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Abstract

This paper estimates the stochastic volatility model using the empirical character-
istic function method. This procedure has the same asymptotic efficiency as maximum
likelihood, and is thus a desirable method to use when the likelihood function is un-
known. The stochastic volatility model has no closed form for its likelihood but it does
have a known characteristic function. A Monte Carlo study shows that the empirical
characteristic function method is a viable procedure for the stochastic volatility model.
An application is considered for S&P 500 daily returns. Qur results suggest much lower
persistence than is normally found.
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1 Introduction

Modeling the volatility of financial and macroeconomic time series has attracted a
lot of attention since the introduction of autoregressive conditional heteroskedasticity
(ARCH) (Engle (1982)). A feature of the ARCH type model is that the conditional
variance is driven by the past observable variables. As an alternative setup to the
ARCH-type model, the Stochastic Volatility (SV) model is supposed to describe the
financial time series better than the ARCH-type model, since it essentially involves two
noise processes. This added dimension makes the model more flexible, for example, the
SV model can explain not only volatility clustering but also leverage effects. For fur-
ther discussion, see Ghysels, Harvey, and Renault (1996) . Unfortunately, the density
function for the SV model has no closed form and hence neither does the likelihood
function, even for the simplest version of the SV model. It is a consequence of this that
direct maximume-likelihood estimation is impossible. Therefore, alternative estimation
methods to the maximum likelihood have been proposed to estimate the SV models,
which we discuss next.

Melino and Turnbull (1990) use generalized method of moments (GMM) for the
discrete SV model. A more efficient GMM is proposed by Andersen and Sorensen
(1993) . For the continuous time SV model, a GMM approach is developed by Hansen
and Scheinkman (1995) . The idea is to match a finitc number of sample moments and
theoretical moments. Alternatively, the quasi maximum likelihood (QML) approach
is suggested by Nelson (1988), Ruiz (1994) and Harvey, Ruiz and Shephard (1994).
The main idea is to treat non Gaussian disturbances as if they are normal and then
maximize the quasi likelihood function. Often estimation methods involve the whole
family of simulation based methods, including simulated MM /GMM proposed by Duffie
and Singleton (1993), indirect inference proposed by Gouriéroux, Monfort and Renault
(1993), simulated maximum likelihood (SML) proposed by Danielsson (1994b), and
Markov Chain Monte Carlo (MCMC) proposed by Jacquier, Polson and Rossi (1994).

The SV model has become a central model to describe financial time series and to



compare the relative merits of estimation procedures.

Although most of these methods are consistent under appropriate regularity con-
ditions, in general they are not efficient. For example, by using only a finite number
of moment conditions, MM/GMM may ignore important information contained in the
realizations. The QML approach simply approximates the true information. Not sur-
prisingly, such an approximation could lose substantial amounts of information. The
simulation based methods decrease the efficiency by introducing an extra random er-
ror. This raises the question as to whether we can find a methodology with efficiency
equivalent to maximum likelihood.

The present paper uses such an alternative approach to estimate the stochastic
volatility model — via the empirical characteristic function. The rationale for using
the characteristic function is that there is a one to one correspondence between the
characteristic function and the distribution function. Consequently, the empirical char-
acteristic function (ECF) should contain the same amount of information as the em-
pirical distribution function (EDF). Theoretically, therefore, inference based on the
characteristic function should perform as well as inference based on the likelihood.
Moreover, by using the characteristic function, we can overcome the difficulties aris-
ing from ignorance of the true density function or the true likelihood function. The
paper is organized as follows. The next section introduces a canonical SV model and
explains why the model is difficult to estimate. Section 3 presents a general discussion
of the ECF method, with particular emphasis on ECF estimation for the SV model;
the characteristic function of the SV model is obtained as well. Section 4 discusses the
implementation of the ECF method as well as a Monte Carlo study and an empirical

application. All proofs are collected in the Appendix.

