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Abstract

This dissertation consists of three essays on the economics of health-care delivery

in hospitals. The first two essays estimate the impact of doctor-patient demographic

concordance on a doctor’s decision making for diagnostic resources and medical treat-

ments. Demographic concordance occurs when a doctor and patient have the same

ethnic group and/or gender. The third essay estimates a relationship between ward-

level nursing hours and a patient’s health outcome. These three papers use de-

tailed data obtained by me from a hospital. Ethics approval to use this data was

granted from the New Zealand Health and Disability Council (Reference number:

NTX/11/EXP/029).

The first essay estimates a relationship between gender and/or ethnic concordance

between a doctor and patient and the amount of diagnostic tests ordered during a

hospital stay. Diagnostic test orders have increased in many developed countries.

For example, in the United States the cost of ‘unnecessary’ diagnostic tests and pro-

cedures has recently been estimated at between USD 200 to 250 billion per annum

(Berwick and Hackbarth, 2012; Thompson, 2011). Therefore, ways to reduce unnec-

essary diagnostic test ordering is of interest to health policy makers. I test whether

doctors order higher or lower amounts of diagnostic tests when they treat patients

with the same demographic features, relative to when they treat patients with no

shared demographic features. I find a statistically significant reduction in laboratory

and radiology tests when a doctor treats a patient of the same gender and/or ethnicity

relative to demographically discordant patients. Assuming demographic concordance

variables are exogenous, I suggest two reasons for a reduction in diagnostic test orders.

The first reason is an information gain in demographically concordant consultations.

Because information on a patient’s health status comes from doctor-patient consul-

tation and diagnostic tests, a reduction in diagnostic test orders suggests a doctor

has obtained better quality information from consultation. An improved consultation
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could include gains in communication, and/or the physical exam. The information

gain hypothesis only holds if preferences for the amount of laboratory and radiology

tests do not change in demographically concordant relative to discordant pairs. The

second reason for a reduction in test orders is if demographically concordant patients

and/or doctors prefer to order fewer diagnostic tests, for example by choosing a less

aggressive treatment plan. Unlike the United States, I do not expect litigation and

insurance arrangements to explain a reduction in diagnostic tests, because health care

is publicly provided and doctors are not at a personal risk of litigation in the hospital.

The second essay estimates a relationship between doctor-patient ethnic concor-

dance and a women’s likelihood of having an emergency caesarean procedure. Studies

have documented variation in caesarean procedure rates across ethnicity groupings

within a country (Rumball-Smith, 2009; von Katterfeld et al., 2011; Vangen et al.,

2000; Getahun et al., 2009). This paper makes a novel contribution to literature

explaining ethnic-based variation in caesarean rates by investigating the effect of

provider-patient ethnic concordance or discordance on the decision to have an emer-

gency caesarean. An emergency caesarean is decided after a women has gone into

labour, and women who receive a planned caesarean are excluded from my sample.

Differences in the unobserved health status of women in ethnically concordant and

discordant groups is therefore not expected to explain my results, because all women

in the patient sample have been considered physically able to undergo a natural birth.

I use the three largest casemanager ethnicity groupings in my data; European, Indian

and Asian. I find that Asian women with an Asian casemanager are on average 6%

(p = .0001) less likely to have an emergency caesarean compared to an Asian women

treated by a European or Indian casemanager1. Ethnic concordance for European

and Indian patients is statistically insignificant. I suggest three explanations for why

Asian women are less likely to receive an emergency caesarean when treated by an

1A casemanager could be a midwife, staff nurse or doctor that is primarily responsible for a
patient’s care in hospital.
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Asian casemanager. These are a reduction in maternal distress, clinical uncertainty

and/or patient preference for an emergency caesarean. Two primary reasons for

ethnic-based variation in caesarean rates are differences across ethnicity groupings in

unobserved patient health characteristics and preferences for caesarean procedures.

My result suggests that ethnicity-specific health characteristics and preferences do

not fully explain a higher caesarean rate for Asian women in New Zealand.

The third essay estimates a relationship between ward-level hours of nursing staff

and a patient’s health outcome. Patient health outcomes are mortality and length of

ward stay. There is a large body of empirical literature on the relationship between

hospital nurse-to-patient ratios and patient health outcomes (for reviews see; Lang

et al. (2004); Kane et al. (2007)). This paper contributes to this empirical literature

in three ways: by using a detailed nursing staff dataset, using a novel instrumental

variable for nursing hours and by considering the separate effect of nursing and patient

hours in a ward on a patient’s health outcome. My instrumental variable is the

amount of sick and bereavement leave taken by nurses on a ward. Initially, there is

a statistically significant positive relationship between nursing hours on a ward and

a patient’s likelihood of mortality. After instrumentation, nursing hours on a ward

has a negative, but statistically insignificant, effect on the likelihood of mortality. A

patient’s length of stay is modeled with a competing risk survival model. Discharge

home is the main outcome. Competing risks are transfer to another health-care

facility and in-hospital mortality. My main result is that cumulative exposure to

higher patient hours on a ward is associated with a longer hospital stay in 16 out

of 20 wards. An explanation for this is that increased demand by other patients

on fixed hospital resources, such as medical equipment and doctor and nurse time,

lowers the ability to deliver timely hospital health care. As a result, patients stay

in hospital longer to receive the health care they need. This information could be
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useful for hospital administrators, because it suggests improving patient flow through

a hospital during high demand times could reduce the average length of stay.
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Chapter 1

Diagnostic tests and

Provider-Patient Demographic

Concordance
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1.1 Introduction

The overuse of diagnostic tests and procedures has received considerable attention in

recent years, particularly in the United States where the cost of unnecessary diagnostic

tests and procedures has been estimated at USD 200 to 250 billion (Berwick and

Hackbarth, 2012; Thompson, 2011). The concern over wasteful diagnostic test orders

is also demonstrated in a recent initiative by the American College of Physicians

to publish lists of diagnostic tests and procedures considered unnecessary in a given

clinical situation (Cassel and Guest, 2012).

In addition to contributing to wasteful medical spending, diagnostic tests can be

harmful and can put patients at risk of unnecessary medical treatment (Korenstein

et al., 2012; Volk and Ubel, 2011). Firstly, radiology tests expose patients to harmful

radiation. Secondly, diagnostic tests can return a false positive and a patient can

undergo treatment for a condition they do not have. A related problem is a test re-

vealing a clinical abnormality which may not develop into a threat to patient health

if left untreated. This generates further medical treatment that is not warranted by

a patient’s true clinical need. Sutton (2011, pg.1600) characterised a doctor’s diag-

nostic situation thus; ‘Sifting through and assigning importance to vast quantities of

unfiltered information is a defining skill of our [medical] profession. One of the unin-

tended yet unavoidable consequences of increased diagnostic information is increased

false positives.’

This paper estimates a relationship between doctor-patient gender and/or ethnic

concordance and the amount of laboratory and radiology resources used in hospi-

tal treatment. Several papers have suggested that there are improvements in doctor

and/or patient satisfaction with a consultation when a doctor and patient are demo-

graphically concordant (LaVeist and Nuru-Jeter, 2002; Street Jr et al., 2008; Sandhu

et al., 2009). One outcome of an improved consultation could be fewer diagnos-

tic tests and procedures. This could occur through improvements in doctor-patient
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trust, communication and other factors that encourage more efficient resource use.

On the other hand, demographically concordant doctor-patient pairs could result in

higher resource use if doctors tend to provide more medical treatment to patients of

their own demographic group, relative to different demographic groups.

I use administrative data from a large hospital. This data records each laboratory

and radiology test ordered during a patient’s hospital stay. The data also records a

primary doctor for each inpatient event1. To determine whether demographic con-

cordance occurred, doctors’ demographic characteristics are obtained from a Human

Resources department. The study period is 2004 to 2011 and there are approximately

225,354 inpatient events treated by 324 unique doctors in the regression analysis.

I find a statistically significant reduction in laboratory and radiology tests ordered

during a hospital stay when a doctor and patient have the same gender and/or eth-

nicity, relative to when a doctor treats a patient with no demographic concordance

(on gender and/or ethnicity).

A doctor treating a patient of the same gender (or ethnic group), relative to a

patient with no demographic concordance, is associated with an on average reduction

in the total cost of laboratory tests of approximately $4.5 (or $4.6). Gender (ethnic)

concordance is associated with an on average reduction in total laboratory test orders

of approximately .7 (.8). Gender (ethnic) concordance is associated with an on average

reduction in the likelihood of prescribing one or more radiology tests of 1.1% (2.5%).

This paper also finds a greater reduction in diagnostic resources when patients and

doctors have the same ethnic group and gender, relative to when they have only

gender or ethnic concordance.

The main feature of my empirical strategy is a fixed-effect on doctor and Major

Diagnostic Category. I therefore estimate the relationship between demographic con-

1A primary doctor is defined by the hospital as the main doctor responsible for a patient’s hospital
stay. I use primary doctors to determine whether demographic concordance occurred for an inpatient
event. This is discussed further in Section 1.4.7
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cordance and diagnostic resources only within patients a doctor treats. Secondly, I

assume doctor-patient demographic concordance is in practice exogenous. However,

if informal sorting of patients to doctors occurs - because of demographic characteris-

tics - this would likely generate a positive bias in the amount of diagnostic resources.

Informal sorting would therefore be associated with a bias that is opposite to the neg-

ative relationship in my data. I discuss the assignment of doctors to patients during

a hospital stay in Section 1.4.7.

I suggest two explanations for a reduction in diagnostic resources when doctors

and patients are demographically concordant.

The first explanation is improved information from a consultation when a doctor

and patient are demographically concordant. Doctors obtain information from two

sources when diagnosing and treating patients. The first source is information from

the consultation process. This includes information from communication and a phys-

ical exam. The second source is information from diagnostic tests. Because I observe

a reduction in diagnostic tests, this suggests more information on a patient’s health

condition has been obtained from the consultation.

This explanation is supported by empirical studies on the quality of communi-

cation when doctors and patients are demographically concordant on gender and

ethnicity (Street Jr et al., 2007; Van Ryn and Burke, 2000; Gordon et al., 2006).

These papers use data collected from surveys after a consultation has occurred, or

researchers code observations from video-taped consultations. The quality of a consul-

tation has been measured by; its length, the content of questioning, body language,

and satisfaction rated by doctors and patients. These papers have suggested that

there is improved consultation quality in demographically concordant pairs, though

sample sizes tend to be small. Because my paper uses changes in diagnostic resources

to infer consultation quality, it is a unique contribution to the literature on consulta-

tion quality in demographically concordant doctor-patient pairs.
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Balsa and McGuire (2001, 2003) model improved information in ethnically con-

cordant relative to discordant doctor-patient consultations. In their model, doctors

interpret a noisier signal of a patient’s health condition when ethnically discordant.

A doctor may then over- or under-treat a patient, because the quality of information

on a patient’s health condition is poor. A related area of research is on the revealed

preferences patients have for the demographic characteristics of their General Prac-

titioner (GP). For example, Godager (2012) finds that both male and female citizens

in Norway prefer a GP of the same gender. They use revealed preferences of citizens

that were asked to rank their most preferred GP.

A second explanation for a negative relationship between demographic concor-

dance and diagnostic resources is that preferences for the amount of laboratory and

radiology tests could change when a doctor and patient are demographically concor-

dant. For example, doctors and/or patients may prefer a less invasive treatment plan

in demographically concordant pairs. This explanation would also be consistent with

fewer diagnostic tests. I do however control for treatment decisions which should mit-

igate some of the differences in treatment plans across demographically concordant

and discordant pairs. My paper is unable to distinguish between improved consul-

tation and preference change explanations for a reduction in diagnostic resources in

demographically concordant pairs.

Two reasons for the overuse of diagnostic resources in the United States are litiga-

tion and insurance arrangements. Both of these explanations could be associated with

fewer diagnostic tests ordered in demographically concordant doctor-patient pairs.

For example, a doctor treating a patient of the same demographic characteristics

could be less concerned about patient litigation and/or is more likely to provide med-

ical care according to patient need rather than reimbursement incentives. My data is

from a hospital in New Zealand, where health care is publicly provided and doctors are

not at a personal risk of litigation. Therefore, litigation and insurance arrangements
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are not expected to explain a reduction in diagnostic test orders in demographically

concordant doctor-patient pairs. Lastly, I assume doctors are not prejudiced towards

a patient of the same demographic group. That is, I assume doctors do not inten-

tionally under-treat a patient of the same demographic characteristics because of a

dislike for that demographic group.

My significant negative finding suggests that improvements in the doctor-patient

relationship, for example through shared demographic characteristics, could reduce

the use of diagnostic tests.

The next section outlines the theoretical and empirical literature on doctor and

patient demographic characteristics and health care delivery. Later sections explain

the data source and empirical strategy. Results and conclusion are in Section 1.6

and 1.7.

1.2 Background

1.2.1 Theory on doctor-patient demographic characteristics

and clinical consultation

Balsa and McGuire (2003) model three ways a patient’s ethnic group might enter

into a doctor’s decision making about medical treatment. The three explanations

are prejudice, clinical uncertainty and stereotypes. These three explanations might

explain the ethnic-based variation in medical treatment observed in the United States.

To set up their model, Balsa and McGuire use a baseline situation which leads to a

fair and efficient allocation of medical treatment. In this model, there are two patient

types; white and black. Black and white populations have a distribution of illness

severity. This is normally distributed with a population mean and variance. Doctors

have complete information on the severity of black and white patients in the baseline

model. Patients will receive a medical treatment if their illness severity (i.e. expected
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benefit from treatment) exceeds a threshold. This threshold is decided by doctors

maximising the population’s expected net benefit, given information on a patient’s

severity of illness. Because doctors have complete information on the severity of

black and white patients, doctors select treatment if a patient’s true health condition

exceeds the threshold. The allocation is fair because black and white patients are

treated according to their true illness severity, and not their race or ethnic group. The

allocation is also efficient because no other patient can be made better off, without

making another patient worse off2.

The first explanation for ethnic-based health disparities are prejudices or biases

doctors hold against an ethnic group. This involves a doctor treating a patient from

an ethnic group with a lower regard than a patient from another ethnic group. This

enters into the model as a transaction cost (e.g. psychological cost), based on Becker’s

specification of discrimination in the labour market. A transaction cost, for white

doctors providing treatment to black patients, raises the threshold required for black

patients to be treated. The allocation is unfair because black patients are under-

treated relative to white patients, given their clinical need. Whether the allocation

is efficient depends on the legitimacy of doctor’s ‘psychological cost’. Efficiency is

concerned with the total welfare of society. Treatment for black patients may not be

increased without being offset by the psychological cost to doctors and/or making

white patients worse off. If this ‘psychological cost’ is not a legitimate preference, the

allocation with prejudiced doctors would be inefficient.

The second explanation for ethnic disparities in medical treatment is clinical un-

certainty. Balsa and McGuire separate clinical uncertainty into two mechanisms; (1)

a miscommunication and (2) a rational profiling model. In the miscommunication

model, black patients emit a noisy signal of their condition to white doctors. There

2A fair allocation is when every individual’s treatment decision is independent of their race or
ethnic group. An efficient allocation is defined as no other allocation that makes another individual
better off without making another individual worse off.
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is no noise in a white patient’s signal of their condition. Doctors are Bayesian decision

makers; the noisier a signal the greater weight doctors will put on racial priors instead

of a patient’s signal of their condition. Racial priors are the population means for

illness severity. Doctors revert to these population means when deciding treatment

for black patients. Black patients with a true severity below the threshold have a

positive probability of treatment (and therefore harm, because treatment is excessive

relative to clinical need). There is a risk of of non-treatment for black patients with

a true severity above the threshold. This allocation is unfair because black and white

patients with the same level of severity could be treated differently. The allocation is

efficient because the doctor uses all information available to maximise the expected

benefit of both black and white patients.

In the rational profiling model, doctors observe a noisy signal for both black and

white patients. However, the distribution of the signal error is the same for black and

white patients. The distribution of illness severity for black and white populations

have different means, and the doctor is aware of this. Different means could come

from differences in biological characteristics across populations. For example, a lower

rate of metabolism for depression drugs in black than white patients could result in

drugs administered in lower doses to black patients. The doctor will then set a lower

treatment threshold for the group with a higher mean severity. In the profiling model,

compared to the miscommunication model, white patients also have a risk of being

mistreated. In addition, the risk of being over or under treated for patients depends on

the relative population means of black and white groups. If the mean of black illness

severity is lower then white, black patients have a greater risk of undertreatment

than the risk of overtreatment. If the mean illness severity for black patients is

greater than white, then black patients have a greater risk of overtreatment than the

risk of undertreatment. The allocation of treatments in the rational profiling model

is unfair because black and white patients with the same severity level are treated
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differently. The allocation is however efficient: using a common threshold for both

groups would generate greater misdiagnoses, because information on mean differences

across the groups is excluded.

The last source for ethnic treatment disparities are stereotypes. Stereotypes are

beliefs doctors have about the health-related behaviors of minority patients. These

beliefs are inaccurate compared to beliefs in rational profiling. Doctors observe a pa-

tient’s true severity accurately (no noise), and they value the net benefit of treatment

for both groups equally (no bias). Balsa and McGuire show how a belief held by

doctors that black patients are less likely to comply with treatment recommendations

can generate a self-fulfilling equilibria. There is also a cost to putting in effort for

doctors and patients. Effort by doctors is in observing and following up whether

patients comply. Effort by patients is in complying with treatment. The net benefit

from treatment therefore depends on both the doctor (to observe and follow up) and

patient effort (to comply). These efforts can take high or low values. The doctor will

maximise the patient’s net benefit minus their own cost and benefit. There are two

equilibria. Firstly, for doctors to observe a patient (high doctor effort), and patients

to comply (high patient effort). Secondly, for doctors not to observe (low doctor

effort), and patients not to comply (low patient effort). This equilibria can result in

black patients recieving fewer treatments. If white doctors believe that black patients

do not cooperate, this can generate self-fulfilling beliefs because doctors do not want

to put in the effort to follow up and black patients have less incentive to comply

(coordination failure). This allocation is unfair, because black and white patients are

treated differently given the same illness severity. It is also inefficient because black

patients and white doctors could reach a higher equilibrium of both cooperating.

Balsa and McGuire’s model describes how a patient’s ethnic group could enter

into a doctor’s decision making. Their model refers to medical treatment decisions,

whereas I investigate diagnostic resource decisions. I discuss at the end of the next
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section how a relationship between doctor-patient ethnic concordance and the amount

of diagnostic resources relates to Balsa and McGuire’s three explanations for ethnic-

based disparities in medical treatments.

The ‘principal-agent’ theory in economics has also been applied to the doctor-

patient consultation by Mooney and Ryan (1993). Their principal-agent model max-

imises the utility functions of doctors and patients in the doctor-patient encounter. In

contrast to traditional principal-agent theory, the utility functions are interdependent

when a doctor (agent) is treating a principal (patient). The principal is characterised

by having less information than the agent (on medical diagnoses and treatments).

Because utility functions are interdependent in health, the maximisation problem

requires the doctor - who acts on behalf of the patient in discussing and adminis-

tering medical treatments - to observe the patient’s utility function. The contents

of the patient’s utility function have been discussed by Mooney and Ryan (1993).

Mainly, the utility function contains the patient’s health condition and preferences

for medical treatment. The information problem characterising the agency situation

is separated into; the extent to which the patient transfers information on their health

and preferences, the extent to which the doctor transfers information on diagnoses

and treatment options, and the exchange between doctor and patient in selecting a

treatment that matches the patient’s health needs and preferences (Scott and Vick,

1999, pg. 114). This information exchange characterises the maximisation problem

in the doctor-patient relationship. Increased similarity between a doctor and patient

may facilitate both parties to exchange more information, and for the doctor to act on

behalf of a patient’s utility function, suggesting an improvement in the consultation.

Empirical tests for statistical discrimination

My research question relates to empirical tests for statistical discrimination in health

care, because improved doctor-patient communication is a plausible explanation for
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a reduction in diagnostic tests when a doctor and patient have the same demographic

characteristics. Empirical tests for statistical discrimination test for the effect of in-

formation from doctor-patient communication on treatment decisions. Balsa et al.

(2005) and Chandra and Staiger (2010) test for statistical discrimination as an ex-

planation for medical treatment disparities across ethnicity groupings. Grytten et al.

(2011) test for statistical discrimination as an explanation for why highly-educated

women are more likely to undergo a caesarean procedure in Sweden.

Balsa et al. (2005) empirically test for their two proposed mechanisms for statis-

tical discrimination - miscommunication and rational profiling - in the diagnosis of

hypertension, diabetes, and depression among black and white Americans. In the

rational profiling model, doctors use prior beliefs about a patient’s racial group when

deciding medical condition and treatment. In the miscommunication model, doctors

are less able to understand and interpret a patient’s signal because they belong to

a different ethnic group. The authors use data collected from a survey filled in by

doctors and patients after a consultation.

To test for rational profiling, Balsa and McGuire construct priors for how likely it

is for an age-gender-race combination to have a diagnosis of diabetes, hypertension,

or depression from epidemiological data. They then look at the significance of these

‘priors’ on the diagnosis choice. If it is unlikely for a combination of age-gender-race

to have a diagnosis, and a patient fitting that group is less likely to receive a diagnosis,

then this is evidence of rational profiling - because doctors are using prior information

when assigning a diagnosis. They find evidence of this behavior in the diagnosis of

hypertension, diabetes, and depression. To test for miscommunication, the authors

use an interaction term composed of a measure of a patient’s health signal and race.

This tests if patients from different ethnicity groupings send different signals when

consulting doctors. The measure of a patient’s signal of their condition was obtained
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by surveying patients on how they communicated their symptoms. They find evidence

for this in diagnosing depression in black patients.

Chandra and Staiger (2010) test for statistical discrimination and prejudice as two

competing explanations for ethnic-based disparities in treatment. They theoretically

model the doctor’s medical treatment decision process. They then compare what

their model implies for medical decisions to data on medical procedures. Specifically,

they investigate if under-treatment of black patients is due to prejudice or statistical

discrimination. In their model, doctors select a cardiac revascularisation procedure

for an Acute Myocardial Infarction (AMI) patient if they anticipate their marginal

benefit of treatment is above a threshold level.

The authors use differences in patient outcomes to infer whether a patient group

has a higher or lower marginal benefit from treatment. The authors argue that,

controlling for the propensity to be treated, prejudice against minority groups would

show itself as a higher marginal benefit after treatment for minority patients. This

is because minority patients receive fewer procedures, but show greater benefit from

such procedures. On the other hand, statistical discrimination would imply that

patient outcomes (marginal benefits from treatment) are equalized across majority

and minority groups, despite black and white populations having differing rates of

cardiac procedures. Different rates of procedures across populations would suggest

doctors take into account differences in the population mean severity (i.e. racial priors

about benefit from treatment) into the decision process. The authors control for the

severity of a patient through the Charlson score. The authors do not find evidence

for prejudice-based explanations, because black patients exhibit lower benefits (i.e.

higher mortality rates) when treated with a cardiac procedure.

A shortcoming of Chandra and Staiger’s argument is that doctors may choose

to provide treatment to more severe patients, and these patients may have poor

health outcomes. The authors argue that because minority patients have poor health
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outcomes, this cannot be due to prejudice. Prejudice would however be consistent

with poor health outcomes if doctors require a higher severity threshold for minority

patients to be treated compared to majority populations.

Grytten et al. (2011) distinguish between statistical discrimination and agency

theory as competing explanations for why highly educated women are more likely to

receive caesarean procedures in Sweden. The authors argue that statistical discrimi-

nation theory implies more highly educated women (‘expert patients’) are better able

to communicate their symptoms and preference for delivery methods than non-expert

patients. They argue this will result in higher rates of caesarean section procedures

for expert than non-expert patients. Agency theory assumes doctors have an incen-

tive to avoid caesarean section procedures, because of the cost to hospitals. In this

case, a doctor is more able to persuade a non-expert patient than an expert patient

to forgo a caesarean. Agency theory is therefore also consistent with higher rates of

caesarean section procedures for expert patients.

Increased use of diagnostic technology over time is used to distinguish between

statistical discrimination and agency theory. Under agency theory, diagnostic tech-

nology would not reduce the gap between expert and non-expert patients in their rate

of caesarean section procedures. This is because non-expert patients are unable to

interpret and use the information from diagnostic devices. In this case, doctors are

still able to persuade non-expert patients not to undergo a caesarean. If statistical

discrimination is behind differences in expert and non-expert rates of caesareans, then

the authors expect the gap between expert and non-expert mothers to decline over

time. This is because a doctor relies less on patient signals of their condition (which

advantages expert patients) and more on diagnostic technology. They find that dis-

parities in caesarean rates for highly and low educated women reduced from 1967 to

2005, which suggests to the authors that statistical discrimination explains some of
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the reason why more highly educated women are more likely to receive a caesarean

procedure.

There are shortcomings to Grytten et al.’s argument. Grytten et al. relies on

changes in diagnostic technology as the sole reason for a reduction in the gap of

caesarean procedures between expert and non-expert mothers. It may be the case

that non-expert patients are more aware of caesarean procedures now compared to

the past. For example, caesarean may have become more fashionable for all citizens

as countries have industrialised. Furthermore, the authors do not distinguish between

emergency caesarean and planned caesarean procedures. These treatment decisions

are made in different environments and diagnostic technology may play different roles

in each decision. For example, because emergency caesareans are decided in labour,

there may be little time to use diagnostic devices compared to ultrasound devices

used during pregnancy. In this case, doctors would still rely on an expert patient’s

communication during labour, but communication would have less impact on planned

caesarean decisions.

Testing for the presence of statistical discrimination in treatment decisions is diffi-

cult. Firstly, clinical uncertainty is hard to measure. In this paper, I use the amount

of diagnostic test resources used during hospital treatment. Because diagnostic tests

only provide information on a patient’s health status, the number of tests ordered is

indicative of the level of clinical uncertainty. This is because a doctor will gain in-

formation from the verbal and physical consultation and order their diagnostic tests

based on this information. If there is more clinical uncertainty they will order a larger

number of tests in order to arrive at a diagnosis and treatment plan. I therefore argue

that the amount of diagnostic tests ordered is a good indication of clinical uncertainty

in a consultation. Based on this argument we would expect from Balsa and McGuire’s

model that a doctor would order fewer diagnostic tests when demographically con-

cordant. This is because patients have improved communication with a doctor when
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ethnically concordant. A similar dynamic could be expected for when a doctor and

patient are concordant on gender as well.

However, the second issue with measuring statistical discrimination is that it is dif-

ficult to show that clinical uncertainty is a unique explanation for medical treatment

variation across groups of patients. For example, in Grytten et al.’s paper a change

in caesarean procedures over time could be explained by changes in patient prefer-

ences for caesarean procedures, rather than the introduction of diagnostic technology.

In this paper, I cannot exclude the explanation that preferences for the amount of

diagnostic tests (by either doctor or patient) could be related to demographic concor-

dance. That is, a patient or doctor may prefer to use fewer diagnostic resources when

demographically concordant. I do however include variables for medical treatment

decisions to control for variation in medical treatment decisions.

1.2.2 Empirical papers on doctor-patient demographic con-

cordance and health outcomes

There are a number of empirical papers on the impact of doctor-patient demographic

concordance on health care delivery. Health care outcomes have included; referral

rates for cardiac operations, patient satisfaction with a consultation, length of con-

sultation, doctor’s treatment decisions, patient compliance with treatment, and so on.

The effect of doctor-patient demographic concordance on the amount of diagnostic

tests ordered is, to my knowledge, novel.

Consultation quality

A number of papers use survey data collected from patients and doctors after a

consultation to study the relationship between demographic concordance (gender and

ethnicity) and measures for consultation quality. The following reviews the main
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papers in this literature, with an emphasis on how researchers obtained their measure

of consultation quality.

Cooper-Patrick et al. (1999) investigate the effect of doctor-patient racial and gen-

der concordance on participatory decision making (PDM) in a consultation. They sur-

vey 1816 adult patients after a consultation with a doctor at a primary care practice.

Thirty two primary care practices in Washington DC, United States were involved in

the study during the November 1996 to June 1998 period. The outcome (dependent

variable) is a patient’s percieved measure of how participatory the decision-making

process was. This measure was developed by Kaplan et al. (1995), and is calculated

from three questions patients are asked relating to how participatory they thought

the consultation was. These are; ‘(1) If there were a choice between treatments, how

often would this doctor ask you to help make the decision? (2) How often does this

doctor give you some control over your treatment? and (3) How often does this doc-

tor ask you to take some of the responsibility for your treatment?’ (Cooper-Patrick

et al., 1999, pg. 584). These are answered on a 0 (never) - 4 (very often) scale and

are combined and converted to a 100 point scale for the dependent variable. Control

variables include the patient’s age, gender, education, marital status, self-reported

health (5-point scale, poor to excellent), and how many years a doctor has been a

patient’s primary care doctor. They found that patients with racially concordant

doctors were statistically significantly more likely to have a higher PDM measure.

They also found that patients with a female doctor were on average associated with

a higher PDM, but that gender concordance was not statistically significantly related

to the PDM measure.

LaVeist and Nuru-Jeter (2002) look at the effect of doctor-patient racial con-

cordance on patient satisfaction of care. Their measure of patient satisfaction is

composed of answers to questions from 1 (poor) to 4 (excellent). Patients are asked

to rate their doctor’s performance based on the following five questions; ‘(1) provid-
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ing good health care, (2) treating you with dignity, (3) making sure you understand

what you’ve been told, (4) listening to your health problems, and (5) being accessible

by phone or in-person’ (LaVeist and Nuru-Jeter, 2002, pg. 297). These items were

averaged resulting in an outcome ranging from 1 - 4 of how satisfied a patient was

with their consultation. They find that patients with a doctor who is race concor-

dant reported higher satisfaction with their doctor than patients who were not race

concordant.

Street Jr et al. (2008) studied doctor-patient demographic concordance and com-

munication in the consultation. They recorded consultations for 270 patients with

29 physicians. Patients completed a survey before and after a consultation. Con-

sultations were recorded and researchers coded a consulation for observations on a

doctor’s informativeness, supportiveness and partnership building, as well as the pa-

tient’s willingness and ability to communicate. They found some evidence of racial

differences in communciation e.g. Asian doctors were more likely to percieve Black

patients as significantly less effective communicators than White or Black doctors.

In addition, black physicians felt that black patients were more satisfied with care

received than Asian doctors, but there was no difference for black patients with white

doctors.

Sandhu et al. (2009) reviews papers on gender dyads in doctor-patient relation-

ships. Consultation outcomes in their review included; talk content, behaviour and

non-verbal communication and the consultation length. Consultation length was the

most studied outcome for gender dyad studies. The authors find that the majority of

studies have shown some effect of gender concordance on consultation outcomes. The

review also investigates differences in gender concordance, for example, female-female

matches tended to involve longer consultations and contain more biomedical content

than male-male matches. The authors also note that the evidence base is small.
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Lastly, Stepanikova et al. (2006) find white patients treated by white doctors are

less likely to report medical errors than if they are treated by a non-white doctor. For

minority patients, the race of the doctor does not affect the probability of a patient

reporting a medical error.

Medical treatment decisions

A smaller number of empirical papers study the effect of demographic, particularly

racial, concordance on medical treatment decisions. The number of papers is small

in part because administrative datasets rarely have information on the doctor’s de-

mographic characteristics. King et al. (2004) looks at the effect of racial concordance

between black and white doctors and patients on the time to receiving protease in-

hibitors in patients with HIV. They find black patients received protease inhibitors

significantly later when they were treated by a white doctor than a black doctor.

Chen et al. (2001) tested for a significant interaction in the race (black and white)

of doctor and patient in the use of cardiac catheterisation following an AMI event.

The interaction term is composed of dummy variables for a patient and doctor’s ethnic

group. They find that black patients had lower rates of cardiac catheterisation, and

that this was regardless of the race of the doctor. The authors however do not control

for a doctor’s skill level in their interaction model. For example, whether a doctor

held a specialist or junior position in the hospital. They include a control variable for

the doctor’s medical specialty; internal medicine, cardiology, other internal-medicine

sub-specialty, and family practice. A dummy variable for the race of the doctor would

however control for some of the unobserved differences in skill level across black and

white doctors.
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General Practitioner selection

In the economics literature, Godager (2012) model patient selection of GPs as a

function of the age difference and gender concordance between a GP and patient.

The authors use data collected from patient surveys in Oslo, Norway. The revealed

preference for GPs is obtained from responses by inhabitants to rank their three most

preferred GPs in descending order. The authors obtain a representative sample by

selecting respondents in proportion to the characteristics of the population. They

used a sample of 15,000 patients with 437 unique GPs. They find that patients from

both genders prefer a GP of the same gender. They also find that higher educated

women prefer a GP of a matching gender than a less educated woman. They also

find that patients prefer a GP that is older rather than younger relative to their own

age.

1.3 Data

In this section I firstly overview my data source. I then discuss how I obtained

demographic information for doctors. I lastly summarise my laboratory and radiology

data.

1.3.1 Source of data

Data was obtained from a large public hospital in New Zealand. I used three depart-

ments within the hospital to collect data. This resulted in a dataset with information

on doctors’ demographic characteristics, and the diagnostic test orders for each in-

patient event. My dataset has the advantage of detailed information on diagnostic

resources and doctor characteristics, but is limited to one hospital.

My dataset covers inpatient events between 2004 and 2011. This time period is

used because information on diagnostic test orders was only recorded from the 2003
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financial year onwards. The initial year of diagnostic test collection could be less

reliable, because the system was newly implemented, hence I use inpatient events

from 2004 to 2011.

The first source of data is electronic inpatient event records. An inpatient event is

recorded when a patient spends more than three hours in hospital. Diagnostic coders

working for the hospital will look at each inpatient admission and code an event if it

is longer than three hours.

Inpatient event data contains information on the name of a patient’s primary

doctor. I use a patient’s primary doctor to determine whether a patient was treated

by a doctor with the same demographic features3.

Information on a doctor’s gender and ethnicity is obtained from the hospital’s

Human Resources (HR) department. Demographic information is self-reported by

doctors on employment forms. Demographic information was obtained from HR for

all nursing and medical staff that received payment from the hospital.

HR data is merged with inpatient data by matching on doctors’ names. Details

are in Section 1.3.2. Matching had to be undertaken on names because there is no

unique identifier for employees used by both inpatient data services and HR. HR

only collected demographic information from 2005 onwards. As a result, there is a

possibility I do not observe a doctor that left employment before 2005. There is only

one year of data between 2004 and 2005, and therefore the number of doctors in this

position is expected to be small.

The third source of data is laboratory and radiology tests. This is obtained from

a patient costing system that records tests ordered during a patient’s hospital stay.

Diagnostic tests are linked to each inpatient event by an identification code.

3A patient’s primary doctor is referred to as a ‘casemanager’ in inpatient data. This is because
a patient’s casemanager may not be a doctor. For example, they might be a nurse or midwife.
This paper uses the term doctor, instead of casemanager, for ease of understanding. It’s a realistic
assumption that most diagnostic test orders in a hospital would come from a doctor. Casemanagers
are not always identified in the data as a doctor or nurse, so it is not possible to consider these
casemanager groups separately.
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1.3.2 Matching doctor demographic information to inpatient

data

The main data source is inpatient event data. This records the name of the primary

doctor4. To obtain demographic information on doctors, HR data was merged with

inpatient data by matching the names of doctors. Ethics approval was obtained

for this procedure (New Zealand Health and Disability Council, reference number:

NTX/11/EXP/029).

HR data has information on the first, middle and last names of employees. In-

patient data has variable fields for a doctor’s last name, first name, preferred given

name and middle name. Unfortunately, these variable fields for a doctor’s name are

not always populated in inpatient event data. At worst, there is only information on

the last name and first initials of the doctor. The matching process therefore worked

sequentially by firstly merging with the most information on names. Patients that

are not merged are then attempted to be merged requiring less information.

The first merge was on the full first, middle, and last name. The second merge used

the full first and last name and third letter. The third merge used the full first and

last name. The last merge was on the first letter(s) and full last name. For this set of

merges, each unique merge was checked manually and flagged if the match did not look

correct. A match is flagged incorrect if both datasets had information on first names

and these did not match. Or, medical area (e.g. maternal, cardiology) and designation

(e.g. medical officer or nursing staff) indicated in HR records did not match the type

of patients treated by that doctor in inpatient data. After this matching process, a

crosswalk was constructed to link inpatient data with HR information. I also check

that my results are robust when estimated with doctors matched only on their full

first and last name.

4I use the term ‘doctor’ henceforth to refer to the primary doctor for inpatient events.
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I am able to match 417,119 eligible inpatient events with a doctor in HR records

during the 2004-2011 time period. The number of eligible inpatient events during the

sample period that I am unable to match is 114,070. Eligible inpatient events restrict

patients to being aged 5 years or over, not entering hospital for an elective procedure,

not being discharged from a rehabilitation facility, and lastly not having a primary

doctor that is an ‘AED Consultant’ (i.e. doctor is not personally identified). Details

for how this eligible patient population is selected is in Section 1.4.4.

Table 1.27 (in Appendix 1.E) has summary statistics of inpatient events for pa-

tients matched with HR data. Table 1.28 has summary statistics for the inpatient

population that is not matched with HR data. Of all inpatient events not matched

with a HR record, 30% are for MDC 14 which comprises mostly birth events (Ta-

ble 1.28). It is quite likely the primary provider is employed by another organisation

(e.g. a private obstetrician or midwife), but enters hospital to provide care when a

women goes into labour.

There are several reasons a doctor in inpatient data is not matched to HR data.

These include; HR not having a record of a doctor (e.g. if they are hired by another

health care provider but work at the hospital), the doctor is a team of people, doctor

was identified as a ‘consultant’, doctors recorded a different version of their name

(e.g. Tony compared to Anthony), and misspelling in either inpatient or HR records

of an employee’s name.

Furthermore, of doctors that are matched to HR data, there is a sizable portion

that did not complete information on their ethnicity and/or gender. Doctors are

asked by HR to fill out forms with their age, ethnicity and gender and this is then

entered into HR records. Some employees also entered an ‘other’ ethnic category,

which resulted in an inability to determine ethnic concordance. Ethnicity and gender

information is also self-reported by employees and is not checked for accuracy by

another party.
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Inpatient events that involve a doctor for which we do not have ethnic and gender

information are excluded from my sample. Table 1.13 in Appendix 1.A has summary

statistics for inpatient events where the doctor has gender and ethnicity information.

There are 275,695 inpatient events with information from HR on doctor’s ethnicity

and gender.

Table 1.1 has demographic information for doctors that have information on gen-

der and ethnicity. I was able to merge a total of 480 doctors, of which 472 have

information on gender, 325 have information on ethnicity and 460 have information

on age. There are 324 doctors with information on both gender and ethnicity. This

population of doctors is used to estimate the diagnostic resource and demographic

concordance relationship. Of the 324 doctors, 82.4% are European, 7.4% are Asian,

and 4.9% are Indian. Other doctor ethnicity groupings are smaller. Of 324 doctors,

59.3% are male. The average number of patients per doctor in the study is 850 with

a median of 418.

The number of doctors with less than 20 observations is 66, and 26 of these are in

MDC 14 which corresponds to the Childbirth and Pregnancy medical category. These

caregivers are quite likely midwives or obstetricians who enter hospital only when their

patient gives birth. Another 15 are in MDC 3 which is the Ear, Nose and Throat

category and involves a large share of prearranged surgical operations. Casemanagers

in these roles (e.g. midwives and surgeons) could work for other employers, or on a

part-time basis with the hospital. The number of patients per doctor is relevant to

my empirical strategy. This is because I require sufficient numbers of patients within

doctors to estimate coefficients in a fixed-effect model.

1.3.3 Laboratory and Radiology data

The quantity and cost of laboratory and radiology tests for an inpatient event are

obtained from a patient costing system used by the hospital. All laboratory or ra-
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Table 1.1: Doctor characteristics

N Mean Sd Min Max

European doc 324 0.824 0.381 0 1
Asian doc 324 0.074 0.262 0 1
Indian doc 324 0.049 0.217 0 1
Age 319 43.944 9.433 22 71
Male 324 0.593 0.492 0 1
N patients 324 850.917 1199.508 1 8287

N merged 480
N w gender 472
N w ethnicity 325
N w age 460
N w <20 patients 66
N w <20 patients in MDC 14 26
N w <20 patients in MDC 3 15
Notes: N is number of doctors with HR information on ethnicity and gender. Scalar statistics
at bottom of table are for number of doctors merged, and merged with ethnicity, gender or age
information.

diology tests a doctor orders during an inpatient event are recorded and attached a

cost. In the following, I discuss how costs are assigned to tests, how diagnostic data

is collected, and features of the laboratory and radiology cost data.

Costing of diagnostic data

Costs for each type of laboratory and radiology test are calculated internally by

the organisation. Tests are given a cost by dividing overheads for the organisation

(equipment, labour etc.) into the expected costs for a laboratory or radiology test.

The cost for each type of laboratory test can change over financial years. This

change is mostly small, because the expected resource use for a test type is relatively

stable. To avoid changes in test costs over financial years, the average cost for each

type of test during the entire study period is used. Costing data for the financial year

of 2002-2003 and 2003-2004 did not contain information on the type of test ordered.

If a test was missing information on the type, the original cost assigned to the test

was used. A dummy variable for each financial year would also capture changes in

test costs over time in the organisation. Patient events that had missing information
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on the type of test were also tagged and excluded from the sample as a robustness

check.

Radiology data has an ‘other’ test type category. This cost varies across individ-

uals. This therefore prevented using one average cost for each test type in radiology

data. In any case, I do not use radiology costs, this decision is discussed in Sec-

tion 1.4.3.

Collection of diagnostic data

An employee at the hospital is responsible for the maintenance of laboratory and

radiology data. Because laboratory and radiology tests are recorded electronically

and monitored by an employee for accuracy, missing observations of tests for an

inpatient event are expected to be rare, or at least not systematic.

Approximately 20% of hospital inpatient events have no recorded laboratory tests.

This may raise concern about missing observations of laboratory test orders. To

investigate the completeness of laboratory data, patient characteristics for inpatient

events that have zero laboratory tests are examined. I would, for example, not expect

patients staying in hospital for a considerable amount of time to have no laboratory

tests.

Table 1.30 in Appendix 1.G summarises inpatient event variables for patients

with no laboratory tests. The 95th percentile of patients have a length of hospital

stay that is less than two days. This suggests that patients with no laboratory tests

comprise mostly short hospital stays. The maximum hospital stay (LOS) is 131 days.

All patients with a LOS above the 95th percentile are rehabilitation patients. These

individuals require long term care for non-acute conditions.

In addition, 38% (15%) of inpatients with no laboratory test are in MDC 2 (14)

which is the medical category for eye related conditions (birth events). These medical
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conditions are expected to be associated with fewer laboratory and radiology text

orders.

Summary statistics therefore indicate that most inpatient events with no labora-

tory tests are the type of events we might expect to have no diagnostic tests, rather

than instances of missing observations on diagnostic test orders.

The next section summarises the features of the laboratory and radiology data.

These datasets are considered accurate and there are no significant concerns about

missing observations in these datasets.

Laboratory data

Table 1.2 summarises the laboratory cost dataset used in my study. There are 1,261

unique laboratory test types for the population of inpatients in the study. The average

test cost is $98 and the median cost is $24.47. There are over 11 million entries in the

laboratory cost data. There are 361,734 entries missing information on the specific

type of laboratory test. These are mostly from the 03/04 period (354,392). There

are only 567 entries out of the total 11 million observations that have a zero or no

allocated cost. Laboratory data is therefore fairly complete given the size and scope

of the information it contains.

In laboratory cost data, a labour component is added for the collection of blood,

this is separately identified and dropped from the data so that only costs for laboratory

tests are used to measure laboratory resource use. Table 1.3 lists the top laboratory

test types and the proportion of total tests that are of that type. The most common

laboratory test is a Full Blood Count with a cost of $7.76.

Radiology data

Table 1.5 summarises the radiology cost dataset. There are 245 unique radiology

tests. All entries missing information on the type of test are from the 2003-2004
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Table 1.2: Cost information for each type of Laboratory test

N Mean Sd Max P50 P90

Cost 1,296 93.26 184.03 2,811.95 34.47 240.61

N data entries 1,179,7102
N entries missing type 361,734
N entries missing type 03/04 354,392
N entries missing type 04/05 6,921
N entries zero cost 567
Notes: N=1296 is number of unique laboratory tests. Scalar statistics are the number of laboratory
dataset entries that are missing the type of laboratory test, or have a zero cost.

Table 1.3: List of the most common laboratory test types

Laboratory type Cost Proportion of test

ALT 1.97 .03
AST 1.98 .03
Albumin 1.86 .03
Alk Phos 1.97 .03
Bilirubin Total 2.07 .03
Creatinine 1.86 .08
Full Blood Count 7.74 .09
Film examination 16.58 .03
GGT 1.93 .03
Glucose 1.86 .04
Potassium 1.81 .08
Sodium 1.81 .08
Urea 2 .07
Notes: Column (1) is the laboratory test type, Column (2) is the cost in the data, Column (3) is
the proportion of test type in the data.

financial year. There are only 188 entries of 804,770 observations of radiology tests

that have a cost of zero.

