the data-structures implemented in the CA.

Level Tracker Register

The Level Tracker register is the part of Level Tracker circuitry that keeps the track of depth of

nested calls of the methods. The Level Tracker provides the following information:

¢ It informs the source of next bytecode will either be CM or method cache.

* It indicates that whether a return is being to main method or some other method.

This information is used to make the decision about the loading of caller method into method
cache upon return. The LT register is implemented as a counter. It is reset upon main method
execution and increments whenever a method is invoked. It is decremented upon return from a
child method to the parent method. This is used to evade the loading of the main method into

method cache.

4.7.2 GALS-JOP Instruction Set

It should be noted that we are dealing with three different instruction sets: bytecodes, mi-
crocodes and CRCEF instructions. The CRCEF instructions are translated to Java. The bytecodes
are the instructions that make up a compiled Java program and are executed by a Java Virtual
Machine as JVM does not assume any particular implementation technology. The microcode
is native instruction set of JOP and bytecodes are translated into JOP microcodes during their

execution.
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4.7.3 Bytecode Extension

The additional bytecodes incorporated into existing JOP’s instruction set functionally corre-
spond to the instructions of the Control Processor (CP), which are now adopted, and modified
where necessary, into GALS-JOP instruction set. However, as the CP has certain number of in-
structions with identical or similar functionality to the existing JOP’s bytecodes, those instruc-
tions are not included into GALS-JOP, thus resulting in a reduced total number of instructions
compared to TP-JOP. There are 31 CRCEF instruction which need to be mapped to 23 free avail-
able byte-codes. This is achieved by merging the instructions which perform similar function.
For example, all alu instructions with immediate mode are merged and the function to be per-
formed is passed as an argument. In total, GALS-JOP has 21 more bytecodes when compared
with the JOP. The native methods are replaced by the special bytecodes and naming convention
for the special bytecodes is jopsys_name. For example, Native.xyz () method will be replaced

by jopsys_xyz bytecode.

Bytecode extension

jopsys_ldrind

jopsys_strimm

‘ jopsys_aluimm

Jjopsys_ldrdir Jopsys_jumpimm Jjopsys_aluind
Jjopsys_strio Jjopsys-suby Jjopsys_cabaseaddress
jopsys_label Jjopsys_present jopsys_ldio
jopsys_jumpind JOpSYS_sSz Jjopsys_clfz

Jjopsys_strdir

jopsys_chkend

jopsys_initctrl

jopsys_strind

Jjopsys-switchjump

jopsys_label

Table 4.2: List of bytecodes introduced to support CRCF

4.7.4 Microcode Extension

The microcodes are used to implement register transfers in JOP’s data-path. We introduce new
microcodes to implement the functionality of new bytecodes. These new microcodes fit within
the existing microcode ROM of JOP without using any extra resources [50]. Careful analysis
of these register transfers resulted in the need of only 23 new microcodes as given in Table 4.3.

The register transfer of each microcode is provided in the Appendix E.

4.7.5 GALS-JOP Start-up and Program Flow

The boot up sequence of GALS-JOP is shown in Figure 4.12. The initial part of start-up proce-
dure is very similar to JOP; therefore, its details are omitted. When JOP is the target, all the Java
methods are loaded into method cache first for faster access. During the start-up procedure, the

method cache is loaded with the bytecodes of the Startup.boot() method. A similar approach
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Microcode Description

stdmbaseaddr Stores the base address of CA into CAB register

popfromstack Loads the contents of A into T1

wrrf Writes the content of T1 int to the regiter file

rdrf Reads the contents of resiter file into T1I.

lockmain Indicates that main has been loaded

ldmaincontaddr Load the address of next instruction to be executed into T1

ldmaininvokcheck Loqu the flag indicating that method is being invoked by
main

ldmaininvokedcheck Loads the flag telling that main is being invoked

wretrl Loads the contents of main method into control memory

settick Sets the bit when clock-domain has completed the tick

reslevel Resets the level tracker

inclevel Increments LT

declevel Decrements LT

. Stores the address of next instruction to be executed by main

stmaincontaddr .
into MCA

ldmainreturncheck Checks wheher returning to main

aluop Performs arithmetic logic operation

pushonstack Pushes content of Tl into A

clrzf Clears the zero flag

dmaddr Calculates the address for CA

srzf Sets the zero flag

ctrlinitfinished Indicates that control initialization is finished

findmax Finds the maximum nibble

loadjmpaddr Loads contents of jump-table into T1

codes

Table 4.3: Description of extended microcodes incorporated to implement the functionality of new byte-
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applies to the GALS-JOP with the exception of the main method, comprising of control flow
instructions (CRCF) and calls to data-computations methods (JCF), which are not loaded into
the cache. The main method is permanently loaded into another fast memory called Control
Memory (CM) during the initialization phase. Once start-up is completed, the main method is
invoked. Invocation of the main method does not require access to the method cache and its
bytecodes are fetched from the CM, which is another source of bytecode now together with the
method cache. All the methods invoked by the main method are loaded into and executed from

the method cache until the control returns to main method.

Power-up FPGA

¥

Download configuration and generate the
internal reset

¥

Start executing micro-codes from address
0

v

Downloading application into main
memory

v

Perform start-up in Java by invoking
boot() and load it to method cache

A 4
Initialize java.lang.System
Static class initializer
Initialize the data structures

A 4

Download main method into CM and store
start address in MCA

A 4

Start executing main from CM

A 4

Create array object in heap and store
base address in CAB

Figure 4.12: GALS-JOP start-up and execution flow
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The management scheme for the bytecode fetch from two spatially distinct sources is shown
in Figure 4.13. Whenever main method invokes a Java method, the address of the next byte-
code is stored in MCA register. This address is loaded into JOP’s program counter (jpc) to
resume the execution of the main method after returning from JCF method. Similarly, return
to the main method is different from the return to other methods as it does not require main
method to be loaded into the cache, which saves the time otherwise consumed in loading the
cache. Hence, we have different strategies for invoking main and other methods which re-
quires keeping track of method call nesting by using a Level Tracker (LT). The LT is enabled
as soon as CM is initialized and main method is invoked. Any method invocation increments
the Level Tracker, and return decrements it. If Tracker is enabled and a method is being in-
voked with level 0, it means the main is being invoked and level 1 means a current executing
method has been invoked by the main. Similarly, when returning, the level is first decremented,
and then it is checked. The return with level 1 means returning to the main method. The
Level Tracker Decoder (LTD) generates different check signals such as main_invoked_check,
main_invokes_check and main_returned_check which are used to carry out different invoke and

return strategies.

4.7.6 GALS-JOP Data-path

The GALS-JOP data-path is presented in Figure 4.14. The JOP architecture consists of the
processor core, a memory interface and a number of 10 peripherals. The JOP core has four
pipeline stages: Bytecode Fetch, Fetch, Decode and Execution (or Stack) explained in detail in
Chapter 3. In the Bytecode Fetch stage, the Java bytecodes are fetched from the internal RAM.
In the Fetch stage, microcodes are fetched from the memory. In the Decode stage, microcodes
are decoded and control signals are generated. The address for the stack RAM is also generated
in the same stage. In the Execution stage, arithmetic/logic operations are performed. The
operands are top two elements of the stack stored in registers A and B and the result is stored
back in register A. The GALS-JOP design extends JOP’s data-path in an upward compatible

fashion.

The additional components introduced in the data-path are: a register file memory, a jump-
table, LT, MAX unit, various registers and multiplexers shown as shaded in Figure 4.14. The
MAX unit finds out the maximum nibble from the word fed to it. Most of the registers are used
to store address information, whereas registers 7/ and 72 are two general purpose temporary
registers used for data manipulation. The memory for CA is allocated on the heap by simply
declaring the arrays in Java. The bytecode jopsys_cabaseaddr, stores the base address of array
in the CAB register, to provide direct access to the CA. Otherwise, each CA access will require
expensive read of object reference and CA base address. Loading an immediate value into

a register is the most frequently occurring operation. This is implemented by jopsys_Ildrimm
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instruction which needs only two cycles for execution. The address of a register in the register
file memory and the contents to be written are provided as TOS (top of stack) and TOS-1. The
loading of data from the CA to register file is done by using the jopsys_Idrdir and jopsys_Idrind.
All the CA addresses are relative to the base address and thus are added to the base address to
find the physical address. The data is stored in CA using jopsys_strimm, jopsys_strind and
jopsys_strdir.

In case of jump or branch instructions, the target addresses are available in the jump-table. The
index is provided on the TOS as argument which is used to read the required target address into
T1. The conditional jumps are implemented through the jopsys_sz and jopsys_present where
target address is loaded to T1 and data to be checked is pushed on TOS. The program counter
is loaded with target address from T1 if the condition is satisfied. The jopsys_switchjump is
the most complex and exorbitant instruction. The pointers to all the cases are stored in the
contiguous memory locations in ascending order following the switch node. The address of
switch node is read from the register file memory. The switch node value read from the memory
contains the number of the case to be executed. This value is added to switch node address and
physical address is calculated. The value read from the memory is loaded into the jpc to jump
to the desired location. The jopsys_chkend instruction loads the operands from register file
into T1 and T2. The four nibbles in Rx and msb nibble of Rz are compared and the maximum
nibble is stored in the T1. The GALS-JOP interacts with environment through memory-mapped
10s containing a set of registers. The input signals and environment ready signals are loaded
from the 10 registers using jopsys_Idio instruction and contents loaded are directly written into

register file.

4.8 Experimental Results

We demonstrate the effectiveness of the proposed architecture by running benchmark examples
on it. Although we have large number of benchmark examples, we have selected only those
SystemJ benchmarks which have been used in previous implementations. The characteristics of
the benchmarks have been described in Chapter 3. The SystemJ codes of benchmarks are given

in the Appendix D.

All presented data has been collected from the experiments carried out by using the cycle-
accurate ModelSim simulator targeting Altera Cyclone II FPGA with 70k logic elements, 2MB
of RAM and running at 50 MHz clock. The system is capable of running at 100 MHz but the

results presented are for 50 MHz clock for fair comparison with earlier published results.
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4.9 GALS-JOP Performance Evaluation

The GALS-JOP performance, given in Figure 4.15, is very close to the TP-JOP performance
as might be expected. TP-JOP performs better than GALS-JOP due to concurrent and native
execution of both control-oriented and data-oriented operations. The TP-JOP should perform
way better than GALS-JOP and especially when executing control-dominant applications. The
GALS-JOP translates the control-operations represented in assembly code to Java statements
representing special bytecodes. The functionality of these bytecodes is implemented through a
sequence of microcodes culminating in the execution times that vary between 1 and 20 cycles,
which are worse than the 3 to 4 cycles taken by the non-pipelined custom CP to execute CRCF
instructions. The GALS-JOP is 2 to 10 times faster than the JOP, 3 to 53 times faster than the
TP.

The performance of GALS-JOP being very close to the TP-JOP, despite the fact that it is single
processor, can be attributed to a number of factors. First, it can be attributed to the absence of
the communication interface, therefore no communication overheads are incurred in terms of
time and logic resources. Second, some of the most frequently occurring control instructions
are optimized and take fewer cycles than custom CP, thus making the execution of control
faster. Third, the data-computations are decomposed into methods instead of wrapping them
into switch-case statement which is expensive due to inefficient implementations inherited from
JOP. These data-computations are now decomposed into small methods (each case is wrapped
into a method) and need less time for loading them into the cache prior to their execution as
compared to a large single method containing all the data-computations. Finally, GALS-JOP
efficiently handles return to the main method by avoiding its otherwise frequent loading into

method cache.

2.00 LEs
S
= 8000
= |1.50
£ mJoP 6000 "GPP
2 100 mRIOP 4000 - mlop
< mTP-JOP 2000 - mRIOP
S uTP
5 |00 B GALS-JOP 0 -
E 0.00 - @Q \0Q \OQ < ,\0Q ,\OQ TP-IoP
: ¢ NI B GALS-IOP
dl  runner cl apscdOapscdl [
(a) GAL-JOP execution time comparison (b) Resource usage comparison

Figure 4.15: GALS-JOP performance results
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Figure 4.15b shows the resource utilization for different target platforms in terms of logic ele-
ments executing the code generated by compiler where control (CRCF) is separated from the
data-computations (JCF). The TP is the most expensive in terms of real state usage. When com-
pared with the TP and the TP-JOP, GALS-JOP uses 41% and 31% fewer resources, respectively.

The GALS-JOP approach is preferred as it uses a single processor to achieve the same results
as TP-JOP (two processor approach) which is more costly. This single processor realization is
faster by an order of magnitude when compared to other single processor counterparts such as
GPP (NIOS 1II) and JOP itself. As expected, it is typically slightly slower than TP-JOP, which
hustles through code by using significantly more silicon (logic elements when implemented in
FPGA).

4.10 Summary

In this chapter, we introduced two new execution platforms for SystemJ GALS programming
language. The first one is the JOP based tandem processor, TP-JOP, that uses two processors to
execute control (CP) and data dominated Java (JOP) parts of SystemJ programs, respectively.
This implementation served as the starting point to arrive to the ultimate goal of a single proces-
sor suitable for efficient and prudent execution of SystemJ programs. The GALS-JOP processor
merges the features of control processor (CP) into Java processor (JOP) and, so far, represents
the compact execution platform for SystemJ. A modified programming and memory allocation
model, together with the enhanced instruction set based on the original JOP processor, resulted
in very efficient implementation. Also, this implementation preserves all features of the original
JOP and all new features built into the GALS-JOP preserve ability to calculate execution times
of resulting programs, making possible the analysis of SystemJ programs in terms of the worst
case reaction times (WCRTSs), where the WCRT is the longest time of any individual tick of a
clock-domain within SystemlJ program. Those times can be calculated for each clock-domain
separately and used in analysis of real-time features of SystemJ programs. GALS-JOP also
preserves existing SystemJ compilation and design flow with minimal additions to the back-end
of the compiler. Its current implementation is meager in terms of required resources (in FPGA
implementation). As GALS-JOP was a starting point, a better refined approach is presented in
the Chapter 5.
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Chapter 5

JOP-Plus

The focus of this research is to develop an efficient execution platform capable of executing the
programs specified and structured in SystemJ, faster by using minimal logic resources at the
same time. We obtained the performance improvements in program execution by separating the
control flow from data-computation and executing them in parallel on a combination of custom
and general purpose or domain specific processors better optimized for the SystemJ based ap-
plications. The resulting heterogeneous multiprocessor architectures discussed in Chapters 2
and 3, called TP and TP-JOP, used too many logic resources. In order to overcome the prob-
lem of high resource usage, we executed the control flow and data-computations on a single
processor instead of using two processors. The success of such an approach was demonstrated
in Chapter 4 in the form of GALS-JOP processor. But, this approach required the translation
of concurrency and control flow (CRCF) programming model represented as assembly instruc-
tions to the data-computation programming model represented as Java statements (also known
as JCF - Java control flow). This high level translation resulted in inefficient code generation
and needed extra hardware resources in the form of jump-table which could be avoided.

We are proposing a novel approach which does not require the translation of one programming
model into another programming model. Instead, it provides support for both programming
models in a single processor with two execution modes. Each mode executes one programming
models independent of the other. The new processor, called JOP-Plus [97], can be used for em-
bedded and even real-time applications in which the majority of code is written in Java, and the
overall programs specified and structured in SystemlJ [8] system-level concurrent programming
language. The combination of processing attributes enables JOP-Plus to perform equally well
in both data-dominated and control-dominated applications-in many cases deleting the require-

ment for separate heterogeneous Processors.

This chapter presents an approach to efficiently mix Java with asynchronous and synchronous
concurrency and execute it on a specialized Java processor extended with capabilities for con-

currency and reactivity as a separate mode of operation. The background for the proposed
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approach is described first. Next, execution flow of SystemlJ programs is discussed in detail and
its effects on JOP-Plus design are given. Finally, the details of JOP-Plus implementation and
evaluation of its performance are provided. During this chapter, we will come across different
instructions being executed on the same processor. We will use terms byte-code, microcode and
instructions while referring to JVM instructions, JOP native instructions and CRCF assembly

instructions, respectively.

5.1 CRCYF Instruction Set Architecture

CRCF program model shares the instruction set architecture (ISA) with the CVM and ReCOP
but in a slightly different way. The CVM and ReCOP had 23 instructions with varying address-
ing modes. The complete instruction set of ReCOP along with its precise description is provided
in Appendix A. The JOP-Plus has 33 instructions and each instruction has one of the following
addressing modes: immediate, direct, indirect or inherent. The CRCF ISA specifies the size of
CRCEF program memory as 64K words, 16 registers and 16-bit instruction-word. CRCF instruc-
tion set has a variable instruction length i.e., a single word or two words. The instructions that
require a target address or immediate value make use of the second word. The CRCF instruc-
tions has a single encoding format as shown in Figure 5.1. The instruction is broken up into
fields of the different sizes. The first 8-bits are used to represent the opcode; currently CRCF
utilizes 33 out of 256 possible opcode values. The next 8-bits are used as references to the two

registers Rz and Rx (4-bits each one) in the Register-File.

Instruction word 1 Opcode (8-bit) Rz(4-bits) | Rx 4-bits) }

Instruction word 2 Operand (16-bit)

uononsul piom ajbuig
UOIONSUI SPJOM OM |

Figure 5.1: CRCF instruction format

The instructions can be organized into different categories such as arithmetic-logic, transfer
between memory and registers, transfer between environment and registers, flow control and

special purpose instructions.

5.2 Improving GALS-JOP Approach

Although, JOP [93] itself as a target is possible but resulting performance is fairly poor. Some
improvement of performance was achieved with Reactive-JOP (RJOP), where reactivity was

directly supported by hardware [91]. However, the separation of CRCF and JCF offers a larger



5.2 Improving GALS-JOP Approach 113

space of SystemJ [8] execution strategies. Both TP-JOP, based on the idea of tandem processor
execution, and GALS-JOP have demonstrated advantages of separation of control flows as they
have different execution patterns and requirements. While, TP-JOP uses two processors (JOP
and ReCOP) to implement the two control flows (CRCF and JCF), the GALS-JOP extends
JOP [93] to provide hardware support for CRCF code execution along with Java code execution.
This sophisticated merging of CRCF and JCF execution results in efficient implementation. The
later requires some further modifications of the back-end of the compiler. The GALS-JOP [95]
approach produces performance results close to the existing TP-JOP platform for executing
SystemJ programs while using far few logic resources. But, this approach has the following

short-comings which could be refined and improved:

* Need of AJT tools: GALS-JOP processor cannot execute the code generated by the Sys-
temJ compiler back-end as such therefore, needs modifications. The modifications intro-
duced involve a translation tool, called Assembly to Java Translator (AJT), which trans-
lates the CRCF assembly instructions to Java statements as shown in Figure 5.2. The JOP
is unable to interpret the control flow given in assembly code; therefore, translation of
assembly code to Java statements is necessary for its realization. If we could devise a
mechanism to support control flow directly on the Java processor, it will make the AJT

tool redundant and can be avoided.

SystemdJ compiler back-end and control flow separator

h 4 ¥
CRCF as control JCF as data
code in special processing as Java
instruction set methods
|
\
AJT

} |

Code compbiner

CRCF wrapper and
loader

! ! !

JOP-Plus GALS-JOP

Figure 5.2: JOP-Plus design flow

* Inefficient translation: The translation of control flow (CRCF) given in assembly in-
structions to Java statements is inefficient. When translating assembly code to Java, the
information provided by different instruction fields, except opcode, is passed as argu-

ments. Upon compilation, the Java statements carrying the arguments produce multiple
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Java byte-codes which push the operands on the stack and perform the required oper-
ation. For example, an ALU instruction with immediate mode requires the immediate
value, operand source register address, destination register address and ALU operation
information to be passed as arguments as described in Chapter 4. This Java statement is
compiled to 5 byte-codes majority of which just push the arguments on top of the stack
as shown in the Table 5.1.

CRCF Assembly | Translation to Java Byte-codes generated
upon compilation

AND RO #0 Native.aluimm(0,rand,0,0x0) | iconst_0

iload

iconst_0

iconst_0

jopsys_aluimm

Table 5.1: CRCF assembly instruction translated to Java and compiled to bytecodes

* Inefficient execution: During the execution, every Java byte-code is translated to either
one, or a sequence of microcode instructions. Each of this byte-code requires one to
multiple clock cycles for execution depending on whether the argument is a constant or
fetched from external main memory. Furthermore, the data structure of CRCF is stored
as an array in heap area of main memory situated external to the core. CRCF instructions
perform operations on this data structure and frequently access it. The slow main memory
has high access latency resulting in reduced instruction throughput.

* Constraints on available byte-codes: Due to constraints on available byte-codes, a num-
ber of assembly instructions are mapped to a single more general byte-code as shown in

Table 5.2. This flexibility is achieved at the cost of performance.

CRCF Assembly Translation to Java statement
AND Immediate
ADD Immediate
XOR Immediate Jjopsys_aluimm
SUB Immediate
OR Immediate

Table 5.2: Mapping multiple assembly instruction to a single bytecode

* Jump-table: GALS-JOP requires an extra on-chip memory in the form of a jump-table to
implement the control flow. The on-chip embedded memories are expensive and add to

the cost of the system.
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We present an integral attempt to address the concurrency and reactivity of SystemJ by using
existing JOP in a novel way culminating in a new processor named JOP-Plus [97]. Instead
of translating the CRCF assembly code to Java byte-codes, the support for assembly program
model is provided thus completely eliminating the need of the AJT tool. Also, it is not required
to pass any information as argument during translation to Java as the CRCF instruction set is
preserved and information is available as part of the instruction. It has an efficient way to invoke
a method and return from the method without using the Level Tracker (LT) and its associated

logic as mentioned in Chapter 4.

5.3 JOP-Plus - A Refined Approach

This work combines and extends the ideas of TP-JOP and GALS-JOP onto a new processor
core JOP-Plus. The JOP-Plus processor uses JOP as its base, executes concurrent programs that
comply with Globally Asynchronous Locally Synchronous (GALS) formal model of computa-
tion compiled in a way clearly distinguishing between concurrency and reactivity control flow
(CRCF) and Java control flow (JCF). The main idea is to provide support for the two separate
components of the control flow in SystemJ programs, CRCF and JCF separated during compi-
lation, by extending the instruction set of the original JOP while using single execution unit and
data-path.

It works by introducing certain new components such as Register-File (RF), MAX unit and
registers but not duplicating the main execution resources of JOP. This allows resultant JOP-Plus
core to appear as two "logical" processors allowing it to execute two different program models.
At any given time, the programming model under execution uses all the resources of processor,
and only the current programming model can invoke the other programming model. In this
process it switches the programming mode resulting in suspension of current program model
and the resources become available for the other programming model. The program models
do have independent execution, but they are called by each other. These control flows can be
supported in the execution platform by extending JOP. The separation of the CRCF and JCF
1s maintained by storing those two parts of SystemJ program in two different memories. The
execution capabilities of JOP are extended with a number of new byte-codes, as well as with the
microcodes needed for their implementation. The new core has single instruction decoding and
execution unit and performs very efficient switching between CRCF and JCF when necessary.
The SystemJ program execution is guided by the CRCEF, which in turn activates JCF whenever
Java action nodes need to be executed. When JCF execution is complete, it returns to the CRCFE.
At the same time the existing compiler does not require any major modifications as it just needs
to organize the code in a way which is compatible with JOP-Plus. This is done with the help of

a simple tool which processes the information generated by compiler and assembler.
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Furthermore, this approach deploys a very efficient technique to call the data-computations
which is different from TP-JOP and GALS-JOP. In case of TP-JOP, each processor supports
one of the two different programming models; CP supports assembly program model and JOP
supports Java program model. The data-computations are performed by the JOP which decodes
the information sent by the CP to select the required computation. In case of GALS-JOP,
we translate one programming model into other and then data-computations enclosed inside
a method are invoked in conventional way. The JOP-Plus is unique as it does not run both
models at the same time and does not need to pass information to call data-computation like
TP-JOP. Furthermore, it does not need any translation tool like GALS-JOP to translate CRCF
assembly code to JCF format i,e,. Java. The JOP-Plus is capable of executing both programming
model and, while being in one programming mode, it can directly invoke the required data-
computation given in the different programming model. Hence, invoking a method containing
data-computation is accompanied by a program model invocation. This seamless integration
completely eliminates the need of translator and communication medium by executing them
on a single component in time multiplexed manner based on demand with CRCF leading the

execution. The execution pattern of JOP-Plus at any point of time is shown in Figure 5.3

CRCF

JCF (JAN)

JCF (other Java methods)

Time
Figure 5.3: Control flow of SystemlJ program

5.4 Compilation and Execution Strategy

Front-end of the SystemJ compiler [38] transforms a SystemJ program to an intermediate repre-
sentation called Asynchronous Graph Code (AGRC) from which back-end of the compiler can
target different execution platforms. Figure 5.4 illustrates compilation and execution strategies
of interest for the JOP-Plus as the target execution platform. The SystemJ back-end separates
the concurrency and reactivity control flow from the Java control flow. The CRCF is generated
as assembly code and JCF is generated as Java code. The JCF code consists of variable dec-
laration and methods implementing the data-computations corresponding to Java action nodes
(JAN). The CRCF assembly code is assembled using ReCOP assembler producing machine
code. This machine code, represented as hex values, is enclosed in an array and stored in the

heap section of main memory from where it is downloaded into CRCF program memory dur-
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ing start-up. Java code performing this task is called CRCF loader code. We generate a Java
class which contains both the JCF code and CRCF loader code with later being the part of
main method. This Java class is compiled using javac compiler and the resulting class file is
processed by JOPizer [93] tool to convert to a format compatible with the JOP-Plus execution
platform. On start-up, JOP is initialized and main method is invoked which downloads the
compiled code and switches to the CRCF program execution. We intend to remove the CRCF
loader code in future by directly downloading the hex code into the CRCF memory during the

boot up which will help in reducing the size of application.

