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Abstract 

We are currently undergoing the most remarkable shift in human reproductive behaviour 

since the post-war baby boom. Couples are having children at more advanced ages, leading to 

an increase in maternal and paternal ages at childbirth. Couples are also choosing to have 

fewer children, leading to a dramatic increase in the proportion of first-born children in the 

population. Uptake of fertility treatment is increasing exponentially worldwide, with much 

attention given to children conceived by assisted reproductive technology (ART). Despite 

constituting a much larger proportion of the population conceived with fertility treatment, 

offspring conceived with ovarian stimulation alone (OSA) are remarkably under-researched.  

The impact of changes in the early fetal environment on offspring phenotype and disease risk 

is well recognised. Maternal and paternal ages at childbirth, birth order, and OSA fertility 

treatments all affect the early environment at gametogenesis and/or embryogenesis. We 

hypothesised that alteration of these environments by parental factors would lead to changes 

in growth, adiposity, metabolism, and hormonal profiles in childhood. The possible impacts 

of these parental factors on childhood phenotype have not been previously examined. 

In my studies of almost 400 children, I found that: 

 Increasing maternal age at childbirth was associated with taller stature and reduced 

adiposity in her children, independent of paternal age and birth order. 

 Similarly, increasing paternal age at childbirth was associated with taller stature and 

reduced adiposity in children, but with less favourable lipid profiles.  

 First-born children were taller than second-born children, who were in turn taller than 

third-borns.  

 Children conceived with OSA fertility treatment were shorter than naturally conceived 

children of fertile and subfertile parents. OSA children also had reduced adiposity and 

displayed subtle metabolic changes compared to those conceived naturally. 

Thus, my studies demonstrate that a number of parental factors impact on childhood 

phenotype and disease risk profiles. As a result, the on-going demographic shift in 

reproductive behaviour is leading to changes in childhood height, adiposity, and metabolism, 

which may have implications for their future health and disease risk. 
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Chapter 1. Introduction 

1.1. The impact of the early environment on phenotype, metabolism & 

future disease risk 

1.1.1. Developmental origins of health and disease 

The time around conception and that during in utero embryonic development are recognised 

to have a critical influence on offspring phenotype and long-term health (Godfrey et al. 

2010). This concept is broadly known as the “developmental origins of health and disease” 

(DOHaD) hypothesis (Godfrey et al. 2007). 

The ability to adapt to environmental stimuli during in utero development is an important 

survival tool for some animals, and these adaptations are often positive, as they enable the 

organism to change to better suit the external environment (Rickard & Lummaa 2007). 

However such “developmental plasticity” is not always positive, and can lead to fetal 

‘programming that predisposes to future disease. For example, a fetus that is growth- 

restricted in utero may “anticipate’ a nutritionally scarce post-natal environment, and 

consequently is programmed to conserve energy. This is an example of a “predictive adaptive 

response” (Gluckman & Hanson 2004a). However, if the post-natal environment is one of 

abundance, the adaptation will be ‘mismatched’, and the person will ultimately be at 

increased risk of obesity, type 2 diabetes mellitus, and cardiovascular disease later in life 

(Barker 2006). 

Barker & Osmond (1986) carried out some of the pivotal studies underpinning the concept of 

DOHaD, linking geographical areas of increased infant mortality to higher risk of adult 

cardiovascular disease. This was further strengthened by the observed association between 

lower birth weight and a higher rate of metabolic and other diseases in adulthood (Hales et al. 

1991). These observations have since been reproduced in a multitude of studies 

demonstrating an association between birth weight and long-term disease risk (as reviewed 

by Mcmillen & Robinson 2005). Crucially, such studies demonstrate that there is no birth 

weight threshold, but rather a continuous association between birth weight reduction and 

increased risk of adult disease. While this continuum is not linear, it shows that even 
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relatively subtle changes within the ‘normal’ birth weight spectrum may impact disease risk 

in the long-term (Barker 1995). 

The relationship between birth weight and later disease risk has been proposed to be a result 

of altered fetal nutrition, and consequent adaptation to this altered environment by the fetus 

(Martin-Gronert & Ozanne 2010). Such adaptation may help the fetus survive in the short-

term, by directing limited resources to vital organ development and nutrition (Martin-Gronert 

& Ozanne 2010). However, as discussed above, if this adaptation is ‘mismatched’ to the 

external environment, the altered metabolic programming may pre-dispose the individual to a 

number of adult diseases (Martin-Gronert & Ozanne 2010) (Figure 1.1). 

 

 

 
 
Figure 1.1. Developmental programming of type 2 diabetes and cardiovascular disease. 
Adapted with permission from Martin-Gronert & Ozanne (2010). 

  

 

Martin-Gronert M S , Ozanne S E J. Nutr. 2010;140:662-666

©2010 by American Society for Nutrition
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Assessments of offspring born to mothers who experienced the Dutch Famine represent 

further landmark work in this field, demonstrating the importance of the timing of fetal 

environmental alterations to fetal programming. For example, mothers who experienced 

famine in the first or second trimester of gestation had offspring with increased obesity risk 

(Ravelli et al. 1976); in contrast, maternal famine exposure in late gestation was associated 

with an increased risk of glucose intolerance in the offspring (Ravelli et al. 1998).  

Elegant animal studies have provided further evidence of fetal programming and the DOHaD 

concept (Godfrey et al. 2007). Studies in rats showed that alternations in maternal diet during 

pregnancy can lead to offspring hyperphagia and obesity (Vickers et al. 2000) or altered 

nephron development and increased blood pressure (Langley-Evans et al. 1999). 

The peri-conceptional period has also been shown to affect the offspring, with changes in 

maternal nutrition around the time of conception found to be associated with post-natal 

alterations in phenotype and hypertension in the offspring (Kwong et al. 2000). Indeed, even 

changes in post-natal maternal behaviour (such as grooming and offspring care) may lead to 

phenotypic alterations in the offspring (Weaver et al. 2004). Many animal studies (outlined in 

an extensive review by Mcmillen & Robinson 2005) have demonstrated that changes in the 

early environment in utero can lead to short- and long-term alterations in offspring outcomes. 

Short-term changes include alterations in fetal growth, leading to changes in birth weight. 

Longer term consequences include increased risk of obesity, hypertension, insulin resistance, 

and perturbations of growth (Mcmillen & Robinson 2005). 

Human studies in this area have expanded exponentially, with the effects of the early 

environment on offspring growth and metabolism generating particular interest. Many studies 

have focused in particular, on the effects of birth weight on childhood and adulthood 

outcomes. Birth weight reflects the in utero environment, and is associated with alterations in 

childhood height, body size, and metabolism (Hack et al. 2003; Sørensen et al. 1999). 

Children who were born small for gestational age (SGA) have been extensively studied, with 

evidence that they are at risk of being shorter as children compared to their peers born at full 

term (Chernausek 2012). Furthermore, SGA children have higher rates of obesity and insulin 

resistance, tend to experience an earlier onset of puberty, as well as having a tendency 

towards less favourable lipid profiles (Chernausek 2012; Eriksson et al. 2006). Later in life, 

SGA children are also at a greater risk of developing a number of diseases, such as obesity 

and the metabolic disturbances (Barker 1998). 
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Childhood studies examining the effects of adverse early life conditions on childhood 

outcomes tend to evaluate children who were subjected to more extreme stressors in utero 

(Clayton et al. 2007; Hofman et al. 2004; Regan et al. 2006). Such extreme stressors include 

being born at very low birth weight or small for gestational age. These children are more 

likely to display detectable adverse effects in childhood and adolescence, including increased 

risk of insulin resistance and obesity (Clayton et al. 2007; Hofman et al. 2004; Regan et al. 

2006). 

However, more subtle stressors may lead to adverse effects that are not apparent in 

childhood, but which may become evident in adulthood. An example is a reduction in birth 

weight from 3.5 to 3.0 kg, which is associated with altered disease risk in adulthood (Barker 

2001). Thus, the impacts of such changes in the early fetal environmental may only emerge 

with the passage of time.  

The tempo or rate of growth in childhood is another area which has become a recent focus of 

attention. There is some evidence that some children born at lower birth weight may undergo 

excessive ‘catch up growth’ in infancy, leading to a risk of increased body size during 

childhood, as well as a possible increased risk of diabetes and obesity in the long-term 

(Leunissen et al. 2009; Nobili et al. 2008; Ong et al. 2000). Low birth weight and more rapid 

weight gain during childhood has also been linked to earlier onset of puberty (Sandhu et al. 

2006; Sloboda et al. 2011), which is in turn associated with increased metabolic and 

cardiovascular disease susceptibility in later life (Lakshman et al. 2009). Studies assessing 

the possible consequences of lower birth weight and ‘excessive catch-up growth’ during 

childhood on phenotype and disease risk in childhood and adulthood are on-going.  

1.1.2. Epigenetics 

As a result of these observations, the possible mechanisms responsible for such changes have 

been the subject of intense and on-going research. It is thought that epigenetic changes form 

much of the molecular basis underpinning these “early environmental effects” on offspring 

phenotype and later disease risk. Epigenetics is defined as the study of heritable changes in 

phenotype or gene expression that occur independently of alterations in DNA sequence 

(Waterland & Michels 2007). In simpler terms, the original concept of epigenetics suggested 

that epigenetics may be broadly referred to as the study of how genes interact with the 

environment, and the possible consequences of such interactions to phenotype (Waddington 

1940).  
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Epigenetic modifications include histone acetylation and/or cytosine methylation, both of 

which alter chromatin organisation, leading to DNA conformational change and gene 

silencing. Methylation is the best characterized form of epigenetic modification, and can be 

further subdivided into hypermethylation (methylation gain) and hypomethylation (loss) 

occurring on either the maternal or paternal allele (Goldberg et al. 2007). 

Epigenetic modification is a normal process that is intrinsic to the switching on and off of 

genes, and is therefore crucial to the regulation of gene expression (Jaenisch & Bird 2003). 

Epigenetic mechanisms are involved in gene regulation in both somatic and germ cells (Reik 

2007). Although epigenetic changes are important from prior to conception until old age 

(Reik 2007), they are particularly important in germ cells and during fetal development. This 

is because many epigenetic patterns are re-programmed during gametogenesis and 

embryogenesis, making these stages key in human epigenetic programming. 

The best characterised epigenetic event in early development is genomic imprinting, i.e. the 

epigenetic silencing of either the maternal or paternal allele that occurs by methylation 

(Waterland & Michels 2007). Imprinting is crucial for many aspects of pre- and post-natal 

growth and development, as well as in tumour suppression (Waterland 2009). Importantly, 

imprinting is a normal process that is required for gene regulation, and up to 1% of all human 

genes are imprinted (Luedi et al. 2007). In humans, there have been over 100 imprinted genes 

described, most of which are involved in fetal development (Luedi et al. 2007).  

However, as with any other regulatory process, genomic imprinting is subject to errors, which 

in extreme cases can lead to imprinting disorders. IGF2 is the best characterised imprinted 

gene, in which an imprinting loss is associated with several imprinting disorders, such as 

Beckwith-Wiedemann Syndrome (Ohlsson et al. 1993), Silver-Russell Syndrome (Gicquel et 

al. 2005), and Wilms’ Tumor (Ogawa et al. 1993). 

1.1.2.1. Epigenetics and gametogenesis 

During gametogenesis, it is known that more than 50 human imprinted genes undergo 

modification, and it is likely that a much greater number also undergo changes during this 

critical time (Luedi et al. 2007). The development of germ cells (oocytes and sperm) is 

genetically and epigenetically regulated (Morgan et al. 2005), and these cells undergo 

extensive epigenetic reprogramming from the earliest stages of development (Kimmins & 

Sassone-Corsi 2005). Epigenetic changes take place in early primordial germ cells, with sex-
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specific de-methylation and re-methylation occurring at crucial time points during their 

development into mature gametes (Sasaki & Matsui 2008; Seki 2011). This re-setting of the 

epigenome means that, when these gametes fuse at fertilisation, the zygote is able to give rise 

to any cell type. This process helps reduce the passing on of epigenetic modifications from 

parents to offspring (Reik et al. 2001b). 

Germ cells differ from somatic cells as they have a number of specialized epigenetic 

regulatory pathways. These pathways have been extensively discussed in detail in reviews 

examining epigenetic changes on the male gamete (Carrell 2012) and during ovarian 

folliculogenesis (Pan et al. 2012). Briefly, female gametogenesis requires the epigenetic 

processes of methylation, histone modification, non-coding RNA regulation, and limited 

chromatin remodelling in order to produce genetically competent and functional gametes. 

There is a complex interplay between these processes which is strictly regulated. There is 

emerging evidence that even subtle alteration of the process of gametogenesis or changes to 

processes which influence the process (such as hormones) may lead to dysregulation of the 

epigenetic process (Pan et al. 2012). 

Male gametogenesis also undergoes extensive epigenetic remodelling. However, while it 

shares many of the above-mentioned processes involved in female gametogenesis, epigenetic 

regulation of male gametes occurs primarily via chromatin remodelling (Carrell 2012; 

Kimmins & Sassone-Corsi 2005).  

Evidence from animal and human studies suggest that alteration of the latter stages of 

gametogenesis (e.g. by ovarian stimulation leading to the production of oocytes) is associated 

with epigenetic changes in the oocyte (Market-Velker et al. 2010; Sato et al. 2007). There is 

also evidence (although limited) that similar epigenetic alterations may occur in sperm genes 

during male gametogenesis (Oakes et al. 2003). 

It is important to note that there is no definitive proof of the transmissibility of paternal (or 

maternal) epigenetic changes to the offspring. In fact, several authors have pointed out that 

the likelihood of transmission of sperm or oocyte epigenetic changes to the offspring is low, 

because the epigenome undergoes re-programming at embryogenesis, stripping the ‘memory’ 

of much of the epigenome (Curley et al. 2011). However, not all epigenetic ‘memory’ is 

stripped, and epigenetic changes in the germ cell may still be transmitted to the offspring 

(Kimmins & Sassone-Corsi 2005; Lane et al. 2003), but definitive evidence in human studies 

has yet to be uncovered. 
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1.1.2.2. Epigenetics and embryogenesis  

From the moment of fertilisation, the zygote undergoes important epigenetic changes that are 

crucial to its development and survival. During the early stages after conception, paternal 

DNA in the zygote undergoes rapid de-methylation and this occurs more passively than in the 

case of maternal DNA (Santos et al. 2002). Subsequently, embryonic DNA undergoes de 

novo methylation until the blastocyst stage is reached (Santos et al. 2010a). Thereafter, 

further epigenetic changes likely take place in the developing embryo, involving complex 

mechanisms that have not been clearly identified (Senner 2011). 

Although most data on epigenetics at embryogenesis is derived from animal studies, there is 

some limited information from human studies suggesting that mechanisms may be broadly 

similar (Fulka et al. 2004). Also, for obvious ethical reasons, these data are derived from 

studies of embryos conceived via assisted reproductive technology (ART), which may have 

quite different epigenetic patterns to naturally conceived embryos (Sato et al. 2007). Work in 

the complex area of epigenetic change during embryogenesis is on-going, and will likely shed 

further light upon this important process. 