2 The Model

The formulation of the discrete time stochastic volatility model is similar to that of the

ARCH-type models. That is, the conditional variance is directly modeled. However,




in contrast to the ARCH-type models, the stochastic volatility model allows a random
component in the transition equation. By doing so, the model can explain why large

changes can follow stable periods. The model is of the form,
Ty = O1€yq, t:1,2,"‘,T, (21)

where o7 is the conditional variance based on the information at the end of time ¢,
and e; is a series of i.i.d. random disturbances which are assumed to have a standard

normal distribution. We define
oy = exp(0.5h;) (2.2)
and assume h; follows a Gaussian AR(1) process, i.e.,

ht =+ aht_l + vy, Uy~ ’l/LdN(O, 0'2), (23)

variance depends on past conditional variance and a random component. When the
effect of the past conditional variance is strong, volatility clustering will appear in the
series. However, if the random innovation is not dominated, it can bring a large change
into a stable period and can smooth large booms and crashes as well. Without including
the random component, the transition equation is deterministic and the model exhibits
time-varying but deterministic volatility. Finally, we assume e; and v; are uncorrelated,
we shall return to this assumption later.

Some statistical properties of z; are determined by h; since z, is a simple function
of h;. For example, h, is stationary for |a| < 1, so z, is stationary as well. Furthermore,
z; is a martingale difference because h; is a martingale difference. We also note that

x; has finite moments of all orders and in particular the second and fourth moments

202
1-a?

are given by E(z?) = exp(%{%ﬁ), and F(z}) = 3exp(2Z5). The kurtosis of z; is

2 .y s . .
therefore 3exp(;%-z), so z; exhibits more kurtosis than a constant variance normal

model. Furthermore, Harvey (1993) derives the moments of powers of the absolute
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value of z;,

I'(c/2+1/2) c’o?

E|z,|° = 2¢/2 T(1/2) exp(g(1 — a2))’

c>—-1,c#0, (2.4)

and

Plet+3) [LE+3)7 c*o? 1
r(1/2) [ r'(1/2) ] }exp(m), ¢>-5,c7#0. (25

Since z; is a non-linear function of an AR(1) process, however, the process is difficult

Var|z,|® = 2”{

to work with. For example, there is no closed form expression for the characteristic
function of z;. Observing that the dependence of z, is completely characterized by the

dependence of h;, we define y; to be the logarithm of z?. Then we have
ytzlogof—}—logef:ht—i—et, t=1,2,---,T, (2.6)

where ¢, = loge? is the logarithm of the chi square random variable with 1 degree of
freedom. Hence, the new process y; still depends on the AR(1) process h;, but in a
linear form. Since the process h; contains all the parameters of interest, y; loses no
information from the estimation point of view, the only loss of information being the
sign of e; which for a symmetric distribution, uncorrelated in ¢; and v;, contributes
nothing to volatility estimation. This is why most of the estimation procedures in the
literature are based on y;, not z;.

Unfortunately, neither y; nor z, has a closed form expression for the likelihood func-
tion. This property makes the estimation based on the likelihood extremely difficult.
However, from (2.6) we know that y; is the convolution of an AR(1) process and an iid
logarithmic X?l) sequence, and hence there is a closed form expression for the charac-
teristic function of y; which we will derive in the next section. Since the CF contains
the same amount of information as the distribution function, the model is fully and

uniquely parameterized by the CF. Therefore, inference based on the ECF can achieve

efficiency.




3 ECF Estimation

Before we discuss the estimation of the SV model via the ECF, it is worthwhile to
briefly outline the ECF estimation method.

Suppose the distribution function (DF) of X is F(z; 0) which depends on a param-
eter 8. The CF is defined as

c(r,8) = Elexp(irz)] = /exp(ira:) dF(z;8), (3.1)

and the ECF is the sample counterpart of the CF, that is,
1.n

cn(r) = E;exp(imj) = /exp(im:) dF,(z). (3.2)
where F,(z) is the empirical distribution function. Therefore, the CF and ECF are
the Fourier transformations of the DF and EDF. Because of the uniqueness of the
Fourier-Stieltjes transformation, the CF has the same information as the DF and the
ECF retains all the information in the sample. We also note that the CF contains
only the parameters and the ECF contains only the data. The general idea for the
ECF estimation method is to minimize various measures of the distance between the
ECF and the CF. For example, by choosing discrete ry,---,7,, we can minimize the

following distance,
q
> leal(rs) = clrj; 8)Pg(ry), (3.3)
Jj=1

i.e., the distance on g discrete points. Or by choosing r continuously, we can minimize

[ lea(r) = c(r; 8)g(r) dr, (3.4)

i.e., the distance over an interval. In both cases g(-) is a weight function.

