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Abstract

In this thesis, we are going to study the strategic manipulation of voting rules,

mostly scoring rules. In the first part, we focus on naive manipulation, where we

have a coalition of manipulators and the other voters vote sincerely. In Section

1.4we introduce a new measure of manipulability of voting rules, which reflects

both the size and the prevalence of the manipulating coalitions and is adaptable

to various concepts of manipulation. We place this measure in a framework of

probabilistic measures that organizes many results in the recent literature. We

discuss algorithmic aspects of computation of the measures and present a case

study of exact numerical results in the case of 3 candidates for several common

voting rules. In Section1.5 we study manipulability measures as power indices

in cooperative game theory. In Chapter2, we study the asymptotic behaviour of a

model of manipulation called safe manipulation for a given scoring rule under the

uniform distribution on voting situations. The technique used is computation of

volumes of convex polytopes. We present explicit numerical results in the 3 can-

didate case. In the second part of the thesis, we adopt a game-theoretic approach

to study strategic manipulation. We try to explore more behavioural assumptions

for our voters. In Chapter3, we have an introduction to voting games and dif-

ferent factors such as the available amount of information, voters’ strategies and
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ability to communicate . In Chapter4, we consider best-reply dynamics for vot-

ing games in which all players are strategic and no coalitions are formed. We

study the class of scoring rules, show convergence of a suitably restricted ver-

sion for the plurality and veto rules, and failure of convergence for other rules

includingk-approval and Borda. In Chapter5, We discuss a new model for strate-

gic voting in plurality elections under uncertainty. In particular, we introduce the

concept of inertia to capture players’ uncertainty about poll accuracy. We use a

sequence of pre-election polls as a source of partial information. Under some be-

havioural assumptions, we show how this sequence can help agents to coordinate

on an equilibrium outcome. We study the model analytically under some special

distributions of inertia, and present some simulation results for more general dis-

tributions. Some special cases of our model yield a voting rule closely related to

the instant-runoff voting rule and give insight into the political science principle

known as Duverger’s law. Our results show that the type of equilibrium and the

speed of convergence to equilibrium depend strongly on the distribution of inertia

and the preferences of agents.

This thesis is based on the results of the following papers [1], [2], [3], [4] and [5].
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Chapter 1

The Manipulability of Voting Rules

1.1 An introduction to computational social choice

The novel field of computational social choice is an interdisciplinary field of study

at the interface of social choice theory and computer science. It involves study-

ing social choice mechanisms like voting systems and fair division systems with

two approaches. In the first approach, computer science offers the computational

complexity, algorithmic, mathematical and quantitative techniques for studying

decision theory, social choice, welfare economics and game theory study of vot-

ing systems. In the second approach, social choice ideas are applied to computer

science-related contexts, for example, in artificial intelligence, multiagent sys-

tems, social networks and agent optimisation. Chevaleyre et al. have provided a

short introduction to this topic [6].

Some of the more studied problems in this topic are electing an alternative, allo-

cating resources, reaching consensus, forming coalitions, aggregating judgements
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Chapter 1. The Manipulability of Voting Rules

and beliefs.

In this thesis, we concentrate on the topic of strategic manipulation in voting sys-

tems. Voting as an aggregating method is widely used in collective decision mak-

ing and network design. Voting rules can show some undesirable behaviour such

as being vulnerable to strategic manipulation. We first explain our voting setup in

Section1.2and then briefly explain strategic manipulation by an example in Sec-

tion 1.3. In Section1.4, we study a new measure of manipulability of voting rules,

and in Section1.5 we study the relation between power measures and manipula-

bility measures. Section1.6 deals with relevant literature review and Section1.7

discusses some future directions. In Chapter2, we study the probability of safe

manipulation. Chapter3 discusses the integration of game theory in social choice

where all voters are strategic. We study best reply dynamics and coordination

via polling under uncertainty respectively in Chapters4 and5. Finally we have

Chapter6 which discusses a summary of the thesis and some future directions.

1.2 Basic terminology

Consider a setV = {v1, . . . , vn} of agents (thevoters) choosing from a given set

C = {c1, . . . , cm} of alternatives (thecandidates). Each voter has anopinion

or preference ranking (a complete strict linear ordering of the candidates). This

convention is quite common in the field of voting theory.

The list of voters’ preference orders(R1, . . . , Rn) forms thesincere profile. Each

voter submits a linear rankingR′
i, which may or may not be the same as his sin-

cere opinion, and this gives theexpressed profile. For example, consider a set of 5

votersV = {v1, . . . , v5} and a set of 3 candidatesC = {a, b, c} with sincere pro-
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Chapter 1. The Manipulability of Voting Rules

file (abc, abc, bac, cab, bac). The expressed profile(abc, abc, bca, cab, bac) results

from the voterv3 not voting sincerely, while the other voters do.

A social choice function(also called a resolute voting rule) is a function that

maps each profile to a single candidate, whereas a social choice correspondence

(also called a voting rule) outputs a subset of the candidates. A key feature of

most commonly used voting rules isanonymity: the function value is unchanged

if voters are permuted, so the rule treats voters equally. In this case, the profile

can be represented more succinctly as avoting situation, where we simply list the

numbers of voters with each of the possible opinions. For example, for three can-

didates(a, b, c), with the standard orderabc, acb, bac, bca, cab, cba of opinions, the

6-tupleσ = (n1, . . . , n6) represents a voting situation withn1 voters having pref-

erence orderabc, etc. In the example above, this succinct input for the expressed

profile would beσ = (2, 0, 1, 1, 1, 0).

A voter v may try to manipulate the election result by submitting an expressed

opinion that differs from his sincere opinion, so as to gain an outcome thatv

prefers to the sincere outcome. The fundamental result of Gibbard [7] and Sat-

terthwaite [8] implies that for anonymous rules, provided thatm ≥ 3 andn ≥ 2,

some voter in some voting situation can succeed in such an attempt. This theorem

shows that for a voting rule with more than 3 candidates, strategic manipulation

can happen with an individual voter under some natural conditions such as non-

imposition which conveys that each candidate can win under some conditions and

non-dictatorial condition which means the result of the election is not based on

the highest ranking alternative of one of voters.

A common class of anonymous voting rules consists of the (positional)scoring

rules. For eachm, a scoring rule is defined by a weight vector(w1, . . . , wm)
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Chapter 1. The Manipulability of Voting Rules

with w1 ≥ w2 ≥ ∙ ∙ ∙ ≥ wm, and each voter gives scorew1 to his top-ranked

candidate,w2 to the next, etc. Uniqueness of the weight representation is obtained

by imposing the restrictionw1 = 1, wm = 0. The candidate with the highest total

score wins. The most commonly used voting rules are listed below.

• Plurality rule, defined by the weight vector(1, 0, 0, . . . , 0);

• Borda’s rule, defined by the weight vector(m − 1,m − 2, . . . , 1, 0);

• Antiplurality rule (veto rule), defined by the weight vector(1, 1, . . . , 1, 0).

• k-approval rule, defined by the weight vector(1, 1, . . . , 1, 0, . . . , 0) (the

number of1’s is exactlyk).

• Instant-runoff rule, If no candidate receives a majority of the first choice, the

candidate with the fewest number of votes is eliminated and the ballots cast

for that candidate are redistributed to the continuing candidates according to

the voters indicated preference. This process is repeated until one candidate

obtains a majority.

In an election with approval rule, voters should decide whether they approve or

disapprove a specific candidate. Ink-approval, they should approve exactlyk can-

didates. In fact, 1-approval rule is the same as plurality rule andm − 1-approval

rule is the same as antiplurality rule. For example, in an election with 4 candi-

datesa, b, c andd and 2-approval voting rule, a voter with voteabcd, approves

candidatesa andb.

Another common class of anonymous rules consists of the Condorcet consistent

rules based on the pairwise majority relation. We deal with the Copeland rule as a
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Chapter 1. The Manipulability of Voting Rules

representative. For each pair of candidatesa andb, the pairwise scorep(a, b) of a

with respect tob equals the number of voters who ranka aboveb. The Copeland

score of alternativea is given bys(a) =
∑

b 6=a sign(p(a, b)−p(b, a)). The highest

scoring candidate is the winner.

To ensure a unique winner in every situation, elections using scoring rules usually

require an additional rule to deal with the possibility of tied scores for the first

place. Different tie-breaking rules have been used in this context. For example,

for deterministic tie-breaking rules, there is a fixed arbitrary order on candidates,

and the winner is the first of the tied candidates with respect to this order. Random

tie-breaking is more favourable for reasons ofneutrality (symmetry between can-

didates) and tractability. However, random tie-breaking does not define a social

choice function, because of nondeterminism, but rather a social choice correspon-

dence.

For randomized tie-breaking, we choose one candidate uniformly at random. Scor-

ing rules are neutral with this convention. Whenn is large, the probability of a

tie occurring for a scoring rule under any of the most commonly studied pref-

erence distributions is asymptotically negligible, so tie-breaking conventions are

not important. However, these assumptions can make major differences for small

values ofn. Copeland’s rule must also deal with ties, and in two ways. First,

the pairwise majority relation can (whenn is even) result in a tie; the standard

choices are to award both candidates involved 0, but other choices are possible.

Second, the Copeland scores of candidates may be tied. In this case, we again

can use random or deterministic tie-breaking as for scoring rules. Copeland’s rule

can have an asymptotically non-negligible fraction of ties under some preference

distributions, and our tie-breaking assumptions definitely affect the values of the
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Chapter 1. The Manipulability of Voting Rules

manipulability measures [9].

In some elections voters carry different weights that can represent their power

in making decision, for example their amount of stock in share holders or con-

stituency sizes. However, in most discussions of this thesis, voters have the same

weight and we have unweighted voters.

1.3 Strategic manipulation

Strategic misrepresentation of a voter’s true preferences, as a way of obtaining

an outcome preferable to that which would be expected by voting sincerely, dates

back thousands of years [10] and has generally been considered socially undesir-

able. This topic has been recently considered in many papers in computational

voting theory. We will discuss some of them in Section1.6.

Example 1.1. Consider plurality rule and the following preference orders for

2000 US presidential election in Florida (a � b means preferringa to b)

49% Bush� Gore� Nader, 20% Gore� Nader� Bush, 20% Gore�Bush�

Nader, 11% Nader�Gore� Bush.

If everyone votes sincerely, Bush will win this election. However, it would have

been in the interest of the Nader supporters to misrepresent their preferences and

vote for Gore. In that case, Gore will win provided others vote sincerely. This

misrepresentation is called strategic manipulation and the Nader supporters form

the coalition of manipulators.

Manipulability of social choice correspondences is a tricky subject and one has

to have an order on subsets to define it. That is, one has to extend somehow
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Chapter 1. The Manipulability of Voting Rules

preferences over alternatives to preferences over the sets of them. It can be done

in numerous ways and there is a survey by Bossert, Barbera and Pattanaik in

[11] about possible ways to do this. In this thesis, we use stochastic dominance

improvement for defining the manipulation of sets of candidates.

Over the last few decades many papers (e.g. see [12, 13, 14] for a summary) have

been published in the following framework: choose a set of social choice rules;

choose a probability distribution over the set of preference orders; compute the

probability P of a randomly chosen situation being manipulable withn voters;

conclude which rules are asymptotically the best, that is, those for whichP is

least, for largen. The results depend strongly on

• the measure of manipulability which will be discussed in Section1.4 and

Chapter2.

• assumptions on game-theoretic sophistication of the voters, and the infor-

mation available to them which will be discussed in Chapters4 and5 .

For comparing different voting systems regarding the manipulability, different

metrics have been used such as probability, complexity and social welfare and

utility. Computational hardness of manipulation has been studied for voting rules

and fair division mechanisms by some techniques as a barrier to susceptibility

to manipulation. The methods which are used to study the computational voting

rule consist of worst-case analysis, average-case, heuristic and approximate algo-

rithms. When all voters behave strategically, game theory predicts the result of

voting game by studying the outcome of interactions amongst multiple agents.

By reviewing the papers in this topic, it becomes clear that most papers consider

strategic manipulation as an undesirable behaviour which should be minimized.
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Chapter 1. The Manipulability of Voting Rules

For example, Stensholt believes that the strategy most damaging to many prefer-

ential election methods is to give insincerely low rank to the main opponent of

one’s favourite candidate [15]. However, a small number of papers write in praise

of manipulation [16] and believe that by strategic manipulation, the total social

welfare in fact increases [17]. In this thesis, we consider strategic manipulation as

an inevitable fact, and try to have a better understanding about this phenomenon.

1.4 A new measure of manipulability of voting rules

In almost all of the social choice literature, it is regarded as desirable to minimize

the occurrence of manipulability of voting rules, that is, to design a social choice

mechanism that incentivizes sincere expression of voter preferences as much as

possible. Of course, the Gibbard-Satterthwaite theorem and related results [7,

8, 18] imply that completely avoiding manipulability has drastic consequences,

and leads under very mild hypotheses to dictatorship. Thus many authors have

tried to measure the manipulability of voting rules, typically by quantifying the

probability of such an event, under various assumptions on the distribution of

voter opinions (see Section1.6 for detailed discussion of relevant literature and

Section1.4.1for formal definitions). More recently the idea of using measures

based on computational complexity has arisen (usually with a somewhat different

definition of manipulability), leading to substantial activity in the “computational

social choice” community.

Successful manipulation of an election, even in the case considered in the present

article when the manipulators are opposed only by naive, sincere voters, requires

considerable computational effort. To assemble a manipulating coalition, we must
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Chapter 1. The Manipulability of Voting Rules

discover the preference rankings of voters, convince them to join the coalition,

compute their strategy, and enforce their implementation of that strategy. Each of

these becomes harder as the coalitions involved become larger.

However, measures based on the size of the manipulating coalition have been rel-

atively little explored in the literature. By far the most commonly used measure is

simply the probability that a random profile (chosen according to some standard

distribution of voter preferences) allows some manipulation. The measures based

on worst-case complexity mostly do not measure coalition size directly. Also,

they are inherently crude, as they are defined only up to polynomial-time equiv-

alence. This makes them less useful for comparing specific rules with respect to

manipulability.

Furthermore, recent results using various models of manipulation show that at

least for the most commonly studied distributions of preferences, there is a phase

transition in the probability of manipulability as the coalition size grows relative

to the total voting population, yet say little about how to compare rules near that

threshold [19] .

Our contributions

We introduce (Section1.4.1) a new general probabilistic measure of susceptibility

to manipulation, describe its basic properties, and argue that it allows for more

detailed comparisons of voting rules than existing measures. We investigate its

values in detail in the3-candidate case (Section1.4.3) for several scoring rules

and a representative Condorcet consistent rule, Copeland’s rule. This is done for

each of two standard probability models for voter preferences. We also inves-
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Chapter 1. The Manipulability of Voting Rules

tigate the relationship between the new measure and existing measures and put

them in a common framework, thereby unifying much of the literature. We dis-

cuss the computation of these measures in detail and present several algorithms

(Section1.4.2).

1.4.1 Definition of the measures

We discuss three types of measures of manipulability of voting rules. All our

measures are probabilistic and depend on a probability model for the distribution

of opinions in the voter population. We consider in our numerical results two

commonly studied distributions: the uniform distribution on profiles (known as

the Impartial Culture hypothesis) and the uniform distribution on voting situations

(known as the Impartial Anonymous Culture hypothesis). However the definitions

make sense for any distribution.

The model of manipulation

Fix a voting rule. We define manipulability of a voting situation in stepwise fash-

ion as in [20]. Our definition implies that, for example, a strategic vote by a voter

with preferencebac which changes the winner froma to c is not a valid manip-

ulation. The result of the election must not only be changed, but changed in a

way that incurs no loss to the manipulator. Other definitions are sometimes used

in the literature. For example, the concept ofthreshold manipulation (where we

promoteb abovea, ignoring the possibility thatc might thereby overtake both of

them) is studied in [21]. This is related to the idea ofdestructive manipulation

used in many papers (we only care about defeatinga, not who ends up winning).

13



Chapter 1. The Manipulability of Voting Rules

However, the concept we define here (sometimes calledconstructive manipula-

tion) is more standard.

A related concept, (unit cost)bribery , removes any constraint on the opinion of

the manipulating voter about the new profile [22], [23], [22], [24] and [25]. In

swap bribery, voters are willing to manipulate but not if that requires to depart too

much from their sincere vote. In other words, their motivation for manipulation

depends on the deviation from sincere ballots which is at mostm−2 for plurality.

Campaign management is another type of strategic behaviour where the manager

of campaign tries to make his desirable candidate win the election. He offers

money to other voters for bringing that candidate forward. The amount of offered

money depends on the number of changes the voter needs to apply. Campaign

management for approval voting is considered in [26] .

Another type of strategic behaviour iscontrol by adding or deleting voters or

candidates [27]. In multi-mode control, we have 2 or more types of control actions

at once. Agenda control, happens by adding small number of spoiler candidates.

Teaming happens when adding more candidates actually helps the chances of any

of them winning as can occur in Borda rule. In election control, only a small

number of voters are added or deleted and the number of candidates is fixed.

Cloning is a type of control where the manipulator can replace each candidate by

one or more new candidates. In this model, different voting rules show different

reactions. For example, cloning for a fixed candidate can be useful in some voting

rules such as antiplurality or be useless in some of them such as plurality. How-

ever, in some rules different cloning situations behave differently. For example,

for Borda and Copeland’s rule some cases are useful for that candidate and some

cases are useless [28].

14



Chapter 1. The Manipulability of Voting Rules

In some models of strategic manipulation the coalition of manipulators cast their

votes after sincere voters. They choose their votes in a way that current winner

changes. The sincere voters are always naive and just vote sincerely. This type

of strategic behaviour has been used in computational social choice as strategic

manipulation and is calledpossible winnersproblem [29, 30]. Zuckerman et al

study coalitional constructive weighted manipulation of this model in [31]. They

study whether there is a way for the manipulatorsT with weight vectorW to

choose an action profile which make alternativep win the election. In this model

the sincere preference order of manipulators are not known, and ties are broken

adversely to the manipulators [31] .

Pattanaik discusses two types of manipulation:counter-threat andreaction [32].

Suppose the sincere outcome isa, then a voter with preference orderbac, tries to

manipulate in favour ofb. In counter-threat model, the other voters try to punish

him by making a worse result happening for him (makingc win the election).

Therefore, in this casea supporters just think about punishing the person that

decides to manipulate not maximising their own utility. In reaction model, the

other voters just decide to return the result to its sincere situation. Therefore,c

supporters do not really care about makingc win the election and just try to return

the result to its sincere one (a becomes winner).

For single-winner outcomes with no ties, it is clear how to define the traditional

definition of strategic manipulation.

Definition 1.2. Fix a voting rule. Suppose that profilesπ, π′ each yield a unique

winner, respectivelyc, c′. Thenπ′ is preferredby voterv to profileπ if and only if

c′ is no lower inv’s preference order thanc. If c′ 6= c, so thatc′ is higher thanc,

then we sayπ′ is strongly preferredto π.

15



Chapter 1. The Manipulability of Voting Rules

Remark 1.3. Note that in our situation where indifference is not allowed (voters

must break all ties between candidates before submitting their ordering), ifc′ is

preferred toc, but not strongly preferred, thenc′ = c, so the concept “preferred”

seems pointless at the first sight. However when we consider coalitions below,

this distinction makes more sense, and we keep it in order to have consistency.

If there is no unique winner, then deciding whether one outcome is preferred to

another requires extra assumptions (essentially, we must extend the previous def-

inition to preferences over sets of candidates). In our numerical results it is con-

venient to use uniform random tie-breaking and a particular such extension which

we now describe. We again stress that the particular choice made here is not

essential to the definitions of the new measures in Section1.4.1.

Definition 1.4.

Let π be a profile. We say thatπ′ is preferred to π by voterv if and only if for

eachk = 1 . . . m the probability of electing one ofv’s most-favouredk candi-

dates underπ′ is no less than underπ. (If π′ 6= π the condition implies that this

probability will be strictly greater for somek.)

Remark 1.5. Another way of stating this is to say that the probability distribution

that describes the probability of each candidate winning underπ is (first-order)

stochastically dominated by the analogous distribution forπ′. Equivalently, for

every utility function that induces the preference order ofv, the expected utility

for v underπ′ is greater than the expected utility forv underπ.

Example 1.6. (preferring one profile to another) Suppose that in profileπ the

outcome is thata and c tie as the winner, in profileπ′ the outcome is thatb is

the absolute winner, and inπ′′ the outcome is thata andb tie as the winner. The
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distribution of winning probability on(a, b, c) is (1/2, 0, 1/2) for π, (0, 1, 0) for

π′ and(1/2, 1/2, 0) for π′′. Thus, takingk = 1 in the definition, we see thatπ′ is

not preferred toπ by a voter with sincere opinionabc. Also, takingk = 2 shows

thatπ is not preferred toπ′ either. Howeverπ′′ is preferred to bothπ andπ′.

We can now proceed to the remaining definitions.

Definition 1.7. (i) A subsetX ⊂ V is amanipulating coalitionat the profileπ

if and only if there is a profileπ′ 6= π which agrees withπ on V \ X and is

preferred toπ by all members ofX, and strongly preferred by some member.

A manipulating coalition isminimal if it does not contain any proper subset

that is also a manipulating coalition.

(ii) A rule is manipulable at the profileπ if and only if there exists a manipulat-

ing coalition at this profile.

(iii) An anonymous rule ismanipulable at a voting situationσ if and only if there

exists a profileπ giving rise toσ, at which the rule is manipulable.

Example 1.8.(manipulation) Consider the Borda rule, given by the weight vector

(2, 1, 0), and the voting situation with 2abc, 2bac, 2bca, 3cab voters. If one of the

cab voters votes strategically asacb, thena andb tie. The new outcome is preferred

by that voter because the winning probability distribution on the candidates has

changed from(0, 1, 0) to (1/2, 1/2, 0).