While not the focus of work in this thesis, it is important to mention that epigenetic 

modifications also occur in later gestation. There is some evidence that alteration of the fetal 

environment (such as placental insufficiency during later gestation) is associated with 

changes in imprinted genes and phenotypic changes in offspring (MacLennan et al. 2004; 

Pham et al. 2003; Waterland & Garza 2002). Human studies, particularly in the area of fetal 

growth and intra uterine growth restriction are shedding further light on the process of 

epigenetics and imprinting in later gestation (Fowden et al. 2006; Nafee et al. 2008). 

1.1.2.3. Epigenetics and the placenta  

The importance of the placenta in the field of epigenetics and fetal programming is becoming 

increasingly recognised (Maltepe et al. 2010; Nelissen et al. 2011). The placenta contains all 

known imprinted genes in abundance, and it is clear that the placenta has a crucial role in the 

epigenetic process itself. In fact, epigenetics and gene imprinting are critical to embryo 

implantation and subsequent placental development (Nelissen et al. 2011). Animal and 

human studies showed that epimutations of these genes can lead to abnormal placentation and 

subsequent complications, such as abnormal fetal growth (Nelissen et al. 2011; Steinhoff et 
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al. 2009). The importance of the placenta in the epigenetic process is outlined in detail in a 

review by Nelissen et al. (2011). 

1.1.2.4. Linking epigenetics to phenotype 

The dynamic and active nature of epigenetics and imprinting at gametogenesis and 

embryogenesis, as well as their vulnerability to subtle external environmental stimuli, is 

apparent (Figure 1.2). 

 

 

Figure 1.2. Epigenetic reprogramming cycle. 
"Epigenetic modifications undergo reprogramming during the life cycle in two phases: during gametogenesis and 

preimplantation development. PGCs arise from somatic tissue and develop into mature gametes over an extended period 

of time. Their genome undergoes DNA demethylation in the embryo Following demethylation, the genomes of the 

gametes are de novo methylated and acquire imprints; Fertilization signals the second round of reprogramming during 

preimplantation development. The paternal genome is actively demethylated. The embryo’s genome is passively DNA 

demethylated during early cell cycles before blastulation. Despite this methylation loss, imprinted genes maintain their 

methylation through this preimplantation reprogramming. De novo methylation coincides with the differentiation of the 

first two lineages of the blastocyst stage, and the inner cell mass (ICM) is hypermethylated in comparison to the 

trophectoderm (TE). These early lineages set-up the DNA methylation status of their somatic and placental derivatives" 

(Morgan et al. 2005). Reproduced with permission from Oxford University Press. 
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There are two seminal studies that are most often cited linking environmental change, 

phenotypic alterations, and differences in imprinted genes (Heijmans et al. 2008; Wolff et al. 

1998). Wolff et al.'s (1998) Agouti mouse model is the classic example of alterations in fetal 

environment (by dietary change) leading to epigenetic modifications (increase in DNA 

methylation), and consequent phenotype changes (coat colour). The second study by 

Heijmans et al. (2008) is one of many assessing adults conceived during the Dutch Famine, 

and revealed lower DNA methylation of the IGF2 genes compared to their siblings. Such 

changes have been subsequently linked to higher risk of obesity, type 2 diabetes, and cardio-

vascular disease (Ravelli et al. 1976; Roseboom et al. 2001). 

Numerous other animal studies have found epigenetic changes or differences in imprinted 

genes in association with alterations in the early fetal environment. However, these have been 

discussed in detail by Mcmillen & Robinson (2005) and Gluckman et al. (2008), and will not 

be discussed here. Nonetheless, such studies have led to further research, particularly of IGF2 

and its role in phenotypic changes and disease risk in offspring (Juul et al. 1995). IGF2 has 

been extensively linked with fetal growth and subsequent post-natal growth (Baker et al. 

1993; Kent et al. 2012), and changes in IGF2 imprinted gene have been implicated in some 

of these observations (as detailed by Piedrahita (2011) in a recent review on this specific 

topic). 

Other studies have also attempted to elucidate associations between physical changes 

observed in offspring and alterations in imprinted genes or epigenetic changes (Gaunt et al. 

2001; Kaku et al. 2007; Petry et al. 2005). These studies have found some differences in 

serum concentrations of IGF-II and alterations in expression of H19 (a methylated gene 

associated with IGF-II) in association with birth weight, childhood body mass index (BMI), 

and adult obesity (Gaunt et al. 2001; Kaku et al. 2007; Petry et al. 2005). However, these 

studies have yielded conflicting results, due at least in part to the highly variable populations 

studied.  

Overall, it is clear that the early fetal environment is vulnerable to environmental changes and 

that such changes may be associated with alterations in offspring phenotype and altered 

disease risk. Epigenetics is the most likely the mechanism underpinning such changes, but 

evidence defining the role of epigenetics as the mechanism underpinning these changes in 

humans has yet to be established.  
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1.1.3. Parental factors 

With an outline of the importance of the early environment and the possible consequences to 

the phenotype of even subtle alterations to this crucial stage in human development, it is 

possible to proceed onto the background of the topics addressed in the studies covered by this 

PhD project. The introduction to this thesis will therefore discuss a number of important 

parental factors that will be investigated, which are known to be associated with changes in 

the early environment. 

 

1.2. The impact of increasing maternal age at childbirth on the growth & 

metabolism of children 

1.2.1. Demographic patterns and causes of increasing maternal age at childbirth 

Over the past several decades, there has been a major change in human reproductive 

behaviour, with parents choosing to have children at increasing ages. While there is overlap 

between the demographics and reasons associated with the increase in maternal and paternal 

ages at childbirth, I will examine these separately. 

Postponement of parenthood is a phenomenon occurring in almost every country in the 

developed world Between 1970 and 2010 the average maternal age at first childbirth has 

increased by almost 4 years (OECD 2011b) (Figure 1.3). As a result, the mean maternal age 

at first childbirth has increased from an average of 25 to 29 years of age (Collins et al. 2010; 

OECD 2011b). Similarly, in the US the mean maternal age at first childbirth has risen from 

23 years in the 1970s to 26 years by 2005 (Collins et al. 2010). As a consequence of such 

trends, the birth rate among women aged less than 30 years is decreasing steadily, while that 

for women over 35 years of age is experiencing the most persistent increase (Martin et al. 

2009). The reasons for this shift in reproductive behaviour are multi-factorial. They include 

greater availability of contraception, increased educational and career opportunities for 

women, economic pressures, and personal choice (Beets 2011). 

The impact of the widening availability of contraception since the 1970s on postponement of 

childbirth should not be underestimated. Not only does contraception allow women to plan 

pregnancy and to postpone parenthood, it also means that many women can continue to study 

and/or work (Goldin & Katz 2002). This 'knock on effect' of contraception remains 



   

11 
 

important, as motherhood may lead many women to decide against further education or 

employment. Thus, contraception has had a major influence on women’s decision-making 

process regarding motherhood.  

Increased opportunities for women in the workplace and in education have also led to a 

behavioural and societal shift, whereby women seek to obtain higher education, remain in the 

workplace, and postpone motherhood to a later period in their lives. Higher levels of 

education are closely linked to older maternal age of childbirth, with tertiary educated women 

often postponing parenthood into their thirties, with highly educated and high-earning women 

often having their first child beyond 35 years of age (Andersson et al. 2008; Berrington 2004; 

O'Donoghue et al. 2011). Thus, in tandem with education, higher socio-economic status and 

personal economic independence are also linked to postponement of motherhood (Blossfeld 

& Huinink 1991). 

Maternity leave is increasingly available in developed countries, and has helped somewhat to 

stem the tide of postponement of childbirth. However, there is some evidence that women 

who choose to have children while in a career and obtain maternity leave may be at risk of 

poorer career progression than those who postpone motherhood (O'Donoghue et al. 2011). 

This is another factor encouraging highly educated women to have children later on. It is 

uncertain if increasing unemployment rates as a result of the current economic downturn will 

lead women to have children at a younger age, especially since it is also evident that 

economic uncertainty leads to postponement of parenthood (Mills 2005). In addition, the 

decline in marriage rates and increase in the practise of co-habitation before marriage is 

associated with “relationship uncertainty”, a factor which has led many couples to postpone 

the timing of their first childbirth (Manning & Smock 2002).  

Overall, many of these factors have influenced women’s decision-making regarding their 

timing of pregnancy. The change in belief and attitude as to when is a suitable time to 

become a mother has permeated throughout society, where it is now ‘normal and acceptable’ 

for most women to attempt motherhood for the first time over the age of 30 years, or even 

over 35 years.  
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Figure 1.3. Mean age of women at the birth of the first child in 2009. 
Countries are ranked in ascending order of the mean age of mothers at first birth in 2009. Source: Eurostat (2011). 

 

While these changes in societal attitude and values are difficult to quantify, they should not 

be underestimated as a continuing driving force behind the increasing maternal age at 

childbirth (Benzies et al. 2006). This shift in maternity to older ages shows no sign of 

abating, and it is likely that the majority of children will continue to be born to mothers who 

are over 30 years of age. Importantly, there is emerging evidence of poor knowledge amongst 

the general public of the associated risks of attempting pregnancy at older ages; particularly 

the risk of infertility, feto-maternal morbidity, and risks to offspring (Benzies 2008; 

Bretherick et al. 2010).  

1.2.2. Effects on mother and pregnancy of advancing maternal age 

Increasing maternal age at childbirth is associated with many changes in maternal 

physiology, as well as risks to offspring. This complex process will not be discussed in detail, 

but it is worthwhile very briefly outlining the process of female gametogenesis, and examine 

how increasing age adversely affects this process. In addition, it is important to discuss how 

increasing age impacts on maternal physiological aspects that are critical to conception and 

the birth of a healthy infant. 
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Female gametogenesis begins early in life, during fetal development when 6–7 million 

follicles (oocytes surrounded by granulosa cells) are formed by 20 weeks gestation. 

Thereafter, the process of atresia begins, with a decline in follicle number to 1–2 million by 

birth, 300,000 by menarche, and a steady decline to less than a few thousand follicles at the 

end of fertility, with possibly a few hundred follicles remaining in the peri-menopausal period 

(Egli & Akutsu 2011) (Figure 1.4).  

Ovulation begins after menarche and is strictly regulated by a number of processes, including 

systemic hormones and local factors. Prior to ovulation of a mature oocyte, a primordial 

follicle is initiated or ‘selected’ from the pool of follicles through a process that appears to be 

initially gonadotrophin (FSH, LH) independent (Eppig et al. 1997). Subsequent follicle 

progression and maturation is dependent on FSH and LH, respectively, as well as growth 

factors, steroids (e.g. oestrogen), amongst others (Buffet & Bouchard 2001; Hillier 1994).  

 

 

 

Figure 1.4. Reduction in oocyte pool and declining quality. 
Adapted from Broekmans et al. (2009). 
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These processes undergo many changes with increasing age, which impact on oocyte quantity 

and quality, with consequent risks to offspring. 

1.2.2.1. Maternal fertility 

One of the most important effects of increasing maternal age at childbirth is reduced fertility. 

In strict terms, fertility is used to define the actual reproductive rate in population 

demography (Broekmans et al. 2004), and fecundity means the potential ability to reproduce 

(van Noord-Zaadstra et al. 1991). However, here, the term fertility will be used to describe 

the ability to reproduce or conceive, as it is broadly used in this manner in the medical 

literature on human reproduction. 

It is generally believed that monthly fertility declines from approximately 30 years of age 

(van Noord-Zaadstra et al. 1991). As a result, postponement of parenthood is leading many 

couples to attempt conception during a time where there is a lower chance of achieving 

pregnancy. 

Studies of fertility are logistically difficult to carry out, but some reliable data have been 

obtained from populations where contraception is not practised for religious, cultural, or other 

reasons. For example, Larsen & Yan (2000) calculated monthly conception rate as a function 

of a woman’s age by studying a Christian sect opposed to fertility control. They found that 

the ability to achieve pregnancy diminished as a woman aged, so that monthly conception 

rates were 24% at 25 years of age, 17% at 30, 12% at 35, and 5% at 40 years of age. This 

decline is further illustrated by the reduction in pregnancy and live birth rates in ART with 

increasing maternal age (Malizia et al. 2009). The improvement in ART success rates in older 

women when donor oocytes from younger women are used (rather than the women’s own 

oocytes) again demonstrates the effect of ovarian aging on pregnancy success (Andersen et 

al. 2009; Sauer & Klein 2011; Wright et al. 2008). Figure 1.4 also illustrates the progressive 

increase in the proportion of poor quality oocytes with increasing maternal age (Broekmans 

et al. 2009). 

1.2.2.2. Ovarian aging 

There is an inevitable decline in natural fertility with time, which is primarily a consequence 

of ovarian aging secondary to a fall in oocytes quantity and quality (te Velde & Pearson 
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2002). There is on-going debate on the rate of decline of ovarian reserve with age. Earlier 

studies suggested that the decline is bi-exponential, with a slower decline before the age of 35 

to 37 years and a more rapid decline thereafter (Faddy et al. 1992). However, more recent 

evidence suggests that there is a steady decline in ovarian reserve from birth until peri-

menopause (Broekmans et al. 2009; Hansen et al. 2008).  

Hormonal changes in LH, FSH, inhibin B, and anti-Mullerian hormone also accompany the 

decline in ovarian reserve (Broekmans et al. 2009). While LH levels are recognised to 

increase with reduction in ovarian reserve, this increase occurs relatively late, and much 

closer to menopause than any change in FSH (Broekmans et al. 2009). FSH levels increase 

with ovarian aging, with subtle increases from approximately 30 to 35 years old, and a more 

marked increase in the peri-menopausal phase (Hansen et al. 2005). This rise in FSH levels 

has been linked to declining oocyte numbers, and is thought to be caused by reduced negative 

feedback of ovarian hormones, particularly inhibin B (Hale et al. 2007). 

1.2.2.3. Other maternal pregnancy changes with increasing age 

As well as the many changes that occur at a gene and hormonal level in mothers with 

advancing age, women also undergo age-related changes in phenotype and disease risk. As 

part of increasing age, pregnant mothers are subject to the same increase in morbidity as the 

general population. In particular, increasing maternal age is associated with greater risk of 

pregnancy complications, such as diabetes and hypertension, which increase almost linearly 

with age (van Katwijk & Peeters 1998). Maternal gestational diabetes can lead to offspring 

risks in the short-term, but is also associated with effects in the offspring, including 

alterations in insulin sensitivity (Plagemann et al. 1997) and increased risk of obesity (Boney 

et al. 2005) in childhood. Also, gestational hypertension (more common in older mothers) is 

also associated with an increased risk of elevated blood pressure in their offspring during 

childhood (Himmelmann et al. 1994).  