Table 1.4 lists the most popular types of radiology tests. The most popular ra-

diology item is a chest scan (on plain film), 30% of all radiology items are in this

category with an estimated cost of $60.

27



Table 1.4: List of most common radiology test types

Radiology type Cost Proportion total test

Abdomen 90.7 .05
CT Chest, Abdo, Pelv 428.52 .04
CT Head 276.49 .05
CT Other 135.19 .06
Chest 61.87 .31
Gynae Ultrasound 81.68 .02
Mobiles 76.86 .06
Obstetric Ultrasound 71.62 .02
Pelvis and Hips 60.45 .03
Screening 229.22 .02
Tib, Fib, Ankle 59.74 .02
US Abdomen, Pelvis 122.01 .02
US Vascular 311.53 .02
Notes: Column (1) is the Radiology test type, Column (2) is the cost in the data, Column (3) is the
proportion of test type in the data.

Table 1.5: Cost information for each type of Radiology test

N Mean Sd Max P50 P90

Cost 245 487.92 716.55 5,961.14 294.48 908.43

N data entries 804,770
N entries missing type 2,077
N entries missing type 03/04 2,077
N entries missing type 04/05 0
N entries zero cost 188
Notes: N=254 is number of radiology test types.

1.4 Empirical strategy

This section outlines my empirical strategy, starting with my baseline econometric

model. I then discuss the laboratory and radiology resource outcomes, study sam-

ple, variables for demographic concordance and other explanatory variables in the

model. I then discuss the assignment of patients to doctors, and accordingly whether

demographic concordance variables are exogenous in the baseline econometric model.

A discussion of alternative approaches to estimating the relationship between demo-

graphic concordance and diagnostic resources closes the empirical strategy section.
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1.4.1 Econometric model

The main feature of my estimation approach is a combined fixed-effect on doctor and

Major Diagnostic Category (MDC). A doctor-MDC fixed-effect estimates the effect

of demographic concordance, relative to no demographic concordance, within each

doctor’s decision-making environment. This is because patients tend to present at

hospital with symptoms originating in a biological area or organ system. Major Diag-

nostic Categories correspond to a single organ system that is the origin of disease. For

example, circulatory or respiratory conditions. This is assigned by diagnostic coders

after an inpatient event. Within this diagnostic situation, each doctor decides diagno-

sis and treatment using information from training, experience, patient consultation,

and diagnostic tests. A fixed-effect on doctors therefore controls for heterogeneity

across doctors in their patient case-mix, experience, training and other idiosyncratic

test-ordering behaviours. The econometric model is indexed by inpatient event i,

inpatient event i′s doctor j, and inpatient event i′s MDC, m. The baseline model is:

diag resourceijm = α + βXi + β1gender concordancei + β2ethnic concordancei

+β3gender and ethnic concordancei + αjm + εijm (1.1)

diag resourceijm is the amount of inpatient event i′s laboratory or radiology re-

sources, these diagnostic measures are discussed in Section 1.4.2 and 1.4.3. Xi is a

set of control variables for inpatient event i, these are discussed in Section 1.4.6.

Demographic concordance is estimated by a set of dummy variables for each type

of demographic concordance; ethnicity only, gender only and ethnicity plus gender.

The base category is no demographic concordance, these variables are discussed in

Section 1.4.5.
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Baseline models are estimated with Ordinary Least Squares, though non-linear

models are also estimated when diagnostic outcomes are discrete (see Sections 1.4.2

and 1.4.3).

My fixed-effect method estimates the difference in mean diagnostic outcomes for

demographically concordant relative to discordant patients within each doctor and

MDC combination, after controlling for explanatory variables in vector X. In model

estimation, standard errors are clustered on the doctor and MDC.

I discuss whether demographic concordance variables are exogenous in the baseline

model in Section 1.4.7. With exogenous demographic concordance variables, β1, β2, β3

estimates the effect of ethnicity, gender, and ethnicity plus gender concordance, rel-

ative to no demographic concordance, on the amount of diagnostic resources within

patients with the same MDC and doctor. Unobserved sorting of patients to doctors,

because of demographic characteristics, is theoretically possible in the hospital. I

however argue (in Section 1.4.7) that any plausible relationship between demographic

concordance variables and the error term (εijm) would result in a positive bias in the

estimate of demographic concordance variables, and accordingly is opposite to the

negative relationship I find.

1.4.2 Laboratory test outcome and model specification

I use two different laboratory test measures (outcomes), these are the total cost and

quantity of laboratory tests ordered during i′s inpatient event. The total laboratory

cost is the summation of laboratory test costs that were ordered during inpatient event

i. Likewise, the quantity of laboratory tests is the total number of laboratory tests

ordered during i’s hospital stay. Table 1.6 summarises the laboratory (and radiology)

outcomes for the eligible inpatient population.
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Table 1.6: Diagnostic resource outcomes

N Mean Sd Max P10 P50 P90 P95

Cost of lab. 275,697 206.3 472.3 3,0658.6 0.0 88.2 456.7 760.8
Ln lab cost 224,396 4.8 1.1 10.3 3.4 4.8 6.3 6.8
Quantity lab. 275,697 22.9 47.9 2511.0 0.0 11.0 52.0 85.0
Cost of rad. 275,697 319.6 1,266.0 114,668.5 0.0 55.4 752.2 1296.6
Ln rad. cost 156,567 5.4 1.2 11.6 4.0 5.2 7.1 7.6
Quantity rad. 275,697 1.5 2.8 164.0 0.0 1.0 4.0 6.0
Notes: Summary of diagnostic resource outcomes for the study sample.

Laboratory cost

I estimate the effect of demographic concordance variables for both raw and natural

logarithm-transformed laboratory cost outcomes.

The advantage of a log-transformed laboratory cost, is that the impact of large

cost values on coefficient estimates are reduced. From Table 1.6, the 95th percentile

of laboratory costs is $760.80 and the maximum value is $30,658.60. This shows that

there is a small number of inpatient events with very large laboratory cost values.

Large values affect the estimation of the mean function using OLS, and their impact

on mean estimation is reduced when log-transformed.

The second advantage of log-transformed laboratory cost, is that the distribution

is more normal. Figure 1.2 plots the kernel density of the log-transformed laboratory

cost. This figure shows a more normally distributed cost than the raw cost outcome,

shown in Figure 1.1. Ordinary Least Squares assumes that error terms are normally

distributed to enable efficient estimation of model coefficients. A more normally dis-

tributed outcome is more likely to have normally distributed error terms and therefore

satisfy the efficiency condition for OLS estimation.

However, disadvantages of log transformations are that patients with zero lab-

oratory cost (no laboratory tests) are excluded from the sample, and that model

coefficients cannot be interpreted on the cost scale. Re-transformation of coefficient

estimates to the cost scale, such as Duan’s smearing procedure, is problematic for

heteroskedastic data.
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The advantage of raw laboratory cost outcomes are that coefficient estimates can

be interpreted on the cost scale. Figure 1.1 plots the kernel density distribution of

the raw laboratory cost. The 95th percentile of costs are excluded. There is a high

density at zero, and a dip before increasing. The dip is due to a small number of

patients who receive $1-3 of tests.

A disadvantage of the raw cost outcome is that outliers are larger, and large cost

values can inflate coefficient estimates in the OLS model. Because of this, I exclude

inpatient events with laboratory costs in the 95th percentile.

Laboratory cost models are estimated with Ordinary Least Squares regression.

There is a large literature on models for health care expenditure data (Jones, 2011;

Hill and Miller, 2010). These models are aimed to addressing the positive and right

skewed nature of expenditure data. Jones (2011) and Hill and Miller (2010) com-

pare estimation procedures. Both papers find OLS on raw costs (as opposed to

log-transformed costs) is one of the best performing estimation methods. They as-

sess the performance of models by comparing the Mean Squared Error of coefficient

estimates. Other estimation methods that are similar to OLS in performance are;

Extended Estimating Equations, and the Generalised Linear Model (Jones, 2011).

Laboratory quantity

I also estimate the effect of demographic concordance on the number of laboratory

tests ordered during a patient’s hospital stay. Figure 1.3 plots the frequency his-

togram for the quantity of laboratory tests ordered during each patient’s hospital

stay. Nearly 20% of all inpatient admissions have no laboratory test (to check for

laboratory data accuracy, summary statistics for these inpatient events have been

discussed in Section 1.3.3).

The quantity of laboratory tests is estimated with fixed-effect OLS and a fixed-

effect count data model. Count data models are non-linear and designed for positive
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Figure 1.1: Laboratory cost raw scale
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Figure 1.2: Laboratory cost ln scale

integer outcomes. I estimate both a Negative Binomial and Poisson model with boot-

strapped standard errors. Bootstrapping standard errors should mitigate some of

the problems associated with unobserved heterogeneity, and coefficient estimation, in

non-linear models (Wooldridge, 2002, pg. 470).
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Figure 1.3: Laboratory quantity

1.4.3 Radiology test outcome and model specification

My radiology outcome is a binary variable for whether a patient received one or more

radiology tests during their hospital stay. A positive incidence of a radiology test is

informative compared to a positive incidence of a laboratory test. This is because

45% of patients do not receive a radiology scan, and the variation in the number of

radiology tests ordered per inpatient event is low (standard deviation = 1.2). In

contrast, most patients receive a laboratory test, and there is greater variation in the

number of laboratory tests ordered (standard deviation = 47.9).

Figure 1.6 plots the frequency of radiology tests per inpatient event. Compared

to laboratory tests (Figure 1.3), the number of tests per inpatient event is low. The

percentage of inpatient events with less than 6 radiology tests is 95% and the mean

number of radiology tests is 1.5.

The distribution of radiology costs, even in the log scale, is highly non-normal

and has a thick right-tail. Figure 1.4 plots the kernel density distribution of radiology

cost. There is a high density of costs at zero and a long right tail. Figure 1.5 plots

the log-transformed radiology costs, this distribution is also highly non-normal, with
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a spike around $40 and a thick right-tailed distribution. The higher density at $40

is due to a large proportion of chest and other plain-film scans in this cost bracket.

Some radiology tests are significantly more expensive (e.g. MRI), which contributes

to a thick right-tailed distribution. Fitting both the raw and log-transformed cost

distribution with OLS is problematic, because assumptions of normally distributed

error terms is unrealistic.

The binary radiology outcome is estimated with a fixed-effect linear probability

model (OLS)5
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Figure 1.4: Radiology cost in raw scale

5I attempted to estimate the binary outcome with a fixed-effect logit model in Stata 11. With
current computing capabilities I was unable to estimate the fixed-effect logit. Removing the fixed-
effect component from a non-linear model is a computationally intensive process, which might explain
why I was unable to compute coefficient estimates.
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Figure 1.6: Radiology quantity

1.4.4 Study Sample

I exclude some types of inpatient events from my hospital data to obtain a more

homogeneous study sample.
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I exclude inpatients who (1) enter hospital from a waiting list (i.e. for an elective

procedure), (2) are under 5 years of age and (3) are discharged from a rehabilitation

unit.

The above patient restrictions select a more homogeneous sample of inpatient

events. Specifically, I study inpatient events where there is some diagnostic uncer-

tainty (i.e. excluding ‘waitlist’ patients), not an intended long term physical or mental

rehabilitation process, and encounters involving doctor-patient communication (i.e.

patients greater than 5 years of age)6. Robustness tests also confirm that the results

do not change with the inclusion of these patients.

The remaining eligible inpatient events have a variety of medical conditions. These

are summarised in Table 1.33, Appendix 1.I. This lists the proportion of total eligible

patients for each Major Diagnostic Category. The top MDCs are Pregnancy, Child-

birth and Puerperium (MDC 14, 16% of all inpatients), Circulatory System (MDC 5,

14%), Respiratory System (MDC 4, 9%), Digestive System (MDC 6, 9%), and Kidney

and Urinary Tract (MDC 11, 6%). Within each MDC, the names and proportion of

admissions for the top Diagnostic Related Groups are listed. For example, 19% of

admissions in the Digestive MDC, have a DRG associated with treatment for abdom-

inal pain, and 10% have treatment for a non-severe appendectomy. This table helps

to illustrate that when patients arrive with a biological origin of illness, the attending

doctor will have to decide if the diagnosis is more severe (e.g. DRG of appendicitis

or AMI) or less severe (e.g. DRG of ‘abdominal pain’ or ‘chest pain’).

I also investigate estimating my baseline model on patients only in the top MDCs

for hospital admissions, (excluding Pregnancy, Childbirth And Puerperium.) These

MDCs are Circulatory, Respiratory, Kidney and Urinary tract, and Digestive condi-

6Waitlist patients enter hospital for a specific procedure that has been arranged prior to admission.
Remaining inpatient admission types in the sample are acute and arranged admissions. Arranged
admissions include patients that develop an acute condition but entry into hospital has been arranged
by a GP. For Rehabilitation units, patients tend to have different treatment plans than acute care
wards. Typically, patients have a high LOS and low diagnostic test orders. Lastly, I want to consider
inpatient events involving doctor-patient communication, so I exclude patients under 5 years of age.
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tions. Estimation across patients within MDCs selects a more homogeneous patient

sample to estimate demographic concordance variables on.

1.4.5 Demographic concordance variables

Each type of doctor-patient demographic concordance is separated into mutually ex-

clusive categories. The base category is no demographic concordance. Dummy vari-

ables are included for ethnicity only, gender only, and combined gender and ethnicity

concordance.

Ethnic concordance occurs when a doctor and patient belong to the same eth-

nic group. Patients and doctors are associated with one of seven main ethnicity

groupings; European, Maori, Pacific Peoples, Asian, Indian, Middle Eastern, and

Latin American/other. These ethnicity groupings are broad and include different

languages and countries. For example, Asian ethnic group includes Chinese, Korean,

and Japanese ethnicity groupings. Some doctors enter more detailed information on

their ethnic group, whereas other doctors enter broader ethnicity groupings. It is

therefore not possible to determine more detailed (e.g. Chinese separately to Asian)

ethnic concordance for all doctors.

HR data also has information on the age of doctors, a second set of demographic

concordance variables is constructed using this information. Age concordance occurs

if a patient has an age within five years above or below a doctor’s age. Further

analysis in the results section is conducted with age concordance.

The proportion of inpatient events with ethnic, gender, ethnic plus gender, and no

demographic concordance is in Table 1.7. Of inpatient events, 25.2% have ethnic only

concordance, 24.8% have gender only concordance and 31% have only ethnic plus gen-

der concordance. The lowest proportion of inpatient events are in the base-category

of no demographic concordance (19%). Similarly, when an age concordance variable
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is included in the model, the proportion of inpatient events with no demographic

concordance is reduced to 15.7%.

Table 1.7: Proportion of inpatient events in each demographic concordance category

Proportion

Gender and ethnic concordance:
Gender only 0.252
Ethnic only 0.248
Gender and ethnic 0.310
No demographic concordance (base cat.) 0.190

Gender, ethnic and age concordance:
Ethnic only 0.217
Gender only 0.203
Age only 0.033
Gender and ethnic 0.262
Gender and age 0.049
Age and ethnic 0.031
Gender, age and ethnic 0.048
No demographic concordance (base cat.) 0.157

N patient events 275,697
Notes: Column (2) is the proportion of patients in each demographic concordance category in the
eligible patient population.

Types of demographic concordance

Demographic concordance variables are a composite of different types of gender and

ethnic pairs, for example Male-Male, European-European and so on. Table 1.8 sum-

marises the proportion of each type of pair within a demographic concordance cate-

gory (e.g. the proportion of gender-only concordance that is male).

The percentage of inpatient events with ethnicity-only concordance that are Eu-

ropean is 97.2%. The percentage of inpatient events with gender and ethnicity con-

cordance that are European is 71.8% (European and male) plus 24% (European and

female).

The high number of European ethnic concordance is a limitation of my data. In

particular, it is difficult to estimate the separate effect of a patient’s ethnic group and

ethnic concordance on diagnostic test ordering. A patient’s ethnic group is separately

controlled for to remove variation in diagnostic test ordering due to a patient’s ethnic
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group. Patient ethnic (or gender) groups may be related to diagnostic tests if dis-

tributions of health statistics differ across ethnicity groupings. For example, obesity

and smoking is more prevalent in Maori and Pacific peoples, these health behaviours

could be associated with higher amounts of diagnostic tests. Maori and Pacific people

are also more likely to not have a doctor of the same ethnicity. The lack of variation

in the data to estimate ethnic concordance, when patient ethnic group is controlled

for, is further discussed in my result section.

Of inpatient events with gender-only concordance, 57% are male. There is there-

fore greater gender variation to estimate the separate effect of a patient’s gender

group, and gender concordance, on the amount of diagnostic resources.

Table 1.8: Proportion of each type of demographic concordance

N Proportion

Gender concordance only:
Male 69,524 0.584

Ethnicity concordance only:
European 68,332 0.972
Asian 68,332 0.009
Indian 68,332 0.013
Maori 68,332 0.004
Pacific 68,332 0.003
Other ethnicity 68,332 0.000

Gender plus ethnicity concordance:
European and male 85,461 0.718
European and female 85,461 0.240
Minority ethnicity and male 85,461 0.009
Minority ethnicity and female 85,461 0.032

N patient events 275,697
Notes: N is the number of patients in each demographic concordance category. Column (2) is the
proportion of patients for each type of demographic concordance e.g. Male is Male doctor-Male
patient.

Comparisons across demographic types of doctors

My empirical method estimates the average demographic concordance effect across

different types of demographic pairs. For example, gender-only concordance is an

average of male and female gender concordant pairs. The effect of demographic
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concordance on diagnostic resources might differ across these types of pairs. For

example, if male doctors are better communicators on average than female doctors,

then demographic concordance may have little effect on a male doctor’s diagnostic

test ordering, because male doctors obtain adequate information from communication

initially.

A problem with comparing demographic concordance across doctor gender and

ethnicity groupings is that patient case-mix is expected to differ across demographic

groups of doctors. Tables 1.32 and 1.31 in Appendix 1.H present summary statistics

for the characteristics of male and female doctors in the data. Female doctors are less

likely to provide a surgical procedure; 11% of female doctors have provided a surgical

procedure compared to 19% for male doctors. Female doctors are also more likely to

work in the MDC (14) associated with childbirth; 51% of all female doctors work in

MDC 14 relative to 4.5% for males doctors. As a result, it is reasonable to expect

medical area and skill level to differ across gender and ethnicity groupings of doctors.

Skill level and medical area could be related to the relationship between demo-

graphic concordance and diagnostic resources. For example, the impact of demo-

graphic concordance may be less important for complex illnesses, because test order-

ing could be driven by a patient’s severity of condition, rather than communication.

I’m therefore not able to distinguish between differences in behavioural features (e.g.

communication abilities) and case-mix when explaining a difference in the relation-

ship between demographic concordance and diagnostic resources across gender and

ethnicity groupings of doctors7.

7Even if we considered male and female doctors within a MDC, there could still be differences
in the unobserved level of experience and skill level across doctor gender and ethnicity groupings,
which could affect the diagnostic resource relationship.
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1.4.6 Other explanatory variables

All explanatory variables are listed with summary statistics in Table 1.13, Ap-

pendix 1.A. I separate inpatient explanatory variables into; patient characteristics,

timing of admission, type of hospital admission and clinical variables. These are

discussed next.

Explanatory variables for patient characteristics are; a male dummy variable, age

at admission, socioeconomic deprivation scale of neighbourhood, and patient ethnic

group dummy variables. The socioeconomic deprivation scale ranges from 1 to 10, an

increasing scale is associated with higher levels of deprivation in a patient’s residential

neighbourhood. Patient ethnic group dummy variables are; Maori, Pacific peoples,

Asian, Indian, Middle Eastern, and Latin American/other. European ethnic group is

the base category.

Explanatory variables for patient characteristics control for differences across pa-

tients in their demographic and socioeconomic features. Demographic and socioeco-

nomic features could be related to diagnostic test orders through their association

with comorbid conditions. For example, patients from lower socioeconomic areas

tend to have higher rates of smoking and obesity, which could be related to increased

diagnostic test orders because these health behaviours are associated with higher

chronicity of health condition.

Explanatory variables for the timing of an inpatient’s admission are dummy vari-

ables for; day of week a patient was admitted, year of admission, and timing of entry

to hospital (dummy variables for admission between 12pm-5pm, 5pm-12am, overnight

admission and morning admission is base category). Timing of admission could be

related to diagnostic test orders if changes in laboratory opening and closing hours

(e.g. during a day and over weekends) affect diagnostic test ordering. In addition,

there might be long term changes in hospital policy affecting diagnostic test orders.

These are captured by dummy variables for year of admission.
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Explanatory variables for the type of inpatient admission are dummy variables

for; transfer from another hospital, entry to hospital through the Accident and Emer-

gency Department (AED), acute admission (relative to base category of arranged

admission), an intended day patient admission, accident as cause of hospital admis-

sion, if a patient had one or more previous hospital admissions within the last 60

days, and if district health board for inpatient i is that of the hospital (variable

‘Home DHB’).

The following discusses how each type of hospital admission could be related to

diagnostic test orders. Firstly, a transfer indicates an inpatient event has been referred

from another health-care facility. This could be associated with fewer diagnostic test

orders, because transfer patients are more likely to have previous diagnostic test

orders on their patient history file. However, if more severe patients are more likely

to be transferred, this could mitigate a negative association.

Secondly, entry to hospital through the AED would control for routine diagnostic

test orders when patients present with a symptom. For example, doctors tend to

order a fairly standard set of tests when patients arrive at hospital with chest or

abdominal pain.

Thirdly, acute admissions could be related to higher test orders, because there

is a lower likelihood of diagnostic test orders prior to entering hospital compared to

arranged hospital admissions.

Fourthly, an intended day patient would also be associated with lower test orders,

because it is more likely there is less diagnostic uncertainty when a patient enters

hospital for a prearranged treatment.

Fifthly, patients that enter hospital where an accident has been indicated as the

cause of entry would be associated with decreased diagnostic uncertainty and therefore

diagnostic tests, because the cause of illness is known to the patient and doctor.
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Sixthly, patients who have had one or more inpatient event within the last 60 days

would likely be associated with fewer diagnostic test orders, because these patients

will have diagnostic test results in their patient history file. I specify a 60-day window

instead of a smaller (30-day) window to ensure all patients that have had contact with

the hospital within a reasonable time-frame are indicated.

Lastly, district health boards are regional providers of health care. Each citizen is

associated with a health board depending on their area of residence. Patients can be

treated by health boards other than their residential one, payment is arranged across

health boards for providing care. This could be related to test ordering if test orders

were conducted in another hospital of the patient’s DHB.

Explanatory variables for a patient’s clinical condition for an inpatient event i

are; length of hospital stay in days, the number of diagnoses, a dummy variable

for a surgical theatre event, and dummy variables for each of Charlson’s comorbid

conditions.

I use the ICD-10-AM diagnostic codes for Charslon’s comorbid conditions that

have been converted from ICD-9 by Sundararajan et al. (2004). Charslon comorbid

conditions control for specific diagnoses that are associated with severe or complex

health conditions (these are listed in Table 1.13, Appendix 1.A). An explanation of

Charlon’s comorbid conditions is also in Sundararajan et al. (2004).

I do not include variables for every inpatient events’ primary diagnosis. This is

because individual diagnosis codes are too numerous to include in the model (there are

over 20,000 ICD-10-AM diagnostic codes). In addition, I am interested in estimating

the effect of demographic concordance on the amount of diagnostic test orders required

to diagnose and treat a patient. The specific diagnosis arrived at through a doctor’s

decision-making process is therefore not a necessary control variable in my model -

unless demographic concordance is related to unobserved patient severity, I discuss

this possibility in the next section.
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Lastly, in a robustness check, I include dummy variables for primary diagnosis

for patients with (1) Kidney plus Liver and (2) Digestive conditions. Demographic

concordance variables remain statistically significant. This suggest that results are

not sensitive to differences in the unobserved medical diagnosis of patients in demo-

graphically concordant relative to discordant pairs.

Variables for theatre event (surgical procedure) and the length of hospital stay

control for the impact of medical treatment decisions on the amount of diagnostic

tests ordered. If a doctor’s treatment decision is affected by demographic concor-

dance, and treatment decisions are related to the amount of diagnostic tests ordered,

any relationship between concordance and test ordering could be due to treatment

decisions, rather than communication between a doctor and patient. Controlling for

medical treatments received during an inpatient event accounts for variation in test

ordering due to medical treatment decisions, rather than the amount of diagnostic

resources required to understand and monitor a patient’s health status.

1.4.7 Primary doctors and assignment of patients to doctors

This section discusses how doctors are assigned patients and how this could potentially

affect the estimation of unbiased coefficients for demographic concordance variables.

I use the primary doctor, recorded in inpatient event data, to determine whether

demographic concordance occurred for an inpatient event. The primary doctor is

defined by data collections as the main doctor responsible for an inpatient within the

hospital unit where the patient spent the majority of their hospital stay. For example,

Cardiology, Respiratory, and General Medicine are all hospital units.

A patient can be treated by doctors other than their primary doctor. This could

occur either within a hospital unit, or across hospital units during an inpatient event.

For example, a patient that enters hospital through AED and is transferred to the
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Cardiology unit would have a primary doctor that is associated with the Cardiology

unit, but would have been treated by an AED consultant as well.

In this paper I associate all diagnostic test orders during an inpatient event to the

primary doctor. Because patients can be treated by multiple doctors, understanding

the initial assignment and subsequent transfer of patients to doctors is important to

ensuring demographic concordance variables are exogenous to the error term (εijm)

in the diagnostic resource equation 1.1.

There are two components of the error term (εijm) that could be correlated with

demographic concordance variables. These are; (1) noise in the measure of diagnostic

resource use (caused by doctors, other than the primary one, ordering tests) and (2)

patient’s unobserved severity of illness. I need to ensure these two components - noise

and unobserved patient severity - are unrelated to whether demographic concordance

occurs. I discuss each of these scenarios next.

The first possible endogenous relationship is if demographic concordance variables

are related to the noise in the measurement of diagnostic resources ordered by the

primary doctor. I associate all diagnostic test orders during an inpatient event to the

primary doctor. Because a patient can be treated by multiple doctors, this generates

noise in the measurement of diagnostic resources. I use the total test orders during a

hospital stay because test decisions made by previous doctors is relevant information

for a primary doctor’s test ordering. For example, a primary doctor may not order

a specific type of test, because it has been ordered by a previous doctor, and they

can see the laboratory results on a patient’s file. In addition, it is not possible to

determine the ordering doctor for a diagnostic test in my data. I am therefore not

able to determine if tests were ordered by another doctor than the primary one.

The second possible endogenous relationship is if demographic concordance is

related to unobserved patient severity or complexity of illness. For example, if a more
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severe or complex patient is more likely to be transferred to a doctor of the same

demographic characteristics.

In this paper, to enable accurate estimates of demographic concordance variables,

I argue demographic concordance is in theory exogenous, and if demographic sorting

does occur informally and/or occasionally it would be associated with increased di-

agnostic resource use. This would bias the estimate of coefficients on demographic

concordance variables upward and opposite to the (negative) relationship I find in my

data. I explain my reasoning in the following paragraphs.

Firstly, the assignment of patients to doctors is in theory exogenous to εijm. There

is no formal hospital policy of sorting patients to doctors that have the same demo-

graphic characteristics. When patients arrive at hospital with an acute condition they

are assigned a doctor from a pool of doctors on-call in a medical specialty for that

day. A patient may already have an assigned doctor from a previous hospital stay,

or through arrangement with a GP. Doctors in a hospital unit (e.g. respiratory or

cardiology) takes turns being on-call. When a doctor is not on-call they are attending

to their caseload. In practice, patients are not able to select their doctor when they

arrive at hospital. After a patient has been assigned a doctor, they can be transferred

to another doctor. A transfer could occur because of doctor shift changes, constraints

on doctor’s time (i.e. current caseload), a patient transfers to another medical spe-

cialty, another doctor has more experience or specialty in a medical area, or if a

patient and/or doctor requests a transfer for another reason. It is therefore possible

that a doctor or patient requests a transfer because of demographic characteristics.

Secondly, given patients can be transferred to other doctors, this paper is then

concerned about informal sorting of patients to doctors of the same demographic

characteristics. Here I argue that if a patient is transferred because of doctor and/or

patient demographic characteristics, it is more plausible that patients are transferred
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to a doctor of the same demographic features rather than a doctor of different demo-

graphic features.

The first endogenous relationship is if diagnostic test orders by other doctors are

related to demographic concordance variables. I argue that sorting because of de-

mographic characteristics only occurs to achieve demographic concordance. This en-

dogenous transfer pattern is associated with a patient being treated by more doctors,

and accordingly a patient would have higher, rather than lower, amount of diagnostic

test orders. I therefore argue that is is only plausible that there is a positive relation-

ship between noise and demographic concordance variables. A positive relationship

is opposite to the negative relationship between concordance variables and diagnostic

resources that I find in my data. Therefore any endogenous relationship between

demographic concordance and noise in diagnostic resources would likely bias the co-

efficient estimate on demographic concordance in the opposite (positive) direction to

the one I find.

The second source for an endogenous relationship is if patients are more or less

likely to be transferred - because of demographic characteristics - depending on the

level of their unobserved severity of illness. If unobserved severity and demographic

concordance variables are related, I argue that it is more plausible that they would

be positively related. That is, a patient of increased severity is more likely to be

transferred to a doctor of the same demographic characteristics rather than a doctor

of different demographic characteristics. Because more severe or complex patients

are associated with higher diagnostic resource use, this would bias the estimate of

demographic concordance coefficients in the opposite direction to the one I find.

It is important to remember that I am only concerned about transfers because of

demographic characteristics that are related to a patient’s unobserved severity level.

A more plausible transfer, related to a patient’s unobserved severity, is for more severe

patients to be transferred to a more experienced doctor. This would not affect the
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estimation of demographic concordance variables, because differences across doctors

in the average severity of their caseload is controlled for by a doctor fixed-effect.

A related issue is if decisions on test ordering are influenced by doctors not listed

in a patient’s file, for example a supervising and junior doctor could consult over

patient diagnosis and treatment. Given doctors’ time is constrained and investing

in a patient’s diagnosis and treatment is particularly time consuming, it is plausible

that the primary doctor is largely responsible for the diagnosis and treatment of

patients during their hospital stay. We can therefore expect diagnostic test orders to

be driven in large part by the primary doctor, with some inpatient events involving

diagnostic test orders by previous doctors. In addition, a supervisory relationship

for a junior doctor will apply to all patients a junior doctor treats. A fixed-effect on

doctors should therefore remove the common effect of a supervisory relationship on

doctors’ decisions. This also applies if a doctor is more or less likely to consult with

other doctors. A doctor fixed-effect removes the average effect of a doctor’s unique

consultation process on diagnostic test orders.

Another concern with diagnostic data collected in hospital is that a patient may

enter hospital with prior diagnostic tests ordered outside of hospital. My data is

unable to observe tests ordered for a patient outside of hospital. It is assumed that

previous test orders are unrelated to demographic concordance variables. A dummy

variable for previous hospital admissions within 60 days prior to a hospital event is

expected to control for prior diagnostic test orders in a patient’s history file.

A common transfer of doctors occurs when a patient arrives at the AED and

is transferred to another department within the hospital. Patients arriving at an

emergency department tend to get a standard range of tests given a presentation

of symptoms (e.g. chest pain). A dummy variable for AED entry controls for test

ordering associated with this entry method.
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1.4.8 Method discussion

This paper uses a fixed-effect method to estimate concordance effects within doctors

and MDCs. A shortcoming of a fixed-effect method is that variables for doctor charac-

teristics cannot be included in the regression. For example, I cannot include variables

for a male or European doctor and consequently investigate how these variables are

related to diagnostic test ordering. In addition, because only variation within doctors

is used to estimate the effect of variables on the outcome, there is less variation to

identify coefficients than if there was no fixed-effect.

An alternative approach to estimating demographic concordance effects is to in-

clude separate dummy variables for a patient and doctor’s ethnic and gender group,

and use an interaction term to estimate doctor-patient ethnic and gender concor-

dance on diagnostic resources. A shortcoming of a model with interaction terms is

that patients are compared across doctors, as well as within doctors. Estimates for

demographic concordance coefficients could therefore pick up the effect of differences

in skill level across doctors on diagnostic resources. For example, if demographic con-

cordance is more likely to occur in high cost medical specialties, this could bias the

estimate of demographic concordance coefficients upwards. This is because a large

portion of observations where demographic concordance occurs will involve doctors

that use high amounts of diagnostic resources on average.

Because laboratory costs are continuous, it is possible to estimate the effect of

demographic concordance at different percentiles of the laboratory cost distribution

using quantile regression. Quantile regression estimates coefficients at different parts

of the distribution of y, for example, the 25th or 75th percentile of costs. Quantile re-

gression was developed for models without fixed-effects. Galvao (2011) has developed

methods to estimate fixed-effect quantile models, but computation uses grid search

and is not possible, given current computing capabilities, on models with more than

three variables. If quantile regression is implemented without fixed-effects, problems
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associated with comparing patients across doctors (i.e. no fixed-effect) may be min-

imised, because concordant and discordant patients are compared within a range of

laboratory costs. That is, quantile regression will estimate the effect of concordance

at low and high values of the laboratory cost distribution. Quantile regression is also

less sensitive to outliers and heteroskedasticity of cost data, because coefficients are

estimated in a limited range of laboratory cost outcomes. Quantile regression can

also only be estimated on the log-transformed laboratory cost. This is because the

quantile regression theory does not apply to truncated data (e.g. raw laboratory cost)

or discrete outcomes.

1.5 Descriptive statistics

This section presents kernel density distributions for the logarithm of laboratory costs

for demographically and non-demographically concordant inpatient events. These are

raw distributions; there are no controls for the effect of medical condition, doctor,

patient ethnicity or gender on test ordering.

Figures 1.7 to 1.9 plots the kernel density of log-transformed laboratory costs8. In

all kernel density plots, demographically discordant inpatient events have a slightly

higher density at higher laboratory costs compared to demographically concordant in-

patient events. Gender concordant groups have the largest difference in distributions,

compared to ethnically concordant groups. This is also reflected in my regression

results. In addition, the right-ward shift of the laboratory cost distribution for demo-

graphically discordant events is the most pronounced for combined gender and ethnic

concordance, relative to patients with only gender or ethnic concordance. These

observations are consistent with my regression results.

8Bandwidth for kernel density estimation is the same across all models.
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The difference in kernel density distributions for demographically concordant and

discordant patients is however small. This is further reflected in the small coefficient

estimates for demographic concordance variables.
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Figure 1.7: Ln laboratory cost by gender match for HR matched data
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Figure 1.8: Ln laboratory cost by ethnicity match for HR matched data
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Figure 1.9: Ln laboratory cost by gender and ethnicity match for HR matched data

1.6 Results

Main results from the baseline model for laboratory cost (log-transformed and raw),

laboratory quantity and radiology test outcomes are in Tables 1.9, 1.10, 1.11 and 1.12

respectively. In these tables, there are two models for each diagnostic outcome; a

fixed-effect on doctors only (Column (1)) and combined doctor plus MDC fixed-effect

(Column (2)). The number of groups increases significantly when a fixed-effect is

included on doctor and MDC. A fixed-effect on doctors-only is therefore included

in baseline tables, because there is more variation within doctor groups to estimate

model coefficients. All baseline models are estimated with OLS.

All models are estimated with standard errors clustered on the doctor. Clustering

errors is the robust estimation method for standard errors in fixed-effect panel data

models (Stock and Watson, 2008).
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Further regression tables for laboratory cost outcomes are in Appendix 1.B, includ-

ing a full table of coefficient values. Robustness checks for laboratory cost outomes

are in Appendix 1.C9.

I discuss the results for gender-only, ethnic-only and gender plus ethnic concor-

dance variables in separate sections. I firstly discuss results from the baseline model

and then results from robustness tests, for each type of demographic concordance.

Table 1.9: Laboratory raw cost outcome

(1) (2)
doc FE doc+mdc FE

Gender only concordance −4.534∗∗∗ −4.265∗∗∗

(−3.46) (−3.41)
[0.00] [0.00]

Ethnic only concordance −4.694∗ −2.717
(−2.09) (−1.39)

[0.04] [0.17]

Gender and ethnic concordance −6.085∗ −3.527
(−2.44) (−1.59)

[0.02] [0.11]

Observations 225344 225344
Within R2 0.354 0.334
Numb. groups 290 3044
Min group size 2 1
Max group size 7964 6996
Avg group size 777.0 74.0
Notes: Outcome: raw cost of laboratory tests. Sample: 95th percentile of raw laboratory is dropped.
Model: linear regression, Column (1) has fixed-effect on doctor, Column (2) has fixed-effect on
doctor and MDC. Standard errors clustered on doctor. Robust t-statistics (p-values) in parentheses
(brackets). ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

1.6.1 Gender only concordance

Gender concordance (β2) is negative and statistically significant in all baseline models

(Tables 1.9, 1.10, 1.11 and 1.12). A doctor treating a patient of the same gender

(only) relative to a patient with no demographic concordance is associated with an,

on average, reduction in; total laboratory costs of $4.5, .767 of a laboratory test, or a

9I also estimate robustness tests for laboratory quantity and radiology outcomes but these are
ommited from this paper for brevity.
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Table 1.10: Laboratory log-transformed cost outcome

(1) (2)
doc FE doc+mdc FE

Gender only concordance −0.032∗∗ −0.035∗∗∗

(−2.77) (−3.36)
[0.01] [0.00]

Ethnic only concordance −0.031∗ −0.025
(−2.12) (−1.64)

[0.04] [0.10]

Gender and ethnic concordance −0.032∗ −0.027
(−2.01) (−1.64)

[0.05] [0.10]

Observations 191473 193650
Within R2 0.326 0.334
Numb. groups 289 2993
Min group size 1 1
Max group size 4572 5123
Avg group size 662.5 64.7
Notes: Outcome: log-transformed laboratory cost. Sample: 99th percentile log-transformed costs
excluded. Model: linear regression, Column (1) has fixed-effect on doctor, Column (2) has fixed-
effect on doctor and MDC. Standard errors clustered on doctor. Robust t-statistics (p-values) in
parentheses (brackets). ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 1.11: Laboratory quantity outcome

(1) (2)
doc FE doc + mdc FE

b/t/p b/t/p

Gender only concordance −0.782∗∗ −0.656∗∗

(−3.27) (−2.96)
[0.00] [0.00]

Ethnic only concordance −0.852∗ −0.700∗

(−2.46) (−2.24)
[0.01] [0.03]

Gender and ethnic concordance −1.004∗∗ −0.741∗

(−2.63) (−2.12)
[0.01] [0.04]

Observations 236559 236559
Within R2 0.517 0.500
Numb. groups 291 3703
Min group size 2 1
Max group size 8220 7185
Avg group size 812.9 63.9
Notes: Outcome: quantity of laboratory test. Sample: eligible study sample. Model: linear regres-
sion, Column (1) has fixed-effect on doctor, Column (2) has fixed-effect on doctor and MDC. Stan-
dard errors clustered on doctor. Robust t-statistics (p-values) in parentheses (brackets). ∗∗∗p<.01;
∗∗p<.05; ∗p<.10.
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Table 1.12: Radiology outcome

(1) (2)
doc FE doc + mdc FE

b/t/p b/t/p

Gender only concordance −0.011∗ −0.012∗

(−2.02) (−2.47)
[0.04] [0.01]

Ethnic only concordance −0.025∗∗∗ −0.024∗∗∗

(−3.69) (−3.59)
[0.00] [0.00]

Gender and ethnic concordance −0.037∗∗∗ −0.036∗∗∗

(−4.87) (−4.88)
[0.00] [0.00]

Observations 238916 238916
Within R2 0.171 0.124
Numb. groups 291 3714
Min group size 2 1
Max group size 8251 7210
Avg group size 821.0 64.3
Notes: Outcome: =1 if radiology test greater than or equal to one, =0 if no radiology test. Sample:
eligible study sample. Model: linear regression, Column (1) has fixed-effect on doctor, Column
(2) has fixed-effect on doctor and MDC. Standard errors clustered on doctor. Robust t-statistics
(p-values) in parentheses (brackets). ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

1.1% reduction in the likelihood of having one or more radiology test. The coefficient

is statistically significant at the 1% level for laboratory cost and quantity outcomes,

and at the 10% level for the radiology outcome. This result is robust to estimation

with fixed-effects on doctors (Columns (1)) and combined doctor and MDC (Columns

(2)).

In the regression table for the raw laboratory cost outcome, with a fixed-effect

on doctor and MDC, the one-sided Wald test for the null hypothesis of β2 >= 0

with alternative hypothesis β2 < 0, has a p-value of .005. I therefore reject the

null hypothesis in favour of β2 < 0. This p-value is constructed from halving the

(two-sided) p-value included in Table 1.9. One-sided Wald tests of β2 < 0 for

other diagnostic resource outcomes can similarly be constructed from halving p-values

included in Tables 1.10, 1.11 and 1.12.

The coefficients in log-transformed laboratory cost models can be interpreted as

semi-elasticities. A doctor treating a patient of the same gender relative to no demo-
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graphic concordance is associated with an on average reduction in the total laboratory

costs of 3.2%. This estimate is conditional on the population of patients that received

a laboratory test. This estimate increases slightly to a 3.5% reduction in laboratory

costs when there is a fixed-effect on combined doctor and MDC (Table 1.10).

Robustness of gender concordance results

Tables for robustness checks on laboratory cost outcomes are in Appendices 1.C

and 1.D. I firstly discuss robustness checks for laboratory cost outcomes before turn-

ing to results from a non-linear model for laboratory quantity outcomes.

The first robustness check removes the fixed-effect on doctors (Column (1), Ta-

ble 1.19, Appendix 1.C). This test investigates if demographic concordance is ro-

bust to including heterogeneity across doctors in their test-ordering behaviour. With

no fixed-effect, gender concordance is statistically significant at the 1% level and is

estimated at a reduction of $8.1 in total laboratory costs. Therefore, removing a

fixed-effect increases the estimate of β2.

The second series of robustness tests investigates outlying inpatient events (ob-

servations). Identifying outlying inpatient events is important because demographic

concordance coefficients are estimated by comparing mean diagnostic outcomes, after

controlling for explanatory variables. Comparing mean outcomes can be sensitive to

outlying observations. For example, if one group contained a large laboratory cost

value, this would raise the mean considerably for that group relative to the compari-

son group. We therefore want to estimate the coefficient for demographic concordance

on inpatient events that are representative of a typical clinical encounter, rather than

coefficient estimates that are influenced by a small number of ‘rare’ cases. Hospital

admissions also involve a great deal of heterogeneity, because patients can enter for

vastly different clinical conditions.
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Linear regression (i.e. minimising the squared sum of residuals) is especially sen-

sitive to outlying observations (compared to quantile or least median of squares re-

gression). Outliers can include vertical outliers (outlying from predicted y values),

bad leverage points (outlying in x and y) and good leverage points (outlying in x

but close to y). The effect of vertical outliers on mean estimation is addressed in

my paper by dropping observations with raw costs in the 95th percentile of the cost

distribution. Bad leverage points are also expected in our data because of significant

heterogeneity across patients in unobserved severity of illness10.

I explore outlying observations in my data by implementing a robust regression

method. Robust regression method weights vertical outliers to have less influence on

mean estimation, and excludes observations with bad leverage points from the popu-

lation. Bad leverage points are identified by a Cook’s distance statistic larger than 2.

An example of an observation with a bad leverage point would be a patient that had

unusual values of diagnostic tests given explanatory variables. For example, a patient

with a high LOS and low diagnostic test orders. The robust regression method firstly

estimates the model and identifies outliers. This model is then re-run by weighting

outlying values so they have less influence on mean estimation. This method is avail-

able for linear regression without fixed-effects. It is not clear how to identify outliers

after first de-meaning observations in a fixed-effect method. I therefore estimate a

robust regression model on my data without fixed-effects (Column (2), Table 1.19).

Results show gender concordance is associated with a larger reduction in laboratory

costs than in the baseline model. Gender concordance is associated with a $5.28

reduction in total laboratory costs, compared to a patient with no demographic con-

cordance. The model fit has improved, because outlying observations are given less

10A further kind of outlier in panel data are block outliers. These occur if outlying observations
are across a block of consecutive time periods. This is however unlikely in our data because there is
no real time dimension, and we expect the arrival of ‘extreme’ (e.g. high cost or unusual) cases to
be spread out over a doctor’s caseload.
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weight in the regression. The estimated R2 is .678 and all demographic concordance

variables are statistically significant at the 1% level.

The impact of vertical outliers on the robustness of mean estimation is also checked

by dropping different percentiles of the raw laboratory cost distribution (Table 1.20).

These models have a fixed-effect on the doctor. Column (1) includes the whole pop-

ulation, gender concordance is statistically insignificant in this model. At the 99, 95

and 90 percentile, gender concordance effects are statistically significant at the 1%

level. This suggests that estimates of gender concordance are not robust to including

a small number of extreme vertical outliers in laboratory cost data. This could occur

if, for example, a small number of complex medical cases involve gender concordance.

This would increase the group mean in the gender concordant relative to discordant

group.