If the observations are an iid sequence, the marginal EDF contains all the in-
formation in the sample and so does the marginal ECF in (3.2). In econometrics,
previous authors have followed this approach. In order to estimate the mixture of
normals, Quandt and Ramsey (1978) give an ordinary least square (OLS) procedure

and Schmidt (1982) gives a generalized least square (GLS) procedure where they use
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the moment generating function instead of the CF. However, the ECF can be used
in the same way, see Tran (1994) . Moreover, there are known convergence results
for the empirical characteristic function process \/n(c,(r) — ¢(r; )). These have been
established by Fuerverger and Mureika (1977), and Csorgd (1981) for any iid sequence.
Furthermore, the procedure can be generalized to stochastic processes, see Feuerverger
(1990).

Estimation of a strictly stationary stochastic process using the ECF is not exactly
the same as that of an iid sequence, because the dependence must be taken into account.
Since the marginal EDF does not capture the dependence of a dependent sequence, the
marginal ECF would suffer the same problem. This is why we need to use the joint
CF. We do this by a procedure involving moving blocks of data. We first define the

overlapping blocks for y1,ys,- - -, yr as,
2= W5 Yyap)s G=1,--, T —p, (3.5)
and the characteristic function of each block is basically a joint one and is defined as
c(r,8) = E(exp(ir'z;)), (3.6)
where = (1, -, 7p41), @ = (@, 02, X). The ECF is defined as

1 n
ca(T) = - Z exp(ir'z;), (3.7)
Jj=1
where n =T — p.

Several estimation procedures are proposed by Knight and Yu (1997). The common

feature of the estimation procedures is to match the ECF with the CF. That is

min/ ---/|c(r,0) — cn(r)|Pg(r) dry - - - drpy, (3.8)
/ . --/(c(r, 0) — co(r))w(r)dry - - drps =0, (3.9)

where both ¢g(r) and w(r) are weight functions. The weighted distance between the

ECF and the CF is minimized in (3.8), while (3.9) is the first order condition of
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(3.8). Since these two methods are equivalent, we only consider the procedure based
on (3.8). A key point to note here is that our calculations are with respect to the
unconditional (steady-state) joint CF of z;. One could, of course, do the calculation
with the conditional CF as an alternative.

Knight and Yu (1997) present four different versions of the ECF methods. We
discuss them in detail. Firstly, when the transformation variables, r’s, are chosen
discretely and the weight is optimal, the procedure is referred as the the discrete
ECF method by Knight and Yu (1997). Hence the weight function g(r) in this case
is a function with a certain number of jumps. Fuerverger (1990) proves that under
some regularity conditions, if p is sufficiently large and the jumps are sufficiently fine
and extended, the resulting estimators can achieve the Cramér-Rao lower bound. His
results are theoretical and involve no empirical calculations. Considering the estimation
of time series by using the discrete ECF method, Knight and Satchell (1996) give a
multi-step procedure. The main idea is the following. We first choose moving blocks
(i.e. p) such that the most important information of the original sequence is retained
by the blocks. Next a function with ¢ jumps is used to be the weight function. When
the size of each jump is chosen optimally, minimization of (3.8) boils down to the
GLS technique where the ECF is regressed on the CF over a finite number of r’s.
Equivalently, the ECF is matched with the CF on ¢ discrete points. Unfortunately,
several practical questions arise in this procedure. For example, we do not know how
to choose the number of jumps and how to make the jumps optimal. Since each choice
of r corresponds to a moment condition in the CF, the estimator, in essence, is a GMM
estimator of CF.

To overcome the difficulties, we can choose the transformation variables continu-
ously. The procedure is called the continuous ECF method. In the this method, the
transformation variables are simply integrated out. By choosing the transformation
variables continuously, the procedure basically matches the ECF and the CF over an

interval, and hence match all the moments continuously. If an equal weight is cho-

sen, for example, g(r) = 1, the procedure is the OLS of the continuous ECF method.