Further, women tend to have higher BMI with increasing age (Vahratian 2009). As well as 

contributing further to pregnancy and peri-natal morbidity, this may impact offspring 

phenotype and disease risk, as childhood obesity is associated with maternal obesity 

(Fogelholm et al. 1999). Therefore, when assessing childhood outcomes in association with 

maternal age, all of these factors need to be considered.  
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1.2.2.4. Twinning 

Despite a decline in fertility, increasing maternal age is associated with an increased rate of 

spontaneous twin pregnancies (Abel & Kruger 2012; Hoekstra et al. 2008). Increasing 

maternal age is associated with elevated levels of FSH, which may drive more than one single 

follicle into dominance, resulting in ‘double ovulation’ (Beemsterboer et al. 2006; de Koning 

et al. 2008). The increased ovarian stimulation by a higher level of FSH leading to production 

of more than one follicle has been aptly referred to as “endogenous ovarian hyperstimulation” 

(Prior 2005). This physiological phenomenon is of interest, such ‘endogenous ovarian 

hyperstimulation’ may lead to subtle alterations in oocyte genes or changes in oocyte quality 

(Prior 2005).  

1.2.2.5. Epigenetics 

Increasing age and epigenetic changes in humans is attracting much research interest, and 

there is emerging evidence that epigenetics may play an important role in the aging process 

itself (Fraga & Esteller 2007). While such research focuses on somatic cells, there is some 

evidence that germ cells (in particular maternal germ cells) may also be subject to age-related 

epigenetic changes (Grøndahl et al. 2010; Hamatani et al. 2004).  

Epigenetics is intrinsic to the regulatory process of gametogenesis and the multitude of 

changes that take place in maternal physiology, including hormonal and other changes in the 

oocytes themselves may lead to epigenetic changes in oocyte genes. While, there is no 

current evidence that such maternal age related changes in gametes confer phenotypic 

differences or age-related changes in offspring, such alterations in phenotype are possible.  

1.2.3. Effects on the fetus 

1.2.3.1. Aneuploidy and other chromosomal disorders 

Increasing maternal age is linked to higher rates of oocyte/embryo aneuploidy, and the 

increased risk of trisomies (particularly trisomy 21) is well recognised (Pellestor et al. 2006). 

Most aneuploidy is caused by errors in maternal meiosis, and advancing maternal age is a risk 

factor for most (if not all) human trisomies (Chiang et al. 2012). There is evidence that the 

size of the ovarian reserve or the ‘oocyte pool’ is related to aneuploidy risk (Kline & Levin 

1992): as this ‘pool’ reduces, aneuploidy risk increases (Figure 1.4) It is also possible that 

FSH itself may contribute to aneuploidy risk (Oliver et al. 2008; Ottolenghi et al. 2004; 
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Warburton 2005), and higher FSH levels with increasing age have been linked to trisomic 

births (Kline et al. 2011). However, there is no definitive proof of a direct causative effect 

(Kline et al. 2011). 

1.2.3.2. Congenital abnormalities, imprinting disorders and other genetic changes 

Advancing maternal age is linked to a slight increase in the risk of congenital malformations 

in the offspring (e.g. cardiac defects, diaphragmatic hernia) (Cleary-Goldman et al. 2005; 

Hollier et al. 2000). 

While there is some limited evidence that advancing maternal age confers a marginally 

increased risk of imprinting disorders (such as Prader-Willi syndrome, Beckwith Wiedemann 

Syndrome or Silver Russell Syndrome) in offspring, this risk remains to be established 

(Hannula et al. 2001; Maher et al. 2003; Matsubara et al. 2011).  

1.2.3.3. Obstetric and perinatal complications 

It is well recognised that there are higher rates of miscarriage, stillbirth, low birth weight 

(LBW), SGA, and pre-term delivery with increasing maternal age (Cleary-Goldman et al. 

2005; Jacobsson et al. 2004; van Katwijk & Peeters 1998). The higher miscarriage rate with 

increasing maternal age can be largely attributed to the increase in aneuploidy rates in older 

mothers. However, the aetiology of other maternal age-related complications can be mostly 

attributed to the age related increase in pregnancy complications such as pre-eclampsia, 

gestational diabetes, caesarean section, obesity, and hypertension (Balasch & Gratacós 2011; 

Luke & Brown 2007). For example, the increasing proportion of premature (and often LBW 

babies) deliveries in older mothers are often as a result of medical decisions based on 

maternal well-being, rather than spontaneous pre-term births (Aliyu et al. 2010).  

In addition, the higher rate of SGA infants in older mothers (even in those others with no co-

morbidity) may be due to subtle placental insufficiency associated with increasing maternal 

age (Balasch & Gratacós 2011). Indeed, there is evidence of subtle reduction in uterine 

elasticity and perfusion with increasing age (Cano et al. 1995; Zenke & Chetkowski 2004), as 

well as more subtle alterations in implantation efficiency (Yamada et al. 2001).  

All of these factors serve to increase the complication rate for mother and baby during 

pregnancy and the peri-natal period with increasing maternal age. 
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1.2.4. Post-natal effects in offspring childhood and adulthood 

1.2.4.1. Adiposity, height, and pubertal onset 

Despite the fact that childhood obesity is the subject of enormous research (Monasta et al. 

2010), very few studies have examined the possible effects of maternal age on childhood 

BMI or body composition, and none have examined this issue with maternal age as the 

primary factor (Blair et al. 2007; Reilly et al. 2005). Reilly et al. (2005) found that children 

of mothers aged less than 25 years had a higher obesity risk than those born to mothers aged 

over 25. Blair et al. (2007) found a weak relationship between increasing maternal age and 

childhood adiposity, but 40% of the children were born SGA (which also impacts on 

childhood adiposity (Chernausek 2012; Norris et al. 2012).  

One recent study in Japan assessed data from “well-baby checks” of over 50,000 subjects, 

and found no association between maternal age and height at 1 and 12 months of age 

(Iwayama et al. 2011). However, their method of height measurement was not described, and 

genetic height was not accounted for (Iwayama et al. 2011). No other studies assessing the 

impact of maternal age on childhood height appear to have been carried out.  

Increasing maternal age has also been associated with later age at menarche in girls (Blell et 

al. 2008; Comings et al. 2001), but such findings have not been replicated in larger studies. 

Nevertheless, these are potentially important findings, as later age of menarche is associated 

with relatively shorter stature in childhood (Johansson & Ritzén 2005). Thus, studies 

assessing the effects of maternal age at childbirth on childhood height need to consider the 

possibility of differences in childhood biological maturity with advancing maternal age. 

1.2.4.2. Diabetes mellitus 

A recent meta-analysis of 30 studies found that increasing maternal age at childbirth is 

associated with a small linear increase in type 1 diabetes risk in the offspring. While possible 

childhood immune differences or changes in birth weight were offered as possible 

explanations, no convincing mechanism was described (Cardwell et al. 2010). An association 

between advancing maternal age with type 2 diabetes risk in adulthood (Lammi et al. 2007) 

and insulin resistance in twins (Loos et al. 2002) has also been described. These authors 

proposed that the finding may be related an increase in fetal restriction in the later part of 

pregnancy, leading to altered fetal programming of childhood and adult disease (Loos et al. 

2002).  
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1.2.4.3. Blood pressure 

Increasing maternal age at childbirth has also been found to be associated with increased 

offspring blood pressure in the neonatal period (Gillman et al. 2004) and in childhood 

(Lawlor et al. 2004; Whincup et al. 1989). Gillman et al. (2004) found a blood pressure 

increase of 0.8 mmHg in newborns per 5 year increase in maternal age, with a similar 

observation amongst 5-year-olds (Lawlor et al. 2004; Whincup et al. 1989). The possible 

mechanism proposed for this increase in BP by the authors is similar to that proposed for 

insulin resistance (i.e. possible fetal nutrient restriction in older mothers leading to altered 

fetal programming and subsequent increase in BP) (Edwards et al. 1993).  

1.2.4.4. Cancer and lifespan 

Several studies (some of which were conducted in large populations) have shown a slight 

increase in cancer risk amongst children in association with increasing maternal age at 

childbirth (Hemminki & Kyyrönen 1999; Hemminki et al. 1999; Johnson et al. 2009; Yip et 

al. 2006). Cancers implicated include leukaemia, retinoblastoma, and brain tumours, amongst 

others. While mechanisms remain elusive, it is proposed that the increased risk may be 

associated with epimutations in maternal oocyte genes (Johnson et al. 2009) or chromosomal 

aberrations in oocytes (Yip et al. 2006). Advancing maternal age at childbirth has also been 

linked to an increased risk of cancer in the offspring in adulthood, such as breast cancer 

(Innes et al. 2000; Xue & Michels 2007). Proposed triggers of this risk include higher 

pregnancy oestrogen levels observed with increasing maternal age (Trichopoulos 1990).  

It has also been suggested that increasing maternal age at childbirth is associated with 

changes in offspring lifespan (Gavrilov & Gavrilova 1997). However, such inferences were 

based largely on historical and no reliable conclusions can be drawn. 

1.2.5. Can increasing maternal age at childbirth benefit the offspring? 

We have outlined above many complications and risks associated with increasing age at 

motherhood. However, it is important to consider that those mothers who give birth in their 

30s or 40s may actually provide an advantageous pre- and post-natal environment to their 

offspring.  

For example, there is a suggestion that older mothers may have a healthier lifestyle during 

pregnancy (Mohsin et al. 2011). However, it must be emphasised that increasing maternal 
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age at child-birth is strongly linked to higher socio-economic status and better education and 

these may be the reasons for healthier pregnancy behaviours with increasing maternal age 

(Mills et al. 2011).  

Similarly, increasing maternal age was found to be associated with higher rates and a longer 

duration of breastfeeding (Scott et al. 2001). Again, higher socio-economic status and better 

education may be the driving force behind breastfeeding behaviours (Thulier & Mercer 

2009). Increasing maternal age may confer other possible advantages upon their children, 

such as better maternal knowledge on nutrition and greater financial security, amongst others 

(Mills et al. 2011).  

Possible disadvantages of older ages at motherhood include findings that older mothers tend 

to have less energy than their younger counterparts (Sayer et al. 2004), and are therefore 

likely to engage in less active playtime with their children (MacDonald & Parke 1986). On 

the whole, there is a paucity of reliable data on the possible effects of the post-natal rearing 

environment in association with maternal age. 

Overall, increasing maternal age is associated with many physiological changes in the 

mother, as well as an increased risk of chromosomal disorders and other complications to 

offspring. There is some evidence that increasing maternal age is also associated with a 

higher risk of some childhood diseases. Clearly, there is a paucity of data on the possible 

effects of maternal age at childbirth on offspring outcomes. 

 

1.3. The impact of increasing paternal age at childbirth on the growth & 

metabolism of children  

1.3.1. Patterns and causes 

While advancing maternal age at childbirth has received much attention, a simultaneous and 

possibly larger and more rapid upward shift in the age of fatherhood is taking place. The 

mean paternal age at first childbirth in the United Kingdom increased from 29 years of age in 

1980 to 32 years in 2000 (Martin et al. 2009; Office for National Statistics 2002). In tandem 

with this increase in paternal age, by 2003, over 40% of children in the UK were born to 

fathers over 35 years of age, while a further 10% of children were born to fathers aged over 

40 (Office for National Statistics). In Germany, the mean age of fathers increased from 31.3 
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to 33.1 years between 1991 and 1999 (Kühnert & Nieschlag 2004). While information on 

paternal age at childbirth is lacking for many countries, a similar trend is most likely present 

in many other countries in the Western world (Bray et al. 2006).  

The ages of men and women in couples are relatively closely correlated in the majority of 

cases. As a result, factors influencing maternal age at childbirth also impact on paternal age at 

childbirth, and vice-versa. However, it is thought that maternal choice as to when she wishes 

to have children has one of the strongest influences in the upward trend of paternal age at first 

fatherhood (Mills 2005).  

Other factors leading to the increase in paternal age at childbirth are somewhat similar to 

those of advancing maternal age of first childbirth. The tendency amongst men to wait for 

personal economic stability before deciding to have children is described as another 

important factor (Roberts et al. 2011). Further, there seems to be a widespread belief amongst 

men that they can perpetually postpone fatherhood, due to a reduced sense of a 'biological 

clock' (Langdridge et al. 2005; Roberts et al. 2011). While the pattern of increasing paternal 

age at childbirth is common to all societal groups, a more advanced age at fatherhood is more 

prominent amongst men of higher socio-economic status (Mills et al. 2011). This is 

particularly important when assessing possible effects of paternal age on childhood outcomes.  

1.3.2. Effects on paternal fertility 

Charlie Chaplin, William Shatner, Anthony Quinn, and many other famous men fathered 

children in their 70s or 80s. Such stories contribute to the myth of eternal fertility for all men.  

Unlike female fertility (which ceases relatively abruptly) male fertility usually undergoes a 

steady decline over the years. While subject to marked individual variability, changes in male 

fertility are associated with increasing paternal age (Hassan & Killick 2003; Kidd et al. 2001; 

Sartorius & Nieschlag 2010). These include a reduction in sperm motility, sperm counts, 

semen quality, and androgen levels (Belloc et al. 2008; de La Rochebrochard & Thonneau 

2002; Handelsman 2002; Pasqualotto et al. 2005). There is also little doubt that with 

increasing age, male sexual dysfunction increases (Nicolosi et al. 2006) and frequency of 

intercourse decreases (Weinstein & Stark 1994). This is notwithstanding other factors 

associated with increasing age such as the increased risk of obesity (Carone et al. 2010), 

which also impacts on fertility (Hammoud et al. 2008).  



   

22 
 

Environmental toxicants may also impact on male fertility, but so far studies have yielded 

conflicting data (Sartorius & Nieschlag 2010; Sharpe 2012). This will be explored in more 

detail in the section on Fertility. However, it is obvious that increasing male age inevitably 

leads to a more prolonged period of exposure to such toxicants and thus they may be a 

contributory factor to age related changes in male fertility (Delbès et al. 2010). 

1.3.3. Effects on the fetus 

1.3.3.1. DNA damage, genetic disorders, and epigenetics 

There is debate as to whether advancing paternal age confers an independent slight increased 

risk of offspring aneuploidy, but maternal age clearly has a far stronger effect (Fonseka & 

Griffin 2011; Sloter et al. 2004; Wyrobek et al. 2006). 

However, increasing paternal age has been linked to an increase in the risk of gene mutations 

in offspring (Crow 2000). It is increasingly recognised that the quality of male gametes 

deteriorates with increasing age, leading to higher rates of DNA damage and gene mutations 

in the sperm (Barratt et al. 2010; Singh et al. 2003; Slama et al. 2005; Wyrobek et al. 2006). 

Male germ cells undergo mitotic division every 16 days and there is potential for error with 

each replication. The potential for de novo mutations in male germ cells increases 

exponentially with age (Crow 2000). This is thought to be at least partially responsible for the 

observed increase in the frequency of single-gene defects in offspring of fathers of advancing 

age (Chandley 1991; Crow 2000). 

