

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

PROTEINS AND TRANSCRIPTS INVOLVED IN MINI-F MAINTENANCE

Sin Hen Phua Department of Cell Biology University of Auckland June, 1984

Thesis submitted to the University of Auckland for the degree of Doctor of Philosophy.

UNIVERSITY OF AUGKLAND LISRARY
846401235001
BIOLOGY
THESIS
84-170
Cop. 2

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

CHAPTER I : INTRODUCTION

I.1	PLASMIDS AS MODELS OF DNA REPLICATION	1
1.2	MODELS OF PLASMID MAINTENANCE	3
I.2.1	Theoretical consideration of plasmid maintenance functions	3
1.2.2	R1, a low copy-number plasmid	8
I.2.3	ColE1, a multicopy plasmid	10
I.2.4	λ <u>dv</u> , a phage 'turned' plasmid	12
I.3	THE F PLASMID	14
I.3.1	The replicative machinery of f5	17
I.3.2	The partition system of f5	24
I.3.3	A unique 'coupled cell division' system in f5	28
1.3.4	<u>Ori</u> I usage	29
I.3.5	Biochemical studies of f5	30
I.4	AIMS OF THIS WORK	32
CHAPTER	II : MATERIALS AND METHODS	
II.1	MATERIALS	34

II .1. 1	Bacteria, bacteriophages and plasmids	34
II .1. 2	Growth media	34
II . 1.3	Buffers	35
II . 1.4	Enzymes and radiochemicals	35

5.94

D		
Pa	\mathbf{n}	0
1 0	u	-
	3	-

11.2	DNA METHODS	36
11.2.1	Methods of plasmid DNA preparation	36
II .2.1. 1	Rapid method for high copy-number plasmids	36
II .2.1. 2	Cleared-lysate method for low copy-number plasmids	36
II.2.1.3	Caesium chloride-ethidium bromide method	37
11.2.2	Phage M13 DNA methods.	37
11.2.3	Agarose gel electrophoresis	39
11.2.4	Extraction of DNA fragments from SeaPlague agaroe gel	39
11.2.5	Restriction enzyme digestion and T4 DNA ligase reaction	40
11.2.6	Transformation of bacteria	40
11.2.7	DNA blotting and hybridization	41
II.3	ANALYSIS OF PROTEINS	43
11.4	ANALYSIS OF TRANSCRIPTS	15

CHAPTER III : CONSTRUCTION OF MINI-F PLASMIDS AND IDENTIFICATION

OF	REPL	ICON-S	PECIFIC	POL YP	PEPTIDES
	I V Res F Res	- AOON S	LOTI TO	IULII	LIIIDLJ

III.1	INTRODUCTION	48
III.2	CONSTRUCTION OF MINI-F PLASMIDS	49
III.2.1	Construction of vector-f5 hybrids	49
111.2.2	Conversion from pBR322-f5::Tn5 to pACYC184-f5::Tn5 series	51
111.2.3	Derivation of pACYC184-∆f5::Tn3 series from Km-∆f5::Tn3 isolates	52
III . 2.4	Construction of vector-f7 hybrid plasmids	52
III.3	IDENTIFICATION OF REPLICON-SPECIFIC POLYPEPTIDES	53
III . 3.1	Incorporation of radioactive [³⁵ S]-methionine into plasmid-coded proteins in minicells.	53
III . 3.2	Proteins encoded by the primary F replicon, f5.	54
III . 3.3	Determining the isoelectric points of f5 proteins.	57
III . 3.4	Proteins encoded by f7, the secondary F replicon.	58
III.4	SUMMARY	60

Page

CHAPTER IV : MAPPING THE GENES FOR f5 POLYPEPTIDES

IV.1	INTRODUCTION	62
IV.2	MAPPING THE INDIVIDUAL GENES	63
IV.2.1	The A Gene	64
IV.2.2	The B Gene	65
IV.2.3	The C Gene	68
IV.2.4	The D Gene	68
IV.2.5	The E Gene	70
IV.2.6	The G and H Genes	73
IV.3	DISCUSSION	75

CHAPTER V : STUDIES ON f5 TRANSCRIPTS

V.1	INTRODUCTION	81
V.2.	PHAGE M13 CLONING OF f5 SUBFRAGMENTS	83
V.3	THE f5 TRANSCRIPTS	85
V.3.1	Uptake of [³ H]-uridine into plasmid-specific RNAs in minicells	85
V.3.2	Strand-specificities of the transcripts.	87
V.4	SUMMARY DISCUSSION	90
CHAPTER V	I : CONCLUDING SUMMARY	

VI.1 T	HE COUPLED CELL DIVISION SYSTEM	93
VI.2 T	HE REPLICATION SYSTEM	95
VI.3 T	HE PARTITION SYSTEM	98

BIBLIOGRAPHY

102

APPENDIX I FUEL RESTRICTION ENZYME MAPS OF f5, Th<u>3</u> AND In<u>5</u> APPENDIX II : PUBLISHED PAPERS

ACKNOWLEDGEMENTS

I wish to thank my supervisors, Dr H.E.D. Lane and Prof. P.L. Bergquist, for their advice and enthusiasm during the course of this work. I am grateful for their critical reading of the manuscript, and for the care and concern they have shown me.

My thanks to Prof. P.L. Bergquist and Ms L. Malcolm for construction of the transposon (Tn5) insertion mutants of mini-F which form a major part of this thesis.

I am indebted to the staff and students of the Cell Biology Department for their general assistance, constant encouragement and friendship, and for tolerating my after-hours activities.

My appreciation to Mrs L. Howey and Mrs M. Tapene for typing the thesis, particularly to Mrs L. Howey for the long nights she put in, in order to meet the deadline.

To my wife Suzie and son Yun, who have waited patiently through the many months of thesis preparation, I convey my love. They have shared in the costs, but not in the rewards, of experimental science. Without their unfailing support, both morally and financially, this work would not have been completed.

> 1997-1997 1997-1997 1997-1997

ABSTRACT

The aim of the work described in this thesis was to understand the maintenance systems of the F plasmid of <u>Escherichia</u> <u>coli</u>. The work was centered on the biochemical studies of the primary replicative fragment of F, f5.

- From an analysis of the protein species produced by miniF-vector hybrid plasmids in <u>E. coli</u> minicells, seven proteins were found to be encoded by f5. Similarly, the secondary F replicon, f7, was found to code for at least three proteins.
- The f5-specific proteins were further characterized by determining their isoelectric points and molecular weights in two-dimensional gels.
- Using transposon-induced and deletion mutants of miniF, the structural genes of the seven f5 proteins were mapped.
- 4. Analysis of the amounts of proteins made by transposon-insertion mutants revealed that some miniF proteins control the expression of miniF genes. These results suggested possible mechanisms of coordination between the three f5 maintenance systems (<u>ccd</u>, <u>rep</u> and <u>par</u>).
- 5. The polarities of the f5 transcripts synthesized in minicells were determined by hybridization with f5 DNA cloned into single-stranded phage M13 vectors. The results were consistent with the gene mapping data, in that the directions of transcription of the seven f5 structural genes are uniformly rightwards.

127 200

6. In addition, the RNA-DNA hybridization experiments revealed the existence of untranslated leftward transcripts produced from the regions involved in f5 replication and partition.