When a non equal weight is used, the procedure corresponds to the WLS (weighted
least squares) of the continuous ECF method. Furthermore, when the weight is chosen
optimally, the procedure is called the GLS of the continuous ECF method because
the resulting estimators can achieve the Cramér-Rao lower bound. For example, the

optimal weight function in (3.9), w(r), is given below,

_, .0lo N Y PR TP
w(r) = / / exp(—ir'z;) gf(y””'é’fg Yy+p-1) dy; - - dyjsp, (3.10)

where f(-) is the conditional probability density function (PDF) of the data. However,
this quantity is not calculable if the PDF is unknown, as is our case for the SV model.

Under standard regularity conditions (see Section 2.3 in Knight and Yu (1997)),
Knight and Yu (1997) established the strong consistency and asymptotic normality
for the resulting estimators when the above procedures are used to estimate a strictly
stationary process. Furthermore, by studying the finite sample properties of the ECF
estimators, Knight and Yu (1997) note that the continuous ECF method performs
better than the discrete ECF method.

Regarding the choice of p, we note that the blocks always contain no less information
as p increases and thus the resulting estimators are supposed to be more efficient.
However, calculations associated with larger p are numerically more difficult. A small
p involves less computation, and the blocks may not retain all important information.
For a Markov process such as a Gaussian AR(1) process, fortunately, Knight and Yu
(1997) found that blocks with p = 1 is enough to capture virtually all the information
in the original series.

The model we are going to estimate via the ECF is the one defined by (2.6) since
we can derive the closed form of the characteristic function. In order to use the ECF
method, of course, we need to find the expression of the joint characteristic function.
First, the characteristic function for the logarithm of the X%m distribution is given in

Lemma 1. And then the joint characteristic function for y;,- - -, y;4x—1 is obtained in

Lemma 2.




Lemma 3.1 Suppose € is the logarithm of the X%1) distribution. The characteristic

function of €, c(r), is
_ T(0.5 +r)
)= T3

where 1 s the imaginary number defined by /—1.

2 (3.11)

Proof: See Appendix A.

Lemma 3.2 Suppose {y;}L, is defined by (2.6). The joint characteristic function of

Yty Yt+15 5 Yt+k—1 i8

c(r, -7, 0) = eXP[ Z T — Zr +2az E o™y

I=1 j=I+1

(3.12)

Proof: See Appendix B.
Using the joint characteristic function we can easily obtain the joint cumulant
generating function and consequently the autocorraltion function. The autocorrelation

function of {y;}L_, is given in the following lemma.

Lemma 3.3 Suppose {y;}, is defined by (2.6). The autocorrelation function of
{yt}’trzl s,

aka?

1—a? .
Pk = a? I"(0.5) I7(0.5)\2’ k= 1, 2, Tt (313)
T-a? T r(0.5) (F(0.5))

Proof: See Appendix C.

The y; process defined by (2.6) is the sum of an AR(1) and white noise, it is well-
known that the result is ARMA(1,1). This is confirmed by the formula in (3.13).

In order to use the ECF method to estimate the SV model (2.6), we have to choose
a value for p. Although our process is not Markovian, being an ARMA(1,1), we shall
choose p = 1 at first. Our reason relates to the results of a Monte Carlo study by

Knight and Yu (1997) where the ECF method is used to estimate an ARMA(1,1)
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process, they found that p = 1 works quite well (see Table 8 in their paper). For the
SV model (2.6) we note that with p =1,

2

+7r o
c(r1,79,0) = exp[z)\r1 ; "= ) (r} + 2ariry +13)]
1 .

F(§ + 7’7‘1)1—;(5 + ZT2)2ir1+ir2’ (314)

I2(3)

and

ca(r1,72) =~ Z exp(ir1y; + 1ray 1) (3.15)

i=1

Defining Re c(r1,72,8), Re cy(r1,72), Imc(r1,72,0) and Im c,(ry, 3) to be the real and

imaginary parts of ¢(ry, r2) and ¢, (ry, rz) respectively, we have,

Re c,(r1,79) = Z cos(r1y; + rayjt1), (3.16)
7=1
and
Imey(ry,m)) = Z sin(r1y; + roy;+1)- (3.17)
j=1