’ Systemd Program ‘

}

’ SystemdJ compiler — front-end ‘

}

’ AGRC program graph ‘

}

Systemd compiler back-end and control flow separator

Y A,

CRCF as control JCF as data
code in special processing in Java
instruction set methods

A4

CRCF Assembler
(compiled code)

)

CRCF wrapper
(Compiled code enclosed
in Java arrays)

} !

Generate loader code and combine with
JCF

}

JOP-Plus

Figure 5.4: JOP-Plus compilation and execution strategy

5.5 JOP-Plus Significant Features

The JOP-Plus is a refined approach with some clear advantages over the previously adopted

strategies. Some of more important features of the JOP-Plus are discussed next.
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5.5.1 CRCF Memory Concept

Mapping System] programs [38] onto CRCF and JCF is followed by the code generation which
uses a special instruction set for CRCF and standard Java for JCF. Instead of fitting the special
CRCEF instructions into limited number of unused bytecodes as was the case with GALS-JOP,
we preserve the instruction set. They are compiled and stored into a separate program mem-
ory, called CRCF program memory, which is in addition to the main memory where JCF code
resides. Now there are two instruction sources: the CRCF program memory and the method
cache which holds JCF code loaded from main memory prior to its execution. The instruction
can be fetched from either of the two sources depending on the working mode of the proces-
sor. JOP-Plus execution unit is capable of decoding these instructions and execute them using

microcodes stored in microcode ROM.

5.5.2 Preserving SystemJ Compiler

The JOP-Plus is similar to the GALS-JOP in the sense that both use a single processor approach
to execute the System]J programs but JOP-Plus has an edge over the GALS-JOP as it does not
require the translation of control flow to Java prior to its execution. The JCF is still broken
into small methods as was the case with GALS-JOP [95]. JOP-Plus does not require any major
modification in SystemJ compiler. All it needs is to generate the code organized in a way
suitable for execution on JOP-Plus. This is achieved by changing the compiler back-end (only
few lines of code) or by using a simple post processor tool. The later approach is preferred and

adopted.

5.5.3 Two Virtual Processors on a Single Physical Processor

The JOP-Plus implementation can be considered a custom processor as the instruction set and
data path have been tailored exclusively for the processing of SystemJ programs. Actually,
our concept embraces two integrated execution modes; one Java mode and one ReCOP [39]
mode. We have implemented a processor core where two virtual processors share one data-
path. The processors may operate independently although not in parallel. We do not rely on
translations or extensions to the Java format, but offer two pure programming models. The two
programming models offer two logical views of the processor, a) Java programming model and
b) CRCF programming model. Both programming models are orthogonal each to the other (in
this sense: mutually exclusive upon operation). The user may exploit only the pure Java or
CRCF programming model. This system can also be described as a system with two running
modes. The switching between the execution modes takes place at the byte-code boundaries

and 1s similar to invoke and return from a method.
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5.5.4 Efficient Implementation of Data-computations

As discussed in Chapter 4, wrapping up of data-computations in swifch-case statements was not
efficient due to the implementation approach adopted by the original JOP to handle them. The
data-computations are broken into small Java methods resulting in reduced time to load them
into method cache. These methods are invoked directly by the CRCF without incurring any
other overheads like the TP-JOP.

5.5.5 No Jump-table

Since Java does not have gofo mechanism, this mechanism was provided and supported using
the jump-table in the GALS-JOP. The JOP-Plus uses more efficient strategy to implement the
jumps without deploying jump-tables. All instructions which affect the control flow of program
contain the target address information in a register or as immediate value in the instruction.
Since, we preserve CRCEF instruction set in JOP-Plus, this information is available as a part of
the instruction. The CRCEF instructions modifying the control flow of the program and having

target address as part of instruction are shown in Table 5.3.

CRCF Assembly | Branch Bytecodes generated upon compilation
PRESENT cond¥t}0nal ’ Opcode ‘ Rz Rx
SZ conditional 1
JMP_IMMEDIATE| unconditional | Target address

Table 5.3: Summary of branch instructions

5.5.6 Efficient implementation of CRCF Data Structure

In GALS-JOP approach, the CRCF data structure was implemented as an array object stored in
heap located in external memory and, being further away from the core, it is more expensive
to access this memory. CRCEF instructions operate on this data structure and frequently access
the elements of data structure. Since, CRCF data structure occupies only a fraction of CRCF
program memory; therefore, in JOP-Plus it is implemented in the same memory as CRCF pro-
gram memory which is situated locally to the core. The memory can be accessed for fetching
instruction and read/write data without any conflict as the access to data structure and program

memory is orthogonal. The details of data-structure implementation are given in Section 5.7.4.
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5.5.7 Efficient Invoking of JCF

The JCF methods are directly invoked by the CRCF and they return to CRCF after finishing
the execution. They return without the need of reloading method cache with the caller method.

This is performed without introducing extra hardware resources except the CRCF memory.

5.5.8 Resource Sharing

The aggressive resource sharing between the CRCF execution mode and Java execution mode
produces area-efficient and competitive design. It keeps the physical distance between the com-

ponents small and reduced interconnect structure decreases both cost and complexity.

5.6 System]J Code Example

Figure 5.5 shows the SystemJ example code and generated code targeting JOP-Plus. The
SystemJ example code presented in Chapter 4 is repeated in Figure 5.5a for readability with
slight modification as it prints different message now. The assembly code for CRCF and Java
codes for JCF both generated by SystemJ compiler, are shown in Figure 5.5b and Figure 5.5¢,
respectively. The functionality of example program presented has already been discussed in

Chapter 4, therefore, details are omitted here to avoid repetition.

The Java code shown in Figure 5.5c consists of main method (line 15 — 23) and other JCF
methods (line 5 — 13). The main method comprises of the Java code for initializing the CRCF
program memory, referred as loader code, prints message (line 24) and a native method. Na-
tive.switchmode, represents a special bytecode and shifts the control of execution from JCF
to CRCF execution mode. The execution of this bytecode results in fetching of instruction
from CRCF program memory instead of the bytecode from method cache. The JCF methods,
method_0, method_1 and method_2, contain the data-computations represented by Java action
nodes. These methods appear in the Java class file in the ascending order with respect to their
id for each clock-domain. This helps in calculating the address of the data structure of the JCF
method to be invoked stored in the main memory. The JCF method code compiled to Java
bytecodes resides in the method area of the main memory and loaded into method cache for

execution upon invocation by CRCF.
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// SystemJ example code

1 system {

2

@ ~J oUW

11
12
13
14
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16
16

18
19
20
21
22
23
24
25
26
27
28
29 }

CER

LDR RO $0001

AND RO RO #$S£000
SSOP RO

LSIP RO

AND RO RO #5350

LDR R1 $0002

AND R1 R1 #$0001
PRESENT R1 L4
LDR RO #3

ADD R1 R6 #0

STR R1 #0
SENDATA RO

ADD R4 R4 #1

L2 LDR RO R1

CLFZ

SUBV RO RO #0
SZ L3

JMP L7

L3 CLFZ ;

interface {

(b) Assembly code for CRCF
Figure 5.5: System]J compilation example separating CRCF from JCF with data-computations decom-
posed into methods targeting JOP-Plus

output signal RE,TE;

—_— e

signal pipi;// localsignal
{
present (pipi) {
emit RE;
System.out.println ("JOP-Plus") ;
}
emit TE;
int u=5;
pause;

emit pipi;
System.out.println(u);
pause;

(a) SystemJ example code

// Assembly code for CRCF
L1 SEOT

1 //Java code for JCF

2 public class Jopplus{

3 public static int u=0;

4 e

5 private static method 0() {

9 System.out.println (“JOP-Plus”) ;
7 }

8

9 private static method 1() {

10 u=5;

11 }

12 private static method 2() {

13 System.out.println (u);

14 }

15 public static void main() {

16 crcf code = new crcf();

17 int length = code.cc.length;

18 for (i=0; 1 < length; i++){

19 crcf instr=code.cc[addr];

20 Native.initctrl (addr, crcf instr);
21 addr=addr+1;

22 }

23 e

24 System.out.println ("CRCF initialized!");
25 Native.switchmode () ;

26 }

27 }

(¢) Java code for JCF targeting JOP-Plus
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The CRCF assembly code produced as the output of the compiler targeting ReCOP, deployed
in TP and TP-JOP, is used without any modifications as shown in Figure 5.5b. Each instruction
word is 16-bit and some instructions may have up-to two words. The precise details of control

instructions set has been provided in Appendix A.

The assembly code is compiled to the hex format and enclosed in an array object which is
stored in the heap area of the main memory. The array elements, initialized with the compiled
hex code, are declared inside a class as shown in Figure 5.6. The array comprising of CRCF
compiled code is not declared in the main method as the size of the compiled program gets
too large ( of the order of many KB), resulting in large main method size. The JOP [93] does
not allow the oversized methods due to restricted method cache size. Therefore, the program is
fragmented and placed in large number of relatively small arrays to keep the method size less
than the 4KB as this is the default configuration used in our experimental set-ups throughout

the research.

//crcf.java

public class crecf{
int a;
public static int[] cc = {
0x3400,0x4100,0x0000,0x4090,
OxFFFA, 0x40A0, OxFFFF, 0x4070,

}
}
Figure 5.6: Java array object initialized with CRCF compiled code

5.7 Memory Organization

The memory organization of JOP-Plus is illustrated in Figure 5.7. Besides the new memories
introduced shown as shaded, JOP-Plus has a number of memories inherited from JOP such as
main memory, method cache, stack cache, microcode ROM, and translation-table. The new
memories introduced include Register-File, CRCF program memory, CRCF data memory and
a number of registers. The JOP-Plus has improved memory organization as compared to GALS-
JOP as it does not need jump-table to implement jumps as the target addresses are available as
part of the CRCF branch instructions. The description of the main memory and CRCF specific

memories is given next.
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Main Memory
/] Method cache
Translation Table
acpicaiicglaed {} CRCF Program Memory
Microcode ROM
- Stack Cache
Function sepcific
Registers
Heap
CRCF program code
and other objects CRCF data memory
Register file

ﬁ CRCF code transferred once only ﬁ

Figure 5.7: JOP-Plus memory organization

5.7.1 Main Memory

The main memory can be divided mainly into two parts: 1) application area and 2) heap. The
application area consists of per-class structures such as run-time constant pool, field and method
data, and the code for methods and constructors, as well as interned Strings. The heap is a run-
time data area from which memory for all class instances and arrays are allocated. The detailed

organization of main memory is given in [93].

The System] program [8] starts as Java program, which is compiled and initially loaded into
the main memory. The size of the Java application is given in the very first word of the memory
location which also marks the start address of heap as shown in Figure 5.8. Second word in
the memory is the address to special pointers which are used in initializing the JOP-Plus and
invoking the main method. The static fields, static reference fields of classes, codes for all the
methods and addresses to method structures are stored next in the same order. The information
stored in the structure is used to invoke a method by fetching the method code into method
cache and pushing the arguments in newly created method frame in the stack cache. Once the
application size is found, the rest of the main memory space is regarded as heap, which is used
to store all Java objects including arrays, SystemJ valued signals and channels. The memory
space used by inactive objects is reclaimed by garbage collector. The size of main memory is 2

M-byte for the configuration used in the experiments.
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length of the application in words

pointer to special pointers

static fields of all classes

static reference fields of all classes

Special pointers
Code for all methods
CRCF down load method
JCF methods n

pointer to boot method struct

pointer to first non Object method struct of class JVM
pointer to first non Object method struct of of class JVMHelp
pointer to main method struct

pointer to static reference fields

number of static reference fields

number of methods

JCF method_0
Main method

pointer to method struct

Heap
Array object[CRCF code]

Valued signals, channels
and other objects

Figure 5.8: Main memory organization

5.7.2 CRCF Program Memory

The program memory of the CRCF holds the compiled and assembled code implementing con-
currency and control flow of a SystemJ program. The memory is 16-bit wide RAM, which is
enough to store an instruction without operand. The memory depth is parametrized depending
upon the code size but maximum size is limited to 64K, the maximum number addressed by
a 16-bit program counter. There are two sources of program instructions in JOP-Plus: CRCF
program memory and method cache. Therefore, CRCF memory shares the program counter
register with the method cache. The method cache serves as the instruction cache for JCF. The

full code of a method is loaded into the cache before execution.

5.7.3 Register-file

In our architecture, the Java and CRCF modes have different temporary storage area for the
operands. The Register-File (RF) is used for temporary storage of the operands when executing
CRCEF and is functionally the same as the Register-File in TP [39] and TP-JOP [95]. The
Register-File cannot be viewed by the Java mode. The JOP-Plus architecture supports a flat
Register-File implemented in an on-chip multi-port memory with single cycle access latency
as shown in Figure 5.9. The Register-File is organized as 16x16 bit registers. These registers
can be used for data storage, arithmetic operations, logic operations or address registers for

accessing data memory locations.

The RF has a multiplexer at the input which is used to select one of the two data sources, the
16-bit operand of the crcfopdreg and top element of stack in A. The RF is implemented as an

array of sixteen 16-bit signals, initialized to 0. The read ports Rx and Rz are asynchronous



5.7 Memory Organization 125

while the write port z is synchronized with the system clock. Data is written in the Register-File

on the rising edge of the system clock.

Instrcution bit [3..0]
~  *Read address 1

Instrcution bit [7..4 Read address 2 Rx

Instrcution bit [7..4
nstred Iclerite address

ctrlopdreg Register File
—

Rz
Z .| Write data

Figure 5.9: CRCF Register-File with data input mux

5.74 CRCF Data Memory

The CRCF data memory (DM) contains the data structure for the concurrency and control flow
statements of the SystemJ program (CRCF). The data memory layout for JOP-Plus is shown in
Figure 5.10. The DM is 16-bits wide and the depth is not fixed and maximum size depends on
the number of clock-domains. The size of data memory increases with the increase in number
of clock-domains, reactions and control statements. The CRCF instructions operate on data
structure elements by fetching them into the Register-File, performs operation on them, and
stores them back into the data memory. In case of GALS-JOP, data structure for CRCF is
implemented as control arrays (CA) in the main memory. As CRCEF instructions operate on this
data structure, therefore, it requires frequent access to the main memory. The main memory
is located off-chip, and access time is long compared to on-chip memory due to the limited
bandwidth, resulting in slow execution of CRCF. It has been observed that CRCF data memory
is only a fraction of the CRCF program memory. Hence, the CRCF data structure can be stored
in the same physical memory as CRCF code or different physical on-chip memory to improve
average data transfer performance. The CRCF data structure has already been described in the

Chapter 2 and repeated here again.

The input/output signals statuses (1-bit each) are stored first in the data memory and are word
(16—Dbit) aligned, thus if we have 16 or less signals we use at least one memory space (word)
in the DM. The internal signals are stored next. Internal signals can be emitted from multiple
synchronous reactions in a given clock-domain and thus we assign 1-bit lock status for each
signal per synchronous reaction. Next, data-locks are stored which inform if the data calls
made for data-computation (Java action node in AGRC) to the JVM have been returned. A

complete DM word (16-bits) is used for data-locks and program counters (PC) for the various
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synchronous reactions in a clock-domain which are stored in the following locations. Then
termination codes of reactions, four-bits each, are stored. Switch nodes used for state selection
of the currently executing SystemJ program are stored next together with the children. This

arrangement of DM is repeated for each clock-domain [38].

The JOP-Plus architecture supports tightly-coupled memory for both CRCF instruction and

CRCEF data to provide guaranteed low, fixed latency access.

Input signals 16-bits
1 bit per signal
Output signals 16-bits
1 bit per signal
Declared signals n-words
1 bit per signal
Signal locks n-words
1 bit per signal per reaction
data locks n-words
1-word per reaction
PC n-words
1-word per reaction
Termination codes n-words

4-bits per reaction
Switch node 1

16-bits (1 word)
Switch child 1/1-word
Switch child 2/1-word

Switch child n/1-word

Switch node N
16-bits (1 word)
Switch children

Join node 1
16-bits (1 word)
Join child 1/1-word

Join child 16th/1-word
Join node N
16-bits (1 word)
Join children

Repeat for CD2, CD3, ..., CDn

Computation space

Figure 5.10: CRCF data memory

5.7.5 Registers

The JOP-Plus architecture extends the JOP with a number of function specific registers. These
special registers are closely tied to some CRCF execution and they are writable only by special
instructions. Some of the registers are used to store the values that are accessed repeatedly and
frequently. The temporary register T is the most important register which acts as an interface
between the two programming models. The contents of CRCF execution specific registers are

placed into this register before passing them to execution unit through stack and fetched into this
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register from stack after execution. The temporary register could be avoided by implementing

one of the following techniques:

* Feed the operands directly to ALU bypassing the stack registers
* Directly push the operands onto stack instead

* Load operand into T and then push onto stack

In first two cases, a large multiplexer is required in the critical path of the processor degrading
the operating frequency of the system. In the second approach, we need to introduce more
microcodes to push the on the stack. The third approach does not affect critical path and adds
only one more input to the existing multiplexer. Therefore, this approach is preferred and
implemented in JOP-Plus. The multiplexer at the input of register T is used to select one of
the seven data sources: the 16-bit operand of the CRCF, Rz register, Rx register, the CRCF data
memory output, the Rx output, the ALU output, the MAX unit output, crcfpcreg, environment
ready (ER) register extended with zeros, signal input (SIP) register and the CRCF target address.
Some of the important inputs to this multiplexer are shown in Figure 5.15. The description of
all the function specific registers for CRCF program mode is given in Table 5.4. The EOT
register, ER register, the Signal Output Port register (SOPREG), the Signal Value Output Port
register (SVOPREG) and the Signal Input Port register (SIPREG) are used to communicate with
the environment. For SOPREG and SIPREG, each bit indicates if a signal is present, and for
SVOPREG each bit indicates if the signal is valued. The ER register indicates if the environment
has finished reading signal values/statuses. The EOT regsiter indicates the end of tick to the
environment. Both EOT and the ER registers (1-bit each) are used as control registers while
communicating with the environment. These registers are 16-bits each, thus we are limited to
16 output/input signal declarations. All the registers communicating with the environment are
connected to memory-mapped 10s. The mode_control is a 1-bit register indicating the current
mode of operation. It is reset when JOP-Plus first starts execution in JCF mode and toggles

whenever JOP-Plus switches the execution mode.

5.8 Start-up and Control Flow

The start-up and execution flow of JOP-Plus is shown in Figure 5.11. The start up is similar to
JOP [93], therefore, the steps common to both are omitted to avoid repetition. Upon start up,
the JOP-Plus will boot in Java mode and invoke the main method. The main method is loaded
into the method cache and execution starts in Java mode. After initializing the CRCF program

memory, it switches from Java mode to CRCF mode and starts executing the CRCF program.
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Register Description

T This is the temporary register and is used to
communicate between stack and CRCF specific
components.

crcfpcreg This registers holds the address of the instruction

following the CRCF instruction making a data call to
JCE. On return from JCE, the content of this register are
loaded into Java program counter. This register is
initialized to zero at start up.

jefbasereg This register hold the pointer to method data structure
with JAN_ID=0

crcfopdreg This register holds the second word of instruction which
is an operand, if required

7freg It is 1-bit flag using for branching in CRCF.

mode_control This 1-bit register is used to select between the

instruction from CRCF memory or Java bytecode from
method cache.

EOT This 1-bit register is used for communication with the
environment and indicates the end of tick.

ER This 1-bit register indicating if environment has finished
reading signal values/statuses.

SIPREG This 16-bit register holds the status of the input signals
from the environment.

SOPREG This 16-bit register holds the status of the output signals
for the environment.

SVOPREG This 32-bit register holds the status of the valued signals

to/from the environment.
Table 5.4: CRCF execution specific registers
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The CRCEF leads the execution of System]J program and calls JCF when required. When ex-
ecuting Java action nodes (JAN) in JCF mode, the program can call other Java methods or
return to the CRCF. These two transitions are implemented in different ways. While transitions
between Java methods are using standard Java mechanisms (invoke and return), transitions be-

tween CRCF and JCF are performed with the support of hardware as explained in Section 5.12.

Invoke main method of class containing
Java code for JCF

Y

Load main method into method cache and
start execution

Y

Initialize the CRCF program memory with
array contents stored in heap

Y

_ [ Switch to CRCF execution and fetch next |
" | instruction from CRCF program memory |

CRCF
invokes JCF
No method

Switch to JCF execution and fetch next
instruction from method cache

Y

Next JCF
action? Return

Invoke

Execute JCF and fetch next instruction
from method cache

!

Next JCF
Return to parent method action” Invoke child method

Figure 5.11: Start up and program execution flow
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5.8.1 CRCF Program Memory Initialization

The initialization of CRCF program memory is performed during the execution of main method
which is considered part of JOP-Plus start-up therefore JOP-Plus has extended start-up pro-
cedure of JOP. The main method contains the Java code for initializing the CRCF program
memory and switching the mode of processor from JCF execution to CRCF execution. The
CRCF compiled assembly code is enclosed in arrays and stored in the heap, located in main
memory. The array elements are read from the main memory one by one and stored in the
CRCEF program memory in the contiguous memory locations. The program memory contents
are written through Native.stcrcf(addr, crcf_instr) method, representing the new special byte-
code. The address and the instruction code are passed as arguments. They are available as top
two elements of stack and the instruction code is stored at a memory location pointed to by the

address.

Once the CRCF program memory is initialized, the array objects become dead objects as they
will never be accessible by the application but have not been collected yet by the garbage col-
lector. The heap memory occupied by dead objects is collected by the garbage collector. The
main method performs only two major tasks: 1) initializes the CRCF program memory and 2)

shifts the program flow to CRCF execution mode.