Example 1.9. (manipulation in favour of bottom-ranked candidate) Consider the

plurality rule, given by the weight vector(1, 0, 0), and a voting situation having

4 abc, 3 bca and 2cab voters. The sincere winner is thena. There is no manip-

ulating coalition in favour ofb since the only voters preferringb to a are already
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contributing the maximum score tob and the minimum toa. However, if thebca

voters all vote strategically ascba, thenc wins.

Example 1.10.(manipulation possible in more than one way) Consider an elec-

tion with 3abc, 2 cba, 2 bca voters, and scoring rule plurality. The sincere scores

are (3, 2, 2). If bothcba voters change their votes tobca in favour ofb, we have a

manipulating coalition with size 2 in favour ofb. Also, we can consider a manip-

ulating coalition with size 2 in favour ofc. If bothbca voters change their votes to

cba, then the winner isc.

A manipulating coalition may contain members whose manipulating strategy is to

vote sincerely. The extreme case is as follows.

Example 1.11. (the maximal coalition in favour of a candidate) For each can-

didate b other than the sincere winnera, the maximal coalition in favour ofb

consists of all voters having preference orders that rankb abovea. Since voters

in a manipulating coalition may vote sincerely, it follows that there exists some

coalition that can manipulate in such a way as to makeb the winner if and only if

the same result can be achieved by the maximal coalition.

Removing those members who vote sincerely still gives a manipulating coalition

(which we might call anactivecoalition, although this term is not standard and

will not be important here). A subset of voters contains a manipulating coalition

if and only if it contains a minimal manipulating coalition.

Example 1.12.(minimal coalitions) Consider the scoring rule with weights(10, 9, 0)

and a voting situation with 10abc, 6bac, 5cab and 5cba voters. The sincere result

has the scores ofa, b, c respectively being(199, 195, 100). Consider manipulation

18



Chapter 1. The Manipulability of Voting Rules

in favour ofb. If one of thebac voters changes tobca, the new scoreboard will be

(190, 195, 109). So it is a minimal manipulating coalition of size1, and clearly

also minimum. By contrast, if 4cba voters change their votes tobca, the new re-

sult will be (199, 199, 96). This is also a minimal manipulating coalition but not

a minimum one.

Probabilistic measures of manipulability

We first fix a numbern of voters and a probability distribution on the possible

profiles (or voting situations). LetΣ := Σn denote the set of of all voting situa-

tions equipped with a given probability measure and letS denote a sample from

this distribution.

The first measure concerns the logical possibility of manipulation.

Definition 1.13.

P = Pr [there is some coalition that can manipulate atS] .

This simple measure has been used extensively in the social choice literature. It

is relatively simple to compute for standard rules and preference distributions, but

fails to measure the computational effort required to assemble and coordinate a

manipulating coalition. It is entirely possiblea priori that two rules may have

the same value ofP , yet the manipulations for one require much effort (the re-

cruitment of large coalitions of manipulating agents, perhaps with rare preference

orders) while those for the other are relatively straightforward, in every voting

situation.
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Another measure takes account of the number of manipulators required.

Definition 1.14.

M = min {k : there is some coalition of sizek that can manipulate atS} .

We would like to consider the expected valueES[M ]. However, this does not

make sense because certain situations are not manipulable by any coalition, and

soM is defective. We could therefore, considerES[M | M < ∞]. However it is

a priori that this may be rather small for rules that are almost never manipulable,

and larger for rules that are often manipulable. More information is obtained by

considering the distribution function ofM . For eachk with 1 ≤ k ≤ n, we

considerPr(M ≤ k). This is precisely the probability that a randomly chosen

voting situation can be manipulated byk or fewer agents.

The measureM allows us to consider the greater work required by larger coali-

tions. For example, the communication cost between coalition members may

grow asM 2, if secret negotiations must be individually carried out. However,

it is a priori possible that two rules may have the same value ofM for every vot-

ing situation, yet one has very few manipulating coalitions of sizeM , while the

other has many, in every voting situation. (See Example1.18below.)

A third measure, which is new as far as we know, is obtained by considering both

the sizes and the prevalence of the manipulating coalitions. Both of these aspects

are captured by the informational effort required to discover a manipulating coali-

tion via the following procedure. We assume that although a potential instigator of

manipulation knows the distribution of opinions (in other words, the sincere vot-

ing situation), he does not know which agents hold which opinions. We assume
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that such a person must simply interview agents one by one at random, until he

has enough agents to form a manipulating coalition. This gives a random variable

equal to the number of such queries.

Definition 1.15. Let V1, . . . , Vn be agents sampled without replacement from the

setV of all agents, independently ofS. Equivalently,(V1, . . . , Vn) is a random

ordering ofV , with all possible orderings being equally likely, representing the

order in which agents are queried. Let

Q = min{k : {V1, . . . , Vk} contains a manipulating coalition atS}.

Note thatQ is a random variable both because it depends onS and because it

depends on(V1, . . . , Vn). This random variable is in general defective, and is

defined to be+∞ if no manipulation is possible forS. In other words, we want Q

to have a finite value. Ifk is the number of queries required to find a coalition, or

determine that there isn’t one, thenk = n wouldn’t make sense, because we might

find a coalition exactly aftern queries. Sok = n + 1 is the next value and we can

use this to mean ”not found”.

Remark 1.16. The dynamic query interpretation seems reasonable to us: it seems

not unreasonable to assume that an instigator knows the voting situation (through

polling) but not the exact profile. However, those readers who remain unconvinced

will see in Section1.4.2 that there is alternative, static interpretation ofQ that

does not depend on such a story.

We illustrate these definitions using the following examples.

Example 1.17(values ofQ). Consider a setup with2 agents, scoring rule Borda

and3 alternatives. There are21 different voting situations, but by using symmetry,
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we need to only consider those withs(a) ≥ s(b) ≥ s(c) (where for examples(a)

denotes the score of alternativea). It can be seen as in Section1.4.2that of these,

only the voting situation(1, 0, 1, 0, 0, 0) is manipulable. The sincere scoreboard

is (3, 3, 0) but if the bac agent changes his vote tobca then the result becomes

(2, 3, 1). Similarly, theabc can change toacb. Thus for this voting situation, we

make1 query with probability1 so thatQ is deterministic and equals1. Now we

weight this voting situation according to the culture. Under IAC the probability of

such a voting situation will be3/21, so the valuesPr(Q ≤ 1) andPr(Q ≤ 2) are

each1/7. Under IC, the situation corresponds to6 profiles, so the weight is6/36,

and the values ofPr(Q ≤ 1) andPr(Q ≤ 2) are each1/6.

Example 1.18.(difference betweenM andQ) Consider the voting situation with

6 cab and2 bac agents. Under the antiplurality voting rule, the sincere scoreboard

is (8, 2, 6) and the winner isa. There are no manipulating coalitions in favour of

b but manipulation in favour ofc is possible. The value ofM is 2: if two of thecab

agents votecba, the new result iss′ = (6, 4, 6). If our first two queries discovercab

agents, thenQ = 2 otherwise,Q = 3 or 4. The expected value ofQ, conditional

on this voting situation, is18/7 ≈ 2.57.

Now consider the same situation under the(3, 2, 0) scoring rule. The sincere

result is(16, 6, 18) and the winner isc. Manipulation in favour ofb is impossible,

but we can manipulate in favour ofa if the twobac agents change their votes to

abc. Here againM = 2, andQ can have any value between2 and8. The expected

value ofQ, conditional on this voting situation, is6.

In this voting situation, both rules admit the logical possibility of manipulation

by coalitions of two or more agents. However, such manipulating coalitions are

much more prevalent under the antiplurality rule, because they involve a more
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numerous type of agent. This difference between the rules is captured byQ.

Analogues for other models of manipulation

The measuresP,M,Q above depend only on the concept of manipulating coali-

tion. If we change the model of manipulation, we obtain the obvious analogues

of those measures. We discuss the case of bribery here, and leave other cases to

the reader (for example, threshold manipulation). We denote the bribery-based

analogues of the measures byP ′,M ′, Q′. The measureP ′ is rather uninteresting.

Clearly, by bribing sufficiently many voters, we may make any given candidate

win, provided the voting rule satisfies the nonimposition property (each candidate

can win in some profile). Thus for most commonly used voting rulesP ′ = 1 for

eachn andm. However,P ′ would be interesting if it is limited to a budget. The

measureM ′ is more interesting, giving the minimum possible number of voters

to bribe in order to change the result (and it is always finite, given nonimposi-

tion). For example, for plurality,M ′ equals the difference in scores between the

first- and second-ranked candidates. The measureQ′ gives the number of queries

involved in determining a minimal set of agents who must be bribed.

Relations between the measures

We restrict to manipulation here; the analogous measures for different models

satisfy the analogous relations.

We denote the distribution function ofM by FM , and analogously forQ, so that
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FM(k) = Pr(M ≤ k), etc. Note that

FQ(k) ≤ FM(k) for eachk;

FQ(n) = FM(n) = P.

ThusFQ andFM contain strictly more information thanP . It does not appear

thatFQ is strictly more informative thanFM , since(Pr(M ≤ k))n
k=1 cannot be

recovered from(Pr(Q ≤ k))n
k=1. However, for a fixed voting situationS, FM |S(k)

is either 0 or 1, and the smallestk for which it takes the value 1 is also the smallest

k for which FQ|S(k) > 0. Furthermore we have already seen that the value ofM

does not determine the entire distribution ofQ on a given voting situation. We thus

have strictly more information fromQ than fromM in this conditional sense.

We can unify the definitions ofM andQ by considering a trivial query model

for M . We assume that in this case we know all the voters’ preferences, in other

words the sincere profile, and our “query” consists of simply approaching a voter

and inviting him to join a coalition (we assume that our invitations are never re-

fused). We would make preciselyM queries in order to minimize effort. Thus

the values ofFQ(k) andFM(k) correspond to the probability that we can form a

coalition afterk queries in the case of no extra information (only the voting situa-

tion) and full information (the complete profile), respectively. Analogues of these

that consider various types of partial information could be considered, but they

appear less compelling to us and we do not pursue them here.

We have already seen thatM andQ can differ. It is easy to construct a rule for

whichM andQ differ enormously, if we allow non-anonymous rules.
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Example 1.19.Consider a rule (“oligarchy”) that fixes3 voters and lets them

decide the result using plurality, no matter what the other voters do. In this case

M is at most1 for each manipulable situation, butQ will with high probability be

of ordern.

The relation betweenM andQ is further clarified by considering minimal manipu-

lating coalitions. In a minimal manipulating coalition, no member votes sincerely

and all of them must act together in order to manipulate. Clearly every minimum

size coalition is minimal, but the converse is not true in general.

The definition ofQ implies that when the query sequence terminates, we have

for the first time in that sequence found a set of voters that contains a minimal

manipulating coalition. Letμ be the smallest size of such a coalition; likeQ, μ is

a random variable. AlsoQ ≥ μ ≥ M . Thus the excess ofQ overM measures not

only how many wasted queries we make, but also the difference betweenμ and

M . If σ is a voting situation in which even one minimal coalition of size larger

thanM exists, thenE[Q | S = σ] ≥ E[μ | S = σ] > E[M | S = σ].

Example 1.20. In Example1.12, the minimum coalition size is1 but there exists

a minimal manipulating coalition of size4. ThusE[Q] > M , conditional on this

voting situation.

We now show that there are anonymous rules for whichM |S andQ|S can be very

different.

Example 1.21.Consider the plurality rule and denote the sincere winner bya,

and letb be some other candidate. Letx denote the number of voters who ranka

first, y the number who rankb first, andz the number who do not rankb first, but
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who rankb overa (thus there aren−x−y−z voters who rank neithera nor b first,

but ranka overb). Manipulation in favour ofb is only possible if the voters of the

last type express a preference that ranksb first, and this can succeed if and only if

y + z ≥ x. The minimal coalition size in this case isx − y. The query sequence

ends when we have foundx − y elements from the set ofz elements above.

This has the flavour of a coupon-collector problem. If we assume thatn is very

large compared toz, then the expected length of the query sequence is well ap-

proximated by(x − y)n/z. The ratio ofE[Q] to M is then not bounded by any

constant factor, even for a fixed number of candidates.

Remark 1.22. Based on the analysis of scoring rules in [33], we believe, via a

heuristic argument, that for the IC preference distribution, the ratioE[Q]/M will

be bounded by a constant depending only onm and the weight vector, outside a

set of exponentially (inn) small probability.

1.4.2 Computation of the measures

Algorithms

All the measures discussed so far can be computed for anonymous rules in time

that is polynomially bounded inn, provided thatm remains bounded. The rest of

this section elaborates on this theme. Not surprisingly, it seems thatP is easier to

compute thanM , which is easier thanQ. We give several algorithms.

We consider here only algorithms that first compute the value of the measure

conditional on each voting situation, and aggregate this according to the chosen

culture. There may exist other algorithms that are more efficient and act by consid-
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ering several voting situations at once, but we have not yet found any. The number

of possible voting situations is the number of solutions in nonnegative integers to

the equationn1 + n2 + ∙ ∙ ∙ + nm! = n. This equals
(

n+m!−1
n

)
= n(n+1)...(n+m!−1)

(m!−1)!
.

Such objects are represented as vectors of lengthm! if we fix an order of the types,

and we call these (as usual)compositionsof n with m! parts.

Before proceeding we note an alternative characterization ofQ that will be useful.

Definition 1.23. For eachk ≥ 1 consider the setV k of all k-subsets ofV equipped

with the uniform measure and consider the product spaceΣ × V k. LetE denote

the event

E := {(S,A) ∈ Σ × V K | A contains a manipulating coalition atS}.

Lemma 1.24.Letk ≥ 1 and letA denote a sample fromV k andS a sample from

Σ. Then

Pr(Q ≤ k | S) = Pr(E|S)

and hence

FQ(k) = Pr(E) = Pr(A contains a manipulating coalition).

In other words, the probability that we require at mostk queries to find a manip-

ulating coalition equals the probability that a randomly chosenk-subset contains

a manipulating coalition.

Proof. Given S, the eventQ ≤ k means precisely that the initial subsetAQ

formed by the firstk queries contains a manipulating coalition atS. Each subset

of V of sizek occurs with equal probability
(

n
k

)−1
as an initial subset of queries of
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the query sequence, so thatAQ is distributed asA. This gives the first equality and

the second set of equalities follows from standard probabilitycomputations.

Remark 1.25. The distribution function ofQ can thus be computed by simply

counting the number of subsets of a fixed size that contain a manipulating coali-

tion.

Note that it is also true that for each fixedA,

Pr(A contains a manipulating coalition) = FQ(k).

This is because of the symmetry between voters. Without the symmetry, we know

only that the expectation overA of P (E|A) equalsFQ(k).

General algorithms

We now discuss the computation in more detail. Throughout, we assume the

existence of a subroutineC that, given a voting situation and a subsetX of V ,

determines whether there is some subset ofX that is a manipulating coalition.

For scoring rules, we describe such aC in Section1.8.1.

A direct computation ofP | S, M | S andQ | S proceeds by enumerating subsets

X and usingC to test each one. ForP , we need only do this forX = V . ForM

andQ we should enumerate all size1 subsets, then all size2, etc. Once we find

a manipulating coalition, this finds a minimal manipulating coalition of minimum

size, and thus determinesM . To determineQ, we must continue to generate all

subsets of all possible sizes.

An obvious improvement is to generate compositions subsets of size1, 2, . . . ,
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n in turn, adding new minimal manipulating coalitions to a table. Each newly

generated subset is checked to see whether it contains any elements of the table.

If yes, we can updatePr(M ≤ i) andPr(Q ≤ i) accordingly, for alli ≥ k.

Otherwise, check the subset to see whether it is itself a minimal manipulating

coalition by invokingC (we add it to the table if so, and update probabilities

accordingly). Since checking containment is simply a coordinatewise operation

on the compositions and is faster thanC itself, this gives a clear speedup especially

for largek. Also, we only invokeC to check whether a given subsetis a minimal

manipulating coalition, not whether it contains one. This allows for simplification

of C in some circumstances.

Of course, non-anonymous rules require the entire profile. A general rule may

require generation of
(

n
k

)
subsets for eachk, and hence2n in the worst case, when

the situation is not manipulable. We restrict to anonymous rules from now on.

In this case we can generate instead all types of subsets (compositions ofk into

t parts), the number of which for eachk is
(

k+t−1
k

)
, wheret is the number of

possible types of voters to consider in a coalition (in other words we generate the

compositions ofk into t parts). ForM we can taket = (m − 1)!, since we need

only consider subsets consisting of voters not ranking the sincere winner highest,

but forQ we taket = m! since all types may be found by our query process.

Finally, as noted above, to computeP,M,Q we know no better method in general

than to aggregate the conditional probabilities. There is one idea which seems very

promising at the first sight. To computeQ, we can simply fixA and iterate over all

voting situations, instead of looping over all voting situations and then over allA.

But this overlooks the fact that in the first method, we must consider each profile

represented by the voting situation separately. This requiresm!n invocations ofC
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overall and will be uncompetitive almost always with the more direct method.

Specialized algorithms for scoring rules

For scoring rules, there exist substantial improvements to the above procedure.

The key point is that manipulability by a coalition may be described by systems

of linear (in)equalities, and some steps above can be combined. We give a brief

description below and refer to [20] for more details. We note that Copeland’s rule

lends itself to completely analogous computations which is presented in appendix.

For each candidateb different from the sincere winnera, and each subsetX con-

sisting of voters who preferb to a, we have a systemSb of linear (in)equalities

describing manipulations which result inb winning. The subroutineCb simply

checks whether this system is feasible, andC simply combines the results of these

subroutines with a logical “OR”.

To describeSb, we begin with the variables. There is one nonnegative integer

variablexi for each sincere preference order occurring inX, and one nonnegative

variableyj for each strategic vote that can occur. It appears that in the worst case

the number ofx’s is m!/2, the number of types that rankb abovea. The number

of y’s could be even larger for a general rule. However it is readily seen that

for scoring rules, only strategic votes that rankb first should be considered (other

strategies are dominated by strategies of this type), so the number ofy’s required

is at most(m−1)!. Furthermore the number ofx’s can be reduced. For those types

who sincerely ranka last andb first, voting sincerely is a dominant strategy and

hence these voters can be removed from any coalition, so that we need consider

only (m−2)!(m+1)(m−2)/2 types. The total number ofx’s andy’s to consider
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then equalsm!(m2 + m − 4)/(2m2 − 2m). For some special scoring rules this

can be reduced even further. For example, for plurality and antiplurality, we need

only consider1 possible strategy (rankb first (respectivelya last) and the others

in any fixed order), so the number ofy’s is only 1. And in this case, those voters

sincerely rankingb first (respectivelya last) cannot do better than by using the

sincere strategy, so the number ofx’s is m!(m − 2)/(2m).

We now describe the constraints inSb. We first have the constraints thats(a) ≥

s(b) ≥ s(c) ≥ . . . . Our random tie-breaking assumption allows this and gives

a speedup by a factor close tom!, because we do not need to generate all voting

situations. The scores after manipulating satisfys(b′) ≥ s(c′) for all candidates

c (there may be some strict inequalities depending on tie-breaking cases, but we

keep them all non-strict for simplicity). There is also an equality constraint that the

sum ofx’s equals the sum ofy’s. The total number of constraints is2m− 1. Note

that although the scores when expanded in terms of the weights and numbers of

voters of each type will involve more variables, the constraints listed only involve

the stated variables, because of cancellation.

In order to computeP |S we can simply invoke the subroutineC with X = V , as

mentioned above. In fact we can go even further for some special distributions.

For example, for the IAC distribution, the linear systems described above allow

direct computation of the aggregate measureP as follows. We need to count

the number of lattice points in the polytope determined by the systemSb. This

is accomplished by algorithms to compute Ehrhart polynomials as described in

[34, 35]. Inclusion-exclusion then allows the computation ofP .

To computeM |S we consider the integer linear programming problem associated

to Sb, with objective function equal to
∑

i xi. The minimum overb of the optimal
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values of these optimization problems is preciselyM |S.

We now move on to discuss the new measureQ. We know that it contains more

information thanP andM , so it should be expected to be harder to compute.

Although we have no theoretical justification for such an assertion, our efforts to

find algorithms have convinced us that it is true.

To computeQ | S, the now-obvious method is to generate all (types of) subsets of

sizek, for eachk, and check them in turn (usingm− 1 iterations of the improved

algorithmC involving the linear system above, one for each losing candidate).

We also use the lookup table approach above. We must still generate all possible

types of subsets.

Alternative algorithm for Q There is an alternative method that avoids gener-

ating all types of subsets, which works particularly well form = 3. The idea is

to first enumerate systematically all equivalence classes of minimal manipulating

coalitions, and then use inclusion-exclusion to compute the number of subsets of

each sizek that contain at least one of these minimal coalitions.

Definition 1.26. Equivalence classes of minimal manipulating coalitions consist

of coalitions which have the same size and the same distribution of types.

Let N denote the number of such equivalence classes. Under plurality and an-

tiplurality, N ≤ m − 1, because the minimal coalitions that can elect a fixed

losing candidateb simply consist of all subsets of a certain fixed sizeM from

the set of voters having one of the(m − 2)!(m + 1)(m − 2)/2 x-types as dis-

cussed above. These can be represented as compositions ofM with (at most)

(m − 2)!(m + 1)(m − 2)/2 parts in the usual way. Although there are many dif-

32



Chapter 1. The Manipulability of Voting Rules

ferent types, they are all equivalent and we do not need to distinguish between

types. For more general scoring rules, mixed coalitions where we must keep track

of types are possible, andN can be larger thanM , whereM as usual is the mini-

mum coalition size. To find them, we can first find the minimal “pure” coalitions

consisting of elements of the same type usingt calls toC, and then determine

the mixed ones systematically by search, which may invokeC of the order ofN

times.