DNA repair is a crucial process in the genetic competence of male sperm DNA, and there is 

accumulating evidence that this process is vulnerable to age-related changes in males. 

Consequently, increasing paternal age is likely to be associated with greater likelihood of 

defective DNA repair (Leduc et al. 2008 1290), increased DNA fragmentation (Singh et al. 

2003 1291), and reduced chromatin integrity (Wyrobek et al. 2006). Such paternal age-

related DNA “copy errors” (Penrose 1955) may be responsible for the greater frequency of 

congenital disorders in the offspring, such as Apert syndromes (Crow 2000; Wyrobek et al. 

2006), situs inversus (Lian et al. 1986), heart defects, tracheo-oesophageal fistula, 

oesophageal atresia, and musculoskeletal anomalies (Yang et al. 2007). 

Increasing paternal age is also associated with greater risk of other disorders in their 

offspring, such as autism (Reichenberg et al. 2006), childhood behavioural problems, and 
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adult-onset diseases including schizophrenia (Malaspina 2001) and bipolar disorder (Frans et 

al. 2008). These disorders may be caused by an age-related increase in the frequency of DNA 

point mutations in sperm (Flatscher-Bader et al. 2011). Alternatively, the underlying 

mechanism may be age-related epigenetic changes in sperm DNA (Farrer et al. 1991; 

Peedicayil 2010; Perrin et al. 2007).  

There is increasing evidence that epigenetic changes may contribute to the normal “aging 

process” in humans. Thus, epigenetic change in somatic cells is a focus of intense interest, 

particularly in cancer research (Fraga & Esteller 2007). However, the possible association 

between increasing paternal age and epigenetic changes in germ cells is also of some interest 

(Probst et al. 2009). This is because there are suggestions that epigenetic changes taking 

place in sperm DNA with increasing paternal age may be transmitted to offspring (Curley et 

al. 2011; Oakes et al. 2003). The possible extent of the transmission of such changes and any 

impact they may have of offspring phenotype remains uncertain (Curley et al. 2011). 

1.3.3.2. Obstetric and perinatal complications 

Independently of maternal age, increasing paternal age has been reported to be associated 

with complications during pregnancy and in the peri-natal period (Chen et al. 2008). These 

include increased rates of miscarriage (Kleinhaus et al. 2006; Lian et al. 1986), maternal pre-

eclampsia (Harlap et al. 2002), as well as an increased risk of caesarean section (Tang et al. 

2006), low birth weight, pre-term delivery (Astolfi et al. 2006; Zhu et al. 2005), and twinning 

(Abel & Kruger 2012). Post-natally, advancing paternal age has been associated with reduced 

APGAR scores (i.e. poorer physical condition at birth) in one study (Sun et al. 2006).  

1.3.4. Outcomes in offspring childhood and adulthood  

1.3.4.1. Neurological disorders 

There are limited data on the impact of paternal age on health outcomes in their offspring, 

and most have focused on neurological outcomes (Liu et al. 2011b). Several studies have 

shown an increased risk of autism in children of older fathers, and the risk appears to be 

greatest when fathers are aged over 35 years, and especially over 40 years old (Croen et al. 

2007; Durkin et al. 2008; Reichenberg et al. 2006). While there is suggestion of a possible 

maternal age effect on offspring autism risk (Croen et al. 2007; Durkin et al. 2008), the 
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association with paternal age is far more consistent, particularly in more robust studies 

(Reichenberg et al. 2006). 

Other neurological manifestations in childhood linked to increasing paternal age (either >35 

or >40 years) are behavioural problems (Saha et al. 2009), lower IQ (Auroux et al. 1989; 

Malaspina et al. 2005), poorer neurocognitive outcomes (Saha et al. 2009), poorer social 

functioning (Weiser et al. 2008), and epilepsy (Vestergaard et al. 2005). Psychiatric illness 

such as schizophrenia (Peedicayil 2010) and bipolar disorder (Frans et al. 2008) are also 

more frequently observed amongst adult offspring born to fathers aged more than 50 or 55 

years old. 

It seems likely that the increased rates of de novo mutations in germ cells of older fathers are 

responsible for the higher rates of neurocognitive and psychiatric disorders in their offspring 

(Flatscher-Bader et al. 2011). However, several authors have cautioned that the personality of 

older fathers, (particularly those aged more than 50 years old) may be quite different to those 

of younger fathers, with an increased rate of psychiatric illness and anti-social personalities 

amongst men who father children at older ages (Hemminki & Kyyrönen 1999; Zammit et al. 

2003). Therefore, it is possible that this factor contributes, at least in part, to the offspring risk 

of psychiatric disorders. Nonetheless, it is likely that the contribution of paternal age related 

de novo mutations are responsible for the majority of the offspring risk. 

1.3.4.2. Adiposity, height, and pubertal onset 

While causative factors of childhood obesity continue to be intensively investigated (Monasta 

et al. 2010), a possible independent impact of paternal age has been examined in surprisingly 

few studies to date. Advanced paternal age is associated with higher socio-economic status 

(Mills et al. 2011), which in itself is protective against childhood obesity (Parsons et al. 1999; 

Wang & Beydoun 2007) and consequently a major confounder for studies examining such 

outcomes. Only one study has assessed the potential effects of paternal age on childhood 

BMI, finding no difference between children of fathers aged over 37 years compared to those 

under 37 (Huus et al. 2007). However, it is unclear if the analysis was adjusted for socio-

economic factors. 

While many influences on childhood height have been examined (Batty et al. 2009), the 

possible impact of paternal age has not been investigated. One study has assessed the possible 

impact of paternal age on the timing of their daughters’ menarchal onset, finding no effect 
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(Shrestha et al. 2010). The latter is important when we consider that the timing of menarche 

influences childhood growth and that earlier menarche may lead to shorter final height.  

1.3.4.3. Diabetes mellitus and cancer 

While advanced maternal age has been associated with a slightly increased risk of type 1 

diabetes in childhood, there is limited evidence of an independent paternal age effect 

(Cardwell et al. 2010). Three studies found that a paternal age of over 30 or 35 years was 

associated with a minor increase in the risk of type 1 diabetes in children (Bingley et al. 

2000; Cardwell et al. 2005; Memon et al. 2011), whereas one study found no effect (Stene et 

al. 2001).  

A slight increase in the incidence of leukaemia and certain types of brain tumours in children 

has been linked with older paternal age (Chen et al. 2008; Hemminki & Kyyrönen 1999; 

Hemminki et al. 1999; Huus et al. 2007; Lu et al. 2010; Yip et al. 2006). The increasing age 

at which parents are having children may be linked to the observed increase in the incidence 

of certain childhood cancers over the past 30 years, possibly a result of age-related mutations 

in male germ cells (Yip et al. 2006). Similarly, adult onset cancers have also been linked to 

advancing paternal age, including breast cancer (Choi et al. 2005), prostate cancer (Zhang et 

al. 1999), and non-Hodgkin’s lymphoma (Gavrilov et al. 1997).  

1.3.4.4. Mortality 

Two Scandinavian studies have explored possible associations between paternal age and 

mortality in the offspring, from age 1–18 years in Denmark (Zhang et al. 1999) and 1–39 

years in Finland (Zhu et al. 2008). The Danish study found that fathers aged over 45 years 

had children with a higher mortality rate due to congenital malformations, injury, or 

poisoning (Zhang et al. 1999). Similarly, the Finnish study also found that a paternal age over 

45 years was an important threshold of increased mortality in the offspring, but causes of 

death were not outlined in detail (Zhu et al. 2008).  

Several studies, which took place in developing countries, also examined for a possible 

association between increasing paternal age and childhood mortality (Becher et al. 2004; 

Brittain 1992; Miller et al. 2010). Two studies found no effect (Becher et al. 2004; Miller et 

al. 2010), and another observed a higher mortality rate amongst children of older fathers 

(Brittain 1992). However, any relationship between paternal age and childhood mortality in 

developing countries is likely confounded by important socio-economic factors, which would 
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strongly influence the availability of food as well as childhood disease risk. Thus, a real 

effect of paternal age itself is difficult to elucidate.  

Increasing paternal age has also been described to be associated with reduced longevity in the 

offspring, albeit in historical cohorts (Gavrilova et al. 2003; Larfors et al. 2012). 

Interestingly, the effect of paternal age was much greater amongst daughters of older fathers, 

losing an average of 4.4 years of their life span. While these limited studies have several 

methodological weaknesses, they further stimulate interest in the possible impacts of paternal 

age on offspring phenotype and disease risk. 

Overall, there is emerging evidence that increasing paternal age is associated with gene and 

other changes in male gametes, with associated risks to offspring. There is evidence of an 

association between increasing paternal age and disease risk in their offspring; particularly 

neurological and behavioural disorders. Any association between increasing paternal age and 

changes in childhood phenotype and metabolism is unknown. 

 

1.4. Birth order 

1.4.1. The increasing proportion of first-borns 

There is an established trend towards couples having fewer children, leading to a continuing 

increase in the proportion of first-born relative to later-born children in the population 

(Sobotka & Toulemon 2008). The trend towards two-child families began early in the 20
th

 

century and has continued unabated. However, over the past two decades an increasing 

proportion of couples are deciding to have just one child (Sobotka & Toulemon 2008).  

There is a relative paucity of accurate population statistics which directly examine the 

number of children borne by each couple. However, information from Eurostat and the 

OECD point towards an on-going reduction in the number of couples having more than two 

children (Eurostat 2011; OECD 2011a).  

The total fertility rate (TFR) and data on household size (the number of persons in the 

household) also help provide a crude estimate of family size. TFR is the average number of 

children that would be born to a woman over her lifetime. TFR has fallen dramatically in 

OECD countries over the past thirty years, from 2.7 children per woman in 1970 to just 1.7 in 
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2009 (OECD 2011a). Figures in Europe from 2008 show a TFR of just 1.56 live births per 

woman (Eurostat 2011). However, it must be noted that these figures are not a direct 

reflection of a reduction in family size per se, as there are an increasing proportion of women 

choosing not to have any children. Nevertheless, these figures do help demonstrate the trend 

of a reduction in the number of children being borne by couples.  

While some data is available on household size (OECD 2011a), this figure reflects all 

occupants in the same household, which may not comprise exclusively of parents and 

children. Therefore the household occupants may comprise of relatives or adult children. This 

may vary widely between countries and socio-economic groups depending on cultural 

practises as well as economic circumstances. Nevertheless, this data demonstrates a fall in 

household size over the past thirty years (OECD 2011a), and provides some useful 

information on the number of children being borne by couples.  

Thus, it is evident that the proportion of first born children in the population in the developed 

world is increasing and it is likely that first borns represent at least 50% of children born 

today.  

There is some optimism that these trends will change over the coming decades, based on the 

continuing desire of most couples for two or more children (Bacci 2001). However, for a 

variety of reasons, many couples do not achieve their desired number of children.  

Reasons for the reduction in family size are increasing maternal age at childbirth, personal 

choice and socio-economic factors, amongst other reasons (Joffe et al. 2009).  

There is overlap between the reasons for the reduction in family size and those associated 

with the increase in maternal and paternal ages at first childbirth (Mills et al. 2011). The trend 

towards older maternal and paternal ages at first childbirth is pushing an increasing 

proportion of couples into an age range where their fertility may be in decline. This is risk is 

particularly great among women who are highly educated and pursuing a career, who will 

often postpone childbirth beyond 35 years of age (Joffe et al. 2009). There is increasing 

evidence that decline in biological fertility may be a more important reason for smaller family 

size than previously thought (Jensen et al. 2002; Joffe et al. 2009; Leridon & Slama 2008). 

Furthermore, it has been demonstrated that couple who take more than 12 months to conceive 

their first child are less likely to have subsequent children (Joffe et al. 2009). Therefore, by 

virtue of postponing starting a family, many couples do not realise their desired family size. 
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Personal choice of having fewer children is an on-going trend, whereby the “normal” or 

socially acceptable family size is one or two children. Indeed, personal choice on family size 

evolves with increasing age, whereby a person’s desired number of children reduces as they 

themselves get older (Liefbroer 2009). This was well demonstrated in a recent study which 

demonstrated that the majority of adults aim for smaller families with increasing age 

(Liefbroer 2009). Thus, the increase in mean parental age at first childbirth is not only 

leading to a biological impact on fertility, but also has an impact on future parent’s plans 

regarding family size.  

Governments often have financial incentives in place in an effort to increase total fertility 

rates. Examples include tax refunds, ‘children’s allowance’, and extended paid maternity 

leave, amongst other benefits. Despite these incentives, couples may refrain from having 

more than one or two children for financial reasons. Recent figures from the New Zealand 

Inland Revenue Department put the cost of raising a child at NZ$ 300–500 per week (Claus 

et al. 2009). This increases by approximately NZ$ 150–200 dollars per week for each 

additional child. Such costs inevitably exert an influence the number of children a couple 

decide to have (Gauthier 2007).  

The global reduction in marriage rate also has had an impact on family size. It is evident that 

many no longer perceive marriage as a pre-condition for childbirth, which is demonstrated by 

the fact that 37% of children in Europe were born outside of marriage in 2009 (Eurostat 

2011) (Figure 1.5). Couples who are co-habiting rather than officially married are more likely 

to have fewer children, which may be related to a perceived or real reduction in family 

stability (Beets et al. 1998; Liefbroer 2009).  

It is clear that the causes of the observed reduction in family size are inter-dependent and 

multi-factorial. One exception is the “one-child” policy in China that has been in effect for 

more than 30 years, which has also favoured the birth of boys over girls. While current 

thinking is that this policy may change, it is clear that at least 50% of the Chinese population 

were heavily influenced towards having only one child since its implementation (Hvistendahl 

2010). This has had an enormous impact on the current population in China, where men 

outnumber women by 1.2:1 (Branigan 2011). It also has obvious major implications in terms 

of the proportion of first- compared to later-borns, when we consider the total births per 

annum in China exceeds 16 million (UNICEF 2010). Nonetheless, it is clear that overall the 
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proportion of first-born children continues to grow on a global scale with no signs of 

changing. 

 

Figure 1.5. Distribution of paternal age for births in England and Wales in 2003. 
Total births and live births within and outside marriage to fathers aged 13–49. Reproduced and adapted with permission 

from Bray et al. (2006). 

 

 

1.4.2. Impact of birth order on offspring phenotype and disease risk 

1.4.2.1. Birth weight 

It is established that first-borns are approximately 200 grams lighter at birth compared to 

later-borns among offspring born at term (>37 weeks gestation) (Oken et al. 2003; Shah 

2010). While there is no clearly defined mechanism for this weight difference, it is most 

likely associated with differences in implantation and placentation between first and 

subsequent pregnancies.  
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Normal implantation is an intrinsically inefficient process. Approximately 50% of 

pregnancies do not continuing beyond 20 weeks, and 75% of failed pregnancies are due to 

ineffective implantation (Wilcox et al. 1988). This inefficiency may be partially explained by 

the need for a well synchronized and efficient interaction of many physiological factors for 

successful implantation, including local paracrine and autocrine factors, as well as molecular 

and cellular interactions (Norwitz 2006; Norwitz et al. 2001). Furthermore, other factors 

(such as maternal hormonal levels) are also important, and altered maternal oestrogen levels 

have been shown to effect implantation rates (Ma et al. 2003). 