5.8.2 Instruction Fetch

The instruction fetch mechanism for the JOP-Plus is shown in Figure 5.12 as it has two dif-
ferent program sources. The program memory source for the next instruction to be fetched is
controlled through mode_control flag, and defines the mode of operation. After initializing of
the CRCF program memory, Native.switchmode( ) statement in the main method is executed
which sets the mode_control flag. When mode_control flag is set, the next instruction to be exe-
cuted is always fetched from the CRCF program memory. On the other hand, the mode_control
flag is reset when the CRCF instruction directly invokes JCF method and results in fetching of
the next instruction to be executed from the method cache which holds the method code fetched
from the main memory. During the return from the JCF method, the mode_control flag is
again set and next instruction to be executed is fetched from the CRCF program memory. Both
memories share the program counter (jpc) which is incremented on each bytecode/instruction
execution. The mode_control bit is concatenated with the bytecode value or instruction opcode
to form address of the translation-table. The corresponding entry, pointer to start address of

bytecode implementation in microcode ROM, is read to fetch the microcodes for execution.
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Figure 5.12: Switching between CRCF and JCF

5.8.3 Invoking JCF

The JOP-Plus has an efficient mechanism to invoke the JCF methods stored in the method area
of the main memory in an organized fashion as shown in Figure 5.13. The JCF contains the Java
action nodes (JAN) and each of these nodes has a unique identity code (JAN_ID) which is an
integer ranging from O to n-1 where n is the total number of Java action nodes in the program.
The Java computations contained in each JAN are wrapped inside a method. In order to perform
computations of a particular JAN, we need to invoke its corresponding method. The invoking
of a method requires the start address of method structures stored in the main memory. The
method structure is a table of method records each containing the encoded information about
the method code length, the start address of method code, variables, arguments and constant
pool address. Each method structure comprises of two 32-bit words i.e., 8 bytes. Therefore,
the indices of table, the address of two consecutive methods structures, differ by two memory
words. The method structures are arranged in ascending order with respect to JAN_ID and,
if the address of the structure of method with JAN_ID=0 is known, then the address of the
structure of any method can be calculated using its JAN_ID. If N is the address of a method
structure having JAN_ID=0, then the address of any method structure with JAN_ID = n is
given by N + n x 2. The address of the method structure with JAN_ID=0 is stored in a base
register, called jcfbasereg. When invoking JCF, the JAN_ID information is provided in the

CRCEF instruction and the respective method is invoked.
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Figure 5.13: JAN organization in main memory

Invoking JCF is slightly different from conventional invoking of the methods in JOP [93]. The
JOP-Plus does not need to store much of the information including the pointer to data structure
of the calling method for loading it into method cache again upon return. The following are
steps involved in invoking a JCF method:

* Store the address of next CRCF instruction to be executed in the crcfpcreg

* Load the address of method structure with JAN_ID=0 from base register jcfbasereg and
push it onto stack

* Read the data call word comprising of the JAN_ID and data-lock pointer from Register-

File into register T and pushes it onto stack

* Calculate the address of structure of the method to be invoked by loading the JAN_ID,
add JAN_ID to itself and then add to base address

» Read the second word of the method structure containing constant pool address, argument

count and variable count
» Extract these values and store in respective registers
* Read first word of method structure containing method start address and code length

* Extract the information and pass it to memory subsystem for loading the method code
into cache

* Reset the mode_control flag making the method cache default memory for read/write

operations
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Start loading the cache with method code from the main memory

The start address of the code in the method cache is provided by memory subsystem

which is loaded into Java program counter
Wait for method code to be loaded into method cache completely

Fetch next bytecode from method cache and start executing the JCF method

5.8.4 Return to CRCF

The return from JCF to CRCF program mode is performed through the Native.rtc(result) method

which is replaced by a special bytecode during compilation. Each JCF method called by CRCF

ends with this statement. The result is passed as argument and available on top of stack. The

execution of special bytecode results in return to CRCF execution mode after performing the

following operations:

The result is available as the top element of stack which is written to the CRCF data
memory at a location pointed to by data-lock pointer. The data-lock pointer is provided
in the data call word is still available in temporary register T where it is stored prior to
the switching of execution mode. The contents of CRCF program registers are never

modified during the JCF program execution.

The result is written to the CRCF data memory at a location pointed to by data-lock

position.

The address of the next CRCF instruction to be executed, which was stored in crcfpcreg

before invoking JCF method, is loaded into jpc (Java program counter) register
The mode_control flag is set

The next instruction from the CRCF program memory is fetched

When returning to CRCEF, reloading of method cache CRCF program code is not needed as it

permanently resides in the CRCF program memory.

5.9

Translation-table Extension

The translation-table contains the start addresses for the bytecode implementation in microcode.

As mentioned in Chapter 3, JOP has a single native instruction set in the form of microcodes.

Every Java bytecode is translated either to a single microcode or a sequence of microcodes
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during the execution. The fetched bytecode acts as an index for the translation-table. This
address is loaded into the JOP program counter for every bytecode executed. Mapping between
bytecodes and, microcodes implementing the bytecodes, is provided in the JVM assembly code.
The labels appearing in the assembly code represent the bytecode and mark the entry point for
the bytecode implementation and are used to generate the translation-table. The translation-
table is generated in the form of VHDL file during the assembly of JVM code. The JOP’s
translation-table contains 256 entries, for all possible bytecodes, in the order of their value. The
mapping between the CRCF instruction opcodes and microcodes is also provided in the JVM

assembly code.

The translation-table is extended with new logical area to accommodate the CRCF instruction
set and has 512 entries now. The translation-table contains two logic areas now where low
address space (0-255) still gives the mapping for bytecodes and microcodes and the higher
address space (256-511) provides mapping for CRCF instruction opcodes and microcodes. Both
JVM bytecode and CRCF instruction opcodes are 8-bit wide which can address only 256 entries.
Therefore, fetched bytecode/opcode is concatenated with mode_control flag to form the 9-bit
index of translation-table as shown in Figure 5.14. During CRCF execution, the mode_control
flag is set and the address points to new logical area (high address space 256-511) provides
the mapping for CRCF instruction opcode. The microcodes which implement JVM and CRCF

instructions are located in the same microcode ROM.

JCF byte-codes

‘control_mode’ & ~Address to
op-code /byte-code) Microcode ROM

-
L L

CRCEF instruction
op-codes

Figure 5.14: Translation-table extension

5.10 JOP-Plus Architecture

This section describes the architecture of the JOP-Plus processor, including a discussion of all

the functional units and the fundamentals of the processor hardware implementation.
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5.10.1 CRCEF Instruction Set Support

In addition to JVM bytecodes, the JOP-Plus architecture also provides support for the CRCF
instruction set. The CRCF instructions shown in Table 5.5 are mapped to microcodes resulting
in a number of new microcodes and extension in translation-table as illustrated in Section 5.9.
It also results in addition of new functional units and registers discussed in the previous Sec-
tions. The precise description of CRCF instruction set, microcode mapping and register transfer

operation is provided in Appendix F.

5.10.2 Bytecode Extension Summary

In addition to the functionalities performed by JOP, JOP-Plus needs to perform following spe-
cific functions when operating in the JCF program mode:

Writing to CRCF program memory during initialization

Switching from main to CRCF execution mode

* Writing result to CRCF data memory when performing data-computations in JCF mode

Returning from JCF to CRCF execution mode

Storing the address of method structure in a base register

The JOP-Plus extends the basic instruction set (bytecodes) of JOP [93] with the custom byte-
codes to provide support for the above functions. The JOP-Plus requires 4 new bytecodes, in
addition to bytecodes implemented in original JOP [93], to carry out these functionalities. The
new bytecodes corresponding to JCF are added to JOP’s unused bytecode space. The bytecodes
are selected by keeping in view the micro-architectural constraints and with a goal to keep the
clock frequency same as offered by the JOP [93]. The description of extended bytecodes is
provided in Table 5.6.

Each bytecode and CRCF opcode is mapped to a single or a sequence of existing and new

microcodes. The precise description of JCF bytecode for JOP-Plus is provided in Appendix F.

5.10.3 Extended Microcode Summary

JOP-Plus involves the extension of an existing instruction-set by means of a limited number
of microcodes in function of the specific requirements of the application. All custom byte-

codes and CRCEF instructions are implemented in microcode, which is the native instruction set
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’ Category Instructions \ Comments
AND_IMMEDIATE, The contents of Rx and Operand are
OR_IMMEDIATE, . .
ADD IMMEDIATE ANDed and the result is stored in Rz
Arithmetic/logic = ”except SUB_IMMEDIATE which

SUBV_IMMEDIATE.

SUB_IMMEDIATE

affects zero flag only

AND_INDIRECT,
OR_INDIRECT,
ADD_INDIRECT

The contents of Rx and Rz are
ANDed/ORed/added and the result is
stored in Rz

Data Movement

LDR_IMMEDIATE
LDR_INDIRECT,
LDR_DIRECT

, Load Rz with the content of
immediate value / memory location
pointed to by Rx or Operand

STR_IMMEDIATE
STR_INDIRECT,
STR_DIRECT

Store the content of Rx / immediate
value, into memory location pointed
to by Rz / direct address

Control flow

PRESENT, SZ,

Jump to address location if Rz
(0)=0/Z=1

JMP_IMMEDIATE
JMP_INDIRECT

Jump to address location
unconditionally

Switch execution to memory location
pointed to by addition of content of

SWITCH Rx with memory location pointed to
by Rx plus 1
CER,CEOT, Clear/set environment control
Environment SEOT registers
Load SVOP/SOP with the content of
SSVOP, SSOP Rx
examples: SSVOP Rx, SSOP Rx
Load Rz with the content of SIP/ER
LSIP, LER example: LSIP Rz, LER Rz
Compare 4 bit memory blocks in Rx
CHKEND with Rz(3—Q) and store the largest
value back in Rz
Special Instruction CHKEND Rz Rx
Calls JCF
SENDATA example: SENDDATA Rx
CLFZ Clear Zero Flag

NOOP, INIT, ESL

No operation

Table 5.5: CRCF instructions categorized based on their functionality
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| Bytecodes | Description |

jopsys_rtc This bytecode causes JCF to return directly to CRCF
without reloading method cache and also writes the
result of computation back into CRCF data memory.
Jjopsys_stcrcf This bytecode stores the address of structures of the
method corresponding to JAN_ID =0 during the
start-up. This information is used to invoke the desired
JCF method by CRCF.
jopsys_wrcrcf This byte code is used to initialize the CRCF memory
during the execution of the main method. The instruction
and address are pushed on TOS and TOS-1.
Jopsys_switchmode | This bytecode shifts the execution control to CRCF. It
stores the execution address of main for a future use.
The CRCF address is loaded into program counter and
control flag is toggled.

Table 5.6: Extended bytecodes

of JOP [93]. Basically, we identify all those operations that are implemented by existing mi-
crocodes and the ones that are left, need new microcodes. The register transfer between existing
hardware components is performed by using existing microcodes. However, new microcodes
are introduced for the register transfer between new hardware components and, between new
and existing components. In all, 16 new microcodes are introduced in the micro-architecture
for both CRCF programming model and new JCF program bytecode. A summary of extended

microcodes is provided in the Table 5.7.

5.10.4 JOP-Plus Data-path

The JOP-Plus data-path is organized as a 4-stage single-issue pipeline including the bytecode
fetch stage. Figure 5.15 shows detailed data-path of the JOP-Plus processor with all the com-
ponents. It implements the bytecode, microcode fetch, decode and execute stage. The flexible
data-path of JOP has been extended to execute CRCF instruction set. The composite data-
path yielded, enables all transfers to execute both Java bytecodes and CRCF instructions. The
components added or extended to support CRCF execution are shown as shaded. It includes,
Register-File, function specific and temporary register, MAX unit, memories, translation-table
etc. By taking advantage of efficient CRCF processing, the JOP-Plus architecture shows a sig-

nificant improvement in execution times.

The execution of microcodes is pipe-lined and takes up-to three cycles to execute a microcode.
Both programming modes share the same ALU therefore the operands from CRCF program-
ming mode are pushed onto stack prior to their execution. The result of ALU is popped from
the stack and stored in the desired location. The operands for CRCF mode are 16-bit wide;

therefore a string of zeros is appended at higher order word before feeding it to ALU which
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| Microcodes | Description | Register Transfer
stercfpe Stores the address of next crcf crefpereg <—jpe
instruction in crcfpcreg
sticfbasereg Loads the jcfbasereg with the pointer | jcfbasereg <A, B <A,
to method data structure with stack|[sp] <= B, sp <—sp — 1
JAN_ID=0 available on stack
Idt Pushes the value of register T with A T, stack[sp + 1] + B,
the value of Top of stack sp<—sp+1
Idrxt Loads the contents of register Rx into | T <—RF[Rz]
register T
switchmode Toggles the mode_control flag ctrl_mode flag <—not
ctrli_mode flag
ldcrcfopdt Loads immediate operand of CRCF T <crcfopdreg
instruction stored in ctrlopdreg into T.
ldjcfbaset Pushes the value of jcfbasereg into T «jcfbasereg
register T
ldcrefpct Loads address of next crcf instruction | T <—crcfpcreg
given in crcfpcreg into T.
Idrzt Loads the contents of register Rz into | T <~ RF[Rz]
register T
wrercfdm Writes the contents of CRCF data CRCFDM]|B] «A, B
memory. A, stack|sp] < B, sp
—sp—1
wrimmcrcfdm Writes immediate value into CRCF CRCF DM |ctrlopdreg]
data memory. +—A
ldcrefdmt Reads value from CRCF DM and T +CRCFDMI[A]
stores it into T.
wrrf Writes the Register-File. RF[Rz]<T
stzf Sets the 1-bit zero flag register if zfreg | ZF REG <2z F
ifZ=1
ldmaxt Loads the result of MAX hardware T+MAX
unit into T.
clzf Clears the 1-bit zero flag register. ZF 0

Table 5.7: Extended microcodes summary
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is 32-bit. The CRCF programming mode involves only the most basic computations like addi-
tion, subtraction, logic AND and logic OR and utilizes the existing ALU. The Z flag register
indicates if the result of the operation executed by the ALU is zero or not. It is updated by
each arithmetic operation and is used for conditional change of program flow. The zfreg register
holds this value for future use. The MAX unit is a dedicated hardware comparator block which

compares four-bit memory blocks from RF outputs and outputs the maximum nibble which is
stored back into RF.
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5.10.5 Instruction Execution Overview

The execution of a bytecode/instruction involves calculating the address of the current instruc-
tion, bytecode/instruction fetching, microcode fetching, decoding, and executing that instruc-
tion. Depending on whether the processor is working in CRCF or JCF mode, the CRCF in-
struction or bytecode is fetched from the CRCF program memory or the method cache in the
bytecode fetch stage, respectively. The value of the fetched bytecode/instruction is used as the
address in the translation-table and reads out the start address of the microcode sequence of that
particular bytecode. This address is used to fetch the microcode instruction from the microcode
ROM. If the processor is in the CRCF program execution mode, then the address read from
the translation is for the CRCF instruction. The microcode fetched during this (Fetch) stage is
fed to the Decode stage for generating the control signals. The stack addresses are calculated
during the same stage. The operations are performed on top two elements of the stack stored
in two discrete registers: 7OS and TOS-1, labeled A and B. Each arithmetic/logical operation is
performed with registers A and B as the source, and register A as the destination. This holds
both for JCF and CRCEF. In case of CRCF instruction execution, the Register-File is read and

written in the same stage using microcode instructions.

When in CRCF mode, PRESENT, SZ, JUMP_IMMEDIATE, JUMP_INDIRECT and SWITCH
instructions change the flow of control and modify the contents of jpc register. All the branch
and jump instruction always provide the absolute target address and do not use relative offset

addressing.

5.10.6 CRCYF Instruction Set Execution

All the JCF bytecodes are executed in the conventional way as in JOP and details of execution
of Java bytecodes are available in [93]. In this section, we will discuss the execution instruc-
tions in CRCF programming mode. During the CRCF instruction execution, the operands are
pushed from Register-File onto the stack and the results are written back into the Register-File
with data available in top of the stack, and register address is available as part of the CRCF
instruction. In Java mode, ALU operations take one or two inputs from registers A and B, and
store a result back in register A. In CRCF mode, the operands from the RF can be directly
fed to ALU by-passing registers A and B, it might increase the propagation delay since the
ALU falls in the critical path, therefore, the operands are loaded into a temporary register first
and then pushed onto the top of the stack. All the LDR (load register) and STR (store regis-
ter) instructions handle all data movement between registers and CRCF data memory. Dur-
ing load/store of the data from the CRCF data memory (LDR_IMMEDIATE, LDR_DIRECT,
LDR_INDIRECT, STR_IMMEDIATE, STR_DIRECT and STR_INDIRECT), the address is al-

ways provided in A, and data in B during a store operation. If the address/data is an im-
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mediate value, it is fetched from the CRCF program memory and pushed on the stack. All
the immediate arithmetic/logical (AND_IMMEDIATE, OR_IMMEDIATE, ADD_IMMEDIATE,
SUBV_IMMEDIATE and SUB_IMMEDIATE) instructions perform operations between the im-
mediate value and content of the register Rx and store the result into the register Rz except
SUB_IMMEDIATE which does not store the result back into RF. The content of Rx register and
operand values are pushed onto the stack and the operation is performed. The result available
on TOS is written back into RF to a location pointed to by the instruction Rz field. In case
of instructions with indirect mode (AND_INDIRECT, OR_INDIRECT and ADD_INDIRECT),
operation is performed on Rx and Rz. The contents of these registers are pushed into T and then
into A. The result available in TOS is stored in A.

The LSIP, SSOP, SSVOP, SEOT, CEOT and LER are environment instructions responsible for
data movement to/from environment registers connected to memory-mapped 10s. The address
of the environment register is pushed on the stack and the contents of the registers are read
and stored in Register-File. When writing to environment register, data to be written is also

provided.

The CHKEND instruction finds out the maximum of Rx and Rz{3..0} nibbles and results is
stored in Rz. The contents of Rz and Rx are fed to special hardware unit which finds the

maximum nibble which is written to Register-File.

The JUMP instructions result in an unconditional jump to the target address provided as im-
mediate (JUMP-IMMEDIATE) value or as the contents of a register (JUMP-INDIRECT). The
operand/register contents are read into A via T and stored into jpc and the next instruction is
fetched from the address pointed to by the immediate value. The PRESENT (jump if value is
not present) and SZ (jump if zero flag is set) CRCF instructions perform conditional jumps.
The SWITCH instruction is a complex instruction and results in an unconditional jump together
with couple of memory read operations. It is used to decode execution path in switch nodes in
AGRC. The contents of register Rx are pushed on the stack and the memory location pointed
to by its contents (parent node) is read into register T. It contains the number of particular
child node we want to execute. This is added to parent node incremented by one (child nodes
are stored next to parent nodes) to get the pointer to the selected child node in CRCF [8] and

unconditional jump is performed.

The SENDATA instruction is used to directly invoke the desired data-computations (JAN) pre-
sented as a method in JCF from within the CRCF. This implementation is different from GALS-
JOP where invoking the desired Java method and return from Java method is carried out in
conventional way. The JAN_ID, together with data-lock position pointing the memory location
for result, is provided as immediate operand and pushed on the stack. The address of method
structure with JAN_ID zero in jcfbasereg register is used to calculate the address of the structure
of the desired method to be invoked. All the methods in the JCF are ordered by their IDs which
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makes it possible to calculate their structure address by knowing JAN_ID. The CRCF PC is
saved in crcfpcreg register. The structure of the method, which is two words long, is read. The
first word of method structure contains the information about the method code such as the start
address and code length. This information is passed on to the memory subsystem which loads
the desired method into the method cache and the execution starts. The second word contains
the number of arguments, local variable count and constant pool address which are extracted
and stored in appropriate registers. The jopsys_rtc (return to CRCF) is a new custom bytecode
added to support direct return to CRCF from JCF, without reloading method cache and also

writes the result of computation back into memory.

While returning from JCF to CRCF after performing the data-computations, the result is re-
turned on top of stack (A). The JAN_ID and data-lock position are provided in the Register-File.
The register contents, still available from Register-File, are pushed on the stack. The data-lock
position is extracted and result is written to memory location pointed to by data-lock during

return to CRCEF. The description of the complete CRCF instruction set can be found in [39].

5.10.7 Communication with the Environment

In System]J each asynchronous clock-domain communicates with the environment only once
the end of tick (EOT) is set high and all the environment input signals are read and the required
signals including their values are emitted to the environment. The JOP-Plus communicates with
the environment through a set of registers and instructions mentioned above. The ER register is
set high by the environment indicating that it has finished reading signal values/statuses from the
previous instant of time. Once the ER signal is received, this register value is set to low and the
EOT register is set indicating to the environment to stop reading signals from SOP and SVOP
and stop writing into SIP. The environment is expected to instantaneously respond to this request
and maintain the register integrity (no read/write) while the EOT is high. Then input signal
statuses available in SIP are stored into the data memory and output signal statuses from the
previous instants processing are loaded into SOP register from CRCF data memory. The SVOP
register is updated to indicate the type of the emitted signals (either pure or valued signals). A
high bit represents a valued signal and a low bit a pure signal. The valued input/output signals
are read/written in Java programming mode. Lastly, the EOT register is set low to indicate that
environment can start reading and writing again. These steps are carried out at start of every
clock-domain (EOT).
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5.11 Experimental Results

In this section, we present results of experiments conducted to evaluate and compare our pro-

posed architecture to execute the SystemJ with a number of other approaches.

5.11.1 Benchmarks

The benchmarks include both synchronous and asynchronous examples. The synchronous
benchmarks include a runner’s behavioral description (runner), a simple combination lock (cl)
and demoloop (d/). The asynchronous case is represented by an asynchronous protocol stack
(aps) example [S]. Each of dl, runner and cl described in System] consists of a single clock
domain comprising of four reactions whereas aps has two clock domains and six reactions in

total. The SystemJ code for benchmark examples is provided in Appendix D.

5.11.2 Experimental Set up

All presented data have been collected from the experiments carried out by using the cycle-
accurate ModelSim simulator targeting Altera Cyclone II FPGA with 70k logic elements, 2MB
of RAM and running at 50 MHz clock. The system is capable of running at 100 MHz but the

results presented are for 50 MHz clock for fair comparison with earlier published results.

5.11.3 Performance Comparison

The execution speed comparisons are given in terms of the average execution time between
two consecutive ticks for each clock-domain, which are indications of the throughput of the
platforms. The average tick execution time is obtained by averaging one million ticks. Time
between two logical ticks, unlike time between two real clock ticks, has a variable duration.
Within a system, each clock-domain runs at its own tick, and any two clock-domain ticks are
unrelated. We compare the average tick times of various benchmarks on all the platforms de-

veloped during this research.

The results in Figure 5.16 show that JOP-Plus outperforms all the existing platforms. The
JOP-Plus platform wins the race against the fastest platform TP-JOP and is up-to 55% faster
while being far more economical. The TP-JOP executes each control (CRCF) instruction in a
constant time (3 to 4 cycles), while JOP-Plus has variable execution time for CRCF instructions.
In case of CRCF execution only, TP-JOP will outperform JOP-Plus, but it loses the advantage
in JCF execution and transfer of control between JCF and CRCEF. It is only 32% faster than

the TP-JOP when executing the benchmark application ¢/ which is more control oriented. The
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JOP-Plus is 44% and 55% faster while executing the application with data-computation such as
runner and dl, respectively. JOP-Plus improves JCF execution by decomposing it into smaller
methods for more efficient execution. The JOP-Plus is up-to 125% faster than GALS-JOP
while being at par in resource usage. GALS-JOP suffers from poor CRCF execution due to
adopted mechanism where the CRCF instructions are translated to Java and all the operands
and Register-File addresses are passed as arguments. It performs even better when executing

the benchmarks with data-computation due to efficient mechanism adopted to invoke the JCF.
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Figure 5.16: JOP-Plus comparison with other implementations

The TP-JOP uses the same CRCF assembly code and uses a custom processor for its execution.
It executes the CRCF code and JCF code concurrently on two separate processors, ReCOP
and JOP, respectively. The JOP-Plus is expected to perform closely to or even better than the
TP-JOP due to following reasons:

* TP-JOP executes each CRCEF instruction in 3 to 4 cycles, whereas JOP-Plus has variable
execution time for CRCF instructions. In case of CRCF execution only, TP-JOP will
outperform JOP-Plus, but it loses the advantage in JCE. When compared with GALS-
JOP, the JOP-Plus has efficient CRCF execution. GALS-JOP [95] suffers from poor
CRCEF execution due to adopted mechanism where the CRCF instructions are translated
to Java and all the operands and RF addresses are passed as arguments. As a result, each
CRCEF instruction is mapped to a custom bytecode to execute the specific functionality
which requires executing few more bytecodes to push the arguments on the stack. In
JOP-Plus, CRCF instruction set and format is preserved. The immediate operand values,

target addresses and operand register addresses are available in the instruction.