Consider the uniform distribution on the set of all subsets ofV of sizek, and let

Ei be the event that a sizek subset contains a minimal manipulating coalition of

type i. We seek to computePr(Q ≤ k) = Pr(∪iEi). By the inclusion-exclusion

formula, we have

Pr(Q ≤ k) = Pr(∪iEi) =
∑

Pr(Ei) −
∑

Pr(Ei ∩ Ej) + ∙ ∙ ∙ .

The number of terms in the inclusion-exclusion formula is2N − 1. Also, the

intersection ofp terms requires the computation of the union ofp types of coali-

tions, which takes time of orderpm! using the obvious algorithm of taking the

coordinatewise maximum of the compositions. This gives a running time of order

N22Nm!. WhenN is sufficiently small, the inclusion-exclusion method is supe-

rior to the method described above. However as we have seenN can grow rapidly

with M and t. Thus it seems that, for a general scoring rule, this method will

only be competitive with the other method above whent andN are fairly small

(however, for (anti)plurality it appears to be much superior). We do not have a

clear description of exactly when each method is best.
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The casem = 3 In this case much simplification is possible, as we now de-

scribe. The systemSb can be reduced to a linear integer program with3 variables

and4 inequality constraints. The solution of the feasibility and optimality prob-

lems for this linear system can be simplified. As shown in [20], the system can

be replaced, using Fourier-Motzkin elimination, by a real linear system in the

x’s only, that gives necessary conditions for manipulability that are sometimes

sufficient. For example, whenm = 3, this latter procedure works exactly for

antiplurality and all rules definable by weight vectors(1, λ, 0) with λ ≤ 1/2 —

the so-called “easy rules”), but only gives bounds for the other values ofλ (“hard

rules”).

For the purposes of computingP |S,M |S andQ|S, we may simplify the linear

system when dealing with minimal coalitions. The number of types of minimal

coalitions is even lower than the general bound given above. This is because when

m = 3, the minimal coalitions that can manipulate in favour ofb are disjoint from

those that can manipulate in favour ofc. The minimal coalitions consist only

of cba and bac voters, or ofbca voters. For certain rules there are even fewer:

minimal coalitions under plurality consist only ofcba voters or only ofbca voters,

while minimal coalitions under antiplurality consist only ofbac voters (it is never

possible to manipulate in favour ofc in antiplurality, becausecab voters can only

increase the advantage ofb overc).

In addition, the number of strategies to check is very small, since a minimal coali-

tion containingbac andcba voters will all vote asbca, without loss of general-

ity, while a bca coalition requires consideration only ofcba. Thus when testing

whether a coalition is minimal, it suffices to check whether switching allcba and

bac to bca is a valid manipulation, and whether switching allbca to cba is a valid
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manipulation.

If we use the alternative method with inclusion-exclusion, the inclusion-exclusion

formula hasN of order2M andm! = 6 for a general rule, whereas the direct

method requires2
(

n+6
n

)
calls toC. The first method will be better for (anti)plurality

and also for other rules providedn is small enough.

Statistics

We can readily compute the conditional expectationsE[M | M < ∞], etc, from

the distribution functions as follows. We have

n∑

k=0

Pr(M > k) =
n∑

k=1

k Pr(M = k) + (n + 1) Pr(M = ∞).

Reorganizing this equation yields

E[M | M < ∞] =

∑n
k=1 k Pr(M = k)

Pr(M < ∞)

=

∑n
k=0[1 − Pr(M ≤ k)] − (n + 1) Pr(M = ∞)

Pr(M < ∞)

= n + 1 −

∑n
k=1 Pr(M ≤ k)

Pr(M ≤ n)

= n −

∑n−1
k=1 Pr(M ≤ k)

Pr(M ≤ n)
.

1.4.3 Basic numerical results

To get a feeling for the behaviour ofQ and to allow for comparison with other

measures such asP andM , we have carried out detailed computations ofQ for

m = 3 and for the same scoring rules and preference distributions used in [20].
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Details of the implementation are found in Section1.8.1. We present a few rep-

resentative results here, with discussion. In addition, we present some analogous

results for a completely different type of rule, namely the Copeland rule.

In the Appendix, we give details of the algorithm implementation form = 3, and

more detailed numerical results which we feel would obscure the overall picture

if presented in the present section.

We first consider small parameter values (note that these results will be more

affected by our tie-breaking assumptions). Table1.1 gives values ofPr(Q ≤ k)

for IC when1 ≤ k ≤ n ≤ 6. Table1.2presents the analogous data for IAC.

Table 1.1: Values ofPr(Q ≤ k) under IC
n k plurality (3,1,0) Borda (3,2,0) (10,9,0) antiplurality Copeland
2 1 0.0000 0.3333 0.1667 0.1667 0.1667 0.3333 0.1667
2 2 0.0000 0.5000 0.1667 0.1667 0.1667 0.3333 0.1667
3 1 0.0000 0.0000 0.1111 0.1667 0.1389 0.1111 0.0000
3 2 0.0000 0.0000 0.1944 0.2222 0.2222 0.1111 0.0000
3 3 0.0000 0.0000 0.2500 0.2500 0.2500 0.1111 0.0000
4 1 0.1111 0.2083 0.1528 0.1759 0.1852 0.1481 0.1111
4 2 0.2037 0.3519 0.2176 0.2917 0.3009 0.2222 0.1991
4 3 0.2778 0.4583 0.2639 0.3657 0.3704 0.2685 0.2639
4 4 0.3333 0.5417 0.2917 0.4028 0.4028 0.2963 0.2917
5 1 0.0741 0.1173 0.1296 0.1620 0.1119 0.2099 0.0000
5 2 0.1481 0.2099 0.2122 0.2662 0.1767 0.3148 0.0000
5 3 0.2222 0.2901 0.2793 0.3465 0.2191 0.3580 0.0000
5 4 0.2963 0.3611 0.3472 0.4120 0.2531 0.3688 0.0000
5 5 0.3704 0.4167 0.4167 0.4630 0.2816 0.3750 0.0000
6 1 0.0412 0.1260 0.1376 0.1472 0.1229 0.1070 0.0823
6 2 0.0905 0.2168 0.2155 0.2423 0.2252 0.1523 0.1556
6 3 0.1451 0.2946 0.2760 0.3230 0.3169 0.1677 0.2189
6 4 0.2016 0.3629 0.3283 0.3969 0.3956 0.1718 0.2706
6 5 0.2572 0.4218 0.3774 0.4623 0.4594 0.1741 0.3099
6 6 0.3086 0.4707 0.4237 0.5163 0.5071 0.1754 0.3369

We then choosen = 32 as a moderate number of voters, even and not divisible by
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Table 1.2: Values ofPr(Q ≤ k) under IAC
n k plurality (3,1,0) Borda (3,2,0) (10,9,0) antiplurality Copeland
2 1 0.0000 0.2857 0.1429 0.1429 0.1429 0.4286 0.1429
2 2 0.0000 0.4286 0.1429 0.1429 0.1429 0.4286 0.1429
3 1 0.0000 0.0000 0.1429 0.2143 0.1786 0.2143 0.0000
3 2 0.0000 0.0000 0.2500 0.2857 0.2857 0.2143 0.0000
3 3 0.0000 0.0000 0.3214 0.3214 0.3214 0.2143 0.0000
4 1 0.0714 0.1548 0.1190 0.1667 0.1905 0.2619 0.0714
4 2 0.1310 0.2540 0.1548 0.2619 0.2857 0.3413 0.1310
4 3 0.1786 0.3333 0.1786 0.3214 0.3333 0.3810 0.1786
4 4 0.2143 0.4048 0.1905 0.3571 0.3571 0.4048 0.1905
5 1 0.0429 0.0905 0.1381 0.1524 0.1286 0.2810 0.0000
5 2 0.0857 0.1595 0.2214 0.2476 0.1952 0.3857 0.0000
5 3 0.1286 0.2190 0.2810 0.3190 0.2333 0.4286 0.0000
5 4 0.1714 0.2762 0.3333 0.3714 0.2619 0.4429 0.0000
5 5 0.2143 0.3333 0.3810 0.4048 0.2857 0.4524 0.0000
6 1 0.0260 0.0931 0.1126 0.1580 0.1385 0.1970 0.0433
6 2 0.0589 0.1537 0.1684 0.2411 0.2433 0.2619 0.0844
6 3 0.0961 0.2045 0.2156 0.3032 0.3286 0.2857 0.1234
6 4 0.1351 0.2506 0.2602 0.3563 0.3935 0.2948 0.1576
6 5 0.1732 0.2944 0.3052 0.4026 0.4394 0.3009 0.1840
6 6 0.2078 0.3377 0.3506 0.4416 0.4740 0.3052 0.1948
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3 to reduce the number of ties and therefore the effect of our specific tie-breaking

assumptions (it turns out that for oddn andm = 3, Copeland’s rules is never

manipulable under the randomized tie-breaking assumption). In Figures1.1, 1.2

and1.3we plotFQ under IC and IAC. For small values ofk it is hard to distinguish

the different scoring rules, so we provide more detail in Tables1.5 and1.8.2in

the Appendix.

In Table1.3we display the expected values ofM andQ, conditional on the voting

situation being manipulable.
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Figure 1.1: Values ofPr(Q ≤ k) whenn = 32, under IC and IAC.
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Table 1.3: Expected values under IC/IAC forn = 32.
IC IAC

voting rule E(Q|Q < ∞) E(M |M < ∞) P E(Q|Q < ∞) E(M |M < ∞) P
plurality 11.9323 2.20268 0.768301 14.8069 3.06844 0.294847
(3,1,0) 12.0874 3.49139 0.837584 14.6438 4.85753 0.408826
Borda 11.8601 3.90602 0.865632 13.6529 4.95002 0.474621
(3,2,0) 11.5922 3.54276 0.86109 12.7878 4.3114 0.519419
(10,9,0) 12.3713 3.07908 0.63231 11.2213 3.63562 0.508407

antiplurality 6.18951 1.61894 0.45002 9.10156 3.00334 0.499054
Copeland 9.13436 2.11101 0.246735 15.1917 3.85937 0.089856

Comments on results

The results obtained shed light on the differences between the measuresP,M,Q

and show that they can rank rules in very different ways. We give a few details

below.

The most obvious feature of the results is the different shape of the graphs for

M andQ (the former can be found in the Appendix). Indeed, the graphs shown

exhibit (slightly) fewer crossings withQ than withM , indicating more robustness

to coalition size forQ. For example, whenn = 32 there is a clear ordering of

the rules plurality, (3,1,0), Borda with respect to susceptibility to manipulation

under IAC. In particular, there is a single dominant rule with respect toQ (which

minimizes the measure for eachk = 1 . . . n). The difference betweenQ andM

relates to the distribution of each type and the power of each type in changing the
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result based on the voting rule.

The measureP gives a simple way to linearly order rules for a givenn, by their

susceptibility to manipulation. However, comparing distribution functions of the

formFM andFQ is harder. A natural choice is the partial order in which ruler with

associated distribution functionFr dominates rules with associated distribution

functionFs if and only if Fr(k) ≤ Fs(k) for eachk, 1 ≤ k ≤ n.

Looking deeper, we see that this dominance ordering among all our scoring rules

holds fairly often for smalln under IAC forQ, but rarely under IC, whereas the

opposite is true forM . A specific example: whenn = 5, the plurality rule is

dominant over all our other scoring rules under IAC when measured byQ, but

this is not the case whenM is used as the measure, while antiplurality is dominant

underIC with respect toM and notQ. Of course, whenk is large compared ton,

the graphs ofM andQ are the same, as they all report the valueP for the given

rule.

Restricting to conditional values computed at those situations which are manip-

ulable for the given rule, we find that the ordering of rules based on the data in

Table 1.3 is different forM andQ. These induced orderings also differ from

that induced byP . In fact the 6 combinations of measuresP/M/Q and cultures

IC/IAC all yield different orderings of the 7 rules!

The results in Table1.3suggest that although antiplurality rather often cannot be

manipulated at all under IC, it generally requires smaller coalitions in the situa-

tions where it is manipulable. This can be observed by checking the values ofP

andM . However, a similar result is true for plurality, yet the value ofQ shows

that finding the coalitions under antiplurality is considerably easier. ThusQ adds

valuable extra information even in this case. The small values ofM andQ for
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antiplurality presumably occur because for this rule, any voter not ranking the

sincere winner first or last has the same power to manipulate, and can only do so

by ranking the sincere winner last, which makes the maximum possible change in

scores. For other rules, there are more constraints on the coalition members and

they have less power to change scores, so larger coalitions are required and they

are less numerous.

We describe some conjectures about the behaviour of these measures for largen

in Section1.7.

One might expect that as the weight vector approaches the vector(1, 1 . . . , 1, 0)

that defines the antiplurality rule, the behaviour of the measuresP , M and Q

smoothly approaches that for antiplurality. However this is not always the case

for largek, as can be guessed from our results here, and also from known facts. In

fact under IC the asymptotic value ofPr(M ≤ n) (in other words, the value ofP )

tends to1 for all rules except plurality but some value less than1 for antiplurality

(whenm = 3, this latter value equals1/2, and the value converges to1 asm → ∞

[33]). However, this is only a limit result fork = n andn → ∞. For each fixedk

andn, convergence does occur as expected. Also, for other distributions such as

IAC, this phenomenon does not occur.

The results show that the Copeland rule is considerably less manipulable than

scoring rules under all (unconditional) measures, and indeed dominates our cho-

sen scoring rules in most cases presented. The low value ofP for this rule is

not surprising (of course, under our tie-breaking assumptions, this value is exact

0 for odd n). The rule is defined in terms of the pairwise majority relation and

has quite different properties from those of scoring rules. In [36] it was shown

that form = 3 under IAC and using lexicographic tie-breaking, Copeland’s rule
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is considerably less manipulable when measured byP than Borda’s rule. This

resistance to manipulability appears mostly to be a result of the indecisiveness of

Copeland’s rule: form = 3 the probability of a3-way tie under either IC or IAC

does not approach zero asn → ∞ (unlike scoring rules), yet under our random

tie-breaking assumption, it turns out that such situations are never manipulable.

However, conditional information shows that finding a manipulating coalition for

Copeland when one exists is sometimes relatively easy, and the rule is not more

resistant to manipulation than our scoring rules in the conditional sense.

1.5 Power measures and manipulability measures

In this section we try to study the connection of the theory of manipulability

measures with the better-known, but still controversial, theory of power indices.

Strategic manipulation can be interpreted in terms of a simple game. We study

measure Q as a power index in cooperative game theory which measures the im-

portance of an individual in forming a manipulating coalition. Collective and

individual power measures in simple games can be modelled using a sequential

model for the discovery of winning coalitions. This link allows for the use of

manipulability measures that are specializations of well understood and axiomat-

ically described measures for simple games, and also suggests new general power

measures generalizing previously used measures of manipulability.
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1.5.1 The simple game associated with a profile

Definition 1.27. A simple gameon a finite setX is a subset of2X , whose elements

are calledwinning coalitions.

For each profileπ and social choice correspondenceR we define a simple game

G(R, π) as follows: declare a subset ofX to be winning if and only if it contains

a manipulating coalition forR at π. Note that the game may be empty, and this

occurs if and only if the rule is not manipulable atπ. We call it themanipulation

gamedetermined byR andπ.

Other definitions of “manipulation”

Clearly, any model of coalitional manipulation of a voting rule leads to an associ-

ated simple game. We simply define a winning coalition to be one that contains

a manipulating coalition (assuming always that the complement of the coalition

consists of naive, sincere voters). There are arbitrarily many restrictions one could

make on coalition formation (for example, only players adjacent in some fixed

network can belong to a coalition). Those that we have observed in the study of

manipulation are listed below.

Example 1.28. (Unit cost bribery) A subset ofV is winning if it contains a set

of voters who can change the result of the election by changing their votes (not

necessarily in accordance with their preferences). Winning coalitions always exist

unless the rule isimposed(i.e., the voters’ preferences are irrelevant). A restricted

budget variant exists: letB be a positive integer, and define a coalition to be

winning if it is winning as above and the number of members who do not prefer

the new winner to the old one is at mostB.
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Example 1.29.(Threshold manipulation) Declare a subset ofV to be winning if

it can ensure that the sincere winner no longer wins.

Example 1.30.(Truth-biased manipulation) Declare a subset ofV to be winning

if it can manipulate as in our standard definition, and each member has ranked

the sincere winner last in its preference order. Voters in this model are very risk-

averse and only try to manipulate if there is nothing to lose.

Example 1.31.(Bloc voting) Declare a subset ofV to be winning if it can manipu-

late as in our standard definition, via a manipulation where all coalition members

of the same type vote the same way.

Noncooperative games

For each noncooperative game given in normal form, and a distinguished action

profile a, we may define a simple game in the following way. A coalition is

winning if and only if it contains a subset of players who can jointly deviate from

a (assuming all other players stick witha) in such a way that they each have higher

payoff from the resulting action profile. There is a winning coalition if and only

if a is not a strong Nash equilibrium of the game.

Transferable utility games

A simple game is a special case of a TU-game where the characteristic function

takes only the values0 and1. The more general TU-game assigns a value by its

characteristic function v : 2X → R, such thatv(∅) = 0. We denote the class of

all TU-games onX by G(X).
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1.5.2 The random query process

Consider the following stochastic process. We choose elements ofX sequentially

without repetition, at each step choosing uniformly from the set of elements not

yet chosen, until the set of elements seen so far first becomes a winning coalition.

This is the same process considered by Shapley and Shubik [37] in defining their

power index. We first consider the random variable equal to the number of queries

required.

Definition 1.32. Let V1, . . . , Vn be elements sampled without replacement from

X, wheren = |X|. Equivalently,π := (V1, . . . , Vn) is a uniformly random per-

mutation ofX, representing the order in which elements are to be chosen. Let

Qπ = min{k : {V1, . . . , Vk} contains a winning coalition}.

Remark 1.33. If the game is empty we will not find a winning coalition. In this

case we defineQπ to have the valuen + 1. If the game is monotone, in Defini-

tion 1.32the word “contains” can be replaced by “is”.

Definition 1.34. ThequantityQ is defined to be the expectation ofQ with respect

to the uniform distribution on permutations ofX. In symbols,Q = Eπ[Qπ].

Non-sequential interpretation

The sequential nature of the process is only apparent, once we have averaged over

all possible orders. Thus we ought to be able to find a representationof Q that

does not mention order of players. In order to do this, we assume from now on

that the game is monotone.
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Definition 1.35. For each natural numberk, define the probability measuremk to

be the uniform measure on the set of all subsets ofX of sizek. Thus each subset

of X of sizek is equally likely to be chosen, with probability
(

n
k

)−1
.

For each natural numberk, we let Wk (respectively,Lk) denote the set of all

winning (respectively, losing) coalitions of sizek.

Lemma 1.36.For eachk with 0 ≤ k ≤ n,

Pr(Q ≤ k) = Pr(Wk)

where the latter probability is with respect tomk.

In other words, the probability that we require at mostk queries to find a winning

coalition equals the probability that a randomly chosenk-subset is a winning

coalition.

Remark 1.37.The cumulative distribution functionFQ ofQ can thus be computed

by simply counting the number of winning coalitions of each fixed size.

We can now derive a simple explicit formulafor Q.

Lemma 1.38.

Q = n + 1 −
n∑

k=0

|Wk|(
n
k

) .

ThequantityQ intuitively seems to be a measure of inertia orresistance(as dis-

cussed in [38]): its value is large if winning coalitions are scarce, and small if they

are plentiful. The rescaled quantity1−Q/(n+1) looks like an index of what has

been calledcomplaisance[38, 39] anddecisiveness[40].
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We can consider more general changes of variableF than the affine rescaling

above, and show that measureQ is analogues of the Shapley value under a non-

standard, but natural, definition of a simple game. For the Shapley-Shubik index,

the measures extend naturally to measures for TU-games. In particular, the indi-

vidual measures include all weighted semivalues. The details of these computa-

tions and some other results can be found in [2]. [2] is not included in this thesis

as it is a work in progress.

1.6 Comparison with existing literature

Here we discuss work of other authors, viewed through the framework of the

present chapter. The papers in question mostly do not use this terminology, and

we aim to unify past work.

1.6.1 Results concerningP and M

After the initial news that manipulability is essentially inevitable [7, 8] much work

has been done to minimize the likelihood of manipulation without restricting the

expressed preferences of voters, with a smaller literature dealing with IAC, and

very little with other distributions.

Early research on manipulability focuses on computingFM (1), the probability

that an individual can manipulate. The measureP = FM (n) has been studied in

many papers. [41, 42, 43] have considered coalitional manipulation. The idea of

studyingM is introduced in [44]. It is investigated in detail for scoring rules in

[20] (see also [21] and [45]). The measureFM (k) is used implicitly in [46], where
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it is shown that for IAC, and for all faithful scoring rules (those where all weights

in the weight vector defining the rule are different) and runoff rules based on

them, there is a constantC, depending onm and the rule, so thatFM(k) ≤ Ck/n.

Similar result for IC but with the upper boundCk/
√

n is obtained in [47]. Precise

asymptotics (whenm is fixed, asn → ∞) for FM(k) under IC are given for

scoring rules in [33]. Xia and Conitzer [48] prove thatM must be of order at

least
√

n for a wide class of rules under rather general assumptions on preference

distributions, with a different definition of manipulation.