As we mentioned, a clear advantage of choosing the transformation variable continu-
ously is that we do not need to choose q. Furthermore, since the Monte Carlo study
conducted by Knight and Yu (1997) shows that the continuous version works better
than the discrete version, we use the continuous version to estimate the SV model.
However, the optimal weight function in the continuous version is not readily obtained
because the conditional score function has no closed form expression for the SV model.
Instead the exponential function is considered. The exponential function is chosen
because it puts more weight on the points around the origin, consistent with the recog-
nition that the CF contains the most information around the origin. Therefore, the

procedure is to choose (&, 62, \) to minimize,
S J |(Rec(ry,m2,0) — £ 7, cos(iriy; + iray;41))? (3.18)
+(Imc(ry,re,0) — ¢ T sin(iryy; + iray;41))?| exp(—ar? — ar?) dridr,,

where c(r1, ¢;) is given by (3.14) and a is an arbitrary positive constant which is chosen

to be 32.5 in the Monte Carlo studies and the application.
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It is straightforward to check that the appropriate regularity conditions hold for
the application of standard asymptotic theory. Therefore, the resulting estimators are
consistent and asymptotically normal with the asymptotic covariance matrix of the

estimators given by:

8Rec (r;0) ORec(r;8) 9dImc(r;0) almc(r;ﬂ)] }‘1
{//[ 507 + 50 507 g(r)dridryy %
8Rec (r;0) ORec(r;0) dImc(r;0) 6Imc('r;0)] }‘1
{//[ aOT + 90 BOT g("')d?"ld’l'g

In Appendix D the expression for A(6) is given along with a proof of the above result.

We should note that the joint characteristic function of y; is of different functional
form if v; and e; are correlated. However, the ECF method can be still used in the
same way as the uncorrelated case. Of course, the the joint characteristic function of

Y, in the correlated case is more difficult.

4 Implementation, Simulation and Application
4.1 Implementation

The implementation of the ECF method essentially requires minimizing (3.18), and
thus involves double integrals. Unfortunately, no analytical solutions for either the
double integrals or the optimization are available. Consequently, we will numerically
evaluate the multiple integral (3.18), followed by numerical minimization of (3.18) with
respect to 8. The numerical solutions are the desired estimators.

A 40-points Gauss-Kronod algorithm is used to approximate the two dimensional
integrations in (3.18). Since there is no analytical expression for the derivative of the
objective functions, a quasi-Newton method is used to find the minimum. The starting
point in the optimization is chosen to be the quasi-maximum likelihood estimates
proposed by Ruiz (1994). All computations were done in double precision.

By using the implementation procedure, we examine the performance of the ECF
method in the estimation of a SV model in a Monte Carlo study. We also apply the

procedure to a real dataset.
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4.2 Monte Carlo Simulation

The Monte Carlo study is designed to check the viability of the ECF method. We
choose the same parameter setting as Jacquier, Polson and Rossi (1994) did in one of
their Monte Carlo studies, that is, @ = 0.9, 0 = 0.3629, A = —0.736. The number of
observations is set at T' = 2,000 and the number of replications is set at 500.

Table 1 reports the simulation results. The table shows the mean, the minimum,
the maximum, the mean square error (MSE) and the root mean square error (RMSE)
for all three estimators, and serves to illustrate that the ECF method works well.

In Table 2 we duplicates the results in Table 9 of Jacquier, Polson and Rossi (1994),
where the same experimental design is used but the three alternative methods are
employed, ie, the GMM, QML and MCMC. We also report the simulation results
provided by Danielsson (1994b) based on the SML for the same experiment. Of course
our random numbers may not be the same as those generated by Jacquier, Polson
and Rossi (1994) and by Danielsson (1994). However, we believe that the experiments
should be comparable. The finite sample performance of the ECF method is better than
that of the QML and GMM method, while the MCMC and SML method outperform
the ECF method. This can be accounted for by the use of the non-optimal weight

function.

4.3 Application
4.3.1 Data

The data we used was supplied by George Tauchen and is the same as that used by
Danielsson (1994b). It consists of eight years (2,022 observations) of daily geometric
returns (defined as 100(log P;;; — log P;)) for the S&P 500 index covering period 1980-
1987. The data are adjusted as detailed in Danielsson (1994b).