* The JOP-Plus organizes the data-computations in a better way which helps in executing
them efficiently in JCF mode. The TP-JOP requires invoking a method to select the
clock-domain and another method to select and execute the desired data-computations.

The control processor makes a data call to JOP (which executes the main and polls the
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control processor). The JOP extracts the case number and clock-domain fields from the
data call word. First, it calls a method consisting of clock-domain code wrapped in a
switch-case statement to select the required clock-domain. The selected clock-domain
invokes another method containing the data-computations also wrapped in switch-case
statements. The JOP [93] has a special method cache which holds a complete method at
a time. Invoking of a method and returning to a method results in cache miss and requires
the cache to be loaded again, which incur execution time cost. The higher call depth
results in multiple loading of the cache on both invocation of methods and return from
the method.

* Furthermore, the data-computations in JOP-Plus are decomposed into small methods,
each corresponding to a JAN. It requires fewer cycles to fetch the method code from the
main memory into method cache prior to execution. In TP-JOP, the data-computation are
presented in the form of switch-case statements enclosed in a single large method thus
requiring more time to load it into the cache. The GALS-JOP also benefits from the same

approach of decomposing data-computations into small methods.

* Another feature where JOP-Plus can gain in performance is the implementation of an
efficient mechanism to invoke the data-computation. It invokes the JCF methods directly
from the CRCF without invoking main method as is the case with TP-JOP. The return
to CRCF is direct without mediation of any other Java method, so no need to load caller
method on return to the CRCF. The GALS-JOP [95] also has the similar characteristics
but has more expensive invoke and return compared to JOP-Plus in terms of resources

used and clock cycles required.

* Another improvement in the performance of JOP-Plus comes from the local storage of
frequently accessed CRCF data structures requiring only single cycle to load and store
data.

The JOP-Plus approach is amenable to worst case execution time (WCET) analysis as the CRCF
instruction are implemented in a fashion similar to JOP with no time dependencies between

instructions result in a simple processor model for the low-level WCET analysis.

5.11.4 Effectiveness

An ideal execution platform would have both very small execution times and very small re-
source usage at the same time. But, performance gain is not for free and usually comes at the
price of extra resource usage which adds to the cost. Performance and silicon property form a
design trade off - improve one and you degrade the other! Hence, performance only is not the

true figure of merit for the system. To quantify how effective, or efficient an execution platform
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is in terms of execution time and resource usage, we should take into account both execution

times and logic elements used.

We compared the effectiveness of different approaches by defining a performance measure that
correlates average tick times (A7T) with resource usage in terms of the number of logic elements
(NLE) used for implementation. The performance indicator is specified as K/(ATT * NLE),
where K is a scaling constant. The platform effectiveness is inversely proportional to the tick
time and the resources used. The results in Figure 5.17 indicate that the JOP-Plus is the most

effective execution platform for all benchmark examples.
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Figure 5.17: Comparison of effectiveness

In summary, the proposed architectures shows better execution times with significantly fewer
hardware resources compared to the latest platform, without any addition to the memory foot-

print.

5.12 Summary

In this Chapter, we have proposed a new JOP-Plus processor which is capable of executing the
SystemJ programs compiled in a way separating the concurrency and reactivity control flow
from Java control flow. This is achieved by extending the original JOP processor, to support
CRCEF instructions. The GALS-JOP approach being single processor is an economical and
gave reasonable performance boost. But at the same time, it has shortcomings of extra resource
usage in the form of jump-table and inefficient CRCF to JCF translation mechanism. The JOP-
Plus overcome these problems and seamlessly integrates the CRCF and JCF by providing two
distinct modes of operation. The benchmark results show that JOP-Plus not only reduces the
execution time but also avoids few of execution resources deployed by the GALS-JOP by mak-

ing the efficient use of the base processor. Another performance criterion introduced correlates
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speed and resource usage giving a single measure of effectiveness of the platform. All the

claims are validated through results obtained by running benchmarks on experimental set up.
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Chapter 6

GALS-CMP

Embedded systems are typically heterogeneous requiring interacting hardware and software
components, which can be locally synchronous and globally asynchronous and combine both
control and data dominated blocks. The applications need to make good use of minimal hard-
ware resources within embedded real-time systems. The GALS-JOP and JOP-Plus approaches
presented in Chapter 4 and Chapter5, respectively, achieve this goal. But, today’s modern ap-
plications demand ever-increasing processing power and have shifted from conventional low
performance products to high throughput and computation intensive products. Limits on power
consumption and temperature make it impractical to rely on increasing clock frequencies to
boost processor performance. Compounding these problems is the simple fact that with the
immense numbers of transistors available on today’s microprocessor chips, it is too costly to
design and debug ever-larger processors every year or two. Chip Multiprocessors (CMPs) avoid
these problems by filling up a processor die with multiple, relatively simpler processor cores

instead of just one huge core [98].

This chapter presents a novel multi-processor architecture for concurrent execution of programs
that follow the Globally Asynchronous Locally Synchronous (GALS) formal model of compu-
tation. Programs are specified using the SystemJ concurrent programming language, suitable
for modeling heterogeneous embedded applications that contain reactive and control driven
parts and interact with the external environment. The proposed architecture is based on the
compilation approach where control-driven and data-driven operations are separated. They are
then executed on distinct JOP-Plus cores which are capable of supporting both types of opera-
tions, implemented as two modes within the single core. The GALS programs are partitioned
at clock-domain boundaries and they are allocated to different cores. Each core can switch be-
tween two modes without any overhead. The JOP-Plus core as the basic building block of the
multiprocessor extends Java Optimized Processor (JOP), suitable for data-driven transforma-
tional operations, with control-oriented constructs that implement concurrency, reactivity, and

control flow in SystemJ. The resulting multiprocessor system, called GALS-CMP, is suitable for

149
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the execution of comlex heterogeneous embedded applications. Experimental evaluation over a
range of benchmarks shows significant performance improvements over the existing platforms

developed for the execution of the SystemJ program.

This chapter starts with the discussion on performance limits of uni-processor approach and
explore the ways to increase the performance or processing power of the system. We then give
a brief overview of some popular multiprocessor systems developed in industry or academia.
Then we outline GALS-CMP system features alongwith the benefits which it brings into when
compared with existing execution platform discussed in the previous chapters of the thesis.
We also present the architectural details and the memory organization. The compilation and
execution flow of the SystemJ program on the proposed multiprocessor architecture is explained
with the help of an example. Finally, we validate the effectiveness of proposed system through

experimental results.

6.1 Uniprocessor system shortcomings

A SystemlJ program consists of multiple clock domains which run at unrelated ticks. The JOP-
Plus approach to execute GALS programs is the most efficient and economical for a single

processor system. This approach has some downsides as discussed below:

* Response time: JOP-Plus approach shows poor response time due to cyclic scheduling of
the clock domains one after the other. They respond to the environment only once at the
start of clock-domain execution. Hence, for each clock-domain, system will be able to
interact with the environment only when it resumes the execution of same clock-domain
after executing all other clock-domains. The inability of the clock-domain to respond to

the environment at the end of its execution significantly elevates the response time.

* Exploitation of application parallelism: The Systeml] application programs offer high
degree of parallelism which could be exploited to boost the performance of system. Un-
fortunately, uni-processor approach is unable to exploit to this parallelism. They can only
extract a limited amount of parallelism from a typical instruction stream using conven-
tional techniques [99]. Furthermore, clock-domains are scheduled in a cyclic executive

manner and the clock-domains are made to run one after the other.

The response time can be reduced by making the processor run faster. To obtain this, designers
have relied on better circuits (more integration, faster logic) and parallel execution (e.g. su-
perscalar processing). Unfortunately, current architectures are approaching the limits of known

technology in both respects [100].
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6.2 Harnessing the performance

There are many ways to improve the performance of microprocessors. In previous Chapters,
we demonstrated the performance improvement of the SystemJ programs execution in terms of
avarage tick time of clock-domain through architectural modifications. Another way to achieve
more performance out of a piece of silicon is by ram-ping up the clock but this usually re-
sults in more power consumption. Advances in manufacturing processes allowed decrease in
feature size, thus allowing the packaging of more transistors in the same die area. We can’t
build microprocessors with ever increasing die sizes due to the power constraints. Although
extensive research has been carried out on the optimization of power in individual components
of a system, yet a considerable amount of power is consumed by the system thus causing re-
liability issues and increasing the cooling cost. Alternatives to traditional way of increasing
throughput for microprocessors are being sought. Low-power circuit and micro-architecture
techniques, on-die L2 Caches, Single Instruction Multiple Data Instruction Set Architecture ex-
tensions, multithreading, and multiprocessing are among other ways to increase throughput of
microprocessors [101]. Most of these methods have already been applied in the current micro-
processor architectures. According to Hennessy and Patterson [102], we are now reaching the
limits of exploiting ILP efficiently. Olukotun et al [103] present an interesting study that argues
that multiprocessor solution is a better path to high performance than going to higher level of

instruction level parallelism.

The recent trend in computer design is chip-multiprocessors (CMPs) with increasing number of
CPU cores per chip. The parallel processors allow to continue to scale chip level performance,
but give rise to another difficult issue: generating parallel code to run on these machines. Mul-
tiprocessors in general are notoriously difficult to program. The complicated problem of par-
titioning a program becomes easier in application-specific domains as parallelism is easier to
indentify and exploit. This is because much more is known about the computational structure
of the functionality. The GALS applications employ a specialized computation model where
application parallelism is explicitly specified in the form of clock-domains. The GALS applica-
tions described in SystemJ can be partitioned at clock-domain level and run in parallel that can
take the advantages of CMPs. The Amdahl’s law [104] states that the speedup of such parallel
program is limited by the portion of sequential code in the program. The nature of System]
program suggests that the clock-domains run concurrently, hence, they are ideally suited for
multiprocessor execution environment. Besides parallelism, memory bandwidth and memory
management schemes are reported to be limiting factors in performance that can be obtained
from these multiprocessors [104]. The increasing level of on-chip integration, together with
a slowing rate of voltage supply reduction, exacerbates the power constraints in microproces-
sor design. According to Wolf [105], CMPs combine the significant advantages of embedded

systems: increased performance, lower power consumption, and cost efficiency. The cost of
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designing a multiprocessor system-on-chip, where the processors work at moderate speeds and
system throughput is multiplied by multiplicity of the processors, is smaller than designing a

single processor which operates at much higher clock speed.

The JOP-Plus core proposed in the Chapter 5 only executes a single clock-domain at any given
time. Although, uniprocessor execution of SystemJ programs is more efficient and economical
in terms of resources (as is the case with GALS-JOP and JOP-Plus), but it can results in poor
response time due to cyclic scheduling of the asynchronous behaviors called clock domains [5].
These programs respond to the environment events only once at every logical clock cycle of the
clock-domain execution. Hence, for each clock-domain, system will be able to interact with the
environment only when it resumes the execution of the same clock-domain after executing all
other clock-domains. The SystemJ programs offer high degree of concurrency at clock-domain
level which could be exploited to boost the performance of the system if clock domains are
executed in parallel. The single processor approach is unable to exploit this parallelism and
fails to make efficient use of it. Furthermore, achieving higher performance out of a piece of

silicon by ramping up the system clock usually results in higher power consumption

6.3 Embedded Multiprocessors

In the embedded system domain, there are two different types of CMP architectures:

(1) heterogeneous multiprocessors and (2) homogeneous multiprocessors.

6.3.1 Heterogeneous Multiprocessors

Multiprocessors with a heterogeneous architecture combine a core CPU for controlling and
communication tasks, and additional special processing elements, which are often tailored to
specific applications. Some examples of heterogeneous multiprocessors include the ST No-
madik [106], designed for mobile multimedia applications; the Philips Nexperia PNX-8500
[107], aimed at digital video entertainment systems; or the TI OMAP family [108], designed to
support 2.5G and 3G wireless applications; HiBRID [109], designed for stationary as well as
multimedia applications. The TP and TP-JOP are two heterogeneous multiprocessor architec-
ture developed specifically for the execution of SystemJ based applications. The TP architecture
makes use of a custom and a general purpose processor to execute the control operations and
data operation respectively. TP-JOP is an improvement over TP where heterogeneous proces-

sors execute both control operations and data operations natively.
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6.3.2 Homogeneous Multiprocessors

The homogeneous multiprocessors consist of two or more similar CPUs sharing a main mem-
ory. The ARMI11 MPCore [110] is a homogeneous multiprocessor and introduces a prein-
tegrated symmetric multiprocessor consisting of up to four ARM11 micro-architecture pro-
cessors [111]. It has 8-stage pipeline architecture, independent data and instruction caches,
and a memory management unit for the shared memory. Gaisler Research AB designed and
implemented a homogeneous multiprocessor system called LEON3-FT-MP [112]. It consists
of one centralized shared memory and four LEON3-FT processor cores that are based on the
SPARC V8 instruction set architecture [113]. All the CPUs, additional IO controllers and mem-
ory controllers are connected using two AMBA-specified advanced high-performance buses
(AHB) [114]. One AHB runs at the CPUs’ frequency and connects the processors to the shared
memory controller. The low-speed bus connects all other peripheral devices. MicroBlaze-based
CMPs can be designed with the Xilinx Embedded Development Kit (EDK). MicroBlaze is a 32-
bit reduced instruction set computer (RISC) optimized for FPGA implementation [115]. The
pipeline length of the CPU can be configured to either three or five stages. It implements the
Harvard architecture with separate instruction and data buses. The CPU can be tailored to the
individual application needs (i.e., peripheral controllers or cache sizes). Memory and periph-
eral devices are connected via the on-chip peripheral bus (OPB) [116]. Xilinx provides an OPB
bus arbiter [117] that can integrate up to 16 masters into the system. A newer version of the
MicroBlaze, supported in both Spartan-6 and Virtex-6 implementations, as well as the 7-Series,

supports the AXI specification.

Altera’s NIOS 1II [47] and the System-on-a-Programmable-Chip (SOPC) Builder [118] sup-
port the design and implementation of CMPs in Altera’s FPGA technology. The NIOS RISC
architecture implements a 32-bit instruction set similar to the MIPS instruction set architec-
ture. NIOS II can be customized to meet the application requirements: three different models,
from nonpipelined up to a 6-stage pipeline. Avalon [48] is the SoC bus used by the SOPC
Builder. It connects the master and slave components to the System Interconnect Fabric. For
multiprocessor systems, the System Interconnect Fabric integrates an arbitration module [48].
The arbitration logic can be configured in the SOPC Builder. The arbitration schemes include

fairness-based, round-robin scheduling, burst transfers, and minimum share value.

MPOC [119], Daytona [120], Texas Instrument TMPS320C6474 [121] are few other examples

of homogeneous multiprocessor developed for embedded DSP applications.

JopCMP [122] is a symmetric shared-memory multiprocessor, and consists of up to eight Java
Optimized Processor (JOP) cores, an arbitration control device, and a shared memory. All com-
ponents are interconnected via a system on chip bus. The arbiter synchronizes the access of
multiple CPUs to the shared main memory. The JopCMP is designed for maximum time pre-

dictability, where simple and accurate WCET analysis is more important than good average-
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case performance. Furthermore, it is open-source, customizable, configurable, technology-
independent (like LEON) and has been ported to FPGAs from Altera, Xilinx, and Actel thus,

avoids a lock-in to a single FPGA vendor, as is the case for MicroBlaze and NIOS.

GALS-CMP, which is proposed and described in this chapter, is a homogeneous chip-multiprocessor
system which uses the JOP-Plus as the base node, and each node is capable of executing any of
two programing models, CRCF or Java, at any given point of time. The GALS-CMP follows the
methodology adopted by the time predictable multiprocessor system JopCMP [122]. It executes
GALS application described in SystemJ having multiple clock-domains. All the clock-domains

can be run in a truly concurrent fashion on this parallel architecture.

6.4 GALS-CMP

A System]J program exhibits local synchronous concurrency and global asynchronous concur-
rency. This can be exploited by introducing hardware platforms consisting of multiple cores to
provide parallel and faster execution. To achieve efficient execution, we divide programs into
parallel operations at the clock-domain boundaries. The programmmer or system designer is
offered the choice to allocate clock-domains during compilation and these parallel operations
are then distributed onto the cores. In other words, each part of the compiled program to be

executed on a core comprises of the CRCF and JCF code for a complete clock-domain.

We propose new, scalable homogeneous chip-multiprocessor architecture for executing pro-
grams described in SystemJ. The multiprocessor is based on the use of multiple cores, where
each core supports both types of operations, implemented with two execution modes within
the single core. The GALS-CMP follows the approach adopted by the time predictable mul-
tiprocessor system JopCMP [100] and instead of JOPs, uses the JOP-Plus core. It allows all
clock-domains to run in a truly parallel fashion.

The architecture is suitable for FPGA prototyping as it uses some of the features of current
FPGA devices like distributed SRAM memory blocks, but easily fits to the System-on-Chip
approach and ASICs.

The major benefits of GALS-CMP approach are:

* A new, scalable, multiple processor architecture for supporting GALS model of computa-
tion. The proposed architecture is suitable for execution of SystemJ based heterogeneous
application that contain data and control dominated parts that interact with external envi-

ronment.

* This GALS-CMP is based on JOP-Plus core, therefore, it is capable of handling both
concurrency and reactive control flow (CRCF) and Java control flow (JCF). It is capable

of working in either of the CRCF mode or Java mode only.
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* It allows parallel execution of clock-domains that can be run on a number of physical
JOP-Plus processor cores. The exploitation of parallelism reduces the response time of

the clock-domains as well as application execution time.

* The GALS-CMP is based on JOP-Plus core which is very compact resulting in econom-
ical multiprocessor architecture having smaller die size and cost. It is expected to be
energy efficient as JOP-Plus core consumes less energy when compared to TP-JOP or TP
which use the same compilation strategy. Since JOP-Plus core contains fewer resources
than the its counter parts and takes fewer cycles to execute the application, therefore, it is

likely to consumes less energy.

* GALS-CMP gives improved hardware performance because the base processor’s cus-
tomized hardware fits the GALS MoC better. It stores the CRCF program and data in a
local memory resulting in no load on shared main memory bandwidth when executing the

CRCEF program. It also gives faster and economical access to program and data memory
of CRCE.

* When compared with the scaled version of TP-JOP to handle multiple clock-domains con-
currently, the CMP based on JOP-Plus is homogeneous in nature and does not required
any communication between control and data execution processors as both CRCF and
JCF are executed on the same processor. Also, it uses very simple and efficient mech-
anism to calls data-computations encapsulated in JCF methods when executing CRCF
without the need of any special communication infrastructure. This keeps communica-
tion infrastructure very simple and does not explode when scaling it to multiprocessor
like the TP [39] and TP-JOP approaches. It does have perofrmance issues related to the

access to shared memory.

* The clock-domain allocation to different JOP-Plus cores does not need to take into ac-
count the amount of communication between clock-domains communicating using chan-
nels in SystemJ making the clock-domain allocation simple. All the clock-domains com-
municate using shared memory, therefore, locating two clock-domains communicating
with each other on a same core or different cores will not have much effect on the pro-

gram execution except when multiple cores do it at the same time.

* The JOP-Plus core is amenable to the analysis of worst case execution time.

6.5 GALS-CMP System

The GALS-CMP follows the methodology adopted by the time predictable multiprocessor sys-

tem JopCMP [100]. It consists of multiple cores, connected to the shared memory through an
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arbiter using a SoC bus as shown in Figure 6.1. Each core uses a local method cache, stack
cache and the CRCF memory, which contains the control code of a SystemJ clock-domain, to
reduce the shared memory accesses. Furthermore, the depicted GALS-CMP architecture shows
a synchronization unit which has the responsibility to coordinate access to the shared objects
by a mutual exclusion mechanism. It makes other cores to wait until the core accessing the
shared object finshes its job. On-chip IO devices, such as a controller for real-time Ethernet or
a real-time field bus, may be mapped to shared memory addresses and are connected via the

memory arbiter.

JOP-Plus JOP-Plus
Q o
g Method cache (7% Method cache
= L
e I | :
: =
‘é‘ Register file ! Register file
2 <
CD-Table CD-Table
Memory Arbiter
Scheduling and On-chip 10
synchronization devices

Shared memory

Figure 6.1: GALS-CMP architecture

GALS-CMP implements a Shared Memory Model where all the cores are connected to a single
global physical memory. The JVM run time data areas are implemented in this physical memory
which is equally accessible to all processors. This memory holds the application program code
as well as the data in the form of objects. The memory area holding objects is termed as heap.
This enables simple data sharing through a uniform mechanism of reading and writing shared

structures in the common memory.
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6.5.1 Interconnect Fabric

All the cores are connected into the system with shared memory via simple SoC interconnect
(SimpCon) [86, 100] which provides point-to-point interconnections between components. All
of the cores communicate with each other through the shared memory. SimpCon does not
support synchronization of connecting multiple masters to a shared slave, therefore, a central
arbiter is introduced to resolve possible emerging conflicts of parallel accesses to the shared
memory. The master (core) starts the transaction by placing the read or write request and address
which are valid for one cycle. The data by the slave (memory) is also valid for one cycle. If the
slave needs the address or data longer than a cycle, it has to store it in a register. Consequently,

the master can continue to execute its program until the result for a read operation is needed.

6.5.2 Arbitration

Multiple masters (cores) may try to access the shared memory at the same time resulting in a
possible conflict as the specification does not support synchronization of connecting multiple
masters to a shared slave. The possible emerging conflicts of parallel accesses to the shared
memory are resolved by using an arbiter which controls the access of the various cores to the
shared memory. The arbiter is connected to the core (a master) and the slave memory through
the SimpCon interface. The arbiter acts as slave for each core and as a master for the shared
memory. The arbiter introduces zero cycle latency for a transaction. Transaction is an individ-
ual, indivisible operation which must succeed or fail as a complete unit; it cannot remain in an
intermediate state. The JopCMP implements both dynamic and static arbitration policies in the
form of fixed priority, fair and time division multiplexing. The fixed priority as a dynamic ar-
bitration policy resolves simultaneous access at runtime. The fair arbiter distributes a workload
evenly among all the processors. The time division multiple access (TDMA) scheme is a static
arbitration policy and strictly defines the access pattern and does not require any arbitration
during the execution time. The TDMA based policy guarantees a constant bandwidth to each
processor and is well suited for time predictability in multiprocessor systems. Each processor
gets an allocated time slot for accessing the shared memory due to which it becomes possible
to predict the memory access pattern and hence the execution time [123]. We have opted for
the TDMA based arbiter as we intend to provide a time-predictable execution environment for
embedded real-time systems in future. This memory arbitration scheme allows for a calculation
of upper bounds of Java application worst-case execution times, depending on the number of
CPUs, the time slot size, and the memory access time. The GALS-CMP inherits the attribute of
predicting the execution time for JCF execution and can be extended to include CRCF as well.
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6.5.3 Distribution of Processing

Both control-dominated and data-dominated processing is split at the clock-domain boundaries.
This means that an entire clock domain must execute on the same processing core. However,
a single processing core may execute any whole number of clock-domains. The allocation of
clock-domains to the processors is done statically at the compile time. The designer is offered
with the choice of allocation of clock-domains to different processors. Once WCET becomes
available in future, the clok-domains distribution can be made based on the outcomes.It should
be noted that an entire clock-domain must be scheduled on the same core as splitting clock-
domain over several cores due to compiler constraints. Furthermore, no mechanism is specified

for communication between reactions of same clock-domains splitted over several cores.

6.5.4 Inter Clock-domain Communication

The distribution of clock-domains on different cores gives rise to the problem of communica-
tion between the clock-domains. In SystemJ, all communication between clock-domains must
take place through channels, which are implemented as Java objects shared by the respective
clock-domains. The exchange of data using channels on traditional JVM based processors is
implemented by passing Java objects between Java methods and classes on the same JVM,
which entails passing references. All the cores of GALS-CMP are connected to the single
shared memory and the communication between clock-domains is handled by passing object
references of channels in Java. The shared memory also contains channel status signals to
implement the rendezvous used in data exchange. The inter clock-domain communication in
GALS-CMP is more efficient than the one adopted by the multiprocessor system in [39]. The
two clock-domains communicating each to the other and executing on different processor have
more expensive communication mechanism in terms of execution time and memory require-
ments as channel objects need to be transferred physically instead of passing references. In
case of GALS-CMP, channel communication takes place by passing object reference to the
other clock-domain irrespective of whether they are allocated to the same core or on different

Ccores.