Trophoblast invasion into the uterine endometrium and myometrium are critical steps, which 

when altered may affect pregnancy outcomes (Norwitz 2006). Uterine receptivity to the 

invading trophoblast is also critical to successful implantation (Aplin & Kimber 2004). 

Endometrial angiogenesis and vascular permeability are just two examples of the many 

changes that take place in the uterus at the time of early implantation. Such changes are 

dependent on over thirty known cytokines and growth factors (including IGF-I and IGF-II) 

that are required for effective endometrial receptivity (Norwitz 2006). Ineffective or 

inadequate trophoblastic invasion into the uterine wall may establish a poor flow of nutrients 

to the fetus from the outset, and this is one of the possible mechanisms leading to intra-

uterine growth restriction (IUGR) (Bjercke 1999; Goldman-Wohl & Yagel 2002).  

It has been proposed that implantation during first pregnancy leads to permanent changes in 

the uterine wall, which remain for subsequent pregnancies (Khong et al. 2003). Khong et al. 

(2003) carried out histological examination on hysterectomy specimens from women of 

varying parity, finding that first parity permanently alters the uterine anatomy. Anatomical 

changes in spiral arteries after first pregnancy may modify vascular remodelling in the next 

pregnancy, likely leading to improved nutrient flow to the fetus in subsequent pregnancies 

(Khong et al. 2003). They suggested that this process may explain the difference in birth 

weight (Khong et al. 2003). Their findings were supported by later findings of more 

enhanced trophoblast invasion in non-primiparous pregnancies (Prefumo et al. 2006), and 

increased materno-placental perfusion in later compared to first pregnancies (Hafner et al. 

2000). According to Hafner et al. (2000) this increased flow demonstrated improved 

trophoblastic invasion, and consequently better dilatation of spiral arteries in the second and 

subsequent pregnancies. These is some evidence from animal models to support these 

assertions at a molecular level, as the expression of vascular endothelial growth factors was 

shown to be greater in non-primiparous pregnancies (Litwin et al. 2010).  
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Immunological changes are another proposed mechanism behind the difference in birth 

weight between first and later pregnancies (Vernier et al. 2010). There is evidence suggesting 

that a mother’s immune system perceives non-primiparous pregnancies to be less antigenic, 

allowing more efficient invasion of the uterine wall by the trophoblast (Vernier et al. 2010). 

However, the immunological differences between first and subsequent pregnancies are far 

more complex, and are explored in detail elsewhere (Moffett & Loke 2006; Sacks et al. 

1999). 

 Nevertheless, while alternative mechanisms are possible, the proposed mechanism that first 

pregnancies confer permanent anatomical changes to the uterus leading to improved fetal 

nutrition in subsequent pregnancies remains the most plausible explanation for the higher 

birth weight in later-born offspring.  

This difference between first and later pregnancies is of importance when we consider the 

observed differences in the outcomes between first born and later born offspring.  

1.4.2.2. Height 

Several studies have found an association between first birth order and taller stature, in both 

children (Tanner 1989; Wells et al. 2011; Wingerd & Schoen 1974) and adults (Ghosh & 

Bandyopadhyay 2006; Siervo et al. 2010). However, these findings are not always consistent, 

and two studies found no height differences in childhood across birth order groups 

(Hermanussen et al. 1988; Whitley et al. 2008). Importantly, none of the childhood studies 

corrected for parental height, which is the most important determinant of childhood stature 

(Tanner et al. 1975). Furthermore, all studies included populations across the socio-economic 

spectrum. Families of lower socio-economic status tend to have larger families compared to 

those of higher socio-economic status (Newman 2009). Importantly, socio-economic status 

has a strong impact on height (Silventoinen 2003). As a result, the outcomes from all these 

studies were likely affected by confounding factors. The authors generally did not put 

forward a convincing mechanism for the taller stature of first-borns. 

There is some evidence that onset of puberty is earlier in first-borns (Apraiz 1999; Morris et 

al. 2010), and this means that childhood biological maturity needs to be considered when 

assessing any association between birth order and childhood height.  
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1.4.2.3. Body mass index, body composition, and obesity  

There is an association between being first-born and an increased risk of a higher body mass 

index (BMI) and/or a less favourable body composition in adults (Dahly & Adair 2010; 

Reynolds et al. 2010; Siervo et al. 2010; Stettler et al. 2000).  

Wells and Siervo have published several studies on findings from assessment of the 1993 

Pelotas Birth Cohort (Victora et al. 2008). They found that adult first-borns had higher BMI 

and fat mass than later-borns in one study (Siervo et al. 2010); and in the other, found that 

first-born 4-year-olds had increased BMI, but no difference in BMI or weight was found at 

adolescence (Wells et al. 2011). Recently, Reynolds et al. (2010) assessed 267 adult finding 

higher BMI and fat mass in first-borns. A large study by Dahly & Adair (2010) assessing 970 

Filipino adults found that being first-born conferred a greater risk of central adiposity, 

irrespective of socio-economic status. Stettler et al. (2000) assessed 447 African American 

adults and described a strong association with first-born status and increased BMI. The 

authors proposed that first-borns had increased adiposity by virtue of their relative restriction 

in utero. 

The association between first-born status and higher BMI and fat percentage has been 

assessed as one of many outcomes in studies by Ong & Dunger in assessments of the 

ALSPAC cohort (Ong et al. 2009; Ong et al. 2000; Ong et al. 2002b). However, these 

authors argue that the relationship between first-born status and later increased risk of obesity 

is primarily associated with lower birth weight and more rapid catch-up growth, rather than 

first-born status itself. As already outlined, first-borns tend to be lighter at birth, and therefore 

tend to have a higher risk of excessive catch up growth which may be responsible for 

increased adiposity. While this infers an association between first-born status and higher 

BMI; the association is not predominantly dependent on first birth per-se. It appears to be 

dependent the associated lower birth weight of first-borns, their consequent more rapid post 

natal weight gain and risk of obesity. This is an important differentiation when one considers 

possible mechanisms and causation for these associations.  

1.4.2.4. Blood pressure, metabolism, and glucose homeostasis 

Higher blood pressure in first- compared to later-borns has been described in children 

(Lawlor et al. 2004; Whincup et al. 1989) and adolescents (Siervo et al. 2010; Wells et al. 

2011). For example, Wells et al. (2011) found that adolescents who were first-borns had a BP 
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which was 4 mmHg higher than their later born counterparts. In contrast, Johnson et al. 

(1965) observed no effects of birth order on blood pressure in adulthood.  

A slightly less favourable lipid profile among first-born adults has been described in one 

study (Siervo et al. 2010). However, these first-born adults also had a higher BMI, which is 

well recognised as a risk factor for poorer lipid profiles (Must et al. 1999). A recent study 

found that first-borns have a slightly increased risk of type 1 diabetes (Cardwell et al. 2011), 

with relatively lower exposure to early childhood infection compared to later-born children 

proposed as a possible mechanism. Dunger et al. (2007) have described reduced insulin 

sensitivity in a proportion of first-born children with higher BMI and greater adiposity. 

However, this reduced insulin sensitivity was related to their smaller size at birth and greater 

adiposity in childhood, rather than a direct association with birth order (Dunger et al. 2007). 

Overall, there is some evidence that the first-born fetus is subject to a degree of relative in 

utero restriction compared to later-borns. First- and later-borns also appear to have 

phenotypic differences and differing disease risks. The possible differences in phenotype and 

metabolism between first- and later-borns require further exploration.  

 

1.5. Fertility treatment 

1.5.1. Background and demographics 

Fertility treatment dates back to the first century, when Shang Han Lun (the oldest published 

medical textbook) suggested the use of herbal remedies and acupuncture for treatment of 

infertility (Dharmananda 1989). The emergence of fertility treatment in ‘conventional’ 

medicine occurred in the mid-20
th

 century, with the use of ovulation induction (Anonymous 

1946). Over the past 60 years, there have been huge advances in fertility treatment, and work 

in this area continues to expand. 

The demand for fertility treatment and the number of children conceived with the help of 

fertility medications and ART has increased exponentially, particularly in the past two 

decades. Epidemiological data suggest that 8–20% of couples experience difficulty 

conceiving after 12 months of unprotected intercourse, and that 1 in 10 women of 

reproductive age have had a healthcare visit associated with infertility (Chandra et al. 2005; 

Sunderam et al. 2009). 
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In industrialised countries, it is estimated that 1 to 4% of all children are conceived with the 

help of ART (De Mouzon et al. 2010; Schieve et al. 2009), but rates vary widely between 

countries, largely due to differences in state funding for fertility treatment (De Mouzon et al. 

2010; Sunderam et al. 2009). In Europe, the proportion of ART conceived infants ranges 

from 1% in Italy, 1.5–1.7% in Germany, France and UK, and as a high as 4.1% in Denmark 

(De Mouzon et al. 2010). However, the rate of ART births continues to increase steadily. In 

the USA for example, the number of children conceived by ART rose from 20,000 in 1996 to 

55,000 in 2006 (1.2% of all live births) (Sunderam et al. 2009). 

Fertility medication treatment (without ART) is widely used in clinical practise, but the 

number of children conceived with their help is unknown, as there is a lack of reliable data 

for most countries (De Mouzon et al. 2010). Nonetheless, it is estimated that 2.5 to 7% of 

children in Western countries are conceived with the help of fertility medications or ovarian 

stimulation alone (De Mouzon et al. 2010; Schieve et al. 2009). Practice varies widely 

between countries regarding the prescription of fertility drugs. For example, in some 

countries such as New Zealand the use of drugs such as clomiphene citrate can only be 

prescribed by specialists (The Pharmaceutical Management Agency of New Zealand 2011). 

However, in some European countries and the USA more liberal policies allow these drugs to 

be prescribed by general practitioners (EMA 2011; FDA 2011). More recently, a large 

number of fertility medications have become available for purchase on the internet without 

prescription. These factors make it extremely difficult to accurately ascertain the number of 

children conceived with the assistance of fertility drugs. 

However, population studies in the USA have attempted to evaluate the use of fertility drugs 

among the general population. According to data on approximately 6,000 births from 1997–

2002, 4.2% of women reported the use of some type of maternal fertility treatment, 1.0% 

reported ART use, 1.6% reported clomiphene citrate use without ART, while 1.7% reported 

the use of other fertility treatments (Duwe et al. 2010). These figures of non-ART fertility 

treatment is lower than that obtained by Schieve et al. (2009), who calculated that 4.6% of 

children born in the USA in 2005 were conceived via non-ART fertility treatments. In 

Europe, estimates suggest that percentage of infants were born after non-ART fertility 

treatments was 2.5% in Finland (Gissler 2003) and 2.3% in Denmark (Nyboe Andersen & 

Erb 2006). Overall, it is clear that children conceived with the help of fertility drugs comprise 

a significant proportion of the population.  
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1.5.2. Factors responsible for the increased uptake of fertility treatment 

The reasons for the exponential increase in the use of fertility treatment are multifactorial and 

complex. These include the increasing maternal and paternal ages when couples are 

attempting parenthood, the availability of fertility treatment itself and its funding by 

government agencies. Other more complex reasons include changing societal beliefs whereby 

subfertility or infertility have become less acceptable, leading to couples demanding fertility 

treatment rather than accepting their difficulty or inability to conceive as their ‘fate’.  

As outlined previously, fertility declines with increasing maternal and paternal ages, and 

current societal trends mean that an increasing proportion of couples are attempting 

parenthood at a time when their fertility is in decline (Ledger 2009). Therefore, an increasing 

proportion of couples fail to conceive naturally, and then go on to seek fertility treatment, 

with varying degrees of success.  

The availability of fertility treatment has increased worldwide, and this vast industry 

continues to grow (Beckman & Harvey 2005). While uptake of fertility treatment remains 

dominated by the relatively wealthy (Jain 2006), some countries are providing limited state 

funding for treatment, thus increasing availability to a wider section of the population. As 

discussed by Ledger (2009), the motivations of governments to fund fertility treatment vary. 

Apart from the more obvious public demand for assistance, there are socio-demographic 

interests as well. As a long-term investment, it may be a financially sound investment for the 

national treasury to fund fertility treatment, as these children (who may not otherwise have 

been born) will generate tax revenue throughout their productive lives, by virtue of the 

treatment itself (Chambers et al. 2009; Connolly et al. 2010; Connolly et al. 2008). 

Obviously, funding of fertility treatment as a financial investment is optimised if a healthy 

singleton infant is born, as demonstrated by the “Belgian project” (Ombelet et al. 2005). The 

Belgian Project demonstrated that single embryo transfer, and consequent singleton births, 

led to a dramatic cost reduction in ante natal and neonatal care (Ombelet et al. 2005).  

Another important factor accounting for the increasing rates of fertility treatment uptake is 

the wider eligibility criteria for treatment, with many centres deeming a couple eligible after 

only 6 months of attempting natural conception. While this is clearly important for woman 

over 35 years of age, it has been suggested that it may be more pertinent to adopt a ‘wait and 

see’ approach in younger women (Hughes et al. 2004). However, in line with an increasing 
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societal trend towards ‘instant success’, a ‘wait and see’ approach is likely to be unacceptable 

for many couples.  

The increasing social acceptability of fertility treatment in modern society is another 

important factor leading to increasing fertility treatment uptake, whereby couples are 

becoming more open about fertility problems (Thorn et al. 2009; van den Akker 2001). This 

contrasts with a sense of shame or failure which was quite pervasive in previous decades 

(Darsney 1996; Thomas 1995).  

1.5.3. Infertility, and types of fertility treatment  

Prior to discussing the specifics of fertility treatment, it is necessary to define some 

commonly used terms: 

 Fertility – although ‘fertility’ and ‘fecundity’ are often used interchangeably in the 

literature, ‘fertility’ is the ability to conceive whereas fecundity is the potential ability 

to conceive. While these two terms are similar, it is important to differentiate that a 

fertile woman is able to conceive whereas a fecund woman is potentially able to 

conceive, but may never go on to conceive (Gnoth et al. 2005).  

 Subfertility – generally accepted as the failure to conceive after more than 12 months 

of regular, unprotected intercourse (Fauser et al. 2005; Gnoth et al. 2005).  

 Infertility – although inconsistently defined in the literature, the World Health 

Organization defines infertility as the inability to conceive within two years of 

exposure to the risk of pregnancy (Larsen 2005; World Health Organization 2001).  

It is not necessary to outline all of the causes of subfertility or infertility for the purpose of 

this thesis. In broad terms the causes and frequency of subfertility and infertility can be 

classified as: unexplained (28%), male factor (24%), ovulatory failure (21%), tubal factors 

(14%), endometriosis (6%), and other causes (7%) (Ganeshan & Malik 2012). 