4.3.2 Empirical Results

The empirical results are reported in Table 3, along with the MCMC estimates obtained
by Jacquier, Polson and Rossi (1994) using the same data set. To obtain the ECF
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estimates the initial values are chosen to be the QML estimates, as well as the MCMC
estimates and other starting values. This serves to show that the global minimum is
achieved. From Table 3, we note that the ECF estimates are significantly different
from the MCMC estimates. For example, &gcr is close to 0 while the é&ponme is close
to 1; 6% is 20 times larger than 63,5,,c. Since the empirical results are so different,
the comparison of the goodness of fit is of particular interest.

To compare the goodness of fit, we carry out a number of calculations. Firstly,
we simulate two sequences by using the ECF estimates and the MCMC estimates. In
Figure 1, we plot the empirical density of the real data and densities of two simulated
data sets; these correspond to the steady-state density of the process given by (2.1) to
(2.3) (assuming |a| < 1). Figure 1 clearly demonstrates that the ECF estimates have
better goodness of fit than the MCMC estimates. The Kolmogorov-Smirnov test is
performed to test for the goodness of fit. The results are reported in Table 4. For the
ECF the Kolmogorov-Smirnov test statistic (0.0257) is much smaller and the p-value
(0.498) is very large while the p-value for the MCMC is 0. The MCMC has been
rejected at any significant level and the ECF can not be rejected. Therefore, the ECF
method is significantly better than the MCMC in the sense of fitting the steady state
distribution. This result is very intuitive because the ECF method basically matches
all the moments and hence the density.

We next discuss the implication of our results. Firstly, a much smaller o implies
smaller volatility clustering, that is less persistence. Consequently, there is not much
dependence for the variances between two consecutive trading days. This contrasts

with the implication of large a. Secondly, a much larger o2

suggests that a large
change can possibly follow a stable period and a stable period can follow an unstable
period. This happens because with the large variance the random innovation v, may
dominate the deterministic term and hence bring in a significant change. Thus whilst
the estimated models have similar means their persistence characteristics seem dra-

matically different. Evaluating our objective function, given by (3.18), for the two sets

of converged estimates in Table 3 we find that the ECF estimates results in a value of
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1.6354 x 10~7 while the MCMC eatimates gives 9.73823 x 10~5. The latter is nearly
600 times larger than the former!

In response to suggestions, we chose larger values of p for the ECF method. The-
oretically, we know that with a larger p the moving blocks preserve more information
and hence the ECF method can be more efficient. On the other hand, however, a
larger p is computationally more time-consuming since higher dimensional numerical
integrations are involved. In Table 5, we report the ECF estimates for p = 2,3,4,5
where we fit the SV model to the same data set. From this table we note that the
empirical results remain almost unchanged for different values of p and are very close
to those for p = 1.

Since our results are so different from everybody else’s we carried out further anal-
ysis. We applied the test procedures discussed in Harvey and Streibel (1998). These
are methods to test if there is evidence of a unit root in equation (2.3). We report
our results in Table 6. The three procedures discussed in their paper provide us with
conflicting estimates, namely the von Neumann Ratio (VNR) and chi-squared tests
applied to y; and z, are not significant for both processes although the Q(p) test, with
p = 45 is found to be significant for both series. Since the chi-squared test is the one
demonstrated by Harvey and Streibel to be the most powerful and since the parametric
values found by us are a long way from being a local alternative, we find the above
evidence in favour of the traditional high alpha values but not compellingly so.

Finally, we consider a reverse calculation where we evaluate our parameter values
(Table 3) with those of Danielsson [1994]. We call these 6, and 6, respectively. If the
likelihood at 6; is larger than the likelihood at ,, then this, coupled with our finding
noted earlier that our objective function at 6; is 600 times smaller than 65, would be
strong supportive evidence that our results are not aberrant but an alternative local
(and possibly, global) maximum.

Since the likelihood is not known analytically, we need to resort to numerical proce-
dures. We present details of our likelihood calculations in Appendix E. The procedure

we follow is to treat h; as observable and condition on the sequence (hy, ..., h;). The
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conditional likelihood can be calcuated and by averaging over different histories of h;
we can get an estimate of the likelihood of y;.

The values we calculate are based on 500 replications of the history and we set hg
equal to %él Inz} — E(In(zf))). The values of the two likelihoods are -2270 and -2290

respectively for 6; and 6,. These show supporting evidence for our conjecture that our

estimators are the argument of an alternative maximum.