In the case of IC, our results and also the results in [33] clarify the conventional

wisdom on the relative manipulability of scoring rules, and Borda’s in particu-

lar. For example, Saari [49] claims that (under IC whenm = 3) the Borda rule

is the scoring rule that is least susceptible to “micro manipulations” (only indi-

vidual voters or small coalitions) but is quite poor among the scoring rules for

macro manipulations. His definition of “micro manipulation” deals with the case

k = o(
√

n), where there are few manipulating coalitions for scoring rules as we

have seen. In [33] the authors have proved Saari’s assertion in more general-

ity. Also, it appears likely from our numerical results that under IC, Borda is

the most manipulable scoring rule whenk is of order
√

n or greater, by all our

measures. Peleg has also studied the probability that somek voters can manip-

ulate the election and has proved that every scoring rule under the IC conjecture

is asymptotically coalitionally non-manipulable by coalitions of sizek ≤ o(
√

n)

[50].
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1.6.2 Results concerningQ

The quantityQ has not appeared explicitly before in the literature to our knowl-

edge. Several authors [51, 52, 53] have used probabilistic arguments to give lower

bounds on the probability of individual manipulation via a random change in the

preference order, again under IC. These results yield (weak) lower bounds on

FQ(1) that decay polynomially inn and exponentially inm; they are more closely

related to the bribery analogue ofQ.

1.6.3 Complexity measures

Another way to measure hardness of manipulation is by computational complex-

ity, in particular NP-completeness, and this has led to active research in recent

years such as [54, 55, 56, 57, 58, 59, 48, 60]. The computational difficulty of

manipulation is studied firstly in [61]. Faliszewski et al. have given a survey in

computational aspect of strategic manipulation [62].

One feature of this stream of research is that it deals not with manipulation as nor-

mally defined, but with a weaker problem, namely that ofwinner determination,

or terminating preference elicitation(hardness results for this model automatically

imply hardness results for manipulation, but not vice versa) . A setS of sincere

voters with preferences is given, as is a setT of potential manipulators, who have

no preferences. The question is whether the result of the election with electorate

S can be changed by the addition of the voters fromT (who may vote in any

way they choose). Note that if it is possible forT to influence the result in some

way, then starting from this new result and then abstaining,T can also change the

result. For scoring rules, this means that the members ofT can also change the
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result by changing their votes. HenceT is a coalition “worthy of bribery”. Thus if

the subsetT is not given, then finding it is equivalent to theunit briberyproblem

[22].

When voters are weighted, several manipulation and bribery problems become

NP-hard even for fixedm [57]. A more serious issue with complexity results

is that several recent papers such as [31, 63] have given evidence that although

manipulation problems may be NP-hard in the worst case, these problems are

polynomial-time to solve in practice. It is true that these results do not directly

yield strong results onQ, being based on a different model of manipulation, but

they do suggest several conjectures (as well as proving results for the analogueQ̃

of Q for bribery).

In the standard unweighted case considered in the present article, almost all ma-

nipulation problems are solvable in polynomial time unlessm is unbounded. Thus

unweighted complexity results have little relevance to traditional applications of

social choice theory to politics and economics, although they may well be impor-

tant in newer areas such as search engine aggregation.

Menton and Singh have a survey of voting rules which are NP-hard for unweighted

coalitional manipulation for a constant number of manipulators and polynomial in

winner determinations [64].

When coalition is small, it cannot change the result but when it is large enough,

there is a phase transition based on the fixed number of candidates. The phase

transition of manipulation is discussed by several authors independently [65, 66,

47, 46], [31], [19]. Recently, Mossel et al. have studied the phase transition of the

coalitional manipulation problem for generalized scoring rules [67].
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[68] has considered a survey on the complexity of manipulation and control. The

vulnerability of elections to control by adding or deleting votes is studied in [69].

The complexity of winner determination and control problems is discussed in [70].

Computational complexity of control is also studied in [71]. Margin of victory is

discussed in [72]. Faliszewski et al have studied control and bribery for Copeland

in [9, 73].

1.7 Extensions and future work

There are several obvious directions in which to extend the work of the present

chapter. These all relate to asymptotic results, which are most easily obtained

under the IC hypothesis, and we restrict to that case here. For scoring rules, the

probability of manipulability approaches 1 for all rules other than antiplurality as

n → ∞, for fixedm.

A heuristic argument is as follows. The query process for largen is closely mod-

elled by a random walk inm! dimensions, starting at the origin. Each step corre-

sponds to a new query and the transition probabilities are equal for each direction.

The walk terminates when it hits the polytope defining manipulability, and this

should happen with high probability in order
√

n steps. This leads to the con-

jecture: there is a constantC depending onm and the rule such thatQ ≤ CM

asymptotically almost surely asn → ∞. Thus for scoring rules manipulating

coalitions of size close to the possible minimum should be fairly common, and

how common they are is measured byQ. It may also be true more generally for

other voting rules, although clearly there are rules for which it is false (for ex-

ample, consider a rule that fixes5 voters and lets them decide the result using
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plurality, no matter what the other voters do - in this caseM is at most2 but Q

should be of ordern). A weaker conjecture would be thatQ ≤ Cμ whereμ is the

size of the smallest minimal coalition found by the query process, as described in

Section1.4.1.

A related question is: when scoring rules are compared asymptotically on the

basis ofQ, are their relative merits the same as when compared on the basis of

M? We already know that the relative order induced byM andQ can differ for

various smalln andk.

Our numerical results here and the results in [33] allow us to make some further

conjectures.

• For fixedv > 0, Pr(Q ≤ v
√

n) tends to a limitg(v) asn → ∞;

• g is a strictly increasing function withg(0) = 0 and (for all scoring rules

except antiplurality)g(∞) = 1;

• Whenm ∈ {3, 4}, the minimum value ofg′(0) is attained by the Borda rule

(“Borda is the most resistant to micro-manipulation”, and otherwise, this

position is held by thedm/2e-approval rule).

We also conjecture that for IAC, the plurality rule dominates all other scoring rules

when measured byQ, for all n (at least form = 3).

Our numerical results were only for the casem = 3. In [33] it was shown that this

case is rather special for the asymptotic behaviour ofM , and that “steady-state”

behaviour sets in whenm ≥ 6. It would be interesting to investigate whether

the same remains true forQ, and it is also interesting to study the computational

complexity of measureQ.
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1.8 Appendix: details from our studies withm = 3

1.8.1 Details of the algorithm implementation

The computer code used to generate the numerical results in this thesis, is avail-

able on request.

Whenm = 4 andn = 100, the number of voting situations exceeds1024, and so

exhaustive enumeration of voting situations as above is practically impossible for

largen. In this thesis we present computational results only form = 3, so as not to

have to resort to stochastic simulation. Even whenm = 3, some care is required.

For example whenn = 100, the number of possible voting situations is nearly

108. Also for a fixed voting situation, the computation ofQ using enumeration of

all types of coalitions for eachk can take time of ordern6. Hence small speedups

can make the difference between practical and impractical computation. We now

discuss some of these.

First, as mentioned above, we need only perform computation for those voting

situations for whichs(a) ≥ s(b) ≥ s(c) . . . , because of our tie-breaking conven-

tion. This means that each such voting situation is weighted by the size of its orbit

under the symmetric group of permutations of the candidates. This size divides

m!. The probability of a given voting situation under IAC is
(

n+5
5

)−1
, while proba-

bility under IC of the voting situation(n1, . . . , n6) is n!
6nn1!n2!∙∙∙n6!

. We use this also

to weight the voting situations above appropriately.
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Scoring rules

Our algorithms described above work particularly well form = 3. We give details

for one special case, other cases being very similar (see Table1.4 and [20] for

more details). Suppose that the three candidatesa, b, c have sincere scoress(a) >

s(b) ≥ s(c). The variablesx1, x2 correspond respectively to the number of voters

of type bac andcba, while the variablesy1, y2 to bac andbca. We also have the

equality constraintx1 +x2 = y1 +y2. The sincere scores are expressed in terms of

linear combinations of6 variables that give the parts of the composition that is the

voting situation. The restrictions on the sincere scores above yield two inequalities

between these scores.

As described in Section1.4.2we can omit the linear system entirely, since by the

use of the lookup table of minimal manipulating coalitions we only test whether

a subset is a minimal manipulating coalition or not. We know that such coalitions

must consist only ofcba and bac voters, all of whom vote insincerely asbca,

or only of bca voters, all of whom switch tocba. Thus we need only make the

relevant switch in votes and compute the new election result.

The scores after manipulation are expressed as:

s(a′) = s(a) + (y1 − x3)w2 + (y2 − x4)w3 − x6w3

s(b′) = s(b) + (y1 − x3)w1 + (y2 − x4)w1 − x6w2

s(c′) = s(c) − (y1 − x3)w3 + (y2 − x4)w2 − x6w1

and two more inequalities result from these. If we eliminate one ofy1, y2 using

the equality constraint, we obtain an integer linear programming problem with4

variables and4 constraints.

54



Chapter 1. The Manipulability of Voting Rules

Table 1.4: Different types of manipulation: scoring rules,m = 3.
Sincereoutcome Manipulated Pos- Coalition

outcome sible? membertypes
s(a) > s(b) ≥ s(c) b wins Yes bac, cba

a, b tie Yes bac, cba
c wins Yes cab, bca
a, c tie Yes cab, bca
b, c tie No
3-way tie No

s(a) = s(b) ≥ s(c) a wins Yes abc, cab
b wins Yes bac, cba
c wins No

s(a) = s(b) = s(c) No

Copeland’s rule

The details above for scoring rules carry over almost completely to Copeland’s

rule (we have omitted details, but they are routine to verify). The types of ma-

nipulations shown in Table1.4are the same. The difference is that a coalition of

bac andcba voters has a dominant manipulating strategy, namely for them all to

switch tocba. The linear system interpretation also holds, provided we use the

Copeland score instead of the positional score.

One simplification we can make is that whenn is odd, under our random tie-

breaking assumption, Copeland’s rule is never manipulable. This is easily verified

as follows. In each pairwise contest, there cannot be a tie. So without loss of

generality the Copeland scores area : 2, b : 1, c : 0 or a : 1, b : 1, c : 1. In

the second case no voter has incentive and power to manipulate according to our

definition. In the first case any manipulating coalition must increase the score of

eitherb or c (or both) relative toa. Thebac voters have power by votingbca, but

this only helpsc, so is not preferred. Thecab voters have power by votingcba, but
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this only helpsb so is not preferred. Thecba andbca also cannot succeed as they

cannot change the winner.

1.8.2 Additional numerical results

We collect here some basic values ofQ to enable comparison of the graphs in

Section1.4.3. We also graphM whenn = 32.

Table 1.5:Pr(Q ≤ k) for n = 32 under IC
n k plurality (3,1,0) Borda (3,2,0) (10,9,0) antiplurality Copeland

32 1 0.0622452 0.0709853 0.0818004 0.0762216 0.0516847 0.084842 0.0189515
32 2 0.116312 0.124421 0.136257 0.132179 0.0943801 0.147295 0.0373838
32 3 0.164568 0.169929 0.181409 0.180549 0.132563 0.195052 0.0552198
32 4 0.208212 0.211586 0.223018 0.225521 0.16763 0.232952 0.0723872
32 5 0.247915 0.250851 0.262945 0.268256 0.20007 0.26403 0.0888203
32 6 0.284158 0.288264 0.301659 0.308993 0.230108 0.290186 0.104461
32 7 0.317369 0.324062 0.339131 0.347779 0.257907 0.312615 0.119258

Table 1.6:Pr(Q ≤ k) for n = 32 under IAC
n k plurality (3,1,0) Borda (3,2,0) (10,9,0) antiplurality Copeland

32 1 0.0163955 0.0263586 0.039171 0.0415325 0.0371333 0.0669051 0.0029835
32 2 0.0311806 0.0448672 0.0633464 0.0704502 0.0693989 0.112552 0.00599814
32 3 0.0448065 0.0610597 0.0838489 0.0960968 0.0998481 0.149296 0.00904392
32 4 0.0574015 0.0763073 0.102983 0.120294 0.129006 0.18138 0.0121186
32 5 0.0690667 0.0910389 0.121394 0.143487 0.156969 0.210501 0.0152196
32 6 0.079941 0.105418 0.139293 0.1658 0.183747 0.237398 0.0183441
32 7 0.0901798 0.119519 0.156744 0.187277 0.209326 0.262402 0.0214889
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Figure 1.4: Values ofPr(M ≤ k) whenn = 32, under IC and IAC.
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Chapter 2

The Probability of Safe

Manipulation

2.1 Introduction

For common social choice functions, the probability that a single individual can

succeed in changing the election result under commonly used preference models

converges to zero asn, the number of voters, tends to∞. Thus the question of

coalitional manipulation is more interesting.

Coalitions must be of fairly large size in order to manipulate effectively. For ex-

ample, under the IC hypothesis (uniform distribution on profiles) the manipulating

coalitions are typically of order
√

n, while they can be considerably larger under

other preference distributions [46, 47]. Thus the question of coalition formation

becomes important, because there are substantial coordination difficulties to be

overcome in order to manipulate successfully.
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In the previous chapter, we studied the query sequence model for forming a manip-

ulating coalition. In this chapter we study another model for coalition formation

which was proposed by Slinko and White [74]. In this model a “leader” publicizes

a strategic vote and voters sharing the leader’s preference order decide whether to

follow this strategy or vote sincerely. As a topic for further research, [74] lists the

study of the probability that such an attempt succeeds sometimes and the coali-

tion members never fare worse than with the sincere outcome. In this chapter we

study this topic for a well-known preference distribution, namely the Impartial

Anonymous Culture.

2.2 Definitions and basic properties

Let m ≥ 1 be an integer and letC be a set of sizem, the set ofalternatives(or

candidates). Let n ≥ 1 be an integer and letV be a set of sizen, the set ofagents

(or voters). Each agent is assumed to have a total order of the alternatives, the

agent’spreference order. An agenta strongly prefersalternativei to alternative

j if and only if i is strictly abovej in a’s preference order; if we also allow the

possibility i = j then we just use the termprefers. There areM := m! possible

such preference orders, which we calltypes. We denote the set of all types byT

and the set of all agents of typet by Vt. A multiset fromT with total weightn

is a voting situation, whereas a function takingV to T is a profile. Each voting

situation corresponds naturally to several profiles, corresponding to the different

permutations of the multiset.

Let F be a social choice function, a map that associates an element ofC to each

profile. If this map depends only on the voting situation, then the rule is called
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anonymous.

In the following definitions it is assumed that agents not mentioned continue to

vote sincerely.

Definition 2.1. A voting situation ismanipulableif there is some subsetX of vot-

ers such that, if all members ofX vote insincerely, the result is strongly preferred

by all members ofX to the sincere outcome. Such a setX is called amanipulating

coalition.

A voting situation issafefor voters of typet if there is some typet′ such that for

all x with 0 ≤ x ≤ nt, wheneverx agents of typet change their vote tot′, these

agents weakly prefer the resulting outcome to the sincere outcome.

A voting situation issafely manipulableby voters of typet if it is safe for them,

and there is some value ofx for which the agents concerned strongly prefer the

resulting outcome to the sincere outcome.

There are three main points in the definition of safe manipulation:

• the manipulating coalition consists only of voters of a single type;

• the manipulating strategy is the same for all coalition members;

• the size of this coalition is unknown and there must be no risk of obtaining

a worse outcome than the sincere one (through “undershooting” or “over-

shooting”).

Overshooting occurs when the following situation holds. If some numberx

change fromt to t′, the result is strongly preferred to the sincere one, but if some
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numbery > x change, the sincere result is strongly preferred to the latter out-

come.Undershooting is the same, but withy > x replaced byy < x. Examples

in [74] show that both phenomena can occur. In fact they can both occur in the

same voting situation as shown by the following example.

Example 2.2. Let m = 5 and consider the voting situation with3 voters having

each of the possible preference orders, except the order12345 which has4 vot-

ers. The scoring rule (see Section2.3 for definitions if necessary) with weights

(55, 39, 33, 21, 0) yields scores that induce an overall ordering12345 (meaning

candidate 1 wins, candidate 2 is second, etc). Consider voters of type53124 and

the strategy of voting35241. If 1 voter switches to this strategy, the new winner

is candidate2; if 2 voters switch, then the new winner is candidate3; if 3 voters

switch, the new winner is candidate4. This shows that undershooting and over-

shooting can be possible for the same type and choice of insincere strategy in the

same voting situation.

Remark 2.3. We can consider a game in which the setT of types of voters is

partitioned into two subsets,T ′, T ′′. The setT ′′ consists of all types of voters

whose only action is to vote sincerely, while voters corresponding to types inT ′

have all possible votes open to them (we do not allow abstention). In the case

whereT ′′ = ∅ and this is common knowledge, we have a fully strategic game. A

situation is manipulable if and only if it is not a strong Nash equilibrium of this

game.

WhenT ′ = Ti for some fixed typeTi, there is a different game that is easier to

analyse. A situation is safe for members ofT ′ if and only if there exists a pure

strategy that weakly dominates the sincere strategy, and safely manipulable if and

only if there exists a pure strategy that dominates the sincere strategy.
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Remark 2.4. Note that for each type of voter that ranks the sincere winner low-

est, every situation is safe (in fact a stronger statement is true: such voters have

nothing to lose by strategic voting, no matter whatT ′ andT ′′ are). On the other

hand, types that rank the sincere winner highest can never manipulate.

2.3 Algorithms and polytopes

We restrict to scoring rules. However the method described works more generally

(for some rules, much more care may be needed when considering ties).

Scoring rules

Definition 2.5. Let w = (w1, . . . , wm) be such that allwi ≥ 0, w1 ≥ w2 . . . wm

andw1 > wm. Thescoring rule defined byw gives the following score to each

candidatec:

|c| =
∑

t∈T

ntwr(c,t)

wherer(c, t) denotes the rank ofc according to typet. The candidates with largest

score are the winners. The scores give asocial orderingof candidates (the value

of the associated social welfare function).

Remark 2.6. If a tie occurs for largest score, then a separate tie-breaking proce-

dure is needed in order to obtain a social choice function. This can be a difficult

issue, but fortunately when considering asymptotic results under IAC as in this

thesis, we do not need to consider it further. This is because the set of tied situa-

tions has measure zero in the limit asn → ∞.
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We now impose an order on the candidates, and writeC = {c1, c2, . . . , cm}.

The types are then identified with permutations of{1, . . . ,m} and can be writ-

ten in the usual way. We describe the scores by thescoreboard, the tuples =

(|c1|, . . . , |cm|) of scores. The group of types acts on the scoreboardw via per-

muting candidates and we denote the action oft on w by wt. In terms of our

current notation, we have

s =
∑

t∈T

ntw
t−1

.

Example 2.7.Letm = 3 and consider the voting situation in which6 agents have

preference order312 and2 agents have order213. Under the plurality rule given

byw = (1, 0, 0), the scoreboard is(0, 2, 6) andc3 wins, the social ordering being

321. Under the Borda rule given by(2, 1, 0), the scoreboard is(8, 4, 12) and the

order of second and third place is reversed, the social ordering being312. Under

the antiplurality rule given byw = (1, 1, 0), the scoreboard is(8, 2, 6) and social

ordering is132. There is no weight vector for whichc2 can win, asc3 always has

a higher score.

Without loss of generality we assume from now on that the sincere social ordering

is 123 . . .m.

2.3.1 Whent and t′ are specified

Fix typest andt′ until further notice. We now describe the setS of safely manip-

ulable voting situations.S is the union
⋃

t∈T St, whereSt is the set of situations

that are safely manipulable by voters of typet. This can be further refined to

S =
⋃

t 6=t′ St,t′ whereSt,t′ is the set of situations that are safely manipulable by

voters of typet using strategyt′.
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To describeSt,t′ , we use the following basic observations.

Let x denote the number of members in a coalition of typet who vote insincerely

and suppose they votet′. Then the new and old scoreboards are related by

s′ − s = x
(
w(t′)−1

− wt−1
)

.

For brevity we refer to those candidates ranked above candidate1 by agents of

type t asgood, and those ranked below1 asbad. For example, whenm = 3

and the social ordering is123, then according to an agent of type213, c2 is good

andc3 is bad. The new outcome is preferred by typet agents if and only if no

bad candidate is the new winner. It is strongly preferred if and only if some good

candidate is the new winner.

Proposition 2.8. Whenm = 3, undershooting can never occur, and overshooting

occurs if and only if some bad candidate wins whenx = nt.

Proof. First note that as a function ofx, the differences in scores of each al-

ternative between the sincere and strategic voting situation are (linearly) either

increasing or decreasing. Thus if candidatei is above candidatej for somex but

below for some larger value ofx, it will remain below for all even larger values of

x. For types123 and132, no better result can be achieved by strategic voting; for

types231 and321, no worse result. The only other cases are types213 and312.

In each case there is only one good and one bad candidate: once one overtakes the

other and the sincere winner, it stays ahead and cannot be subsequently beaten by

another candidate of the oppositetype.

Proposition 2.9. The following algorithm solves the decision problem for safe
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manipulation for scoring rules, and runs in polynomial time provided the tie-

breaking procedure does.

Let |c|x denote the score of candidatec whenx agents have switched fromt to t′,

and letL be the set of points of intersection of the graphs of the functionsx 7→ |c|x

for 0 ≤ x ≤ nt. Sort the elements ofL. For each interval formed by successive

elements, compute the maximum scoreB of all bad candidates, and the maximum

scoreG of all good candidates. IfB > G for any interval (orB = G and the tie-

breaking procedure says that a valid manipulation in favour of a bad candidate

has occurred) then safe manipulation is not possible; otherwise it is possible.

Proof. The winner is constant on each interval, so we need only check one point

in each interval, plus endpoints to deal with ties. There are at mostm(m − 1)/2

intersections of the lines which are the graphs of the functionsx 7→ |c|x for 0 ≤

x ≤ nt. The condition on maximum good and bad scores can be checked for each

interval in time proportional tom.

Corollary 2.10. Whenm = 3, we need only calculate which candidate wins when

x = nt, and safe manipulation is possible if and only if the winner is good.

2.3.2 The general case

When at least one oft andt′ is not specified, there are obviously more possibilities,

and a brute force approach that simply tries each pair(t, t′) in turn will work.

However, we can clearly do better than this.