The third series of robustness checks estimates demographic concordance on a sub-

sample of patients with the same diagnostic category. One concern with estimating

concordance effects across different medical conditions is that the effect of, say, gender

on lab test ordering may be related to medical area. Gender may therefore not

be adequately controlled for when estimated over the whole population of hospital

admissions. For example, a male patient may be associated with higher laboratory

costs in cardiology but lower laboratory costs in, for example, general medicine11.

I firstly estimate the laboratory cost model on patients in any one of the top four

MDCs. These are; Respiratory, Circulatory, Kidney plus Urinary, and Digestive. This

robustness test restricts the variety of medical conditions in the population, so there

is less heterogeneity in medical treatment across patients in the population. Results

are in Table 1.21. Column (1) and (2) have a fixed-effect on doctor and doctor-

MDC respectively. Gender concordance coefficients are statistically significant at the

1% level. On average, a doctor treating a patient of the same gender relative to

11A model interacting gender and ethnic group with MDC dummy variables did not change my
main results. I do not present this table for reasons of brevity.
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no demographic concordance is associated with a $5.17 reduction in total laboratory

cost ordering. The coefficient of $5.17 is slightly larger than the estimated gender

concordance coefficient across all hospital admissions ($4.5). Column (3) in Table 1.21

estimates concordance effects with a fixed-effect on doctor and DRG. DRG groups

determine payments hospitals receive for medical treatment. This controls to a higher

degree for the severity of patients and medical treatment decisions. The number of

groups increases significantly (to N=43,848), and the size of groups is small at an

average of 9.3. The gender concordance coefficient is statistically significant at the

1% level, with an estimated reduction in total laboratory costs of $3.11.

I also estimate my baseline model on patients within each MDC group in the eli-

gible inpatient population. Results for each MDC on the log-transformed laboratory

cost are in Tables 1.23 to 1.26 in Appendix 1.D. This allows me to investigate if

there are larger coefficients for demographic concordance in some medical areas over

others. For example, I would expect there to be larger coefficients for demographic

concordance in MDCs that involve greater diagnostic uncertainty than less diagnos-

tic uncertainty. There may be less clinical uncertainty for external health conditions

upon presentation at hospital, and therefore demographic concordance may have a

reduced impact on diagnostic test ordering, (because there is less potential to gain

from improved communication in a consultation.) This would occur for illnesses lo-

cated internally (e.g. Digestive and Kidney and Urinary) relative to external illnesses

(e.g. skin conditions and ENT).

I find that the largest estimated reduction in total laboratory costs arising from

gender concordance is for patients in the Kidney and Urinary MDC (6.6% reduction

in laboratory costs). Patients in this MDC group comprise a large share of kidney

and liver stones. These are internal illnesses for which diagnostic testing is required

to confirm the incidence and severity of the illness. MDCs with low numbers of
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observations and/or external illnesses (skin, eyes, ENT) do not always have negative

or statistically significant relationships.

The last series of robustness checks used a dataset that matched doctors with HR

data and a manual match process. A manual match process was used to associate a

gender and ethnic group using the first and last name of doctors in inpatient data.

All patients that are not matched with HR data, or are matched with HR data but do

not have information on doctor ethnicity or gender, are manually associated a gender

and/or ethnic group. Details of the process used to associate a doctor and ethnic

group is in Appendix 1.F. I associate a doctor’s gender and ethnic group based on

the likelihood of a doctor’s name belonging to a gender or ethnic group. For example,

a doctor with the name Michael would be associated a male gender group, because

there is a high likelihood this name and gender occurs together. This process provides

a second dataset of HR and manually matched doctors, thereby providing a larger

number of inpatient observations to estimate the baseline model.

This second dataset also allows me to investigate sampling bias. I am not able

to observe the gender and ethnicity characteristics of doctors that are not matched

with HR data. I am therefore not able to test if there is an over-representation

of certain kinds of doctors in the HR matched data relative to the wider hospital

population12. Sampling bias may occur if certain types of doctor gender or ethnicity

groupings are less (or more) likely to record their demographic characteristics in HR

12Sampling bias may not be a particularly problematic for this study, because there is a random
element in whether I can match demographic information to a doctor. All nurse and medical
staff employees were obtained from HR systems. These are all staff members that receive some
form of payment from the organisation. Inability to match a doctor is either caused by random
differences between HR and inpatient data (e.g. misspelling or only initials for casemanager in
inpatient datasets) or because a patient is treated by a doctor that is not employed by the health
board. In addition, other situations where we cannot match with HR data involve cases where a
doctor is not personally identified, for example a‘consultant’ or a doctor is part of a team. Table 1.28
provides the percentage of patients that are not matched with HR data that have a consultant term
in the primary casemanager’s name (11%). These situations are at least identifiable and provide a
reason for why an inpatient event is not matched.
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forms. A manually matched dataset is an attempt to check that results are robust

when estimated on a wider population of doctors in the hospital.

Regression results for patients that have a casemanager that is HR and manually

matched are in Table 1.17 and Table 1.18 in Appendix 1.C. There are now 407,225

observations in the sample compared to 224,656 for the raw cost outcome. In this

dataset, the estimated coefficient for gender concordance is smaller. A doctor treating

a patient of the same gender relative to no demographic concordance is associated

with a reduction in the total cost of laboratory tests of 2.8% or a $3.5 reduction in

total laboratory cost. The gender concordance variable is statistically significant at

the 1% level.

There is a caveat on interpretation of results from manually matched inpatient

events, because a doctor’s ethnic or gender group could be incorrectly associated. I

observe a larger number of doctors associated with a European ethnic group after

manual matching, compared to HR data. Doctors from Maori and South African

ethnicity groupings may be more likely to be associated with a European ethnic

group using last names, this may lead to an over-representation of the European

ethnic group.

Lastly, I estimate a fixed-effect non-linear model for laboratory quantity outcomes.

I implement a fixed-effect Poisson and Negative Binomial model, both of these models

have bootstrapped standard errors to deal with heterogeneity across the patient pop-

ulation. Results are in Table 1.16. The coefficient on gender concordance is negative

and statistically significant at the 5% level. The marginal effect is estimated at a

reduction in the total number of laboratory test orders of .057. This indicates that

the effect of gender concordance on the number of laboratory tests ordered is robust

to estimation in both a linear and non-linear fixed-effect model.

Overall, robustness tests indicate the coefficient for gender concordance is robust

to estimation on different subsets of the data and different model specifications.
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1.6.2 Ethnic only concordance

We now turn to interpreting the results for the ethnic concordance variable. When

there is a fixed-effect on doctors only, the ethnic concordance coefficient (β1) is sta-

tistically significant at the 10% level for laboratory cost and quantity outcomes, and

at the 1% level for the radiology outcome. A doctor treating a patient of the same

ethnicity (only) relative to a patient with no demographic concordance is associated

with an, on average, reduction in total laboratory costs of $4.6, or .88 of a labora-

tory test, or a 2.4% reduction in the likelihood of having one or more radiology test

(Column (1) in Tables 1.9, 1.10, 1.11 and 1.12).

When there is a fixed-effect on doctor-MDC, (β1) remains negative and statisti-

cally significant for laboratory quantity and radiology outcomes, but is statistically

insignificant for laboratory cost outcomes (Column (2) in Tables 1.9, 1.10, 1.11

and 1.12).

Robustness of ethnicity concordance results

The coefficient for ethnic concordance is not robust to (1) including a fixed-effect on

Doctor and MDC for laboratory cost outcomes (Table 1.9) and (2) estimation with

a non-linear model for laboratory quantity outcomes (Table 1.16).

Ethnic concordance may be weakly identified in my paper because of a lack of

variation in doctor ethnicity groupings. Given that a high proportion of ethnic con-

cordance is European, this could result in less variation in the data to identify the

coefficients for a patient’s ethnic group and ethnic concordance separately.

Removing a fixed-effect increases the statistical significance of the ethnic concor-

dance variable. The ethnic concordance variable is statistically significant in the ro-

bust regression model, and linear regression model without fixed-effects (Table 1.19).

The effect of ethnic concordance on reducing the total laboratory cost in the robust

regression method is estimated at $5.25.
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For the second dataset of manually matched doctor demographic characteristics,

the ethnic concordance variable is statistically significant (Table 1.17). This might

occur because there are more observations of doctors and hence greater variation in

doctor ethnicity to estimate ethnic concordance.

The magnitude of the ethnic concordance variable also varies across MDCs. The

coefficient on the ethnic concordance variable is largest in Digestive (MDC 6) and

Kidney and Urinary Tract (MDC 11) conditions. This is a similar pattern to a large

coefficient on the gender concordance variable for MDCs associated with internal

illnesses compared to external illnesses.

Overall, ethnic concordance is less robust than gender concordance. The lack of

statistical significance may be contributed to by a lack of variation in doctor ethnicity

groupings compared to gender groups.

1.6.3 Ethnicity and gender concordance

When there is a fixed-effect on doctors only, the gender and ethnic concordance coef-

ficient (β3) is statistically significant at the 10% level for laboratory cost and quantity

outcomes, and at the 1% level for radiology outcome. A doctor treating a patient

with the same gender and ethnic group relative to no demographic concordance, is as-

sociated with an, on average, reduction of $6 in total laboratory costs, or 1 laboratory

test, or 3.7% reduction in the likelihood of having one or more radiology tests.

When there is a fixed-effect on doctor and MDC, the gender and ethnic concor-

dance variable is not statistically significant in the laboratory cost model.

In all baseline models, β3 > β1 and β3 > β2. The Wald test for the null hypothesis

of equality for β3 = β2 and β3 = β1 and alternative hypothesis β3 6= β2 and β3 6= β1

is implemented for baseline models. For the quantity of laboratory tests, the null

hypothesis β3 = β2 (β3 = β1) is unable to be rejected, the p-value is 0.4675 (p =

0.4999). For the raw laboratory cost outcome, the null hypothesis β3 = β2 (β3 = β1)
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is also unable to be rejected for raw laboratory cost outcome, the p-value is 0.2733

(p = 0.4772). For the radiology outcome, the null hypothesis β3 = β2 (β3 = β1) is

rejected with p-value of p = 0.0104 (p = 0.0007). Therefore, gender and ethnicity

concordance has a greater effect on reducing the likelihood of one or more radiology

test compared to demographic discordance.

Robustness of ethnicity and gender concordance results

The robustness of gender plus ethnic concordance follows a similar pattern to the

robustness of the ethnic concordance variable. Specifically, gender and ethnic con-

cordance is not robust (statistically significant) to including a fixed-effect on Doctor

and MDC for laboratory cost outcomes. In addition, gender and ethnic concordance

is not statistically significant in non-linear laboratory quantity models (Table 1.16).

Gender and ethnic concordance is statistically significant in models without a

fixed-effect (Table 1.19), and the second dataset of manually matched doctor char-

acteristics (Table 1.17). Both of these robustness tests increase variation in the data

to estimate the independent effect of gender and ethnic matching. Gender and eth-

nic concordance is predominately European and therefore there are similar concerns

about the ability of my data to identify the separate effect of gender and ethnic

concordance from a patient’s ethnic group. It is for this reason that I focus on the

robustness of gender concordance results in this paper.

Age, ethnicity and gender concordance

HR data also contains information on the age of a doctor. Demographic concordance

variables for age, gender and ethnic concordance are estimated for patients matched

with HR data (Table 1.15, Appendix 1.B). This includes concordance variables for;

age-only, age and gender, age and ethnicity, and combined age, ethnicity and gender

concordance. All demographic concordance coefficients have a negative sign. Age
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has no statistically significant effect on its own, but is statistically significant when

combined with both gender and ethnic group. When a patient and doctor have all

three demographic characteristics in common, I observe the largest on average reduc-

tion in total laboratory costs from any type of demographic concordance considered

previously. The combination of gender, similar age range and ethnic concordance is

associated with a reduction in the total laboratory costs of $7.18, compared to doctors

treating a patient with no demographic concordance.

1.7 Conclusion and discussion

This paper aimed to estimate a relationship between demographic concordance and

the amount of diagnostic resources ordered during hospital treatment. Demographic

concordance between a doctor and patient is a relatively understudied area in health

economics. This is most likely a result of the lack of data on doctors’ demographic

information in administrative datasets.

My first main result is a statistically significant reduction in laboratory and ra-

diology tests when a doctor and patient have the same gender and/or ethnic group,

relative to when a doctor treats a patient with no demographic concordance.

The effect of gender concordance on reducing diagnostic resources is more ro-

bust than ethnic concordance. My robustness checks investigate inpatient outliers.

I find significant cost outliers and drop the 95th percentile of costs when estimat-

ing my model. I also estimate demographic concordance with no fixed-effect, and a

fixed-effect on doctor only. With no fixed-effect, coefficient estimates for all types of

demographic concordance are larger and statistically significant at the 1% level.

I also estimate the baseline model using different medical populations in hospital.

In general, I find demographic concordance coefficients are larger when estimated on
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patients with internal rather than external illnesses. However, the statistical strength

of this relationship is low, largely because population sizes are small in some MDCs.

The last series of robustness checks used a dataset that associated a gender

and ethnic group based on a doctor’s first and last name. I find that both gen-

der and ethnic concordance are statistically significant for the baseline model with

log-transformed laboratory costs.

My second main result is a greater reduction in diagnostic resources when patients

and doctors have the same ethnic and gender group, relative to when they have only

gender or ethnic concordance. This is also reflected in the largest estimated reduction

for all diagnostic resource measures for combined ethnic, age and gender concordance.

The estimated size of coefficients for demographic concordance variables is however

small, and therefore the relationship between demographic concordance and diagnos-

tic resources is difficult to observe in descriptive statistics.

The main strengths of my empirical method are; a fixed-effect on doctor and MDC,

different measures for diagnostic resources, and the ability to exclude an endogenous

relationship when explaining my results.

Firstly, a fixed-effect on doctors and MDC situates the estimation of coefficients for

demographic concordance in each doctor’s decision-making environment. I therefore

use differences in diagnostic resources for demographically concordant and discordant

patients, within a doctor and medical area, to estimate the impact of concordance on

diagnostic test orders.

Secondly, I use four different measures of diagnostic outcomes; laboratory cost,

log-transformed laboratory cost, laboratory quantity, and the likelihood a patient has

one or more radiology tests during a hospital stay. I observe a negative relationship

across all four diagnostic outcomes. This supports the credibility of my result that

demographic concordance reduces the diagnostic resources required to treat a patient

in hospital.
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Thirdly, I argue that demographic concordance variables are either exogenous, or

if they are endogenous the expected relationship would bias the coefficient on demo-

graphic concordance in the opposite direction to the one I find. Hospital policy assigns

doctors based on availability at the time of patient arrival. As a policy, assignment is

independent of demographic characteristics. Demographic concordance is therefore in

practice exogenous in my baseline model. However, patients can be transferred across

doctors, and this could occur informally for demographic reasons. If sorting were to

occur, for demographic reasons, it would be more likely to occur in the direction to

achieve demographic concordance rather than sorting with the intention to achieve

a demographic discordance. In the former case, this would result in higher amounts

of diagnostic resources in demographically concordant pairs - because patients would

have been treated by more than one doctor, and this would be associated with greater

rather than fewer diagnostic test orders.

Lastly, the hospital is also an appropriate setting to investigate the quality of

doctor-patient consultation in demographically concordant pairs. This is because

diagnoses and treatments are decided using information at hand in an acute setting.

Consultations with General Practitioners often involve a history of doctor-patient

interactions, which will affect diagnostic test ordering and treatment decisions, in

addition to information obtained from the current consultation.

The limitations of my study are a high proportion of doctors that have a European

ethnic group. A high proportion of European doctors reduces variation in the data to

identify the effect of ethnic concordance separately from the effect of a patient’s ethnic

group on diagnostic test ordering. Despite this, ethnic concordance is statistically

significant at the 10% level in the doctor fixed-effect model across all diagnostic

resources.

A second limitation of my data is the inability to observe the identity of the doctor

ordering a diagnostic test in hospital. Given the collaborative nature of some hospital
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treatment, there will likely be test orders for some patients that are not due to the

‘primary’ doctor identified in inpatient data. A large population size increases my

confidence that we are estimating some kind of average doctor-patient relationship

effect, even if some patients may be treated by more than one doctor and will therefore

have ‘noisier’ diagnostic resource measures than patients treated by only one doctor.

Importantly, I don’t expect the noise in diagnostic resource measures (generated by

multiple ordering doctors) to bias estimates of concordance variables in the negative

direction. In addition, doctors can observe the test orders of previous doctors and this

is relevant information for how many tests they will order. It is therefore important

to use all tests ordered during a patient’s hospital stay, rather than just a subset of

diagnostic test orders.

In this paper, I also discussed reasons for a reduction in diagnostic resources in

demographically concordant doctor-patient pairs.

Firstly, because my data is from a New Zealand hospital, it is not expected that

concerns about patient litigation or insurance arrangements would explain a reduc-

tion in diagnostic resources. Patient litigation or insurance arrangements are two

prominent explanations for the over-use of diagnostic resources in the United States.

The hospital in my study is publicly funded and there is less risk of personal litigation

for doctors.

The first explanation for a reduction in diagnostic resources is an information gain

on a patient’s health status when doctors and patients are demographically concor-

dant. It is assumed doctors obtain the information they need to decide treatments

and monitor health status during a hospital stay. Information can come from the

consultation or diagnostic tests. If there is more uncertainty in the consultation,

doctors will order more tests to make up for the lack of information, vice versa if

doctors are more certain of their information then they will require less information

from tests to diagnose and treat patients. The last source of information on a pa-
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tient’s health condition is from a doctor’s individual experience, communication style,

specialty and so on; this forms their idiosyncratic test-ordering behaviour. A fixed-

effect on doctors controls for idiosyncratic test ordering. If a doctor requires fewer

tests on average when treating demographically concordant relative to discordant pa-

tients, this is consistent with increased information on a patient’s health status from

a consultation.

There could be a number of different mechanisms behind an information gain in

demographically concordant consultations. These include; better quality communica-

tion; doctors’ private information gain when patients belong to the same demographic

group (e.g. doctors believe a condition is more or less likely in patients from their

own demographic group); or a doctor is more trusting of patient information in de-

mographically concordant pairs (i.e. not biased). For example, a doctor may be

less trusting of a patient’s symptom reports when they are demographically discor-

dant and this could motivate a doctor to order additional diagnostic tests, because

they perceive the accuracy of patient information to be poor. These doctor-patient

consultation scenarios are all consistent with increased information arising from the

consultation process. Balsa and McGuire (2003) also do not stipulate the mechanisms

behind their miscommunication model. They do however suggest that miscommuni-

cation could originate in prejudice and/or stereotypes; for example, if a doctor is less

willing to invest in understanding patient symptom reports from minority patients.

A second explanation for a reduction in diagnostic resources, is that preferences for

treatment styles change in demographically concordant relative to discordant pairs.

For example, a doctor or patient may prefer a less invasive treatment style when

demographically concordant. I am unable to distinguish between an information gain

and preference change explanation for my result.

The information gain hypotheses is arguably more plausible given my results, and

the literature documenting communication gains in demographically concordant con-
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sultations (LaVeist and Nuru-Jeter, 2002; Street Jr et al., 2008; Sandhu et al., 2009).

Firstly, I find a significant negative relationship across all three diagnostic resource

measures. Secondly, demographic concordance effects are also larger for two or more

demographic characteristics. This is consistent with an even greater improvement in

doctor-patient communication with increased demographic similarity. Thirdly, de-

mographic concordance is largest for internal clinical conditions such as kidney and

digestive conditions. Demographic concordance is statistically insignificant for med-

ical conditions where the cause of hospital admission is externally located. There is

plausibly less clinical uncertainty with external rather than internal illnesses. Lastly,

this paper also controls for the length of stay and theatre event treatment decisions.

This is intended to control for variation in test ordering driven by differences in treat-

ment decisions across patients in demographically concordant and discordant pairs.

If a less invasive treatment style were to explain a significant negative relationship,

then treatment decision variables would capture much of this explanation which would

result in statistically insignificant demographic concordance variables.

An extension of this research could be to investigate how using patient preferences

for their doctor might affect the efficiency of health care delivery in a hospital. Previ-

ous studies have shown that patients tend to prefer GPs with the same demographic

characteristics (particularly for gender) (Godager, 2012). Asking patients if they

have a preference for doctor demographic features could identify patients that have

difficulty communicating with doctors from a different demographic group. Patients

who have no preference could be assigned an available doctor. However, matching

all patients with a doctor of the same demographic could have adverse consequences.

In the long run, doctors would not learn how to communicate in different situations

and the impact of demographic discordance on increasing diagnostic resources could

be even greater.
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There has been increased interest in reducing the cost associated with unnecessary

diagnostic tests and procedures, particularly in the United States. In addition to the

benefits of reducing wasteful medical spending, reducing the number of diagnostic

tests required to treat a patient could also improve a doctor’s ability to make decisions.

Increased information places burdens on doctors to identify a patient’s condition(s),

and its severity and complexity. Imperfect information on a patient’s health status

has long been recognised as a source of market failure in health care delivery (Arrow,

1963). Arrow (1963) considered uncertainty central to the understanding of health

care markets; ‘the special economic problems of medical care can be explained as

adaptations to the existence of uncertainty in the incidence of disease and the efficacy

of treatment’ (Arrow, 1963, pg. 941). If a doctor is able to gain more information

or develop a rapport with a patient that identifies adequate and satisfactory health

care requiring fewer resources, then policy makers could benefit from further study

into how the doctor-patient relationship affects medical resource decisions.
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1.A Explanatory variables

Table 1.13: Summary of study variables for HR matched patients

Mean Sd Min Max P50

Demographic variables:
Gender only concordance 0.20 0.40 0.00 1.00 0.00
Ethnic only concordance 0.28 0.45 0.00 1.00 0.00
Gender and ethnic concordance 0.31 0.46 0.00 1.00 0.00

Patient characteristics:
Age 52.09 23.05 5.00 105.00 53.00
Male 0.49 0.50 0.00 1.00 0.00
Deprivation scale 5.85 2.94 0.00 10.00 6.00
Pacific pat 0.13 0.33 0.00 1.00 0.00
African pat 0.01 0.07 0.00 1.00 0.00
Maori pat 0.09 0.29 0.00 1.00 0.00
Middleeastern pat 0.01 0.10 0.00 1.00 0.00
Other ethnic pat 0.02 0.15 0.00 1.00 0.00
Asian pat 0.07 0.25 0.00 1.00 0.00
Indian pat 0.05 0.21 0.00 1.00 0.00

Admission timing:
After 5pm entry 0.25 0.43 0.00 1.00 0.00
After 12pm entry 0.32 0.47 0.00 1.00 0.00
Overnight admiss. 0.07 0.25 0.00 1.00 0.00
Monday admit 0.16 0.37 0.00 1.00 0.00
Tuesday admit 0.16 0.37 0.00 1.00 0.00
Wednesday admit 0.17 0.37 0.00 1.00 0.00
Thursday admit 0.18 0.38 0.00 1.00 0.00
Friday admit 0.15 0.36 0.00 1.00 0.00
Saturday admit 0.09 0.29 0.00 1.00 0.00
2005 admit 0.12 0.33 0.00 1.00 0.00
2006 admit 0.12 0.32 0.00 1.00 0.00
2007 admit 0.13 0.34 0.00 1.00 0.00
2008 admit 0.13 0.34 0.00 1.00 0.00
2009 admit 0.13 0.34 0.00 1.00 0.00
2010 admit 0.14 0.34 0.00 1.00 0.00
2011 admit 0.12 0.33 0.00 1.00 0.00

Admission type:
Transfer 0.13 0.33 0.00 1.00 0.00
AED entry 0.34 0.47 0.00 1.00 0.00
Prev admiss 60days 0.33 0.47 0.00 1.00 0.00
Accident 0.12 0.32 0.00 1.00 0.00
Day patient 0.13 0.33 0.00 1.00 0.00
Home DHB 0.63 0.48 0.00 1.00 1.00
Acute admiss. 0.73 0.45 0.00 1.00 1.00

Clinical variables:
LOS 3.29 5.44 0.00 176.00 1.00
Theatre event 0.16 0.36 0.00 1.00 0.00
Diagnosis count 4.42 3.45 1.00 59.00 4.00
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Myocardial Infarct. 0.05 0.21 0.00 1.00 0.00
Congestive Heart F 0.04 0.20 0.00 1.00 0.00
Periphral Vascular Dis 0.02 0.15 0.00 1.00 0.00
Cerebrovascular Dis 0.04 0.19 0.00 1.00 0.00
Dementia 0.02 0.14 0.00 1.00 0.00
Chronic Pulmonary D 0.04 0.20 0.00 1.00 0.00
Rheumatic Disease 0.01 0.07 0.00 1.00 0.00
Peptic Ulcer Disease 0.00 0.06 0.00 1.00 0.00
Mild Liver Disease 0.01 0.11 0.00 1.00 0.00
Diabetes w/o complic. 0.04 0.21 0.00 1.00 0.00
Diabetes w complic. 0.07 0.25 0.00 1.00 0.00
Paraplegia + Hemiplegia 0.02 0.14 0.00 1.00 0.00
Renal Disease 0.07 0.25 0.00 1.00 0.00
Cancer 0.10 0.31 0.00 1.00 0.00
Liver Disease 0.00 0.05 0.00 1.00 0.00
Metastatic Carcinoma 0.04 0.21 0.00 1.00 0.00
AIDS/HIV 0.00 0.04 0.00 1.00 0.00

N 225344
Notes: Summary of explanatory variables for the study sample.

1.B Results: baseline models for laboratory cost

outcome

Table 1.14: Laboratory costs

(1) (2)
doc FE doc+mdc FE

Gender only concordance −4.534∗∗∗ −4.265∗∗∗

(−3.46) (−3.41)
[0.00] [0.00]

Ethnic only concordance −4.694∗ −2.717
(−2.09) (−1.39)

[0.04] [0.17]

Gender and ethnic concordance −6.085∗ −3.527
(−2.44) (−1.59)

[0.02] [0.11]

Controls:
Age −0.054 −0.017

(−0.88) (−0.29)
[0.38] [0.77]

Male −2.232 −2.058
(−1.89) (−1.80)

[0.06] [0.07]

Deprivation scale 0.094 0.091
(0.85) (0.85)
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[0.39] [0.40]

After 5pm entry −2.010 −2.359
(−0.58) (−0.74)

[0.57] [0.46]

After 12pm entry 1.183 1.199
(0.63) (0.68)
[0.53] [0.50]

Overnight admiss. 6.131∗∗ 6.091∗∗∗

(3.27) (3.43)
[0.00] [0.00]

Transfer −15.799∗∗∗ −13.939∗∗∗

(−3.98) (−4.27)
[0.00] [0.00]

LOS 12.229∗∗∗ 12.422∗∗∗

(12.86) (12.92)
[0.00] [0.00]

Theatre event 28.447∗∗∗ 28.135∗∗∗

(5.03) (4.84)
[0.00] [0.00]

AED entry −5.793∗ −5.807∗∗

(−2.59) (−2.68)
[0.01] [0.01]

Prev admiss 60days −18.804∗∗∗ −16.939∗∗∗

(−7.70) (−7.95)
[0.00] [0.00]

Accident −49.892∗∗∗ −45.888∗∗∗

(−23.41) (−23.34)
[0.00] [0.00]

Day patient −37.499∗∗∗ −38.669∗∗∗

(−3.87) (−4.39)
[0.00] [0.00]

Home DHB −1.500 −1.020
(−0.88) (−0.73)

[0.38] [0.47]

Diagnosis count 10.522∗∗∗ 10.349∗∗∗

(20.49) (20.03)
[0.00] [0.00]

Pacific pat 0.817 2.868
(0.38) (1.50)
[0.71] [0.13]

African pat 10.250∗∗ 8.294∗

(2.62) (2.51)
[0.01] [0.01]

Maori patient −2.805 −0.105
(−1.08) (−0.05)
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[0.28] [0.96]

Middleeastern pat −0.196 −0.580
(−0.05) (−0.15)

[0.96] [0.88]

Other ethnic pat −5.394∗ −3.737
(−2.04) (−1.59)

[0.04] [0.11]

Asian pat 2.160 2.442
(1.03) (1.21)
[0.30] [0.23]

Indian pat 1.982 3.644
(0.94) (1.95)
[0.35] [0.05]

Monday admit −3.646∗ −3.430∗

(−2.02) (−2.14)
[0.04] [0.03]

Tuesday admit 0.798 0.372
(0.39) (0.22)
[0.70] [0.83]

Wednesday admit −4.842∗∗ −4.270∗

(−2.61) (−2.52)
[0.01] [0.01]

Thursday admit −6.280∗∗ −4.964∗∗

(−3.27) (−2.99)
[0.00] [0.00]

Friday admit −5.389∗∗∗ −5.458∗∗∗

(−3.67) (−4.39)
[0.00] [0.00]

Saturday admit −4.989∗∗∗ −4.891∗∗∗

(−3.75) (−3.88)
[0.00] [0.00]

2005 −15.108∗∗∗ −15.942∗∗∗

(−4.48) (−4.88)
[0.00] [0.00]

2006 −21.152∗∗∗ −21.100∗∗∗

(−5.84) (−5.76)
[0.00] [0.00]

2007 −28.445∗∗∗ −30.147∗∗∗

(−7.34) (−8.43)
[0.00] [0.00]

2008 −13.023∗∗ −14.810∗∗

(−2.63) (−3.24)
[0.01] [0.00]

2009 −6.801 −8.644
(−1.27) (−1.78)

[0.21] [0.08]
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2010 7.023 6.316
(1.25) (1.27)
[0.21] [0.21]

2011 −2.266 −2.976
(−0.40) (−0.60)

[0.69] [0.55]

Myocardial Infarct. 6.687∗ 3.892
(2.16) (1.53)
[0.03] [0.13]

Congestive Heart F 25.328∗∗∗ 25.139∗∗∗

(8.61) (8.34)
[0.00] [0.00]

Periphral Vascular Dis 0.918 −2.058
(0.28) (−0.55)
[0.78] [0.58]

Cerebrovascular Dis −17.043∗ −12.223
(−2.54) (−1.84)

[0.01] [0.07]

Dementia −8.749 −7.013
(−1.96) (−1.66)

[0.05] [0.10]

Chronic Pulmonary D −8.318 −7.552
(−0.83) (−0.86)

[0.41] [0.39]

Rheumatic Disease 22.760∗∗ 21.263∗∗∗

(3.18) (4.06)
[0.00] [0.00]

Peptic Ulcer Disease 45.739∗∗∗ 44.602∗∗∗

(7.70) (7.80)
[0.00] [0.00]

Mild Liver Disease 12.295∗ 14.434∗

(2.14) (2.52)
[0.03] [0.01]

Diabetes w/o complic. −2.838 −4.607∗

(−1.29) (−2.26)
[0.20] [0.02]

Diabetes w complic. −30.000∗∗∗ −30.094∗∗∗

(−14.81) (−14.80)
[0.00] [0.00]

Paraplegia + Hemiplegia −31.517∗∗∗ −33.211∗∗∗

(−7.62) (−8.45)
[0.00] [0.00]

Renal Disease 15.978∗∗∗ 16.969∗∗∗

(6.89) (8.79)
[0.00] [0.00]
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Cancer 17.389∗ 19.876∗∗∗

(2.38) (3.92)
[0.02] [0.00]

Liver Disease 49.894∗∗∗ 51.350∗∗∗

(6.72) (7.40)
[0.00] [0.00]

Metastatic Carcinoma −27.260∗∗∗ −23.746∗∗∗

(−7.08) (−7.45)
[0.00] [0.00]

AIDS/HIV −3.867 5.941
(−0.36) (0.48)

[0.72] [0.63]

Observations 225344 225344
Within R2 0.354 0.334
Numb. groups 290 3044
Min group size 2 1
Max group size 7964 6996
Avg group size 777.0 74.0
Notes: Outcome: raw cost of laboratory tests. Sample: 95th percentile of raw laboratory is dropped.

Model: linear regression, Column (1) has fixed-effect on doctor, Column (2) has fixed-effect on

doctor and MDC. Standard errors clustered on doctor. Robust t-statistics (p-values) in parentheses

(brackets). ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.
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Table 1.15: Laboratory cost: age concordance

(1) (2)
doc FE doc+mdc FE

Ethnic only concordance −4.289 −2.222
(−1.80) (−1.09)

[0.07] [0.28]

Gender only concordance −4.426∗∗∗ −4.196∗∗∗

(−3.43) (−3.37)
[0.00] [0.00]

Age only concordance 1.647 1.794
(0.92) (1.08)
[0.36] [0.28]

Gender and ethnic concordance −5.645∗ −2.974
(−2.18) (−1.30)

[0.03] [0.19]
Gender and age concordance −3.829 −3.184

(−1.51) (−1.38)
[0.13] [0.17]

Age and ethnic concordance −4.745 −3.052
(−1.81) (−1.30)

[0.07] [0.20]

Gender, age and ethnic concordance −7.180∗∗ −5.085∗

(−2.65) (−2.16)
[0.01] [0.03]

Observations 224656 224656
Within R2 0.354 0.335
Numb. groups 284 2997
Min group size 2 1
Max group size 7964 6996
Avg group size 791.0 75.0
Notes: Outcome: raw cost of laboratory tests. Sample: 95th percentile of raw laboratory is dropped.
Model: linear regression, Column (1) has fixed-effect on doctor, Column (2) has fixed-effect on
doctor and MDC. Standard errors clustered on doctor. Robust t-statistics (p-values) in parentheses
(brackets). ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.
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Table 1.16: Laboratory quantity: non-linear regression

(1) (2)
poisson neg. bin.

Gender only concordance −0.042∗∗ −0.057∗∗

(−2.83) (−3.01)
[0.00] [0.00]

Ethnic only concordance −0.021 −0.021
(−0.92) (−0.91)

[0.36] [0.36]

Gender and ethnic concordance −0.025 −0.038
(−1.10) (−1.42)

[0.27] [0.15]

Observations 236534 236534
Notes: Outcome: quantity of laboratory tests. Sample: eligible study sample. Model: Column (1)
fixed-effect Poisson with bootstrapped standard errors, Column (2) fixed-effect Negative Binomial
with bootstrapped standard errors. Standard errors clustered on doctor. Robust t-statistics (p-
values) in parentheses (brackets). ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

1.C Results: robustness checks for laboratory cost

outcome

Table 1.17: Log-transformed laboratory cost: manually matched population

(1) (2)
doc FE doc + mdc FE

Gender only concordance −0.028∗∗ −0.031∗∗∗

(−3.17) (−3.58)

Ethnic only concordance −0.024∗ −0.034∗∗

(−2.05) (−2.72)

Gender and ethnic concordance −0.024∗ −0.036∗∗

(−1.99) (−2.85)

Observations 342836 346857
Within R2 0.320 0.329
Numb. groups 638 638
Min group size 1 1
Max group size 4572 4572
Avg group size 537.4 543.7
Notes: Outcome: log-transformed laboratory cost. Sample: manually and HR matched doctors,
99th percentile of ln(cost) dropped. Model: linear regression, Column (1) has fixed-effect on doctor,
Column (2) has fixed-effect on doctor and MDC. Standard errors clustered on doctor. Robust
t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.
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Table 1.18: Laboratory cost: manually matched population

(1) (2)
doc FE doc + mdc FE

Gender only concordance −3.562∗∗∗ −3.369∗∗∗

(−3.80) (−4.04)

Ethnic only concordance −3.093 −2.172
(−1.85) (−1.43)

Gender and ethnic concordance −3.686∗ −2.425
(−2.00) (−1.49)

Observations 407225 407225
Within R2 0.351 0.331
Numb. groups 648 7352
Min group size 1 1
Max group size 7964 6996
Avg group size 628.4 55.4
Notes: Outcome: raw laboratory cost. Sample: manually and HR matched doctors, 95th percentile
of ln(cost) dropped. Model: linear regression, Column (1) has fixed-effect on doctor, Column (2)
has fixed-effect on doctor and MDC. Standard errors clustered on doctor. Robust t-statistics in
parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 1.19: Laboratory cost: no fixed-effect

(1) (2) (3)
reg ln reg robust reg

Gender only concordance −8.102∗∗∗ −0.058∗∗ −5.287∗∗∗

(−3.78) (−3.15) (−9.35)

Ethnic only concordance −10.855∗ −0.074∗ −5.252∗∗∗

(−2.40) (−2.41) (−7.18)

Gender and ethnic concordance −14.119∗∗ −0.083∗∗ −7.576∗∗∗

(−2.85) (−2.61) (−9.53)

Observations 224656 179426 224656
R2 0.411 0.313 0.631
Notes: Outcome: raw and log-transformed laboratory cost. Sample: eligible study sample, 95th
percentile of cost distribution excluded. Model: linear regression, Column (1) has no fixed-effect
on doctor, Column (2) has no fixed-effect on doctor and log-transformed laboratory cost outcome,
Column (3) uses a robust regression routine in Stata 11 to identify outliers. Standard errors clustered
on doctor. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.
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Table 1.20: Laboratory cost: addressing outliers

(1) (2) (3)
All 99 percent 90 percent

Gender only concordance −3.265 −5.660∗ −2.615∗∗

(−0.99) (−2.39) (−2.92)

Ethnic only concordance −14.012∗∗ −10.513∗ −2.732
(−2.75) (−2.54) (−1.88)

Gender and ethnic concordance −11.298∗ −12.511∗∗ −4.269∗∗

(−2.02) (−2.78) (−2.70)

Observations 238916 236206 212212
Within R2 0.414 0.392 0.303
Numb. groups 291 291 290
Min group size 2 1 2
Max group size 8251 8199 7763
Avg group size 821.0 811.7 731.8
Notes: Outcome: raw laboratory cost. Sample: eligible study sample, Column (1) has all eligible
study sample, Column (2) has the 99th percentile of laboratory cost distribution excluded, Column
(3) has 90th percentile of cost distribution excluded. Model: doctor fixed-effect linear regression.
Standard errors clustered on doctor. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 1.21: Laboratory cost: restricted medical conditions

(1) (2) (3)
Top MDC Top MDC fe drg fe

Gender only concordance −4.549∗∗ −4.166∗ −2.962∗∗

(−2.87) (−2.46) (−2.64)

Ethnic only concordance −5.988 −5.490 −1.392
(−1.59) (−1.57) (−0.91)

Gender and ethnic concordance −6.934 −6.078 −2.743
(−1.72) (−1.61) (−1.50)

Observations 97212 97212 225337
Within R2 0.433 0.431 0.231
Numb. groups 264 878 22531
Min group size 1 1 1
Max group size 7115 6996 5723
Avg group size 368.2 110.7 10.0
Notes: Outcome: raw laboratory cost. Sample: eligible study sample, Column (1) and (2) have
all patients within the top four MDC; Respiratory, Digestive, Kidney and Liver, and Cardiology,
Column (3) has eligible study sample. Model: linear regression, Column (1) has fixed-effect on
doctor, Column (2) has fixed-effect on doctor and MDC, Column (3) has fixed-effect on doctor and
DRG. Standard errors clustered on doctor. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05;
∗p<.10.
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Table 1.22: Laboratory cost: kidney and digestive MDC

(1) (2)
Kidney Digestive

Gender only concordance −13.114 −5.920
(−1.27) (−1.29)

Ethnic only concordance −70.443∗ −9.843∗

(−2.60) (−2.30)

Gender and ethnic concordance −67.740∗ −6.546
(−2.34) (−1.19)

Ureter stone −15.144∗∗

(−2.93)

Kidney stone −8.870∗

(−2.26)

Hydro calc −17.493∗

(−2.37)

Gastro hem 15.226
(1.82)

IBS 15.342
(1.38)

Obstruction −45.677∗∗∗

(−5.83)

Abd pain −3.183
(−0.42)

Gastro en −6.707
(−1.18)

Appendicitis −31.229∗∗∗

(−4.20)

Abd hernia −71.063∗∗∗

(−5.00)

Observations 14628 22982
Within R2 0.459 0.599
Numb. groups 155 176
Min group size 1 1
Max group size 1452 1732
Avg group size 94.4 130.6
Notes: Outcome: raw laboratory cost. Sample: eligible study sample, Column (1) has patients in
the Kidney and Liver MDC, Column (2) has patients in the Digestive MDC. Model: doctor fixed-
effect linear regression, additional explanatory variables for the main diagnosis groups within each
MDC. Standard errors clustered on doctor. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05;
∗p<.10.
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1.D Results: laboratory cost by MDC

Table 1.23: Log-transformed laboratory cost: MDC 1,3,4

(1) (2) (3)
nervous ENT respiratory

Gender only concordance −0.035 0.064 −0.053
(−1.18) (1.05) (−1.45)

Ethnic only concordance −0.089 0.048 −0.002
(−1.76) (1.01) (−0.07)

Gender and ethnic concordance −0.078 0.157∗ −0.039
(−1.46) (2.42) (−0.87)

Observations 13161 5434 17220
Within R2 0.362 0.297 0.420
Numb. groups 234 192 219
Min group size 1 1 1
Max group size 1209 486 3139
Avg group size 56.2 28.3 78.6
Notes: Outcome: log-transformed laboratory cost. Sample: eligible study sample, Column (1) and
(2) and (3) have patients in MDC 1, 3, and 4 respectively. Model: doctor fixed-effect linear regression.
Standard errors clustered on doctor. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 1.24: Log-transformed laboratory cost: MDC 5,6,8

(1) (2) (3)
circulatory digestive musculosk

Gender only concordance 0.008 −0.043∗ −0.057∗

(0.59) (−2.14) (−2.13)

Ethnic only concordance −0.010 −0.017 −0.003
(−0.44) (−0.67) (−0.03)

Gender and ethnic concordance −0.004 −0.015 −0.006
(−0.16) (−0.47) (−0.07)

Observations 31017 22426 13600
Within R2 0.428 0.406 0.466
Numb. groups 231 221 225
Min group size 1 1 1
Max group size 1811 1704 1384
Avg group size 134.3 101.5 60.4
Notes: Outcome: log-transformed laboratory cost. Sample: eligible study sample, Column (1) and
(2) and (3) have patients in MDC 5, 6, and 8 respectively. Model: doctor fixed-effect linear regression.
Standard errors clustered on doctor. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.
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Table 1.25: Log-transformed laboratory cost: MDC 9,10,11

(1) (2) (3)
skin endocrine kidney

Gender only concordance 0.004 0.007 −0.066∗∗

(0.12) (0.18) (−2.70)

Ethnic only concordance −0.009 0.043 −0.179
(−0.25) (0.38) (−1.56)

Gender and ethnic concordance 0.002 0.047 −0.192
(0.04) (0.41) (−1.65)

Observations 7926 2962 14111
Within R2 0.299 0.377 0.385
Numb. groups 216 195 192
Min group size 1 1 1
Max group size 442 214 1433
Avg group size 36.7 15.2 73.5
Notes: Outcome: log-transformed laboratory cost. Sample: eligible study sample, Column (1) and
(2) and (3) have patients in MDC 9, 10, and 11 respectively. Model: doctor fixed-effect linear
regression. Standard errors clustered on doctor. Robust t-statistics in parentheses. ∗∗∗p<.01;
∗∗p<.05; ∗p<.10.