6.5.5 Accessing Shared Channel Objects

The inter clock-domain communication takes place through channels which are implemented
as shared objects and reside in a single shared memory. In order to ensure the data consistency,
the simultaneous access to the shared objects and class variables is managed by protecting
access to shared objects. This is achieved through the synchronization unit by using the locking

mechanism. There is one global lock available for the heap. If a core needs to access the shared
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object implementing the channel, it requests for the lock. In case no other core is accessing the
heap, the lock is granted. Otherwise, it must wait until the other processor completes accessing
the shared object. Once core acquires the lock, it resides in the critical section and cannot be
interrupted. After the core has processed the shared object, it releases the lock. This lock can be
acquired by a waiting core which had been rejected the grant of lock previously as it was being

used by the other core.

6.6 GALS-CMP Architecture

This Section gives the description of GALS-CMP architecture including the memory organiza-
tion, JOP-Plus core and clock-domain table (CD-table).

6.6.1 Memory Organization

Each GALS-CMP core consists of a number of memories; method cache, stack cache, mi-
crocode ROM, and translation-table as shown in Figure 6.1. Other memory components such
as Register-File, CRCF program memory, CRCF data memory and a number of registers are
part of the CRCF execution mode. The CRCF program memory holds the compiled and assem-
bled code implementing concurrency and control flow of a SystemJ program. The memory is
16-bit wide RAM, which is enough to store an instruction word without operand. The memory
depth is parameterized depending upon the code size, but maximum size is limited to 64K and
this is the maximum number which a 16-bit operand in the second word of instruction can hold
as target address. There are two sources of program instructions: CRCF program memory and
method cache. Therefore, the CRCF program memory shares the program counter register with
the method cache. The method cache serves as the instruction cache for JCF. The byte-codes

for a complete method are loaded into the cache before execution.

The CRCF data memory (DM) contains the data structure for the concurrency and control flow
statements of the SystemJ program (CRCF) as shown in Figure 6.2(c). The DM is 16-bits wide
and the depth is not fixed and maximum size depends on the number of clock-domains. The
Register-File (RF) is used for temporary storage of the operands when executing CRCF and is
functionally the same as the Register-File in [38,39]. The Register-File consists of 16 16-bit
registers, which are not visible in the JCF mode. The method cache holds a complete Java
method prior to its execution. The clock-domain table holds the address of the record of a

particular methods and is described in details in Section 6.6.3.
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Figure 6.2: GALS-CMP memory organization (a) main meory layout (b) is a snapshot of special pointer
area of main memory (c) layout of CRCF data memory

The main memory is situated external to the core and can be divided into two parts: application
(program) area and heap as shown in Figure 6.2(a). The application area consists of per-class
structures such as run-time constant pool, field and method data, and the code for methods and
constructors. The heap is a run-time data area from which memory for all class instances and
arrays are allocated. The detailed organization of the main memory is given in Figure 6.2(a).
The application area also contains the code for JCF methods, loader method and CRCF wrapper
for each CPU and the main method. The channels are implemented as the Java objects and
reside in the heap part of the main memory. These objects are shared among the clock-domains
running on the same or different cores. The access to the objects by the multiple concurrent
clock-domains on different cores is synchronized by using the lock which guarantees the mutual

exclusion.

6.6.2 JOP-Plus Core

The core used as basis for the GALS-CMP provides a seamless integration of both control and

data execution in one processor [39]. The control execution is capable of invoking the data-
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computations in Java, which then returns to the control directly. The main idea is to provide
support for the two separate components of the control flow in SystemJ programs, Concurrency
and Reactive Control Flow (CRCF) and Java Control Flow (JCF), by extending the instruction
set of the original JOP while using single execution unit and data-path. This allows resultant
core to appear as two "logical" processors, or, alternatively, as a processor executing in two
different modes of execution. At any given time, the processor executes SystemJ program in
either of the two modes and uses all the resources of processor. The code parts related to
executing CRCF and JCF are stored in two different memories. The CRCF can call a JCF
method to perform some data-computations. The data call information contains the data-lock
position and id of the Java action node which is used to invoke the corresponding method. After
data-computations are performed, the JCF returns the result of computations to the CRCF which

is written to memory location pointed to by data-lock position.

Each JOP-Plus has a set of 10 devices needed for runtime system and only serial interface for
program download and a stdio devices are connected to the first core. Additional 10 devices can
either be connected to one core locally which does not put any demand on main memory band-
width or they can also be shared by all/some cores in that case they consume the bandwidth.
They can be connected to the main memory arbiter in the same way as the memory controller
as 10 devices are memory mapped and standard synchronization for the access is needed. An
interrupt line of an IO device can be connected to a single core or to several cores. Theses hard-
ware interrupts, apart from the timer interrupt, are the asynchronous events with an associated
thread which are normal schedulable objects, subject to the control of the scheduler. Interrupt
handlers are implemented as special bytecode resulting in a call of a JVM internal method in the
context of the interrupted thread. This mechanism implicitly stores almost the complete context

of the current active thread on the stack.

6.6.3 CD-table

The CD-table holds the addresses of the first JCF method structure of each clock-domain which
helps in calculating the address of any method being invoked directly from CRCF. In the GALS-
CMP architecture, each processor core executes different clock-domain(s); therefore, each pro-
cessor needs to store the base address of corresponding JCF. All these addresses are stored in a
CD-table. The clock-domain number acts as the index of the table and each entry in the table
consists of the address of the structure of the first method of that clock-domain. All the JCF
methods, each representing a Java action node, are arranged in ascending order making it possi-
ble to calculate the address of structure of any method provided its offset from the base method
is given. This offset is provided during the data-call. The CD-table, implemented in a RAM

has parameterized number of entries equal to the number of clock-domains. The clock-domain
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number acts as the address for the RAM and address of the structure of base method for that

clock-domain is read which is used to calculate the address of the desired method to be invoked.

6.7 GALS-CMP Compilation and Execution flow

Given the CRCF and JCF code generated by SystemJ compiler and a clock-domain to JOP-
plus core mapping, the CDA tool integrated into compiler backend, takes the code generated by
the original compiler and partitions it into multiple CRCF and JCF codes, one for each core.
One sequential CRCF code and JCF code is generated for each processor. For multiple clock-
domains mapped onto one core, the corresponding clock-domains are executed in a round-robin

fashion.

6.7.1 SystemJ Example

Figure 6.3 gives an abstract representation of a SystemJ program that implements an asyn-
chronous protocol stack. This program is readily runnable on any processor with JVM. It has
three clock-domains; the first clock-domain models the packet generation from a network de-
vice, while the second and third clock-domains implement the main functionality of protocol
stack [90], which can be extended to model complete communication stack like TCP/IP. There
are three synchronous parallel reactions in each protocol_stack [25] clock-domain: Assemble,
Checkhdr and Stack. These reactions assemble the incoming packets, check the header infor-
mation of the sent packet and perform CRC check, and finally parse the packet and do compu-

tations, respectively.
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Figure 6.3: Pictorial representation of SystemJ example

The SystemJ code for a protocol stack clock-domain is shown in Figure 6.4. The second stack

and packet generation itself have been abstracted out. The packet generation clock-domain,
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which creates a test-bench for the protocol-stacks, first resets the running protocol stack. Then,

it initializes a byte array (fosend) with some packets and sends the packets to the protocol stack.

system{

interface{

input int channel resetl;
output int channel resetl;
output byte channel datal;
input byte channel datal;
input int channel reset2;
output int channel reset2;
output byte channel data2;
input byte channel data?2;
}
{

int crcl=0;
while (true) {
abort (resl?2) {
await (packetl);
crcl = bufferl.computeCRC();
int vall = 0;
vall = (crcl == bufferl.getCRC()) ? 1:0;
emit crc_okl(vall);

}

pause;
{TestBench (resetl,datal) } } // while
>< )

//TheStack (resetl,datal) ||//Checkcre

{
signal packetl,kill checkl;
signal resll,resl2,resl3;
Integer signal crc_okl;
Asproto bufferl = null;
{

{
int match okl=0;
while (true) {
abort (resl3) {
await (packetl);

{
while (true) {

abort (kill checkl) {
receive resetl; "

//Some length computation

int ul= 0; match okl = 1;
ul = #resetl; pauseT
if (ul==1){ pause;
emit resll; emit resl2; pause;
emit resl3; pause;
J }
pause; }
J I
J {
|| //Rssemble await (crc_okl);
{ int rel = 0;
int cntl=0;

rel= #crc_okl;
if (rel==0) {
emit kill checkl;
}
}
int therel = 0;
herel = #crc_okl;
if (therel==1 && match okl==1) {
System.out.println ("Address matchl!");

bufferl = new Asproto();
while (true) {
abort (resll) {
int el =0;
trap (T) {
int lenl2 = Asproto.PKTSIZE;
if (el == lenl2){
exit (T);
}
else{
receive datal;
byte t1 = 0; tl = #datal;
el=el+l;
bufferl.setRaw(el, tl);
}
}
emit packetl;
}
pause;

}

//Second protocol stack

Figure 6.4: SystemJ code for Asynchronous Protocol Stack



164 GALS-CMP

Upon compilation, the CRCF is separated from the JCF. The JCF code is presented in Java
and consists of a number of methods performing some data-computations. Each JCF method
represents a Java action node in AGRC and has a unique id. The methods are organized in JCF
with respect to their id. The method corresponding to the first Java action node of a particular
clock-domain is referred to as base method of that clock-domain which acts as reference to

calculate the position of the other JCF method in the main memory.

6.7.2 Compilation Flow

The compilation and execution flow for GALS-CMP is shown in Figure 6.5. The GALS pro-
grams described in SystemJ are compiled by using the approach where CRCEF is separated from
JCFE. The CRCF code is compiled first; the resulting code is wrapped in an array and stored in
heap. On start up the compiled CRCF code is stored in the program memories of the respec-
tive processor cores. The allocation of clock-domains to the processors is done statically at the
compile time. The designer is offered with the specific choice of executing the clock-domain(s)
separately on different processors. The allocation takes place at in the main method of the core
with zero id, responsible for downloading the application code into the main memory. When

the other cores are enabled, they run the clock-domain method as their main method.
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I~ wrapper
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SystemJ | |

compiler

SystemJ
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Figure 6.5: SystemJ compilation and execution flow

The compiler generates separate CRCF (CRCF.asm) and JCF (JCF.java) code for each proces-
sor consisting of the CRCF and JCF codes for the clock-domains assigned to this particular
processor as shown in Figure 6.6. The CRCF assembly code (crcf.asm) is shown in Figure 6.6a

and JCF Java code is shown in Figure 6.6b.
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// Assembly code for crcf.asm
L1 SEOT

CER

LDR RO $0001

AND RO RO #$£000

SSOP RO

LSIP RO

AND RO RO #$0

LDR R1 $0002

AND R1 R1 #$0001

PRESENT R1 L4

LDR RO #3

ADD R1 R6 #0

STR R1 #0

SENDATA RO // calling Java action node
ADD R4 R4 #1

//Java code for JCF (Jcf.java)
Public Class Jcf{

public static int u=0;

//JCF method corresponding to Java
action node
private static method 0(){
System.out.println(“cd0”) ;
}

private static method 1(){
u=5;

}

private static method 2(){
System.out.println (u);

}
L2 LDR RO R1

CLFZ

SUBV RO RO #0

Sz L3 private static method n{() {
JMP L7 System.out.println (u);
L3 CLFZ

}

(a) CRCF assembly code (b) Java action nodes as JCF methods
Figure 6.6: SystemJ code compiled by separating data-computation and control in the form of JCF Java
code and CRCF assembly code

The assembler generates the CRCF machine code and generates .hex file (CRCFE hex). The
CRCEF wrapper fragments this code and wraps them into Java arrays (CRCFjava) as shown in

Figure 6.7.

//CRCF.java

// The CRCF machine code encapsulated

// in array objects and stored in heap

// before downloading into CRCF program memory

// each array contains

public class CRCF{

int &;

public static int[] cc = {
0x3400,0x4100, 020000, 0x4090,
O0XFFFA, 0x40A0, 0xFFFF, 024070,

}
}

Figure 6.7: CRCF machine code encapsulated in arrays

The Java code responsible for downloading the CRCF code, called CRCF loader, is generated
and combined with the Jcf.java to produce the code to be executed on each core (core.java) as
shown in Figure 6.8. All the signals and variables local to these clock-domains being executed

on the same core are declared here.
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//Core.java

// contains the CRCF and JCF code
//to be executed on a core

public class Core {

//local signals and variable declarations

private void jcf() {
System.out.println("cd0 mQ0");
Native.rddatacall(1l);

}

}
// code for downloading CRCF
public static void corestart() {
//create an instance of CRCF code enclosed
// in array
code = new CRCF () ;
int length = code.cc.length;
for (i=0; i < length; i++){
crcf instr=code.ccladdr];
// read instruction from heap and stored it in
// CRCF program memory
Native.initctrl (addr, crcf instr);
addr=addr+1;
}
System.out.println("initialize CRCF PM!");
// CRCF program download complete
// switch the execution mode
Native.switchmode () ;
}
}

Figure 6.8: Java code to be executed on a core comprising of code for downloading CRCF machine code
into CRCF program memory and JCF code representing Java action nodes

Finally, all the clock-domains are assigned to the respective cores in the main method of class
Galcmp.java as shown in Figure 6.9. The shared channel objects, through which the clock

domains communicate, are declared inside this class.

// Galscmp.java

1 Public Class Galscmp({

2 //shared channel objects are declared here

3 public static void main(String[] args) {

4

5 SysDevice sys = IOFactory.getFactory() .getSysDevice();
6 // start the other CPUs after boot up

7 sys.signal = 1;

8 // get cpu id

9 cpu_id = Native.rdMem(Const.IO CPU_ID);

10 if (cpu_id == 0x00000002) {

11 // each core execute respective clock-domain(s)
12 core2.corestart () ;

13 }

14 if (cpu_id == 0x00000001) {

15 corel.corestart();

16 }

17 corel.corestart();

18 }

19 }

20 }

Figure 6.9: Allocation of clock-domains to cores in main method of the class

The application class is compiled by javac and produces the class file which is further processed
by the JOP specific tool to produce the GALS-CMP final code. It also generates the VHDL code
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for CD-table. The application is downloaded into main memory by the core with id zero. Once
the start up is completed, all the cores start executing respective clock-domains. Each core starts
in Java mode and downloads the CRCF code from the heap into CRCF program memory. After
the CRCF program memory is initialized, the core switches the mode and starts executing in
CRCF mode by fetching the instructions from the CRCF program memory.

6.7.3 Boot Sequence

In GALS-CMP, each processor is assigned a unique identity number (CPUid). The boot-up
process is similar to JOP-Plus and is the same for all processors until the generation of the

internal reset and the execution of the first microcode instruction. From that point on:

* Only one processor performs the initialization steps and processor (id=0) is designated to

do all the boot-up and initialization work.

* The other CPUs have to wait until CPUO completes the boot-up and initialization se-

quence.
* At the beginning of the booting sequence, CPUO loads the Java application.

* Meanwhile, all other processors are waiting for an initialization finished signal from

CPUO. This busy wait is performed in microcode.

* The additional CPUs will invoke a system method assigned to them in the main method.
Then each CPU initializes its CRCF memory with the respective CRCF code from the
heap.

* Once initalization is completed, the processor switches the execution mode

* The execution of the application starts in the CRCF mode.

6.7.4 Instruction Fetch

There are two different memories which hold the program code for two different modes: CRCF
program memory and method cache for the CRCF and JCF modes, respectively. The program
memory source for the next instruction to be fetched is controlled through mode_control flag,
which defines the mode of operation. If mode_control flag is set, the next instruction to be
executed is always fetched from the CRCF program memory. On the other hand, resetting of
the flag results in fetching of the next instruction to be executed from the method cache. This
flag is set and reset while switching from the CRCF mode to JCF or vice versa. Both memories

share the program counter; therefore, its value is saved when switching to the JCF mode. The
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switching from JCF to CRCF mode does not require storing the address as memory subsystem

provides the method start address in the cache every time a JCF method is loaded into it.

6.7.5 'Transfer of Control to/from JCF

When invoking a JCF method to perform data-computation, the address of next (returning)
CRCEF instruction is stored in a register and the address of the structure of the base method of
the clock-domain to be executed is fetched from the CD-table as discussed in Section 6.6.3.
The address of the structure of the method to be invoked is calculated using the base addresse
provided in the CD-table. The address calculation mechansim for invoking a method is similar
to JOP-Plus and has been discussed in detail in Chapter 5. The structure record of a method
resides in main memory and holds the information such as constant pool address, argument
count, variable count, method start address and code length, in the encoded form. The method
start address and code length are extracted and the information is passed to the memory sub-
system for loading the method code into the cache. At the same time, the mode_control flag is
reset making the method cache default memory for read/write operations. The next byte-code is
fetched from the method cache and JCF method execution starts. When returning from the JCF
to the CRCF mode, the result is available as the top element of stack. The result is written to the
CRCEF data memory at a location pointed to by data-lock position. The address of next CRCF
instruction to be executed is stored in a register; it is loaded into Java program counter and
mode_control flag is set. The next instruction is fetched from the CRCF program memory, and
method cache does not need to be loaded with CRCF program code as it permanently resides in

the CRCF program memory.

6.8 Performance Evaluation

This section presents the results of experiments conducted to evaluate and compare our pro-
posed GALS-CMP multiprocessor architecture with a single processor approach, called base

core, to execute the SystemJ programs.

6.8.1 Experimental Setup

All presented data have been collected from the experiments carried out by using the cycle-
accurate ModelSim simulator for 2,3 and 4 core systems all running at 50 MHz clock. The
system is capable of running at frequency higher than 50 MHz but the results presented are for
50 MHz clock for fair comparison with earlier published results. The benchmarks are selected

to show the effectiveness of the approach for the GALS program execution. The benchmarks
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include asynchronous examples which are heterogeneous in nature both with and without in-

volving any clock-domain communication.

6.8.2 Benchmarks

The benchmarks without any inter clock-domain communication include the two and four
clock-domain version of demoloop (dl) [89], dI2 and di4, respectively, which effectively means
running two or four synchronous programs in parallel. It consists of two or four identical
clock-domains each comprising of four reactions and these clock-domains run independently
without involving any communication between them. These benchmarks have minimal data-
computations, and fully parallelized application without any accesses to shared data structures
and synchronization needs. The asynchronous case is represented by an asynchronous protocol
stack (aps) [90] and pump controller examples. The aps example has two versions: 1) aps has
two clock-domains and 2) a variant aps3 has three clock-domains. In both cases, the first clock-
domain is used to model the packet generation process, and second clock-domain implements
the stack itself as mentioned previously. The aps3 implements two protocol stacks presenting a
case where network generator sends data at a rate higher than what can be handled by a single
protocol stack. Therefore, the generator sends to two different stacks alternately. The pump
controller example consists of two clock-domains and nine reactions in total. It models the
control of a pump inside a mine which may have high methane levels. The pump pumps out
water whenever the water level exceeds the desired level and is turned on only if methane level
is below a certain limit. Whenever methane level goes above that limit, the controller must stop
the pump and wait until right methane level is restored. If methane level goes too high, then the

pump is stopped immediately and an ALARM is generated.

6.8.3 Performance Parameters Definitions

The execution speed comparisons are given in terms of the average response time of the clock-
domain and the application execution time. The clock-domain response time is defined as the
average time taken by the clock-domain to respond to the environment at the end of its logical
tick. A logical tick is the time interval between two logical time consuming statements and
may have variable time depending on the amount of computation enclosed between these two
statements. The application response time is defined as the time between the application input
sampled and final output generation and may involve multiple logical ticks. It takes into account
the time needed by the cores and in addition the time taken for communication between the

processing elements to exchange the information, if needed.
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6.8.4 Reponse Time Comparison

The results in Figure 6.10 show that GALS-CMP outperforms the single processor execution in
terms of response time. The GALS-CMP with 2 cores has between 2 and almost 4 times reduc-
tion in response time when executing the benchmarks which do not involve any clock-domain
communication and have minimal data-computations. This can be attributed to the following
factors: firstly, the use of multiprocessor system and secondly, the local storage of the CRCF
program as provided in the base core. The control dominated programs contain minimal data-
computations, so they do not need to access the main memory to fetch the JCF method into the
cache. Therefore, the gain is almost proportional to the number of processor cores. Increasing
the number of clock-domains increases the response time, which is evident from the results
for the benchmarks aps and its variant aps3. The improvement in response time is achieved
through parallel execution of the clock-domains. The clock-domains run independently and
respond to the environment at the end of each of their logical ticks which is in contrast to the
single processor approach where clock-domains are executed cyclically one after the other. The
clock-domains in the later case are able to respond to the environment signals only after all the
clock-domains have finished their execution resulting in increased response time. The GALS-
CMP is expected to have degradation in the clock-domain tick time due to the shared memory
as the bandwidth is divided equally among all the nodes of the GALS-CMP. In case of control-
dominated applications with minimal data-computation, the tick time is not expected to degrade
by much as the code implementing the concurrency and control flow is stored in a separate local
memory and, therefore, it is not affected by the constraints on memory bandwidth due to shared

memory.
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6.8.5 Application Execution Time Comparison

The application execution time means time required to fully execute an application from start to
end once. Figure 6.11 shows the reduction in application execution times for benchmark exam-
ples against the single processor execution. The results indicate that the application execution
times are improved by almost 100% when we migrate from single core to two core system when
executing control dominated applications such as dI2. The reason for this improvement is the
concurrent execution of clock-domain as compared to single core execution which can execute
only one clock-domain at any time, therefore, clock-domains are scheduled cyclically resulting
in larger execution times. But this gain is not linear when going from 2 to 4 core systems as
evident from dl4 benchmark. This is due to the constraints on shared memory bandwidth. It
should be noted that dI2 and d/4 are run on a two and four core systems, respectively. The aps
and pump controller examples are 85% and 89% faster, respectively. Both of the examples in-
volve the channel communication; therefore, some of the time is consumed in physical transfer
of data over channels. Further addition to this time is the fact that the channel objects reside in
heap, which is implemented in shared main memory resulting in delayed access due to memory

bandwidth constraints.
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Figure 6.11: Comparison of application execution time of GALS-CMP and and base core JOP-Plus

6.9 Summary

We have described a new multiprocessor platform, GALS-CMP, for the execution of concurrent
programs written in the GALS programming language SystemJ. The multiprocessor arhcitec-
tur is based on the JOP-Plus core developed during the course of this research and described in
chapter 5. The GALS-CMP platform fits well with the GALs MoC based applications described
in Sysetm]J where a system comprises of multiple clock-domains running independently. The
communication between clock-domains is performed through shared memory by passing ref-

erences. The synchronization to shared objects is achieved through locks. We demonstrated
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the effectiveness of the approach by running different benchmark examples and comparing the
measurements against the single processor approach. This processor outperforms other execu-
tion platforms for SystemJ in terms of clock-domain response-time and the overall application
response time. We believe that this solution will fullfil the requirements laid down by the high-

end embedded market.



Chapter 7
Conclusion and Future Work

The embedded systems are becoming more and more complex, heterogeneous and distributed
in nature. They are being deployed in critical applications and demand real time operation.
There has been a surge for efficient modeling of such systems on one hand, and their execution
platforms on the other hand. The problem of modeling such systems is being tackled to some
extent by raising the level of abstraction. The system level language called System]J targets
such systems and is based on the Globally Asynchronous Locally Synchronous (GALS) model
of computation. It provides tight coupling of control and data-driven transformations, and rep-
resents both asynchronous and synchronous concurrent processes in an abstract way. Contrary
to the modeling, the efficient execution of systems described using GALS MoC is a research
problem which has largely been overlooked. It is required to be explored and needs serious
attention. This thesis focuses on the exploration of the architectures for efficient execution of

application described using SystemJ.

This chapter starts with a concise summary of the major goals described in this thesis. Fur-
thermore, the research course is outlined and the main findings and results are presented. The
conclusion will demonstrate the relevance of this thesis to current scientific work and give some

ideas for future research.