There are some values oft for which St is empty. This means that no matter

what the situation and the differences in the sincere scores, safe manipulation is
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impossible by typet. For example, everyt for which the sincere winner1 is

ranked first has no incentive to manipulate. Other types have incentive but as we

see in Example2.11, St may still be empty.

For thoset for which St is nonempty, we can still remove strategiest′ for which

St,t′ is empty. Similarly, we can express the union definingSt with as few terms as

possible. This is done by discarding dominated strategies (in any particular voting

situation, even more strategies may be dominated, but we consider here those that

are never worth including for any situation). For example, any type that ranks

a bad candidate ahead of a good one is dominated by the type that differs only

by transposing those two candidates. Thus all good candidates should be ranked

ahead of all bad ones. The sincere winner should not be ranked ahead of any good

candidate for the same reason. Furthermore, each strategy that does not allow

some good candidate to catch the sincere winner should be rejected, as should

each strategy that further advantages a bad candidate higher in the social ordering

over all good candidates.

Example 2.11(m = 3). Consider type312. The only possibly undominated strat-

egy that we need to consider, according to the above discussion, is321. However

321 cannot lead to successful manipulation, as it increases the score of2 and not

of 3. Thus type312 cannot manipulate at all, let alone safely. Types231, 213 and

321 have respectively the strategies321, 231, 231 available.

Example 2.12.Whenm = 4, the strategies that are worth considering in some

situation are as follows. For any type starting with1, only the sincere strategy. For

any type ending with1, any strategy that keeps1 at the bottom. For types starting

41, only the sincere strategy; for types starting31, any strategy that lowers1

while keeping3 at the top and not promoting2; for types starting21, any strategy
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that lowers1, keeping2 first. For types ranking1 third, transpose the two good

candidates.

When there are very few distinct entries inw, there are many fewer strategies

to consider. The extreme cases are plurality (w = (1, 0, . . . , 0)) and antiplural-

ity (1, 1, . . . , 1, 0)). For plurality (respectively antiplurality), safe manipulation is

possible by a typet voter if and only if it is possible by ranking some good candi-

date first (respectively some bad candidate last). The player is indifferent between

the different strategies satisfying this criterion (if the good candidate is fixed) and

the analysis does not distinguish between them, so we can assume that any such

voter uses a standard strategy that makes a chosen good candidate the favoured

one and orders the others by increasing value of index. Thus, for example, for

m = 3 under plurality we consider213 and312 as possible values fort′.

We have so far expressedSt in terms of a union ofSt,t′ which is as small as

possible. However the terms in the union may not be disjoint. For example, with

m ≥ 4 a voter of type rankingc1 last may use any of the(m − 1)! − 1 insincere

strategies that leavec1 at the bottom (whenm = 3 there is only one such strategy).

To compute the final probability of safe manipulation, we need to compute the

volume of the union of allSt. This union is in general not disjoint even form = 3,

as the following example shows.

Example 2.13.Letm = 3 and consider the voting situation with3 agents having

preference123, 2 having preference231 and2 having preference321. Under the

plurality rule, the last two types can each manipulate safely.

We use inclusion-exclusion to compute the volume of the union. The number of

terms in the inclusion-exclusion formula is2p − 1 wherep is the number of types
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involved.

2.4 Numerical results

We restrict tom = 3 and some selected scoring rules including the commonly

studied plurality, Borda (w = (2, 1, 0)), and antiplurality.

For a situation in which the sincere result is123, types123, 132 and312 cannot

manipulate safely. We need to deal with only the remaining types, each of which

has only one insincere strategy to consider. The linear systems in question are as

follows. We denotewi − wj by wij.

The fact that 123 is the sincere result is expressed as|c1| ≥ |c2| ≥ |c3|. This

translates to

0 ≤ n1w12 + n2w13 + n3w21 + n4w31 + n5w23 + n6w32

0 ≤ n1w23 + n2w32 + n3w13 + n4w12 + n5w31 + n6w21

ni ≥ 0 for all i

n = n1 + ∙ ∙ ∙ + n6.

For type 213, safe manipulation is possible if and only the following additional

conditions are satisfied.

|c2| ≥ |c1| − n3w23

|c2| ≥ |c3| + n3w23

68



Chapter 2. The Probability of Safe Manipulation

which simplifies to the following system.

0 ≥ n1w12 + n2w13 + n3w31 + n4w31 + n5w23 + n6w32

0 ≤ n1w23 + n2w32 + n3w12 + n4w12 + n5w31 + n6w21

Every voting situation can be represented in this way up to a permutation of alter-

natives.

Thus the asymptotic probability under IAC that type213 can safely manipulate is

given by the ratio of the volume of the “strategic” polytope to that of the “sincere”

polytope. A completely analogous method works for other types. The volumes

can be computed using standard software as described in [34, 35].

The results for several voting rules are shown in Table2.1. The column labelled

“P(manip)” gives the asymptotics probability of a voting situation begin manipu-

lable (possibly by a coalition of more than one type) and was computed using the

methods in [20] (note that the results for plurality, antiplurality and Borda have

been computed exactly elsewhere [34]). Note that the ordering of rules accord-

ing to their susceptibility to manipulation and the corresponding order for safe

manipulation differ. Also the entries in the last column, giving conditional prob-

abilities, are decreasing. This last fact is not surprising in hindsight and probably

not dependent on the culture IAC. For example, plurality allows only one type of

member in a minimal manipulating coalition, and such members have nothing to

lose, so manipulation is possible if and only if it is safely possible. At the other

extreme, only one type of voter can manipulate under antiplurality, but whether

this is safe or not depends strongly on the voting situation.

The Borda rule is often criticized for its susceptibility to manipulation. While it is
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Table 2.1: Asymptotic probability under IAC of a situation being (safely) manip-
ulable.

scoringrule P(manip) P(safely) P (safely| manip)
plurality 0.292 0.292 1.00
(3,1,0) 0.422 0.322 0.76
Borda 0.502 0.347 0.69
(3,2,0) 0.535 0.330 0.62
(10,9,0) 0.533 0.264 0.49

antiplurality 0.525 0.222 0.42

still the most manipulable here by both measures, it is clear that many manipulable

situations under Borda require unsafe manipulations. The plurality rule seems

the least manipulable when complicated coalitions are used, but its advantage

disappears when safety is considered. These results, which of course depend on

the particular distribution IAC, nevertheless indicate that when communication is

restricted, traditional ratings of voting rules may need to be revised.

Table2.2 shows the probability that a given rule is safely manipulable by all of

the individual types listed. We see for example that type213 has the most ma-

nipulating power under the(3, 2, 0) rule, whereas231 and321 are strongest under

plurality. Note that, for example, there is an appreciable probability that both types

213 and321 can manipulate safely. If each proceeds, ignoring the other, the result

may no longer be safe. On the other hand, if both231 and321 try simultaneously

to manipulate safely, the cancellation effect means that they are less likely to be

disappointed.

70



Chapter 2. The Probability of Safe Manipulation

Table 2.2: Asymptotic probability under IAC of safe manipulation by various
types

scoringrule 213 231 321 213,231 213,321 231,321 213, 231,321
plurality 0.0000000 0.156250 0.246528 0.000000 0.000000 0.111111 0.000000
(3,1,0) 0.178369 0.086670 0.216913 0.000080 0.104229 0.053084 0.000067
Borda 0.225000 0.047950 0.196759 0.000033 0.093542 0.027400 0.000024
(3,2,0) 0.239297 0.020019 0.152812 0.000007 0.070438 0.010926 0.000005
(10,9,0) 0.234375 0.001687 0.051107 0.000000 0.022681 0.000866 0.000000

antiplurality 0.2222222 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2.5 Further discussion

The uniform distribution on profiles (the Impartial Culture hypothesis) has been

used in many analyses in voting theory, because of its analytical tractability. How-

ever, for the asymptotic study of safe manipulation it seems less useful. This is

because under IC for scoring rules, much weight is placed on situations that are

nearly tied: a typical situation has almost equal numbers of each type, and the dif-

ferences between the scores are of order
√

n. Thus asn → ∞ the probability that,

for example, a voter of type321 can safely manipulate will approach1 rapidly,

while the probability that a type213 can do so will approach0 rapidly.

The inclusion-exclusion procedure used is probably exponential inm, since the

numberp of types used seems to grow linearly inm (we have not formally proved

this). Thus a better algorithm is needed for largem.

The argument of Section2.3.2 involves a monotonicity property that should be

satisfied by more than just the scoring rules, but we have not pursued such a

generalization here, leaving it for possible future work.

The literature on safe manipulation is very small still - our literature search turned

71



Chapter 2. The Probability of Safe Manipulation

up only one preprint of unknown publication status, dealing with complexity is-

sues (though a similar idea was apparently used in [75] without explicit mention).

However the basic model is attractive and some obvious generalizations should

be investigated. For example, we can use a probability distribution to model the

number of followers, instead of considering the worst case outcome, and thereby

consider whether strategic voting even with lack of coordination can lead to better

outcomes in the sense of expected utility.
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Voting Games
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Chapter 3

An Introduction to Voting Games

3.1 Introduction

In the previous chapters we discussed naive manipulation in which just a coali-

tion of manipulators vote strategically and the others vote sincerely. However,

a natural question that arises here is that what will happen if all voters behave

strategically and all of them know that too. In this case the strategy of each agent

depends on the strategy of other agents. Game theory is a useful tool in interactive

decision theory. The cooperation and conflict of self-interested and autonomous

agents can be modelled mathematically in the game-theoretic study of voting sys-

tems. Self-interested agents do not necessarily want to hurt each other, or even

that they care only about themselves. Instead, it means that each agent has his

own description of which states of the world he likes [76]. This can include good

or bad things happening to the other agents and he tries to bring about these states

of the world. This analysis can be considered for two different purposes: as a

mechanism designer for analyzing the behaviour of people in the system and us-
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ing those information for designing the system, or as a player for finding the best

response against the action of the other players. From one perspective, games are

either simultaneous or sequential. We are going to discusssimultaneousvoting

games in which voters act simultaneously. If voters do not play simultaneously,

we have asequentialgame. Another way of categorizing games is to divide them

to cooperative and non-cooperative. Innon-cooperativegame theory the basic

modelling unit is the individual (including his beliefs, preferences, and possible

actions). Incooperativevoting games, players are able to form binding commit-

ments. We are going to study the non-cooperative models of voting games.

3.2 Voting game

Definition 3.1. A normal or strategic form gameconsists of:

• N , a finite set ofplayers,

• For each playeri ∈ N , a finite set ofpure strategiesSi,

• For each playeri ∈ N , a payoff function ui that specifies a utility value

for each profile of pure strategies(s1, . . . , si, . . . , sn). The range of this

function is normally the set of real numbers, where the number represents

a cardinal utility. However, in our model, the payoff function is the ordinal

utilities given by the voters’ preferences of that profile.

In voting games, the set of players are voters, states, special interest groups, or

politicians. Each player’s action is his vote or decision, and his strategy deter-

mines his action. One kind of strategy is to select a single action and play it. Such
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a strategy is called pure strategy. Players could also follow another (less obvious)

type of strategy which is called mixed strategy: randomizing over the set of pos-

sible strategies according to some probability distribution. Note that pure strategy

is a special case of mixed strategy.

A dominated strategy is a strategy for which there is some other strategy that is

always better whatever the other players are doing . A strategy isstrictly domi-

nant when no matter how the other players may play, it is the best strategy. For

example, in elections with 3 candidates and approval voting, the dominant strat-

egy is to vote for the most desirable element and voting for the least desirable

candidate is dominated [77]. A game isdominance solvableif iterated removal

of dominated strategies ends in a unique equilibrium which is a reasonable guess

for what will happen if we have rational players and complete information [78].

Definition 3.2 (Nash equilibrium). A Nash equilibrium is a list (profile) of strate-

gies of all players, from which no player is willing to deviate unilaterally. In other

words, the profile(s∗1, ..., s
∗
N ) is a Nash equilibrium if

∀i ∈ Nand ∀si :

ui(s
∗
1, ..., s

∗
i , ..., s

∗
N) ≥ ui(s

∗
1, ..., si, ..., s

∗
N )

Theorem 1 (Nash Theorem). At least one (mixed strategy) Nash equilibrium ex-

ists in a non-cooperative game with a finite set of actions.

Nash equilibrium is a stable situation when there is no voter who has motivation

to deviate unilaterally. If a strictly dominant strategy exists for one player , that

player will play that strategy in each of the game’s Nash equilibria.
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A voting rule isstrategy-proof if for all possible profiles of preferences, “every

one votes sincerely” is a Nash equilibrium. In other words, if all voters behave

sincerely, no voter benefits by being insincere. However, as we discussed in Chap-

ter 1, the Gibbard-Satterthwaite theorem [7, 8] shows that for each nondictatorial

social choice function allowing unrestricted preferences of voters overm alterna-

tives (m ≥ 3) and such that each alternative can win in some profile, there always

exists a profile which is unstable. In other words, in the voting game with ordinal

utilities given by the voter preferences of that profile, the strategy where all vot-

ers express their sincere preferences may not be a Nash equilibrium. Therefore,

there exists at least one strategy profile where one voter has incentive to deviate

unilaterally by expressing an insincere preference.

Strategic voting is clearly a question of game theory. However, it has still been

little studied from this viewpoint, perhaps since its main questions go beyond the

Nash equilibrium concept (which applies only to individual manipulation). So

far most of the studies in the area of computational voting game are dealing with

the cooperative models of coalitional voting games or the complexity analysis of

relevant solution concepts (e.g. Nash equilibrium [79]) such as, exploring the

voting power of coalitions in weighted voting games (e.g. weighted threshold

games) [80, 81, 82], the compact representation of such games or studying the

complexity of the core and Banzhaf and Shapley values [83].

A start has been made in filling the gaps between that case and the classical game

theory situation of full common knowledge [75]. The game-theoretic study of

strategic manipulation is discussed in [84, 85, 86, 87, 88, 89]. The aims and ob-

jectives of these papers are to define a proper model for a voting game and to find

the equilibrium outcome. Beside Nash equilibrium, other solution concepts are
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studied in this context such as correlated equilibrium [90] and regret minimiza-

tion [91].

Correlated equilibrium as a signalling device tells each player about the strategy

that he should choose (it gives a joint probability distribution over the set of out-

comes). However, they are not informed about the outcome of the experiment,

and they may choose to follow or not according to their utility function. Regret

minimization is a relatively new solution concept. In this solution concept, each

voter does not know about the other players’ actions and he just tries to choose a

strategy that ensures that he has done reasonably well compared to the best possi-

ble action without paying attention to the other players’ actions. In fact the regret

of each action represents the utility difference of the best possible outcome and

that action. The quality of solution concepts has been measured in some papers

by the price of stability and the price of anarchy e.g. in [92, 93]. The price of

stability and anarchy are the best and the worst possible ratio between the cost of

an outcome at Nash equilibrium and that of an optimal one.

Predicting the result of the game is challenging, as voting games can have many

equilibria. Therefore, we are interested in studying how we can omit some of the

possible equilibria and reach a unique equilibrium. We concentrate on best reply

voting games and study the convergence of dynamic process in Chapter4. We

study the factors that influence this convergence.

One important factor which has significant effect on the strategies of players in

voting games is the available amount of information. Complete information mod-

els where the preferences are common knowledge among the voters are more

common in this area. However, recently there are more papers studying partial

information models such as [94, 95, 96, 97]. Poisson model for population uncer-
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tainty is discussed in [98].

We study the effect of information by introducing a new model of voting games

in Chapter5. In this model voters achieve partial information via a series of

pre-election polls, and also each voter has some uncertainty about the announced

result of polls. We study the different distributions of uncertainty for plurality

voting games.
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Chapter 4

Best Reply Dynamics for Scoring

Rules

4.1 Introduction

The strategic misrepresentation of a voter’s true preferences, as a way of obtaining

an outcome preferable to that which would be expected by voting sincerely, dates

back thousands of years. The amount of information available to voters and their

ability to communicate influence voter’s behaviour greatly. Here we consider the

case in which all players behave strategically, but coalitions are not formed. The

natural setting then is that of a normal form game with ordinal preferences, or

more generally a game form.

The voting games of this type have enormously many Nash equilibria and are not

necessarily dominance solvable [87]. Eliminating dominated strategies is not also

helpful because typically far too many equilibria remain for the Nash equilibrium
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to be a credible prediction. Other refinements such as strong and coalition-proof

Nash equilibria may not always exist [99]. One natural direction of enquiry is to

consider best-reply dynamics, where players take turns in moving myopically in

response to previous moves by other players (these moves are pure strategies of

the associated game). For many games this process leads to convergence (neces-

sarily at a pure Nash equilibrium). It can also be interpreted in the voting context

as a method of reaching consensus, and is in fact used in this way in some ap-

plications such as Doodle (for scheduling). According to Fudenberg and Levine

[100], in some cases, most learning models do not converge to any equilibrium

and just coincide with the notion of rationalizability, but if best-reply dynamics

converges, it necessarily finds a NE. Therefore, the question that arises here is in

which cases these best-reply dynamics converge for voting games. To our knowl-

edge, in the voting context the first paper to discuss best-reply dynamics is [101],

which concentrated on the plurality rule. The authors considered the effect of ini-

tial state, tie-breaking rule, the players’ strategy and weights on convergence. The

results show that this definition of best reply, even for such a rule which restricts

voter expression severely, is too general to guarantee convergence. Sequential

and simultaneous voting games for plurality with abstention have been discussed

in [88]. For the sequential case, they provide a complete analysis of the setting

with two candidates, and show that for three or more candidates the equilibria

of sequential voting may behave in a counterintuitive manner. The strategy of

each voter depends strongly on the information he has about the other players’

preference orders.
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4.1.1 Our contribution

A natural extension of [101] is to consider general positional scoring rules, which

we do. We find that non-convergence occurs much more often in this case, as

might be expected because of the much larger strategy spaces involved. For

the antiplurality (veto) rule, which restricts strategy spaces as much as plurality,

we give a complete analysis and show convergence under rather general condi-

tions. We also give unified simple proofs for plurality and antiplurality and give

more details on the boundary between convergence and nonconvergence when tie-

breaking methods are considered. We study cycles in the scoring rules between

plurality and antiplurality. For a general scoring rule, the order in which players

respond in the best reply dynamics influences the convergence considerably. Our

results show that some tightening of the definition of best reply is indeed required

for convergence for plurality and antiplurality. However, a natural extension of

this tighter definition to general scoring rules fails to guarantee convergence.

4.2 Problem description

4.2.1 Voting setup

There is a setC of alternatives (candidates) and a setV of players (voters), with

m := |C|, n := |V |. Each voter has a strict total order on candidates, the pref-

erence order of that voter, denotedσv. This defines the setT of types of voters,

and |T | = m!. The function mappingv 7→ σv is the profile. A voting rule (or

social choice correspondence) that maps each profile to a nonempty subset ofC

(the winner set).
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For a voting ruleR, we study the gameG(V,C,R) where each voterv submits a

permutationπv of the candidates as an action. The set of pure strategies available

to voteri, Si, consists of them! possible types. In other words, a voter can report

a preference order, which may not be his sincere one. We denote the sincere

profile and the profile at timet respectively byp0 andpt. We order the types

lexicographically, based on a fixed order of candidates.

A voting situation is a multi-set fromT with total weightn. For anonymous

rules (those invariant under permutations of the voters), the voting situation gives

a more compact description than the full profile, with no loss of information.

For example, if we have 3 candidatesa, b and c, and 4 voters with preference

ordersabc, bca, cab andbca, the voting situation coinciding with that profile is

(1, 0, 0, 2, 1, 0).

A voting rule (or social choice correspondence) is a mapping taking each profile

to a nonempty subset ofC (the winners). A voting rule isresolute (or a social

choice function) if the set of winners always has size1.

Thescoring rule determined by a weight vectorw with

1 = w1 ≥ w2 ≥ ∙ ∙ ∙ ≥ wm−1 ≥ wm = 0

assigns the score

s(c) :=
∑

t∈T

|{v ∈ V |πv = t}|wπv
−1(c) (4.1)

to each candidate. For example, several well-known scoring rules are:

• Plurality: w = (1, 0, . . . , 0, 0) in which each voter in effect votes for one
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candidate.

• Antiplurality (veto):w = (1, 1, . . . , 1, 0) in which each voter in effect votes

against one candidate.

• Borda:w = (m − 1,m − 2, . . . , 1, 0).

The winners are the candidates with the highest score. These rules allow ties in

scores and to make them resolute, we choose to use a deterministic tie-breaking

rule. However, for neutrality (symmetry between candidates) we need to consider

randomized tie-breaking.

4.2.2 Improvement step

Let p be a profile. Suppose that voterv changes his vote. We say this is an

improvement stepif p′ (the new profile) ispreferred to p by voterv. The funda-

mental results on strategic manipulation initiated by Gibbard [7] and Satterthwaite

[8] imply that, provided the voting rule is resolute, under very mild additional con-

ditions (such as not being dictatorial), and provided thatm ≥ 3 andn ≥ 2, some

agent in some sincere voting situation has an improvement step.

In order to describe improvement steps in more detail, we need to discuss out-

comes and payoffs (at least ordinal, if not cardinal). The obvious way to do this in

the case of resolute voting rules is to declare that the outcome in which the winner

is a is preferred by voterv to the outcome in which the winner isb if and only if a

is higher thanb in v’s sincere preference order.

Example 4.1. (alphabetical tie-breaking) Consider the Borda rule, given by the

weight vector(2, 1, 0), and the voting situation with 2abc, 2 bac, 2 bca, 3 cab
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voters. The current winner isb. If one of thecab voters changes asacb, thena

wins. The new outcome is preferred by that voter because he prefersa to b.