Table 1.26: Log-transformed laboratory cost: MDC 14,16,18

(1) (2) (3)
pregnancy blood dis. infectious

Gender only concordance −0.684∗∗∗ −0.029 −0.003
(−7.82) (−0.50) (−0.09)

Ethnic only concordance −0.082∗ 0.038 0.074
(−1.99) (0.28) (1.39)

Gender and ethnic concordance 0.684∗∗∗ −0.041 0.124∗∗

(7.82) (−0.31) (2.63)

Observations 11242 1959 5352
Within R2 0.211 0.383 0.384
Numb. groups 82 175 223
Min group size 1 1 1
Max group size 2997 142 302
Avg group size 137.1 11.2 24.0
Notes: Outcome: log-transformed laboratory cost. Sample: eligible study sample, Column (1) and
(2) and (3) have patients in MDC 14, 16, and 18 respectively. Model: doctor fixed-effect linear
regression. Standard errors clustered on doctor. Robust t-statistics in parentheses. ∗∗∗p<.01;
∗∗p<.05; ∗p<.10.
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1.E Information on patients matched with HR

data and not matched with HR data

Table 1.27: Summary statistics for HR merged population

Mean Sd Min Max P50

Age 49.50 22.76 5.00 107.00 48.00
Male 0.43 0.49 0.00 1.00 0.00
Deprivation scale 5.91 2.92 0.00 10.00 6.00
After 5pm entry 0.26 0.44 0.00 1.00 0.00
After 12pm entry 0.32 0.46 0.00 1.00 0.00
Overnight admiss. 0.08 0.27 0.00 1.00 0.00
Transfer 0.12 0.32 0.00 1.00 0.00
LOS 3.96 7.24 0.00 364.00 1.00
Theatre event 0.19 0.39 0.00 1.00 0.00
AED entry 0.32 0.47 0.00 1.00 0.00
Acute admiss. 0.73 0.45 0.00 1.00 1.00
Prev admiss 60days 0.33 0.47 0.00 1.00 0.00
Accident 0.11 0.32 0.00 1.00 0.00
Day patient 0.11 0.31 0.00 1.00 0.00
Home DHB 0.65 0.48 0.00 1.00 1.00
Diagnosis count 4.79 3.92 1.00 65.00 4.00
Pacific pat 0.13 0.34 0.00 1.00 0.00
African pat 0.01 0.08 0.00 1.00 0.00
Maori patient 0.09 0.29 0.00 1.00 0.00
Middleeastern pat 0.01 0.10 0.00 1.00 0.00
Other ethnic pat 0.02 0.15 0.00 1.00 0.00
Asian pat 0.08 0.27 0.00 1.00 0.00
Indian pat 0.05 0.22 0.00 1.00 0.00
European pat 0.60 0.49 0.00 1.00 1.00
MDC 0 0.00 0.01 0.00 1.00 0.00
MDC 2 0.04 0.19 0.00 1.00 0.00
MDC 3 0.02 0.15 0.00 1.00 0.00
MDC 4 0.08 0.27 0.00 1.00 0.00
MDC 5 0.14 0.35 0.00 1.00 0.00
MDC 6 0.10 0.30 0.00 1.00 0.00
MDC 7 0.02 0.14 0.00 1.00 0.00
MDC 8 0.08 0.27 0.00 1.00 0.00
MDC 9 0.04 0.18 0.00 1.00 0.00
MDC 10 0.01 0.12 0.00 1.00 0.00
MDC 11 0.06 0.23 0.00 1.00 0.00
MDC 12 0.01 0.10 0.00 1.00 0.00
MDC 13 0.02 0.13 0.00 1.00 0.00
MDC 14 0.17 0.37 0.00 1.00 0.00
MDC 15 0.02 0.15 0.00 1.00 0.00
MDC 17 0.03 0.16 0.00 1.00 0.00
MDC 18 0.02 0.15 0.00 1.00 0.00
MDC 19 0.00 0.06 0.00 1.00 0.00
MDC 20 0.00 0.04 0.00 1.00 0.00
MDC 21 0.03 0.17 0.00 1.00 0.00
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MDC 22 0.00 0.01 0.00 1.00 0.00
MDC 23 0.05 0.22 0.00 1.00 0.00
Myocardial Infarct. 0.04 0.20 0.00 1.00 0.00
Congestive Heart F 0.04 0.20 0.00 1.00 0.00
Periphral Vascular Dis 0.02 0.15 0.00 1.00 0.00
Cerebrovascular Dis 0.03 0.18 0.00 1.00 0.00
Dementia 0.02 0.13 0.00 1.00 0.00
Chronic Pulmonary D 0.04 0.19 0.00 1.00 0.00
Rheumatic Disease 0.01 0.07 0.00 1.00 0.00
Peptic Ulcer Disease 0.00 0.07 0.00 1.00 0.00
Mild Liver Disease 0.02 0.13 0.00 1.00 0.00
Diabetes w/o complic. 0.04 0.20 0.00 1.00 0.00
Diabetes w complic. 0.07 0.25 0.00 1.00 0.00
Paraplegia + Hemiplegia 0.02 0.13 0.00 1.00 0.00
Renal Disease 0.07 0.25 0.00 1.00 0.00
Cancer 0.10 0.30 0.00 1.00 0.00
Liver Disease 0.00 0.07 0.00 1.00 0.00
Metastatic Carcinoma 0.04 0.20 0.00 1.00 0.00
AIDS/HIV 0.00 0.04 0.00 1.00 0.00

N 417123
Notes: Summary statistics for patients that have a casemanager that is merged with HR data, this

includes patient with a casemanager that does not have information on gender and/or ethnic group.

Table 1.28: Summary statistics for non-HR merged population

Mean Sd Min Max P50

Consultant 0.11 0.31 0.00 1.00 0.00
Control variables:
Age 35.56 23.96 5.00 104.00 32.00
Male 0.37 0.48 0.00 1.00 0.00
Deprivation scale 5.76 2.94 0.00 10.00 6.00
After 5pm entry 0.24 0.43 0.00 1.00 0.00
After 12pm entry 0.26 0.44 0.00 1.00 0.00
Overnight admiss. 0.08 0.28 0.00 1.00 0.00
Transfer 0.07 0.26 0.00 1.00 0.00
LOS 2.82 5.85 0.00 369.00 1.00
Theatre event 0.22 0.42 0.00 1.00 0.00
AED entry 0.19 0.39 0.00 1.00 0.00
Acute admiss. 0.58 0.49 0.00 1.00 1.00
Prev admiss 60days 0.34 0.47 0.00 1.00 0.00
Accident 0.08 0.27 0.00 1.00 0.00
Day patient 0.18 0.38 0.00 1.00 0.00
Home DHB 0.55 0.50 0.00 1.00 1.00
Diagnosis count 4.05 3.37 1.00 63.00 3.00
Pacific pat 0.13 0.34 0.00 1.00 0.00
African pat 0.01 0.08 0.00 1.00 0.00
Maori patient 0.10 0.31 0.00 1.00 0.00
Middleeastern pat 0.01 0.10 0.00 1.00 0.00
Other ethnic pat 0.02 0.13 0.00 1.00 0.00
Asian pat 0.09 0.29 0.00 1.00 0.00
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Indian pat 0.05 0.21 0.00 1.00 0.00
European pat 0.59 0.49 0.00 1.00 1.00
MDC 0 0.00 0.01 0.00 1.00 0.00
MDC 2 0.03 0.17 0.00 1.00 0.00
MDC 3 0.04 0.19 0.00 1.00 0.00
MDC 4 0.08 0.27 0.00 1.00 0.00
MDC 5 0.10 0.29 0.00 1.00 0.00
MDC 6 0.07 0.25 0.00 1.00 0.00
MDC 7 0.01 0.09 0.00 1.00 0.00
MDC 8 0.07 0.26 0.00 1.00 0.00
MDC 9 0.04 0.19 0.00 1.00 0.00
MDC 10 0.02 0.15 0.00 1.00 0.00
MDC 11 0.04 0.19 0.00 1.00 0.00
MDC 12 0.00 0.06 0.00 1.00 0.00
MDC 13 0.01 0.08 0.00 1.00 0.00
MDC 14 0.29 0.45 0.00 1.00 0.00
MDC 15 0.03 0.17 0.00 1.00 0.00
MDC 17 0.06 0.24 0.00 1.00 0.00
MDC 18 0.02 0.14 0.00 1.00 0.00
MDC 19 0.00 0.06 0.00 1.00 0.00
MDC 20 0.00 0.03 0.00 1.00 0.00
MDC 21 0.03 0.16 0.00 1.00 0.00
MDC 22 0.00 0.01 0.00 1.00 0.00
MDC 23 0.02 0.13 0.00 1.00 0.00
Myocardial Infarct. 0.03 0.16 0.00 1.00 0.00
Congestive Heart F 0.03 0.16 0.00 1.00 0.00
Periphral Vascular Dis 0.01 0.12 0.00 1.00 0.00
Cerebrovascular Dis 0.02 0.13 0.00 1.00 0.00
Dementia 0.01 0.10 0.00 1.00 0.00
Chronic Pulmonary D 0.05 0.21 0.00 1.00 0.00
Rheumatic Disease 0.01 0.09 0.00 1.00 0.00
Peptic Ulcer Disease 0.00 0.05 0.00 1.00 0.00
Mild Liver Disease 0.01 0.09 0.00 1.00 0.00
Diabetes w/o complic. 0.03 0.18 0.00 1.00 0.00
Diabetes w complic. 0.04 0.19 0.00 1.00 0.00
Paraplegia + Hemiplegia 0.01 0.10 0.00 1.00 0.00
Renal Disease 0.05 0.21 0.00 1.00 0.00
Cancer 0.13 0.34 0.00 1.00 0.00
Liver Disease 0.00 0.05 0.00 1.00 0.00
Metastatic Carcinoma 0.04 0.18 0.00 1.00 0.00
AIDS/HIV 0.00 0.04 0.00 1.00 0.00

N 114070
Notes: Summary statistics for patients that have a casemanager that is not merged with HR data.

88



1.F Manually associating gender and ethnic group

for doctors

A portion of inpatient records have a doctor that is unable to be matched with HR

information. A manual match process was then undertaken using information on

the first and lastname of doctors in inpatient data to associate a gender and ethnic

group. Manual matching on doctors names provided a secondary dataset to explore

the robustness of my results, this is discussed in the results section. Main results use

data that is matched using information from HR records only.

To achieve more demographic matches, and investigate sampling bias if certain

ethnicity groupings or genders are less likely to complete doctor information forms, a

manual match process was undertaken to associate a gender using casemanager’s first

name and an ethnic group using the ethnic origin of the lastname13. Casemanagers

that are not able to be identified are those with an initial for a firstname, generic

consultant (e.g. AED consultant) or a team of people. Gender neutral first names

were also not matched. This dataset allows me to check the robustness of results.

Main results are estimated on patients matched with HR records.

Table 1.29 has details for the number of casemanagers matched after HR and

manual matching. There are 941 unique doctor names in the inpatient data that are

matched with gender and ethnicity information. There is a high number of casem-

anagers because the same individual can have different names in inpatient data. For

example, the same individual can enter as Mr. X or Dr. X. There is no uniform

pattern for this. Separate fields contain information on first names, preferred names,

13Fiscella and Fremont (2006) review published articles using information on last names to as-
sociate an ethnic group for health services research, they find it can perform well and is a useful
tool when information on an ethnic group is lacking. They find it is poor for predicting African
American ethnicity groupings in the United States. A similar problem might occur in our data for
South African and Maori individuals incorrectly associated with a European ethnic group. Using
first names for gender matching is less commonly used. Cassidy et al. (1999) study the phonology
of English names and gender.
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middle names, last name but this information also varies across inpatient names for

the same individual. That is, some casemanagers in inpatient data only have initials,

or are missing a third name or preferred name. It is therefore difficult to identify

individuals with different inpatient doctor names, because we do not have complete

information on first, middle and lastname. There might be some advantages to using

the doctor name as it appears in inpatient data as the unique identifier. It some-

times refers to a medical situation (e.g. on call), or area of the hospital. When using

fixed effects on casemanagers, comparisons are more likely to be made across patients

that are treated in clinically similar situations, in addition to the same individual.

A disadvantage is smaller group sizes within casemanagers and therefore less precise

estimates. The percentage of European, Indian and Asian casemanagers is similar to

HR data with 83.2%, 6.7%, and 5.6% respectively. Though there is an increase in

European doctors which might raise concern of inaccurately associating a European

ethnic group to a patient of a different ethnic group. The average number of patients

per doctor name is smaller at 539. The percentage of male casemanagers is also sim-

ilar, though there is an increase in matching for maternity admissions. This is most

likely due to increased matching of midwives.

To associate a gender and ethnic group based on a doctor’s name, on-line service

where used to confirm the likelihood of a firstname being male or female and the

ethnic origin of a lastname. For gender matching, www.firstnamesex.com which gives

the proportion of male and female names for a given first name using 1990 US Census

data. This website did not have comprehensive information on gender for firstnames

from minority ethnicity groupings, such as Asian, Indian, Pacific and Maori, therefore

www.gpeters.com was used as well. This uses information from the internet to estimate

how likely a firstname refers to a male or female sex. Situations where the gender of

a name is not clear is not matched.

90



Surnames where associated with European, Asian, Indian, Pacific, Maori and Mid-

dle Eastern ethnicity groupings. African ethnicities are difficult to identify because

lastnames often have a European or dutch heritage. Maori casemanagers may also

be incorrectly identified as European, because there is a longer history of anglicising

surnames and intermarriage. This might result in an overpopulation of European

casemanagers. www.geneology.com provide information on the ethnic group compo-

sition of a surname using immigration data to the U.S.

Table 1.29: Doctor characteristics for manually matched population

N Mean Sd Min Max

European doc 941 0.832 0.374 0 1
Asian doc 941 0.067 0.250 0 1
Indian doc 941 0.056 0.231 0 1
Male 941 0.552 0.498 0 1
N patients 941 539.555 825.677 1 8287
Notes: N=941 is number of doctors. Summary statistics for doctors that are merged with HR data
and manually associated a gender and ethnic group.

1.G Summary statistics for patients with zero lab-

oratory tests

Table 1.30: Study variables for matched population with lab costs of zero

Mean Sd Min Max P50

Transfer 0.11 0.31 0.00 1.00 0.00
LOS 0.55 1.63 0.00 131.00 0.00
Theatre event 0.12 0.33 0.00 1.00 0.00
AED entry 0.10 0.30 0.00 1.00 0.00
Acute admiss. 0.42 0.49 0.00 1.00 0.00
Prev admiss 60days 0.40 0.49 0.00 1.00 0.00
Accident 0.15 0.36 0.00 1.00 0.00
Day patient 0.34 0.47 0.00 1.00 0.00
Own DHB 0.44 0.50 0.00 1.00 0.00
Diagnosis count 2.81 1.91 1.00 36.00 2.00
Admit 2000 0.00 0.00 0.00 0.00 0.00
Admit 2001 0.00 0.00 0.00 0.00 0.00
Admit 2002 0.00 0.00 0.00 0.00 0.00
Admit 2003 0.06 0.23 0.00 1.00 0.00
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Admit 2004 0.11 0.32 0.00 1.00 0.00
Admit 2005 0.13 0.34 0.00 1.00 0.00
Admit 2006 0.14 0.35 0.00 1.00 0.00
Admit 2007 0.15 0.36 0.00 1.00 0.00
Admit 2008 0.13 0.34 0.00 1.00 0.00
Admit 2009 0.12 0.33 0.00 1.00 0.00
Admit 2010 0.11 0.31 0.00 1.00 0.00
Admit 2011 0.05 0.21 0.00 1.00 0.00
MDC 0 0.00 0.00 0.00 1.00 0.00
MDC 2 0.17 0.38 0.00 1.00 0.00
MDC 3 0.03 0.16 0.00 1.00 0.00
MDC 4 0.10 0.30 0.00 1.00 0.00
MDC 5 0.08 0.27 0.00 1.00 0.00
MDC 6 0.03 0.16 0.00 1.00 0.00
MDC 7 0.01 0.10 0.00 1.00 0.00
MDC 8 0.09 0.28 0.00 1.00 0.00
MDC 9 0.02 0.13 0.00 1.00 0.00
MDC 10 0.01 0.10 0.00 1.00 0.00
MDC 11 0.05 0.21 0.00 1.00 0.00
MDC 12 0.01 0.12 0.00 1.00 0.00
MDC 13 0.01 0.12 0.00 1.00 0.00
MDC 14 0.15 0.35 0.00 1.00 0.00
MDC 15 0.03 0.18 0.00 1.00 0.00
MDC 17 0.08 0.26 0.00 1.00 0.00
MDC 18 0.00 0.06 0.00 1.00 0.00
MDC 19 0.01 0.09 0.00 1.00 0.00
MDC 20 0.00 0.02 0.00 1.00 0.00
MDC 21 0.03 0.17 0.00 1.00 0.00
MDC 22 0.00 0.01 0.00 1.00 0.00
MDC 23 0.05 0.22 0.00 1.00 0.00

N 51301
Notes: Summary statistics for patients that no laboratory tests during their inpatient event.
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1.H Male and female doctor characteristics

Table 1.31: Male doctor characteristics

N Mean Sd Min Max

European doc 234 0.850 0.357 0 1
Asian doc 234 0.068 0.253 0 1
Indian doc 234 0.051 0.221 0 1
MDC 1 234 0.081 0.187 0 1
MDC 3 234 0.091 0.234 0 1
MDC 4 234 0.079 0.138 0 1
MDC 5 234 0.193 0.289 0 1
MDC 6 234 0.088 0.142 0 .7190388
MDC 7 234 0.024 0.081 0 .512474
MDC 8 234 0.069 0.163 0 .875
MDC 9 234 0.045 0.101 0 .9
MDC 10 234 0.018 0.033 0 .2077509
MDC 11 234 0.058 0.154 0 .8186077
MDC 12 234 0.009 0.037 0 .25
MDC 13 234 0.015 0.078 0 .8
MDC 14 234 0.045 0.190 0 1
MDC 16 234 0.014 0.042 0 .4868421
MDC 18 234 0.026 0.040 0 .5062241
MDC 19 234 0.002 0.005 0 .0448896
MDC 20 234 0.001 0.003 0 .0275344
MDC 21 234 0.033 0.071 0 1
MDC 22 234 0.000 0.000 0 .0037523
MDC 23 234 0.040 0.128 0 1
Proportion theatre 234 0.195 0.248 0 1
Notes: N is number of doctors. Summary statistics for male doctors. The MDC is identified as the
MDC that most of their patients are treated in. Proportion theatre variable is the proportion of
doctor’s patients that have a surgical procedure.
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Table 1.32: Female doctor characteristics

N Mean Sd Min Max

European doc 150 0.793 0.406 0 1
Asian doc 150 0.073 0.262 0 1
Indian doc 150 0.040 0.197 0 1
MDC 1 150 0.028 0.088 0 .972973
MDC 3 150 0.021 0.104 0 1
MDC 4 150 0.038 0.092 0 .8169935
MDC 5 150 0.079 0.186 0 .9606937
MDC 6 150 0.040 0.085 0 .5754717
MDC 7 150 0.006 0.023 0 .2075472
MDC 8 150 0.040 0.143 0 .9502763
MDC 9 150 0.013 0.024 0 .1666667
MDC 10 150 0.007 0.014 0 .0747331
MDC 11 150 0.013 0.042 0 .3898959
MDC 12 150 0.001 0.005 0 .0630252
MDC 13 150 0.027 0.094 0 .5880952
MDC 14 150 0.516 0.484 0 1
MDC 16 150 0.021 0.093 0 .7712464
MDC 18 150 0.016 0.038 0 .2733119
MDC 19 150 0.001 0.003 0 .0192308
MDC 20 150 0.001 0.002 0 .0240385
MDC 21 150 0.011 0.029 0 .2727273
MDC 22 150 0.000 0.000 0 .0024038
MDC 23 150 0.060 0.196 0 .9963167
Proportion theatre 150 0.114 0.187 0 1
Notes: N is number of doctors. Summary statistics for female doctors. The MDC is identified as
the MDC that most of their patients are treated in. Proportion theatre variable is the proportion
of doctor’s patients that have a surgical procedure.

1.I MDC and DRG information for hospital sam-

ple

Table 1.33: hospital admission medical conditions

MDC % MDC DRG desc. (trimmed) % DRG

1 0.061 Stroke W/O Catastrophic or Severe CC 0.064
1 0.061 Cranial and Peripheral Nerve Disorders W 0.089
1 0.061 Seizure W/O Catastrophic or Severe CC 0.058
1 0.061 Headache 0.092
1 0.061 Other Disorders of the Nervous System W/ 0.054
2 0.042 Retinal Procedures 0.074
2 0.042 Acute and Major Eye Infections Age <55 W 0.054
2 0.042 Neurological and Vascular Disorders of t 0.060
2 0.042 Hyphema and Medically Managed Trauma to 0.178
2 0.042 Other Disorders of the Eye W/O CC 0.441
3 0.026 Tonsillectomy and/or Adenoidectomy 0.080
3 0.026 Dysequilibrium 0.129
3 0.026 Epistaxis 0.123
3 0.026 Otitis Media and URI W CC 0.067
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3 0.026 Otitis Media and URI W/O CC 0.195
3 0.026 Other Ear, Nose; Mouth and Throat Diagno 0.121
4 0.087 Respiratory Infections/Inflammations W S 0.068
4 0.087 Respiratory Infections/Inflammations W/O 0.073
4 0.087 Sleep Apnoea 0.243
4 0.087 Chr Obstruct Airway Disease W Cat/Sev CC 0.073
4 0.087 Chronic Obstructive Airways Disease W/O 0.068
5 0.136 Percutaneous Coronary Intervention W AMI 0.070
5 0.136 Non-Major Arrhythmia and Conduction Diso 0.078
5 0.136 Syncope and Collapse W/O Catastrophic or 0.055
5 0.136 Chest Pain 0.167
6 0.094 Appendicectomy W/O Catastrophic or Sever 0.101
6 0.094 Abdominal Pain/Mesenteric Adenitis no CC 0.190
6 0.094 Oesophagitis, Gastroent + Misc Digestive 0.063
6 0.094 Oesophagitis, Gastroent + Misc Digestive 0.196
7 0.018 Laparoscopic Cholecystectomy W/O Closed 0.073
7 0.018 Malignancy of Hepatobiliary Sys,Panc (Ag 0.053
7 0.018 Disorders of Pancreas Except for Maligna 0.069
7 0.018 Disorders of Liver Excep Malig, Cirrhosi 0.130
7 0.018 Disorders of the Biliary Tract W CC 0.061
7 0.018 Disorders of the Biliary Tract W/O CC 0.145
8 0.068 Humerus, Tibia; Fibula and Ankle Procedu 0.063
8 0.068 Non-surgical Spinal Disorders W/O CC 0.065
8 0.068 Injury to Forearm, Wrist; Hand or Foot A 0.072
8 0.068 Inj to Shoulder,Arm;Leg;etc<65 No CC 0.075
9 0.033 Cellulitis Age >59 W Catastrophic or Sev 0.055
9 0.033 Cellulitis >59 W/O Catast/Sev CC or <60 0.524
9 0.033 Trauma to the Skin, Subcutaneous Tissue 0.072
10 0.013 Diabetic Foot Procedures 0.072
10 0.013 Diabetes W Catastrophic or Severe CC 0.096
10 0.013 Diabetes W/O Catastrophic or Severe CC 0.191
10 0.013 Miscellaneous Metabolic Disorders W Cata 0.057
10 0.013 Miscellaneous Metabolic Disorders Age >7 0.161
10 0.013 Miscellaneous Metabolic Disorders Age <7 0.131
10 0.013 Inborn Errors of Metabolism 0.050
10 0.013 Endocrine Disorders W/O Catastrophic or 0.112
11 0.065 Kidney and Urinary Tract Infections Age 0.064
11 0.065 Kidney and Urinary Tract Infections Age 0.115
11 0.065 Urinary Stones and Obstruction 0.225
11 0.065 Kidney and Urinary Tract Signs and Sympt 0.083
11 0.065 Oth Kidney+Urinary Tr Diag No Cat/Sev CC 0.143
12 0.012 Testes Procedures W/O CC 0.223
12 0.012 Inflammation of the Male Reproductive Sy 0.079
12 0.012 Inflammation of the Male Reproductive Sy 0.326
12 0.012 Other Male Reproductive System Diagnoses 0.163
13 0.018 Other Uterine + Adnexa Procedures for No 0.095
13 0.018 Conisation, Vagina; Cervix and Vulva Pro 0.191
13 0.018 Infections, Female Reproductive System 0.145
13 0.018 Menstrual and Other Female Reproductive 0.070
13 0.018 Menstrual and Other Female Reproductive 0.319
14 0.158 Caesarean Delivery W/O Catastrophic or S 0.094
14 0.158 Vaginal Delivery W Catastrophic or Sever 0.052
14 0.158 Vaginal Delivery W/O Catastrophic or Sev 0.194
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14 0.158 Postpartum and Post Abortion W/O O.R. Pr 0.060
14 0.158 Abortion W/O O.R. Procedure 0.057
14 0.158 Antenatal + Other Obstetric Admission 0.106
14 0.158 Antenatal + Other Obstetric Admission, S 0.113
16 0.020 Reticuloendothelial+Immun Dis+Cat/Sev CC 0.089
16 0.020 Reticuloendothelial+Imm Dis No C/S CC 0.138
16 0.020 Reticuloendothelial and Immunity Disorde 0.452
16 0.020 Red Blood Cell Disorders W/O Catastrophi 0.144
16 0.020 Coagulation Disorders 0.074
17 0.035 Acute Leukaemia W Severe CC 0.057
17 0.035 Acute Leukaemia W/O Catastrophic or Seve 0.103
17 0.035 Lymphoma and Non-Acute Leukaemia W/O Cat 0.073
17 0.035 Lymphoma and Non-Acute Leukaemia, Sameda 0.277
17 0.035 Chemotherapy 0.323
18 0.022 O.R. Procedures for Infectious and Paras 0.051
18 0.022 Septicaemia W Catastrophic or Severe CC 0.201
18 0.022 Postoperative + Post-traumatic Infection 0.127
18 0.022 Postop + Post-Traum Infect <55 No C/S CC 0.082
18 0.022 Fever of Unknown Origin W CC 0.070
18 0.022 Viral Illness Age >59 or W CC 0.062
18 0.022 Viral Illness Age <60 W/O CC 0.167
19 0.003 Mental Health Treatment,Sameday;W/O ECT 0.164
19 0.003 Other Affective and Somatoform Disorders 0.055
19 0.003 Anxiety Disorders 0.632
20 0.001 Alcohol Intoxication and Withdrawal W CC 0.179
20 0.001 Alcohol Intoxication and Withdrawal W/O 0.177
20 0.001 Alcohol Intoxication and Withdrawal 0.453
20 0.001 Other Drug Use Disorder and Dependence 0.061
21 0.028 Other Procedures for Other Injuries W Ca 0.058
21 0.028 Other Procedures for Other Injuries W/O 0.087
21 0.028 Injuries Age < 65 0.194
21 0.028 Poisoning/Toxic Effects of Drugs + Other 0.072
21 0.028 Poison/Tox Eff-Drugs,Oth Subs <60 No CC 0.061
21 0.028 Sequelae of Treatment W Catastrophic or 0.065
21 0.028 Sequelae of Treatment W/O Catastrophic o 0.215
22 0.000 Other O.R. Procedures for Other Burns 0.108
22 0.000 Burns,Tran Oth Ac Care Facility< 5 Days 0.216
22 0.000 Severe Burns 0.054
22 0.000 Other Burns Age >64 or W (Cat or Sev CC) 0.216
22 0.000 Oth Burns<65 No C/S CC No Comp Diag/Proc 0.378
23 0.057 Rehabilitation W Catastrophic or Severe 0.503
23 0.057 Rehabilitation W/O Catastrophic or Sever 0.144
23 0.057 F-Up After Completed Treat W/O Endoscopy 0.072
23 0.057 Other Factors Influencing Health Status, 0.171
Notes: Summary of medical conditions in the eligible study sample. For each MDC, the ‘prop MDC’

column provides the percentage of study sample within that MDC. The top DRGs are listed within

each MDC, with the proportion of patients with that DRG in an MDC.
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Chapter 2

Emergency Caesarean Procedures

and Provider-Patient Ethnic

Concordance
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2.1 Introduction

Rates of caesarean section procedures have been increasing in many industrialised

countries worldwide (Anderson, 2004; Declercq et al., 2011; Knight and Sullivan,

2010). The World Health Organisation estimates the global costs of ‘excessive’ cae-

sarean procedures at USD 2.32 billion compared to USD 432 million for clinically

‘needed’ caesarean procedures (Gibbons et al., 2010). Caesarean rates also vary

markedly across countries, the highest rates are in Latin American countries, par-

ticularly Brazil (45.9%) and Dominican Republic (41.9%) (Gibbons et al., 2010)1.

In addition to variation across countries in caesarean procedures, several studies

have shown significant variation in caesarean rates within countries across ethnicity

groupings. In New Zealand, Maori and Pacific peoples have the lowest rates of cae-

sarean procedures (17% and 19.12% respectively), and Asian and European patients

have the highest rates of caesarean procedures (27.3% and 27.1% respectively) (Min-

istry of Health, 2012). A number of studies have also shown that variation across

ethnicity groupings exists even after controlling for a variety of confounding factors,

like a mother’s clinical condition, socioeconomic status, age and so on (von Katter-

feld et al., 2011; Vangen et al., 2000; Ibison, 2005). For example, Harris et al. (2007)

showed that the difference in caesarean rates for Maori and non-Maori cannot be fully

explained by clinical variables, age and socioeconomic factors.

Increasing caesarean section rates and variation in caesarean procedures across

ethnicity groupings suggest non-clinical factors, such as preferences or miscommuni-

cation, may play a role in the decision to have a caesarean procedure. Non-clinical

factors affecting the decision to have a caesarean procedure are of interest to health

policy makers concerned with the cost and equity of health care provision. This is

because non-clinical factors could potentially be influenced by policy on how health

care is delivered.

1The World Health Organisation considers national caesarean section rates above 15% ‘excessive’.
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In this paper I estimate a relationship between doctor-patient ethnic concordance

and the likelihood a patient receives an emergency caesarean procedure2. This paper is

motivated to distinguish between three explanations for ethnic-based variation in cae-

sarean procedures. I identify these three explanations, and suggest that investigating

provider-patient ethnic concordance helps to distinguish between the three explana-

tions. I refer to these three explanations as; ‘patient ethnic group’, ‘supply-side’, and

‘casemanager composition’. I therefore estimate the impact of ‘patient ethnic group’,

‘supply-side’, and ‘casemanager composition’ in explaining ethnic-based variation in

caesarean rates. Previous studies have been unable to distinguish between these three

explanations, largely because of data limitations.

The first explanation for ethnic-based variation in caesarean procedures, is differ-

ences in biological characteristics, health behaviours and cultural preferences across

ethnicity groupings. These biological characteristics, health behaviours and cultural

preferences are associated with a higher or lower likelihood of a caesarean proce-

dure. Health behaviours and biological characteristics of women which could affect

caesarean rates include; weight, height, physical build, smoking rates, child-birth

rates, age and so on. For example, pregnant Maori and Pacific women are on aver-

age younger, and younger women may be more physically able to undergo a natural

labour, and this might therefore explain lower rates of caesarean procedures for Maori

and Pacific women (Ministry of Health, 2012). In other words, if some ethnicity group-

ings are correlated with certain biological characteristics, health behaviours and/or

cultural preferences, that are also associated with higher or lower rates of caesarean

procedures, this could explain differences in caesarean procedure rates across ethnicity

groupings.

These ‘patient ethnic group’ characteristics are decision factors that are correlated

with a patient belonging to an ethnic group, and are relevant decision factors for all

2A casemanager is defined by the hospital as the primary caregiver for a women who gave birth
in hospital, and could include a doctor or nurse. See Section 2.3.3.
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casemanagers treating patients from that ethnic group. Often these ‘patient ethnic

group effects’ are not fully observed in administrative data. For example, the weight

and height of women, or their stated preferences for a caesarean procedure are not

often recorded in hospital administrative data. Therefore, previous studies on the

sources of variation in caesarean rates across ethnicity groupings typically do not

adequately control for all confounding biological characteristics, health behaviours

and cultural preferences associated with a patient’s ethnic group.

A second source for ethnic variation in caesarean procedures, are that some ethnic-

ity groupings could be more likely to be treated in regional areas or by casemanagers

that use high or low amounts of caesarean procedures on average. In this case, a

casemanager has a propensity to advise a caesarean procedure that is independent

of a patient’s ethnic group. For example, Maori women might be more likely to be

treated by less specialised casemanagers that use low amounts of caesarean proce-

dures on average. This may accordingly explain low rates of caesarean procedures

for Maori patients. This is referred to as a ‘supply-side’ explanation in this paper.

Previous studies that attempt to explain variation in caesarean procedure rates across

ethnicity groupings typically do not observe the identity of a women’s caregiver, even

if regional and hospital-specific factors are controlled for in a regression analysis.

A final source for ethnic variation in caesarean procedures, is an interaction be-

tween a patient’s ethnic group and casemanager characteristics. Casemanager char-

acteristics could include demographic characteristics and/or beliefs. Demographic

characteristics could include a doctor’s gender, age, and ethnic group. Casemanager

beliefs could include prejudices and stereotypes relating to patient ethnicity group-

ings. An example of a belief would be a casemanager that is biased against a patient

because of their ethnic group. This may result in doctors with that belief under-

treating patients from that ethnic group. Casemanager demographic characteristics

could also influence caesarean procedure decisions. For example, an older casem-
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anager may be more experienced in diagnosing and treating patients from minority

ethnicity groupings.

The interaction between a patient’s ethnic group and casemanager’s demographic

characteristics and/or beliefs could explain ethnic-based variation in caesarean pro-

cedures if there is a large or small proportion of casemanagers from demographic

and belief groups in the population. For example, if the majority of casemanagers

are European, and casemanagers from this ethnic group are more likely to believe

an emergency caesarean is more clinically appropriate for an Asian patient than an

Asian casemanager, this could explain a high rate of caesarean procedures for Asian

women. This is referred to as a ‘casemanager composition’ explanation in this paper,

because the composition of casemanager types in the population could be contributing

to ethnic disparities in care.

An example of a ‘casemanager composition’ explanation for ethnic-based varia-

tion in medical treatment is Balsa and McGuire’s (2003) model for ethnic dispari-

ties in medical treatment. In their model, ethnic disparities in medical treatment

could be due to doctors’ prejudices, stereotypes and/or miscommunication. There

are two types of doctors in their model, black and white, and they may alter treat-

ment for black and white patients because of stereotypes, poor communication, or a

bias against an ethnic group other than their own. For example, in their miscom-

munication model doctors and patients that are ethnically discordant have poorer

communication, and this can lead to over or under-treatment, relative to a patient’s

true clinical need. Previous empirical studies often do not have information on the

identity of the casemanager and therefore their demographic characteristics. This has

limited previous estimates for casemanager-patient ethnic interactions and medical

treatment decisions.

In this paper I estimate the effect of a patient and casemanager having the same

ethnic group on the likelihood of having an emergency caesarean procedure. I use re-
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gression analysis to control for ‘supply-side’ and ‘patient ethnic group’ explanations.

I then test for the statistical significance of an interaction term for casemanager-

patient ethnic group concordance on emergency caesarean outcomes. Based on the

above three hypothesised sources for ethnic variation in caesarean procedures, if ‘pa-

tient ethnic group’ (first explanation) and/or ‘supply-side’ (second explanation) ex-

plain all the variation in caesarean rates, I would not expect to find a statistically

significant term for casemanager-patient ethnic concordance on emergency caesarean

outcomes3. This is because I control for each casemanager’s average propensity to

advise an emergency caesarean across all of their patients in my regression, that is, my

‘supply-side’ explanation. Secondly, I would not expect a significant interaction term

for casemanager-patient ethnic concordance in my regression analysis if all caseman-

agers use the same ‘patient ethnic group’ factors when making emergency caesarean

decisions. Because ‘patient ethnic group’ decision factors refer to the clinical need or

preferences for caesarean procedures (associated with a patient’s ethnic group) they

should apply equally to all doctors treating patients from an ethnic group. Therefore,

in my regression analysis, a significant term for casemanager-patient ethnic concor-

dance would suggest that variation in caesarean rates across ethnicity groupings is not

solely determined by clinical appropriateness and/or ethnicity-specific preferences.

My empirical strategy uses an interaction model to test for the statistical signifi-

cance of ethnic concordance. An interaction term is equal to one when a patient and

casemanager have the same ethnic group, and is zero otherwise. I estimate a logit

model for emergency caesarean outcomes on a cross-section of casemanagers.

I use data on birth events from a large hospital in New Zealand. The three largest

casemanager ethnicity groupings in my data are European, Asian and Indian4. There

3Casemanager-patient is used in this paper to refer to the casemanager and patient pair for an
inpatient event (i.e. birth event).

4Asian ethnic group includes ethnicities from East and South East Asia, i.e China, Taiwan, Japan,
Korea, Burma, Thailand, Laos, Cambodia, Vietnam, Indonesia, Malaysia, Singapore, East Timor,
Brunei and the Philippines. I decided to distinguish an Indian ethnic group from Asian ethnicity
groupings, even though India is part of the South Asia region
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are low numbers of casemanagers from Maori and Pacific ethnicity groupings. I am

therefore unable to estimate the impact of Maori and Pacific ethnic concordance on

caesarean procedures.

In this paper, I investigate whether a patient from an Asian, European, or Indian

ethnic group is more or less likely to receive an emergency caesarean when treated

by a casemanager of the same ethnic group relative to a casemanager of a different

ethnic group, after controlling for the effect of a patient belonging to a particular

ethnic group and a casemanager’s propensity to advise caesarean procedures across

all of their patients.

My main result is that Asian patients with an Asian casemanager are associated

with a statistically significantly lower likelihood of an emergency caesarean procedure

relative to treatment by both European and Indian ethnicity groupings. Firstly, an

Asian patient with an Asian casemanager is on average 6% less likely to receive an

emergency caesarean relative to an Asian patient (or casemanager) with a European

casemanager (or patient)5. Secondly, an Asian patient with an Asian casemanager

is on average 3.6% less likely to receive an emergency caesarean relative to an Asian

patient (casemanager) with an Indian casemanager (patient). After controlling for a

number of factors, Indian and European ethnic concordance are not statistically more

or less likely to undergo an emergency caesarean procedure, relative to outcomes for

ethnically discordant casemanager-patient pairs.

In this paper, a statistically significant interaction term for Asian ethnic concor-

dance only reveals an association, because I am unable to randomly assign patients

to casemanagers. That is, some women are able to select their casemanager prior to

entering hospital.

5Because I use an interaction model, the base category for interpreting ethnic concordance in-
teraction terms includes two types of ethnic discordance. So, Asian patient-Asian casemanager is
compared to both Asian patient-European casemanager and Asian casemanager-European patient.
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I argue that the unobserved health condition of women in ethnically concordant

relative to discordant groups does not explain the significant negative relationship

for my Asian ethnic group. Because women have entered labour, and have not been

selected for a planned caesarean ex-ante, they must have been considered of a suffi-

cient health status to undergo a natural birth. That is, women at risk from labour

complications are selected for a planned caesarean procedure prior to entering labour.

Planned caesarean procedures are identified in my data and are accordingly excluded

from my sample so that I only consider women who enter a labour process and either

undergo an emergency caesarean or have a vaginal birth. This assumption allows me

to argue a significant relationship between ethnic concordance and emergency cae-

sareans is not due to differences in the clinical condition of mothers who are ethnically

concordant relative to discordant, because all women who enter labour would have

been considered of a sufficient health status to undergo a natural birth.

Because I assume women are of a sufficient health status in ethnically concordant

and discordant pairs, and that ‘patient ethnic group’ and ‘supply-side’ explanations

are controlled for in my regression analysis, a statistically significant Asian-Asian

interaction term suggests emergency caesarean outcomes for Asian patients are not

always being determined by clinical appropriateness and/or ethnicity-specific pref-

erences. This therefore suggests that health care policy could potentially reduce

the high rate of caesarean procedures for Asian women. For example, by encouraging

more Asian midwives, or educating casemanagers about the effect of patient ethnicity

on their treatment decisions. This is especially relevant to the New Zealand context,

because Asian women have the highest rate of caesarean procedures nationally, at

27.3% birth events involving an Asian mother (Ministry of Health, 2012)6.

6Maori and Pacific have the lowest caesarean rate at 17% and 19.12% respectively. An ‘Other’
ethnic group (including mostly European) have a caesarean rate of 27.1% (Ministry of Health, 2012,
pg.26).
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I suggest three plausible mechanisms for why Asian women are less likely to re-

ceive an emergency caesarean when treated by an Asian casemanager relative to a

casemanager from a different ethnic group. The first explanation is a reduction in the

clinical need for an emergency caesarean. In this explanation, Asian patients with

an Asian casemanager have greater ease, communication, and trust which lowers a

women’s distress in labour and thereby reduces the clinical need for an emergency

caesarean.

A second explanation is a reduction in clinical uncertainty in ethnically concor-

dant pairs. Because emergency caesarean procedures are undertaken in an uncer-

tain environment, an Asian casemanager with an Asian patient may be less likely to

over-treat an Asian patient, because they can more accurately interpret their level

of distress. The effect of doctor-patient ethnic concordance on a patient’s commu-

nication of their health condition has been modelled by Balsa and McGuire (2001,

2003). In their model, a patient sends a noisier signal of their condition in ethnically

discordant pairings. Poor information from communication could result in over or

under-treatment.

A third explanation is that Asian women who prefer an Asian casemanager are

also more likely to prefer not to have a caesarean procedure, compared to Asian

women that do not have a preference for an Asian caregiver. I argue that this is not

a cultural preference because it does not apply to all Asian women.

The next section discusses the empirical literature on ethnic variation in caesarean

procedures. Later sections outline my data, empirical strategy, results and conclusion.
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2.2 Background and previous literature

2.2.1 Ethnic differences in caesarean rates

A number of papers have used regression analysis to investigate explanations for

ethnic-based variation in caesarean procedures. These papers test for the significance

of patient ethnic group variables, after controlling for a number of explanations. In all

of the following reviewed papers, researchers find that ethnic-based variation in cae-

sarean procedures persists even after controlling for various explanations, including;

a mother’s clinical diagnoses, socioeconomic factors, age, hospital characteristics and

so on. In the following, I review a selection of these papers from different countries.

Harris et al. (2007) used regression analysis to investigate the sources for differ-

ences in caesarean section rates, both elective and acute, across Maori and non-Maori

women in New Zealand. The authors find that both emergency and elective caeserean

procedure rates are lower for Maori (13%) than non-Maori (21%), using data from

1997-2001. Maori women were also more likely to have an acute than elective cae-

sarean section procedure. Harris et al. find that differences in caesarean rates remain

after controlling for age, deprivation and a number of clinical factors. Clinical factors

controlled for include; fetal malpresentation, gestation at delivery (either pre-term

delivery at <37 weeks gestation or post-term delivery at >42 weeks gestation), multi-

ple births, maternal hypertension, maternal diabetes, and antepartum haemorrhage.

The authors suggest that ‘non-clinical factors may be contributing to ethnic differ-

ences in CS [Caesarean Section] in New Zealand. While deprivation contributes to

this difference it does not fully explain it’ (Harris et al., 2007, pg. 125)7.

7Rumball-Smith (2009, p.68) reviews empirical studies of ethnicity-based health care disparities
in New Zealand. She concludes that, despite shortcomings in some empirical study designs, ‘there
is robust evidence for the existence of healthcare disparities for Maori’ and that these disparities are
most evident in ‘obstetric intervention and the incidence of potentially avoidable adverse events’.
Lower resource use for Maori and Pacific Peoples has also been indicated in other studies. Tukuitonga
and Bindman (2002) compare hospitalization rates for heart failure and cardiac intervention DRGs
for Maori, non-Maori, men and women. hospitalization rates for heart failure in Maori are four or
more times higher than for non-Maori patients under 65 years (this difference decreases as patients
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In the United States, several studies have found higher rates of caesarean pro-

cedures in African-American compared to white Americans (Menacker et al., 2010;

Braveman et al., 1995; Getahun et al., 2009). Braveman et al. (1995) use data from

California, after controlling for various confounding factors, African-Americans were

24% more likely to undergo a caesarean procedure than white Americans. Their con-

trol variables include clinical factors, patient characteristics, insurance status, hospital

ownership, and hospital teaching status, volume, and region. The authors conclude;

‘the findings warrant further research that more directly examines how nonclinical

characteristics of patients - particularly race/ethnicity - may inappropriately influ-

ence clinical decision making.’ (Braveman et al., 1995, pg.630).

A more recent study in the United States used 540,953 births in California during

the 1991 to 2008 period to study ethnic variation in caesarean rates (Getahun et al.,

2009). The authors also found a higher caesarean section rate for African-American

women, after controlling for a number of factors, and conclude that there is ‘wide vari-

ability in rate of indications for primary cesarean section by race/ethnicity’ (Getahun

et al., 2009, pg. 423).

In Australia, von Katterfeld et al. (2011) compared caesarean rates for immigrant

populations. They find higher caesarean rates for women from Sub-Saharan Africa,

Southeast Asia, and Southern and Central Asia compared to Australian-born women.

The authors adjusted for differences in perinatal complications and maternal charac-

teristics. The authors conclude that the difference in caesarean rates ‘indicates that

the increased risk among women from these regions cannot be entirely accounted for

by sociodemographic risk factors or identified complications’ (von Katterfeld et al.,

2011, pg.153).

age increases). By contrast, Maori rates for cardiac procedure DRGs are much lower; typically
between a third to a half of the rate for non-Maori. This suggests to Tukuitonga and Bindman
that Maori are much less likely to receive cardiac interventions, despite having very high rates of
hospitalization for heart failure. There are no controls for a patient’s medical condition in their
study, and it could be the case that Maori are more likely to have less severe heart conditions.
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In the United Kingdom, Ibison (2005) find African, West Indian, Bangladeshi,

Indian and Pakistani women were at a higher risk of Cesarean procedure compared

to ‘Caucasian’ women. They use data from 1988 to 1997 on 27,667 women in an East

London Area.Their control variables include; maternal age, antenatal class atten-

dance, late-booking, year of baby’s birth, hospital, intra-uterine growth retardation,

baby’s birthweight, foetal sex, induction, and augmentation of birth.

In Norway, Vangen et al. (2000) study caesarean rates among immigrant mothers.

Of 553,491 live births during the period 1986-1995, 17,891 births were to immigrant

mothers. Caesarean section rates ranged from 10.1% for women from in Vietnam, to

25.8% for Filipino-born women. The authors conclude in their study that ‘unknown

factors come into play in the decision to receive an emergency caesarean’ (Vangen

et al., 2000, pg.32).

I am unable to find a study that estimates a relationship between provider-patient

ethnic concordance and a patient’s likelihood of undergoing a caesarean procedure.

This is likely due to the lack of widely available data on the ethnic group of casem-

anagers.

2.3 Data

2.3.1 Data source

Data on birth events was obtained from a large public hospital in New Zealand. This

data source has been discussed in Chapter 1 (see Section 1.3).