7.1 Overview

The main goal of thesis is to propose new architectures, as well as improving upon to the ex-
isting architectures, to efficiently execute the programs described in the language targeting the
Globally Asynchronous Locally Synchronous (GALS) paradigm. These architectures execute
control and data-driven operations along with asynchronous and synchronous concurrent pro-

cesses in an efficient way. The architectures developed are amenable to the Worst Case Reaction

173
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Time calculation. The goal of this thesis is to achieve performance and efficiency approaching

that of application specific systems.

7.2 Results Discussion

Figure 7.1 shows the embedded platforms deployed for the execution of SystemJ programs. The
platforms shaded greys are the 6 new platforms introduced and five of them were the outcome
of this research. A number of execution platforms have been adopted or developed for SystemlJ
program compiled using two approaches: 1) pure Java where SystemJ program is compiled to
standard Java 2) split approach where control is separated from data-computation. Previously,
SystemJ programs compiled to pure Java were executed on a general purpose processor run-
ning an interpreting JVM. As a first step towards the development of efficient platform, we
introduced a Java processor in the form of JOP. Being hardware JVM, JOP performs better than

the general purpose processor which interprets the Java byte-code through a JVM running on it.
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Figure 7.1: SystemJ program compilation and execution approaches. The shaded areas represent the
approaches suggested in this thesis

The separation of control from data-computation not only improves the execution time of pro-
grams but also reduces the memory footprint [38]. SystemJ programs compiled using such an
approach generated control code as a special instruction set and data-computation code was
generated in Java. They were executed on a custom control processor and executed on a gen-

eral purpose processor, respectively. This dual or two-processor approach, called TP, made use
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of heterogeneous elements to perform control-oriented and data-oriented computations concur-
rently. The results provided in Figure 7.2a indicate that JOP outperforms the TP and is up-to
11 times faster than the TP despite the fact that the TP benefits from the compilation approach
where control-oriented operations are separated from the data-oriented operations. We achieved
further improvement in the execution of System] program through Reactive-JOP (RJOP) - a
variant of JOP obtained by enriching it with reactivity and signal manipulation in the hardware,
which are the key features of the GALS applications described using SystemJ. The results show
that RJOP on average is 20% faster than JOP as given in Figure 7.2a.

A hardware JVM performs better than interpreting JVM, therefore, this prompted to improve the
TP architecture by replacing the general purpose processor with the Java optimized processor
for the execution of Java code. This resulted in a more efficient execution platform, called
TP-JOP, capable of executing both control-oriented and data-oriented operations natively thus
removing the TP’s bottleneck of slower execution of data-computations represented in Java due
to interpreting JVM. The results in Figure 7.2a show that TP-JOP [95] is 6 to 50 times faster
than the TP for the given set of the benchmarks.
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Figure 7.2: Performance comparison

Although, TP-JOP was able to execute the SystemJ programs faster, but being a dual pro-
cessor approach, used too many logic elements when implemented in FPGA. Also, frequent
communication between control and data processors required a more efficient interconnection.
The frequent communication together with the communication infrastructure posed many prob-
lems [39] while scaling to multiprocessor architecture. The execution flow of SystemlJ applica-
tion also suggested that the resources executing control and data-computations are underutilized

as they block waiting for each other.

To overcome these issues, we proposed a single processor execution platform in the form of
GALS-JOP. It translated the control program to Java statements. It gives acceptable perfor-

mance while using fewer logic resources. It does not require communication infrastructure as
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both control and data-computations are executed on a single processor. The GALS-JOP is 2
to 10 times faster than the JOP, 3 to 53 times faster than the TP. TP-JOP performs better than
GALS-JOP due to concurrent and native execution of both control-oriented and data-oriented
operations. The compiler generates the control (assembly) and data-computations (Java) in two
orthogonal programing models. The execution of both on GALS-JOP required the translation
of one programing model (assembly) into the other programing model (Java) understandable
by the base processor (JOP). We presented a solution to this problem by extending the base
processor to support both programming models. The JOP-Plus processor provides a seamless
integration of both programing models into one processor. One programing model is capa-
ble of invoking the other programing model and return to it directly. The JOP-Plus is 44%
and 55% faster while executing the application with data-computation such as runner and dl,
respectively. JOP-Plus improves data-computations represented in JCF execution by decom-
posing it into smaller methods for more efficient execution. JOP-Plus is up-to 125% faster than

GALS-JOP with comparable resource usage.

The single processor approach can provide only a limited processing power. In order to achieve
high computation power, we proposed GALS-CMP which is a shared memory homogeneous
multiprocessor architecture comprising of many cores. This architecture is capable of exploiting
the parallelism offered by the SystemJ applications at clock-domain level. The clock-domains
run concurrently at their own on logic tick rate in truely GALS fashion. The results in Figure
7.2b indicate that the application execution times speed up by almost 100% when we migrate
from single core to two core system when executing control dominated applications such as
dl2. But this gain is not linear when going from 2 to 4 core systems as evident from d/4 bench-
mark. This is due to the constraint on shared memory bandwidth. The aps and pump controller
examples are 85% and 89% faster, respectively. Both of the examples involve the channel
communication; therefore, some of the time is consumed in physical transfer of data over chan-
nels. Further addition to this time is the fact that the channel objects reside in heap, which is
implemented in shared main memory resulting in delayed access due to memory bandwidth

constraints.

Figure 7.3 shows utilization of resources for different target platforms. The JVM approach runs
both control processing and data-driven processing on a single JVM. The three different plat-
forms implementing the JVM are GPP (NIOS II), JOP and RJOP. GPP also includes all Avalon
fabric with required arbiters, multiplexers and decoding logic to connect FPGA’s internal and
external memories. The GPP is the most expensive option and uses 32% more logic elements
than JOP. The RJOP uses only 3% more resources than the JOP and is up-to 20% faster. For
split approach, the TP-JOP is the most expensive and JOP-Plus is the most economical in terms
of real state usage. When compared with TP, the TP-JOP, GALS-JOP and JOP-Plus use 15%,

41% and 42% fewer resources, respectively.



7.3 Main Contributions 177

LEs

8000
7000 mGPP
6000
5000 mJop
4000 ERIOP
3000 -
2000
1000 TP-JOP

0 B GALS-JOP

0‘—)
X MW JOP-Plus
&

Figure 7.3: Resource usage comparison for all execution approaches

7.3 Main Contributions

The main contributions described in this thesis are:

1. Accelerated and Time Predictable Execution of GALS Programs: SystemlJ uses Java to
perform data-driven computations. It is also uses a compilation approach where concur-
rency and reactivity is compiled into single threaded Java code. Although Java provides a
lot of advantages such a type safety, portability and automated garbage collection, it suf-
fered from a major drawback. Java achieves these advantages at the expense of execution
speed, especially, in the case of embedded implementation. As a first step towards ac-
celerating SystemJ execution, we introduced the Java Optimized Processor (JOP) which
is hardware implementation of JVM. It overcame the drawbacks of increased execution
time due to interpreting JVM running on a complete traditional processor. The time pre-

dictable execution made it possible to deploy SystemJ in real-time systems.

2. A Reactive Java Processor for the Execution of GALS Programs: The JOP, inherently
suited to data-driven transformational operations, is extended to efficiently execute the
control constructs and control flow of SystemJ. The new core, which is called RJOP (Re-
active JOP), efficiently executes both data dominated and control dominated embedded
applications. It also maintains the time-predictable execution of the applications intended
for real-time embedded systems and calculation of Worst Case Reaction Time (WCRT)
as provided by the original JOP core. The results showed significant performance im-
provement and lower resource consumption over the existing architectures used for the

SystemJ execution.

3. A Heterogeneous Tandem Processor Architecture for GALS Programs Execution:: The

TP-JOP architecture is capable of executing both control and data computations natively.
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This is an improvement over the TP execution platform which is used to execute the
SystemJ program where control flow, which includes concurrency, is separated from the
ordinary Java computations. The TP used a control processor in conjunction with a tra-
ditional processor. The interpreting JVM along with a complete traditional processor
results in increased execution time and also higher logic usage. The TP-JOP, as the name

indicates uses a full Java processor, for the execution of Java computations.

Efficient Merging of Control and Data-computations: A new processor, called GALS-
JOP, makes very fine merger of tandem processor approach into a single and more eco-
nomical processor. It facilitates efficient execution of synchronous and asynchronous con-
currency and reactivity (control flow) and Java oriented data computations by merging the
best of both worlds at low cost. Importantly, the design approach does not require any es-
sential modification of the SystemJ compilation flow, which is based on a formal seman-
tics, giving advantages over non-formal programming languages and their compilation
approaches. GALS-JOP guarantees finding the worst case execution times for any pro-
gram segment, and in particular case of SystemJ programs the worst case reaction times
(WRCT). This approach required the translation of concurrency and control flow (CRCF)
programming model represented as assembly instructions to the data-computation pro-

gramming model represented as Java statements explained earlier.

. Execution of Control and Data computations with Distinct Modes of Executions: We

present a solution for low resource usage for executing programs compiled by separating
the control and data-driven operations. These programs are executed on a single JOP-Plus
core without requiring the translation of one programming model into another program-
ming model. Instead, it provides support for both programming models in a single pro-
cessor with two execution modes. This allows resultant core to appear as two "logical"
processors, or, alternatively, as a processor executing in two different modes of execution.
At any given time, the processor executes SystemJ program in either of the two modes
and uses all the resources of processor. It can switch between two modes without any

overheads.

6. A Homogeneous Multiprocessor Architecture for Concurrent Execution of GALS Pro-

grams: We presented a GALS-CMP multi-processor architecture for concurrent execu-
tion of programs that follow the Globally Asynchronous Locally Synchronous (GALS)
formal model of computation. It consists of multiple JOP-Plus cores, connected to the
shared memory through an arbiter. The SystemJ programs offer high degree of concur-
rency at clock-domain level which is exploited to boost the performance of the system.
The GALS programs are partitioned at clock-domain boundaries and they are allocated

to different cores. The exploitation of parallelism reduces the response time of the clock-
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domains as well as application execution time. The multiprocessor system is suitable for

the execution of heterogeneous complex embedded applications.

7. Compiler Modifications: The SystemJ compiler back-end is modified to target code gen-
eration for various platforms. We have provided a complete design flow for each target
platforms that we have designed for efficient execution of GALS languages in general

and SystemlJ in particular.

8. Experimental evaluation: We evaluate the different architectures and validate their effec-
tiveness by running benchmarks on them. Better performance, code density and resources
usage compared to previous approaches for SystemJ execution, thus making it more suit-

able for heterogeneous embedded applications.

Thus, overall this thesis describes new execution platforms and development environment that

can be used for efficient execution of GALS languages in general and System]J in particular.

7.4 Recommendations for Further Research

This thesis introduced a number of novel processor architectures for executing GALS program
described in SystemJ. We presented the implementations of the architectures, components, and
also validated the correctness of them via the evaluation. However, these architectures are initial
prototypes. There is still some room to optimize or enhance these architectures and the related

compiler as follow:

1. Compiler optimizations: The outcomes of the research suggest that SystemJ compiler
can be optimized to produce more efficient code. These optimizations can be readily
incorporated into the compiler. For example, the sequential execution of the control and
data computations does not require the data-locks and testing of these locks in the code.

The removal of the data-locks will simplify the code and reduce the memory footprint.

2. Integrating SystemJ compiler within JOP tool chain: In this research we have maintained
the separation between the SystemJ compiler and JOP tool chain. We believe the integra-
tion of both will result in optimized system. For example, the SystemJ compiler generates
the CRCF and JCF code. The JCF methods are invoked by the CRCF by calculating the
addresses of the methods. After JCF compilation, the method addresses produced by
the JOP tool can be used by the System]J compiler, which can perform another pass and

replace the methods identifiers with their addresses.

3. C based execution platform: Keeping in view that the embedded systems are restricted

by resources and time constraints, another option is to use C as implementation language
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instead of Java. Applictions described in SystemJ and compiled to Java can be translated
to C by using Java to C converters. This can be executed on any general purpose processor

and performance comparison should be made with existing platfroms.

. Interrupt based TP-JOP: In the current implementation of TP-JOP, JOP polls the CP all

the time and cannot perform any useful task when idle in the absence of a data call. The
utilization of JOP can be improved by replacing the polling mechanism with interrupt.
The CP will interrupt the JOP when any data computation is required by placing a data
call. The JOP will respond to this data call by performing the required data computation
and starts executing the assigned task again. This will increase the utilization of JOP.

. Extension of WCET analysis for JOP-Plus: As CRCF execution times can be exactly

calculated and JOP worst case execution times are also predictable, we plan to extend
this work to the analysis of the worst case response times and optimization for use in

real-time systems. This works is in progress and results are expected very soon.

. Power consumption: As power and energy consumptions are becoming decisive design

criteria, we recommend that power consumption, as well as the energy efficiency of the
processor must be analyzed by introducing power models. This can be used for power
sensitive applications, to give feedback to designers about the peak or average power
consumption of the designed system. It can also help in work load balancing in multipro-

cessor system.

. Reducing demand of shared memory bandwidth: In the JOP-Plus architecture presented

in Chapter 5, the CRCF code is stored in on-chip memory whereas JCF code is stored in
the main memory which is shared among all the processing cores. The sharing of memory
bandwidth results in the degradation of performance as the processing cores compete for
the bandwidth to fetch the JCF code to method cache prior to its execution. Providing the

local storage for JCF code will ease the pressure on the shared memory bandwidth.

. Hardware support for channels: In GALS-CMP system, clock-domains execute concur-

rently and channel-based communication between clock-domains takes place through the
shared memory. We plan to investigate hardware support for point-to-point channel com-

munication among the processing cores.

Lock-free synchronization: One of the possible research areas may be to investigate dif-
ferent means of providing atomic access to shared objects implementing channels in the
memory. The transactional memory can be an alternative to locks that provides lock-
free synchronization and has become a popular research area. Transactional memory was

originally proposed as a better solution than locks to shared-memory synchronization,
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and avoids the problems of serialization and deadlocks involved with locks [124]. It was

shown to also have a performance advantage over locks.

10. Automatic allocation of clock-domain: One of the research area can be development of
methods for static compile time clock-domains allocation to a GALS-CMP architecture.
The worst case execution times of the clock-domains can be reliably estimated at compile
time, and clock-domain mapping can be made statically at the compile time. The designer
will be freed from the responsibility of allocation and clock-domains will be allocated

based on the performance parameter rather than random choice of the designer.

11. Distributed multiprocessor system: As mentioned in Chapter 6, a tightly coupled multi-
processor system consisting of multiple CPUs and a single global physical memory has
a serious bottleneck: Main memory is accessed via a common bus, a serialization point
that limits system size. Distributed-memory multiprocessors, however, do not suffer from
this drawback. The system can contain many orders of magnitude more processors than
a tightly coupled system. The communication required between the concurrent clock-
domain can be implemented by a shared-memory abstraction on top of message-passing
distributed-memory systems. Alternately, the point-to-point communication channels can
be implemented which will keep the communication network simple and can be scaled to

any required number of core.

12. Extending reliability through clock-domain migration: Failures are likely to be more fre-
quent in systems with more processors. Therefore, schemes for dealing with faults be-
come increasingly important. In future, we intend to incorporate fault tolerance solution
for System] based applications being executed on the chip multiprocessor system where
clock-domains are run concurrently. The main idea here is to guarantee, once a failure

occurs, that the executing tasks are migrated to other non-faulty core.

13. Better machine interface development: An efficient tool based on graphical user interface
can be developed which is capable of generating and running the code on different target
platforms with the press of a button. Since we have developed a number of platforms, the
tool should compile the code for different target platforms and be able to load and execute
the programs on these target platforms. The tool should also be able to simulate the codes
generated for different target platforms. This tool will not only make user friendly but
greatly reduce the development time and cost. This will also add to the commercial value

of the System.

As indicated above, there are still lots of research topics for these architectures that can be
explored in the near future. We also hope anyone who is interested in architecture feels free to

discuss with us if they have any questions.
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CVM Instruction Set

Addressing Modes

Instruction Description Register Transfers
Inherent Immediate Direct Indirect
Rz < Rx AND Operand X
AND Rz Rx The contents of Rx and Rz / p
Operand Operand are ANDed and the
result is stored in Rz Rz — Rz AND Rx X
OR Rz Rx The contents of Rx and Rz / Rz — Rx OR Operand X
Operand Operand are ORed and the result
p is stored in Rz Rz - Rz OR RX X
ADD Rz Rx The contents of Rx and Rz / Rz < Rx + Operand X
Operand Operand are added and the
result is stored in Rz Rz < Rz + RX X
The contents of Rx and Rz /
SUBV Rz Rx
Operand are subtracted and the | Rz < Rx - Operand X
Operand result is stored in Rz
The contents of Rz and the
SUB Rz
Operand are subtracted butthe | Rz - Operand X
Operand result is not stored
INIT Operand Lof';\d HP gnd TP with the content | HP «— Operand X
of immediate value TP « Operand
Rz « Operand X
Load Rz with the content of
immediate value / memory
LDR Rz Rx location pointed to by Rx or Rz — M[RX] X
Operand
Rz — M[Operand] X
M[Rz] — Operand X
Store the content of Rx/
immediate value, into memory
STR Rz Rx location pointed to by Rz / direct M[Rz] < Rx X
address
M[Operand] < Rx X
JMP Rx PC « Operand X

Jump to address location




unconditionally PC < RXx X
o if Rz(0)=1 then
PRESENT Rz Jump to address location if the
thread pointed to by Rz is not
Operand present else continue execution PC<—Operand else
NEXT
SENDATA Rx Store the content of Rx in queue | M[TP]«Rx X
Compare 4 bit memory blocks in | RZ —MAX{Rx[15:12],
CHKEND Rz Rx | Rxwith Rz(3-0) and store the RX[11:8],Rx[7:4], X
largest value back in Rz RX[3:O], RZ[3:O] }
Switch execution to memory Rz «— M[RX]
SWITCH Rz Rx location pomted_ by addition of Rz < Rz +Rx + 1 X
content of Rx with memory
location pointed to by Rx plus 1 PC « M[RZ]
Jump to address location if Z=1 if Z=1 then PC «
SZ Operand else continue execution Operand else NEXT
CLFz Clear Zero flag Z—0 X
CER Clear EReady bit ER«— 0O X
CEOT Clear EOT bit EOT « 0 X
SEOT Set EOT bit EOT — 1 X
LER Rz The content of ER is storedinRz | Rz «— ER X
SSVOP Rx I;))(ad SVOP with the content of SVOP < Rx X
LSIP Rz Load Rz with the content of SIP Rz < SIP X
SSOP Rx Load SOP with the content of Rx | SOP «— RXx X
NOOP No operation X




JVM Bytecodes arranged according to the number

nop 0x00 (0) fload 0 0x22 (34) | fstore 1 0x44 (68)
aconst_null | 0x01 (1) fload 1 0x23 (35) | fstore 2 0x45 (69)
iconst m1 | 0x02 (2) fload_2 0x24 (36) | fstore 3 0x46 (70)
iconst_0 0x03 (3) fload_3 0x25 (37) | dstore 0 0x47 (71)
iconst_1 0x04 (4) dload 0 0x26 (38) | dstore 1 0x48 (72)
iconst_2 0x05 (5) dload 1 0x27 (39) | dstore 2 0x49 (73)
iconst_3 0x06 (6) dload 2 0x28 (40) | dstore 3 Ox4A (74)
iconst_4 0x07 (7) dload 3 0x29 (41) | astore 0 0x4B (75)
iconst_5 0x08 (8) aload_0 Ox2A (42) | astore 1 0x4C (76)
Iconst_0 0x09 (9) aload_1 0x2B (43) | astore 2 0x4D (77)
Iconst_1 0x10 (10) | aload_2 0x2C (44) | astore 3 Ox4E (78)
fconst_0 0x0B (11) | aload_3 0x2D (45) | jastore 0x4F (79)
fconst 1 0x0C (12) | jaload OX2E (46) | lastore 0x50 (80)
fconst_2 0x0D (13) | Jaload Ox2F (47) | fastore 0x51 (81)
dconst_0 OxOE (14) | faload 0x30 (48) | dastore 0x52 (82)
dconst_1 OxOF (15) | daload 0x31 (49) | aastore 0x53 (83)
bipush 0x10 (16) | aaload 0x32 (50) | bastore 0x54 (84)
sipush 0x11(17) | paload 0x33 (51) | castore 0x55 (85)
Idc 0x12 (18) | caload 0x34 (52) | sastore 0x56 (86)
ldc_w 0x13 (19) saload 0x35 (53) | pop 0x57 (87)
ldc2_w 0x14 (20) | istore 0x36 (54) | pop2 0x58 (88)
iload 0x15(21) | Istore 0x37 (55) | dup 0x59 (89)
lload 0x16 (22) | fstore 0x38 (56) | dup x1 0x5A (90)
fload 0x17(23) | dstore 0x39 (57) | dup_x2 0x5B (91)
dload 0x18 (24) | astore 0x3A (58) | dup2 0x5C (92)
aload 0x19 (25) | istore 0 0x3B (59) | dup2 x1 0x5D (93)
iload 0 Ox1A (26) | istore 1 0x3C (60) | dup2 x2 Ox5E (94)
iload 1 0x1B (27) | istore 2 0x3D (61) | swap Ox5F (95)
iload_2 0x1C (28) | istore 3 Ox3E (62) | jadd 0x60 (96)
iload 3 0x1D (29) | Istore 0 Ox3F (63) | ladd 0x61 (97)
lload 0 Ox1E (30) | Istore 1 0x40 (64) | fadd 0x62 (98)
lload 1 Ox1F (31) | |store 2 0x41 (65) | dadd 0x63 (99)
lload 2 0x20 (32) | Istore 3 0x42 (66) | isub 0x64 (100)
lload_3 0x21(33) | fstore 0 0x43 (67) | Isub 0x65 (101)




fsub 0x66 (102) | |2f 0x88 (136) | tableswitch OxAA (170)
dsub 0x67 (103) | |2f 0x89 (137) | lookupswitch | OXAB (171)
imul 0x68 (104) | 12d Ox8A (138) | ireturn OxAC (172)
Imul 0x69 (105) | f2i 0x8B (139) | Ireturn OXAD (173)
fmul Ox6A (106) | 21 Ox8C (140) | freturn OXAE (174)
dmul O0X6B (107) | f2d 0x8D (141) | dreturn OXAF (175)
idiv 0x6C (108) | g2i Ox8E (142) | areturn 0xBO0 (176)
Idiv 0x6D (109) | g21 Ox8F (143) | return 0xB1 (177)
fdiv Ox6E (110) | dof 0x90 (144) | getstatic 0xB2 (178)
ddiv Ox6F (111) | j2b 0x91 (145) | putstatic 0xB3 (179)
e 0x70 (112) | izc 0x92 (146) | getfield OxB4 (180)
Irem O0x71 (113) | j2s 0x93 (147) | putfield 0xB5 (181)
frem 0x72(114) | |cmp 0x94 (148) | invokevirtual | 0xB6 (182)
drem 0x73 (115) | fcmpl 0x95 (149) | invokespecial | 0xB7 (183)
ineg 0x74 (116) | fcmpg 0x96 (150) | invokestatic 0xB8 (184)
Ineg 0x75 (117) | dempl 0x97 (151) | invokeinterface | 0xB9 (185)
freg 0X76 (118) | dempg 0x98 (152) | unused OXBA (186)
dneg 0X77 (119) | ifeq 0x99 (153) | new OxBB (187)
ishl 0x78 (120) | ifne O0x9A (154) | newarray 0xBC (188)
Ishl 0x79 (121) | jfit 0x9B (155) | anewarray 0xBD (189)
ishr OX7A (122) | ifge 0x9C (156) | arraylength OxBE (190)
Ishr 0x7B (123) |fgt 0x9D (157) athrow OxBF (191)
iushr 0x7C (124) | ifle Ox9E (158) | instanceof 0xC1 (193)
lushr OX7B (125) | if jcmpeq | OX9F (159) | monitorenter | 0xC2 (194)
iand OX7E (126) | if acmpne | OXAO (160) | monitorexit 0xC3 (195)
land OX7F (127) | if jcmplt | OXAL (161) | wide 0xC4 (196)
ior 0x80 (128) | if jcmpge | OXA2(162) | multianewarray | OXC5 (197)
lor 0x81 (129) | if icmpgt | OXA3 (163) | ifnull 0xC6 (198)
ixor 0x82 (130) | if jcmple | 0xA4 (164) | ifnonnull 0xC7 (199)
o 0x83 (131) | if acmpeq | OXA5 (165) | goto w 0xC8 (200)
— 0xB4 (132) | if acmpne | OXA6 (166) | jor w 0xC9 (201)
i2l 0x85 (133) | goto OxA7 (167) | breakpoint OxCA (202)
0x86 (134) OxA8 (168) | (unused 203 - 253
i2f jsr opcodes)
i2d 0x87 (135) ret 0xA9 (169) |mpdep]_ OXFE (254)
impdep? OxFF (255)




JVM Bytecodes arranged according to the Function

Data Operations dup_x2
Duplicate the top word to place 4.
The Stack dup2_x2
Duplicate the top two words to places 5
Pushing constants onto the stack and 6.
bipush
Push a signed byte. SwWa
sipush Swap the top two words.
Push a signed word. )
Idc Local Variables
Push a single word constant.
ldc w Push local
Push a single word constant. (16-bit ref in
constant pool) aload
Idc2_w . )
Push a double word constant. Load object from local variable n
aconst_null aload n _
Push the null object. Load object from local variablen: n=0..3
iconst_m1 dload _
Push integer -1. Load double from local variable n
iconst_n dload n _
Integers n = 0..5. Load double from local variablen: n =
Iconst_v 0.3
Longs v =0..1. fload _
fconst v Load float from local variable n
Floats v = 0.0..2.0. fload n _
dconst v !_oad float from local variablen : n=0..3
Doubles v = 0.0..1.0. iload _
Load integer from local variable n
Stack Manipulation iload n _
Load integer from local variable n: n =
nop 0.3
Do nothing. lload _
pop Load long from local variable n
Pop the top word. lload_n _
pop2 Load long from local variablen: n=0..3
Pop the top two words. Pop stack into local var
dup astore
Duplicate the top word to place 2. store object in local variable n
dup2 astore_n
Duplicate the top two words. store object in local variable n : n=0..3
dup_x1 dstore
Duplicate the top word to place 3. store double in local variable n
dup2 x1 dstore_n

Duplicate the top two words to places 4 store double in local variablen : n=0..3
and 5. fstore



store float in local variable n

fstore n

store float in local variablen : n=0..3
istore

store integer in local variable n
istore_n

store integer in local variablen : n=0..3
Istore

store long in local variable n

Istore_n

store long in local variablen : n=0..3

Arrays

Creating arrays

newarray
New array of primitive type

anewarray

New array of objects
multianewarray

New multidimensional array
Pushing array values
aaload

Push object from array.
baload

Push byte or boolean from array.
caload

Push char from array.
daload

Push double from array.
faload

Push float from array.
iaload

Push integer from array.
laload

Push long from array.
saload

Push short from array.
Storing values in arrays
aastore

Store object in array.
bastore

Store byte or boolean in array.
castore

Store char in array.
dastore

Store double in array.
fastore

Store float in array.

iastore

Store integer in array.
lastore

Store long in array.
sastore

Store short in array.
Objects

arraylength

Get length of array.
new

Allocate mem for object.

putfield
Store an instance variable.

getfield
Push an instance variable.

putstatic

Store a static object's variable.

getstatic

Push a static object's variable.

checkcast

Checks object type of stack top.

instanceof
Checks object's class.