Appendix A

Proof of Lemma 1

According to the definition of the characteristic function, and with ¢, = log(x%l)), we

have

c(r)

Elexp(ire)]

E(exp(e:))™]

E((exp(log(x{y))))”]

E[(xy)"]

/:v"f(x) dx

/xir 1 =126-3/2 g
r(1/2)v2

/l.ir—% 1 e=3/2 g

where f(z) is the density function of x?%, and is given by
1)

f(=)

__ 1 22 1

CT(1/2)v2

(A1)




Appendix B
Proof of Lemma 2
Since y; is a convolution of a Gaussian AR(1) process and an iid sequence with Xgl)

distribution, we have

c(ri,  ,mk,0) = Elexp(iriye + irgyeyr + - + 7xYph—1)]
= E[exp(irlht + irlet + ’I:Tth,l + ?;7‘26t+1 + -+ irkh't—i-k—-l + iTkeH-k—l]

k
= E[exp(irlht + iTQhH.l + -4 i’l’th_k_l] H E[exp(irjet+j_1)]

j—l
k j—
= E[exp(ihtza] 1T] +’[//\Z 7'_7+Zl/t+l 127‘]&] l
j=1
k
HE[exp iri€iti—1)]
1 o7 1. i—1,. \2 o’
B R M R
1 &K 15, T} +iry) T
-3 ol )202] J= 2 i L7
R
A e e
= exp[erj 2 ZT +20£Z Z « 7'17‘]
=1 =1 j=l41
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Appendix C
Proof of Lemma 3

Defined as the logarithm of the CF, the cumulant function is of the form,

¢(T1a"'7rk) = lOg( (rl, Tk70))
2

= 2 i — Zr +2a2 Z o hryrs) (C1)

1_a I=1 j=l+1

+Zlog +er))+zlog2Zr]

j=1
Therefore, we have
62¢(T1,"',Tk)
var(y;) = Br7 | =0
. o? + I'"(0.5) (F’(O.5))2
 1-a2  T(0.5) ro.5)""’
and
p(r1,- -, Tk)
CO'U(yt, Z/t+k) - arlark |"‘1:0y7‘k=0
)
— a ag , k — 1, 2’ “ e
1—a?
Hence the autocorrelation functions are,
aFg?
1—a?
Pk =" T7(05 oy £=12- B
oz T F(E).S)) - (1‘((0.5)))2




Appendix D
We present details of how we calculate the asymptotic covariance matrix of the ECF

estimator. Let our ECF estimator be given by § where

§ = arg min s(6)

and
[+ [((Re ealr) — Be c(r, )y
+({Im cy(r) — Im c(r,0))*}dG(r)
Now since
Re c,(r) = %ZCOST/.'E]‘
and
Im e, Z sinr'z;
Then
ds(0)  2&
. JZZII k;(0)
where
[/ /aRe c(r, ) Cosrij — Re ¢(r,0))
0
_'_al_mace(l’_)(sin r'z; — Im c(r,0)) |dG(r)
Consequently
Vil29) 4, Nio,44(0)
where
A0) = lim E % 2.2k (a)kk(e)]
ik

and is given by:

A() = lim —{/ / [aRe c(r,6) ORe c(s,0) >3 cov(cosr'z;, cos s'zy)

n—00 06 e
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ORe c(r,0) 0Im c(s, 6) b
+ %0 5 ; % cov(cosr'z;, sin s'xy)
alm c(r,6) ORe (s, 6) . /
5 50 ;zk:cov(smr T;,C08 S T)
almace(r ,9) 8Imacegs ) >3 cov(sinr'z;, sin s'xk)] }dG(r)dG(s)

j ok

The double summation covariance expressions are readily found and are given in the

Lemma in Knight and Satchell [1997, p. 176]. That is, we note that

> cov(cosr'z; cos s'zy)

ik
= n?cov(Re c,(r), Re c,(s))
= sz : (QRR)r,sa

using notation in Knight and Satchell [1997]. Similarly, for the other double sums.
Thus