Investigations of infertility are directed by clinical history, and may comprise of serum 

hormone levels, semen analysis, abdominal ultrasound, as well as more invasive tests such as 

hysteroscopy and laparoscopy. A basic work-up of a couple with difficulty conceiving varies 

among clinics and countries, but tends to be a clinical assessment followed by basic semen 

analysis, female serum hormone levels, and ultrasound (Balasch 2000). In recent years, time 

consuming and invasive tests tend to be avoided unless strongly indicated, as the diagnostic 
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yield is low. Furthermore, time and money is often better spent on empiric treatment for 

infertility, rather than on exhaustive investigations (Brosens et al. 2004).  

Fertility treatment can be divided into two main areas: namely, ART and others (non-ART). 

The definition of ART varies, but the CDC (US Centre for Disease Control and Prevention) 

defines it as all fertility treatment in which both eggs and sperm are handled (Centers for 

Disease Control and Prevention 2006). The CDC does not classify ovarian stimulation (via 

medication) or sperm manipulation alone (e.g. intra-uterine insemination) as ART. In the 

following sections, I will discuss the various aspects of fertility treatment, the departure of 

this treatment from natural conception, and the changes it causes in gametes and to the early 

fetal environment.  

1.5.4. Assisted reproductive technology (ART) 

Our research focuses on the outcomes of children conceived with ovarian stimulation fertility 

treatment (without ART), but there is a marked paucity of information on its possible effects 

on maternal physiology, genes, epigenetics, and offspring outcomes. Therefore, it is 

necessary to explore the available information on ART, which has been the target of far more 

research. In addition, a number of aspects of ART are central to our hypotheses, as they 

provide an insight into the possible impact of ovarian stimulation alone on gametes, maternal 

factors, and childhood outcomes. As a result, while assessment of ART offspring is not the 

subject of this research, it is important to outline its various aspects.  

ART consists largely of either in vitro fertilisation (IVF) or intra-cytoplasmic sperm injection 

(ICSI). Recent data show that ICSI comprises 50 to 90% of ART procedures, without a clear 

reason for the greater uptake of this procedure over IVF (De Mouzon et al. 2010; Nyboe 

Andersen et al. 2008). ART involves several steps that are substantially different from natural 

conception and to ovarian stimulation alone: 

1. Ovarian stimulation – discussed in detail is section 1.5.6. 

2. Oocyte retrieval and preparation – oocytes are removed by needle aspiration, and are 

then denuded of their surrounding cumulus cells prior to micromanipulation. 

3. Sperm preparation – removal of semen and extraction of spermatozoa.  

4. External fertilisation or ICSI – in IVF, sperm and oocytes are externally fertilised; in 

contrast, in ICSI a sperm is injected into the oocyte, thus introducing sperm acrosome 

and digestive enzymes into the ooplasm (Allen & Reardon 2005). 
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5. Embryo/blastocyst culture  

6. Embryo freezing and thawing – it is estimated that over 25% of ART children are 

now born after cryopreservation of embryos, blastocysts, or oocytes. 

7. Pre-implantation genetic diagnosis (PGD) – only performed in <1% of ART 

procedures. 

8. Embryo selection and intra-uterine transfer  

1.5.5. Non-ART fertility treatments 

Non-ART fertility treatments fall outside the aforementioned definition of ART, and thus 

encompass a wide range of drug and non-drug treatments of infertility. It is not practical to 

outline all of the various non-ART fertility treatments on offer, as they range from 

acupuncture and herbal remedies to a variety of drug treatments and dietary interventions. For 

the purpose of this thesis, only ovulation induction and ovarian stimulation are discussed. 

Ovulation induction and ovarian stimulation are often confused in the literature, and there is 

considerable overlap between the drugs utilised for both treatments. However, the two 

treatments have different aims and also differ according to the type of patient treated. 

Ovulation induction is a pharmacological intervention in anovulatory women to induce 

mono-ovulatory menstrual cycles. Patients are generally women with polycystic ovarian 

syndrome or hypogonadotrophic hypogonadism (Hughes 1997; Macklon et al. 2006). In 

contrast, ovarian stimulation is a pharmacological intervention in women with normal 

menstrual cycles, with the aim to induce development of more than one dominant follicle 

(Fauser & Macklon 2004).  

There is again some confusion in the literature regarding terminology as ovarian stimulation 

may mean the stimulation of multiple follicles production (6 to 10) for the purpose of ART, 

or the stimulation of one to three follicles for the purpose of fertility drug treatment without 

ART. Therefore, for clarity I will refer to ovarian stimulation for the purposes of non-ART 

fertility treatment as “ovarian stimulation alone” and abbreviate it as “OSA”. When referring 

to any other type of ovarian stimulation, the context will be made clear.  

1.5.5.1. Ovarian stimulation 

As mentioned previously, ovarian stimulation is a process common to OSA and ovarian 

stimulation for ART, and not surprisingly, there is some overlap in the drugs used in these 

processes. OSA drug regimens tend to be more straight-forward and usually involve just one 
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or two medications. Two drugs in particular are frequently used either alone or in 

combination: clomiphene citrate and FSH. However, OSA may also involve human chorionic 

gonadotrophin and intra-uterine insemination as adjunctive treatments. 

ART drug regimens may also include FSH (but at comparatively higher doses) or human 

menopausal gonadotrophin (HMG, a combination of FSH and LH). In addition, ART often 

includes adjunctive treatment with GnRH agonists and antagonists as part of ovarian 

stimulation.  

Clomiphene citrate 

Clomiphene citrate (or just ‘clomiphene’) is a non-steroidal oestrogen antagonist, which was 

originally developed in the 1950s for the treatment of breast cancer and endometrial 

hyperplasia (Kistner & Smith 1960). In 1961, Greenblatt et al. first reported its use as an 

ovulation induction agent in anovulatory women. Since then, clomiphene remains the most 

prescribed drug therapy for anovulatory infertility worldwide (Macklon et al. 2006). 

Clomiphene is also used for unexplained infertility as it increases the likelihood of pregnancy 

by increasing the number of pre-ovulatory follicles or possibly by correcting subtle ovulatory 

dysfunction (Guzick et al. 1998). Clomiphene was used for ovarian stimulation for ART in 

many centres in the 1980s and 1990s, but has been largely replaced by FSH and other drugs 

(Gibreel et al. 2010).  

Clomiphene contains an unequal mixture of two isomers, enclomiphene and zuclomiphene. 

Enclomiphene has a relatively short half-life. In contrast, zuclomiphene not only has a much 

longer half-life (detectable in plasma one more than one month after administration), but it 

may also accumulate over consecutive cycles (Macklon et al. 2006). Clomiphene primarily 

works by blocking hypothalamic oestrogen receptors. This signals a lack of circulating 

oestrogen to the hypothalamus, inducing a change in the pattern of release of GnRH, and thus 

increasing endogenous FSH secretion (Macklon et al. 2006). Release of even a small amount 

of FSH from the pituitary will often induce ovulation (Hillier 1994). 

Clomiphene is usually given orally for 5 days from the beginning of a cycle, generally 

commencing at a lower dose of 50 or 100 mg per day. Dose requirements for the desired end-

point of ovarian stimulation vary widely amongst recipients of clomiphene, ranging from 

exquisite sensitivity and excess follicle production at a low dose, to clomiphene resistance 

and failure to ovulate even at higher doses (Fauser & Macklon 2004; Homburg 2005). 

Therefore, in order to monitor the number of follicles produced by ovarian stimulation, some 
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centres measure serum oestradiol and/or LH levels as well as perform an ovarian ultrasound. 

In this way, timed intercourse or intra-uterine insemination can be avoided if excess follicle 

production has occurred. This helps to avoid multiple pregnancies, which is one of the most 

serious complications of OSA. Unfortunately, many centres do not monitor follicle 

production, and the risk of twins and higher order multiple pregnancies after OSA treatment
 

still runs at
 
5 to 40% (Fauser et al. 2005; Källén et al. 2002; Wright et al. 2008). 

There are conflicting views regarding the efficacy of clomiphene in the treatment of 

unexplained infertility (Hughes et al. 2010). While clomiphene leads to ovulation in almost 

70% of treated women, the relatively low pregnancy rate of 4 to 5% is thought to be due to 

the anti-oestrogenic effects of clomiphene on the endometrium (Dickey 1993), cervical 

mucous (Acharya et al. 1993), and increased levels of LH (Homburg et al. 1988), all of 

which causing luteal phase dysfunction. There are several combinations of therapies with 

clomiphene that attempt to overcome these unwanted effects. These include measures such as 

intra-uterine-insemination (IUI) so that sperm can by-pass hostile cervical mucous (ESHRE 

et al. 2009), and additions of drugs such as human menopausal gonadotrophin, recombinant 

FSH, and other fertility drugs (Macklon et al. 2006). 

Clomiphene alone achieves pregnancy rates of approximately 5.3% per cycle, but this rate 

increases to approximately 8% when combined with IUI (Guzick et al. 1998; Homburg 

2005). Clomiphene combined with IUI and/or other drugs is recommended as first line 

treatment for unexplained infertility in many countries (National Institute for Clinical 

Excellence 2004; Pandian et al. 2009; Quaas & Dokras 2008; Royal College of Obstetrics 

and Gynaecology 1998). However, large scale studies
 
have yielded conflicting findings on its 

effectiveness, with some studies finding an increase in pregnancy rates, but others finding 

poor evidence for its use (Bhattacharya et al. 2008; Chambers et al. 2010; Hughes et al. 

2010; Morris et al. 2011; Wordsworth et al. 2011). Nonetheless, OSA with clomiphene citrate 

and/or FSH (with or without IUI) is still widely used as a fertility treatment, possibly because 

it is less invasive and less expensive than ART (Chambers et al. 2010; Quaas & Dokras 

2008). 

It is important to note that clomiphene is associated with actions other than stimulation of 

ovulation. These include changes in the endometrial thickness (Nakamura et al. 1997; 

Sereepapong et al. 2000) and adhesion (Valbuena et al. 2001), alterations in oestrogen 

receptor numbers (Nakamura et al. 1997), as well as changes in intra-uterine chemokines, 
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cytokines, and growth factors (Boomsma et al. 2010). Further, clomiphene has been 

associated with changes in meiotic spindles in oocytes in animal studies (London et al. 2000), 

and it may affect oocyte quality and embryo development (Oktay et al. 2000). Although there 

is no direct evidence linking clomiphene to methylation changes, such changes can be 

associated with tamoxifen (Badia et al. 2007), which is a structurally similar compound to 

clomiphene (Homburg 2005). 

Human chorionic gonadotrophin (HCG) 

HCG is often used as an adjuvant in OSA treatment, as there is evidence that, given at the 

appropriate time, HCG triggers ovulation when there is a delayed or absent LH surge 

(Homburg 2005). Although it is unclear if it leads to an improvement in pregnancy rates, the 

utilisation of HCG triggering as part of OSA treatment is relatively common (Homburg 2005).  

Intra-uterine insemination (IUI) 

IUI is widely used as a combination treatment with ovarian stimulation using clomiphene 

citrate or gonadotrophins. This is despite mixed results on its effectiveness at improving 

pregnancy rates in couples with unexplained infertility (Crosignani 2009; Wordsworth et al. 

2011). Regardless of its effectiveness, the procedure of sperm preparation for IUI deviates 

from natural conception. Although subject to various procedural differences, IUI usually 

involves selection of the most motile sperm. IUI often involves also separation of sperm from 

semen ejaculate (Crosignani 2009), which may remove male seminal cytokines and other 

important semen constituents (Boomsma et al. 2007; Robertson et al. 2009; Sjoblom et al. 

2005). 

Follicle stimulating hormone (FSH) 

FSH has been used for ovarian stimulation in fertility treatment since the 1960s and has 

largely replaced clomiphene as the main agent for ovarian stimulation for ART (Macklon et 

al. 2006; Sterrenburg et al. 2011). FSH is also used for OSA, either as mono-therapy or in 

combination with clomiphene (Berker et al. 2011).  

During the early follicular phase of the normal menstrual cycle, endogenous FSH levels rise 

and then gradually fall in the mid to late follicular phase. This leads to the selection of a 

single dominant follicle. Ovarian stimulation with exogenous FSH (or with agents such as 

clomiphene that indirectly increase endogenous FSH) maintains FSH concentrations above 

the so-called “threshold” level for a longer period of time. This threshold level is required to 
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maintain follicle development and maturation, and prolongation of this phase leads to 

production of increased follicle numbers (Zeleznik 2004).  

Not unlike clomiphene, the individual dose response to exogenous FSH is not always 

predictable, with failure to ovulate and ovarian hyperstimulation syndrome at the two ends of 

the dose-response spectrum. However, FSH is usually well tolerated and highly effective at 

increasing follicle numbers. Furthermore, monitoring of dose-response with serum LH or 

oestradiol levels (and/or ultrasound) guides the physician in subsequent treatment steps. 

Required doses of FSH vary considerably, depending on whether the treatment aim is 2 or 3 

follicles for OSA or 6 to 10 follicles for ovarian stimulation for ART. FSH doses as mono-

therapy for OSA are generally 75-150 IU per day, and similar doses are given on alternative 

days when used as adjunctive treatment with clomiphene (Willis et al. 2011). Doses of FSH 

for ovarian stimulation for ART are appreciably higher, starting from 100–300 IU per day, 

which are often increased in subsequent cycles if the response is poor (Macklon et al. 2006). 

FSH is much more rapidly cleared from the circulation than clomiphene, with a terminal half-

life of approximately one and one-half days (Balasch et al. 2003). 

While exogenous FSH administration does not lead to the same marked anti-oestrogenic 

effects as clomiphene, it has been shown to have several effects other than ovarian 

stimulation. FSH may lead to alterations in endometrial receptivity, as well as changes in 

endometrial growth factor concentrations and cell adhesion molecule profiles (Macklon & 

Fauser 2000).  

FSH and ‘genetic competence’ 

Elevations in FSH (both from exogenous and endogenous sources) have been implicated in 

alterations in ‘genetic competence’ of the human oocyte and embryo, with suggestions that 

FSH may have a role in oocyte aneuploidy (Broekmans et al. 2009). The exact mechanism 

leading to aneuploidy in human oocytes remains poorly understood. While increasing 

maternal age is definitely linked to higher rates of aneuploidy (Hassold & Hunt 2001), there 

is some debate as to whether endogenous FSH has a direct causative effect on human 

aneuploidy (Dursun et al. 2006; Kline et al. 2011). However, animal studies suggest that 

ovarian stimulation leads to DNA changes and an increase in chromosomal abnormalities 

when compared to unstimulated oocytes and embryos (Roberts et al. 2005; van Blerkom & 

Davis 2001). Furthermore, several human studies have linked exogenous FSH used in ovarian 

stimulation for ART with increased aneuploidy rates (Kaleli et al. 2005; Katz-Jaffe et al. 
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2005; Munne et al. 1997). It is proposed that FSH may alter oocyte maturation and the 

completion of meiosis, leading to oocyte and/or embryo chromosome dysfunction and 

aneuploidy (Hodges et al. 2002; Massie et al. 2011; Verpoest et al. 2008).  