2.3.2 Patient population

Patients are firstly selected for my study if an inpatient admission has an Australian

Refined - Diagnosis Related Group (AR-DRG) corresponding to a birth event in

hospital during the 2000 to 2011 time period. Different versions of AR-DRG codes
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are used because codes change during the 2000 to 2011 period. All versions of AR-

DRGs used to select the patient population are in Appendix 2.D. AR-DRG codes

are assigned after an inpatient event. Software is used to assign a DRG based on

information from an admission, including; the patient’s diagnosis codes, length of

stay, and procedures undertaken. AR-DRG codes are used to compensate hospitals

for an expected bundle of services for an inpatient event, and are therefore expected

to be a reliable indication of a birth event8.

Secondly, I select only women for the patient population who undergo an emer-

gency caesarean or vaginal birth. Patients that have a planned caesearean are ex-

cluded from my study. Patients that enter hospital for a planned caesarean procedure

are not at risk of an emergency caesarean during labour. Emergency and planned

caesarean procedures are identified with a ICD-10-AM procedure code for any of

the procedures performed on a patient during their hospital stay. ICD-10-AM codes

for emergency caesareans are; 1652001 (Emergency classical caesarean section) and

1652003 (Emergency lower segment caesarean section). ICD-10-AM codes for planned

caesareans are; 1652000 (Elective classical caesarean section) and 1652002 (Elective

lower segment caesarean section).

2.3.3 Assignment of casemanagers to patients

For each inpatient event, the name of the primary casemanager is recorded in hospital

data. The primary casemanager is defined by inpatient data collections as the main

casemanager responsible for a patient’s hospital stay. I assume that this caseman-

ager plays an important role in the decision for a patient to undergo an emergency

caesarean procedure during labour. The decision to have an emergency caesarean

would likely involve more than one medical opinion, and an obstetrician would have

8This is in contrast to using diagnosis codes to identify a birth event e.g. a ‘Singleton birth’.
This is because ICD-10 diagnostic codes are subject to a greater risk of error than AR-DRG coding,
because AR-DRG coding is the basis of hospital reimbursement.
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to perform the procedure. Given a primary casemanager is the person identified as

responsible for an inpatient’s care, it is a reasonable assumption that there is a re-

lationship between the primary casemanager and patient during labour which allows

the casemanager to advise treatment decisions9.

The assignment of casemanagers to women entering hospital to give birth depends

on whether a woman has selected a casemanager prior to entering hospital, or is

assigned a casemanager at hospital entry. Women who give birth under the public

health care system are mostly assigned a casemanager that is available at the time

of hospital entry. It is also possible to pay for private health care and give birth

in a public hospital. In this case, a women may have a prearranged casemanager,

such as an obstetrician, who will enter hospital to provide medical treatment when

a women goes into labour. Importantly, it is possible for some women to select

their casemanager, and this may involve selection depending on the ethnicity of the

casemanager. The implication of patient self-selection when interpreting my results

is discussed in my conclusion. It is not possible in the data to identify women who

enter hospital with a pre-arranged casemanager, or are assigned a casemanager from

staff at hospital entry.

It is important that emergency caesareans can occur across all casemanagers. That

is, that emergency caesareans do not occur only in a small number of ‘specialised’

casemanagers. I investigate the concentration of caesarean section procedures across

casemanagers in the next section (2.4.1). A high concentration of caesarean proce-

dures in a small number of casemanagers could suggest that women change casem-

anagers if they undergo a caesarean procedure. This kind of endogenous sorting of

patients to ‘specialised’ casemanagers - as a result of a caesarean procedure - would

be problematic for estimating the relationship between ethnic concordance and cae-

sarean procedures. I do not find evidence to suggest endogenous sorting of patients

9For the rest of the paper I use the term casemanager when referring to primary casemanagers.
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to casemanagers depending on caesarean procedures in my hospital data (see Sec-

tion 2.4.1).

2.3.4 Casemanager ethnic group information

The ethnicity of the casemanager is not provided in inpatient data records. Infor-

mation on employee ethnic group was obtained from the hospital’s HR department.

Chapter 1 describes the linking procedure on a casemanager’s name between inpatient

and HR data to obtain a casemanager’s ethnic group.

Casemanagers are associated with one of six main ethnicity groupings; European,

Maori, Pacific peoples, Asian, African and Indian. Other ethnicity groupings for

casemanagers include Middle Eastern and Latin American. These ethnicity groupings

are included in descriptive tables in an ‘other’ ethnic category, because they comprise

a small proportion of casemanagers.

Not all casemanagers complete their ethnic information on an HR form. Sum-

mary statistics for casemanagers matched with HR data, for which we have ethnic

information on, are in Table 2.1. There are 102 individual casemanagers that have

information on ethnicity. Of 102 casemanagers, 75% are European, 10% are Asian

and 9% are Indian. These are the three largest ethnicity groupings for casemanagers.

The average number of patients per casemanager is 246, and the median number is

64.5010.

Because not all casemanagers complete their ethnic information, and HR infor-

mation is only recorded electronically from 2005 onwards, a large number of patients

(51,830) in the 2000-2011 period have a casemanager with no ethnic information.

To obtain further information on a casemanager’s ethnic group, an ethnic group

was manually associated based on the ethnic origin of a casemanager’s lastname. This

10Birth events are a suitable patient population to study treatment decisions. The population
of casemanagers for other clinical conditions, such as Acute Myocardial Infarction (AMI) events, is
small and lacks ethnic diversity.
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provided a second dataset that is obtained by firstly matching with HR data, and

remaining unmatched casemanagers were manually associated an ethnic group. This

process of manually associating an ethnic group has been discussed in Chapter 1,

Appendix 1.F.

Summary statistics for casemanagers matched with HR data and manually

matched are in Table 2.2. There are 389 casemanagers identified with an ethnic

group. Of 389 casemanagers, 81% are identified as European, 8.2% are identified as

Asian and 4.8% are identified as Indian ethnic origin. There is a high proportion of

European casemanagers in Table 2.2, compared to HR matched data (Table 2.1). A

possible reason for this is incorrectly associating a European ethnic group. This is

suspected to be more likely for Maori and (South) African casemanagers than Asian

or Indian ethnicity groupings. For example, there is a greater history of intermarriage

and anglicising lastnames for Maori. South African names also tend to share a Dutch

heritage which would be associated with a ‘European’ ethnic group. This raises some

concerns about manually associating the ethnic origins of lastnames11.

The number of patients over the 2000-2011 period using both HR and manual

matching that I am unable to match is 4,287 (compared to 51,830 for HR data).

All of these patients are not matched because they had a ‘consultant’ for a primary

casemanager. That is, the casemanager is not personally identified.

I use the HR and manually matched dataset for further statistical analysis. The

advantage of this dataset is a significantly larger number of inpatient observations,

which allows me to more reliably estimate the relationship between ethnic concor-

dance and emergency caesarean procedures.

11I am able to check the robustness of my results by using only casemanagers matched to HR
data.
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Table 2.1: Casemanager characteristics for HR matched

N Mean Sd Min Max P50

European CM 102 0.75 0.44 0.00 1.00 1.00
Asian CM 102 0.10 0.30 0.00 1.00 0.00
Indian CM 102 0.09 0.29 0.00 1.00 0.00
N patients 102 246.59 417.86 1.00 2178.00 64.50

N patients missing CM 51830
Notes: N=102 is number of casemanagers (CM). Summary statistics for casemanagers that are
merged with HR data.

Table 2.2: Casemanager characteristics for manual and HR population

N Mean Sd Min Max P50

European CM 389 0.82 0.38 0.00 1.00 1.00
Asian CM 389 0.08 0.28 0.00 1.00 0.00
Indian CM 389 0.05 0.22 0.00 1.00 0.00
N patients 389 186.88 336.87 1.00 2178.00 47.00

N patients missing CM 4287
Notes: N=389 is number of casemanagers (CM). Summary statistics for casemanagers that are
merged with HR data and manually associated an ethnic group.

2.4 Descriptive statistics

This section summarises features of my dataset that are relevant to the estimation of

a relationship between ethnic concordance and emergency caesarean procedures.

2.4.1 Casemanager summary statistics

There is a large number of casemanagers with a small patient history. Fifty three out

of 389 casemanagers have one patient during the 2000-2011 period, 26 casemanagers

have 2-3 patients, 35 casemanagers have 4-10 patients, 52 casemanagers have 11-

30 patients, 34 casemanagers have 31-50 patients, and 45 casemanagers have 51-100

patients. There are 144 casemanagers with greater than 101 patients. Therefore, half

of all casemanagers treat 46 or fewer patients.

The variation in caseload size across casemanagers could be problematic if emer-

gency caesarean procedures tend to occur only in casemanagers that treat a large

number of cases. For example, if a specialist obstetrician at the hospital treats the
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majority of patients that receive an emergency caesarean, this could indicate that

patients are transferred from their original casemanager to a obstetrician when they

undergo an emergency caesarean. To investigate if this pattern exists in my data,

Table 2.3 presents the percentage of emergency caesarean outcomes for patients by

the size of their casemanager’s total caseload (i.e. number of patients they treat in

2000-2011 period). The first row shows that 26% of patients with a casemanager that

treats only one patient have an emergency caesarean. Going down the column for

the percentage of emergency caesarean procedures, there is no clear pattern between

the number of patients a casemanager treats and emergency caesarean outcomes.

There may however be some concern about the high proportion of emergency cae-

sarean procedures (30%) for the small number (4-5) of casemanagers that treat 1500

plus patients. In robustness checks, casemanagers with large and small caseloads are

excluded from the sample so that the casemanager population is more homogeneous.

In general, I observe an even spread in the percentage of emergency caesarean

outcomes across casemanagers with high and low caseloads. This is a good indication

that there is no sorting of patients who undergo an emergency caesarean to a small

number of casemanagers. This is relevant to my empirical strategy, because sorting

of patients to casemanagers, depending on their likelihood of an emergency caesarean

outcome, would be endogenous.

2.4.2 Number of patient and casemanager ethnicity pairs

Casemanagers and patients are associated with one of 6 main ethnicity groupings;

African, Asian, European, Indian, Maori, and Pacific peoples. An ‘Other’ category

captures all ethnicity groupings that do not belong to the aforementioned ethnicity

groupings. Ethnic concordance occurs when a patient and casemanager have the same

ethnic group.
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Table 2.3: Percentage of emergency caesarean outcomes by casemanger’s caseload
size

Emergency caesarean
Number of cm’s patients %

1 patient (n=53) 26
2-3 patients (n=67) 16
4-10 patients (n=228) 9
11-30 patients (n=987) 10
31-50 patients (n=1,353) 14
51-100 patients (n=3,194) 8
101-200 patients (n=8,279) 12
201-500 patients (n=15,366) 15
501-1000 patients (n=19,893) 21
1001-1500 patients (n=9,184) 21
1501-2001 patients (n=9,771) 32
2001+ patients (n=4,320) 30
Total (n=72,695) 20

Notes: Column (2) is the percentage of emergency caesarean outcomes by casemanager’s caseload
size. Where n is the number of patients with a casemanager in caseload size group. For example,
53 patients have a casemanager with 1 patient.

The number (percentage) of observations for each casemanager-patient ethnic pair

is in Table 2.4 (Table 2.5). The largest ethnic group for patients is European, followed

by Asian, Pacific, Maori and Indian. For casemanagers, 75.8% of all birth admissions

have a European casemanager, followed by 9.7% and 9.4% of birth admissions with

an Asian or Indian casemanager respectively.

Figures in the center of Table 2.4 and 2.5 provide the number and percentage

of observations for each casemanager-patient ethnic pair. European patients have a

European casemanager 86.2% of the time. Asian patients have an Asian casemanager

37.4% of the time. Indian patients have an Indian casemanager 12.5% of the time.

Maori and Pacific patients are rarely treated by a casemanager of the same eth-

nicity. For Pacific patients, 2.5% are treated by a Pacific casemanager. For Maori

patients, 3.3% are treated by a Maori casemanager. Therefore, Maori and Pacific

ethnic concordance is unlikely to be reliably estimated with such low numbers of ob-

servations. There are 306 (183) observations of Pacific (Maori) ethnic concordance.
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Table 2.4: Number of observations: casemanager-patient ethnic pairs

Casemanager ethnicity

Patient ethnicity A
fr

ic
an

A
si

an

E
ur

op
ea

n

In
di

an

M
ao

ri

O
th

er

P
ac

ifi
c

T
ot

al

No. No. No. No. No. No. No. No.

African 21 70 592 108 7 16 5 819
Asian 213 4712 6241 1151 136 59 72 12584
European 525 869 30021 2439 595 140 221 34810
Indian 99 369 3664 615 69 42 58 4916
Maori 71 242 4074 765 183 36 94 5465
Middle Eastern 21 72 681 133 10 11 20 948
Other 28 40 711 103 9 2 4 897
Pacific 201 681 9090 1542 324 110 306 12254
Total 1179 7055 55074 6856 1333 416 780 72693

Notes: Tabulates the number of observations for each casemanager-patient ethnic pair .

Table 2.5: Percentage of observations: casemanager-patient ethnic pairs

Casemanager ethnicity

Patient ethnicity A
fr
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an
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ur
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ea

n
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an
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ri
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er
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c
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% % % % % % % %

African 2.6 8.5 72.3 13.2 0.9 2.0 0.6 100.0
Asian 1.7 37.4 49.6 9.1 1.1 0.5 0.6 100.0
European 1.5 2.5 86.2 7.0 1.7 0.4 0.6 100.0
Indian 2.0 7.5 74.5 12.5 1.4 0.9 1.2 100.0
Maori 1.3 4.4 74.5 14.0 3.3 0.7 1.7 100.0
Middle Eastern 2.2 7.6 71.8 14.0 1.1 1.2 2.1 100.0
Other 3.1 4.5 79.3 11.5 1.0 0.2 0.4 100.0
Pacific 1.6 5.6 74.2 12.6 2.6 0.9 2.5 100.0
Total 1.6 9.7 75.8 9.4 1.8 0.6 1.1 100.0

Notes: Tabulates the percentage of observations for each casemanager-patient ethnic pair.

2.4.3 Emergency caesarean outcomes by patient and casem-

anager ethnicity pairs

The proportion (total number) of emergency caesarean procedures for each

casemanager-patient ethnic pair is in Table 2.6 (Table 2.7). Out of a total 72,693

birth events, 14,414 patients have an emergency caesarean (excluding planned

caesarean procedures.) Maori and Pacific patients have the lowest percentage of

emergency caesareans, with 17% and 16% observations respectively.

In my data, Asian casemanagers have a low percentage of emergency caesarean

procedures compared to national statistics, (at 19% in my data compared to 27.3%
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Table 2.6: Proportion of emergency caesarean outcomes: casemanager-patient eth-
nic pairs

Casemanager ethnicity

Patient ethnicity A
fr

ic
an

A
si

an

E
ur
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er

P
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T
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African (n=819) 0.24 0.31 0.22 0.30 0.43 0.00 0.40 0.23
Asian (n=12,584) 0.41 0.07 0.24 0.36 0.15 0.49 0.18 0.19
European (n=34,810) 0.35 0.28 0.20 0.32 0.17 0.42 0.19 0.21
Indian (n=4,916) 0.34 0.22 0.23 0.33 0.12 0.43 0.16 0.24
Maori (n=5,465) 0.28 0.18 0.16 0.21 0.09 0.28 0.10 0.17
Middle Eastern (n=948) 0.19 0.17 0.16 0.26 0.00 0.18 0.10 0.17
Other (n=897) 0.46 0.25 0.24 0.40 0.11 0.00 0.00 0.26
Pacific (n=12,254) 0.20 0.17 0.15 0.21 0.11 0.22 0.09 0.16
Total (n=72,693) 0.33 0.12 0.19 0.29 0.14 0.34 0.13 0.20

Notes: Tabulates the proportion of emergency cesarean outcomes for each casemanager-patient
ethnic pair.

Table 2.7: Number of emergency caesarean outcomes: casemanager-patient ethnic
pairs

Casemanager ethnicity

Patient ethnicity A
fr

ic
an

A
si

an

E
ur
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P
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c

T
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African (n=819) 5 22 128 32 3 0 2 192
Asian (n=12,584) 88 317 1520 413 21 29 13 2401
European (n=34,810) 185 240 5924 791 102 59 41 7342
Indian (n=4,916) 34 82 825 205 8 18 9 1181
Maori (n=5,465) 20 44 672 160 17 10 9 932
Middle Eastern (n=948) 4 12 110 35 0 2 2 165
Other (n=897) 13 10 170 41 1 0 0 235
Pacific (n=12,254) 41 117 1388 331 37 24 28 1966
Total (n=72,693) 390 844 10737 2008 189 142 104 14414

Notes: Tabulates the number of emergency cesarean outcomes for each casemanager-patient ethnic
pair.

nationally (Ministry of Health, 2012)). But inspection of Table 2.6 indicates a lower

overall percentage can be explained by Asian ethnic concordance. Foreshadowing my

main result, I observe the lowest proportion of emergency caesarean outcomes for

Asian ethnic concordance (7%), compared to when an Asian patient is treated by a

European (24%) or Indian (36%) casemanager.
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2.5 Empirical strategy

In this section I firstly select my sample of birth events. I then discuss my econometric

model, and how this model distinguishes between three explanations for ethnic-based

variation in caesarean procedures. I lastly discuss alternative estimation approaches,

and specify the explanatory variables in my model.

2.5.1 Study sample

In this paper I am interested in estimating the impact of ethnic concordance on

emergency caesarean procedures for each ethnic group separately. This is because

caesarean procedure rates vary by patient ethnic group, it is therefore not clear ethnic

concordance would have the same effect (increase or decrease) on emergency caesarean

procedures for all ethnicity groupings.

To investigate ethnic concordance for each patient ethnic group, I need sufficient

numbers of ethnic concordance to estimate the relationship between ethnic concor-

dance and caesarean procedures. The previous section showed that there are low

numbers of observations for Maori and Pacific ethnic concordance. It is unlikely I can

reliably estimate the effect of ethnic concordance for this ethnic group in my data.

In addition to sufficient numbers of ethnic concordance, there needs to be sufficient

variation in casemanager ethnicity groupings treating a patient ethnic group. For

example, there needs to be sufficient numbers of non-Asian casemanagers for Asian

patients. Ideally, patient ethnicity groupings should be treated by casemanagers

from at least two different ethnicity groupings, so that an ‘ethnic concordance effect’

constitutes something more than a difference between two ethnicity groupings.

In this paper I compare how European, Asian and Indian patients are treated

across European, Asian and Indian casemanagers. The number of observations for

each casemanager-patient ethnic pair is in Table 2.8. The number of observations for
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Table 2.8: Number of observations: casemanager by patient ethnic group

Casemanager ethnicity
Patient ethnicity Asian European Indian Total

Asian 4,712 6,241 1,151 12,104
European 869 3,0021 2439 33,329
Indian 369 3664 615 4,648
Total 5,950 39,926 4,205 50,081

Notes: Tabulates the number of emergency cesarean outcomes for casemanager-patient ethnic pair
in study sample.

Table 2.9: Proportion of emergency caesarean outcome: casemanager by patient
ethnic group

Casemanager ethnicity
Patient ethnicity Asian European Indian Total

Asian 0.07 0.24 0.36 0.19
European 0.28 0.20 0.32 0.21
Indian 0.22 0.23 0.33 0.24
Total 0.11 0.21 0.34 0.21

Notes: Tabulates the proportion of emergency cesarean outcomes for casemanager-patient ethnic
pair in study sample.

each ethnic pair are: Asian patient-Asian casemanager is 4,712, Asian patient-Indian

casemanager is 1,151, and Asian patient-European casemanager is 6,241. The num-

ber of observations for Indian patient-Indian casemanager is 615, Indian patient-Asian

casemanager is 369, and Indian patient-European casemanager is 3,664. The num-

ber of observations for European patient-European casemanager is 30,021, European

patient-Asian casemanager is 869, European patient-Indian casemanager is 2,439.

The number of observations for each of the above ethnic pairs is considered sufficient

to identify the relationship between ethnic concordance and emergency caesarean.

I therefore exclude patients and casemanagers from all other ethnicity groupings

in my study. Table 2.9 is a reduced table of the proportion of emergency caesarean

procedures for each type of casemanager-patient ethnic pair.

2.5.2 Econometric model

The baseline econometric model uses an interaction term to estimate the relationship

between ethnic concordance and emergency caesarean outcomes. This interaction
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term is composed of two dummy variables for patient and casemanager ethnic group.

For example, Asian ethnic concordance is estimated with an interaction term that is

equal to one when both the Asian patient and Asian casemanager variables are equal

to one, and is zero otherwise. I estimate the following interaction models:

emergcesij =α + βXij + β1asian pati + β2asian cmj+

β3asian pa ∗ asian cmij + β4prop cesij + εij (2.1)

emergcesij =α + βXij + β1european pati + β2european cmj+

β3european pat ∗ european cmij + β4prop cesij + εij (2.2)

emergcesij =α + βXij + β1indian pati + β2indian cmj+

β3indian pat ∗ indian cmij + β4prop cesij + εij (2.3)

emergcesij is a binary outcome that is equal to one if a patient received an emer-

gency caesarean procedure. Xij is a vector of inpatient event control variables, de-

tailed in Section 2.5.3.

I estimate the effect of ethnic concordance relative to different ethnicity groupings

in the base category. For example, equation 2.1 is estimated with a base category of

(1) European patients and casemanagers and (2) Indian patients and casemanagers. I

therefore compare two ethnicity groupings to estimate the relationship between ethnic

concordance and emergency caesarean procedures.

I am particularly interested in a result where ethnic concordance has the same

sign (positive or negative) relative to different (base category) ethnicity groupings.

This would suggest that ethnic concordance for a patient ethnic group is consistently
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increasing or decreasing the likelihood of an emergency caesarean procedure. For ex-

ample, if Asian ethnic concordance had a significant positive or negative relationship

to caesareans - relative to both Indian and European ethnicity groupings - this sug-

gests Asian ethnic concordance has an expected impact on caesarean procedures. It

would therefore suggest (the effect of) Asian ethnic concordance is independent from

which ethnic group Asian concordance is compared to12.

Patient and casemanager ethnic group dummy variables, and their interaction,

are interpreted relative to the ethnic group in the base category. For example, when

European patients and casemanagers are in the base category, β1 in equation 2.1

estimates the effect of an Asian patient-European casemanager relative to a Euro-

pean patient-European casemanager on the likelihood of an emergency caesarean.

That is, β1 estimates the difference between Asian and European patients, when the

casemanager is European. The coefficient on the asian pa ∗ asian cmij term, β3,

would therefore compare caesarean procedures for Asian ethnic concordance relative

to Asian patient-European casemanager and Asian casemanager-European patient

pairs.

In the baseline econometric models, prop cesij is the proportion of emergency

caesarean procedures that casemanager j has advised previously up to patient i, but

not including patient i′s emergency caesarean outcome. This is the sum of emergency

caesarean procedures in j′s previous case history, divided by the number of patients

j has treated previously. prop cesij therefore measures the propensity of j to advise

a caesarean procedure. This measure increases if casemanagers have treated a small

number of patients, but have had a high number of caesarean procedures. This

measure decreases if a casemanagers had a high number of cases and a low number

12I also estimate a model with all patients in the sample population, so that the base category
for equations 2.1 to 2.3 includes all other ethnicity groupings. For example, Asian ethnic concor-
dance is estimated relative to all non-Asian ethnicity groupings. This is a more crude method to
estimate ethnic concordance effects, because it ignores heterogeneity in caesarean procedures across
all different casemanager-patient ethnic pairs in the base category.
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of caesarean procedures, thereby reflecting a casemanager that had a low propensity

to advise a caesarean procedure. This measure uses all information up to patient i to

avoid an endogenous relationship between i′s outcome and prop cesij.

prop cesij is intended to control for ‘supply-side’ explanations for ethnic-based

variation in caesarean procedures. Because I am unable to control for previous emer-

gency caesarean outcomes for casemanagers that have only one observation in the

data, I exclude these casemanagers from the study sample. Robustness checks in my

result section probe my method to control for ‘supply-side’ explanations.

A second model includes dummy variables for Asian and Indian patients, case-

managers and interaction terms. European patients and casemanagers are the base

category:

emergcesij =α + βXij + β1asian pati + β2asian cmj + β3asian pat ∗ asian cmij

+ β4asian pat ∗ indian cmij + β5indian pati + β6indian cmj

+ β7indian pat ∗ indian cmij + β8indian pat ∗ asian cmij + εij

This model has a larger number of inpatient observations, because all European,

Indian and Asian patients and casemanagers are included in the sample population.

Coefficient estimates are therefore more efficient. But the interpretation of ethnic

dummy variables is only relative to the European ethnic group.

A logit model estimates the relationship between explanatory variables and the

binary outcome. Linear models allow interpretation when other variables are held

constant, in non-linear models interpretation is undertaken after first setting a refer-

ence point for the values of other variables. I estimate marginal effects of variables

when other covariates are held at their mean values. Standard errors are clustered

on the casemanager. I also estimate a linear regression in robustness checks.
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Interpreting results and theoretical framework

My theoretical framework aims to distinguish between three explanations for ethnic-

based variation in caesarean rates. These are; ‘patient ethnic group’, ‘supply-side’,

and ‘casemanager composition’ explanations.

The ‘supply-side’ explanation refers to the possibility that some ethnicity group-

ings are more likely to be treated by casemanagers that have a high or low propensity

to advise an emergency caesarean procedure. A casemanager’s propensity applies

equally to all patients, and is therefore independent of a patient’s ethnic group. To

control for a ‘supply-side’ explanation, I include the proportion of a casemanager’s

previous patients up to i that recieved an emergency caesarean; prop cesij. This is

intended to control for j′s propensity to advise an emergency caesarean. A casem-

anager may be more or less likely to advise a caesarean procedure for a number of

different reasons, including; experience, training and skill level. My measure for the

propensity to advise a caesarean procedure aims to control for all of these possible

explanations by directly measuring the likelihood of a caesarean procedure, based on

case history. A dummy variable for casemanager ethnicity also controls for differ-

ences across casemanager ethnicity groupings in their average emergency caesarean

procedures13.

The ‘patient ethnic group’ explanation refers to biological characteristics, health

behaviours and cultural preferences relating to both patient ethnic group and cae-

sarean procedures. For example, the clinical need for a caesarean procedure is influ-

enced by a mother’s weight, height, and build. Distributions of these characteristics

vary across patient ethnicity groupings. Ethnic-based variation in caesarean proce-

dures could therefore be due to differences in characteristics relating to the clinical

need or preferences of caesarean procedures across ethnicity groupings. These biolog-

13I discuss the possibility of using a casemanager fixed-effect to control for my ‘supply-side expla-
nation in the next section.
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ical characteristics, health behaviours and cultural preferences are relevant decision

factors for all doctors treating patients from an ethnic group. I therefore do not expect

‘patient ethnic group’ decision factors (biological characteristics, health behaviours

and cultural preferences) to depend on the ethnic group of the casemanager.

In baseline models (equations 2.1 to 2.3) a statistically significant interaction

term for ethnic concordance would therefore suggest that ‘patient ethnic group’ and

‘supply-side’ explanations cannot explain all ethnic-based variation in caesarean pro-

cedures. This is because I would not expect a patient ethnic group to have a different

likelihood of a caesarean procedure depending on the casemanager, because all case-

managers should react equally to the same ‘patient ethnic group’ decision factors.

Accordingly, ‘casemanager composition’ can explain some ethnic-based variation

in caesarean procedures. This could be useful for policy, for example, some demo-

graphic groups could be encouraged to train as a casemanager, or assigning casem-

anagers to patients could take into account ethnicity.

Lastly, I assume the unobserved health of women in ethnically concordant vs.

discordant pairs does not systematically differ. An emergency caesarean carries con-

siderable risk to health for both mother and child, and is therefore only undertaken

when the risk from complications due to a natural birth are sufficiently high. Because

women in the study sample were not selected for a planned caesarean procedure ex-

ante, they must have been considered of a sufficient health status to undergo a natural

birth. This assumption allows me to argue a significant relationship between ethnic

concordance and emergency caesareans is not due to differences in the clinical con-

dition of mothers who are ethnically concordant relative to discordant, because all

women in the sample population would have been considered of a sufficient health

status to undergo a natural birth.
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Method discussion

I discuss two alternative approaches to estimating the relationship between ethnic

concordance and emergency caesarean procedures.

The first alternative is to use interaction terms that separate each type of

casemanager-patient ethnic pair into dummy variables. In this model, Asian patient-

European casemanager observations would be in the base category and a separate

variable for Asian patient-Asian casemanager would estimate the effect of ethnic

concordance relative to Asian patient-European casemanager:

emergcesij =α + βXij + β1european pat european cmi

+ β2asian cm european patj + β3asian pat asian cmij

+ β4prop cesj + εij (2.4)

A similar pairwise comparison would compare the effect of Asian patient-Asian

casemanager relative to the base category of an Asian patient-Indian casemanager.

This model however has shortcomings compared to the full interaction model,

in equations 2.1 to 2.3. This is because the coefficient on the Asian patient-Asian

casemanager interaction term in equation 2.1 is estimated after controlling for both

Asian patient-European casemanager and Asian casemanager-European patient. In

equation 2.4, the base category includes only Asian patients-European casemanagers.

Because I want to control for differences across casemanager ethnic group in their

propensity to advise an emergency caesarean, the ethnic interaction term in equa-

tion 2.1 estimates ethnic concordance relative to both Asian patient-European case-

manager and Asian casemanager-European patient.

To explain this point further, consider the comparison of Indian and European

ethnicity groupings. Using Table 2.9, an Indian patient-European casemanager is
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much less likely to receive an emergency caesarean compared to Indian patient-

Indian casemanager. However, this comparison does not consider the effect of Indian

casemanagers-European patients, for which there is a high likelihood of an emergency

caesarean outcome. I may then conclude that Indian patient-Indian casemanager has

a positive effect on emergency caesareans, relative to Indian patient-European case-

manager. In a full interaction model Indian patient-Indian casemanager may not be

significant, because it would account for the (positive) effect of Indian casemanager-

European patient.

The second alternative estimation approach is to use a fixed-effect on casem-

anagers. A fixed-effect would be especially beneficial to controlling for supply-side

explanations, because only variation within casemanagers is used to estimate ethnic

concordance variables. In my data, half of all casemanagers have 46 or fewer pa-

tients. The low number of patients for some casemanagers may present problems

for a casemanager fixed-effect analysis. This is because the number of observations

within casemanager groups is small. Small group sizes reduce variation in the data

to estimate the effect of ethnic concordance on emergency caesarean outcomes.

Fixed-effect analysis is also problematic because the ethnic diversity in casem-

anagers that treat a large number of patients is small, which makes it difficult to

estimate the effect of specific types of ethnic concordance (e.g. Asian-Asian) on an

emergency caesarean outcome with fixed-effects.

Table 2.3 shows that there does not appear to be a systematic pattern between

caseload size and emergency caesarean outcomes in the data. This indicates that

emergency caesarean procedures are not occurring only in a handful of casemanagers

that treat a large number of patients in the hospital. This feature of the data mitigates

some of the concern about heterogeneity across casemanagers in their capacity to

advise a caesarean procedure.
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Chapter 1 used a fixed-effect method on casemanagers to estimate the relationship

between ethnic concordance and diagnostic resources. I estimated an average effect

of demographic concordance across different gender and ethnicity groupings. There

is greater ethnic variation in caesarean rates than diagnostic resources, and the focus

of this paper is on reasons for variation in caesarean procedures for different ethnicity

groupings. For example, Asian patients have the highest rate of caesarean procedures

nationally, and the causes of a high likelihood are of special interest to policy makers

concerned with healthcare budgets. In addition, a fixed-effect method was more

appropriate in Chapter 1 because I considered all hospital admissions, and there was

therefore greater variation in medical conditions in the study sample. Casemanager

fixed-effects controlled to an extent for this variation in medical condition. I am

considering only birth events so there is less heterogeneity in the medical condition

of patients in the sample.

2.5.3 Other explanatory variables

Summary statistics for explanatory variables are in Table 2.14, Appendix 2.A.

Variables for patient characteristics are; age, deprivation scale, dummy variable for

whether a patient was transferred from another hospital, if a patient’s District Health

Board (public provider of health care) is that of the hospital.

Dummy variables for timing of a patient admission include; the hour of admission

to hospital, day of week of admission to hospital, and year of admittance14.

There are a number of different clinical variables used in economic studies for

caesarean outcomes. Currie and Gruber (1997) use four clinical variables; previous

caesarean, fetal distress, breech presentation and maternal distress. Currie and Gru-

ber used a ‘not elsewhere classified’ (n.e.c) maternal distress indicator, this excludes

other forms of maternal distress that do not fall into a ‘n.e.c.’ category. Grant (2009)

14I do not include explanatory variables for casemanager’s characteristics because they are not
available for casemanagers not matched with HR data.
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includes variables for mothers who have diagnosis codes for the following conditions;

diabetes, hypertension, preeclampsia, placenta previa, herpes, and a ‘not elsewhere

classified’ maternal distress category.

In my data, maternal distress could refer to a number of different clinical codes.

For example, prolonged pregnancy (O48), long labour (O639), maternal distress dur-

ing labour and delivery (O750), shock during or following labour and delivery (O751)

and so on. Caution is therefore needed when using clinical codes for a health condi-

tion which may also be coded in another clinical category. For example, ‘obstructed

labour due to breech presentation’ (O641) and ‘maternal care for breech presenta-

tion’ (O321) are similar health conditions but come under different clinical codes. An

advantage of my study is that I use a broad number of ICD codes that refer to the

same or similar health conditions. This prevents not indicating a women who is in

distress, but may be coded in a different clinical category.

I used the full list of up to 60 diagnosis codes associated with a hospital inpa-

tient event to identify if a patient had a clinical condition. I use dummy variables to

control for; large fetus, singleton birth, premature gestation, very premature gesta-

tion, antepartum hemorrhage, diabetes, preeclampsia, infection, liver complications,

circulatory system complications, respiratory system complications, polyhydramnios,

ogliohydramnios, maternal hypotension, abnormal presentation, and fetal stress. All

ICD-10-AM codes to identify if a patient had one of these clinical conditions are in

Appendix 2.E.

2.6 Results

In this section I interpret results for each ethnic group separately. This allows me

to highlight the statistical significance of Asian ethnic concordance on emergency
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caesareans, relative to the statistical insignificance of European and Indian ethnic

concordance.

Main results are in Tables 2.10, 2.11, and 2.12. Table 2.10 has results for Asian

patients and casemanagers (equation 2.1), with a base category of European ethnic

group (Column (1)), or Indian ethnic group (Column (2)). Table 2.11 has results for

Indian patients and casemanagers (equation 2.3) with a base category of European

ethnic group (Column (1)), or Asian ethnic group (Column (2)). Table 2.12 has

results for European patients and casemanagers (equation 2.2), with a base category of

Asian (Column (1)) and Indian (Column (2)) ethnicity groupings. All other regression

results are in Appendix 2.B, including a table of all coefficient values for the emergency

caesarean regression (Table 2.15).

Table 2.10: Emergency caesarean for Asian patients

(1) (2)
Euro base Indian base

Asian pat 0.015∗ −0.001
(2.32) (−0.09)

Asian doc 0.023 −0.016
(1.93) (−1.20)

Asian concordance −0.062∗∗∗ −0.036∗

(−4.75) (−2.21)

Observations 41388 6733

Notes: Outcome: emergency caesarean procedure. Model: logit regression, Column (1) has Euro-
pean base category, Column (2) has Indian base category. Marginal effects for coefficients. Standard
errors clustered on casemanager. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

2.6.1 Asian ethnic group

I interpret the coefficients for Asian patients, casemanagers, and their interaction

term in the following.
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Table 2.11: Emergency cesarean for Indian patients

(1) (2)
Euro base Asian base

Indian pat 0.010 0.037∗∗

(1.24) (2.88)

Indian doc −0.006 0.053∗∗

(−0.26) (3.15)

Indian concordance 0.029 −0.036∗

(1.89) (−2.21)

Observations 36451 6733

Notes: Outcome: emergency caesarean procedure. Model: logit regression, Column (1) has Euro-
pean base category, Column (2) has Asian base category. Marginal effects for coefficients. Standard
errors clustered on casemanager. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 2.12: Emergency cesarean for European patients

(1) (2)
Indian base Asian base

European pat −0.040∗∗ 0.047∗∗∗

(−3.13) (4.49)

European doc −0.024 0.039∗∗

(−1.32) (2.96)

European concordance 0.029 −0.062∗∗∗

(1.89) (−4.75)

Observations 36451 41388

Notes: Outcome: emergency caesarean procedure. Model: logit regression, Column (1) has Indian
base category, Column (2) has Asian base category. Marginal effects for coefficients. Standard errors
clustered on casemanager. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Asian patient

An Asian patient is statistically significantly more likely to have an emergency cae-

sarean compared to a European patient, when the casemanager is European (Column

(1), Table 2.10, see also full interaction model in Table 2.15). The marginal effect at

mean values of the covariates is estimated at .03, or a 3% increase in the likelihood

of having an emergency caesarean15.

15For the odds ratio interpretation, the impact of an Asian patient recieving an emergency cae-
sarean is 1.2 times greater than the odds of a European patient receiving a caesarean, when the
casemanager is European (Table 2.15).

130



An Asian patient is not statistically significantly related to the likelihood of an

emergency caesarean procedure relative to an Indian patient, when the casemanager

is Indian, (Column (2), Table 2.10).

Asian casemanager

An Asian casemanager is statistically insignificantly related to an emergency cae-

sarean procedure compared to a European casemanager, when the patient is European

(Table 2.10).

An Asian casemanager is statistically significantly less likely to advise an emer-

gency caesarean compared to an Indian casemanager, when the patient is Indian. The

estimated marginal effect is a 4.1% reduction when other variables are held at their

mean values (Table 2.10).

Note that dummy variables for casemanager ethnic group will reflect differences

across casemanager ethnicity groupings in their average employee skill level. For

example, Indian casemanagers may occupy more specialised roles on average and

this may explain a higher likelihood for Indian casemanagers to advise a caesarean

procedure relative to other casemanager ethnicity groupings. I am therefore not able

to interpret casemanager ethnic group variables as a cultural propensity to advise a

caesarean procedure.

Asian casemanager and patient

The interaction term for an Asian patient-Asian casemanager is negative and statisti-

cally significant at the 1% level relative to both the European and Indian ethnic base

category. An Asian patient with an Asian casemanager is on average 6% less likely

to receive an emergency caesarean relative to an Asian patient (or casemanager) with

a European casemanager (or patient). An Asian patient with an Asian casemanager
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is on average 3.6% less likely to receive an emergency caesarean relative to an Asian

patient (or casemanager) with an Indian casemanager (or patient).

Table 2.16 in Appendix 2.B presents estimates for the coefficient on Asian ethnic

concordance when all other ethnicity groupings are included in the base category.

The marginal effect is estimated at a 7.6% reduction in the likelihood of an emer-

gency caesarean for Asian ethnic concordance. This is an estimate of the impact of

Asian ethnic concordance compared to all other ethnicity groupings in the patient

population.

Robustness tests for Asian ethnic concordance results

I investigate the robustness of my statistically significant negative relationship be-

tween Asian ethnic concordance and emergency caesarean outcomes. Regression ta-

bles for robustness tests are in Appendix 2.C.

I firstly investigate the robustness of Asian ethnic concordance to different meth-

ods to control for ‘supply-side’ explanations. I firstly exclude prop cesj, a control vari-

able for the proportion of emergency caesarean procedures (Column (3), Table 2.17

and Table 2.19). The coefficient for Asian ethnic concordance increases and is es-

timated at a 15.9% (9%) reduction in the likelihood of an emergency caesarean for

European (Indian) base category. This suggests that ‘supply-side’ explanations are

important to control for in my cross-sectional analysis of casemanagers.

I investigate different methods to compute prop cesj. Firstly, I use a caseman-

ager’s entire patient record to compute prop cesj. I use the total number of caesarean

procedures divided by the total number of patients for each casemanager (Column

(2), Table 2.17 and Table 2.19). This variable is constant within casemanagers, as

opposed to changing within casemanagers, based on their history up to patient i. This

model also includes casemanagers that treat only one patient, thereby increasing the
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number of observations. The coefficient on Asian ethnic concordance increases to 9%

(5.5%) with European (Indian) ethnic base category.

I exclude some casemanagers from the sample population to generate a more ho-

mogeneous sample of casemanagers. I exclude casemanagers (and their patients) that

have less than 20 patients, and casemanagers that have greater than 1500 patients

(Column (1), Table 2.17 and Table 2.19). I restrict the sample of casemanagers to

avoid comparing caesarean procedures across one-off casemanagers, and casemanagers

with extensive experience, thereby reducing heterogeneity in casemanager roles and

experience. Asian ethnic concordance is negative and statistically significant for the

European base category, but is not statistically significant for the Indian base cat-

egory. A reason for statistical insignificance of Asian ethnic concordance could be

a reduction in sample size (to N=5,722) when casemanagers are excluded from the

Indian comparison group.

I also estimate ethnic concordance on the population of patients matched only with

HR data (Column (1), Table 2.18 and 2.20). HR data uses only casemanagers that

self-identify with an ethnic group, and therefore avoids incorrect association of case-

managers to an ethnic group during manual matching. With HR data, the estimate

on Asian ethnic concordance increases to 8.1% for the European ethnic comparison

group. Asian ethnic concordance is negative but not statistically significant for the

Indian ethnic group. The sample size is small (N=4,421) and this likely contributes

to the lack of statistical significance.

To test for robustness of Asian ethnic concordance to model specification, I esti-

mate a linear regression model (Column (2), Table 2.18 and 2.20). The coefficient for

Asian ethnic concordance is negative but not statistically significant for both Euro-

pean and Indian base categories. When a linear model is estimated with all non-Asian

ethnicity groupings in the base category, the Asian interaction term is statistically

significant. Therefore, the lack of statistical significance, when using a linear model,
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is likely due to estimating a binary outcome with a linear model and small sample

size. Linear models are a poor fit for binary outcomes compared to logit models and

this is especially the case when the sample size is small. Asian ethnic concordance is

statistically significant in the linear model when the sample size is increased.

My last robustness test estimates the Asian interaction model with African, Pa-

cific and Maori ethnicity groupings in the base category (Table 2.21). These results

come with a caveat that observation sizes for ethnic pairings (e.g. Asian patient-

Maori casemanager) are small. The sign on the Asian interaction term is negative in

all models, but lacks statistical significance in the model with Pacific peoples in the

base category.

Overall, results from robustness tests support the strength of a negative relation-

ship between Asian ethnic concordance and emergency caesarean outcomes. However,

the statistical strength of the relationship is weakened when sample sizes are reduced.

The magnitude of the coefficient changes depending on the method used to con-

trol for ‘supply-side’ factors. A casemanager fixed-effect would remove variation on

average caesarean procedures across casemanagers from my data. My small sample

size prevents me from estimating a fixed-effect model, because ethnic diversity of

casemanagers with large numbers of patients is small.

2.6.2 Indian ethnic group

Indian patient

Indian patients are not statistically significantly related to an emergency caesarean

procedure, relative to a European patient, when the casemanager is European (Col-

umn (2), Table 2.11).

Indian patients are statistically significantly more likely to receive an emergency

caesarean compared to an Asian patient, when the casemanager is Asian. The
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marginal effect is estimated at a 3.7% reduction in the likelihood of an emergency

caesarean.

Indian casemanager

The coefficient for Indian casemanager is statistically insignificant compared to a

European casemanager, when the patient is European (Column (1), Table 2.11).

An Indian casemanager is more likely to advise an emergency caesarean than an

Asian casemanager, when the patient is Asian (Column (2), Table 2.11). The marginal

effect is estimated at a 5.3% increase in the likelihood of receiving an emergency

caesarean.

Indian patient and casemanager

An Indian patient with an Indian casemanager does not have a statistically signif-

icantly different likelihood of receiving an emergency caesarean, relative to Indian

patient-European casemanagers and Indian casemanager-European patient pairs.

An Indian casemanager-Indian patient is significantly less likely to receive an emer-

gency caesarean, relative to Indian casemanager-Asian patient and Indian patient-

Asian casemanager.

The cause of the negative sign on Indian ethnic concordance can be determined

by considering each type of casemanager-patient ethnic pair on emergency caesarean

outcomes. Firstly, Asian patient-Indian casemanager have a slightly lower likelihood

of receiving an emergency caesarean relative to an Indian-Indian pair (variable ‘Asian

pat’ in Column (2), Table 2.10). Secondly, Asian casemanager-Indian patient have

a lower likelihood of receiving an emergency caesarean relative to an Indian-Indian

pair (variable ‘Asian CM’ in Table 2.10). Thirdly, an Indian patient-Asian caseman-

ager is more likely to have a caesarean relative to an Asian-Asian pair (Column (2),
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Table 2.13: Patient-casemanager combination and relationship with emergency cae-
sarean

Patient-casemanager pair Comparison group Effect

Asian patient:
Asian pat-Ind. CM Ind. pat-Ind. CM insig.
Asian pat-Euro. CM Euro. pat-Euro. CM +
Asian pat-Asian CM Asian pat-Ind. CM and Ind. pat-Asian CM -
Asian pat-Asian CM Asian pat-Euro. CM and Euro. pat-Asian CM -

European patient:
Euro. pat-Ind. CM Ind. pat-Ind. cm -
Euro. pat-Asian CM Asian pat-Asian cm +
Euro. pat-Euro. CM Euro. pat-Indian CM and Indian pat-Euro. CM insig.
Euro. pat-Euro. CM Euro. pat-Asian CM and Asian pat-Euro. CM -

Indian patient:
Ind. pat-Euro. CM Euro. pat-Euro. CM insig.
Ind. pat-Asian CM Asian pat-Asian CM +
Ind. pat-Ind. CM Euro. pat-Ind. CM and Ind. pat-Euro. CM insig.
Ind. pat-Ind. CM Ind. pat-Asian CM and Asian pat-Ind. CM -
Notes: The effect column is the coefficient sign (for emergency caesarean outcomes) for each type
of patient-casemanager ethnic pair comparison.