Transformations
Arithmetic

iinc

Increment local var.
dadd

Add two doubles.
fadd

Add two floats.

iadd

Add two integers.
ladd

Add two longs.

dsub

Subtract two doubles.
fsub

Subtract two floats.
isub

Subtract two integers.
Isub

Subtract two longs.
dmul

Multiply two doubles.
fmul

Multiply two floats.
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imul

Multiply two integers.
Imul

Multiply two longs.
ddiv

Divide two doubles.
fdiv

Divide two floats.
idiv

Divide two integers.
Idiv

Divide two longs.
drem

Take remainder of two doubles.

frem
Take remainder of two floats.
irem

Take remainder of two integers.

Irem
Take remainder of two longs.
dneg
Negate a double.
ne
Negate a float.
ine
Negate a integer.
ne

Negate a long.

#1

E

Bit Operations

ishl

shift integer left
ishr

shift integer right
iushr

shift integer right without regard to sign

Ishl

shift long left
Ishr

shift long righ
lushr

shift long right without regard to sign

iand

and two integers
land

and two longs
ior

or two integers
lor

or two longs

ixor

exclusive or two integers
Ixor

exclusive or two longs

Type Conversions

i2l

integer to long
i2f

integer to float
i2d

integer to double
i2b

integer to byte
i2s

integer to short
i2c

integer to char
12i

long to integer
12f

long to float
12d

long to double
f2i

float to integer
f21

float to long
f2d

float to double
d2i

double to integer
d2i

double to long
daf

double to float

Process Control Transfer

Conditional Branching

ifeq

branch if equal
ifne

branch if not equal
iflt

branch if less than
ifle

Vi



branch if less than or equal

ifgt
branch if greater than

ifge

branch if greater than or equal

ifnull

branch if null

ifnonnull

branch if not null

if_icmpeq

branch if two ints are equal

if_icmpne

branch if two ints are not equal
if_icmplt

branch if int2 less than intl

if_icmple

branch if int2 less than or equal to intl
if_icmpgt

branch if int2 greater than intl
if_icmpge

branch if int2 greater than or equal to intl

if_acmpeq
branch if references are equal

if_acmpne
branch if references are uneqal

Comparisons

cm
compare two longs
|

ompare two floats (-1 on NaN)

g

8=
3

8=
3

ompare two floats (1 on NaN)

[oN[eX
(@]
:

ompare two doubles (-1 on NaN)

[oX
(@]
E

compare two doubles (1 on NaN)
Unconditional Branches

rg
=
o

go to label

goto_w
go to label (wide address)

Isr
jump to subroutine

jsr_w
jump to subroutine (wide address)

ret
return from subroutine

Tables

lookupswitch

case statement equivalent
tableswitch

branch by range of values
Methods

invokeinterface

call interface method
invokespecial

call method in a specific class
invokestatic

call a static method
invokevirtual

call any other method

ireturn

return from method with integer
Ireturn

return from method with long
freturn

return from method with float
dreturn

return from method with double
areturn

return from method with object
return

return from method with nothing

Miscellany

athrow

throw exception

breakpoint

used for debugging

wide

used for 2-word address or value
monitorenter

begin sychronization
monitorexit

end sychronization
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Reactive JOP Bytecode to Microcode Mapping

jopsys_emit:

jopsys_demit:

jopsys_present:

jopsys_lsip:

loadopd
readsf
loadormask
reor

writesf

nop nxt
loadopd
readsf
loadandmask
reand
writesf

nop nxt
loadopd
readsf
loadormask
reand
pushonstack
nop nxt
memrda
wait

wait

Tl «— A, T2 « T1, A < B, B «— stack[sp], sp < sp-1
T1 « SF[A] T1, A « B, B « stack[sp], sp < sp-1
T1 « ormask

Tl Tl || T2

SF[A] « T1, A < B, B « stack[sp], sp « sp-1

Jjpc < jpctl

Tl «— A, T2 « T1, A « B, B « stack[sp], sp < sp-1
T1 « SF[A] T1, A < B, B « stack[sp], sp < sp-1
T1 « andmask

Tl «— Tl && T2

SF[A] <« T1, A « B, B « stack[sp], sp < sp-1

Jpc < jpctl

Tl «— A, T2 « T1, A < B, B « stack[sp], sp < sp-1
T1 « SF[A] T1, A < B, B « stack[sp], sp < sp-1
T1 « ormask

Tl «— Tl && T2

A «— T1, B— A, stack[sp+1] « B, sp « sp+1

jpc < jpctl

memrda < A, A < B, B « stack[sp], sp « sp-1



jopsys_lsop:

jopsys_cer:

jopsys_seot:

jopsys_ceot:

ldmrd
popfromstack
writesf
Nop nxt
stmwa
rdsf
pushonstack
stmwd
wait
wait
nop nxt
stmwa
stmwd
wait
wait
nop nxt
stmwa
stmwd
wait
wait
nop nxt
stmwa
stmwd
wait
wait

nop nxt

A «—memrdd , B < A, stack[sp+1] « B, sp « sp+1
T1 « A, A < B, B « stack[sp], sp < sp-1

SF[A] « T1, A < B, B « stack[sp], sp « sp-1

jpe < jpc+l

memwra < A, A < B, B « stack[sp], sp < sp-1
T1 « SF[A] T1, A « B, B « stack[sp], sp < sp-1
A «—TI1, B— A, stack[sp+1] « B, sp < sp+1

memwrd < A, A < B, B « stack[sp], sp < sp-1

jpe « jpetl
stmwra < A, A < B, B « stack[sp], sp < sp-1

stmwrd < A, A < B, B « stack[sp], sp « sp-1

jpe — jpetl
memwra «<— A, A « B, B « stack[sp], sp < sp-1

memwrd < A, A «— B, B « stack[sp], sp < sp-1

jpe < jpetl
memwra «<— A, A « B, B « stack[sp], sp < sp-1

memwrd < A, A «— B, B « stack[sp], sp < sp-1

jpc < jpetl



SystemJ Benchmark examples

//demoloop. Sys]
system/{
interface({
output signal B,C,D,E;

{ // start clock-domain

signal A,R; // signals local to clock-domain

{
abort (R) {

{

while (true) {
awalit (A);

emit B;

present (C) {
emit D;

}

pause;

while (true) {
present (B) {
emit C;
}
pause;
present (B) {
emit E;

}

//This is the test vector input
pause;

emit A;
System.out.println ("A");

pause;

pause;
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pause;
pause;
emit R;

System.out.println ("R");
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/*
runner.sysj
*/
reaction CHECK HEART (:signal SECOND, signal HEART BEAT, signal
HEART ATTACK) {
await (HEART BEAT);
await (SECOND) ;
emit HEART ATTACK;
System.out.println () ;
}

system/{
interface(
output signal WALK, RUN, JUMP,GO TO HOSPITAL;

signal HEART_ATTACK,METER,SECOND,HEART_BEAT,STEP;
int meters=0, seconds=0,u=0;
{
trap (heart attack) {
while (true) {
trap (t) {
while (true) {
pause;
present (METER) {
if (meters == 100) {
exit(t);
}
emit WALK;
System.out.println ("WALK") ;
meters=meters+1;

abort(HEART_ATTACK){
trap (tl) {
while (true) {
pause;
if (seconds == 15) {
exit (tl);
}
await (STEP) ;
emit JUMP;
System.out.println ("JUMP") ;
present (SECOND) {
++seconds;
}
}

while (true) {
emit RUN;
System.out.println ("RUN") ;
pause;
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}
exit (heart attack);
}

Il

CHECK_HEART(SECOND,HEART_BEAT,HEART_ATTACK)

}
}

emit GO _TO HOSPITAL;

System.out.println ("GO TO HOSPITAL");
}
Il
{

//This is the input vector sequence for this design to work

trap (t3) {
while (true) {
pause;
if(u == 150) {
exit (t3);
}
if(u < 101)

emit METER;
System.out.println ("METER") ;
if(u < 133)
emit STEP;
System.out.println ("STEP") ;
if(u < 140)
emit SECOND;
System.out.println ("SECOND") ;
u=u+l;
System.out.println (u) ;
if(u == 139) {
emit HEART BEAT;
System.out.println ("HEART BEAT");
}
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/*
Combination Lock

cl.sys]

*/
reaction ONE BUTTON (:signal LOCKED,signal UNLOCKED, signal
PRESELECTED, input signal BUTTON, input signal LOCK, input signal
UNLOCK, output signal BUTTON PRESELECTED ON, output signal
BUTTON PRESELECTED OFF, output signal BUTTON LOCKED ON, output
signal BUTTON LOCKED OFF)

{

emit BUTTON_ PRESELECTED OFF;
System.out.println("BUTTON_PRESELECTED_OFF");
emit BUTTON LOCKED OFF;

System.out.println ("BUTTON LOCKED OFF");
while (true) {

trap (BACK_TO MAIN LOOP) {

trap (PRESELECTED) {
while (true) {
abort (LOCKED) {
while (true) {
awalt (BUTTON); exit (PRESELECTED) ;
}
}
await (UNLOCKED) ;
}
}
while (true) {
emit PRESELECTED;
System.out.println ("PRESELECTED") ;
emit BUTTON PRESELECTED ON;
System.out.println("BUTTON_PRESELECTED_ON");

abort (LOCK) {
while (true) {
//await (BUTTON| | PRESELECTED) ;
abort (PRESELECTED) {
abort (BUTTON) {
while (true) {
pause;
}
}

}
emit BUTTON PRESELECTED OFF;

System.out.println ("BUTTON PRESELECTED OFF");
exit (BACK _TO MAIN LOOP) ;
}
}

emit BUTTON PRESELECTED OFF;
System.out.println ("BUTTON PRESELECTED OFF");
emit LOCKED;

System.out.println ("LOCKED") ;

XV



}

reaction abcd(:
input signal D,

emit BUTTON LOCKED ONj;
System.out.println ("BUTTON LOCKED ON");
await (UNLOCK) ;

emit BUTTON LOCKED OFF;
System.out.println ("BUTTON LOCKED OFF");
emit UNLOCKED;

System.out.println ("UNLOCKED") ;

input signal A, input signal B, input signal C,
input signal LOCK, output signal A PRESELECTED ON,

output signal B _PRESELECTED ON, output signal C PRESELECTED ON,
output signal D PRESELECTED ON,output signal A PRESELECTED OFF,
output signal B PRESELECTED OFF,output signal C PRESELECTED OFF,
output signal D PRESELECTED OFF, output signal A LOCKED ON, output
signal B LOCKED ON,output signal C LOCKED ON,

output signal D LOCKED ON,output signal A LOCKED OFF,output signal
B_LOCKED OFF,output signal C LOCKED OFF,output signal D LOCKED OFF)

{

signal LOCKED,UNLOCKED, PRESELECTED;
ONE_BUTTON (LOCKED, UNLOCKED, PRESELECTED, A, LOCK, LOCK, A PRESELECTED_ ON,
A PRESELECTED OFF,A LOCKED ON,A LOCKED OFF)

ONE_BUTTON (LOCKED, UNLOCKED, PRESELECTED, B, LOCK, LOCK, B_PRESELECTED_ON,
B _PRESELECTED OFF,B LOCKED ON,B LOCKED OFF)

ONE_BUTTON (LOCKED, UNLOCKED, PRESELECTED, C, LOCK, LOCK, C_ PRESELECTED_ON,
C_PRESELECTED OFF,C_LOCKED ON,C_ LOCKED OFF)

ONE_BUTTON (LOCKED, UNLOCKED, PRESELECTED, D, LOCK, LOCK, D PRESELECTED_ON,
D PRESELECTED OFF,D LOCKED ON,D LOCKED OFF)

}

system{

interface(

input signal A,B,C,D,LOCK;
output signal A PRESELECTED ON, B_PRESELECTED_ON,\

C PRESELECTED ON, D PRESELECTED ON;

output signal A PRESELECTED OFF, B PRESELECTED OFF,

C PRESELECTED OFF,D PRESELECTED OFF;

output signal A LOCKED ON,B LOCKED ON,C LOCKED ON,D LOCKED ON;
output signal A LOCKED OFF, B LOCKED OFF, C LOCKED OFF,

}
{

D LOCKED OFF;

abcd (A, B,C,D,LOCK, A_PRESELECTED ON,B PRESELECTED ON,
C_PRESELECTED ON,D PRESELECTED ON,A PRESELECTE
D OFF,B PRESELECTED OFF,C PRESELECTED OFF,D PR
ESELECTED OFF, A LOCKED ON, B LOCKED ON,
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><

C LOCKED ON, D LOCKED ON, A LOCKED OFF,
B LOCKED OFF,C LOCKED OFF,D LOCKED OFF)
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/*
* This is the asynch proto stack
**/

import Asproto.*;

system{
interface(
input int channel reset;
output int channel reset;
output byte channel data;
input byte channel data;

//TestBench (reset, data)
{

send reset (1)

pause;
byte tosend[] = new bytel
tosend[0] = 13; tosend[1l]

tosend[3]=100; tosend[4]=55

int y=0;
trap(yl) {
while (true) {

int len = 0; len

tosend[2]=127;
tosend[5]1=77;

tosend.length;

if(y == len) {
exit (yl);
pause;
}
else{
if(y < 6){
byte r = 0;
r = tosendl[y];
System.out.println ("bytesent
"+r);
send data(r);
y =y+1l;
}
pause;
pause;
}
pause;
}
pause;
}
// more of this!
pause;
System.err.println ("Packet sent.");
pause;

}
><

//System.exit (1) ;

//TheStack (reset,data)

{

signal packet,kill check;
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signal resl,res2,res3;
Integer signal crc_ ok;
Asproto buffer = null;
{
while (true) {
receive reset;
int u= 0;
u = #reset;
if (u==1) {
emit resl;
emit res2;
emit res3;
}

pause;

}
[
//Assemble (reset, in byte,packet)
{
int cnt=0;
//changing the shared var
buffer = new Asproto();
while (true) {
abort (resl) {

int e =0;
trap(e) {
int len2 = Asproto.PKTSIZE;
if (e == len2) {
exit (e);
}
else(
receive data;
byte t = 0; t = #data;
e=e+l;
buffer.setRaw(e, t);
}
}
emit packet;
//Thus now bufer has become available
}

pause;

int crc=0;
while (true) {
abort (res?2) {

await (packet) ;
crc = buffer.computeCRC () ;

int val = 0;
val = (crc==buffer.getCRC()) ? 1:0;
emit crc ok(val);

}//abort

XiX



pause;
} // while*/
}
//Checkcrc (reset, packet, crc ok)
[
{

int match ok=0;

while (true) {
abort (res3) {

await (packet);//now buffer is avail

{
abort (kill check) {

//Some length computation
match ok = 1;
pause;
pause;
pause;
pause;

await (crc ok);

int re = 0;
re= #crc_ok;
if (re==0) {

emit kill check;
}
}
int there = 0;
there = #crc ok;
if (there==1 && match ok==1) {
System.out.println(”iddress match!");
}

pause;

XX



GALS-JOP Bytecodes

Bytecode Microcode Register Transfer Description
rdrf RF[Z] — T1, T1 — T2, B —A, stack[SP] —B, SP-1 — SP
dmaddr CAB+T1 — T1
pushonstack T1 —» A, A —B, B —stack[SP+1], SP+1 — SP
jopsys_strimm Stmwa A — stmwra, B—A, stack[sp] — B, SP-1 — SP
- Stmwd A — stmwrd, B—A, stack[sp] — B, SP-1 — SP
wait
wait
nop nxt jpc — jpetl
rdrf RF[Z] — T1, T1 — T2, B —A, stack[SP] —B, SP-1 — SP
dmaddr CAB+TI1 — T1=RZ
rdrf RF[X] — TI1, Tl — T2, B —A, stack[SP] —B, SP-1 — SP
pushonstack Tl —» A, A —B, B —stack[SP+1], SP+1 — SP
jopsys_strind pushonstack T1 — A, A —B, B —stack[SP+1], SP+1 — SP
Stmwa A — stmwra, B—A, stack[sp] — B, SP-1 — SP
Stmwd A — stmwrd, B—A, stack[sp] — B, SP-1 — SP
wait
wait
nop nxt jpc — jpctl
popfromstack A —TI1, Tl -T2, B —A, stack[SP] —»B, SP-1 — SP
dmaddr CAB+T1 — Tl
rdrf RE[Z] — T1, T1 — T2, B —A, stack[SP] —B, SP-1 — SP
pushonstack Tl — A, A —B, B —stack[SP+1], SP+1 — SP
jopsys. strdir pushonstack T1 — A, A —B, B —stack[SP+1], SP+1 — SP
- Stmwa A — stmwra, B—A, stack[sp] — B, SP-1 — SP
Stmwd A — stmwrd, B—A, stack[sp] — B, SP-1 — SP
wait
wait
nop nxt jpc — jpetl
jopsys_Idrimm wrrf A — RF[B], B — A, stack[SP] —B, SP-1 — SP
pop nxt B — A, stack[SP] —B, SP-1 — SP, jpc — jpc+1
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Bytecode Microcode Register Transfer Description

rdrf RF[X] — T1, T 1— T2, B —A, stack[SP] —»B, SP-1 — SP

dmaddr CAB+T1— T1

pushonstack T1 —» A, A —»B, B —stack[SP+1], SP+1 — SP

Stmra A — stmwra, B—A, stack[sp] — B, SP-1 — SP
jopsys_ldrind wait

wait

Idmrd memrdd — A, A —B, B —stack|[SP+1], SP+1 — SP

wrrf A — RF[B], B — A, stack[SP] —B, SP-1 — SP

pop nxt B — A, stack[SP] —B, SP-1 — SP, jpc — jpc+1

popfromstack A —TI1, Tl - T2, B —A, stack[SP] —»B, SP-1 — SP

dmaddr CAB+T1 —» Tl

pushonstack Tl —» A, A —B, B —stack[SP+1], SP+1 — SP

Stmra A — stmwra, B—A, stack[sp] — B, SP-1 — SP
jopsys_ldrdir wait

wait

Idmrd memrdd — A, A —»B, B —stack[SP+1], SP+1 — SP

wrrf A — RF[B], B — A, stack[SP] —B, SP-1 — SP

pop nxt B — A, stack|SP] —B, SP-1 — SP, jpc — jpct1

popfromstack A—TI1, Tl - T2, B —A, stack[SP] —»B, SP-1 — SP

rdrf RF[Z] — T1, Tl — T2, B —A, stack[SP] —B, SP-1 — SP

pushonstack T1 — A, A —B, B —stack[SP+1], SP+1 — SP

jopsys_aluimm pushonstack Tl — A, A —B, B —stack[SP+1], SP+1 — SP

aluop A aluop B — A, stack[SP] —B, SP-1 — SP

wrrf A — RF[B], B — A, stack[SP] —B, SP-1 — SP

pop nxt B — A, stack[SP] —B, SP-1 — SP, jpc — jpc+1

rdrf RF[x] — T1, T — T2, B —A, stack[SP] —»B, SP-1 — SP

dup A —B, B —stack[SP+1], SP+1 — SP

rdrf RF[Z] — T1, T1 — T2, B —A, stack[SP] —B, SP-1 — SP
jopsys_aluind pushonstack Tl — A, A —B, B —stack[SP+1], SP+1 — SP

pushonstack Tl — A, A —B, B —stack[SP+1], SP+1 — SP

and A"B — A, stack[SP] —»B, SP-1 — SP

wrrf A — RF[B], B — A, stack[SP] —B, SP-1 — SP

pop nxt B — A, stack[SP] —B, SP-1 — SP, jpc — jpc+1

popfromstack A —TI1, Tl - T2,B —A, stack[SP] —»B, SP-1 — SP

rdrf RF[Z] — T1, T1 — T2, B —A, stack[SP] —»B, SP-1 — SP

pushonstack Tl — A, A —B, B —stack[SP+1], SP+1 — SP
jopsys_subv pushonstack T1 — A, A —>B, B —stack[SP+1], SP+1 — SP

aluop A aluop B — A, stack[SP] —B, SP-1 — SP

stsf 1—ZFreg ifA=0

nop nxt

jpc — jpetl
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Bytecode Microcode Register Transfer Description
popfromstack A—TI, T—T2,B—A, stack[SP] »B, SP-1 — SP
pmaddr TT[label] — T1

jopsys_jumpimm pushonstack T1 —» A, A —B, B —stack[SP+1], SP+1 — SP
jbr
pop B — A, stack[SP] —B, SP-1 — SP
nop nxt jpc — jpc+tl
rdrf RF[Z] - T1, Tl — T2, B —A, stack[SP] —»B, SP-1 — SP
pm_addr TT[label] —» T1
jopsys_jumpdir pushonstack T1 — A, A —B, B —stack|[SP+1], SP+1 — SP
jbr
pop B — A, stack[SP] —B, SP-1 — SP
nop nxt jpc — jpetl
rdrf RF[X] — T1,T1 — T2, B —A, stack[SP] —B, SP-1 — SP
dup A —B, B —stack[SP+1], SP+1 — SP
rdrf RF[Z] — T1, T1 — T2, B —A, stack[SP] —»B, SP-1 — SP
jopsys_chkend findmax Max out — T1
pushonstack T1 — A, A —B, B —stack[SP+1], SP+1 — SP
wrrf A — RF[B], B — A, stack[SP] —B, SP-1 — SP
pop nxt B — A, stack[SP] —B, SP-1 — SP, jpc — jpc+1
jopsys_label nop nxt jpc — jpetl
jopsys_nop nop nxt jpc — jpctl
jopsys_clfz clfz nxt 0 — Zfreg, jpc — jpctl
Stmra A — stmwra, B—A, stack[sp] — B, SP-1 — SP
rdrf RF[X] — T1, Tl — T2, B —A, stack[SP] —B, SP-1 — SP
pushonstack Tl — A, A —»B, B —stack[SP+1], SP+1 — SP
jopsys_strio Stmwd A — stmwrd, B—A, stack[sp] — B, SP-1 — SP
wait
wait
nop nxt jpc — jpetl
Stmra A — stmwra, B—>A, stack[sp] — B, SP-1 — SP
wait
jopsys_ldio wait
Idmrd memrdd — A, A —B, B —stack[SP+1], SP+1 — SP
wrrf A — RF[B], B — A, stack[SP] —B, SP-1 — SP
pop nxt B — A, stack[SP] =B, SP-1 — SP, jpc — jpc+1
A — T=Operand, T — T2, B —A, stack[|SP] —B, SP-1 —
popfromstack SP
pm_addr TT[label] » T

jopsys_sz pushonstack T — A, A —B, B —stack[SP+1], SP+1 — SP
jbr T — jpc if ZFreg=1
pop B — A, stack[SP] —»B, SP-1 — SP
nop
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Bytecode