Another possible reason for the observed higher rate of aneuploidy in stimulated oocytes is 

that ovarian stimulation (for ART or OSA) bypasses the natural process of selecting the most 

competent oocyte for ovulation, which may lead to recruitment of poorer quality immature 

oocytes (Verberg et al. 2009). Baart et al. (2007) demonstrated a relationship between higher 

FSH doses in ovarian stimulation for ART and elevated aneuploidy rates, suggesting that 

milder ovarian stimulation may lead to fewer aneuploid oocytes or embryos.  

Thus, although limited, there is some evidence that FSH may have a role in DNA 

competence, and may be associated with an increased risk of generation of aneuploid 

oocytes. However, it is clear that there are many other factors involved in aneuploidy risk. 

These include maternal age, background subfertility of parents, amongst others (Broekmans 

et al. 2009; Massie et al. 2011; Oliver et al. 2008; Verpoest et al. 2008).  

Ovarian stimulation, exogenous FSH, imprinting, and epigenetics  

The purpose of OSA is to ensure ovulation of one (and often more than one) oocyte to 

increase the chances of conception. Therefore, the very nature of this intervention means that 

immature oocytes are directed to ovulate. Gametogenesis is a complex process whereby 

oocytes gain ‘genetic competence’ in preparation for ovulation, and epigenetic regulation is 

intrinsic to this process (Allegrucci et al. 2005). 

As outlined, OSA treatment leads to a surge of endogenous FSH through the actions of 

clomiphene and/or exogenous FSH. Several animal studies (reviewed by van Montfoort et al. 

2012), but only one human study (Sato et al. 2007), have been conducted to date on the 

impact of exogenous FSH administration for ovarian stimulation on epigenetics and 

imprinted genes. These studies have been almost exclusively carried out on oocytes that have 

undergone ovarian stimulation for ART, and some have found that ovarian stimulation (for 

ART) is associated with epigenetic changes in oocyte genes (Liu et al. 2011a; Market-Velker 

et al. 2010; Sato et al. 2007). Such changes include alteration in DNA methylation and gene 

expression, as well as changes in the methylation of H19, an imprinted gene involved in post-

natal growth (Market-Velker et al. 2010). A recent study suggests that the degree of ovarian 

stimulation in ART may influence the extent of methylation change in the stimulated oocyte 

(Market-Velker et al. 2010).  
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Several studies have also examined the effects of ART on DNA methylation of imprinted and 

non-imprinted genes on embryos (Santos et al. 2010a) and offspring (Gomes et al. 2009; 

Horsthemke & Ludwig 2005; Katari et al. 2009; Oliver et al. 2011; Puumala et al. 2012a; 

Santos et al. 2010b; Sato et al. 2007; Tierling et al. 2010), yielding conflicting results. 

However, these studies assessed genes of ART offspring, and it is unclear whether ovarian 

stimulation or the subsequent steps in ART were responsible for any observed differences.  

Ovarian stimulation has also been implicated in changes in the homocysteine pathway 

(Ebisch et al. 2007) and folate metabolism (Boxmeer et al. 2008), which are important in 

gametogenesis and folliculogenesis respectively. Research in this area is on-going, and is 

likely to yield further insight into the possible contribution of OSA and ovarian stimulation for 

ART and other mechanisms to the generation of epigenetic changes in stimulated oocytes.  

1.5.6. Complications and consequences of ART 

As already stated, there is a marked paucity of research on outcomes of children conceived 

with OSA. Therefore, the relative wealth of information on outcomes and risks to ART 

children provides an insight into the complications and consequences of fertility treatment to 

offspring. 

The following is the unaltered version of a review published in Human Reproduction 

outlining the complications and consequences to offspring of ART fertility treatment. 

 Authors: Savage T, Peek J, Hofman PL, and Cutfield WS 

 Title: Childhood outcomes of assisted reproductive technology  

 Journal: Human Reproduction 

 Year of publication: 2011 

 Volume: 26 

 Issue: 9 

 Pages: 2392-2400 

 Impact factor: 4.48 

 Journal’s aims and scope: “Human Reproduction features full-length, peer-reviewed 

papers reporting original research, clinical case histories, as well as opinions and 

debates on topical issues. Papers published cover the scientific and medical aspects of 

reproductive physiology and pathology, endocrinology, andrology, gonad function, 

gametogenesis, fertilization, embryo development, implantation, pregnancy, genetics, 
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genetic diagnosis, oncology, infectious disease, surgery, contraception, infertility 

treatment, psychology, ethics and social issues. The highest scientific and editorial 

standard is maintained throughout the journal along with a rapid rate of publication.” 

1.5.6.1. Introduction 

The definition of assisted reproductive technology (ART) varies widely, but the CDC (US 

Centre for Disease Control and Prevention) defines it as all fertility treatment in which both 

eggs and sperm are handled [Sunderam et al., 2009]. Until relatively recently, IVF made up 

the majority of ART procedures, but the utilization of ICSI has steadily increased, and it now 

represents 40–70% of ART procedures [de Mouzon et al., 2010]. Further, approximately 

three-quarters of ART pregnancies are achieved through fresh embryo transfer, and the 

remainder through frozen embryos that are thawed and then transferred [Sunderam et al., 

2009]. 

From its inception in 1978, there has been a worldwide increase in uptake and demand for 

ART with recent data suggesting that children conceived by ART comprise anywhere 

between 1 and 4% of the newborn population in industrialized countries [de Mouzon et al., 

2010]. There is a continued worldwide increase in the number of ART conceived children 

due to several possible reasons. These include a shift in reproductive behaviour towards the 

postponement of childbirth leading to a consequent increase in the proportion of women at 

risk of infertility; increased availability of treatment and state funding for ART in some 

countries [Leridon and Slama, 2008; Sunderam et al., 2009]. The indications for ART 

treatment of infertility have also broadened significantly over the past decade, leading to 

many couples utilizing ART instead of expectant management or other treatment options 

[Reindollar et al., 2010]. 

Outcomes of ART-conceived pregnancies are an area of intense scrutiny and research; with 

vast publications assessing ART treatment success, perinatal outcomes and longer-term 

outcomes of ART children. The overwhelming majority of studies to date have assessed ART 

childhood outcomes in comparison with those of the general population. There is emerging 

evidence that in order to properly determine any actual impact of the ART process itself, 

ART outcomes may be better compared with those of children born to subfertile parents. 

Subfertility is generally accepted as the failure to conceive naturally after 12 months or more 

of unprotected intercourse [Gnoth et al., 2005] and affects between 8 and 20% of couples 

[Oakley et al., 2008]. As the majority of ART parents are subfertile [Zhu et al., 2006; Källén 
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et al., 2010d], it is becoming increasingly evident that underlying maternal or paternal 

subfertility may be an important factor in obstetric, neonatal and childhood outcomes in the 

ART population [Williams and Sutcliffe, 2009]. 

The possible impact of parental subfertility on childhood outcomes is largely accounted for 

by utilizing naturally conceived children of subfertile parents as a comparison group for ART 

children. However, this effect is not completely eliminated, as children of subfertile parents 

were eventually conceived naturally, whereas the ART children were not. 

In this review, we examine the evidence to date assessing if outcomes of ART-conceived 

children are different from those of naturally conceived children, and whether mechanisms 

such as epigenetics influence these changes. 

1.5.6.2. Multiple births and perinatal outcomes 

Multiples births occur more commonly in ART pregnancies. In most developed countries, 

30–50% of all twin pregnancies result from ART [Ombelet et al., 2005; Pandian et al., 2009; 

Sunderam et al., 2009; Gelbaya et al., 2010]. Multiple pregnancies occur in 25–50% of ART 

[Martin et al., 2009; Sunderam et al., 2009; de Mouzon et al., 2010] and 5–40% of ovarian 

stimulation pregnancies [Källén et al., 2002; Fauser et al., 2005; Wright et al., 2008]. The 

wide variation in these figures is due to the differing practices between centres and countries 

on the number of embryos transferred and ovarian stimulation practices [Maheshwari et al., 

2011]. While doubleembryo transfer remains common practice, single embryo transfer (SET) 

is increasing in popularity; particularly, when involving extended culture to blastocyst to 

increase the likelihood of successful implantation [Papanikolaou et al., 2008]. SET in ART 

significantly reduces the rate of twins and higher order multiples, yet this practice remains 

sporadic [Bergh, 2005; Ombelet et al., 2005; Gerris, 2009]. The Belgian project encouraging 

SET led to a reduction in the rate of twins from 19 to 3% and of higher order multiples to 

almost 0% [Ombelet et al., 2005]. A long-term Swedish population study showed that the 

increasing utilization of SET led to a reduction in twins from 20 to 5%, as well as a 

corresponding reduction in rates of premature births and low birthweight infants in the ART 

population [Källén et al., 2010d]. 

While some reviews suggest that cumulative live birth rates from SET is superior to that of 

multiple embryo transfer [Pandian et al., 2009; Gelbaya et al., 2010], a recent meta-analysis 

concluded that SET yields a lower live birth rate than a double-embryo transfer (27 versus 
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42%); but that this difference is almost completely overcome by an additional frozen SET 

cycle in the SET patients [McLernon et al., 2010]. Increase in the rate of SET has led to 

greater availability of frozen embryos for future cycles, and it is estimated that over 25% of 

ART children are now born after cryopreservation of embryos, blastocysts, or oocytes 

[Källén et al., 2010d]. Recent evidence suggests that obstetric and perinatal outcomes are 

comparable irrespective of whether pregnancy is a result of fresh or frozen embryo transfer 

[Wennerholm et al., 2009]. 

Perinatal outcomes in ART are most significantly influenced by multiple pregnancies, which 

have more than a 60% risk of low birthweight or premature delivery in the ART population 

[Sunderam et al., 2009]. Helmerhorst et al. found that ART twins fared better in the peri-natal 

period in comparison with all naturally conceived twins (monozygotic and dizygotic) 

[Helmerhorst et al., 2004]. However, perinatal outcomes of dizygotic are better than those of 

monozygotic twins, and the proportion of dizygotic twins in the ART population is greater 

than among naturally conceived twins [Källén et al., 2010e]. Recent studies examining the 

outcomes of dizygotic twins in isolation showed that ART twins fare worse than naturally 

conceived twins in the perinatal period [Hansen et al., 2009; Källén et al., 2010e]. 

The contribution of the ART population to the premature and low birthweight population 

varies between countries, but remains high. Over 41% of all ART infants born in the USA in 

2006 were delivered preterm, accounting for 4% of all preterm infants that year, costing more 

than US$1 billion in neonatal care alone [Martin et al., 2009; Sunderam et al., 2009]. Even in 

ART singleton pregnancies, there is an almost 2-fold increase in the risk of premature birth, 

as well as an associated higher rate of small for gestational age (SGA) and low birthweight 

infants [Helmerhorst et al., 2004; Sunderam et al., 2009; Källén et al., 2010d]. 

However, the role of ART as a pivotal factor in the increased risk of premature delivery and 

low birthweight has been called into question; with several studies [Williams et al., 1991; 

Joffe and Li, 1994; Henriksen et al., 1997; Draper et al., 1999; Basso and Baird, 2003; 

Ludwig, 2009; Williams and Sutcliffe, 2009] suggesting that background subfertility and 

time to pregnancy may be more important. For example, a study of singleton ART offspring 

compared with naturally conceived sibling controls found no differences in rates of low 

birthweight, premature or SGA births [Romundstad et al., 2008]. Overall, there is growing 

evidence that the contribution of parental subfertility and other factors to adverse perinatal 

outcomes may be equally, if not more important, than the contribution of ART itself. 
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1.5.6.3. Neurological and neuro-developmental outcomes 

Neurological abnormalities appear to occur more commonly in ART-conceived children. 

However, there is increasing evidence that factors other than the ART procedure itself, such 

as perinatal events, may be largely responsible for these findings. 

Several studies have found an increased risk of cerebral palsy (CP) or neurological 

abnormalities among the ART population [Ericson et al., 2002; Strömberg et al., 2002; 

Pinborg et al., 2004; Källén et al., 2005; Lidegaard et al., 2005; Hvidtjørn et al., 2006, 2010; 

Klemetti et al., 2006; Romundstad et al., 2008]. However, the authors concluded that these 

outcomes were generally explained by higher rates of multiple pregnancies, prematurity and 

low birthweight among ART offspring. The wider use of SET has reduced the number of 

premature and low birthweight ART infants [Källén et al., 2010d]. Consequently, it would be 

expected that a reduction in CP rates would follow, and there is some indication that this is 

the case [Källén et al., 2010a]. 

Recent studies have included children of subfertile parents as a comparison group to ART 

children, finding similar neurological outcomes [Middelburg et al., 2009; Middelburg et al., 

2010]. However, a recent large population study suggested that ART may be a more 

important factor than parental subfertility in CP risk [Zhu et al., 2010]. Further studies are 

needed to clarify the possible contribution of background subfertility to neurological 

outcomes in ART children. 

The vast majority of studies assessing neuro-cognitive outcomes (i.e. locomotor, cognitive, 

speech and language and behaviour) in ART children showed no differences between ART-

conceived and naturally conceived singletons; when adjusted for recognized confounding 

factors such as low birthweight and prematurity [Koivurova et al., 2003; Place and Englert, 

2003; Ponjaert-Kristoffersen et al., 2005; Leunens et al., 2008; Hvidtjørn et al., 2009]. 

Similarly, there is no evidence of an increased risk of autism among ART children 

[Maimburg and Væth, 2007; Hvidtjørn et al., 2009, 2011]. Current evidence suggests that the 

ART process itself does not lead to an increased risk of adverse neuro-cognitive outcomes or 

autism. 

A weak association between ART and drug-treated attention deficit hyperactivity disorder 

has been reported, but the association is no longer significant with adjustment for subfertility 

[Källén et al., 2011]. Further, there are no concerns about psycho-social issues or family 
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relationships in the ART population, with a suggestion that ART children may fare a little 

better than naturally conceived children in this area [Barnes et al., 2004; Basatemur and 

Sutcliffe, 2008; Colpin and Bossaert, 2008; Wagenaar et al., 2008; Wagenaar et al., 2011]. 

1.5.6.4. Growth 

The large offspring syndrome is a well-recognized adverse consequence of cultured embryos 

in cattle and sheep [Young et al., 1998]. This is proposed to be due to altered expression of 

the insulinlike growth factor (IGF)-II receptor, which is imprinted in animals but not humans 

[Young et al., 2001]. These observations have triggered interest in the growth patterns of 

ART-conceived children. 

There are several studies that have examined the growth and weight patterns of ART-

conceived children, and these have revealed conflicting results. Most of these studies 

included children that were born prematurely, SGA or as a result of multiple pregnancies. 