Stochastic dominance

In the case of multiple winners (or randomized tie-breaking), more assumptions

are needed. We unify the two cases by using the idea of stochastic dominance as

in [20]. This corresponds to a rather risk-averse model of manipulation, as we now

describe. It can be described in probabilistic language as follows. For each winner

set constructed by the voting rule, we have a uniform distribution on the candidates

in that set, and other candidates have probability zero associated with them. Voter

v prefers an outcome with winner setW to an outcome with winner setW ′ if

and only if the following condition holds. List the candidates in decreasing order

of preference for voterv, and consider the probability distributions as described

above. We say thatW is preferred toW ′ if and only if for eachk = 1 ∙ ∙ ∙m the

probability of electing one of the firstk candidates given outcomeW should be

no less than givenW ′. (If W ′ 6= W the condition implies that this probability will

be strictly greater for somek).

Our definition of improvement step implies that, for example, a vote by a voter

with preferencebac which changes the winner set froma to {b, c} is not an im-

provement. Of course, if we assigned cardinal utilities to outcomes, there might

be some voters for which such a move increases expected utility. In fact, it is eas-

ily shown that our definition above says that the probability distribution associated

with W first order stochastically dominates the distribution associated withW ′. It

is well known [102] that this is equivalent to requiring thatW is preferred toW ′
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in terms of expected utility, for all cardinal utilities consistent with the preference

order of the voter.

Example 4.2. (random tie-breaking) Suppose that in profilep the outcome is that

a andc tie as the winner, in profilep′ the outcome is thatb is the absolute winner,

and inp′′ the outcome is thata andb tie as the winner. The probability distribution

of winning on(a, b, c) is (1/2, 0, 1/2) for p, (0, 1, 0) for p′ and (1/2, 1/2, 0) for

p′′. Thus, takingk = 1 in the definition, we see thatp′ is not preferred top by a

voter with sincere opinionabc. Also, takingk = 2 shows thatp is not preferred to

p′ either. However,p′′ is preferred to bothp andp′.

Other possibilities For example, [101] has considered the case where voters

have fixed but arbitrary cardinal utilities. This allows for situations in which more

moves are considered to be improvement steps than in our stochastic dominance

model above.

4.3 Best reply dynamics

We make the following assumptions in our analysis of best reply dynamics for

scoring rules.

• No fixed order for players’ turns: in fact, whichever voter has an improve-

ment step can move next.

• Myopic moves: Voters act as though each move is their only chance for

improving the result, regardless of considering any chance of changing in

the future.
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• Costly voting: if there would be no change in the winner set, no move is

made.

• Restricted best reply (RBR): we may have several improvement steps which

give the same outcome, in which case we choose the one that maximizes the

winning score margin of the new winner.

• Stochastic dominance-based improvement step for non-resolute rules.

All the assumptions except the last one are consistent with those in [101]. The

fourth applies only for scoring rules, but the others make sense for all voting

rules.

Example 4.3. Consider the antiplurality rule with 2 votersV = {1, 2} and 4

candidatesC = {a, b, c, d}, alphabetically tie-breaking. The sincere profile is

p0 = (acbd, bacd). Vetoing candidatec is represented by−c in the strategy profile

of voters. The number above the arrow represents the player who moves, and the

candidate in braces shows the winner. If voters start from sincere state, we have:

(−d,−d){a}
2

−→ (−d,−a){b}
1

−→ (−b,−a){c}
2

−→ (−b,−c){a}

As you can see in the example, best reply is not unique, for example, the last move

by the second player can instead be−d. However,−c (vetoing the current winner)

is what we call RBR for antiplurality .

4.4 Antiplurality

In this section we show convergence of best reply dynamics under rather general

conditions, for a very special scoring rule, namely the antiplurality rule.

89



Chapter 4. Best Reply Dynamics for Scoring Rules

For the gameG(V,C,A), sincew = (1, 1, . . . , 1, 0), we can without loss of gen-

erality assume thatSi = {−c|c ∈ C} (because subtracting the vector(1, 1, . . . , 1)

from the weight vector makes no difference to the outcome of the game or to the

differences in scores). In fact, there are(m−1)! possible orders that give the same

score. Thus, each improvement step can be written−a → −b whereb 6= a.

Remark 4.4. We defineot as the winner set after the move of playeri at timet.

For alphabetical tie-breaking this set is a singleton.

Analogous to the case for plurality [101], there are 3 types of improvement steps.

Type 1: a /∈ ot andb ∈ ot−1

Type 2: a ∈ ot andb /∈ ot−1

Type 3: a ∈ ot andb ∈ ot−1

Remark 4.5. It can easily be shown that ifa /∈ ot andb /∈ ot−1, this move does

not change the winner set. Therefore, it is not an improvement step.

Example 4.6.Suppose we have 2 voters and 3 candidates using antiplurality rule

with alphabetical tie-breaking. The sincere profile isp0 = (abc, bac). If voters

start from the sincere state, the current winner isa. If the second player changes

his vote from−c to−a, the winner switches tob. According to our definition, it is

a type 1 move.

Some notations We define some notations that we use through the rest of the

paper.
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• We writec�c′ if c has a lower index (higher priority) thanc′ in tie-breaking.

• We writes(c′) 4 s(c) if either s(c′) < s(c) or s(c) = s(c′) andc � c′(note

that it is not a logical notation, and we just use it for simplicity).

• We use the symbola �i b when voteri prefers candidatea to b.

• We denote the score of candidatea after the improvement step at timet by

st(a).

• We use the notationx
i

−→ y when voteri changes his vote fromx to y.

Theorem 4.7.Suppose that−a → −c is a type 2 improvement step at timet, and

let b ∈ ot−1. Then−a → −b is a type 3 improvement step leading to the same set

ot. Furthermore, in this case the margin of victory of the new winner will be more

than in the original case.

Proof.

After the improvement step−a → −c at timet, we have

st(a) = st−1(a) + 1

st(c) = st−1(c) − 1.

Sincea ∈ ot (according to the definition of type 2) andb ∈ ot−1 andst−1(b) =

st(b), in alphabetical tie-breaking, we have

st(a) < st(b) < st(c) and st(a) < st(y) y ∈ C \ {a, b} (4.2)
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If we had the improvement step−a → −b at timet instead, (we denote the score

in this case withs′t)

s′t(a) = st(a) and s′t(b) = st(b) − 1;

s′t(c) = st(c) + 1 and s′t(y) = st(y).

By substituting in Equation (4.2), we haves′t(a) < s′t(y) for eachy ∈ C. There-

fore, a is the new winner. For randomized tie-breaking, we can substitute< by

≥. Also, the margin of victory with a type 3 improvement step would bes′t(a) −

s′t(b) = st(a)−st(b)+1 which is more than the original marginst(a)−st(b).

We now make a key definition of the allowed moves. Allowing type 2 moves can

lead to a cycle. An example for plurality has been presented in [101] (Proposition

4). We present a similar example for antiplurality with 7 candidates and 10 voters

below. Suppose the sincere preference is

P0 = (3251764, 4653721, 1245673, 4275631, 2541637, 6351472, 3765214, 7345261, 4561723, 6725134)

and voters start by voting sincerely. We present the first several iterations (symbol

♦ shows the stage from which the cycle becomes apparent):

(−4,−1,−3,−1,−7,−2,−4,−1,−3,−4){5}
2

−→ (−4,−5,−3,−1,−7,−2,−4,−1,−3,−4){6}
3

−→

(−4,−5,−6,−1,−7,−2,−4,−1,−3,−4){2}
7

−→ (−4,−5,−6,−1,−7,−2,−2,−1,−3,−4){3}
2

−→

(−4,−1,−6,−1,−7,−2,−2,−1,−3,−4){5}
8

−→ (−4,−1,−6,−1,−7,−2,−2,−5,−3,−4){3}
3

−→

(−4,−1,−3,−1,−7,−2,−2,−5,−3,−4){6}
8

−→ (−4,−1,−3,−1,−7,−2,−2,−1,−3,−4){5}
10
−→

(−4,−1,−3,−1,−7,−2,−2,−1,−3,−5){6}
2

−→ (−4,−6,−3,−1,−7,−2,−2,−1,−3,−5){4}
7

−→

(−4,−6,−3,−1,−7,−2,−4,−1,−3,−5){2}
2

−→ (−4,−1,−3,−1,−7,−2,−4,−1,−3,−5){6}
3

−→

(−4,−1,−6,−1,−7,−2,−4,−1,−3,−5){2}
7

−→ (−4,−1,−6,−1,−7,−2,−2,−1,−3,−5){3} . . .

(−4,−1,−3,−1,−7,−2,−4,−1,−3,−4){5} ♦ .
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Definition 4.8. (RBR) A restricted best replyis any improvement step of type 1

or type 3, in which the player making the step vetoes his least preferred member

of ot−1, denotedβt−1.

From now on, we consider only improvement steps using restricted best replies.

It is also clear from the definition that no two consecutive improvement steps can

be made by the same voter.

Example 4.9. When voters start from the sincere initial state, and the sincere

scoreboard is a tie among all candidates, all improvement steps would be type

3 ones. Therefore, no improvement step can occur, as voters have already voted

against their least desirable candidate, and any change will allow that candidate

to win.

Definition 4.10. (set of potential winners) The set of potential winners at time

t, Wt consists of those candidates who have a chance of winning at the next step

(timet + 1), depending on the different RBR of voters.

Remark 4.11. If candidatec can win by type 1, it can also win by type 3 because

when a candidate can win without increasing its score, it is obviously still a winner

when its score is increased by 1. Therefore,

Wt = {c | if some player moves− c → −b at timet + 1, then c ∈ ot+1} (4.3)

4.4.1 Alphabetical tie-breaking

Lemma 4.12. If t < t′ thenWt ⊆ W ′
t .
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Proof. Consider an improvement step−a → −b at timet. According to Defini-

tion 4.8, ot−1 = b. Let c ∈ Wt−1 andy ∈ C \ {a, b}. Then, by considering that

the scores ofc andy, ∀y ∈ C; y 6= a, b don’t change at timet, we have:

st(c) + 1 = st−1(c) + 1 < st−1(b) − 1 = st(b) (4.4)

st(c) + 1 = st−1(c) + 1 < st−1(y) = st(y) (4.5)

If the improvement step is of type 3, then best reply−c → −b at timet gives the

same scores as the best reply−a → −b followed by−c → −a at time t + 1.

Therefore,c ∈ Wt.

If the improvement step is of type 1, letb′ = ot. Note thatb′ /∈ {a, b}.

According to equation (4.5), for y = b′,

st(c) + 1 < st(b
′) > st(b

′) − 1 (4.6)

According to the definition of winner,

st(b
′) < st(y); ∀y ∈ C (4.7)

In particular fory = a,

st(c) + 1 < st(b
′) < st(a) (4.8)
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Thus, by transitivity of< (which follows from the underlying transitive lexico-

graphic order onC), c ∈ Wt.

A counter-example for an arbitrary deterministic tie-breaking rule Con-

sider a situation with candidatesa, b, c andx under the antiplurality rule. Sup-

pose the set of candidates with the highest score after roundt − 1 is {b, x} and

st−1(a) = st−1(c) = st−1(b) − 1. Suppose further that the order of candidates in

tie-breaking is as follows:b�x andc�x andx�a anda�c. Based on Definition

4.8, c ∈ Wt−1. Consider a best reply−a → −b at timet. If it is a type 3 move

thenot = a andc is still in Wt, as−c → −a makesc winner. Suppose the move

is of type 1 andot = x. According to the tie-breaking rule,b � x andc � x � a

but,a � c. Thus,c is not inWt because−c → −x does not makec win.

Lemma 4.13.There is at most one type 1 move and each voter has at mostm− 1

moves of type 3.

Proof. Suppose a step−a −→ −b is a type 1 move at timet. We claim this im-

provement step is the first improvement step. If it is not the first improvement step,

according to Definition4.8, a has been a winner before. Therefore,a has been in

the winner set in the past. In other words,∃t′ : t′ < t a = ot′ and therefore,a ∈

Wt′ . According to Lemma4.12, a ∈ Wt−1 which means after improvement step

−a → −b at timet, a is a winner. However, this has contradiction with the as-

sumption of improvement step of type 1. Therefore, there is at most one type 1

move. According to the definition of improvement step, at every step−a
i

−→ −b

of type 3, it must hold thata �i b . Therefore, each voter has at mostm − 1 steps

of type3.
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Theorem 4.14.Restricted Best Reply Dynamics (RBRD) forG(V,C,A) with al-

phabetical tie-breaking will converge to a NE from any state in at most1 + (m −

1)n steps.

Proof. If we haven voters, Lemma4.13 implies that each voter makes at most

m − 1 moves of type 3 and there is at most one type 1 move.

4.4.2 Randomized tie-breaking

Lemma 4.15. If t < t′ thenWt ⊆ W ′
t .

Proof. The proof is very similar to the alphabetical case (Lemma4.12). Except,

we do not need to deal with tie-breaking. Therefore, we can substitute the notation

< by ≥. For the second part of the proof where we consider a type 1 improve-

ment step, we can always find such ab′. To see this, note that according to the

definition of improvement step, the winner set should be changed and the score of

b decreases. Therefore,b cannot be the unique winner at timet as it results inb

being the unique winner at timet−1, contradicting the definition of improvement

step.

Lemma 4.16.There is at most one type 1 move and each voter has at mostm− 1

moves of type 3.

Proof. The first part can be proved in a similar way to Lemma4.13. For the second

part, similarly, we show thata �i b if voter i makes the type 3 improvement step

−a → −b. According to the definition of type 3 improvement step,b ∈ ot−1 and

a ∈ ot. We definep(a) as the probability of winning ofa. Two cases can occur.
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Case 1:a ∈ ot−1

p(a) increases to 1 andp(b) decreases to 0. The probability of winning of candi-

dates in the setot−1 decreases and for other candidates stay 0.

In this case,a becomes the unique winner at timet. Therefore, according to the

definition of stochastic dominance improvement step,a should be preferred to all

other elements ofot−1.

Case 2:a /∈ ot−1

i) b = ot−1 In this case,p(a) andp(c) increases to 1
k+2

andp(b) decreases from 1

to 1
k+2

(assuming the number of candidates(c) whose score is 1 point behindb is

k) and for other candidates it remains the same.

ii) b ∈ ot−1 therefore,p(a) increases andp(b) decreases andp(c) stays the same.

Thereforea �i b, otherwise, it is not an improvementstep.

The analogue of Theorem4.14now follows.

Theorem 4.17. RBRD forG(V,C,A) with randomized tie-breaking, will con-

verge to a NE from any state in at most(m − 1)n + 1 steps.

Remark 4.18. The only part in the proof for randomized tie-breaking, where we

used stochastic dominance assumption of improvement step is for the bound on

type 3 moves. An example of cycle is already shown in [101] for a fixed utility

case.

4.4.3 Who can win?

In this part, we describeWt in more detail.
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Wt = W 0
t ∪ W 1

t ∪ W 2
t (4.9)

whereW 0 is the level of winner set which includes the candidates who are tied

with the winner,W 1 contains the candidates who can win by a type 1 move and

W 2 those who can win by a type 3 move and not a type 1 move. LetMt = st(ot)

anddt(c) = Mt − st(c). In factdt(c) represents the score difference of candidate

c and the winner after movet. Therefore,W 0 = {c | d(c) = 0}. The description

of the other two subsets is straightforward.

Proposition 4.19.For alphabetical tie-breaking,

W 1
t = {c | d(c) = 1, c � c′; ∀c′ ∈ W 0

t } (4.10)

W 2
t = {c | d(c) = 2 and unique winner andc � c′; ∀c′ ∈ W 1

t ∪ W 0
t }. (4.11)

For the case of randomized tie-breaking,

Wt = {c | dt(c) ≤ 1 or dt(c) = 2 and there is a unique winner}. (4.12)

To obtain a better idea about who is really winning in practice at equilibrium, we

ran several simulation experiments with different initial profiles (sincere, random).

The numerical results suggest that in the cases with sincere initial state, the winner

set of equilibrium is contained inW0. However, this is not true when we start from

an arbitrary state.
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4.5 Plurality

The results in this section are completely analogous to those in subection 4.4, and

are quite similar to [101] but with easier proofs. We remove some details of proofs

as they are similar to previous section.

Definition 4.20. (RBR) For plurality rule, a restricted best replyis any improve-

ment step of type 1 or type 3, in which

Type 1: a /∈ ot−1 andb ∈ ot

Type 3: a ∈ ot−1 andb ∈ ot

The restricted best replies defined above are similar to the best replies in [101],

where the phrase “better reply” is used for non-restricted best replies.

Remark 4.21. (set of potential winners) For plurality also, we just consider the

candidates who can win by type 3 moves because of the same argument as an-

tiplurality. Therefore, the set of potential winners is

Wt = {c | if some player movesa → c anda ∈ ot thenc ∈ ot+1} (4.13)

4.5.1 Alphabetical tie-breaking

Lemma 4.22. If t < t′ thenW ′
t ⊆ Wt.

Proof. Consider an improvement stepa → b at timet. By the definition of best

reply in Definition4.20, b = ot. Let c ∈ Wt. Considering the new scores ofb, c
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andy, ∀y ∈ C; y 6= a, b we have:

st−1(c) + 1 = st(c) + 1 < st(b) − 1 = st−1(b) (4.14)

st−1(c) + 1 = st(c) + 1 < st(y) = st−1(y) (4.15)

If the improvement stepa → b is of type 3, then best replya → b followed by

b → c at timet + 1 give the same scores as best replya → c at timet. Therefore,

c ∈ Wt−1.

If the improvement step is of type 1, leta′ = ot−1; Note thata′ /∈ {a, b}.

According to Equation (4.15), for y = a′,

st−1(c) + 1 < st−1(a
′) (4.16)

According to the definition of winner,

st−1(a
′) < st−1(y); ∀y ∈ C (4.17)

In particular fory = a,

st−1(c) + 1 < st−1(a
′) < st−1(a) (4.18)

Thus, by transitivity of< (which follows from the underlying transitive lexico-

graphic order onC), c ∈ Wt−1.

Lemma 4.23. The number of type 1 moves is at mostm and each voter has at

mostm − 1 moves of type 3.
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Proof. Suppose a stepa → b is a type 1 move at timet. We claima /∈ Wt. If

a ∈ Wt thenb → a makesa winner but we knowb → a makesa′ win (the two

consecutive moves have cancelled out each other). Therefore,a /∈ Wt. According

to Lemma4.22, a /∈ Wt′ ; ∀t′ > t. Therefore, the number of type 1 moves is

limited and equals the maximal set of potential winners which at most can havem

elements. Also, as at every stepa
i

−→ b of type 3, it must hold thatb �i a because

of the definition of improvement step, each voter has at mostm−1 moves of type

3.

Theorem 4.24. RBRD forG(V,C, P ) with alphabetical tie-breaking will con-

verge to a NE from any state in at mostm + (m − 1)n steps.

Proof. If we haven voters, Lemma4.23 implies that convergence must occur

with at mostm + (m − 1)n steps.

4.5.2 Randomized tie-breaking

Lemma 4.25. If t < t′ thenW ′
t ⊆ Wt.

Proof. The proof is very similar to the alphabetical case (Lemma4.22). Except,

we do not need to deal with tie-breaking. Therefore, we can substitute the notation

< by≥. For the second part of the proof where we consider a type 1 improvement

step, we can always find such aa′ by similar reasoning as in proof of Lemma4.15.

Lemma 4.26. The number of type 1 moves is at mostm and each voter has at

mostm − 1 moves of type 3.
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Proof. The proof is very similar to Lemma4.16by considering the differences of

Lemma4.23and4.13.

Theorem 4.27.RBRD forG(V,C, P ) with randomized tie-breaking will converge

to a NE from any state in at mostm + (m − 1)n steps.

Proof. If we haven voters, Lemma4.26 implies that convergence must occur

with at mostm + (m − 1)n steps.

Remark 4.28. The only part in the proof for randomized tie-breaking where we

used the assumption of stochastic dominance is for the bound on type 3 moves.

Note that an example is given in [101] showing that if we use fixed utility function,

and improvement is defined by expected utility increase, a cycle can occur. The

stronger definition of improvement step using stochastic dominance allows us a

general convergence result.

4.6 Counterexamples and interesting phenomena

Best reply dynamics for scoring rules other than plurality and antiplurality does

not necessarily converge. Each of the examples in this section starts from the

sincere initial state.

Example 4.29.(Cycle for Borda) Consider the sincere profilep0 = (abc, bca) and

voting rule Borda and alphabetical tie-breaking.

(abc, bca){b}
1

−→ (acb, bca){a}
2

−→ (acb, cba){c}
1

−→ (abc, cba){a}
2

−→ (abc, bca){b} ♦.
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Remark 4.30. The allowed moves in the previous example are reasonable for

restricted best replies with 3 candidates. Putting the desirable candidate (the new

winner) at the top and the current winner at the bottom maximizes the winning

score margin of the new winner.

Cycle for scoring rules “close to Plurality”:

• Suppose we have 3 candidatesa, b andc andp0 = (abc, bca). The scoring

rule isw = (1, α, 0); 0<α ≤ 1
2

and we use alphabetical tie-breaking.

(abc, bca){b}
1

−→ (acb, bca){a}
2

−→ (acb, cba){c}
1

−→ (abc, cba){a}
2

−→

(abc, bca){b} ♦

• generalm andn = 2

(ab ∙ ∙ ∙ c, bc ∙ ∙ ∙ a){b}
1

−→ (a ∙ ∙ ∙ cb, bc ∙ ∙ ∙ a){a}
2

−→ (a ∙ ∙ ∙ cb, cb ∙ ∙ ∙ a){c}
1

−→

(ab ∙ ∙ ∙ c, cb ∙ ∙ ∙ a){a}
2

−→ (ab ∙ ∙ ∙ c, bc ∙ ∙ ∙ a){b} ♦

Cycle for scoring rules “close to antiplurality”: m = 3, n = 4 Suppose we

have 3 candidatesa, b andc. The sincere profile isp0 = (abc, bac, cab, bca). Our

scoring rule is(1, α, 0); 1
2
≤ α < 1 with alphabetical tie-breaking.