Microcode

Register Transfer Description

rdrf

RF[Z] > T1, T1 - T2, B >A, stack[SP] 5B, SP-1 > SP

popfromstack A - T1,T1 - T2, B >A, stack[SP] =B, SP-1 - SP

pm_addr TT[label] > T1

pushonstack T-> A, A->B, B 5>stack[SP+1], SP+1 - SP

jopsys_present pushonstack T-> A, A 5B, B >stack[SP+1], SP+1 > SP

jbr T - jpc if ZFreg=0

pop

pop

nop nxt jpc = jpc+l

rdrf RF[X] — T1, Tl — T2, B —A, stack[SP] —B, SP-1 — SP

dmaddr CAB+T1 —» T1

pushonstack T1 —» A, A —»B, B —stack|[SP+1], SP+1 — SP

Stmra A — stmwra, B—A, stack[sp] — B, SP-1 — SP

rdrf RF[Z] — T1, T1 — T2, B —A, stack[SP] —B, SP-1 — SP

pushonstack T1 — A, A —»B, B —stack|[SP+1], SP+1 — SP

wait

Idmrd memrdd — A, A —B, B —stack[SP+1], SP+1 — SP

add A+B — A, stack[SP] —B, SP-1 — SP (Rx+Rz)

add A +B — A, stack[SP] —B, SP-1 — SP (Rx+Rz+1)

dup A —B, B —stack[SP+1], SP+1 — SP

popfromstack A —T1, Tl - T2, B —A, stack|]SP] —»B, SP-1 — SP
Jopsys_switchjump |\ A — RE[B], B — A, stack[SP] —B, SP-1 —> SP

dmaddr CAB+T — Tl

pushonstack Tl — A, A —»B, B —stack[SP+1], SP+1 — SP

Stmra A — stmwra, B—A, stack[sp] — B, SP-1 — SP

wait

wait

Idmrd memrdd — A, A —B, B —stack[SP+1], SP+1 — SP

popfromstack A —>TI1, Tl - T2,B —A, stack[SP] —»B, SP-1 — SP

pmaddr TT[label] > T

pop B — A, stack[SP] —B, SP-1 — SP

jbr

nop

nop nxt jpc — jpc+tl
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Bytecode Microcode Register Transfer Description

Id1 stack[vp+n] = A, A -B, B >stack[SP+1], SP+1 - SP
Stmra A = stmwra, B->A, stack[sp] = B, SP-1 - SP
wait
wait
Idmrd memrdd - A, A 5B, B ->stack[SP+1], SP+1 > SP

jopsys_cabaseaddress | Stmra A > stmwra, B->A, stack[sp] - B, SP-1 > SP
wait
wait
Idmrd memrdd - A, A 5B, B ->stack[SP+1], SP+1 > SP
stdmbaseaddress | A >dm_CAB, B -A, stack[SP] =B, SP-1 - SP
nop nxt jpc > jpc+l

XXV




JOP-Plus : CRCF to Microcode Mapping

AND_IMMEDIATE

nop opd Crcfopdreg «— crcfpm[jpc]

ldrxt T «— RF[Rx]

Idt A «— T, stack[sp+1] « B, sp < sp+1
Idcrcfopdt T « ctrlopdreg

Idt A «— T, stack[sp+1] < B, sp « sp+l

and A — A && B, B < stack[sp], sp « sp-1
wrrf RF[Rz] < A, A < B, B « stack[sp], sp < sp-1
pop nxt A «— B, B « stack[sp], sp < sp-1

AND_INDIRECT

ldrxt T «— RF[Rx]

Idt A «— T, stack[sp+1] « B, sp < sp+1

ldrzt T «— RF[Rz7]

Idt A «— T, stack[sp+1] « B, sp « sp+l

and A — A && B, B « stack[sp], sp « sp-1
wrrf RF[Rz] — A, A — B, B « stack[sp], sp < sp-1
pop nxt A «— B, B « stack[sp], sp < sp-1

OR_IMMEDIATE

nop opd Crcfopdreg «— crcfpm|[jpc]

Idrxt T «— RF[Rx]

Idt A T, stack[sp+1] « B, sp « sp+l

Idcrcfopdt T « ctrlopdreg

Idt A «— T, stack[spt1] < B, sp <« sp+1

or A — A||B, B « stack[sp],sp « sp-1

wrrf RF[Rz] < A, A < B, B « stack[sp], sp < sp-1

pop nxt A «— B, B « stack[sp], sp < sp-1
OR_INDIRECT
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Idrxt

T « RF[Rx]

Idt A «— T, stack[sp+1] « B, sp < sp+1

Idrzt T « RF[Rz]

Idt A «— T, stack[sp+1] < B, sp < sp+1

or A — A||B, B « stack[sp],sp « sp-1

wrrf RF[Rz] < A, A < B, B « stack[sp], sp < sp-1
pop nxt A «— B, B « stack[sp], sp « sp-1, , jpc < jpc+1

ADD_IMMEDIATE

nop opd Crcfopdreg «— crefpm[jpc], jpc < jpc+1

Idrxt T «— RF[Rx]

Idt A «— T, stack[sp+1] « B, sp < sp+1
Idcrcfopdt T « ctrlopdreg

Idt A «— T, stack[sp+1] < B, sp « sp+l

add A — A+B, B « stack[sp],sp « sp-1

wrrf RF[Rz] — A, A — B, B « stack[sp], sp < sp-1
pop nxt A «— B, B « stack[sp], sp < sp-1, jpc < jpc+1

ADD_INDIRECT

Idrxt T <« RF[Rx]

Idt A «— T, stack[sp+1] « B, sp < sp+1

ldrzt T — RF[RZ]

Idt A «— T, stack[spt1] < B, sp < sp+1

add A — A+ B, B < stack[sp],sp « sp-1

wrrf RF[Rz] — A, A — B, B « stack[sp], sp < sp-1
pop nxt A «— B, B « stack[sp], sp « sp-1, , jpc < jpc+1

SUBV_IMMEDIATE

nop opd Crcfopdreg < crcfpm[jpc] , jpc <« jpctl

drxt T « RF[Rx]

Idt A «— T, stack[sp+1] « B, sp « sp+l

Idcrcfopdt T « ctrlopdreg

Idt A « T, stack[spt1] < B, sp < sp+l

sub A — A-B, B « stack[sp],sp <« sp-1

wrrf RF[Rz] < A, A < B, B « stack[sp], sp < sp-1
pop nxt A «— B, B « stack[sp], sp < sp-1, , jpc <« jpc+1

SUB_IMMEDIATE

nop opd Crcfopdreg «— crefpm[jpc], jpc «— jpc+1
Idrxt T « RF[Rx]
Idt A «— T, stack[sp+1] « B, sp < sp+1
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Idcrcfopdt T « ctrlopdreg

Idt A «— T, stack[sp+1] < B, sp « sp+l
sub A «— A-B, B « stack[sp],sp <« sp-1
pop nxt A «— B, B « stack[sp], sp < sp-1

LDR_IMMEDIATE

nop opd

Crcfopdreg «— crcfpm[jpc] , jpc <« jpctl

Wrimm nxt

RF[Rz] « Crcfopdreg, , jpc «— jpct1

LDR_INDIRECT

ldrxt T «— RF[Rx]

Idt A «— T, stack[sp+1] « B, sp < sp+1

lddmt T « crefdm[Rx]

Idt A «— T, stack[sp+1] « B, sp < sp+1

wrrf RF[Rz] — A, A — B, B « stack[sp], sp < sp-1
nop

pop A «— B, B « stack[sp], sp < sp-1

pop nxt A «— B, B « stack[sp], sp < sp-1, jpc < jpc+1
LDR DIRECT

nop opd Crcfopdreg «— crefpm|[jpc], jpc «— jpct+1
Idcrcfopdt T « ctrlopdreg

Idt A < T, stack[sp+1] « B, sp < sp+1

lddmt T « crefdm[Rx]

Idt A «— T, stack[sp+1] « B, sp < sp+1

wrrf RF[Rz] — A, A — B, B « stack[sp], sp < sp-1
nop

pop A «— B, B « stack[sp], sp < sp-1

pop nxt A «— B, B « stack[sp], sp « sp-1, jpc « jpc+1

STR_IMMEDIATE

nop opd Crcfopdreg «— crefpm|[jpc], jpc «— jpct+1
Idcrcfopdt T « ctrlopdreg

Idt A « T, stack[sp+1] « B, sp « sp+1

Idrzt T «— RF[Rz]

Idt A «— T, stack[sp+1] < B, sp < sp+1

wrdm crefdm[B] «— A, A « B, B « stack[sp], sp < sp-1
nop

pop A «— B, B « stack[sp], sp < sp-1

pop nxt A «— B, B « stack[sp], sp < sp-1, jpc < jpc+1
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STR_INDIRECT

Idrxt T «— RF[Rx]

Idt A « T, stack[sp+1] « B, sp < sp+1

Idrzt T «— RF[RZ]

Idt A «— T, stack[sp+1] « B, sp < sp+1

wrdm crefdm[B] < A, A < B, B « stack[sp], sp < sp-1

nop

pop A «— B, B « stack[sp], sp < sp-1

pop nxt A «— B, B « stack[sp], sp « sp-1, jpc « jpct1
STR _DIRECT

nop opd Crcfopdreg «— crefpm|[jpc], jpc «— jpct+1

Idrxt T <« RF[Rx]

Idt A « T, stack[sp+1] « B, sp « sp+1

Idcrcfopdt T «— ctrlopdreg

Idt A « T, stack[sp+1] « B, sp « sp+1

wrdm crefdm[B] «— A, A «— B, B « stack[sp], sp < sp-1
nop

pop A «— B, B « stack[sp], sp < sp-1

pop nxt A «— B, B « stack[sp], sp < sp-1, jpc < jpc+1

JMP_IMMEDIATE

nop opd Crcfopdreg «— crefpm|[jpc], jpc «— jpc+1
Idcrcfopdt T « ctrlopdreg

nop

jbr jpc— T

nop

nop nxt jpc «— jpct1

JMP_INDIRECT

drxt T « RF[Rx]
nop

jbr jpc«— T

nop

nop nxt jpc < jpctl

PRESENT_IMMEDIATE

nop opd Crcfopdreg «— crefpm|[jpc], jpc «— jpc+1
drzt T « RF[R7]

Idt A «— T, stack[sp+1] < B, sp < sp+1
Idcrcfopdt T « ctrlopdreg

nop
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jbr jpc «— T if A=0
nop
pop nxt A «— B, B « stack[sp], sp < sp-1, jpc « jpc+1

SZ_IMMEDIATE

nop opd Crcfopdreg <« crefpm[jpc], jpc «— jpct+1
Idcrcfopdt T « ctrlopdreg
nop
jbr jpc <« T if ZF=1
nop
nop nxt jpc «— jpct1
CHKEND_INDIRECT
Idmax T — MAX
Idt A « T, stack[sp+1] « B, sp « sp+1
wrrf RF[Rz] — A, A — B, B « stack[sp], sp < sp-1
nop
pop A «— B, B « stack[sp], sp < sp-1
pop nxt A «— B, B « stack[sp], sp < sp-1, jpc < jpc+1

SWITCH_INDIRECT

Idrxt T <« RF[Rx]

Idt A «— T, stack[sp+1] « B, sp < sp+1

lddmt T « crefdm[Rx]

Idt A < T, stack[sp+1] « B, sp < sp+1

add A — A+ B, B « stack[sp],sp <« sp-1

Idi 1 A « stack[n+32], B « A, stack[sp+1] < B, sp « sp+1
add A — A+ B, B « stack[sp],sp <« sp-1

Iddmt T « crcfdm[Rx]

Idt A «— T, stack[sp+1] « B, sp < sp+1

wrrf RF[Rz] — A, A — B, B « stack[sp], sp < sp-1
nop

jbr jpc«— T

pop A «— B, B « stack[sp], sp « sp-1

pop nxt

A «— B, B « stack[sp], sp < sp-1, jpc < jpc+1




CLFZ_INHERENT

clfz

ZFREG <0

nop nxt

Jpc < jpetl

SENDATA_INDIRECT

Idjpc A —jpc, B — A, stack[sp+1] «— B, sp < sp+1
stcrefpe crefreg < A, B « stack[sp]

Idjcfbasereg T « jcfbasereg

Idt A «— T, stack[sp+1] « B, sp < sp+1

drxt T « RF[Rx]

Idt A —T,B «— A, stack[sp+1] « B, sp « sp+1

Idi 8 A « stack[n+32], B « A, stack[spt1] < B, sp < sp+1
ushr A —B>>>A, B « stack[sp],sp <« sp-1

dup A — A, B — Astack[spt1] <« B, sp « sp+1

add A — A+B, B « stack[sp],sp « sp-1

add A «— A+ B, B « stack[sp],sp « sp-1

nop

switchmode ctrl_mode flag < ctrl_mode flag

nop

ldvp A —vp, B« A, stack[sp+1] « B, sp « sp+1

stm old_vp Stack[n] < A, A — B, B « stack[sp], sp <« sp-1
dup A «— A, B «— A, stack[spt1] <« B, sp « sp+1

Idi 1 A « stack[n+32], B « A, stack[sp+1] < B, sp < sp+1
add A — A+ B, B <« stack[sp], sp « sp-1

stmrac memrda «— A, A < B, B « stack[sp], sp « sp-1
[dm mp Stack[n] < A, A < B, B « stack[sp], sp <« sp-1
stm  old_mp Stack[n] <— A, A — B, B « stack[sp], sp « sp-1
stm mp Stack[n] < A, A «<— B, B « stack[sp], sp <« sp-1
wait

wait

ldmrd A «—memrdd , B « A, stack[sp+1] < B, sp « sp+1
Idjpc A —jpc, B «— A, stack[sp+1] « B, sp < sp+1
Idbcstart A «<bcstart , B < A, stack[spt1] «— B, sp « sp+1
sub A — A-B, B « stack[sp],sp < sp-1

stm  old jpc Stack[n] < A, A < B, B « stack[sp], sp <« sp-1
[dm mp A «stack[n] , B <« A, stack[spt1] <« B, sp « sp+1
stmrac memrda «— A, A «— B, B « stack[sp], sp « sp-1
ldm cp A «stack[n] , B « A, stack[spt1] <« B, sp « sp+1
stm old cp Stack[n] < A, A — B, B « stack[sp], sp <« sp-1
wait

wait

Idmrd A «—memrdd , B < A, stack[sp+1] < B, sp « sp+1
stberd membcr — A, A — B, B « stack[sp], sp « sp-1
dup A — A, B — Astack[spt1] «— B, sp « sp+1

Idi 31 A « stack[n+32], B «— A, stack[sp+1] < B, sp < sp+1
and A — A && B, B « stack[sp], sp « sp-1
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pop A «— B, B « stack[sp], sp < sp-1

Idi 2 A « stack[n+32], B « A, stack[spt1] < B, sp < sp+1
stm  args Stack[n] < A, A — B, B « stack[sp], sp <« sp-1

Idi 5 A « stack[n+32], B « A, stack[sp+1] < B, sp < sp+1
ushr A —B>>>A, B « stack[sp],sp <« sp-1

dup A — A, B «— Astack[sp+1] «— B, sp « sp+1

Idi 31 A « stack[n+32], B « A, stack[spt1] < B, sp <« sp+1
and A — A && B, B « stack[sp],sp « sp-1

stm  varcnt Stack[n] < A, A — B, B « stack[sp], sp « sp-1

Idi 5 A « stack[n+32], B « A, stack[spt1] < B, sp < sp+1
ushr A «—B>>>A B « stack[sp],sp « sp-1

stm cp Stack[n] < A, A — B, B « stack[sp], sp « sp-1
Idsp A «—sp, B «— A, stack[spt1] « B, sp « sp+1

Idi 1 A < stack[n+32], B « A, stack[spt1] < B, sp < sp+1
add A — A+ B, B « stack[sp],sp « sp-1

dup A — A, B« Astack[spt+1] <« B, sp < sp+1

ldm args A «stack[n] , B « A, stack[spt1] «— B, sp « sp+1
sub A — A—-B, B « stack[sp],sp <« sp-1

stm  old_sp Stack[n] < A, A — B, B « stack[sp], sp <« sp-1

ldm old_sp A «stack[n] , B « A, stack[sp+1] < B, sp « spt1

Idi 1 A « stack[n+32], B « A, stack[sp+1] < B, sp < sp+1
add A — A+ B, B « stack[sp],sp « sp-1

stvp vp — A, A — B, B « stack[sp]

ldm  varcnt A «stack[n] , B « A, stack[spt1] <« B, sp « sp+1
add A — A+ B, B « stack[sp],sp « sp-1

nop

stsp sp «— A, A «— B, B « stack[sp]

pop A «— B, B « stack[sp], sp < sp-1

pop A «— B, B « stack[sp], sp < sp-1

ldm old_sp A «stack[n] , B < A, stack[sp+1] < B, sp < spt1
ldm old_jpc A «stack[n] , B « A, stack[spt1] « B, sp « sp+1
Idbcstart

stjpc jpc <— A, A — B, B « stack[sp]

ldm old vp A «stack[n] , B < A, stack[sp+1] < B, sp < spt1
ldm old cp A «stack[n] , B < A, stack[sp+1] < B, sp < spt1
ldm old mp A «stack[n] , B « A, stack[spt1] <« B, sp « sp+1
wait

wait

nop nxt jpc <« jpctl

SEOT_INHERENT

Idi io_eot A <« stack[n+32] , stack[sp+1] « B, sp < sp+1
stmwa memwra «— A, A «— B, B « stack[sp], sp < sp-1
Idi 1 A « stack[n+32] , stack[sp+1] « B, sp < sp+1
stmwd memwrd «— A, A <— B, B « stack[sp], sp « sp-1
wait A «— B, B « stack[sp], sp < sp-1

wait A «— B, B « stack[sp], sp « sp-1, jpc « jpct+1
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nop nxt

Jpc < jpetl

CEOT_ INHERENT

Idi io_eot A « stack[n+32] , stack[sp+1] <« B, sp « sp+1
stmwa memwra «— A, A «— B, B « stack[sp], sp < sp-1
Idi 0 A « stack[n+32] , stack[sp+1] « B, sp « sp+1
stmwd memwrd «— A, A < B, B « stack[sp], sp « sp-1
wait

wait

nop nxt jpc < jpct1

LER_INDIRECT

Idiio_er A « stack[n+32] , stack[sp+1] « B, sp « sp+1
stmra memrda «— A, A < B, B « stack[sp], sp « sp-1
wait

wait

ldmrd A «—memrdd , B < A, stack[sp+1] <« B, sp « sp+1
wrrf RF[Rz] < A, A < B, B « stack[sp], sp < sp-1

nop nxt jpc <« jpctl

LSIP_INDIRECT

Idiio_er A <« stack[n+32] , stack[sp+1] « B, sp « sp+1
stmra memrda «— A, A < B, B « stack[sp], sp « sp-1
wait

wait

ldmrd A «—memrdd , B « A, stack[sp+1] < B, sp < sp+1
wrrf RF[Rz] — A, A — B, B « stack[sp], sp < sp-1

nop nxt jpc < jpetl

SSOP_ INDIRECT

Idi io_sop A « stack[n+32] , stack[spt1] <« B, sp « sp+1
stmwa memwra «— A, A <« B, B « stack[sp], sp < sp-1
drxt T « RF[Rx]

Idt A T, stack[sp+1] « B, sp « sp+l

stmwd memwrd — A, A — B, B « stack[sp], sp < sp-1
wait

wait

nop nxt A «— B, B « stack[sp], sp < sp-1, jpc « jpc+1

SSVOP_ INDIRECT

Idi io_svop

A « stack[n+32] , stack[sp+1] < B, sp « sp+1

stmwa

memwra «— A, A < B, B « stack[sp], sp < sp-1




Idrxt T «— RF[Rx]

Idt A « T, stack[sp+1] « B, sp « sp+1

stmwd memwrd < A, A < B, B « stack[sp], sp < sp-1
wait

wait

nop nxt A «— B, B « stack[sp], sp « sp-1, jpc < jpc+1

NOOP_INHERENT

nop

nop nxt

jpc < jpetl

ESL_INHERENT

nop

nop nxt jpc <« jpctl
CINIT_INHERENT

nop

nop nxt jpc < jpctl
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JCF Bytecode Extension for JOP-Plus

jopsys_rtc
[Microcode  [Register-Transfer |
Idrxt T «— RF[Rx]
Idt A «— T, stack[sp+1] « B, sp < sp+1
Idi 255 A « stack[n+32] , stack[sp+1] «— B, sp « sp+1
and A — A && B, B < stack[sp], sp « sp-1
wrdm dm[A] — B
nop
pop A «— B, B « stack[sp], sp < sp-1
pop A «— B, B « stack[sp], sp < sp-1
stm mp Stack[n] <— A, A — B, B « stack[sp], sp <« sp-1
stm cp Stack[n] < A, A — B, B « stack[sp], sp <« sp-1
stvp vp — A, A — B, B « stack[sp]
stm  old _jpc Stack[n] < A, A — B, B « stack[sp], sp <« sp-1
nop
stsp sp«— A, A — B, B « stack[sp]
Idcrcfpct T « crcfpcreg
Idt A «— T, stack[sp+1] « B, sp < sp+1
stjpc jpc — A, A — B, B < stack]sp]
nop
switchmode ctrl_mode flag < ctrl_mode flag
nop
nop
nop nxt jpc < jpctl

jopsys_stcrcf

stjcfbasereg

jefbasereg— A, A <« B, B « stack[sp], sp < sp-1

nop nxt

jpc < jpctl

jopsys_wrcrcf

wrectrl crefpm[B] < A, A «— B, B « stack[sp], sp < sp-1
nop

pop A «— B, B « stack[sp], sp « sp-1

pop nxt A «— B, B « stack[sp], sp « sp-1, jpc « jpct+1

XXXV



jopsys_switchmode

Idjpc A < jpc, B — A, stack[sp+1] « B, sp < sp+1
stcrefpe crefreg «— A, B «— stack[sp], sp « sp-1
Idctrlpct T « crcfpcreg

Idt A «— T, stack[sp+1] « B, sp < sp+1

stjpc jpc «— A, B « stack[sp], sp « sp-1

nop

toggle mode ctrl < ~mode ctrl

nop

nop

nop nxt jpc < jpct1
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