A = Jimn{ [ [ [PRERARAD (g,
aRe c(r,8) 0Im c(r, ) ()
o6 o' RI)rs
OIm c(r,0) 8Im c(s, )
+ 90 By : (Qll)r,s] }dG(T)dG(s)

Also we note that

(] - gl
2 Z/ / [aReacg(r ,6) aReaca(/r ,6)

61m c(r 6) 0Im c(r, 6)
50 ]dG(r)

_ 2/ /[6Recr9 ORe c(r,0)

oo’
oIm ¢(r,0) dIm c¢(r,0)
LT 26 ]dG(T)
_ _2B(9)
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Thus standard asymptotic theory results in

~

Vvn(l —6) 5 N(0, B~1(8)A(6) B~1(6)).
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Appendix E
The numerical computation of the log likelihood (In L) for the stochastic volatility
model is detailed below.
Recall (2.6) which states
Yy = hy + &

with

Er = In 6?.

Since ef ~ xf;) we can calculate i.e., the distribution of h; + Inx?,. This will be the
conditional likelihood of y; and time ¢. Thus the In L function is given by
T
InLlh, = In]] pdf(y:lo?)

t=1
T

= 2 Inpdf(wlo?)

t=1
T

1 T
= —>In21— >3 [(4:/07) — In(y/07)]
2 2
To estimate the In L associated with our data and with two alternative estimates of

the parameters, A, a, 0 we proceed as follows:

i) Letting éj — (S\j, &, 6J2-), j = 1,2 be the two parameter sets. For each set we can
generate a sequence of h,’s and consequently, o7 :i.e., hj; = ;\j +a;hj1+65e,5—
1,2 with e; ~ iid N(0,1), and setting hg to equal % >y — E(ln X%l))' Generate a
sequence of e;’s (¢t = 1,...,T) and use these to generate the two sequences for h;
and o2, i.e.

0_72't = exp(h;q)

ii) With the two generated h; sequences, calculate the two corresponding In Ljlh

i=1,2.

#12)

iii) Go to i) and repeat steps i) and ii) say M times.

23




iv) Calculate the In L; as the average of In L;|h;; over the M replications, i.e.

1

M
In L]' = M Zln Lljlhljt
=1

The calculated In L; from iv) will be approximations to the true In L. Each will
have been evaluated at the converged parameter values from the two competing

estimation methods.
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Table 1

Monte Carlo Study of the ECF Method

True Values of Parameters a = 0.9 o = 0.3629, XA = 0.736

No. of Replications=500 No. of Observations=2,000

Monte Carlo Comparison of GMM, QML, MCMC, and SML Estimates?
True Values of Parameters a = 0.9 ¢ = 0.3629, A = —0.736

No. of Replications=500 No. of Observations=2,000

a=0.9|0c=0.3629 | A =-0.736
MEAN | .892 .3812 -7962
MED | .895 3763 =774
MIN 75 1985 -1.843
MAX .95 6399 -.3401
RMSE .03 067 231
Table 2

Method | @ =0.9 | o =0.3629 | A = —0.736
GMM | .88(.06) | .31(.10) | -.86(.42)
QML | .88(.06) | .383(.11) | -.853(.46)

MCMC | .896(.02) | .359(.034) | -.763(.15)

SML | .902(.02) | .359(.039) | -.721(.15)

*The table shows the mean and RMSE(in parentheses).
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Empirical Comparison of ECF and MCMC Estimates®

Kolmogorov-Smirnov Goodness-of-Fit Test of ECF and MCMC Estimates

Table 3

Method « o A
ECF | -.0676 | .747 | -0.29
MCMC | 0.97 15 | -.002
Table 4

KS statistic | p-value
ECF 0.0257 0.498
MCMC 0.0875 0
Table 5
Empirical Results of ECF Estimates with Different Values of p
Method o o A
p=2|-0.0719 | 0.743 | -0.45
p=3|-0.0822 | 0.740 | -0.31
p=4-0.0927 | 0.738 | -0.38
p=>51-0.0742 | 0.731 | -0.40
Table 6
Ty Ui Control Value (5%)
VNR | 3.71588 | -0.39550 1.692
x? 10.05328 | 1.2129 0.461
Q(p) | 825 169.6 61.7

3The empirical results for the MCMC method are obtained by Jacquier, Polson, and Rossi (1994).
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