Table 2.11). Fourthly, an Indian casemanager-Asian patient is more likely to advise

a caesarean relative to an Asian-Asian pair (Column (2), Table 2.11).

The significant negative relationship for Indian patient-Indian casemanager pairs

is therefore due to Asian-Indian pairs having a high likelihood of emergency caesarean

outcomes relative to Asian-Asian pairs (Column (2), Table 2.11), when we consider

only Indian and Asian ethnicity groupings. This is because an Asian casemanager-

Indian patient relative to Indian-Indian pairs (variable ‘Asian doc’ in Table 2.10) is

negative, suggesting that there is no significant negative relationship between Indian

ethnic concordance and emergency caesarean procedures. Indian casemanagers are

therefore much more likely to advise a caesarean procedure to Asian patients - and by

comparison to this - Indian-Indian pairs are negatively related to emergency caesarean

outcomes.
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2.6.3 European ethnic group

European patient

European patients are statistically significantly less likely to receive an emergency cae-

sarean, compared to Indian patients, when the casemanager is Indian. The estimated

marginal effect is a 4% reduction in the likelihood of an emergency caeasarean.

European patients are statistically significantly more likely to receive an emer-

gency caesarean, compared to Asian patients, when the casemanager is Asian. The

estimated marginal effect is a 4.7% increase in the likelihood of having an emergency

caesarean.

European casemanager

A European casemanager relative to an Indian casemanager, when the patient is

Indian, is insignificantly related to emergency caesarean procedures.

A European casemanager is 3.9% more likely to advise an emergency caesarean

compared to an Asian casemanager, when the patient is Asian. This effect is statis-

tically significant at the 5% level.

European patient and casemanager

European ethnic concordance is statistically insignificant relative to the Indian base

category.

European ethnic concordance is significantly less likely to have an emergency

caesarean compared to a European-Asian pair. The reason for a negative relationship

is the same as for Indian-Indian pairs, relative to Indian-Asian pairs (discussed in

section 2.6.2). Specifically, European and Indian casemanagers are much more likely

to advise a caesarean procedure to Asian patients than an Asian casemanager would

to an Asian patient. As a result, European-Asian pairs have a higher likelihood
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of emergency caesareans, relative to European-European pairs, thus resulting in a

negative coefficient for European-European pairs.

2.7 Conclusion

This paper estimated the relationship between ethnic concordance and the likelihood

of having an emergency caesarean procedure when a women is in labour. I use the

three largest casemanager ethnicity groupings in data collected from a large hospital.

Ethnicity groupings are; Asian, Indian and European.

My main result is that Asian patients with an Asian casemanager are associated

with a statistically significantly lower likelihood of an emergency caesarean procedure

relative to treatment by both European and Indian ethnicity groupings. This result

is also clearly visible in descriptive statistics for emergency caesarean outcomes by

casemanager-patient ethnic pair (Table 2.6). Asian ethnic concordance is estimated

at an average 6.2% reduction in the likelihood of an emergency caesarean, after con-

trolling for a large number of factors including the propensity of the casemanager to

advise a caesarean procedure.

In my data, Indian and European ethnic concordance is not statistically signifi-

cantly related to the likelihood of having an emergency caesarean outcome.

The negative relationship between Asian ethnic concordance on emergency cae-

sarean procedures is robust to estimation with; (1) different measures of a caseman-

ager’s propensity to advise caesareans, (2) a restricted sample of casemanagers, (3) a

linear model and (4) patients only matched with HR data. However, reducing sample

sizes reduces the statistical strength of the relationship.

In addition to the novelty of estimating a relationship between ethnic concor-

dance and emergency caesareans, my result can also be interpreted within a theo-

retical framework for explaining ethnic-based variation in caesarean procedures. I
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distinguish between ‘patient ethnic group’, ‘supply-side’ and ‘casemanager compo-

sition’ explanations. I find evidence for a ‘casemanager composition’ explanation,

because Asian patients have a significantly lower likelihood of emergency caesarean

procedures when treated by an Asian casemanager relative to a casemanager from a

different ethnic group.

I assume women with an ethnically concordant vs. discordant casemanager-

patient pair do not have systematic differences in their health condition. This is

because women have not been selected for a planned caesarean, and have therefore

been considered of a sufficient health status to give birth naturally. Pregnant women

are under the care of a midwife, who will advise a planned caesarean procedure if

they think a women is unable to successfully undergo a vaginal birth.

I therefore suggest three plausible mechanisms for why Asian women are less likely

to receive an emergency caesarean when ethnically concordant. The first explanation

is a reduction in clinical need for an emergency caesarean. In this explanation, Asian

patients with an Asian casemanager have greater ease, communication, and trust

which lowers a women’s distress in labour and thereby reduces the clinical need for

an emergency caesarean.

A second explanation is a reduction in clinical uncertainty in ethnically concor-

dant pairs. Because emergency caesarean procedures are undertaken in an uncertain

environment, an Asian casemanager with an Asian patient may be less likely to over-

treat an Asian patient, because they can more accurately interpret their level of dis-

tress. The effect of doctor-patient ethnic concordance on a patient’s communication

of their health condition has been modelled by Balsa and McGuire (2001, 2003). In

their model, a patient sends a noisier signal of their condition in ethnically discordant

pairings which may then result in over or under-treatment.

Some women are able to select a midwife (especially if they pay privately for a

specialist obstetrician), and it is plausible that some women have a preference for
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a casemanager of the same ethnic group. There is a large number of ethnically

concordant pairs for Asian patients (37.4%), which could indicate a preference some

Asian women have for a casemanager of the same ethnic group. A third explanation

is therefore that Asian women who prefer an Asian casemanager are also more likely

to prefer not to have a caesarean procedure, compared to Asian women who do not

have a preference for an Asian casemanager.

A shortcoming of my study is a small sample size. This limits my ability to im-

plement a casemanager fixed-effect model. This could further control for the ‘supply-

side’ explanation, by removing the average propensity to advise a caesarean procedure

across casemanagers.

Another limitation is low numbers of ethnic pairs for Maori and Pacific peoples.

Maori and Pacific peoples have low rates of caesarean procedures in New Zealand,

and are therefore of interest when studying the causes of ethnic-based variation in

caesarean rates. Other limitations of my study include a lack of data on some aspects

of a mother’s health condition, particularly whether a mother received a caesarean

procedure previously.

Future work could look at the health outcomes of women and children born with

a casemanager of the same ethnic group. My sample size is small, and mortality is a

rare occurrence. This limits regression analysis with mortality outcomes. In addition,

an Australian study by von Katterfeld et al. (2011) finds higher caesarean rates for

Southeast, Southern and Central Asian women compared to Australian-born women.

It could be interesting to see if a similar ethnic concordance relationship, for Asian

women, also occurs in Australia.

The 2010 maternity figures for New Zealand show that Asian women have the

highest rate of caesarean procedures, at 27.3%. Maori and Pacific have the lowest, at

17% and 19.12% respectively. An ‘Other’ ethnic group (including mostly European)

have a caesarean rate of 27.1% (Ministry of Health, 2012, pg.26). Overall, almost a
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quarter (23.6%) of women gave birth by caesarean section. Of these women, just over

a half (54.9%) had an emergency caesarean section procedure (Ministry of Health,

2012). Because I find a statistically significant negative relationship between emer-

gency caesarean procedures and Asian ethnic concordance, this suggests there might

be efficiency gains from ethnically matching Asian women16. Efficiency gains would

arise because fewer medical resources are used to provide appropriate care17.

The results from this study support further research into how the doctor-patient

relationship affects medical treatment decision-making. This research could encourage

doctors to consider how a patient’s ethnic group may be entering in to their decision-

making, and to accordingly adjust for any inappropriate effects a patient’s ethnic

group might have on medical treatment decision-making.

16The cost per caesarean section procedure is approximately NZD 6000 (Ministry of Health, 2012,
pg.26)

17I assume care is appropriate because casemanagers are not biased (i.e. prejudiced) against
patients from their own ethnic group, for example by providing inadequate care or care against a
patient’s preferences.
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2.A Explanatory variables

Table 2.14: Obstetric population variables

Mean Sd Min Max

Outcome:
Emergency caes. 0.21 0.40 0.00 1.00

Patient variables:
Age 31.41 5.08 14.00 50.00
Deprivation scale 5.18 2.81 0.00 10.00
After 5pm entry 0.29 0.45 0.00 1.00
After 12pm entry 0.17 0.38 0.00 1.00
Overnight admiss. 0.20 0.40 0.00 1.00
Transfer 0.02 0.14 0.00 1.00
AED entry 0.00 0.03 0.00 1.00
Acute admiss. 0.25 0.43 0.00 1.00
Prev admiss with 60days 0.14 0.35 0.00 1.00
Auckland DHB 0.68 0.47 0.00 1.00
Diagnosis count 4.52 2.68 2.00 31.00
Proportion ces proc. 0.09 0.07 0.00 1.00
Admit Monday 0.15 0.35 0.00 1.00
Admit Tuesday 0.14 0.35 0.00 1.00
Admit Wednesday 0.15 0.35 0.00 1.00
Admit Thursday 0.15 0.36 0.00 1.00
Admit Friday 0.15 0.36 0.00 1.00
Admit Saturday 0.13 0.34 0.00 1.00
Admit 2001 0.09 0.29 0.00 1.00
Admit 2002 0.09 0.29 0.00 1.00
Admit 2003 0.09 0.29 0.00 1.00
Admit 2004 0.09 0.29 0.00 1.00
Admit 2005 0.08 0.27 0.00 1.00
Admit 2006 0.08 0.27 0.00 1.00
Admit 2007 0.08 0.27 0.00 1.00
Admit 2008 0.08 0.28 0.00 1.00
Admit 2009 0.08 0.27 0.00 1.00
Admit 2010 0.09 0.28 0.00 1.00
Admit 2011 0.06 0.23 0.00 1.00

Clinical variables:
Single birth 0.98 0.14 0.00 1.00
Premature gestation 0.03 0.17 0.00 1.00
Very premature gestation 0.01 0.10 0.00 1.00
Antepartum hemorrhage 0.01 0.10 0.00 1.00
Diabetes 0.05 0.21 0.00 1.00
Preeclampsia 0.03 0.16 0.00 1.00
Infection 0.01 0.07 0.00 1.00
Liver complications 0.00 0.05 0.00 1.00
Polyhydramnios 0.01 0.08 0.00 1.00
Oligohydramnios 0.05 0.21 0.00 1.00
Maternal hypotension 0.00 0.06 0.00 1.00
Abnormal presentation 0.06 0.24 0.00 1.00
Fetal stress 0.26 0.44 0.00 1.00
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Circ. dis. complications 0.01 0.08 0.00 1.00
Resp. dis. complications 0.01 0.10 0.00 1.00
Large fetus 0.00 0.04 0.00 1.00

N 50081
Notes: Summary of explanatory variables for the study sample.

2.B Results

Table 2.15: Emergency caesareans for European, Asian and Indian ethnicity group-
ings

(1) (2)
MEM AME

Asian pat 0.033∗∗∗ 0.032∗∗∗

(4.52) (4.53)

Indian pat 0.029∗∗∗ 0.028∗∗∗

(3.66) (3.64)

Asian doc 0.038 0.036
(1.62) (1.62)

Indian doc 0.043 0.041
(1.50) (1.51)

Asian concordance −0.108∗∗∗ −0.103∗∗∗

(−5.48) (−5.54)

Asian pat+Indian doc 0.022 0.021
(1.26) (1.25)

Asian doc+Indian pat −0.038 −0.036
(−1.87) (−1.87)

Indian concordance 0.022 0.021
(1.27) (1.27)

Age 0.003∗∗∗ 0.003∗∗∗

(6.50) (6.97)

Deprivation scale 0.001 0.001
(0.70) (0.69)

After 5pm entry −0.003 −0.003
(−0.60) (−0.60)

After 12pm entry 0.011∗ 0.011∗

(2.16) (2.16)

Overnight admiss. −0.012∗ −0.011∗

(−2.03) (−2.04)

Transfer 0.027∗ 0.026∗

(2.26) (2.24)

AED entry −0.106 −0.101
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(−1.96) (−1.96)

Acute admission 0.010 0.009
(1.46) (1.45)

Prev admiss with 60days −0.013∗ −0.012∗

(−2.01) (−2.03)

Auckland DHB 0.016∗∗ 0.015∗∗

(3.04) (3.03)

Diagnosis count 0.035∗∗∗ 0.034∗∗∗

(18.33) (24.60)

Prop. cesareans 1.288∗∗∗ 1.229∗∗∗

(10.82) (11.31)

Admit Monday 0.017∗∗ 0.016∗∗

(2.69) (2.72)

Admit Tuesday 0.014 0.013
(1.82) (1.82)

Admit Wednesday 0.009 0.009
(1.28) (1.29)

Admit Thursday 0.012 0.012
(1.57) (1.57)

Admit Friday 0.014∗ 0.013∗

(2.14) (2.16)

Admit Saturday 0.009 0.009
(1.49) (1.49)

Admit 2001 0.020∗ 0.019∗

(2.39) (2.40)

Admit 2002 0.035∗∗∗ 0.034∗∗∗

(3.58) (3.62)

Admit 2003 0.040∗∗∗ 0.038∗∗∗

(3.51) (3.55)

Admit 2004 0.032∗∗ 0.030∗∗

(2.82) (2.86)

Admit 2005 0.046∗∗∗ 0.044∗∗∗

(3.48) (3.54)

Admit 2006 0.038∗ 0.036∗

(1.98) (2.00)

Admit 2007 0.024 0.023
(1.57) (1.58)

Admit 2008 0.014 0.013
(0.82) (0.83)

Admit 2009 0.061∗∗ 0.058∗∗∗

(3.26) (3.35)

Admit 2010 0.057∗∗∗ 0.055∗∗∗
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(3.43) (3.54)

Admit 2011 0.057∗∗∗ 0.054∗∗∗

(3.41) (3.49)

Single birth 0.084∗∗∗ 0.080∗∗∗

(5.21) (5.09)

Premature gestation 0.013 0.013
(1.24) (1.23)

Very premature gestation −0.322∗∗∗ −0.307∗∗∗

(−10.39) (−11.50)

Antepartum hemorrhage −0.020 −0.019
(−1.25) (−1.25)

Diabetes −0.081∗∗∗ −0.077∗∗∗

(−6.85) (−7.28)

Preeclampsia 0.066∗∗∗ 0.063∗∗∗

(6.22) (6.40)

Infection −0.065∗∗ −0.062∗∗

(−2.66) (−2.66)

Liver complications −0.025 −0.024
(−0.93) (−0.93)

Polyhydramnios 0.010 0.009
(0.53) (0.53)

Oligohydramnios −0.004 −0.004
(−0.56) (−0.56)

Maternal hypotension −0.035 −0.033
(−1.21) (−1.21)

Abnormal presentation 0.214∗∗∗ 0.204∗∗∗

(18.91) (26.27)

Fetal stress 0.082∗∗∗ 0.078∗∗∗

(13.13) (13.52)

Circ. dis. complications −0.106∗∗∗ −0.101∗∗∗

(−5.12) (−5.07)

Resp. dis. complications −0.045∗∗ −0.043∗∗

(−2.68) (−2.69)

Large fetus 0.327∗∗∗ 0.312∗∗∗

(9.15) (9.41)

Observations 49798 49798

Notes: Outcome: emergency caesarean. Model: logit regression, Column (1) has marginal effects

at mean values of other variables, Column (2) has the average marginal effects at different values of

variables. Standard errors clustered on casemanager. Robust t-statistics in parentheses. ∗∗∗p<.01;

∗∗p<.05; ∗p<.10.
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Table 2.16: Emergency caesarean outcome

(1) (2) (3)
European Asian Indian

European pat 0.011∗

(2.41)
European cm −0.009

(−1.04)
European concordance 0.003

(0.38)
Asian pat 0.032∗∗∗

(6.37)
Asian cm 0.021∗∗

(2.62)
Asian concordance −0.076∗∗∗

(−6.47)
Indian pat 0.028∗∗∗

(5.06)
Indian cm −0.005

(−0.31)
Indian concordance 0.024∗

(2.11)

Observations 76167 76167 76167

Notes: Outcome: emergency caesarean. Sample: study sample. Model: logit regression, Column
(1) has variables for European ethnic group, base category is all other ethnicity groupings, Column
(2) has Asian ethnic variables, Column (3) has Indian ethnic variables. Marginal effects calculated
at mean values. Standard errors clustered on casemanager. Robust t-statistics in parentheses.
∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

2.C Robustness tests for Asian ethnic concordance
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Table 2.17: Robustness for Asian ethnicity variables with European base

(1) (2) (3)
restrict cm fixed prop no prop

Asian pat 0.018∗∗∗ 0.030∗∗∗ 0.028∗∗∗

(3.39) (4.32) (3.92)

Asian doc 0.028∗∗ 0.032 0.029
(2.93) (1.51) (1.33)

Asian concordance −0.059∗∗∗ −0.091∗∗∗ −0.159∗∗∗

(−5.44) (−5.00) (−7.78)

Observations 33436 41609 41609
Notes: Outcome: emergency caesarean. Sample: Asian and European patient and casemanager
ethnicity groupings. Model: logit regression, Column (1) has restricted casemanagers, Column (2)
has fixed proportion of caesarean procedure for explanatory variable, Column (3) has no control for
proportion of caesarean procedures. Marginal effects calculated at mean values. Standard errors
clustered on casemanager. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 2.18: Robustness for Asian ethnicity variables with European base

(1) (2) (3)
HR only linear all linear

Asian pat 0.022∗ 0.016∗ 0.037∗∗∗

(2.15) (2.23) (5.97)

Asian doc 0.032∗ 0.017 0.010
(2.09) (1.10) (1.23)

Asian concordance −0.086∗∗∗ −0.031 −0.043∗∗∗

(−3.49) (−1.85) (−4.10)

Observations 18908 41388 76167
Notes: Outcome: emergency caesarean. Sample: Asian and European patient and casemanager
ethnicity groupings. Model: Column (1) is the HR only population, Column (2) is linear regression
model, Column (3) is linear regression with all patient and casemanager ethnicity groupings in the
base category. Marginal effects calculated at mean values for logit model. Standard errors clustered
on casemanager. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.
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Table 2.19: Robustness for Asian ethnicity variables with Indian base

(1) (2) (3)
restrict cm fixed prop no prop

Asian pat −0.007 −0.002 0.010
(−0.47) (−0.15) (0.67)

Asian doc −0.012 −0.041∗∗ −0.045∗∗

(−1.01) (−2.81) (−3.25)

Asian concordance −0.019 −0.055∗∗ −0.090∗∗∗

(−1.17) (−3.20) (−5.67)

Observations 5722 6758 6758
Notes: Outcome: emergency caesarean. Sample: Asian and Indian patient and casemanager eth-
nicity groupings. Model: logit regression, Column (1) has restricted casemanagers, Column (2) has
fixed proportion of caesarean procedure for explanatory variable, Column (3) has no control for
proportion of caesarean procedures. Marginal effects calculated at mean values. Standard errors
clustered on casemanager. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 2.20: Robustness for Asian ethnicity variables with Indian base

(1) (2)
HR only linear

Asian pat −0.004 0.001
(−0.28) (0.03)

Asian doc −0.014 −0.053∗∗

(−0.64) (−2.78)

Asian concordance −0.032 −0.012
(−1.30) (−0.56)

Observations 4421 6744
R2 0.333
Notes: Outcome: emergency caesarean. Sample: Asian and Indian patient and casemanager eth-
nicity groupings. Model: Column (1) is the HR only population, Column (2) is a linear regression
model. Marginal effects calculated at mean values for logit model. Standard errors clustered on
casemanager. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.
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Table 2.21: Emergency caesarean outcome with Asian ethnicity variables

(1) (2) (3)
African base Pacific base Maori base

Asian pat 0.054∗∗∗ 0.015 0.030∗

(7.90) (1.82) (2.25)

Asian doc 0.039∗∗∗ 0.011 0.012
(3.52) (0.76) (0.62)

Asian concordance −0.094∗∗∗ −0.025 −0.040∗

(−10.23) (−1.58) (−2.20)

Observations 4923 5677 5183

Notes: Outcome: emergency caesarean. Model: logit regression, Column (1) has African ethnic
group as base category, Column (2) has Pacific ethnic group as base category, Column (3) has Maori
ethnic group as base category. Marginal effects calculated at mean values. Standard errors clustered
on casemanager. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

2.D Obstetric AR-DRG codes

Table 2.22: Obstetric Australian Refined Diagnosis Related Groups (AR-DRG)
Version 3 to 5

DRG Code DRG name

Version 3.1:
670 Caesarean delivery, w/o complicating diagnosis
671 Caesarean delivery w moderate complicating diagnosis
672 Caesaeran delivery w severe complicating diagnosis
674 Vaginal delivery no complicating diagnosis
675 Vaginal delivery w moderate complicating diagnosis
676 Vaginal delivery w severe complicating diagnosis
677 Vaginal delivery w complicating OR procedures
687 Caesarean delivery w mult complicating diagnoses, at least one severe
688 Vaginal delivery w mult complicating diagnoses, at least one severe

Version 4.1:
O01A Caesarean delivery w mult complicating diagnoses, at least one severe
O01B Caesarean delivery w severe complicating diagnosis
O01C Caesarean delivery w moderate complicating diagnosis
O01D Caesarean delivery w/o complicating diagnosis
O02Z Vaginal delivery w complicating OR procedure
O60A Vaginal delivery w multiple complicating diagnosis,at least one severe
O60B Vaginal delivery w severe complicating diagnosis
O60C Vaginal delivery w moderate complicating diagnosis
O60D Vaginal delivery w/o complicating diagnosis

Version 5:
O01A Caesarean Delivery W Catastrophic CC
O01B Caesarean Delivery W Severe CC
O01C Caesarean Delivery W/O Catastrophic or Severe CC
O02A Vaginal Delivery W O.R. Procedure W Catastrophic or Severe CC
O02B Vaginal Delivery W O.R. Procedure W/O Catastrophic or Severe CC
O60A Vaginal Delivery W Catastrophic or Severe CC
O60B Vaginal Delivery W/O Catastrophic or Severe CC
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O60C Vaginal Delivery Single Uncomplicated W/O Other Condition
Notes: AR-DRG codes used to select the study sample.

2.E Obstetric comorbidity codes

Table 2.23: Obstetric comorbidities

ICD-10-AM Code Diagnosis description

Birth weight:
O662 Large fetus
Very Premature Gestation:
O090 Duration of pregnancy <5 completed weeks
O091 Duration of pregnancy 5-13 completed weeks
O092 Duration of pregnancy 14-19 completed weeks
O093 Duration of pregnancy 20-25 completed weeks
Premature Gestation:
O094 Duration of pregnancy 26-33 completed weeks
O095 Duration of pregnancy 34-36 completed weeks

Singleton pregnancy:
Z370 Singleton birth
Antepartum haemorrhage:
O460 Antepartum haemorrhage with coagulation defect
O468 Postcoital antepartum haemorrhage
O469 Antepartum haemorrhage, unspecified
Abnormal presentation:
O320 Maternal care for unstable lie
O321 Maternal care for breech presentation
O322 Maternal care for transverse and oblique lie
O323 Maternal care for face, brow and chin presentation
O324 Maternal care for high head at term
O325 Maternal care for multiple gest w malpresentation
O326 Maternal care for compound presentation
O328 Maternal care for other malpresentation
O329 Maternal care for malpresent of fetus, unspecified

Pre-eclampsia:
O140 Moderate pre-eclampsia
O141 Severe pre-eclampsia
O149 Pre-eclampsia, unspecified

Diabetes:
O244 Diabetes arising in pregnancy
O2441 Diabetes arising in pregnancy, non-insulin
O2442 Diabetes arising in pregnancy, insulin
O2443 Diabetes arising during pregnancy, therapy
O2444 Diabetes arising during pregnancy, diet
O2449 Diabetes arising during pregnancy, unspecified
O240 Pre-existing diabetes, Type 1, in pregnancy
O241 Pre-existing diabetes, Type 2, in pregnancy
O2411 Pre-exist DM Type 2 in pregnoninslntrt
O2412 Pre-exist DM Type 2 in preg insulin trt
O2413 Pre-existing diabetes, Type 2, in pregnancy, the
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O2414 Pre-existing diabetes, Type 2, in pregnancy, other
O2419 Pre-existing diabetes, Type 2, in pregnancy, unsp
O242 Pre-existing malnutrition-related diabetes mellitus
O2421 Pre-exist DM oth spec preg
O2422 Pre-exist DM oth spec in preg
O2423 Pre-existing diabetes mellitus, other specified type
O243 Pre-existing diabetes mellitus, unspecified
O2431 Pre-exist DM unspec

Infection:
O230 Infections of kidney in pregnancy
O231 Infections of bladder in pregnancy
O232 Infections of urethra in pregnancy
O233 Infections of other parts of urinary tract in preg
O234 Unspecified infection of urinary tract in preg
O235 Infections of the genital tract in preg
O239 Other genitourinary tract infection in preg

Maternal hypotension:
O265 Maternal hypotension

Liver complications:
O265 Diseases liver complicating preg

Polyhydramnios:
O40 Polyhydramnios

Oligohydramnios:
O410 Oligohydramnios

Circulation comp.:
O994 Diseases circulatory system complicating preg

Respiratory comp.:
O995 Diseases respiratory system complicating preg

Fetal stress:
O680 Labour complicated by fetal heart rate anomaly
O681 Labour complicated by meconium in amniotic fluid
O682 Labour complicated by fetal heart rate anomaly with

meconium in amniotic fluid
O683 Labour complicated by biochemical fetal stress
O688 Labour complicated by other evidence of fetal stress
O689 Labour complicated by fetal stress, unspecified
O998 Other specified diseases complicating preg
Notes: ICD-10-AM codes used to code comorbid health conditions.
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Chapter 3

Ward-level Nursing Hours, Patient

Demand and Patient Health

Outcomes
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3.1 Introduction

The relationship between nursing staff levels and patient health outcomes is of interest

to health-policy makers. Nursing staff are a significant component of inpatient health

care costs. Nurses also play an important role in the quality of hospital health care,

by meeting the needs of ill inpatients. Because of this, legislation in the State of

California has mandated the maximum number of patients per nurse in hospital units

from 2004 onwards. In response to this legislation, several authors have discussed a

lack of consensus from empirical research on the effect of nursing ratios on patient

health outcomes (Spetz et al., 2008; Sochalski et al., 2008).

Consensus from empirical research has been limited in part because nursing staff

datasets are often aggregated to the hospital and year level. In addition, many studies

have not used empirical methods to establish causal inference. In response to the

lack of detailed micro-data studies on nursing inputs and patient health outcomes, I

estimate a relationship between nursing and patient hours on a ward and a patient’s

health outcome. Health outcomes are length of hospital stay and mortality. A detailed

dataset on daily values of nursing and patient hours for 20 wards in a large hospital

is used.

My paper makes three main contributions to the empirical literature on hospital

nursing staff and patient health outcomes. Firstly, this paper uses a detailed nursing

staff dataset. This allows me to calculate patient-level exposure to nursing inputs and

patient demand on a ward, and to control for ward-level fixed-effects. Nursing staff

datasets in the majority of previous studies are annual and/or cross-sectional across

hospitals. The shortcomings of aggregated data sources for studying the nursing

relationship have been widely acknowledged in the literature (see, Cook et al. (2010);

Evans and Kim (2006); Gruber and Kleiner (2010)). Annual and/or cross-sectional

nursing data does not measure differences in nurse ratios across patients within a

hospital, and at a high frequency. Cross-sectional studies are also subject to Omitted
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Variable Bias (OVB) problems: unobserved hospital-specific factors could influence

both the number of nursing staff and patient health outcomes. There is therefore a

need in the literature to link an inpatient’s unique exposure to nurse inputs and their

health outcome.

Secondly, I extend the study of nursing inputs on patient health by considering de-

creasing returns to nursing inputs (on patient health), and proposing an instrumental

variable strategy. The relationship between nursing hours on a ward and mortality

is initially positive. This is counter-intuitive, because we might expect higher nurse

hours to be associated with a lower risk of mortality, through more intensive nursing

care. I investigate the possibility that decreasing returns to nursing inputs and/or an

endogenous nursing variable explains a positive relationship between nursing inputs

and patient health.

Nursing hours on a ward could be endogenous if patients with a severe illness

increase nursing staff levels. Because a patient’s severity of illness is mostly unob-

served in my data, this endogenous relationship could bias the coefficient estimate on

nursing inputs upwards. My instrumental variable for nursing hours is the hours of

nurse sick and bereavement leave on a ward. This affects the supply of nursing staff,

and is argued to be exogenous to the regression model of mortality outcomes. After

instrumentation, I find a negative but statistically insignificant relationship between

nursing hours and 60-day mortality.

A second hypothesis for a positive relationship between nursing hours and mortal-

ity is decreasing returns to nursing hours on mortality. Literature on the economics

of teamwork have identified potential costs to production from increasing team size.

For example, moral hazard may occur when each nurse assumes other nurses will be

completing patient care tasks, this results in tasks not completed by anyone. There

could also be greater distraction and risks of gaps in coordination when the number

of team members increases (Holmstrom, 1982; Hamilton et al., 2003; Delarue et al.,
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2008). Team-work by nurses on a ward has also been acknowledged elsewhere as an

important factor in the production of quality health care (Ratto et al., 2002). These

studies have used measures of nurse team-work developed from surveys of nurses.

In this paper, I use a squared nursing term to indicate if there are decreasing re-

turns to nursing inputs. Studying non-linearities between nursing inputs and health

outcomes extends previous studies on nursing inputs and patient health outcomes.

Most previous studies measure the quantity of nursing staff, without consideration

of how team-production could affect health care. This paper does not find a statis-

tically significant non-linear relationship between nursing inputs and patient health

outcomes, though the sign on nursing hours changes from positive to negative after

inclusion of a squared nursing term.

A third contribution of this paper is my consideration of the separate effect of

nursing and patient hours on a patient’s health outcome. Previous studies focused

on the relationship between nurse-to-patient ratios and health outcomes. Separating

nurse and patient variables reveal whether changes in health outcomes are through

nursing and/or patient variables. The relative significance of nursing and patient

variables have different implications for how the delivery of health care could be

improved.

My first main result is a statistically insignificant effect of ward nursing hours on

either 60-day mortality or ward length of stay, after checking for the robustness of

nursing hours to an endogenous and/or non-linear relationship.

My second main result is a positive relationship between patients on a ward and

the length of ward stay. Patient hours is computed for each inpatient event i as

the number of hours of other patients (j−1) in i′s ward during i′s hospital stay1. I

therefore estimate the relationship between other patients’ demand for health care (in

1I use the term ‘patient hours’ as shorthand for my measure of the total hours of other patients
in patient i′s ward, j. That is, the total ward hours pf patients excluding patient i′s hours in that
ward. Each inpatient event is associated a measure of the number of hours of other patients (on
their ward).
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a ward) on a patient’s length of stay. I find a negative relationship between patient

hours on a ward and the hazard rate of discharge home for 16 of the 20 wards in my

study. I estimate a competing risk survival model, in order to model the number of

days in a ward before a patient is discharged home.

Increasing demand from other patients is hypothesised to affect a patient’s length

of stay through a scarcity of fixed hospital resources, such as doctors’ and nurses’ time,

and equipment. A plausible explanation for a positive relationship between patient

hours and ward length of stay is that increasing patient hours increases demand on

nurse and doctor time and medical equipment, which means patients have to stay in

hospital longer to receive the health care they need. This result suggests that lowering

length of stay could be achieved through improving patient flow through a hospital,

for example by monitoring patients that may be unnecessarily in hospital and who

are potentially restricting access to health care for other patients. This could be an

example of a negative spillover, because more patients admitted in a ward mean that

other patients have a longer hospital stay.

Section 3.2 outlines the empirical literature on the relationship between nursing

staff levels and patient health outcomes. Section 3.3 discusses the data used in this

paper. The empirical strategy for mortality and length of ward stay are discussed

in separate sections 3.4 and 3.5. Results for both health outcomes are discussed in

Section 3.6 and 3.7, followed by my conclusion in Section 1.7.

3.2 Literature

3.2.1 Empirical literature on nurse staffing levels and patient

outcomes

There is a large empirical literature on the relationship between hospital nursing staff

levels and patient health outcomes, particularly mortality (for reviews of empirical
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studies see; Lang et al. (2004); Kane et al. (2007); Spetz et al. (2008)). Two promi-

nent studies by Aiken et al. (2002) and Needleman et al. (2002) have found that

higher nursing staff levels are associated with fewer adverse patient events and mor-

tality. These papers used hospital-level cross-sectional data on nursing staff. Studies

using cross-sectional data may be subject to Omitted Variable Bias (OVB) because

unobserved hospital factors affect both staff levels and patient health outcomes. For

example, a hospital may use newer medical technology that requires higher nursing

staff levels to operate, and medical technology may also affect patient outcomes.

Aiken et al. (2002) uses survey data from 168 hospitals in the State of Pennsyl-

vania. Nurses were mailed a questionnaire to fill in how many patients they were

responsible for on their last work shift. This was regardless of whether it was a day,

evening, or night shift. Using this data, the authors calculated an average patient

load per nurse for each hospital. The authors use the average self-reported patient

load, as well as control variables for hospital characteristics (e.g. size, teaching status

and technology), to estimate the relationship between nursing staff levels and patient

outcomes. The authors find an increase in the likelihood of mortality when nurses

care for an extra patient. An advantage of Aiken et al.’s data is that it measures

how many patients a nurse is responsible for. I only observe the ward-level number

of nursing hours, and not the number of patients a nurse is responsible for on a shift.

Needleman et al. (2002) uses data on nursing staff costs from hospital financial

reports for 799 hospitals in the United States. There was a wide variety of formats

for reporting nursing staff across states. Nursing staff levels were calculated from

the number of reported Full Time Equivalent (FTE) Nursing staff. The definition

of a FTE differed across states. For example, in Virginia, FTEs were calculated

from total hours of nursing care, and in Missouri and South Carolina FTEs were

calculated based on the total number of full- and part-time nursing employees in the

hospital. Needleman et al. decided to compute a measure of nursing staff as the
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number of nursing hours per inpatient day. To calculate this from FTE reports, the

author’s assumed nursing hours of 2,080 (52 weeks at 40 hours per week) for each

nurse reported working at a hospital. They then multiplied the number of FTEs with

nursing hours and divided this by the total number of patient days at that hospital.

Using regression analysis at the hospital level, Needleman et al. found higher ratios of

nursing hours per patient day were associated with a shorter length of stay and lower

rates of some adverse outcomes (such as urinary infection, and pneumonia). They

did not find a significant relationship between nursing hours and mortality rates.

Several papers have used econometric techniques to address Omitted Variable

Bias (OVB) problems associated with cross-sectional analysis of hospital data. These

papers by Cook et al. (2010), Tong (2011), Sochalski et al. (2008), Evans and Kim

(2006), and Gruber and Kleiner (2010) are reviewed next.

Sochalski et al. (2008) compare results from a hospital cross-section and fixed-

effects regression. They use data from annual reports on nursing staff levels from 343

acute care hospitals in California between 1993-2001. The measure of nursing staff

is computed from yearly data on the number of productive nurse hours at the med-

ical/surgical unit level. Productive hours are defined as time worked by permanent

and temporary nurses. The authors divide the total productive hours by the total

patient days in each medical/surgical unit level. This gives a measure of nursing hours

per patient day that is similar to Needleman et al. (2002). They specify a fixed-effect

method to use only variation in nursing staff levels over time, within a hospital. Af-

ter controlling for hospital fixed-effects, Sochalski et al. find no significant effect of

nursing hours per patient day on patient health outcomes. Patient health outcomes

are 30-day AMI mortality and surgical Failure-to-Rescue rates2.

2Failure-to-Rescue patient outcomes are defined by the Agency for Healthcare Research and
Quality in the United States. These are defined as complications that arise from a surgical procedure,
possibly resulting in mortality.
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Cook et al. (2010) use the 2004 California law change mandating maximum

patient-to-nurse ratios. The authors argue that the mandate provided a source for

an exogenous change in nursing staff levels. This therefore allows the estimation of a

causal relationship between nursing staff levels and health outcomes. They examine

the effect of the law change for previously under-staffed Medical units. The authors

use data on the total hours of Registered Nurses (RNs) and aides/orderlies at the hos-

pital unit level (i.e. medical, surgical units). They calculate (nurse) productive hours

per patient day as the ratio of ‘(nurse) productive hours worked’ to ‘patient census

days’. Patient census days are the total hours a patient spends in a unit. Patients

are matched to a unit based on their DRG. Using 294 hospital-unit observations they

find no significant relationship between nursing ratios and patient health outcomes.

Patient health outcomes include Debucitus Ulcers and Failure-to-Rescue rates.

Similarly, Tong (2011) used the 2004 California law change to estimate the impact

of nursing staff in Skilled Nursing Facilities (i.e. nursing homes) on patient outcomes.

They find a statistically significant decrease in patient mortality in Skilled Nursing

Facilities after the nursing law came into effect.

Evans and Kim (2006) use changes in hospital admissions (‘shocks’) to estimate

the effect of staffing shortages on patient outcomes. They use a measure of unex-

pected admissions on the Friday and Saturday following a patient’s admittance to

hospital on a Thursday. The authors argue ‘admission shocks’ only affect patient

outcomes through a strain on nursing resources. The authors compare outcomes for

patients only admitted on a Thursday. A moving average of Friday and Saturday

admissions using an 8 week window is calculated. An ‘admission shock’ is defined

as movement from this average. They find no significant effect of admission shocks

on mortality, and only a small effect for length of stay and readmission probabilities.

A disadvantage of Evans and Kim’s study is the inability to observe how staffing

variables respond to increases in admissions. For example, hospitals may call in extra

159



nursing staff if there is an increase in admissions. In addition, the authors are only

able to consider hospital-level admissions, and therefore strain on nursing resources

may vary across wards depending on the number of patients in a ward.

Gruber and Kleiner (2010) investigate the relationship between nurse strikes and

patient outcomes in the State of New York. Their data covers 50 strikes in 43 hospitals

in New York State between 1983-2005. Patient outcomes are; in-hospital mortality,

readmission within 30 days, LOS, and the number of procedures performed. They

aggregate data to the hospital-daily level, so the mortality outcome is the average

daily mortality in hospital h on day t. Their regression analysis uses a hospital fixed-

effect. The independent variable of interest is whether a strike occurred in a time

period or not. Gruber and Kleiner find no significant change in LOS and number of

procedures during a strike period. They further split their sample into emergency

and non-emergency patients, both of these populations show an increase in mortality

during strike periods. Lastly, the authors investigate whether patients with diagnoses

that require greater nursing care are more sensitive to nurse strikes. They use nursing

intensity weights (NIWs) that were developed by a panel of registered nurses for the

New York State Department of Health. They find a larger effect of nursing strikes on

mortality for conditions that require greater nursing care.

Kane et al. (2007) completed a systematic review and meta-analysis of 101 empir-

ical studies on the impact of nursing ratios on patient outcomes. These studies are

all drawn from health and medical research, and therefore provide a good overview of

research in areas outside of economics. Kane et al. (2007) separates studies into those

conducted at the hospital and patient level. Papers using data at the patient level

do not, however, use nursing data that varies at the ward/unit and/or daily level.

That is, each patient is associated with a nursing staff measure using information on

nurses that is recorded at the hospital level and/or non-daily (e.g monthly or yearly

reporting of staffing levels).
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The number of papers that use detailed nursing staff data is small. A key study

is by Needleman et al. (2011). They use nurse data on wards in a hospital in the

United States. Needleman et al. uses the difference between targeted and actual

nurse hours on a ward, to estimate the relationship between under-staffed wards and

patient mortality. They measure under-staffed wards by comparing the targeted staff

for each ward and shift with actual staffing numbers. Their independent variable of

interest is a time-varying measure of each patient’s exposure to shifts where staffing

levels were 8 hours or more below target. A Cox proportional hazard model is used

with in-hospital mortality as the outcome. The authors find a higher mortality hazard

ratio for patients that are exposed to under-staffed wards. This means patients are

at a greater risk of mortality early in their stay if they are exposed to higher numbers

of under-staffed shifts.

Cumulative exposure to under-staffed wards is also likely to be endogenous in

Needleman et al.’s model: patients that are more likely to die have higher nursing re-

quirements and therefore will also be more likely to not meet the target rate. Patients

that are unlikely to die are less likely to require high amounts of targeted nursing staff,

and therefore it is easier to meet patient nursing needs. To deal with this source of

confounding, the authors use control variables for targeted staffing rates and number

of patients in the ward to control for the average illness severity of the ward.

Another study by Tarnow-Mordi et al. (2000) estimates patient exposure to nurs-

ing intensity in an ICU unit in a hospital in the United Kingdom. The authors count

the number of nurses reported to work in the unit at four different time periods; Jan-

uary 1st 1992, November 1st 1992, November 1st 1993, and April 1st 1995. Nurses are

assumed to work 12 hour shifts. Nursing ratios therefore vary mostly by the number

of other patients in the 6-bed ICU unit, because there are only four observations of

variation in the number of nurses. Patient outcomes are indexed at the individual
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level. They found a higher odds ratio for mortality when patients were exposed to

nurses with a higher ICU workload.

There is therefore mixed evidence for the effect of nursing staff levels on hospital

patient health outcomes. There is a small literature that uses micro-data on nursing.

A key paper (Needleman et al. (2011)) finds a significant positive relationship between

under-staffed wards and mortality. However, in the majority of economic studies no

statistically significant relationship between nursing levels and patient health out-

comes has been found. This may be due to the limitations of using data that has

been collected at an aggregate level. This paper contributes to the empirical litera-

ture by using both a detailed nursing staff dataset, and a unique instrumental variable

strategy.

3.3 Data

3.3.1 Source of data

I obtain data on hours worked by nurses from a hospital’s payroll department. The

payroll dataset has the total hours worked for each employee on a ward and calendar

day. I ensure that only nurse hours are extracted from payroll databases by restricting

employees to have ‘expense codes’ corresponding to nursing staff and health care

assistants. Payroll systems also provide information for employees working in a ward

that are not nurses, for example, ward clerks and medical staff. I am therefore

confident that my staffing measure is only for nurses working on a ward.

Payroll data is also more accurate than rosters maintained by a ward’s Charge

Nurse. Rosters that are manually managed by Charge Nurses could contain errors,

because staff can swap and change shifts informally without changing hard copy

rosters. Payroll determines nurse pay and records if nurses leave work early, as well

as all other types of leave payments. That is, payment for time not spent working on
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a ward (e.g. annual leave, sick leave, education leave) is separated from time paid for

work on a ward.

The second source of data is from inpatient data collections. I use a dataset that

records all wards a patient stays in, and the date and time they arrived and left each

ward. This dataset also records if a patient was transferred to an Operating Room

for an operation, or if a patient was transferred to a transition lounge before leaving

the hospital. This provides accurate information on the number of patients in each

ward for each calendar day. Another hospital inpatient dataset contains information

on a patient’s demographic characteristics, medical diagnoses and treatments that

are used as control variables in my study.

3.3.2 Wards in the study and descriptive statistics

I have payroll and ward stay data for 26 hospital wards. The number of patients

staying in each ward, for any amount of time, is tabulated against 60-day mortality

in Table 3.1. Sixty-day mortality is calculated as mortality within 60 days of hospital

admission. This table shows that there is considerable variation in the proportion

of mortality outcomes across wards. The highest proportion are in the Cancer and

Hematology and General Medicine wards. The lowest proportion of mortality out-

comes occurs in the Maternity ward.

From 26 wards, I exclude 6 wards from my study. Twenty wards are therefore

used to estimate the nursing and patient health outcome relationship.