(abc, bac, cab, bca){b}
1

−→ (acb, bac, cab, bca){a}
4

−→ (acb, bac, cab, cba){c}
1

−→

(abc, bac, cab, cba){a}
4

−→ (abc, bac, cab, bca){b} ♦

Example 4.31.(Order of players matters) To understand the impact of the order

of players on the dynamics, we consider Borda rule with 4 voters and 3 candi-

dates. Supposep0 = (acb, acb, cab, cba) and players start from the sincere state.

103



Chapter 4. Best Reply Dynamics for Scoring Rules

The winner isc. The first player is not satisfied with the result and changes his

vote toabc to makea the sole winner. For simplicity, we show the moves of players

as below:

(acb, acb, cab, cba){c}
1

−→ (abc, acb, cab, cba){a}
3

−→ (abc, acb, cba, cba){c}
2

−→

(abc, abc, cba, cba){a}
4

−→ (abc, abc, cba, bca){b}
1

−→ (acb, abc, cba, bca){1}
4

−→

(acb, abc, cba, cba){c}
1

−→ (abc, abc, cba, bca){b} ♦

Notep4 = p7 and we have a cycle.

Now let’s consider another order for the players. We start with another profile

coinciding withV = (0, 2, 0, 0, 1, 1).

(acb, acb, cba, cab){c}
1

−→ (abc, acb, cba, cab){a}
4

−→ (abc, acb, cba, cba){c}
2

−→

(abc, abc, cba, cba){a}
3

−→ (abc, abc, bca, cba){b}
4

−→ (abc, abc, bca, cab){a}

(equilibrium)

Thus, in contrast with previous order, we reach an equilibrium with this order of

players. 8 of 12 profiles coinciding with this voting situation do not converge.

Example 4.32(an example of cycle for 2-approval voting). Consider 4 candidates

C = {a, b, c, d} and 2 voters withp0 = {acdb, dbca} under 2-approval voting rule

with weight vectorw = (1, 1, 0, 0). Players start from the sincere state and we

use alphabetical tie-breaking. Therefore, the sincere winner isc. As voters need

to approve two candidates we show the dynamic process as below:

(ac, db){a}
2

−→ (ac, dc){c}
1

−→ (ab, dc){a}
2

−→ (ab, db){b}
1

−→ (ac, db){a} ♦

4.7 Conclusion and future directions

A summary of results:
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• The upper bound of convergence for plurality in our paper ism+(m−1)n.

However, it ism2n2 in paper [101]. Our upper bound for antiplurality is

mn.

• The possibility of winning of a candidate depends on the type of improve-

ment step and also the candidate’s priority in tie-breaking.

• The number of type 2 moves is not bounded, so we need to use RBR for

convergence.

• We need to use stochastic dominance RBR for randomized tie-breaking for

plurality and antiplurality. Without this assumption we can have cycles, as

shown in [101] and [103].

• Convergence fails for some deterministic tie-breaking rules.

• The order of players influences convergence, the equilibrium result and also

the speed of convergence.

• We have examples of cycling for 2-approval.

During the writing of this paper, we noticed that Lev and Rosenschein have also

considered similar questions and have obtained quite similar results [103]. How-

ever, our paper is completely independent from their work and has a different

approach. We now give a brief discussion of the similarities and differences be-

tween these papers.

Both papers give convergence results for antiplurality under alphabetical tie-breaking:

our Theorem4.14corresponds to [103, Theorem 13]. Both show nonconvergence

for k-approval (Example4.32vs Theorem 19) and Borda (Example4.29vs The-

orem 11). The counterexample for Borda in [103] works for any tie-breaking
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rule, and form ≥ 4, whereas ours works form ≥ 3 but uses a specific tie-

breaking rule. In addition, [103] gives a counterexample for the maximin rule

with a non-lexicographic deterministic tie-breaking rule, while we consider only

scoring rules.

[103] deals only with deterministic tie-breaking, while we discuss randomized

tie-breaking in some detail and show that stochastic dominance is the sufficient

condition for ensuring convergence. Furthermore, we consider plurality and show

how the proofs for antiplurality and plurality are essentially dual to each other.

Our convergence proofs are shorter and, in our view, simpler. The upper bound in

[103, Lemma 17] for antiplurality is(m− 2)n which can be contradicted by con-

sideringp0 = (bac, cab). If voters start from(−b,−c){a}
1

−→ (−a,−c){b}
2

−→

(−a,−b){c}
1

−→ (−c,−b){a } ♦ where form = 3, first voter has 2 moves.

Therefore, first voter hasm − 1 improvement steps.

As far as future directions go, an important issue in extending to other voting rules

is to properly define a notion of restricted best reply which is general enough to

encompass all “reasonable” moves by rational agents seeking to maximize their

payoff at each step, yet doesn’t allow cycles. Already Example4.29shows that

this will be difficult for Borda. Our proof skeleton for plurality and antiplurality

could be adopted provided this difficulty is overcome. However for this approach

to work easily, we would need the composition of two improvement steps to yield

the same situation as a single improvement step (as in the discussion of type 3

moves in the proof of Lemma4.12). One possible way of overcoming this problem

would be to impose a domain restriction (do not allow all possible preference

profiles to occur). Conceivably this might even allow type 2 moves as defined

above to be reinstated as allowable improvement steps, while still maintaining
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convergence.
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Chapter 5

Coordination via Polling in Plurality

Voting Games under Inertia

5.1 Introduction

Voting as a preference aggregation method is widely used in human society and

artificially designed systems of software agents. A large amount of recent research

has considered the situation where a single individual or a small coalition attempts

to manipulate an election result in its favour, assuming the remaining agents are

naive (that is, always vote sincerely). Such an assumption on agent behaviour can

be justified if the goal is to prove computational hardness results. However, if we

wish to understand how voting rules function under fully strategic behaviour, we

need to study a game-theoretic model of strategic manipulation.

The plurality rule is the most widely used voting rule, despite substantial criticism

from social choice theorists. One point in its favour is its simplicity and space-
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efficiency: an agent needs only report a single alternative instead of submitting a

full preference order, a list of utilities, or a binary approval vector, as is the case

with most other rules. However, even such a simple rule can become complicated

when strategic voting behaviour is considered. In this paper, we study plurality

voting under the assumption that all agents act strategically, as a starting point for

a study of further classes of rules.

Voting games notoriously have many equilibria, and agents often cannot coordi-

nate on a particular equilibrium outcome. Hence, voting games are hard to under-

stand. The lack of publicly known information can exacerbate the lack of coordi-

nation of agents. A commonly used device that addresses the coordination issue,

especially for plurality elections, is to use publicly announced pre-election polls.

Such polls, which amount to an approximate simulation of an election with the

same agents and alternatives, increase the commonly known information among

agents and may influence their strategic behaviour. However, the beliefs of agents

regarding the accuracy of these results can be different. This is a key point in the

present paper, and we introduce the concept of inertia to describe these differences

in beliefs.

Several authors from the political science and economics disciplines have dis-

cussed the influence of pre-election polls in plurality elections, both empirically

and theoretically. The key topic of interest is what is called “Duverger’s law”,

a general political science principle stating that plurality voting tends to lead

to two-party competition [104]. More recently some papers have appeared that

study equilibria in plurality voting games from a more algorithmic viewpoint (e.g.

[101, 88]). Most of the models that have been used, with a few exceptions (e.g.

[85, 101]), concern static equilibria, classifying them as “duvergerian” or “non-
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duvergerian”, and do not attempt to discuss the dynamic process of converging to

equilibria via the use of polls. There are several important differences between

our work and existing literature. One of the differences is related to the different

amount of information and strategic behaviour of agents. The other extra feature

considered in the present paper is agent-dependent beliefs about the reliability of

this information.

5.1.1 Our contribution

We present a model for plurality elections that allows for heterogeneous agents.

We introduce the concept of an agent’sinertia , which is that agent’s perception

of the accuracy of the poll result. This perception is the result of each agent’s be-

lief about such sources of error as coverage bias, miscounting, roundoff error, and

noise in the announcement of results. This concept is rather general and seems

realistic enough to be used for both human society and for designed systems of

autonomous agents. This article focuses on the plurality rule, places some restric-

tions on agent behaviour, and considers some particular distributions of inertia.

We present some numerical and analytic results on convergence to equilibria, both

duvergerian and non-duvergerian. For example, a duvergerian equilibrium often

occurs when all agents have the same value of inertia.

5.2 Game model

We have a set of agents whose set of allowable actions is to vote for a single alter-

native (not necessarily their most desirable alternative). Abstention is not allowed.
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Each agent has a total order on the set of alternatives (indifference is not allowed)

but as the voting rule is plurality, they vote for one alternative. Agents participate

in a sequence of pre-election polls before the real election. In our model, these

polls include all agents and alternatives in real election, not just a random sample.

The information that these polls reveal does not have any effect on the agents’

sincere preference order. In fact, we are interested in the strategic voting effect of

polls rather than the so-called bandwagon or underdog effects considered in some

papers [105]. In those papers, agents do not have a fixed preference order and their

preference for an alternative is influenced by the popularity of that alternative.

We now discuss the assumptions in our model regarding the information and

strategic behaviour of agents.

The information available to agents

The amount of information available to agents is a very important factor in their

choice of strategy. The effect of poll information on the election result has been

discussed in [106]. Complete information in plurality voting has been assumed in

[107] and there is incomplete information in [108].

In the context of a repeated game, such as this sequence of polls under the plu-

rality rule, in order to have complete information each agent would have to know

how many agents of eachtype (sincere preference order) there are (this is usually

called thevoting situation). Even if this is unknown, we might expect to know the

number of agents expressing each preference order in the previous poll. However,

opinion polls for plurality will typically report only the number of agents ranking

each alternative first, which we call thescoreboard. This lack of information on
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further preferences of other agents is crucial in the analysis below.

We use the concept ofinertia to describe the reaction of agents toward the an-

nounced poll result. Agent coverage bias, miscounting or error and noise in an-

nouncing the result cause different values of uncertainty. This uncertainty brings

about an inertia in agents. Each agent has an inertia value from the interval[0, 1].

An agent with inertia value of zero believes that the poll result is accurate. How-

ever, the poll result is meaningless to an agent with inertia value of one. In fact

this agent does not consider the poll result in his decision making process. Other

agents lie between these two extremes. Each agent’s inertia value does not change

during the sequence of polls. This seems reasonable because the set of partici-

pants in each poll does not change (it is always the entire set of agents), and the

same system is used for counting and announcing the results in polls.

As far as we know this concept is new. The probability of miscounting has been

discussed in [107], but is the same for all agents, whereas we have different values

of inertia for different agents. The Poisson model of population uncertainty, in

which there is uncertainty about the numbers of each type of agent, has been

considered in [109]. In this paper agents have beliefs about these numbers that

have been modelled as independent Poisson random variables. However, in our

model, each agent just knows his own inertia and sincere preference order, and

the scoreboard after each poll. This assumption makes sense for a system with

no communication or coordination. This incomplete information influences the

equilibrium result. Roughly speaking, it allows more alternatives to remain viable

from the viewpoint of each agent.
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The strategic behaviour of agents

The voting game described so far is still very general and allows for a wide range

of outcomes. Voting games with more than two alternatives have many Nash equi-

libria and are not necessarily dominance solvable [87]. Eliminating dominated

strategies is not sufficient to determine the result. Other refinements of equilibria

such as strong and coalition-proof Nash equilibria do not always exist [99]. Some

authors try to restrict the strategies of players by additional assumptions such as

by assuming no voting for an alternative from another party [110].

In this paper, we assume agents have lexicographic preferences. Each agent in-

finitely prefers alternativex to alternativey, so he does not ignore any chance of

winning of a more preferred alternativex [111]. Lexicographic preferences are

not consistent with the idea of a cardinal utility function and probabilities are not

relevant. Rather, they give a strong bias toward sincere voting which can still be

overcome when an alternative is perceived to be a definite loser.

We also assume that each voter votes in each poll in the same way that he would if

that poll were the actual election. One scenario in which this would occur is when

voters do not know whether the current poll is the actual election. For example,

the system designer may introduce this requirement. Thus voters will not attempt

to vote strategically in the sense of misleading other voters, although they do vote

strategically in the sense of playing their perceived best response. Note that the

restricted information given by the scoreboard helps in this regard. For example,

if bca voters could infer how manycab voters there were, they could vote forc in

order that thecab voters do not abandonc, which might allowa to defeatb.

Therefore, agents vote for their most preferred alternative whom they perceive as
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having a non-zero chance of winning in further polls.

After each poll, each agent considers a setW of potential winners, consisting

of all alternatives whom that agent perceives as having non-zero chance to win

sometime in future. This set does not depend on the agents’ preference order and

only depends on the scoreboard and his inertia value. Agents update this set after

the announced result of each poll. Agents start by voting sincerely in the first poll.

Then, they update their votes according to their beliefs about potential winners

during the sequence of polls. All these assumptions on behaviour are common

knowledge as far as agents are concerned.

5.3 Game dynamics

5.3.1 Notation

There is a setC of alternatives (we use indexc for alternatives) which hasm

members, and a setV of players withn members (we use indexν for agents).

We consider a sequence ofK polls indexed byk, where the last poll is the elec-

tion. However, agents are not aware of the value ofK. Each agent has a sincere

strict preference order on alternatives. There arem! different preference orders

(or types) which are indexed byt. We have plurality as our scoring rule in which

each agent votes for only one alternative. Therefore, we can assume that the set of

possible strategies for playerν is Sν = C. We use the following notations through

the paper:

• sk(c): the normalized score of alternativec in poll k, namely the proportion

of agents who have voted forc at pollk,
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• ck(h): the alternative who hash-th highest score in pollk (e.g.ck(1) is the

winner of pollk, note that we do not consider ties in this paper as this case

occurs relatively rarely in large electorates),

• vt: the number of agents with type (or preference order)t,

• Wε,k: the set of potential winners from the view point of player with inertia

valueε according to the result of pollk,

• Vc,k: the set of agents who vote for alternativec in poll k.

Definition 5.1 (The concept of certain and doubtful). Suppose that according

to the poll resultsk(i) < sk(j). An agent with inertiaε is certain about this

statement if

(1 + ε)sk(i) < (1 − ε)sk(j). (5.1)

Otherwise, he isdoubtful.

Note that this formula implies that if inertia of an agent is 0, then he will always be

certain thatj is ahead ofi provided that such a result is reported. Also, Equation

(5.1) implies that an agent with inertia equal to 1 will always be doubtful of any

claimed scores.

The supporters of each alternative may be certain that the score of their favoured

alternative is less than the winner, yet they might still consider that alternative

as a potential winner and vote for him in the next poll. We study the concept of

potential winner in the next section.

Example 5.2. Consider a 3 alternative election, and suppose the result of pollk

is sk(ck(1)) = 45%, sk(ck(2)) = 30% and sk(ck(3)) = 25%. Any agent with
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inertia less than1
11

is certain that alternative3 has fewer votes than alternative2,

but agents with inertia more than that are doubtful about this statement. In other

words, those withε > 1
11

do not use this statement, while the others consider it in

their strategic computations.

5.3.2 Set of potential winners

In the initial state (k = 0), an agent with inertiaε does not have any information

about the number of supporters of each alternative. Therefore, he sees all alter-

natives as potential winners,Wε,0 = C, and he votes sincerely in the first poll.

For the next poll, the agent votes for the most desirable alternative who can win

in future (not necessarily the next poll) according to his interpretation of the poll

result and the voting strategies of other agents (the strategy of agents is common

knowledge).

Each agent’s set of potential winners should satisfy some basic properties. The

key necessary properties that we require are as follows. These are all common

knowledge.

• non-emptiness: Any agent with any inertia valueε believes that there exists

at least one candidate with a positive chance of winning. W should clearly

be nonempty for every voter, and contain the highest scoring candidate in

the current poll.

• upward closure: if an agent with inertiaε believes thatck(x) ∈ Wε,k, then

he believesck(x − 1) ∈ Wε,k. This seems reasonable: if an agent believes

that some alternatives have a chance to win in future in the best case, then
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that agent also believes that all alternatives with higher current poll support

also have a chance to win in future.

• overtaking: a possible winner must be able to overtake a higher scoring

candidate who is also a possible winner. Overtaking the next higher scoring

alternative is a necessary condition for winning, because the only chance an

alternative has for attracting more support is that he improves his ranking

position in the scoreboard. This is justified by the belief of agents about

the upper closure of set of potential winners. For overtaking, alternative

ck(x) needs extra support, and this support can only be obtained from the

supporters of alternatives with a lower score than alternativeck(x). This

is because agents who have already voted for higher scoring alternatives

thanck(x) will change their votes tock(x) if they perceive that their current

choice does not have any chance to win. Upper closure ofWε,k would then

lead to inconsistent beliefs.

If ck(x) cannot overtakeck(x − 1) in the next poll, in the most favourable

case, thenx 6∈ Wε,k. We describe this case precisely in Proposition5.5.

We first give an example to give the intuition behind our definitions.

Example 5.3.Consider scoreboard(a, b, c, d) = (40%, 29%, 21%, 10%) and agent

ν with ε = 0. Voterν reasons as follows: for each agent with inertiaε, either al-

ternatived ∈ Wε,k or not. If yes, then also alternativesa, b, c ∈ Wσ,k (upward

closure). The agents whose most desirable potential winner is alternatived have

already voted for him, and the other agents prefer to vote for alternativesa, b or c

in the next poll. Thus, the score ofd cannot be increased andd /∈ W0,k. However,

alternativec ∈ W0,k because it is possible that all supporters of alternatived
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switch toc, yielding scoreboard(40%, 29%, 31%, 0), andc can overtake alterna-

tive b, and in the next round allb-supporters may switch to alternativec, and he

can overtake alternativea. Because of upward closureb, a ∈ W0,k.

The basic properties above show that the currently highest-scoring alternative is

always considered a potential winner by each agent. The necessary conditions

do not defineW uniquely. Because of lexicographic preferences, voters do not

abandon candidates easily, and so it makes sense thatW should be as large as

possible. Of course if voters voted differently in the polls and the election (for

example if they know that the next round is the election and have no other con-

straints on strategic action),W might be smaller. For example, a candidate may

be able to win by successively attracting support from others, but the number of

rounds remaining may not be enough for this to occur. We are ruling out this case

by our assumptions on voter behaviour. For example, uncertainty about the time

of the actual election allied to lexicographic preferences implies thatW should be

as large as possible. Thus we argue that the necessary conditions are sufficient.

We now show how to define the set of potential winners recursively starting from

the top scoring alternative.

Definition 5.4. For 2 ≤ i ≤ m, define conditionCikε by

(1 + ε)
∑

h≥i

sk(ck(h)) > (1 − ε)sk(ck(i − 1)). (Cikε)

Proposition 5.5 (The conditions for being a potential winner). After the an-

nounced result of pollk, ck(x) ∈ Wε,k if and only if all conditionsCikε for

2 ≤ i ≤ x hold. Algorithm1 computes the setWε,k.
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Algorithm 1 Function for constructingWε,k

Require: k ≥ 1
Wε,k = {ck(1)}
for i = 2 to m do

if ConditionCikε holdsthen
Wε,k = Wε,k ∪ {ck(i)}

else
break

end if
end for

Proof. Upward closure shows that the best chance ofck(x) overtakingck(x − 1)

consists of attracting all supporters of agents currently voting for alternativesck(h)

with h > x, and retaining all current supporters. This yields conditionCxkε, and

so Algorithm1 is clearly correct. Since overtaking of even higher alternatives

must occur also, unrolling the loop in Algorithm1 yields theresult.

Remark 5.6. In the majority case from the viewpoint of an agent with inertia

valueε, in which

(1 − ε)sk(ck(1)) > (1 + ε)
∑

c 6=ck(1)

sk(c),

alternativeck(2) and consequently all other alternatives exceptck(1) do not have

any chance to win in the future. Thus,Wε,k = {ck(1)}.

Example 5.7. Suppose the result of pollk is sk(a) = 55%, sk(b) = 30% and

sk(c) = 15%. According to Proposition5.5,
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Wε,k =






{a} 0 ≤ ε ≤ 1
11

;

{a, b} 1
11

< ε ≤ 1
3
;

{a, b, c} 1
3

< ε ≤ 1.

Therefore, we have 3 different sets forWε,k based on the inertia value of agents.

In the first inertia value interval, agents perceive the result of pollk as a majority

case. Therefore, their set of potential winners is a singleton and they vote fora in

poll k + 1. In the second inertia value interval, they vote fora or b in poll k + 1

based on their preference order. For example, an agent with preference ordercab

votes fora and an agent with preference ordercba votes forb in poll k + 1. In the

third case where agents have high inertia, they do not care about the announced

result of the poll. In fact, they believe each candidate to be viable and they just

vote sincerely in pollk+1. An agent with inertia value of 1 always votes sincerely,

regardless of the poll result.

5.4 Equilibrium results for some special cases

5.4.1 Zero inertia

In the special case where inertia is identically zero for all agents, the set of poten-

tial winners is identical for all agents. We show that in this case the sequence of

polls converges to a duvergerian equilibrium, i.e., a two party competition. Note

that the inertia value is fixed in all polls and also we assume there is no majority

case.

Theorem 2(duvergerian equilibrium ). In a plurality voting game with common
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inertia valueε = 0, the polling sequence yields a duvergerian equilibrium in a

non-majority case after at mostm − 2 polls.

Proof. Let m be the number of alternatives andε = 0. As agents have the same

value of inertia, either all agents perceive the result as majority case or all of them

perceive it as a non-majority case. As we explained before, in the majority case,

agents vote for the highest scoring alternative (refer to Remark5.6). In a non-

majority case, we have(sk(ck(1)) ≤
∑

c 6=ck(1) sk(c). According to Proposition

5.5, ck(2) ∈ W0,k, therefore,| W0,k |≥ 2.

For all ν ∈ Vc,k for which c ∈ C \ W0,k, ν changes his vote to his most desirable

alternative inW0,k. Thus,sk+1(c) = 0, for eachc ∈ C \ W0,k. According to

Proposition5.5, ck(m) /∈ W0,k. Therefore, in each poll, at least the last scored

alternative is eliminated and after at mostm − 2 polls, we have a duvergerian

equilibrium.

Remark 5.8. There is a connection with the voting method instant-runoff (IRV).

Whenm = 3, if inertia is identically zero then our assumptions mean that the plu-

rality election is actually just IRV. For general inertia and generalm, we could

fix someβ > 0 and require that the election system automatically deletes the

alternative whose support becomes less thanβ for the next poll. If we assume

that 2 alternatives do not reach this boundaryβ simultaneously, we again simu-

late IRV. However, our procedure is more general, as several alternatives may be

eliminated at one step.
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5.4.2 Constant non-zero inertia

Suppose that all agents have the same value of inertiaθ, with 0 < θ ≤ 1. Again

note that the set of potential winners is identical for all agents at all times and the

inertia value is fixed in all polls. This case is similar to the setup of Messner and

Polborn [107] where the probability of miscounting is positive but small. Messner

and Polborn introduce the concept of robust equilibrium and show that for plural-

ity games with 3 alternatives, all such equilibria are duvergerian. However, in that

paper, the value ofθ is common knowledge between all agents, and this is not the

case in our model. The behavioural assumptions of agents also differ. Paper [107]

shows that duvergerian equilibrium happens in all robust equilibria of plurality

games with 3 alternatives.

We consider a 3-alternative election with a large number of agents, with a fixed

inertia valueθ which is the same for all agents. W.l.o.g. we may assume that

s1(c) < s1(b) < s1(a). We also assume there is no majority case (refer to Remark

5.6).

Proposition 5.9. Let

θ′ = max{
s1(a) − s1(b) − s1(c)

s1(a) + s1(b) + s1(c)
,
s1(b) − s1(c)

s1(b) + s1(c)
}. (5.2)

A c supporter with inertiaθ ≤ θ′ will change his vote toa or b in the second poll.

Proof. According to Proposition5.5,

c ∈ Wθ,1 ⇔






(1 + θ)(s1(b) + s1(c)) > (1 − θ)s1(a)

(1 + θ)s1(c) > (1 − θ)s1(b)

Therefore,c ∈ Wθ,1 ⇔ θ > θ′, andc ∈ C \ Wθ,1 ⇔ θ ≤ θ′.
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Theorem 3. Consider a plurality voting game withm = 3, and fixed inertia value

θ which is the same for all agents. Assuming a non-majority case, the polling

sequence yields a duvergerian equilibrium after 1 poll ifθ ≤ θ′.

Proof. Similar to previous case, as agents have the same value of inertia, ei-

ther all agents perceive the result as majority case or all of them perceive it as

a non-majority case. As we explained before, in the majority case, agents vote

for the highest scoring alternative (refer to Remark5.6). In a non-majority case,

according to Proposition5.9, as the inertia values of all agents are equal,c sup-

porters abandonc immediately, and a duvergerian equilibrium is reached after one

poll.

Remark 5.10. Note that same constant non-zero inertia cases do not yield du-

vergerian equilibrium, depending on the value ofθ. If θ > θ′, then every agent

continues voting sincerely and the poll results will not change in the sequence.

Example 5.11.Consider plurality rule with 3 alternatives where the the score-

board of the first poll is(40%, 35%, 25%). If the inertia value of all agents areθ

andθ ≤ 1
6
, we have a duvergerian equilibrium.

5.4.3 Uniform distribution of inertia

We consider a 3-alternative election with a large number of agents, with a uniform

inertia distribution on [0,1]. We describe the initial setup via a quadruple which is

based on the first poll result(s1(a), s1(b), s1(c)) and the true percentagev6 of type

cba agents (note this value is not known to any agent). W.l.o.g., we may assume

thats1(c) < s1(b) < s1(a) and we approximate the discrete uniform distribution

across agents by a continuous one for purposes of computation.
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Figure 5.1: Score of the last alternative (c) as a function ofk with uniform inertia
distribution for three different cases whereV = (s1(a), 35%, 100% − s1(a) −
35%, 5%)

All c supporters who believe thatc is a loser change their votes in favour of their

second alternative. The percentage of typet agents (cab and cba) who vote in

favour of alternativei (a and b respectively) in pollk + 1 is denoted byαt,i,k.

Note that the assumption of a common inertia distribution implies that for allk,

αcab,a,k = αcba,b,k ≡ αk andα0 = 0.

Proposition 5.12. For a uniform distribution of inertia for all agents during the

sequence of polls and initial resultV = (s1(a), s1(b), s1(c), v6), we have

αk =
1

1 +
2k
(

s1(c)−v6
s1(b)+v6

)k
(s1(b)+v6−2s1(c))

(s1(b)−s1(c))

(
−2k

(
s1(c)−v6
s1(b)+v6

)k
+
(
1− v6

s1(c)

)k
)

(5.3)

Proof. According to the order of alternatives in the first poll and Proposition5.5,

a c supporter concludes thatc is a loser and changes his vote if(1 + ε)sk(c) <

(1 − ε)sk(b).

Therefore,αk = p{ε < sk(b)−sk(c)
sk(b)+sk(c)

}. The score of alternativesa, b andc in poll k
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is given by:

sk(a) = s1(a) + αk−1v5 sk(b) = s1(b) + αk−1v6 (5.4)

sk(c) = s1(c) − αk−1v6 − αk−1v5 (5.5)

Therefore,

αk = p{ε <
s1(b) − s1(c) + αk−1(s1(c) + v6)

s1(b) + s1(b) − αk−1(s1(c) − v6)
} for all k ≥ 1. (5.6)

The stated solution formula for this recurrence is readily established byinduction.

Proposition 5.13. The score of the last alternative in the first poll (which we

denote byc) satisfies

lim
k→∞

sk(c) =






0 if s1(b) + v6 ≥ 2s1(c)
(

2s1(c)−v6−s1(b)
s1(c)−v6

)
s1(c) if s1(b) + v6 < 2s1(c)

(5.7)

Proof. The score of alternativec afterk + 1 polls is

sk+1(c) = (1 − αk)s1(c) (5.8)

According to Proposition5.12, if we convergek to infinity, we have

lim
k→∞

αk =






1 s1(b) + v6 ≥ 2s1(c);

s1(b)−s1(c)
s1(c)−v6

s1(b) + v6 < 2s1(c).
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The result follows immediately.

Remark 5.14. The convergence to zero is exponentially fast with the exponential

rate decreasing as we approach the boundary between the two cases, and at the

boundary it is subexponential. Figure5.1shows three special cases (the boundary

case and 2 different cases in its neighbourhood).

Theorem 4. In a plurality voting game with 3 alternatives and initial resultV =

(s1(a), s1(b), s1(c), v6) and uniform distribution of inertia, the polling sequence

yields a duvergerian equilibrium if and only ifs1(b) + v6 ≥ 2s1(c).

Proof. Follows immediately from Proposition5.13.

Fig 5.1 illustrates this inequality whenv6 = 5% ands1(b) = 35%. For s1(a) ≥

45%, we have a duvergerian equilibrium.

5.4.4 Other distributions of inertia

The above results are for very special inertia distributions; explicit analysis of this

type is not possible for general distributions. In this subsection, we investigate

some different distributions via numerical simulations. Intuitively, we expect that

distributions skewed to the left (with more agents of low inertia) will converge to

theε ≡ 0 case more quickly.

We consider the continuous triangular distributionT (p) whose density function’s

graph has vertices at(0, 0), (p, 2) and(1, 0).

Example 5.15(The effect of inertia distribution: Triangular vs. Uniform ).

Consider the initial resultV = (s1(a), s1(b), s1(c), v6) = (45%, 35%, 20%, 5%).
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According to Theorem4, we have a limiting duvergerian equilibrium for uniform

inertia distribution. Numerical results in Figure5.1 (the line fors1(a) = 45%)

also confirm this result. When we change the inertia distribution to be triangular

with apex 0.5, we have the result in Figure5.2. As we see in Figure 1, the conver-

gence is very slow but changing the inertia distribution toT (0.5) accelerates the

process.

Example 5.16(The effect of voting situation). In Figure 5.2, we have5% cba

agents. Figure5.3 shows the result of the same situation with10% cba agents

which leads to a faster convergence. Note that the voting situation is not known

to agents.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

10.0

20.0

30.0

40.0

50.0

k

sk(c)

sk(b)

sk(a)

Figure 5.2:V = (45%, 35%, 20%, 5%) andT (0.5) inertia distribution

Example 5.17(The effect of skewness of inertia distribution). ConsiderV =

(40%, 35%, 25%, 10%) with an inertia distribution ofT (0.5). This yields a non-

duvergerian equilibrium, and it appears that the score ofc converges to 22, as

shown in Figure5.4. However, the same voting situation with an inertia distribu-

tion T (0.3) results in a duvergerian equilibrium as shown in Figure5.5. In this
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Figure 5.3:V = (45%, 35%, 20%, 10%) andT (0.5) inertia distribution

case, more agents validate the poll result, and we have a duvergerian equilibrium

after 10 polls.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

24.0
26.0
28.0
30.0
32.0
34.0
36.0
38.0
40.0

k

sk(b)

sk(c)

sk(a)

Figure 5.4:V = (40%, 35%, 25%, 10%) andT (0.5) inertia distribution

5.5 Conclusion and future directions

In this paper we tried to study a repeated game with unknown number of rounds

and incomplete information. The strategy of each player depends on his belief
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Figure 5.5:V = (40%, 35%, 25%, 10%) andT (0.3) inertia distribution

about the belief of other players. The sequence of opinion polls helps agents to

coordinate on an equilibrium in an environment with some uncertainties about

the accuracy of these polls. The amount of information available to agents has

a critical role in influencing the strategic choices of agents. In this paper, we try

to simplify the model with some assumptions about the strategy of players as a

starting point for studying this game. Even in this simplified model, there are

too many special cases that can happen depending on the inertia distribution or

preference distribution of agents. We try to explain the model by some examples

that give insight into different scenarios.

As a future direction, it is interesting to study how the strategy of agents will

change if they have more information or in a more complicated model, each agent

has different amounts of information. For example, some agents may have extra

information than others regarding the inertia distribution of other agents or their

preference order or the number of rounds ahead. Therefore, they may have differ-

ent belief about the strategy of each agent.

Another interesting direction would be to to allow inertia to change from one poll
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to the next. For example, if random sampling is used instead of polling all voters,

the sample size might vary between polls. More generally we want to explore the

effect of inertia in other models with different behavioural assumptions for exam-

ple, when voters use some simple heuristic strategies. We expect to observe sub-

stantial differences in equilibrium outcomes when non-zero inertia is introduced

into the model.
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Chapter 6

Conclusions

In this chapter, we first present a brief summary of the research which was dis-

cussed throughout the thesis, and also we mention some relevant papers which

have been published recently (after writing of our papers) or have not been dis-

cussed during the relevant chapters. In the second section, we have a brief dis-

cussion of the other work in the general area which we did not study during this

thesis, and can be future directions of this research. The future directions of each

chapter are discussed separately at the end of that chapter.

6.1 Summary

In the first part of this thesis we discussed that although there are preference

profiles that do not admit any strategic manipulation, it has become clear to re-

searchers that rules that are never manipulable must be very hard to find. This

negative result has inspired several strands of research. One strand proceeds by

weakening the assumptions of single-valuedness, leading to many results, most of
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which have the same negative character. Another direction (“domain conditions”)

is to sacrifice universality, and for a given set of preference profiles, to attempt to

find strategy-proof social choice function on this set. The other strand is to quan-

titatively measure the manipulability of each rule, with the aim of discovering the

rules with minimum manipulability.

In this strand we studied the manipulability of scoring rules and Copeland’s method

by introducing a new measure in Section1.4.

Xia recently has generalized the asymptotic behaviour study of strategic manipu-

lation under a general distribution of preferences and the fixed number of candi-

dates. In this model, all types of strategic behaviour are unified as vote operations

[12].

In this strand the computational hardness of manipulation has also been stud-

ied with the worst-case and typical-case analysis, approximability, and heuristic

approaches for various definitions of manipulation such as control, bribery and

possible winner.

The probability of safe manipulation was studied in Chapter2. [112] has dis-

cussed the complexity of safe manipulation under scoring rules.

The complexity of optimal manipulation, i.e., finding a strategic vote that brings

about the manipulator’s goal yet deviates as little as possible from his sincere pref-

erence order is studied in [113]. They have obtained polynomial-time algorithms

for all scoring rules.

As we discussed earlier limiting the domains of voters’ preference orders has been

known as another way for decreasing the possibility of manipulation and control.

However recent results show that in some cases the single peaked preferences are
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more vulnerable to manipulation and control [114].

In the second part of the thesis we concentrated on non-cooperative study of strate-

gic manipulation voting games. The equilibrium result and its convergence was

discussed at this part. As we saw in Chapters4 and5, the behavioural assump-

tions of agents and available amount of information affect the outcomes of games

considerably. Best reply dynamics for scoring rules was studied in Chapter4.

In Chapter5, we concentrated on plurality voting rule and studied a new model

where voters have partial information via pre-election polls and also have some

value of uncertainty regarding the result of these polls.

Recently, Elkind and Erd̀elyi have studied manipulation under voting rule uncer-

tainty where manipulators have uncertainty regarding the voting rule, and should

choose their strategies independent of the voting rule [115].

In this thesis, we concentrated on simultaneous voting games. Sequential voting

game is one possible future direction for this research such as games with multiple

binary issues that are sequentially voted on by the voters [116] or Stackelberg

voting games [117].

6.2 Future directions

During this thesis, we just concentrated on the problem of strategic manipulation.

In this section, we intend to summarise some of the other topics in this field briefly.

By reviewing the papers in computational social choice area, we can find a large

number of papers considering

• The mechanism design of social choice functions with some desirable be-
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haviours,

• Communication and privacy complexity which analyzes the communication

requirements in voting systems for making a decision,

• The computational aspects of fair division such as cake-cutting and alloca-

tions of indivisible goods,

• The computational aspects of coalitional voting games,

• Social choice theory in combinatorial domains such as the reasoning of

combinatorial preferences, the compact representation of preferences for

multi-issue topics and preference aggregations.

Belief and judgement aggregation are other topics that have been considered in

some papers such as [118, 119].

Another topic in this area is matching problem where we should find a pair for

each element of two groups by considering some preferences regarding the el-

ements of each group. For example finding a match in a marriage decision or

finding a correct match in kidney donations.

Vote elicitation in multiagent systems is another topic which has not been dis-

cussed in this thesis. The information elicited from an agent depends on what

other agents have revealed about their preferences. Depending on the elicitation

costs across voters and number of candidates, complexity and strategy-proofness

of vote elicitation differ. Walsh has considered the complexity issues in preference

elicitation and manipulation in [120].
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[94] J. Mitlöhner, D. Eckert, and C. Klamler, “Simulating the effects of misper-

ception on the manipulability of voting rules,” inProceedings of the 1st In-

ternational Workshop on Computational Social Choice (COMSOC 2006),

pp. 345–355, 2006.

[95] E. Clough, “Strategic voting under conditions of uncertainty: A re-

evaluation of Duverger’s law,”British Journal of Political Science, vol. 37,

no. 02, pp. 313–332, 2007.

148



Bibliography

[96] P. Bodo, “The effects of noise and manipulation on the accuracy of collec-

tive decision rules,”Algorithmic Decision Theory, pp. 62–73, 2009.

[97] V. Conitzer, T. Walsh, and L. Xia, “Dominating manipulations in voting

with partial information,” inProceedings of 25th AAAI Conference on Ar-

tificial Intelligence, pp. 638–643, 2011.

[98] R. Myerson, “Comparison of scoring rules in Poisson voting games,”Jour-

nal of Economic Theory, vol. 103, no. 1, pp. 219–251, 2002.

[99] M. Messner and M. K. Polborn, “Strong and coalition-proof political equi-

libria under plurality and runoff rule,”International Journal of Game The-

ory, vol. 35, pp. 287–314, 2007.

[100] D. Fudenberg and D. K. Levine,The theory of learning in games. MIT

Press, May 1998.

[101] R. Meir, M. Polukarov, J. S. Rosenschein, and N. R. Jennings, “Conver-

gence to equilibria in plurality voting,”Proc. of 24th Conference on Artifi-

cial Intelligence (AAAI-10), July 2010.

[102] P. C. Fishburn,Decision and value theory. Wiley, Jan. 1964.

[103] O. Lev and J. Rosenschein, “Convergence of iterative voting,” inProceed-

ings of AAMAS 2012, 2012.

[104] W. H. Riker, “The two-party system and Duverger’s law: An essay on

the history of political science,”The American Political Science Review,

vol. 76, no. 4, pp. 753–766, 1982.

149



Bibliography

[105] I. McAllister and D. T. Studlar, “Bandwagon, underdog, or projection?

opinion polls and electoral choice in Britain, 1979-1987,”The Journal of

Politics, vol. 53, no. 3, pp. 720–741, 1991.

[106] A. Reijngoud and U. Endriss, “Voter response to iterated poll information,”

in Proceedings of AAMAS 2012, 2012.

[107] M. Messner and M. Polborn, “Miscounts, Duverger’s law and Duverger’s

hypothesis.” Available at: http://works.bepress.com/polborn/25, 2011.

[108] T. R. Palfrey, “A mathematical proof of Duverger’s law,” inModels of

Strategic Choice in Politics(P. C. Ordeshook, ed.), pp. 69–91, University

of Michigan Press, 1989.

[109] R. B. Myerson, “Comparison of scoring rules in Poisson voting games,”

Journal of Economic Theory, vol. 103, pp. 219–251, Mar. 2002.

[110] D. P. Myatt and S. D. Fisher, “Everything is uncertain and uncertainty is

everything: Strategic voting in simple plurality elections,” Economics Se-

ries Working Papers 115, University of Oxford, Department of Economics,

2002.

[111] P. Fishburn, “Axioms for lexicographic preferences,”The Review of Eco-

nomic Studies, vol. 42, no. 3, pp. 415–419, 1975.

[112] E. Ianovski, L. Yu, E. Elkind, and M. C. Wilson, “The complexity of safe

manipulation under scoring rules,” inProceedings of IJCAI 2011, pp. 246–

251, 2011.

[113] S. Obraztsova and E. Elkind, “Optimal manipulation of voting rules,”ac-

cpeted in AAMAS 2012, 2012.

150



Bibliography

[114] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe, “The

shield that never was: Societies with single-peaked preferences are more

open to manipulation and control,”Information and Computation, vol. 209,

no. 2, pp. 89–107, 2011.

[115] E. Elkind and G. Erd́elyi, “Manipulation under voting rule uncertainty,” in

Proceedings of AAMAS 2012, AAMAS ’12, (Richland, SC), pp. 627–634,

International Foundation for Autonomous Agents and Multiagent Systems,

2012.

[116] L. Xia, V. Conitzer, and J. Lang, “Strategic sequential voting in multi-

issue domains and multiple-election paradoxes,” inProceedings of the 12th

ACM conference on Electronic commerce, EC ’11, (New York, NY, USA),

pp. 179–188, ACM, 2011.

[117] L. Xia and V. Conitzer, “Stackelberg voting games: Computational aspects

and paradoxes,” inProceedings of AAAI 2010, vol. 10, pp. 921–926, 2010.

[118] U. Endriss, U. Grandi, and D. Porello, “Complexity of judgment aggrega-

tion: safety of the agenda,” inProceedings of AAMAS 2010, AAMAS ’10,

(Richland, SC), pp. 359–366, International Foundation for Autonomous

Agents and Multiagent Systems, 2010.

[119] S. Konieczny and R. Pino Prez, “Logic based merging,”Journal of Philo-

sophical Logic, vol. 40, pp. 239–270, 2011. 10.1007/s10992-011-9175-5.

[120] T. Walsh, “Complexity issues in preference elicitation and manipulation,”

ISAIM 2008, Jan 2008.

151


	I Strategic Manipulation
	The Manipulability of Voting Rules 
	An introduction to computational social choice
	Basic terminology
	Strategic manipulation
	A new measure of manipulability of voting rules
	Definition of the measures
	Computation of the measures
	Basic numerical results

	Power measures and manipulability measures
	The simple game associated with a profile
	The random query process

	Comparison with existing literature
	Results concerning P and M
	Results concerning Q
	Complexity measures

	Extensions and future work
	Appendix: details from our studies with m=3
	Details of the algorithm implementation
	Additional numerical results


	The Probability of Safe Manipulation
	Introduction
	Definitions and basic properties
	Algorithms and polytopes
	When t and t' are specified
	The general case

	Numerical results
	Further discussion


	II Voting Games
	An Introduction to Voting Games
	Introduction
	Voting game

	Best Reply Dynamics for Scoring Rules
	Introduction
	Our contribution

	Problem description
	Voting setup
	Improvement step

	Best reply dynamics
	Antiplurality
	Alphabetical tie-breaking 
	Randomized tie-breaking
	Who can win?

	Plurality
	Alphabetical tie-breaking
	Randomized tie-breaking

	Counterexamples and interesting phenomena
	Conclusion and future directions

	Coordination via Polling in Plurality Voting Games under Inertia
	Introduction
	Our contribution

	Game model
	Game dynamics
	Notation
	Set of potential winners

	Equilibrium results for some special cases
	Zero inertia
	Constant non-zero inertia
	Uniform distribution of inertia
	Other distributions of inertia

	Conclusion and future directions

	Conclusions 
	Summary
	Future directions