I firstly exclude Maternity and Gynaecology wards from my study. These wards

are open-planned in the hospital. It is unclear whether nurses work exclusively on one

ward, or on both wards, because there is no physical wall separating these wards. The

incidence of mortality in these wards is also amongst the lowest in the hospital, and

therefore excluding these wards does not reduce observations of mortality required to

identify my regression model.
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Table 3.1: Ward population

60 day mortality occurred Total

Numb. Row % Col % No. Col %

Cancer & Hematology(Blood) a 728 14.3 4.7 5,094 1.8
Cancer & Hematology(Blood) b 2,956 28.3 19.1 10,442 3.7
Cardiology a 414 2.8 2.7 14,946 5.2
Cardiothoracic 387 2.7 2.5 14,111 4.9
Coronary b 463 4.8 3.0 9603 3.4
General Medicine a 1,143 10.6 7.4 10,831 3.8
General Medicine b 1,026 11.4 6.6 9,003 3.1
General Medicine c 1,134 10.9 7.3 10,365 3.6
General Medicine d 1,138 10.8 7.4 10,571 3.7
General Surgery a 429 5.6 2.8 7,684 2.7
General Surgery b 572 6.0 3.7 9,586 3.4
Gynae 101 0.7 0.7 13,597 4.8
Head & Neck, Ear, Nose & Throat 291 2.2 1.9 13,324 4.7
Kidney & Liver 744 7.0 4.8 10,565 3.7
Long Term a 93 10.2 0.6 910 0.3
Long Term b 94 9.9 0.6 953 0.3
Long Term c 256 9.7 1.7 2,642 0.9
Long Term d 321 0.8 2.1 39,149 13.7
Maternity 10 0.0 0.1 2,9521 10.3
Neuro a 265 3.4 1.7 7,709 2.7
Neuro b 398 6.5 2.6 6,077 2.1
Orthopaedics a 217 2.5 1.4 8,533 3.0
Orthopaedics b 301 4.1 1.9 7,320 2.6
Respiratory 1,152 12.5 7.5 9,189 3.2
Urology 422 2.8 2.7 15,136 5.3
Vascular 407 4.5 2.6 9,036 3.2
Total 15,462 5.4 100.0 285,897 100.0

Notes: Summarises 60-day mortality outcomes by hospital wards. The first three columns give the
number, row and column percentage of patients that died within 60 days of Hospital admission. The
last two columns give the total number of percentage of patients in each ward.

Secondly, I exclude Long Term Stay wards (a, b, c, d) from my study. Long Term

a and b were phased out of use during the study period. Patients in Long Term wards

are also generally admitted for an extended physical and/or mental rehabilitation. In

addition, they are part of an older hospital building that is separate to the main

hospital’s acute wards. I focus on a ‘standard’ set of hospital acute care wards to

estimate my nursing input and patient health outcome relationship.

3.3.3 Nurse and patient hours by ward

From payroll and inpatient event data, I calculated the nursing and patient hours for

each ward and 24-hour calendar day. Payroll information does not provide the exact

timing of a shift (e.g. morning or evening) and therefore ward nursing hours on a date

are for a (24 hour) calendar day. The measure of nursing hours on a ward-calender
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day is the sum of hours worked by all nurses on that date. A 24 hour period was

defined from 7am on a calendar day to 7am the following calendar day.

The measure of patient hours on a ward is calculated from ward stay data. This

dataset has the entry and exit times for all wards a patient stays in. For a given

ward and calendar day, the amount of time spent by all patients in that ward during

a 24-hour period from 7am to 7am the following day is added up. This includes if a

patient stayed the full 24 hours, left the ward, arrived at the ward, or passed through

that ward during the 24 hour period. For example, if a patient remains in a ward for

a whole calendar day, 24 hours is added to the total patient hours for that ward and

calendar day. Or, if a patient stayed in that ward for 2 hours between 7am and 7am

the following day, 2 hours is added to the total patient hours on a ward.

Figures 3.1 and 3.2 plots the kernel density distribution for daily patient and nurse

hours for each ward. The shortened version of ward names is used henceforth in this

paper. From these figures, patient hours (Figure 3.1) is slightly more concentrated

than nursing hours (Figure 3.2). A reasonable amount of variation in nursing hours

is beneficial to identifying the relationship between nursing hours on patient health

outcomes.

Summary statistics for nursing and patient hours for each ward are in Table 3.2.

The average number of daily nursing hours varies across wards from 128 to 212. This

indicates a ward level fixed-effect is important in a regression analysis to account for

heterogeneity in average ward staffing levels.
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Figure 3.1: Density plots of ward patient hours

Table 3.2: Daily nurse and patient hours for each ward and day

Ward label Mean Sd Min Max

Patient Nurse Patient Nurse Patient Nurse Patient Nurse

Cancer a 378.8 142.9 56.0 22.6 135.9 83.5 510.3 221.0
Cancer b 557.6 174.8 70.3 20.9 237.1 108.0 691.2 263.5
Cardio a 508.6 128.6 126.7 27.3 98.5 48.0 847.7 244.5
Cardio b 597.3 206.8 89.0 23.5 169.9 95.5 874.8 280.0
Coronary 370.0 212.3 66.1 25.2 97.2 132.0 510.1 357.5
ENT 418.2 130.2 68.4 28.0 132.8 57.8 569.5 216.0
Gen med a 559.8 147.2 56.6 19.0 63.0 16.0 670.5 215.0
Gen med b 482.5 140.3 45.4 18.9 20.4 7.5 600.0 200.0
Gen med c 590.7 161.7 51.2 16.9 24.2 76.0 732.2 227.0
Gen med d 551.5 163.4 37.5 15.7 156.5 84.0 624.0 224.5
Gen surg a 518.1 158.1 28.7 21.9 372.9 68.0 589.9 241.5
Gen surg b 560.7 153.7 34.1 18.5 376.3 80.0 646.9 228.0
Kidney 512.7 167.8 49.9 20.8 227.7 96.0 723.5 237.5
Neuro a 411.0 175.8 64.1 26.9 127.7 99.8 575.4 279.5
Neuro b 432.3 173.0 58.2 21.0 173.1 112.0 574.8 255.5
Ortho a 584.8 172.1 74.0 19.5 9.8 86.8 686.8 239.5
Ortho b 559.5 156.0 39.9 18.3 288.7 88.0 712.4 216.0
Resp 502.8 138.6 63.1 33.1 221.8 48.0 657.4 248.5
Urology 473.5 128.8 68.8 20.8 6.4 48.0 626.0 204.5
Vascular 459.7 156.4 65.0 25.0 72.4 79.5 592.5 244.0
Total 501.4 159.5 94.4 31.8 6.4 7.5 874.8 357.5

Notes: Summarises nurse and patient hours for each ward in the study.

166



0
.0

1
.0

2
.0

3
0

.0
1

.0
2

.0
3

0
.0

1
.0

2
.0

3
0

.0
1

.0
2

.0
3

0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

Cancer a Cancer b Cardio a Cardio b Coronary

ENT Gen med a Gen med b Gen med c Gen med d

Gen surg a Gen surg b Kidney Neuro a Neuro b

Ortho a Ortho b Resp Urology VascularK
er

ne
l d

en
si

ty
 o

f n
ur

se
 h

ou
rs

Ward label
Graphs by Ward label

Figure 3.2: Density plots of ward nurse hours
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3.4 Empirical strategy: Mortality

I firstly discuss my mortality measure and study sample before presenting my baseline

econometric model. I then discuss explanatory variables in my model, including the

the nurse and patient variables.

3.4.1 Outcome

I use mortality within 60 days of hospital admission as the patient health outcome.

hospital record collections contain the date of death for mortality both inside and

outside of hospital. A 60-day time frame is used because it increases the number of

mortality observations compared to in-hospital mortality, and also includes patients

who may not die in hospital, but shortly after a hospital stay.

Mortality is a widely used indicator for quality of care in hospital empirical studies.

It is argued that a lower mortality rate, controlling for a patient’s health condition,

indicates better quality health care. A shortcoming of using mortality outcomes is

that it can be hard to identify patients at a real risk of mortality from the universe

of hospital admissions. Combined with the relatively rare occurrence of mortality, it

can be hard to identify the effect of explanatory variables on the risk of mortality,

particularly in small sample sizes3.

This paper also includes all inpatient events before a 60-day mortality occurrence.

That is, if a patient visited hospital multiple times before mortality within 60-days

of their first hospital admission, all hospital events before mortality will be included

as separate observations in the regression. It is difficult to identify which ward event

3Emergency readmission and adverse hospital events (such as falls in hospital, pneumonias etc.)
were also considered for patient health outcomes in this paper. Emergency readmissions could be
a problematic measure because they are not observed if a patient turned up at another hospital.
For adverse events, patient event data does not record when an adverse event occurs. Patients with
an adverse event will likely stay in hospital longer, it is therefore difficult to identify the effect of
nursing inputs leading up to an adverse event, compared to nursing inputs after an adverse event. In
addition, diagnosis codes are not separated by Present On Admission (POA), or medical conditions
that develop in hospital. An adverse event could include patients that enter hospital with a condition
(e.g. Decubitus or ‘pressure’ ulcer) rather than developing this condition in hospital.

168



led to a mortality outcome, so all inpatient events are included. For example, a

patient may return to hospital just before dying, and their health condition could be

contributed to by nursing care in a previous ward stay.

A tabulation of 60-day mortality by hospital wards is in Table 3.1. This provides

the proportion of patients in each ward where 60-day mortality is equal to one (occurs)

and zero (does not occur). There is heterogeneity across wards in patient health

outcomes; Cancer and Hematology Ward B has the highest proportion of 60-day

mortality (28.1%), the Ear, Nose and Throat ward has the smallest proportion of

mortality outcomes (2.2%).

3.4.2 Study sample

I use three restrictions on the population of inpatients for my study. These are; (1)

patients must spend at least 80% of their hospital stay in their last ward of stay (2)

patients must stay greater than one night and (3) patients must have a DRG code

ending in an ‘A’. Each of these are discussed next.

This paper excludes patients that stay across multiple wards. I use only patients

that stay at least 80% of their whole hospital stay in their last ward. If a patient

spends considerable time in more than one ward, it is difficult to identify the relation-

ship between ward nursing and patient hours on health outcomes. Firstly, the average

nursing level varies across wards. If patients have nursing hours from different wards,

this will add noise to the event-level nursing measure. Secondly, patients cannot be

associated with one ward, and I therefore cannot include a ward-level fixed-effect in

a regression. The last ward of stay is also the ward stay leading to the discharge

decision or mortality outcome and is therefore identified with providing the nursing

care required for a patient’s recovery.

Many patients enter hospital with minor illnesses and are not at risk of mortality.

For example, patients with arm or leg fractures are typically not at risk of mortality.
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This paper uses two restrictions on the patient population to select patients with more

complex health conditions, and are therefore more likely to be at risk of mortality.

Firstly, patients must stay greater than one night. A large number of hospital

admissions are for overnight admissions. If a patient was considered at risk for mor-

tality, then it is likely they would stay more than one night. This patient restriction

also results in at least three days of ward stay data to calculate average nursing and

patient hours. This has the advantage of avoiding fluctuations in nursing measures

that are due to a short hospital stay.

Secondly, only patients with a DRG code ending in ‘A’ are selected. This category

refers to the most complex and resource intensive hospital stays. DRG codes are

assigned by software that use information from inpatient events. In general, for a

given health condition, patients with the highest number of complicating conditions

and/or invasive medical treatments are associated with a DRG category of ‘A’.

Table 3.3 tabulates the mortality outcome against population restrictions for DRG

and ward nights. This illustrates how many observations I exclude from my study

sample because they do not meet my inclusion conditions.

Table 3.3 shows that patients in the study sample are at a greater risk of mortality.

12.7% of patients with a DRG code ending in ‘A’ have a mortality outcome, this is

compared to a 4.3% mortality outcome for patients that do not have a DRG code

ending in ‘A’. In addition, after controlling for all three patient restrictions, 14.6% of

patients have a mortality outcome compared to 5.8% of patients that do not meet all

three patient restrictions.

In the result section, I also estimate the mortality outcome model after relax-

ing each patient restriction. When estimated on the whole population of hospital

admissions standard errors increase. An increase in standard errors is likely due to

comparing nurse hours for patients that are not at a real risk of mortality, with those

who are. When complex patients are only included in the sample, unobserved het-
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Table 3.3: Study population

60-day mortality occurred Total

Number Row % Number

DRG group is ‘A’
No 5,467 4.3 127,304
Yes 9,120 12.7 71,821

Ward nights >1
No 2,358 4.6 50,758
Yes 12,229 8.2 148,367

All three restrictions
No 9,467 5.8 163,961
Yes 5,120 14.6 35,164
Total 14,587 7.3 199,125

Notes: Summarises 60-day mortality outcome for each patient restriction used to select the study
sample from the inpatient population. First two columns give the number and row percentage of
patients that died within 60 days of hospital admission. The last column is the total number of
patients in each category. For example, 71,821 patients are in DRG group ‘A’.

erogeneity in severity of illness is reduced, thereby reducing error in the prediction

of nursing variables on mortality. On the whole, patient restrictions are designed to

compare ‘like with like’ because there is a large degree of heterogeneity in hospital

admissions.

3.4.3 Econometric model

The baseline model for the mortality outcome is indexed for inpatient event i that

stayed in ward j:

Mortalityij = α + βXi + λnurse hoursi + θpatient hoursi + γj + εij (3.1)

This paper specifies a fixed-effect on wards because nurse and patient hours vary

across wards, depending on ward size and medical specialty. In addition, unobserved

ward-level factors, such as team culture and nurse scheduling practices, could influence

the mortality outcome. Wards also tend to specialise in medical condition and a

fixed-effect therefore controls for variation in medical condition across patients in the

sample.

171



The method used to calculate nurse hoursi and patient hoursi is discussed in the

next section (3.4.4).

I model my Length of Stay health outcome in a survival framework. Survival

models calculate the time to an event of interest, in this case discharge home. Survival

models are also used to model mortality, particularly in medical studies. In this paper,

the number of in-hospital deaths is small, and it is therefore difficult to identify

the effect of nursing hours on in-hospital mortality. Furthermore, Schoenfeld (2005,

pg.104) argues that studies of mortality, particularly in Intensive Care Unit stays,

should use binary outcome models, rather than competing risk models: ‘the problem

with these estimators [competing risk] is that they focus on when patients die in the

hospital rather than whether they die. The quality of a patient’s life in the ICU

is very poor. Thus we should avoid any analysis that can confuse longer survival

with better mortality.’ That is, the outcome of survival modelling is a conditional

probability that a person will die per unit of time, rather than whether a patient will

die at all.

On the other hand, Wolkewitz et al. (2009) argue that competing risk models

have advantages for modelling ICU mortality compared to logistic models. Primarily

because they also take into account the effect of time-dependent risk factors, such as

the incidence of infection, on the risk of mortality. In addition, the authors argue

that the risk of mortality associated with staying in hospital longer is addressed in

survival models rather than ‘snap-shot’ regression methods.

The main advantage of my ‘snap-shot’ (i.e. event-level) regression model is that

I can specify a ward fixed-effect, and implement an instrumental variable strategy

for nursing hours. These regression techniques have not been established for survival

models.
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Endogenous nursing hours and instrumental variable

Nursing hours are potentially endogenous to unobserved patient severity of illness.

For example, the arrival of a more severe or complex patient could motivate a ward’s

Charge Nurse to roster on more nursing care. Because more severe or complex pa-

tients are at a greater risk of mortality, this could bias the estimate of the relationship

between nursing hours and mortality upwards. As a result of an endogenous relation-

ship cov(nurse hoursij, εij) 6= 0 and the estimate of λ, the coefficient on nursing

hours, is inconsistently estimated.

I propose an instrumental variable (Zij) for nursing hours to consistently estimate

the effect of nursing hours on mortality. This is constructed from the hours of sick

and bereavement leave of nurses on a ward. Sick leave is defined as nurses with an

illness who are not physically able to work. Bereavement leave is defined as leave for

a death or serious illness of a nurses’ family member.

There are two conditions an instrumental variable must satisfy to be valid for

instrumental variable analysis. Firstly, the instrument must be uncorrelated with

unobservable factors in the mortality model: i.e. cov(Zij, εij) = 0. The second

requirement is that the instrument must have an effect on the endogenous variable,

even after netting out the effects of all other explanatory variables in the mortality

model (Wooldridge, 2002, pg.89-90). The second requirement can be tested. The

first requirement must be argued as a reasonable assumption, because it involves all

possible unobservable factors in the mortality model.

To meet the first requirement, this paper argues that sick and bereavement leave

is caused by processes independent of unobserved factors contained in (εij), after con-

trolling for observable variables. Bereavement leave is easier to satisfy the exogeneity

condition, because death of a family member is expected to be unrelated to a ward

environment and hospital events. Ward environment could however affect a patient’s

health outcome and nurse’s sick leave. I argue that any plausible relationship be-
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tween nurse sick leave and patient’s likelihood of mortality is controlled for in the

main equation (3.1).

The first possible relationship between sick leave and mortality could be caused by

the number of patients on a ward. Patient load could induce stress on nurses and this

could also affect a patient’s risk of mortality, if not controlled for. My patient hours

variable controls for the effect of patient demand on mortality. Secondly, nurses’ sick

leave could be caused by a flu virus, which could also be contracted by a patient and

increase their risk of mortality. A dummy variable for month of hospital admission

is included to control for seasonal factors, such as the flu season. I also include a

dummy variable that is equal to one if a patient has a diagnosis of flu or influenza4.

Nurses now routinely get flu vaccinations, which lowers the chance of this relationship

occurring.

The largest unobserved component of εij is a patient’s unobserved severity and

complexity of illness. A patient’s illness has unique biological paths that is separate to

the biology of nurses and other patients in a hospital. This paper controls for ward-

level fixed-effects, patient demand on a ward, and infectious diseases which might

affect both nurses’ sick leave and patient’s likelihood of mortality. This set of control

variables is argued to be sufficient for the exogeneity of sick and bereavement leave

in equation (3.1).

Other instrumental variable options illustrate the difficulty in meeting the require-

ment of exogeneity. For example, weekends have lower numbers of nursing staff, which

could generate an exogneous change to a patient’s nurse hours. Weekends however

also have fewer medical staff, which could have an independent effect on a patient’s

likelihood of mortality.

For the second requirement - instrumental variable is related to the endogenous

variable - I argue that sick and bereavement leave affects the supply of nurses able

4ICD-10-AM codes are J09-J11x in any of the 60 diagnosis codes available for an inpatient event.
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to work, which then affects the number of nurses working. This type of leave is also

unplanned, so Charge Nurses are unlikely to make extra staffing provisions. I did not

find a significant negative relationship between nurse hours worked and other types

of leave, such as annual and educational course leave. An explanation for this could

be that other types of leave are often planned in advance, and Charge Nurses are able

to cover shortfalls by rostering on replacement staff. Figure 3.3 plots a fitted line for

(worked) nurse hours on a ward, against sick and bereavement hours for that day.

For most wards, there is a downward slope suggesting that increasing sick-leave hours

is associated with lower nursing hours worked on a ward. In the results section, an

F-statistic for the explanatory power of the instrument is 202.56, which is above the

suggested ‘rule of thumb’ of 10.

The instrumental variable is measured as the average daily hours of sick and

bereavement leave during a patient’s hospital stay. This is the sum of sick and

bereavement leave, during a patient’s stay, divided by the number of ward days (for

patient i).

To instrument for nursing hours, with a fixed-effect on wards, this paper uses

the two-stage least-squares within estimator implemented in the ‘xtivreg2’ package

for Stata statistical software. This package transforms the data by de-meaning vari-

ables and then applies the conventional two-stage least-squares instrumental variable

method. This implements Ordinary Least Squares to estimate regression coefficients

in the model. Linear regression models can provide poor estimates of variable ef-

fects when the mean of the dependent variable is very low or high (Bhattacharya

et al., 2006). Our mean value is low because mortality is an infrequent occurrence.

Non-linear models, such as logit and probit, are designed to model binary outcomes.

But there are also drawbacks to these models. They suffer from bias when relevant

regressors are omitted from the regression, even if they are uncorrelated with re-

gressors (Wooldridge, 2002, pg. 470). In addition, the inclusion of an endogenous
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variable means that all coefficients are inconsistently estimated in a non-linear model.

OLS estimates unbiased and consistent coefficients for all variables, except those that

are endogenous. An estimation routine for a non-linear binary outcome model with

fixed-effects and instrumental variables is also not readily available in Stata 11. In my

results, I do not find a statistically significant effect of nursing hours on mortality, so

concerns about the precision of the coefficient estimate is perhaps not of primary im-

portance. Any robust finding would require that coefficient estimates are statistically

significant in both linear and non-linear models.

The two-stage least-squares estimation framework can be set up with a first stage

and a reduced form equation. A consistent estimate of λ, the effect of nursing hours

on mortality, can be obtained from estimation of these two equations. The first

stage equation is estimated by regressing the endogenous variable (nursing hours) on

covariate vector X from equation 3.1 and the instrumental variable. The first stage

equation, with a fixed-effect for within-ward estimation, is:

Nurse hoursij = αFS+βFSXi+θFSpatient hoursij+δFSsick and bereavij+γj+µij

(3.2)

The reduced form equation specifies the mortality outcome as a function of the in-

strumental variable:

Mortalityij = αRF +βRFXi+θRFpatient hoursij + deltaRF sick bereavij +ρj +υij

(3.3)

An estimate for λ in equation 3.1 is obtained from the sample estimate of δRF and

δFS : λ = δRF/δFS. Consistent estimation of λ requires that sick and bereavement

leave affects a patient’s likelihood of mortality solely through changes in nurse hours.
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Table 3.4: Daily sick and bereavement (Bere.) hours for each ward and day

Ward label Mean Sd Median Max

Sick Bere. Sick Bere. Sick Bere. Sick Bere.

Cancer a 4.8 0.5 6.7 2.2 0.0 0.0 48.0 24.0
Cancer b 6.4 0.4 8.1 1.9 0.0 0.0 52.0 16.0
Cardio a 5.4 0.2 7.7 1.3 0.0 0.0 44.0 12.0
Cardio b 8.0 0.5 9.3 2.3 8.0 0.0 56.0 12.0
Coronary 7.8 0.4 9.7 2.0 1.3 0.0 60.0 24.0
ENT 5.0 0.3 6.8 1.7 0.0 0.0 44.0 20.0
Gen med a 5.0 0.5 6.9 2.3 0.0 0.0 51.0 20.0
Gen med b 5.2 0.3 6.9 1.6 0.0 0.0 45.0 16.0
Gen med c 6.0 0.5 7.3 2.0 6.0 0.0 42.0 16.0
Gen med d 6.6 0.4 7.7 2.0 8.0 0.0 48.0 16.0
Gen surg a 5.6 0.6 7.4 2.3 0.0 0.0 52.0 23.5
Gen surg b 6.0 0.6 7.7 2.5 0.0 0.0 44.0 24.0
Kidney 6.6 0.4 8.3 2.0 0.0 0.0 48.0 20.0
Neuro a 6.9 0.4 7.9 1.8 8.0 0.0 52.0 13.5
Neuro b 6.0 0.5 7.5 2.1 0.0 0.0 60.0 20.0
Ortho a 6.5 0.5 7.4 1.9 8.0 0.0 40.0 16.0
Ortho b 4.8 0.4 6.1 1.8 0.0 0.0 34.0 16.0
Resp 5.4 0.4 7.1 2.0 0.0 0.0 44.0 16.0
Urology 5.4 0.5 7.4 2.3 0.0 0.0 40.0 24.0
Vascular 6.1 0.7 7.8 2.7 0.0 0.0 44.0 24.0
Total 6.0 0.4 7.7 2.1 0.0 0.0 60.0 24.0

Notes: Summary statistics for sick and bereavement leave hours for each ward in the study.
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Figure 3.3: Fitted nursing wards by hours of sick and bereavement leave on a ward
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3.4.4 Nursing and patient variables

The nurse hours variable, nurse hoursi, is calculated as the average daily nurse hours

on a ward during patient i′s ward stay. This is computed by summing the nurse hours

(nurse hourst) on each calendar day (t) that patient i stayed in their ward, j. I use an

index n = 1, 2, 3...LOSi in the following formula to sum nurse hours (nurse hoursn,j)

during each day of i′s stay in ward j, starting from day = n = 1 to n = LOSi. For

each day, n = 1, 2, 3...LOSi, a patient stays in hospital, nurse hours is obtained from

payroll data for the calendar day. LOSi is the total number of days a patient stayed

in their ward, j.

nurse hoursi =

∑LOSi

n=1 nurse hoursn,j
LOSi

(3.4)

nurse hoursn,j is the sum of hours worked by all nurses in i′s ward j, on day n

during i′s inpatient stay.

Since I require that patients stay more than one night in hospital, at least three

days of patient observations (the arrival day, second day and third day) for nursing

and patient hours is used to calculate nursing and patient variables. Using three days

reduces fluctuations in nursing and patient measures. Fluctuations are caused by

patients staying in hospital for one or two days where extreme values of nursing or

patient hours may have occurred. Because exposure to high or low staffed wards is

small, given LOS is small, the impact on health outcomes will be limited. This could

confound the estimate of the relationship between nurse and patient variables and

mortality.

Similarly, the measure of patient hours is averaged over a patient’s ward stay.

Importantly, a patient’s own contribution to ward patient hours is removed. This

controls for a patient’s own movement in and out of a ward on their measure of
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patient hours. For example, on the last day of stay, a patient may have lower patient

hours, because their own movement from their ward lowered patient hours.

patient hoursi =

∑LOSi

n=ti
(patient hoursn,j − patient hoursi,n,j)

LOSi
(3.5)

Where patient hoursn,j is the sum of patient hours on ward j at day n during i′s

stay. patient hoursi,n,j is patient i′s hours in ward j on day n.

Nurse and patient hours are added to each model separately to test for the in-

dependent effect of these variables on patient outcomes. The effect of a nurse-to-

patient ratio on health outcomes is also estimated. The nurse-to-patient ratio is

the total number of nursing hours divided by the total number of patient hours:

nurse ratioi,n,j = nurse hoursi,n,j/patient hoursi,n,j. For an event-level measure,

the sum of the daily nurse-to-patient ratio is divided by a patient’s length of stay to

find the average daily nursing ratio.

An alternative to my nursing and patient variables is to use the total amount of

nursing and patient hours during a hospital stay. That is, the sum of patient and

nurse hours for a patient’s entire hospital stay. It could be argued that total nursing

and patient hours (as opposed to average daily measures) are inputs into a production

process determining a patient’s health outcome. In this case, when a patient enters

hospital they will receive an amount of nursing care which will be a function of their

length of hospital stay. A problem with using total nursing and patient hours is that

a patient may have a higher level of nursing hours because they stayed in hospital

longer, rather than exposure to higher-staffed wards. This will confound attempts to

investigate the effect of high or low staffed wards on patient outcomes.
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3.4.5 Other explanatory variables

Table 1.13 contains summary statistics of all control variables for the study sample.

Most control variables have been discussed in previous chapters, so are not discussed

in detail here.

Control variables in dummy variable form are; male patient, patient ethnic group

(Asian, Pacific, Indian, Maori, and base category of New Zealand European), if a pa-

tient was transferred from another health-care facility, acute admission and arranged

admission (base category is wait-list admission), if a surgical theatre event occurred,

previous admission to hospital within 60 days, entry to hospital through Accident

and Emergency Department (AED), accident as cause of patient’s illness, if the pa-

tient’s DHB is that of the hospital, and Major Diagnostic Categories. Lastly, a set of

dummy variables for the day, month and year of admission control for the impact of

admission timing on the probability of mortality.

Charlson co-morbidity dummy variables are also included to control for compli-

cating diagnoses. All ICD-10-AM diagnosis codes for a patient were obtained using

Sundararajan et al.’s (2004) crosswalk from ICD-9 to ICD-10. A dummy variable is

equal to one if a patient has one of Charlson’s co-morbid conditions.

Remaining control variables for the mortality outcome model are; the length of

hospital stay in days, age of patient, age of patient squared, deprivation scale and

number of diagnoses coded. An extra variable - nursing hours squared - is also

included in the mortality model to test for a non-linear relationship between nursing

inputs and mortality.
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3.5 Empirical strategy: length of stay

3.5.1 Outcome

The outcome of interest for the length of stay model is the time to discharge home.

Discharge home occurs when a patient has been considered well enough to not require

nursing care. The alternative patient discharge options are discharge to another

health-care facility and mortality in hospital.

Table 3.5 presents the proportion of patients with each type of discharge. Dis-

charge to another health-care facility includes discharges to a public hospital, private

hospital or a rest-home. A key observation from this table are that wards vary in

their types of discharges, for example Orthopaedics and Neurology wards show high

percentages of total discharges to other health-care facilities, at around 25% of total

ward stays.

Table 3.5 suggests that analysis should take into account the different types of

discharge when modelling a patient’s length of stay. This is because discharge home

is a different health outcome to mortality, or discharge to another health-care facil-

ity. Discharge to another health-care facility indicates more nursing care is required

compared to discharge home. Picone et al. (2003) also accounts for different types of

discharge (i.e. competing risks) when modelling hospital length of stay.

A patient’s length of ward stay is therefore modelled in a competing risk survival

model. Survival analysis models the time to an event of interest. I use a competing

risk model because there is more than one possible outcome. In this case, there

are different types of hospital discharge; home, to another health care facility and

mortality.

I am interested in the time to discharge home because it indicates the quality

of health care. Discharge home indicates a patient is well enough to forgo hospital
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Table 3.5: Ward by discharge type

Ward label Home Facility Mortality Total

No. Row
%

No. Row
%

No. Row
%

No.

Cancer & Haematology(Blood) a 4,508 89.1 381 7.5 169 3.3 5,058
Cancer & Haematology(Blood) b 8,842 84.9 996 9.6 577 5.5 10,415
Cardiology a 13,622 91.6 1,178 7.9 78 0.5 14,878
Cardiothoracic 12,192 87.2 1,756 12.6 39 0.3 13,987
Coronary b 7684 80.7 1,698 17.8 138 1.4 9,520
General Medicine a 9002 83.5 1,387 12.9 394 3.7 10,783
General Medicine b 7297 81.3 1,322 14.7 357 4.0 8,976
General Medicine c 8,476 81.9 1,472 14.2 398 3.8 10,346
General Medicine d 8,725 82.8 1,356 12.9 452 4.3 10,533
General Surgery a 6768 88.5 735 9.6 147 1.9 7,650
General Surgery b 8518 89.2 895 9.4 138 1.4 9,551
Head & Neck, Ear, Nose & Throat 12,984 97.6 266 2.0 54 0.4 13,304
Kidney & Liver 8,992 85.4 1,312 12.5 225 2.1 10,529
Neuro a 5,685 73.9 1,925 25.0 86 1.1 7,696
Neuro b 4,279 71.0 1,650 27.4 96 1.6 6,025
Orthopaedics a 6,529 76.6 1,941 22.8 48 0.6 8,518
Orthopaedics b 5,178 70.9 2,050 28.1 75 1.0 7,303
Respiratory 8,260 90.2 583 6.4 318 3.5 9,161
Urology 14,451 95.6 613 4.1 52 0.3 15,116
Vascular 7,740 86.2 1,141 12.7 99 1.1 8,980
Total 169,732 85.6 24,657 12.4 3,940 2.0 198,329

Notes: Summarises the number of percentage of patients for each discharge type by wards in the
study. Facility includes private, public and rest home facilities. Mortality is in-hospital. The last
column gives the total number of patients in each ward.

health care. Reducing length of stay therefore suggests an improvement in the quality

of health care, as patients recover to sufficient health status in a shorter time period.

3.5.2 Study sample

I use two restrictions when selecting the patient population for the LOS model. These

are; (1) patients must spend at least 80% of their hospital stay in one ward and (2)

patients must stay greater than one night. These are the same as the mortality model,

except I do not use the third restriction that requires patients to have a DRG code

ending in ‘A’. This is used in the mortality model to select patients at a high risk of

mortality.

I use the last ward of stay because the discharge decision reveals information

about the health of the patient, specifically that they are well enough to forgo further

ward nursing care. In addition, the last ward of stay selects the ward stay after an
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operation. Patients waiting in hospital for an operation are not at risk of discharge.

Because operating room events are separate ward stays in the data, the last ward

stay cannot be before an operating room event. Only when a patient enters their last

ward of stay do we consider them at risk of discharge. Lastly, to identify the effect

of nursing and patient variables in a ward on a patient’s health outcome, a patient

must have sufficient exposure (at least 80% of stay) to nursing and patient hours on

that ward.

3.5.3 Econometric method

In survival models, the time to an event of interest is modelled with a hazard rate.

The hazard rate is the probability of ‘failure’ (i.e. outcome occurs) at a point in time.

In this paper, the hazard rate for discharge home is calculated for each day of a ward

stay, t = 2, 3, 4, 5...T . Variables either increase or decrease the hazard rate of being

discharged home. If a variable increases the hazard rate, patients are at a higher risk

of discharge home early in a hospital stay, and vice versa for a negative relationship.

I use the Fine and Gray (1999) model for competing risks. Their model is based

on the proportional hazards model, which is discussed in Appendix 3.E. Because

data on nursing hours is for a 24 hour period, I use a discrete-time set-up with time

indexed from day = t = 0, 1, 2, 3...T . Appendix 3.E provides details for the Fine and

Gray model, and discusses this model in the context of alternative competing risk

models.

Fine and Gray’s method for modelling competing risks has some advantages.

Specifically, it is widely used in medical studies of hospital length of stay, and it

is the only estimation routine for competing risks in Stata 11. It also requires fewer

modelling assumptions, particularly functional form decisions for unobserved hetero-

geneity terms that are a part of economic approaches. Econometric approaches for
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competing risks typically modify a multinomial model to estimate a patient’s risk of

discharge as a function of time.

The Fine and Gray method estimates model coefficients by comparing the values

of variables for individuals who fail at time t with individuals who have not failed by

time t. This is estimated in a partial likelihood function, which is the product of a

ratio for each individual in the study, i up to k individuals. The numerator for i’s

ratio is composed of individuals who fail at LOSi (i.e. individual i’s time of failure)

divided by all individuals who remain in the risk set at LOSi:

L(β) = Πk
i=1

[
exp{ZT

i (LOSi)β}∑
j∈Ri

exp{ZT
j (LOSi)β}

]I(εi=1)

(3.6)

Where εi is the cause of failure, in this case discharge home.

ZT
i (LOSi) is a vector of possibly time-varying covariates for individual i at time

LOSi. ZT
j (LOSi) is a vector of possibly time-varying covariates for individuals j

in the risk set at time LOSi. The subjects that are in the risk set at i’s failure

time, LOSi, are all individuals who have not failed by LOSi, or have failed from a

competing cause. This partial likelihood can be solved for β, the estimated effect of

variables on the hazard rate of discharge home. This is a partial likelihood because

it is over the risk set of individuals who have not failed from discharge home, rather

than the whole patient population.

Fine and Gray (1999) specify a proportional hazard model, which is defined for

event m (discharge home) as: λm(t;X) = λmo(t) exp{ZT (t)β0}. The exponential

function remains in the likelihood function 3.6, but the baseline hazard function

(λmo(t)) and constant term (β0) cancel out in the ratio of hazard functions, for each

individual i at time LOSi. The likelihood function (3.6) is therefore a product of the
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ratio of hazard functions for event m (discharge home) at each individual’s failure

time.

ZT includes nurse hoursiT and patient hoursiT as well as other explanatory vari-

ables discussed in the next section.

3.5.4 Nursing and patient variables

Because the risk of being discharged home is estimated for each day of a patient’s

hospital stay, it is possible to use time-varying covariates in the competing risk sur-

vival model. I use time-varying measures of nurse and patient hours for each day

during a patient’s hospital stay. I use a cumulative average of the nurse and patient

hours during a patient’s ward stay.

The nurse hours variable is the sum of nurse hours on i′s ward j up to day t of

patient i′s stay, divided by t. For example, nurse hours on day 2 is the average of

nurse hours on day 1 and 2 of a patient’s hospital stay. The patient hours measure

is the same, except patient i′s individual contribution to ward patient hours on day

t is removed from the ward level measure5:

nurse hoursit =

∑t
n=1 nurse hoursn,j

t
(3.7)

patient hoursit =

∑t
n=1(patient hoursn,j − patient hoursi,n,j)

t
(3.8)

5I use the cumulative average of nursing and patient hours up to day t, as opposed to the total
sum of nurse and patient hours up to time t. In the Fine and Gray competing risk model inpatients
who are discharged to a health care facility will remain in the ‘risk set’ . These patients are not
exposed to more nursing hours in the data and therefore their measure of nursing hours will remain
constant, while other subjects who are still at risk for the main outcome (discharge home) will
increase their nurse measure as they stay in hospital longer. If the total sum of nursing and patient
hours up to time t is used, this will affect the comparison of nursing and patient variables at time t
for those who fail with those who do not fail. The Fine and Gray model and the survival analysis
framework is discussed in detail in Appendix 3.E.
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3.5.5 Other explanatory variables

The length of stay model has the same control variables as the mortality model,

except for time-varying variables; cumulative average nursing and patient hours on a

ward, and dummy variables for day of the week. A dummy variable for day of the

week controls for variation in discharges throughout the week. For example, there is

a greater risk of discharge on a Friday than during the weekend. These variables are

not included in Table 1.13 of study variables, because they are time-varying during

each patient’s hospital stay.

Lastly, length of stay also has a control variable for average length of stay for

a patient’s DRG. The average length of stay for a patient’s DRG is obtained from

WIESNZ11 cost weight tables provided by the Ministry of Health, New Zealand

(Ministry of Health, 2011). These can be obtained electronically from the website

included in the bibliography. The Ministry of Health calculates the average length

of stay for each DRG from nation-wide hospital admissions data. This controls for

variation in the expected length of stay for a patient’s health condition. Needleman

et al. (2002) includes the predicted probability of mortality for a patient’s DRG in

their survival model for in-hospital mortality. Summary statistics for study variables

are in Table 1.13.

3.6 Results: Mortality

Results from the baseline model for mortality are in Table 3.6. Table 3.7 has results

from instrumental variable analysis, and tests for a non-linear relationship between

nursing hours and 60-day mortality.

A full regression table of coefficients is in Appendix 3.B and robustness tests are

in Appendix 3.C.
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3.6.1 Baseline mortality model

Table 3.6: Mortality baseline model

(1) (2)
base age < 75

Patient hours −0.00005 −0.00008∗

(−1.24) (−2.15)

Nurse hours 0.00026 0.00042∗∗

(1.96) (3.42)

Observations 34727 21795
R2 0.132 0.128
Notes: Outcome: 60-day mortality. Sample: Column (1) is eligible study sample, Column (2) is
eligible study sample under 75 years of age. Model: ward fixed-effect linear regression. Standard
errors clustered on wards. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Nursing hours is positively related to mortality outcomes with all eligible inpatient

events (Column (1)). When I restrict patients to under 75 years of age, the nursing

variable is positive and statistically significant at the 5% level.

The size of the coefficient for nursing hours is however small. Increasing nursing

hours on a ward is associated with an on average .026% increase in the likelihood of

60-day mortality for patients in the study sample.

Table 3.11 presents coefficient estimates for mortality outcomes that are; (1)

within 30 days of hospital admission and (2) in-hospital. Both models exhibit a

positive, but statistically insignificant, relationship between nursing hours and mor-

tality.

When I relax my restrictions on the study sample, nursing hours is also positive

but statistically insignificant. There are three population restrictions in the mortality

model: patients spend at least 80% of their hospital stay in their last ward of stay,

patients stay greater than one night and patients have a DRG code ending in ‘A’.

Column (1) in Table 3.12 estimates the baseline model on the population of ward

admissions that meet the first two conditions, but includes patients with all DRG

codes. The nursing hours variable is positive but statistically insignificant. A plausible

explanation is that when patients who are not at a risk of mortality are included in the
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population, this confounds estimates for nursing inputs coefficient. This explanation

is also consistent with the increase in standard errors for the nursing hours variable.

Column (2) in Table 3.12 estimates the relationship on patients that meet the

latter two conditions but stay at least 60% of their total hospital stay in the last

ward. The coefficient on nursing hours is positive but statistically insignificant.

Column (3) in Table 3.12 only requires that patients spend at least 60% of their

total hospital stay in one ward. This allows the largest sample of eligible inpatients.

Nurse hours is positively related to 60-day mortality, but is also statistically insignif-

icant.

Table 3.13 presents results for robustness to model specification. Column (2)

has no control for ward-level fixed-effects. The relationship for nursing hours is now

negative, but is statistically insignificant. A negative relationship could be caused

by differences in average nursing staff levels, and mortality outcomes, across wards.

This result suggests that ward-level heterogeneity is important to control for when

accurately estimating the nursing and health outcome relationship with micro-data.

Column (3) in Table 3.13 uses dummy variables for wards, instead of a fixed-

effect transformation. Using dummy variables allows me to test for the Variance

Inflation Factors (VIF) for nursing and patient variables. VIFs indicate whether there

is a high degree of collinearity between variables in the model. Collinearity between

nursing and patient hours could be present if they are correlated. For example, if

increasing patient hours also increases the number of nurses scheduled to work. A

consequence of multicollinearity is a lack of robustness in results. This is because

the particular pattern of collinearity in the data will differ from sample to sample

generating different estimates for the coefficients. Variance inflation factors were

calculated and are included in the table under standard errors. VIF values for nursing

and patient hours are 3.45 and 3.09 respectively. These are within the suggested rule

of thumb of 10.
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3.6.2 Instrumental variable and non-linear results

Table 3.7: Mortality non-linearities and IV

(1) (2)
nurse sq. iv

Patient hours −0.00005 0.00005
(−1.16) (0.29)

Nurse hours −0.00088 −0.00079
(−1.15) (−0.49)

Nurse squared 0.00000
(1.51)

Observations 34727 34727
R2 0.132 0.130
F Statistic 206.845
Notes: Outcome: 60-day mortality. Sample: all eligible study sample. Model: ward fixed-effect
linear regression, Column (1) has an additional squared nursing term, Column (2) has instrumental
variable results. Standard errors clustered on wards. Robust t-statistics in parentheses. ∗∗∗p<.01;
∗∗p<.05; ∗p<.10.

This section investigates two possible explanations for a positive association be-

tween a patient’s nursing hours and 60-day mortality. Table 3.7 has results from the

instrumental variable method (Column (1)) and including a squared nursing term

(Column (2)).

Table 3.7 presents results for a linear fixed-effect instrumental variable model.

The instrument is average daily hours of sick and bereavement leave of nurses on a

ward. After instrumentation, nursing hours is negative but statistically insignificant.

The Cragg-Donald Wald F statistic is 202. The suggested rule of thumb is an F-

statistic above 10. The Stock and Yogo guideline for instrument validity (at the 10%

level) requires an F-statistic of at least 16.38. The F-statistic supports the validity of

average sick and bereavement leave as an instrumental variable for nursing hours on

a ward.

Standard errors after instrumenting nurse hours are large. It is consequently

difficult to test whether the nurse hours variables is endogenous, because endogenous

variable tests rely on significant differences between IV and OLS estimates. If IV

estimates are not precise, due to large standard errors, this could lead to rejection
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of an endogenous variable, even though nursing hours may be endogenous. The p-

statistic for the null hypothesis of exogeneity of nursing hours is p = .74. Because

the sign on nursing hours changes, this suggests nursing hours could be endogenous

in the baseline equation.

The second explanation for a positive relationship between nursing hours and

mortality are decreasing returns to nursing inputs. Decreasing returns could arise

from costs to patient health care production associated with increasing team size.

For example, if increasing the number of nurses generates moral hazard in work

responsibilities, or nurses are more likely to be distracted on the job. This can result

in a positive relationship between nursing hours and mortality, if decreasing returns to

nursing inputs outweigh the gains to increased nursing staff on health care provision.

The inclusion of a squared nursing term tests for non-linearities in the relationship

between nursing inputs and mortality. Nursing hours squared is statistically insignif-

icant (Column (1), Table 3.7). After including a squared nursing term, the coefficient

on nursing hours is negative but statistically insignificant.

The positive association between nursing hours and mortality (for patients with

complex health conditions) is not robust to these two hypotheses, though I am unable

to conclude whether a non-linear or endogenous relationship explains the positive

association in the baseline model.

3.7 Results: Length of stay

This section discusses results for the competing risk survival model. Recall that the

outcome is the hazard rate of discharge home, and that nurse and patient hours are

time-varying during a patient’s stay. I estimate the competing risk survival model
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for each ward in my study, because fixed-effect analysis is not possible. Results are

in Tables 3.14 to 3.20, Appendix 3.D6.

My main result is a negative relationship between patient hours and the hazard

rate of discharge home in 16 of 20 wards in the study. Of these 16 wards, 7 wards show

a statistically significant negative coefficient on patient hours. A negative relationship

suggests that increasing patient hours reduces the hazard rate of discharge home, or

that patients have a lower risk of discharge early in their stay. In other words, an

increase in patient hours is associated with a longer ward stay.

This is somewhat counter-intuitive, because we might expect increasing patient

demand to lead to an earlier discharge of patients, in order to make hospital beds

available. A plausible explanation is that demand by other patients on fixed hospital

resources affects the delivery of health care. For example, doctors may not be able

to deliver health care treatments when they are managing many patients, so patients

remain in hospital longer.

Wards that do not have a negative relationship between patient hours and the

hazard rate of discharge home are wards that treat particular types of patient ad-

missions. Of these four wards, two are cancer wards (Cancer a, b), an Ear, Nose

and Throat (ENT) ward and a Urology ward. These wards treat a large proportion

of short-stay patients with pre-arranged admissions. Cancer wards have a large pro-

portion of patients entering hospital for radiology treatment. Ear, Nose and Throat

and Urology have a high proportion of wait-listed surgical patients. The Urology and

ENT wards also has one of the lowest rates of discharges to other health care facil-

ities in the data at 4.1% and 2.0% respectively (Table 3.5). This suggests patients

might be entering hospital for planned day-stay operations, and returning home after

a procedure. The rate of Mortality is also lowest in ENT and Urology wards. Low

6Because nursing hours are potentially endogenous, and instrumentation of nursing hours is not
possible in survival models, this section focuses on the interpretation of the patient hours variable
on the risk of being discharged home.
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mortality rates for ENT and Urology suggests that patients in these wards might be

disproportionately short-stay and non-intensive patients, and therefore have a lower

need for nursing and doctor care that would be sensitive to the fluctuating demands

of other patients. If patients arrive at hospital with their treatment plan pre-arranged

there is less clinical uncertainty, and therefore a lower burden on doctors to diagnose,

treat and monitor a patient’s health condition.

3.8 Conclusion

This paper has estimated a relationship between nurse and patient hours on a ward

and a patient’s health outcome. I have used health outcomes of 60-day mortality and

ward length of stay.

My first main result is a positive relationship between nurse hours on a ward and

60-day mortality. To explain this positive relationship, I firstly investigate whether

nurse hours is endogenous. I propose an instrumental variable based on the sick and

bereavement leave of nurses on a ward. I find some evidence to suggest an endogenous

relationship, though standard errors are large after instrumentation and the statistical

test for an endogenous variable is therefore inconclusive.

I also considered the possibility that nursing inputs have a non-linear relationship

with patient health outcomes. This could arise if increasing team size is associated

with decreasing returns from nursing care on patient health. For example, moral

hazard may be more likely to occur in large teams.

Overall, I find that nurse hours is statistically insignificant after estimation with

an instrumental variable and inclusion of a non-linear nursing term. This result is

consistent with previous studies that do not find a statistically significant relation-

ship between nursing inputs and patient health outcomes, particularly when Omitted
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Variable Bias across hospitals is accounted for (Gruber and Kleiner, 2010; Evans and

Kim, 2006; Sochalski et al., 2008).

My second main result is that patient hours on a ward is related to a longer

length of stay in 16 of 20 wards in my study. The relationship between patient

admissions and length of stay has, to my knowledge, been relatively under-studied

in previous literature. Evans and Kim’s (2006) estimate the impact of a surge in

hospital admissions on patient health outcomes. The authors assume that any effect

on patient health outcomes is through a strain on nurses’ time. Evans and Kim finds

that increasing admissions is associated with a reduction in length of stay, though

coefficients are small.

There is a large empirical literature on the relationship between nursing staff levels

and patient health outcomes. This paper is a novel contribution to this literature.

Firstly, there are few papers that use detailed data, and my instrumental variable

- sick and bereavement leave of nurses on wards - is novel. I also investigate the

possibility of a non-linear relationship between nursing inputs and patient health

outcomes. This extends the study of nursing inputs on patient health, specifically to

consider the role of increasing team size on the provision of health care.

The ability to robustly investigate these issues is however limited, because my

sample size is small. Restrictions on the eligible patient population reduced the

number of observations to identify an empirical relationship. This meant that results

from tests for an endogenous or non-linear relationship were inconclusive.

Further work could explore the relationship between other patients’ demand on

health care and a patient’s own health outcome. This relates to literature on negative

spillovers, because admissions by other patients in a hospital could affect a patient’s

own health outcome. Because patients are sharing medical resources, the impact

of admissions on a patient’s access to health care is of interest to administrators.

It could indicate whether administrators need to increase capacity to avoid negative
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spillovers. Further work could also focus on the role of team-work by nurses on a ward

and patient health outcomes. This extends the study from the quantity of nursing

staff to the quality of nursing staff on wards.
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3.A Explanatory variables

Table 3.8: Health outcomes

Mean Sd Min Max P50 P90

60-day mortality 0.09 0.28 0.00 1.00 0.00 0.00
Ward days 7.06 7.22 2.00 221.00 5.00 14.00

N 93382
Notes: Summary statistics for mortality and length of ward stay. Summarised for the inpatients
that stay in hospital greater than one night, and spend at least 80% of total hospital stay in the last
ward of stay.

Table 3.9: Study variables

Mean Sd Min Max P50 P90

Main variables:
Patient hours 513.65 81.37 83.20 838.77 521.50 609.84
Nurse hours 158.57 26.37 52.57 275.25 158.14 190.50

Control variables:
Age 61.03 19.86 0.00 105.00 63.00 85.00
Age sq. 4119.40 2298.30 0.00 11025.00 3969.00 7225.00
Male 0.53 0.50 0.00 1.00 1.00 1.00
Asian pat 0.05 0.23 0.00 1.00 0.00 0.00
Pacific pat 0.12 0.33 0.00 1.00 0.00 1.00
Indian pat 0.04 0.19 0.00 1.00 0.00 0.00
Maori pat 0.09 0.29 0.00 1.00 0.00 0.00
NZ Euro. pat 0.56 0.50 0.00 1.00 1.00 1.00
Deprivation scale 5.90 2.91 0.00 10.00 6.00 10.00
Transfer 0.12 0.33 0.00 1.00 0.00 1.00
Acute admiss. 0.73 0.45 0.00 1.00 1.00 1.00
Arranged admiss. 0.10 0.30 0.00 1.00 0.00 1.00
Admit 2006 0.16 0.36 0.00 1.00 0.00 1.00
Admit 2007 0.16 0.36 0.00 1.00 0.00 1.00
Admit 2008 0.16 0.37 0.00 1.00 0.00 1.00
Admit 2009 0.16 0.37 0.00 1.00 0.00 1.00
Admit 2010 0.17 0.37 0.00 1.00 0.00 1.00
Admit 2011 0.11 0.31 0.00 1.00 0.00 1.00
Myocardial Infarct. 0.06 0.24 0.00 1.00 0.00 0.00
Congestive Heart F 0.08 0.28 0.00 1.00 0.00 0.00
Periphral Vascular s 0.04 0.20 0.00 1.00 0.00 0.00
Cerebrovascular Dis 0.05 0.22 0.00 1.00 0.00 0.00
Dementia 0.03 0.18 0.00 1.00 0.00 0.00
Chronic Pulmonary D 0.06 0.24 0.00 1.00 0.00 0.00
Rheumatic Disease 0.01 0.09 0.00 1.00 0.00 0.00
Peptic Ulcer Disease 0.01 0.09 0.00 1.00 0.00 0.00
Mild Liver Disease 0.02 0.15 0.00 1.00 0.00 0.00
Diabetes w/o compl.. 0.07 0.25 0.00 1.00 0.00 0.00
Diabetes w complic. 0.13 0.34 0.00 1.00 0.00 1.00
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Paraplegia + Hemip a 0.03 0.18 0.00 1.00 0.00 0.00
Renal Disease 0.12 0.33 0.00 1.00 0.00 1.00
Cancer 0.19 0.39 0.00 1.00 0.00 1.00
Liver Disease 0.01 0.09 0.00 1.00 0.00 0.00
Metastatic Carcinoma 0.09 0.29 0.00 1.00 0.00 0.00
AIDS/HIV 0.00 0.06 0.00 1.00 0.00 0.00
Theatre event 0.33 0.47 0.00 1.00 0.00 1.00
Diagnosis count 6.82 4.54 1.00 65.00 6.00 13.00
Prev admiss 60days 0.30 0.46 0.00 1.00 0.00 1.00
AED entry 0.38 0.49 0.00 1.00 0.00 1.00
Accident 0.11 0.31 0.00 1.00 0.00 1.00
Auckland DHB 0.63 0.48 0.00 1.00 1.00 1.00
MDC 2 0.11 0.31 0.00 1.00 0.00 1.00
MDC 3 0.00 0.03 0.00 1.00 0.00 0.00
MDC 4 0.03 0.17 0.00 1.00 0.00 0.00
MDC 5 0.11 0.31 0.00 1.00 0.00 1.00
MDC 6 0.18 0.38 0.00 1.00 0.00 1.00
MDC 7 0.11 0.31 0.00 1.00 0.00 1.00
MDC 8 0.04 0.19 0.00 1.00 0.00 0.00
MDC 9 0.13 0.34 0.00 1.00 0.00 1.00
MDC 10 0.05 0.21 0.00 1.00 0.00 0.00
MDC 11 0.03 0.17 0.00 1.00 0.00 0.00
MDC 12 0.08 0.27 0.00 1.00 0.00 0.00
MDC 13 0.02 0.14 0.00 1.00 0.00 0.00
MDC 14 0.01 0.08 0.00 1.00 0.00 0.00
MDC 15 0.00 0.03 0.00 1.00 0.00 0.00
MDC 16 0.00 0.00 0.00 0.00 0.00 0.00
MDC 17 0.01 0.11 0.00 1.00 0.00 0.00
MDC 18 0.02 0.15 0.00 1.00 0.00 0.00
MDC 19 0.04 0.18 0.00 1.00 0.00 0.00
MDC 20 0.00 0.04 0.00 1.00 0.00 0.00
MDC 21 0.00 0.03 0.00 1.00 0.00 0.00
MDC 22 0.03 0.16 0.00 1.00 0.00 0.00
MDC 23 0.01 0.11 0.00 1.00 0.00 0.00
February 0.08 0.27 0.00 1.00 0.00 0.00
March 0.08 0.28 0.00 1.00 0.00 0.00
April 0.08 0.27 0.00 1.00 0.00 0.00
May 0.09 0.28 0.00 1.00 0.00 0.00
June 0.09 0.29 0.00 1.00 0.00 0.00
July 0.10 0.29 0.00 1.00 0.00 0.00
August 0.09 0.29 0.00 1.00 0.00 0.00
September 0.08 0.27 0.00 1.00 0.00 0.00
October 0.08 0.27 0.00 1.00 0.00 0.00
November 0.08 0.27 0.00 1.00 0.00 0.00
December 0.08 0.27 0.00 1.00 0.00 0.00
Monday admit 0.17 0.38 0.00 1.00 0.00 1.00
Tuesday admit 0.16 0.37 0.00 1.00 0.00 1.00
Wednesday admit 0.17 0.38 0.00 1.00 0.00 1.00
Thursday admit 0.17 0.37 0.00 1.00 0.00 1.00
Friday admit 0.14 0.35 0.00 1.00 0.00 1.00
Saturday admit 0.08 0.28 0.00 1.00 0.00 0.00
Flu 0.00 0.03 0.00 1.00 0.00 0.00
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Extra LOS control
Avg. LOS 5.74 4.40 1.00 43.40 4.45 11.68
Ward days 7.06 7.22 2.00 221.00 5.00 14.00

N 93382
Notes: Summary statistics for variables in the mortality and length of stay models. Summarised for

patients that stay in hospital greater than one night, and spend at least 80% of total hospital stay

in the last ward of stay.

3.B Results: Mortality

Table 3.10: Mortality baseline model

(1) (2)
base age<75

Patient hours −0.00005 −0.00008∗

(−1.24) (−2.15)

Nurse hours 0.00026 0.00042∗∗

(1.96) (3.42)

Ward days −0.00027 −0.00032
(−0.53) (−0.71)

Age −0.00344∗∗∗ −0.00106
(−3.92) (−0.80)

Age sq. 0.00004∗∗∗ 0.00002
(7.03) (1.56)

Male 0.01142∗∗ 0.00271
(3.03) (0.87)

Asian pat 0.00342 −0.00293
(0.64) (−0.28)

Pacific pat −0.00944 −0.01309
(−2.01) (−1.96)

Indian pat −0.01267 −0.02713∗∗

(−1.54) (−3.09)

Maori pat −0.00583 −0.01000
(−0.86) (−1.28)

NZ Euro. pat −0.00649 −0.00810
(−1.10) (−0.98)

Deprivation scale −0.00053 −0.00122
(−0.79) (−1.48)

Transfer 0.02066∗ 0.01641∗

(2.59) (2.42)

197



Acute admiss. 0.05891∗∗ 0.04908∗∗

(3.79) (3.66)

Arranged admiss. −0.00083 −0.00839
(−0.04) (−0.38)

Admit 2006 0.00137 0.00551
(0.15) (0.74)

Admit 2007 −0.00872 0.00070
(−1.14) (0.10)

Admit 2008 −0.01200 −0.00572
(−1.64) (−0.60)

Admit 2009 −0.00652 −0.00241
(−0.78) (−0.29)

Admit 2010 −0.01107 −0.00851
(−1.32) (−1.21)

Admit 2011 −0.02063 −0.01267
(−1.77) (−1.15)

Myocardial Infarct. 0.03462∗ 0.02186
(2.48) (1.49)

Congestive Heart F 0.06160∗∗∗ 0.04516∗∗∗

(6.73) (5.20)

Periphral Vascular Dis 0.02154∗ 0.01707
(2.27) (1.49)

Cerebrovascular Dis 0.02648 0.00398
(1.40) (0.19)

Dementia 0.07813∗∗∗ 0.07417∗∗

(8.32) (2.91)

Chronic Pulmonary D −0.01621 −0.02372
(−1.30) (−1.35)

Rheumatic Disease −0.01390 −0.01685
(−0.89) (−1.29)

Peptic Ulcer Disease −0.00149 0.02390
(−0.07) (1.36)

Mild Liver Disease −0.02453 −0.02260
(−1.46) (−1.22)

Diabetes w/o complic. −0.01892 −0.02166
(−1.61) (−1.82)

Diabetes w complic. −0.04367∗∗∗ −0.03820∗∗

(−5.87) (−3.56)

Paraplegia + Hemiplegia 0.04883∗∗ 0.05384∗∗

(3.01) (3.62)

Renal Disease 0.03982∗∗∗ 0.01878∗
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(6.39) (2.52)

Cancer 0.09491∗∗∗ 0.07409∗∗

(5.83) (3.70)

Liver Disease 0.18543∗∗ 0.16714∗∗

(3.49) (3.17)

Metastatic Carcinoma 0.21707∗∗∗ 0.20681∗∗∗

(8.62) (10.28)

AIDS/HIV 0.00747 0.00169
(0.27) (0.06)

Theatre event −0.05293∗∗∗ −0.04039∗∗∗

(−6.03) (−5.29)

Diagnosis count 0.00906∗∗∗ 0.00885∗∗∗

(8.58) (5.47)

Prev admiss 60days 0.03322∗∗ 0.03985∗∗

(3.14) (3.34)

AED entry −0.00036 0.01203
(−0.06) (1.61)

Accident −0.02633∗ −0.02187∗

(−2.53) (−2.16)

Auckland DHB 0.00806 0.00811
(1.26) (1.27)

MDC 2 −0.08266 −0.04574
(−1.51) (−0.45)

MDC 3 −0.04550 −0.05302
(−1.26) (−1.07)

MDC 4 0.00709 −0.01127
(0.35) (−0.56)

MDC 5 −0.05748 −0.04761
(−1.87) (−1.15)

MDC 6 −0.01970 −0.03068
(−0.80) (−0.93)

MDC 7 0.02208 0.01457
(0.78) (0.49)

MDC 8 −0.05253 −0.04974
(−1.91) (−1.21)

MDC 9 −0.05951∗ −0.05694
(−2.60) (−1.83)

MDC 10 −0.03783 −0.05444
(−0.99) (−1.31)

MDC 11 −0.02396 −0.04353
(−0.67) (−0.92)
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MDC 12 −0.05728 −0.07556
(−1.07) (−0.94)

MDC 13 −0.03573 −0.06870
(−0.47) (−0.91)

MDC 14 −0.03218 −0.04641
(−1.14) (−1.23)

MDC 16 −0.16438 −0.18211
(−1.82) (−1.76)

MDC 17 −0.04863 −0.07351
(−1.56) (−1.88)

MDC 18 −0.06279 −0.09189
(−1.21) (−1.49)

MDC 19 −0.16083∗∗ −0.16891∗∗

(−3.27) (−2.86)

MDC 20 −0.09326∗ −0.13416∗∗

(−2.49) (−2.92)

MDC 21 −0.07055∗ −0.05950
(−2.44) (−1.43)

MDC 22 −0.09904∗ −0.12357
(−2.15) (−1.90)

MDC 23 −0.02600 −0.02526
(−0.87) (−0.72)

February 0.01654∗ 0.01446
(2.25) (1.61)

March 0.00815 0.00851
(1.16) (0.93)

April 0.01397 0.00741
(2.07) (0.87)

May 0.00243 0.00346
(0.31) (0.41)

June 0.00848 0.01287
(0.98) (1.43)

July 0.00114 0.00082
(0.10) (0.07)

August 0.00267 0.00518
(0.26) (0.51)

September 0.00258 0.00828
(0.46) (1.49)

October −0.00111 −0.00314
(−0.15) (−0.58)

November −0.01480 −0.01591
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(−1.10) (−1.14)

December −0.00097 0.00095
(−0.08) (0.11)

Flu 0.00303 −0.01323
(0.08) (−0.36)

Observations 34727 21795
R2 0.132 0.128
Notes: Outcome: 60-day mortality. Sample: Column (1) is all eligible study sample, Column (2) is

inpatients under 75 years of age. Model: fixed-effect linear regression. Standard errors clustered on

wards. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

3.C Results: Robustness of mortality

Table 3.11: Mortality robustness checks

(1) (2)
<=30 mortality In-Hosp. mortality

Patient hours −0.00004 −0.00006∗

(−1.12) (−2.31)

Nurse hours 0.00026 0.00024
(1.87) (1.62)

Observations 34727 34727
R2 0.107 0.057
Notes: Outcome: Column (1) has mortality within 30 days, Column (2) has in-hospital mortality.
Sample: eligible study sample. Model: fixed-effect linear regression. Standard errors clustered on
wards. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.
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Table 3.12: Mortality robustness checks

(1) (2) (3)
all drg all los all ward stays

Patient hours −0.00002 −0.00002 −0.00001
(−0.67) (−0.70) (−0.57)

Nurse hours 0.00011 0.00019 0.00006
(1.65) (1.44) (1.25)

Observations 91297 43395 137692
R2 0.127 0.130 0.122
Notes: Outcome: 60-day mortality. Sample: eligible study sample. Model: linear regression, Column
(1) has all DRGs, Column (2) has all Length of Stay, Column (3) has all patients that stayed in a
ward for at least 60% of total hospital stay. Standard errors clustered on wards. Robust t-statistics
in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 3.13: Mortality robustness checks

(1) (2)
no ward fe dummy ward

Patient hours −0.00001 −0.00005
(−0.23) (−1.24)

[1.32] [3.45]

Nurse hours −0.00014 0.00026
(−0.91) (1.96)

[1.21] [3.09]

Observations 34727 34727
R2 0.181 0.185
Notes: Outcome: 60-day mortality. Sample: eligible study sample. Model: linear regression, Column
(1) has no ward fixed-effect, Column (2) has dummy variables for wards and allows estimation of
Variance Inflation Factors. Standard errors clustered on wards. Robust t-statistics in parentheses.
VIF in brackets. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

3.D Results: LOS by ward

Table 3.14: LOS by hospital ward

(1) (2) (3)
Cancer a Cancer b Cardio a

Cumul. patient 0.00155∗ 0.000121 −0.000430∗∗

(2.41) (0.32) (−2.60)

Cumul. nurse −0.00730∗∗∗ −0.0000989 0.000458
(−3.54) (−0.07) (0.49)

Male −0.00740 −0.0576 0.0309
(−0.17) (−1.74) (1.19)

Age 0.00749 0.0142∗ 0.00984∗∗

(1.07) (2.43) (2.79)
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Age sq. −0.000208∗∗ −0.000212∗∗∗ −0.000149∗∗∗

(−2.78) (−3.88) (−4.53)

Asian pat −0.107 0.00888 −0.0122
(−1.01) (0.14) (−0.20)

Pacific pat −0.101 0.0379 −0.0270
(−1.03) (0.61) (−0.49)

Indian pat 0.195 0.0397 −0.104
(1.83) (0.43) (−1.47)

Maori pat −0.222∗ −0.0972 −0.0850
(−2.03) (−1.53) (−1.67)

NZ Euro. pat −0.0476 −0.0412 −0.0128
(−0.63) (−0.91) (−0.34)

Deprivation scale −0.00671 0.00522 −0.00405
(−0.84) (0.94) (−0.84)

Transfer −0.287∗∗ −0.355∗∗∗ −0.509∗∗∗

(−3.27) (−6.71) (−9.55)

Acute admiss. −0.593 −0.720∗∗∗ −0.546∗∗∗

(−1.45) (−8.42) (−11.99)

Arranged admiss. −0.275 −0.321∗∗∗ −0.257∗∗∗

(−0.67) (−4.07) (−5.87)

Theatre event 0.181 −0.116∗ 0.0289
(1.84) (−2.29) (0.75)

Diagnosis count −0.0708∗∗∗ −0.0851∗∗∗ −0.0707∗∗∗

(−12.65) (−17.55) (−14.36)

Avg. LOS −0.0261∗∗∗ −0.0622∗∗∗ −0.0165∗∗∗

(−8.37) (−9.39) (−4.48)

Prev ad 60days 0.00768 −0.167∗∗∗ −0.0421
(0.14) (−5.41) (−1.33)

AED entry −0.253∗ −0.426∗∗∗ −0.0317
(−2.39) (−6.75) (−0.91)

Accident −0.894∗ −0.414 0.00265
(−2.08) (−0.98) (0.04)

Auckland DHB 0.145∗∗ −0.00994 0.130∗∗∗

(3.10) (−0.29) (3.83)

Admit 2006 0.166 −0.0969 −0.0569
(1.73) (−1.48) (−0.93)

Admit 2007 0.241∗ −0.0421 0.0376
(2.48) (−0.59) (0.55)

Admit 2008 0.142 0.0276 −0.0179
(1.46) (0.39) (−0.24)

Admit 2009 −0.0635 −0.0444 0.0594
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(−0.66) (−0.58) (0.97)

Admit 2010 0.0667 −0.0433 −0.0673
(0.60) (−0.56) (−0.96)

Admit 2011 0.233∗ 0.0597 −0.00177
(2.12) (0.73) (−0.02)

Monday 0.129 0.0467 0.199∗∗∗

(1.49) (0.75) (3.38)

Tuesday −0.00903 0.241∗∗∗ 0.355∗∗∗

(−0.10) (4.17) (6.07)

Wednesday 0.125 0.125∗ 0.179∗∗

(1.39) (2.02) (2.80)

Thursday 0.321∗∗∗ 0.209∗∗∗ 0.319∗∗∗

(3.69) (3.39) (5.21)

Friday −0.214∗ −0.338∗∗∗ 0.253∗∗∗

(−2.25) (−4.73) (3.99)

Saturday −0.281∗∗ −0.549∗∗∗ −0.730∗∗∗

(−3.01) (−7.54) (−9.05)

AMI. −0.112 0.0102 0.138∗∗∗

(−0.25) (0.04) (3.55)

Congestive Heart −0.450∗ 0.0477 −0.155∗∗∗

(−2.55) (0.30) (−4.87)

Periphral Vascular 0.0883 −0.103 0.0127
(0.59) (−0.62) (0.25)

Cerebrovascular −0.704∗ −0.326 −0.222
(−2.51) (−1.43) (−1.62)

Dementia 0.586∗∗∗ −0.482 −0.862∗∗

(3.43) (−1.13) (−3.15)

Chronic Pulmonar −0.185 0.109 −0.107
(−1.01) (1.05) (−1.62)

Rheumatic Dis 0.280 0.502 −0.0538
(0.89) (0.72) (−0.26)

Peptic Ulcer −0.301 −0.246 −0.00653
(−0.52) (−0.97) (−0.04)

Mild Liver Dis 0.212 −0.113 −0.0609
(1.69) (−0.55) (−0.41)

Diabetes w/o com. −0.00305 0.0401 0.0716
(−0.03) (0.59) (1.35)

Diabetes w com 0.281∗ 0.392∗∗∗ 0.235∗∗∗

(2.27) (6.15) (5.66)

Paraplegia −0.679 −0.703∗∗∗ −0.460
(−1.69) (−5.03) (−1.79)
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Renal Dis −0.296∗ 0.0779 −0.145∗∗

(−2.15) (0.85) (−3.24)

Cancer −0.270∗∗∗ −0.109 −0.106
(−3.46) (−1.92) (−0.56)

Liver Dis −0.696 −2.330∗∗∗ −0.670
(−1.55) (−4.70) (−1.25)

Metastatic Carc −0.0918 −0.337∗∗∗ −0.105
(−0.49) (−9.71) (−0.41)

AIDS/HIV −0.235 0.952∗∗ −0.563∗∗∗

(−0.85) (2.85) (−6.63)

Observations 26878 42516 23822
Notes: Outcome: hazard rate for the time-to-discharge home. Sample: eligible study sample in ward

Cancer a (Column (1)) and Cancer b (Column (2)) and Cardio a (Column (3)). Model: competing

risk survival model. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 3.15: LOS by hospital ward

(1) (2) (3)
Gen med c Gen med d Gen surg a

Cumul. patient −0.00157∗∗∗ −0.0000446 −0.000921
(−3.55) (−0.07) (−0.92)

Cumul. nurse −0.00113 −0.00000644 −0.000763
(−0.78) (−0.00) (−0.59)

Observations 43113 39136 32641
Notes: Outcome: hazard rate for the time-to-discharge home. Sample: eligible study sample in
ward Gen med c (Column (1)) and Gen med d (Column (2)) and Gen surg a (Column (3)). Model:
competing risk survival model. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 3.16: LOS by hospital ward

(1) (2) (3)
Gen surg b ENT Kidney

Cumul. patient −0.00151∗ 0.0000317 −0.000141
(−2.22) (0.11) (−0.33)

Cumul. nurse −0.00125 −0.00107 −0.00142
(−0.91) (−1.26) (−1.37)

Observations 36548 25666 34302
Notes: Outcome: hazard rate for the time-to-discharge home. Sample: eligible study sample in ward
Gen surg b (Column (1)) and ENT (Column (2)) and Kidney (Column (3)). Model: competing risk
survival model. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.
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Table 3.17: LOS by hospital ward

(1) (2) (3)
Neuro a Neuro b Ortho a

Cumul. patient −0.000963∗ −0.0000445 −0.000703
(−2.29) (−0.09) (−1.82)

Cumul. nurse −0.00225 −0.00542∗∗∗ 0.00277
(−1.93) (−3.52) (1.95)

Observations 27448 30280 45826
Notes: Outcome: hazard rate for the time-to-discharge home. Sample: eligible study sample in ward
Neuro a (Column (1)) and Neuro b (Column (2)) and Ortho a (Column (3)). Model: competing
risk survival model. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 3.18: LOS by hospital ward

(1) (2) (3)
Ortho b Resp Urology

Cumul. patient −0.00168∗∗ −0.000927∗ 0.000490∗

(−2.59) (−2.38) (1.99)

Cumul. nurse 0.00110 −0.000567 −0.00191∗

(0.65) (−0.43) (−2.01)

Observations 41039 29904 32325
Notes: Outcome: hazard rate for the time-to-discharge home. Sample: eligible study sample in
ward Ortho b (Column (1)) and Resp (Column (2)) and Urology (Column (3)). Model: competing
risk survival model. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

Table 3.19: LOS by hospital ward

(1) (2) (3)
Vascular Cardio b Coronary

Cumul. patient −0.00123∗ −0.000340 −0.00161∗∗∗

(−2.37) (−0.85) (−5.17)

Cumul. nurse 0.00541∗∗ 0.00290 −0.000390
(3.21) (1.69) (−0.35)

Observations 24905 12429 19760
Notes: Outcome: hazard rate for the time-to-discharge home. Sample: eligible study sample in ward
Vascular (Column (1)) and Cardio b (Column (2)) and Coronary (Column (3)). Model: competing
risk survival model. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.
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Table 3.20: LOS by hospital ward

(1) (2)
Gen med a Gen med b

Cumul. patient −0.000404 −0.000945
(−0.88) (−1.37)

Cumul. nurse −0.00129 0.00362∗

(−0.95) (2.49)

Observations 39059 34036
Notes: Outcome: hazard rate for the time-to-discharge home. Sample: eligible study sample in
ward Gen med a (Column (1)) and Gen med b (Column (2)). Model: competing risk survival
model. Robust t-statistics in parentheses. ∗∗∗p<.01; ∗∗p<.05; ∗p<.10.

3.E Survival modelling

Survival analysis

This section provides information on survival models and explains the model used in

my paper.

Survival or duration analysis models the time to an event of interest. Or, the

time from when a person becomes at risk of event k up until event k occurs. A

hazard function models the duration of a subject (e.g. firm or individual). The

hazard function estimates the probability an individual will ‘fail’ in a given time

interval t+4t, conditional on the individual surviving up to time t. As the interval

is reduced, the hazard function gives the instantaneous probability of failure at any

given time t. The corresponding survival function is the probability an individual has

not failed by time t.

Survival analysis is commonly used for single-outcome events, where a subject is

at risk of one event e.g. death, employment, exit from a market etc. My modelling

situation has competing risks of different discharge types. For competing risks, there

is more than one possible outcome for a subject. A patient’s length of hospital stay

could terminate for a variety of reasons, including; discharge home, death or transfer

to another health-care facility. Discharge home is the main outcome of interest. It is

problematic to consider discharge home and transfer as the same outcome, because a
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transfer indicates more nursing or health-care is needed. The discharge home decision

is interpreted as a patient being well enough to return home. In competing risk

models, distributions of failure time (T ) for each risk have to be modelled separately

or jointly.

Competing risk models

Methods for estimating competing risk models differ in Biostatistics and Econometric

literatures. Both approaches are discussed, with a focus on time-varying covariates.

Time-varying covariates are nursing and patient hours during a patient’s stay in

hospital.

Biostatistics

In Biostatistics, competing risks are modelled via the Cumulative Incidence Function

(CIF) of a cause or event k. The CIF is derived from cause-specific hazards. The

cause-specific hazard, denoted λk(t), is the hazard function corresponding to each of

the competing events (Putter et al., 2007, pg.2398). This is defined as:

λk(t) = lim
∆t↓0

Pr ob(t ≤ T ≺ t+ ∆t,D = k|T ≥ t)

∆t
(3.9)

Where D is the cause of failure and T is the failure time (Putter et al., 2007,

pg.2398). The survival function is defined as the probability a subject survives (i.e

not fail) up to time t. In single event data, the survivor function is the integral of the

hazard function (from t = 0 to t). Following this, the cause-specific survivor function

Sk(t) would correspond to Sk(t) = exp(−Λk(t)) where Λk(t) =
∫ t

0
λk(s)ds.

The cause-specific survivor function does not account for the occurrence of com-

peting events. A subject is not always at risk of failing to event k because they could

fail to a competing event. That is, Sk(t) ignores individuals that have experienced a
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competing event, these individuals are still considered at risk of event k, as a result we

over-estimate the probability of failing from cause k, since we think more individuals

are at risk from event k than there actually are. This consequently overestimates the

probability of failure and underestimates survival from cause k, because individuals

may survive from cause k but experience a competing event.

Instead of the survival function, competing risk models specify a cumulative in-

cidence function. The cumulative incidence function (CIF) for event k is defined as

the probability of failure from event k before time t, given there are competing risks.

This is a function the cause-specific hazard for event k and the probability of survival

from all competing events (S(s)):

Ik(t) =

∫ t

0

λk(s)S(s)ds (3.10)

Where λk(s) is the cause-specific hazard and S(s) = exp(−
∑K

k=1 Λk(t)) is the sum-

mation of the cause-specific survivor functions. The CIF is an alternative measure

of the survival function that takes into account the effect of competing risks on the

probability of survival from an event as a function of time.

There are two approaches to modelling the CIF in competing risk models in the

Biostatistics literature. The first approach is to model each cause-specific hazard

separately and then compute an estimate of the cumulative incidence function based

on formula 3.10. The other approach is to model the cumulative incidence function

directly, i.e. without modelling cause-specific hazard functions individually. The

cumulative incidence function is also referred to as the sub-distribution or ‘crude’

survival function in the literature.

In the first approach, different functional forms can be used to model each cause-

specific hazard separately. Examples of functional forms for hazard models are Cox

proportional hazard models and additive hazard models. In the additive model, the
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hazard function is specified as the sum of a baseline hazard function and another

function of covariates and parameters. In Cox’s proportional hazard model, the haz-

ard function is the multiplication of a baseline hazard and an exponential function

of covariates and parameters. Additive models have the advantage of not specifying

proportional effects of covariates on the hazard. Buckley (1984) discusses the ad-

vantages and disadvantages of multiplicative and additive models. Andersen (1993)

combines Cox’s proportional hazard model and Aalen’s additive hazards model to

estimate each cause-specific hazard function before computing a measure of the CIF

(this is also applied in Scheike and Zhang (2003). Shen and Cheng (1999) use the

additive risk model as an alternative to the more commonly used Cox’s proportional

hazards model.

A disadvantage of modelling each cause-specific hazard separately is that the effect

of the covariates may differ on the cause-specific hazard compared to the CIF. Because

the cause-specific hazard is modelled first, the covariate effects may not follow through

when aggregating to the CIF (Fine and Gray, 1999). For example, a covariate may be

significantly related to the cause-specific hazard of event k but have little effect on the

cumulative incidence function. In the CIF, any effect of covariates is on event k, and

competing events. This is because the survivor function in the CIF is an aggregate

of the other events’ survival functions.

Based on this critique, Fine and Gray (1999) propose a widely used estimation

method for modelling the CIF directly. Fine and Gray model the CIF of a cause k at

time t with covariates X. Covariates can be time-varying. To estimate the CIF, they

specify a sub-distribution hazard formula. Their sub-distribution hazard for event k

specifies that individuals who have failed from a previous event j 6= k are still in the

risk set:
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λk(t;X) = lim
∆t↓0

Pr ob{t ≤ T ≤ t+ ∆t,D = k|T ≥ t ∪ (T ≤ t ∩D 6= k), X}
∆t

(3.11)

This specifies the probability an individual will fail to event k (D = k) in the

interval t ≤ T ≤ t+∆t, given the risk set. The risk set includes individuals who have

not experienced cause k at t, or do experience k at time t (T ≤ t), and individuals

that experienced a competing event (T ≤ t ∩ D 6= k). The sub-distribution hazard

can also be formulated as a function of the CIF for event k: λk(t;X) = −d log{1 −

Ik(t)}/dt. The CIF is the term used for the survival function in competing risk models,

(remembering the survival function is probability of not having failed by time t). The

CIF is composed of the cause-specific hazards for all events. Because the CIF enters

the sub-distribution hazard for event k, the hazard is not independent of event j 6= k

hazards, as they are in modelling cause-specific hazards directly.

Fine and Gray include individuals in the risk set who have failed from a competing

cause to slow down the hazard rate. The risk set ‘should not be interpreted in the

way that an individual who has failed from the competing cause is considered to still

be able to fail from the cause of interest. Rather, the additional conditioning on [risk

set with subjects who fail from a competing cause] should be understood as a way

to inflate the risk set, slowing down the SH [sub-distribution hazard], such that the

distribution of the attached failure time equals the CIF on the real line’ (Beyersmann

and Schumacher, 2008, pg. 771).

(Fine and Gray, 1999) specify the sub-distribution hazard as a Cox proportional

hazards model: λk(t;X) = λko(t) exp{XT (t)β0}. Accordingly the cumulative inci-

dence function of cause k is: Ik(t,X) = 1 − exp[−
∫ t

0
λko(s) exp{XT (s)β0ds]. The

likelihood function estimated to solve for β, the covariate effects, is:

L(β) = Πn
i=1

[
exp{ZT

i (Ti)β}∑
j∈Ri

exp{ZT
j (Ti)β}

]I(εi=1)
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This likelihood function is partial because it is over the risk set of individuals at a

time t, that is, the individuals who have not failed from cause k by time t, rather than

the risk set of all individuals in the dataset. The use of partial likelihoods originates

in Cox (1975), who proved that partial likelihoods were equivalent asymptotically

with maximum likelihood methods.

The key difference of Fine and Gray’s method to the Cox proportional hazard

model for single-outcomes, is firstly a risk set where individuals who have already

failed from a competing cause by time t remain in the risk set. Secondly, Fine and

Gray specify weights for observations that are censored. Censored observations occur

when the outcome for a subject is not observed. There is no censoring in this paper.

The weighting function therefore does not apply to the calculation of the likelihood

in this paper.

Time-varying regressors and the Fine and Gray model

In theory, the Fine and Gray model can incorporate time-varying regressors. There

is however uncertainty in the empirical literature about how to include and inter-

pret time-varying covariates in the competing risk model. Cortese and Andersen

(2010, pg. 138) writes: ‘In spite of the frequent use of time-dependent covariates,

their role in regression modelling (of competing risks) and prediction is, however,

still unclear due to both interpretation and practical problems’. In Beyersmann and

Schumacher (2008, pg. 765), ‘Mathematically, the model (by Fine and Gray) also

allows for including random time-dependent covariates, but practical implementation

has remained unclear’.

Time-varying covariates are also referred to as time-dependent covariates in the

biostatistics literature, following Prentice et al. (1978). The uncertainty mainly arises

from the use of ‘internal’ time-dependent covariates. The problems arising from using

internal time-dependent covariates are not unique to competing risk or specifically
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Fine and Gray’s model of the CIF. The distinction between internal and external

covariates has been put forward by Prentice et al. (1978). External covariates satisfy

the following condition, for all u, t such that 0 ≺ u ≤ t. u, t are points in time, T is

failure time, X(u) are covariate values at time u:

P [T ∈ [u, u+ du)|X(u), T ≥ u] = P [T ∈ [u, u+ du)|X(t), T ≥ u} (3.12)

Or equivalently, condition 3.12 holds for 0 ≺ u ≤ t:

P [X(t)|X(u), T ≥ u] = P [X(t)|X(u), T = u] (3.13)

Equation 3.13 says that the probability of an individual failing in an interval is

the same when conditioning the covariate process over a period of time greater than

u, as conditioning the covariate process only up to u. In other words, future values

of the time-dependent covariates do not help to predict failure at time t. Or, adding

more information about the future path of time-dependent covariates does not help

predict an individual’s failure at time t.

Prentice et al. (1978) give two examples of external covariates. The first type,

is when a covariate is fixed i.e. x(t) = x. A second example is when the covariate

path is defined, e.g. a treatment regime that is fixed before the study and does not

respond to changes in an individual’s condition. A third type is when a covariate

path is determined by processes external to the individual. This is referred to as an

ancillary process and ‘a covariate of this sort is the output of a stochastic process that

is external to the individual under study and whose probability laws do not involve

the parameters in the failure time model under study’ (Prentice et al., 1978, pg. 197).
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Covariates that do not meet condition 3.13 are called internal covariates. For

example, measures on an individual during a study such as health status, blood

pressure, infection in an ICU stay and so on. For example, a future blood pressure

values could help predict failure at t. The problem with internal covariates is that the

direct relation between the hazard and survival function does not hold. For internal

covariates, survival up to t depends on more than the hazard rate up to time t, it also

depends on future values of covariates in the model (Beyersmann et al., 2009). The

key issue is the ability to condition on the covariate path up to time t in the hazard

function (probability of failure) so that the direct relation to the survivor function

(probability of survival) is maintained. That is, the stochastic covariate path needs

to have a distribution in order to allow full modelling of the survivor function.

Wolkewitz et al. (2009) provide a solution to the problem of interpreting and using

time-dependent covariates in the Fine and Gray model. They propose using the last

recorded value of the time-dependent covariate at the time of failure of an individual,

when an individual remains in a risk pool after failure from a competing risk. In

Stata 11, the last recorded value of the time-dependent covariate is used for future

calculations. For this reason, the cumulative average nursing hours is used so that it

reflects the history of nursing inputs up to a time t.

Econometrics

In econometric approaches, the majority of competing risk models use the Mixed

Proportional Hazards (MPH) framework. The proportional hazard models are mixed

because they have an added heterogeneity term. The Mixed Proportional Hazard

Model: θk(tX = x, V ) = ψ(t) exp(x′β)V . Where θk is the hazard rate for event k at

time t, given covariates X and unobserved heterogeneity term V . This follows the

semi-parametric proportional hazard assumption by leaving ψ(t) unspecified function

of t and covariate effects enter through exp(x′β).
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Following the inclusion of heterogeneity terms by econometricians, much work in

econometric competing risk model is in how to model the distribution of the hetero-

geneity terms in the likelihood function to enable maximisation. The distribution

of the heterogeneity term can also allow dependence between the failure time (V )

distributions for each of the competing risks.

Applied competing risk methods

Econometric methods have assumed either independence or dependence of the fail-

ure time distributions when modelling competing risks. If independence is assumed,

k hazard functions are combined into a likelihood function for maximisation. To

maximise a likelihood function composed of MPHs with unobserved heterogeneity

terms, an assumption needs to be made about the distribution of the unobserved

terms. For example, a parametric distribution (e.g. gamma) or the distribution can

be non-parametrically estimated (Heckman and Singer, 1984).

If distributions of the failure times for k competing risks are dependent, then

researchers commonly introduce dependence by specifying a relationship between the

unobserved heterogeneity terms (of the k competing risks). For example, Picone et al.

(2003) uses common factor loading to model the relationship between two unobserved

heterogeneity terms that enter into one of four hazard functions for competing risks.

Picone et al. (2003) models the length of hospital stay decision with competing risks

of; discharge to home, skilled nursing facility, home health agency and mortality.

Picone et al. models the hazard rate of discharge home with a log-logistic function.

A Weibull function is used for the remaining hazard rates: discharge to home health

agency, skilled nursing facility or death in hospital. Picone uses the methods of

Heckman and Singer to estimate the distribution of the unobserved heterogeneity

term in the likelihood function. Estimation of the distribution involves specifying the

number of values the heterogeneity terms can take and estimating weights for each

215



of these values. This is done in the maximisation of the likelihood function. Lastly, a

common factor loading relationship of the heterogeneity terms is specified to model

dependence between the hazard functions (i.e. v(1) = pv(2)).

Sueyoshi (1992) proposes a discrete-time competing risk model with time-varying

covariates. Seuyoshi assumes time-varying covariates are constant within an interval,

that is, covariates are recorded in discrete time intervals. This assumption allows the

formation of a log-likelihood that is a summation over the number of observations,

time periods, and competing risks. Therefore, the framework is similar to a multi-

nomial outcome with categories defined over the k competing events and T failure

times. Applications of competing risk models with time-varying covariates follow this

discrete time framework. For example, Deng et al. (2000) model mortgage termina-

tions with competing risks of prepayment or default. Their time-varying covariates

are the interest rate and property values.

3.E.1 Model selection

There are several advantages of Fine and Gray’s competing risk model.

Firstly, it imposes few assumptions, except for the proportionality of variables on

the hazard rate over time. Econometric models impose parametric assumptions on

the failure time distribution (e.g. Weibull or Gamma etc), and distribution of the

heterogeneity term. The main assumption for the proportional hazard model is that

the hazards for any two people, with their respective covariate vectors, have the same

ratio through all t (Jenkins, 2005). Specifically, the effect of a covariate on the hazard

rate is constant over time. There has been criticism of this assumption, for example,

it may be the case that the effect of a regressor on the hazard function changes with

time, such as medical treatments taking time to materialise in a patient. In addition,

econometric approaches also specify a proportional hazard assumption.
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Secondly, there is a program in Stata 11 to estimate the Fine and Gray model.

There is no program for estimating competing risk models using econometric ap-

proaches.

Jenkins (2005) does however propose steps for estimating a discrete-time compet-

ing risk model using the multinomial logit command. To set up the model, data is

organised into subject-time form. For example, in a hospital this would be patient-

day form so there is a record for each day a patient is in hospital. A dependent

variable is coded with 0 for censored (patient remains in hospital), 1 for discharge

home, 2 for mortality and so on. So each patient episode will end in one of the

destinations, and all previous periods for that patient will have a censored (0 out-

come) dependent variable. If the base category is the censored category, then the

effect of variables on exit to other destinations are estimated relative to the censoring

outcome (staying in hospital). The multinomial logit model is however only valid,

without further assumptions, when time is intrinsically discrete. That is, there is no

underlying process in continuous time that the discrete time is measuring. In our

case, we have interval censored data which arises from having data at an interval,

daily, weekly, monthly, on an underlying process in continuous time, because patients

are discharged at a particular time of day. For interval censored data, the application

of a multinomial logit model is less straightforward because the probability of exiting

to each of the states is not separable in the likelihood function without additional

assumptions. A multinomial based model can be estimated on interval censored data

under the assumption that the hazard is constant within intervals.

Multinomial models were also attempted in my study. These models were compu-

tationally intensive. There are also no clear guidelines for how to model discrete-time

competing risk models with available packages, such as the ‘glamm’ package. Haynes

(2008) uses individual fixed-effects in a panel data model (individuals over time) using

multinomial outcomes for employment transitions to full and part time employment.
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A disadvantage of the Cox proportional hazard model is that it is more appropriate

for settings with continuous time data. This is because it orders failure times and

calculates the ratio of the hazards at each step. When there are a lot of tied failure

times, approximation methods are used by Stata 11 to select the relevant risk set at

each step. Specifically, Stata 11 uses Breslow’s method for tied failure times in Fine

and Gray’s model. In this method, the risk set at each day in the data will include

all individuals who failed on that day, rather than ordering failures by time of day

so that the risk pool decreases throughout a day. This results in a large risk set in

which individuals who fail are compared with those who are still at risk. There is no

further option for specifying how Stata 11 should deal with tied data methods in the

competing risk model.
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