This is not surprising considering the higher rate of multiple and premature births associated 

with ART [Sunderam et al., 2009; de Mouzon et al., 2010]. At one extreme, earlier studies 

reported lower weight and length percentiles in ART-conceived children at 2 and 3 years of 

age [Brandes et al., 1992; Koivurova et al., 2003]. However, a large uncontrolled study of 

400 IVF-conceived children aged 6–13 years found no difference in height or weight 

compared with population-based growth data [Olivennes et al., 1997]. In addition, inclusion 

of ICSI in the IVF process did not influence children’s height or weight compared with 

controls [Belva et al., 2007]. Further, a large European multi-centre study found no difference 

in height or weight among IVF, ICSI and naturally conceived children at 5 years of age 

[Bonduelle et al., 2005]. Kai et al. assessed two cohorts of ART children (longitudinally from 

0–36 months and a cross-sectional cohort at 5 years of age) finding that ICSI children were 

shorter than IVF and naturally conceived controls at 3 years, but no different at 5 years [Kai 

et al., 2006]. They also found a lower serum IGF-I level in ICSI boys and IVF-conceived 

girls at 3 months, but this difference did not persist into childhood [Kai et al., 2006]. In 

contrast, others found that ART children were taller than naturally conceived controls or the 

general population [Saunders et al., 1996; Pruksananonda, 2001; Miles et al., 2007; Makhoul 

et al., 2009]. 

Few studies have provided longitudinal assessment of growth in childhood. Celeen et al. 

analysed height and weight data (from 3 months to 4 years) of IVF-conceived children 

compared with naturally conceived controls of subfertile parents [Ceelen et al., 2009]. They 
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found that ART infants had a lower weight, height and BMI standard deviation score (SDS) 

at 3 months, and a lower weight SDS at 6 months of age [Ceelen et al., 2009]. ART children 

then showed greater growth velocity than controls in late infancy, but with no difference in 

height at 3 years of age [Ceelen et al., 2009]. However, this study did acknowledge the 

potential effect of parental subfertility on growth outcome. We have identified only one other 

study that utilized this important comparison group [Makhoul et al., 2009]. 

In a recent study of growth in ART children, Basatemur et al. found no difference in height or 

weight in IVF or ICSI subjects between 5 and 12 years [Basatemur et al., 2010]. However, 

the study population did include children who were low birthweight and born as early as 32 

weeks gestation. 

As previously stated, most studies included children born prematurely, SGA or from multiple 

pregnancies, factors that are known to be associated with impaired childhood growth [Leger 

et al., 1997; Fewtrell et al., 2000; Peralta-Carcelen et al., 2000]. Thus, ART populations 

including these subjects would likely be shorter than naturally conceived populations that 

have far fewer low birthweight or prematurely born children. Therefore, it is surprising that 

these studies largely show no difference in height between IVF- and naturally conceived 

offspring. 

There have been only a handful of studies that have corrected for prematurity and birthweight 

to determine any actual effects of the ART process itself on childhood growth [Miles et al., 

2007; Makhoul et al., 2009; Green et al., 2010]. In a matched control study, Miles et al. 

analysed the growth and metabolic parameters of 69 ART-conceived children from fresh 

embryo transfers [Miles et al., 2007]. Compared with controls, ART-conceived girls were 

taller, had higher IGF binding protein 3 levels and displayed a trend towards higher IGF-I 

levels. ART children also had higher high-density lipoprotein (HDL) and lower triglyceride 

levels than controls. The findings were particularly relevant as it was the first study to correct 

for parental heights and exclude children born premature or with low birthweight. The same 

group also assessed ART-conceived children from frozen embryo transfers, again showing 

that ART-conceived girls were taller than matched controls [Green et al., 2010]. 

Recently, Makhoul et al. published findings on the follow-up of children with very low 

birthweight aged 6 to 10 years conceived by ART or fertility medications [Makhoul et al., 

2009]. This group accounted for the genetic height and the low birthweight status in their 

analyses, and found that the ART and fertility medication-conceived groups were 
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significantly taller than controls [Makhoul et al., 2009]. Currently, there is no clear 

explanation for the taller stature or the gender bias observed. 

It is clear that many studies on the growth of children conceived by ART had confounding 

factors and methodological weaknesses. Larger studies including appropriately matched 

groups are needed to confirm these latter findings. Further, given that ICSI and/or frozen 

embryo transfer are common major additions to ART, the effects of these processes on 

offspring outcome also need to be clarified. 

1.5.6.5. Metabolism and gonadal function  

There are limited and conflicting data on the metabolic and hormonal profiles of ART 

children, as summarized by a recent review [Kanaka- Gantenbein et al., 2010]. Examples of 

observed differences in ART children compared with controls include higher fasting glucose 

[Ceelen et al., 2008b], higher HDL and lower or higher triglycerides [Miles et al., 2007; 

Sakka et al., 2010]. Such differences were minor and remained well within the normal range.  

Marginal increases in systolic and diastolic blood pressure have also been observed in ART 

children [Ceelen et al., 2008b]. Although not clinically significant in childhood, subtle blood 

pressure increases may be amplified in adulthood [Law et al., 1993]. 

There is evidence of an increased rate of early adrenarche and polycystic ovarian syndrome in 

women who were born prematurely or SGA [Pandolfi et al., 2008; Melo et al., 2010]. 

However, only one study has assessed puberty in ART children, finding no difference in 

pubertal staging in comparison with children of subfertile couples [Ceelen et al., 2008a]. 

Interestingly, ART-conceived girls had a significantly higher dehydroepiandrosterone sulfate 

and luteinizing hormone levels than naturally conceived controls. Although the cause for this 

was unclear, there were no apparent clinical effects [Ceelen et al., 2008a]. The group was not 

evaluated further for disorders such as polycystic ovarian syndrome. 

There are potential concerns for the future fertility of ART offspring, but these are yet to be 

clarified as the majority of this population is still relatively young. Current concern relates 

mostly to the future fertility of ICSI-conceived boys. Limited evidence suggest that ICSI boys 

have an increased rate of genital abnormalities [Ludwig et al., 2009], lower serum 

testosterone levels at 3 months [Mau Kai et al., 2007], but have salivary testosterone levels in 

puberty comparable with controls [Belva et al., 2011]. A proportion of adult males requiring 

ICSI have very low sperm counts, which is associated with a greater risk of carrying 
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chromosomal abnormalities [Aittomäki et al., 2004; Marchina et al., 2007].There is limited 

evidence that paternal sex chromosomal disorders, including micro-deletions, are rarely 

transmitted to male ART offspring [Feng et al., 2008; Mau Kai et al., 2008]. Their potential 

effects on the gonadal function of ART boys is yet to be determined. While current evidence 

is inconclusive; the future fertility of ART offspring, particularly ICSI-conceived males, 

warrants further research. 

1.5.6.6. Congenital abnormalities 

There is a higher incidence of congenital abnormalities following ART [Rimm et al., 2004; 

Hansen et al., 2005; Lie et al., 2005], with considerable speculation as to the causes. Meta-

analyses indicate a 30% increased risk of major malformations in children conceived by ART 

compared with spontaneous conception [Rimm et al., 2004; Hansen et al., 2005; Lie et al., 

2005]. Although much of the focus has been on the process of ART itself, mounting evidence 

suggests that parental subfertility may be an important factor [Rimm et al., 2004; McDonald 

et al., 2005; Rimm et al., 2011]. A large population study in Denmark compared congenital 

abnormality rates among naturally conceived and fertility treatment offspring of subfertile 

couples, finding no differences in overall prevalence of congenital malformations [Zhu et al., 

2006]. In addition, this study indicates that parental factors are important, as increasing ‘time 

to pregnancy’ was associated with a greater risk of congenital abnormalities [Zhu et al., 

2006]. 

A recent Swedish study provided further evidence on the important contribution of parental 

factors to the higher rates of congenital abnormalities in the ART population [Källén et al., 

2010b]. While the overall rate of congenital abnormalities in ART children remained 

elevated, the incidence of certain types of abnormalities such as neural tube defects, cardiac 

defects and oesophageal atresia were reduced [Källén et al., 2010b]. The authors speculated 

that this reduction might be due to a greater proportion of ART-treated couples with a shorter 

period of unwanted childlessness [Källén et al., 2010b]. 

1.5.6.7. Epigenetics and imprinting disorders 

There is growing evidence of an increased risk of imprinting disorders in ART children. 

Epigenetics is the study of heritable changes in phenotype or gene expression that occur 

independently of alterations in the DNA sequence [Waterland and Michels, 2007]. DNA 

methylation and histone acetylation lead to DNA conformational change and gene silencing. 
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Methylation is the best characterized epigenetic modification of DNA with cytosine 

guanosine (CpG) islands being particularly vulnerable [Waterland and Michels, 2007]. A 

reduction in gene expression generally occurs when these islands are methylated within 

unmethylated gene promotor regions. Imprinting involves the silencing of either the maternal 

or paternal allele and is crucial for many aspects of pre- and post-natal growth and 

development [Waterland and Michels, 2007]. Imprinting occurs at gametogenesis and 

embryogenesis and imprinted genes undergo de-methylation followed by re-methylation 

during early embryonic development. 

Although environmental influences on gene regulation are increasingly studied in ART 

offspring, parental factors may lead to epigenetic modification [Horsthemke and Ludwig, 

2005]. Studies support the assertion that a subfertile couple may have a greater risk of 

preexisting methylation defects and consequent imprinting disorders in their offspring 

[Horsthemke and Ludwig, 2005; Ludwig et al., 2005; Hartmann et al., 2006; Doornbos et al., 

2007]. 

Nonetheless, it is proposed that the process of ART may lead to epigenetic and consequent 

imprinting changes. While animal studies support the role of DNA methylation changes in 

ART [Reik et al., 2001], there are very few human studies in this area. Fertility medications 

that cause ovarian stimulation are used in isolation for fertility treatment or as a component of 

the ART process. Ovarian stimulation is associated with an increased risk of aneuploidy in 

artificially matured oocytes [Kaleli et al., 2005], and may alter the methylation process [Sato 

et al., 2007; Market-Velker et al., 2010]. However, the risk of alteration of the normal process 

of methylation is much greater in ART, as it departs more substantially from natural 

conception. The timing of ART also coincides with critical early embryonic DNA 

methylation and re-methylation. 

Imprinted and epigenetically controlled genes play a key role in implantation and subsequent 

placental development [Nelissen et al., 2011]. It is evident from animal and human studies 

that epimutations of these genes can lead to abnormal placentation and subsequent 

complications such as abnormal foetal growth [Steinhoff et al., 2009; Nelissen et al., 2011]. 

The effect of the culture medium on the growth of ART offspring is well established in 

animal studies [Young et al., 2001]. Recent evidence has emerged that different culture media 

lead to a small but significant change in birthweight in humans [Dumoulin et al., 2010]. It 

was suggested that the observed difference (245 g) may partially explain the greater 
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incidence of low birthweight among ART-term singletons [Dumoulin et al., 2010]. The 

authors speculated that the weight difference associated with different culture media may be 

due to distinct epigenetic changes, leading to changes in placental function [Dumoulin et al., 

2010]. 

It is recognized that male seminal cytokines play an important role in implantation regulation 

[Robertson, 2007; Robertson et al., 2009], and these cytokines may influence foetal 

programming [Sjöblom et al., 2005]. It was found that removal of seminal fluid prior to 

needle sperm injection into the mouse oocyte led to a reduction in embryo  and offspring size 

[Sjöblom et al., 2005]. When the culture medium of these smaller embryos were treated with 

a male seminal cytokine (granulocyte-macrophage colony-stimulating factor), embryo and 

offspring size were corrected to normal [Sjöblom et al., 2005]. Work in this area of 

periconceptual immunology is ongoing, and development of periconceptional immune 

modulators in human ART is a distinct possibility in the future [Salmassi et al., 2005; Guerin 

et al., 2009]. 

Evidence of subtle changes has emerged from a small cohort of ART subjects who were 

comprehensively screened for changes in DNA methylation and gene transcription [Katari et 

al., 2009]. A very small study showed hypomethylation of a growth regulating gene 

(KvDMR1) in 3 of 18 ART children [Gomes et al., 2009]. In contrast, work from our centre 

examined DNA methylation of four likely candidate genes and found no differences between 

ART and naturally conceived children [Cutfield et al., unpublished data]. Further, a more 

recent study found similar rates of DNA methylation imprints in ART children and controls 

[Tierling et al., 2010]. Overall, however, there are limited data to suggest that ART leads to 

changes in DNA methylation. Importantly, none of these studies have aligned these changes 

with alterations in gene expression producing an altered phenotype. Therefore, the impact of 

ART on phenotype or biochemical profile through DNA methylation has yet to be 

determined. 

Nonetheless, there is increasing evidence of a link between ART and dramatic changes in 

methylation that lead to rare imprinting disorders, namely Beckwith–Wiedemann Syndrome 

(BWS) and Angelman Syndrome (AS) [DeBaun et al., 2003; Gicquel et al., 2003; Maher et 

al., 2003; Halliday et al., 2004; Chang et al., 2005; Bowdin et al., 2007; Doornbos et al., 

2007; Paoloni-Giacobino, 2007; Lim et al., 2009; Manipalviratn et al., 2009; Choufani et al., 

2010]. BWS has an estimated incidence of 1 in 13 700 live births in the general population 
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[Choufani et al., 2010], but the risk is estimated to be 6–9 times higher among ART offspring 

[Manipalviratn et al., 2009]. While this would represent a dramatic increase in relative risk, 

the actual incidence of BWS in the ART population remains low (1 in 4000–5500) 

[Manipalviratn et al., 2009]. It is significant that the rate of methylation defects as the cause 

of BWS in the general population is 60%, whereas this figure approaches 100% among the 

ART population [Manipalviratn et al., 2009]. AS has an estimated incidence of 1 in 12 000 

with imprinting abnormalities the aetiological factor in only 5% of cases [Steffenburg et al., 

1996]. Thus, the rate of imprinting disorder as a cause of AS in the general population is 1 in 

240 000. In contrast, 5 of the 7 reported cases of AS born after ART had an imprinting defect 

as the cause [Manipalviratn et al., 2009]. However, it is worth noting that subfertility appears 

to be associated with an increased risk of AS [Doornbos et al., 2007]. 

There is emerging evidence for an increased relative risk of BWS and AS in the ART 

population. However, it is possible the case ascertainment of BWS and AS among ART 

offspring may be higher due to under reporting in the general population, and more intense 

scrutiny and follow-up of ART-conceived children [Bowdin et al., 2007]. It is nonetheless 

clear that comprehensive, prospective, multi-centre studies are necessary to ascertain if this 

association is definitive. 

1.5.6.8. Cancer risk  

It has been proposed that ART children are at a greater risk of later malignancy, and a 

possible reason may be a reduction in imprinted gene activity leading to dysregulation in 

tumour suppression [Lim and Maher, 2010]. Although an initial study suggesting an 

increased incidence of retinoblastoma in ART offspring caused concern [Moll et al., 2003], 

expansion of this study found this not to be the case [Marees et al., 2009]. Other studies 

indicated that cancer risk among children and adolescents is not increased in ART offspring 

[Bergh et al., 1999; Bruinsma et al., 2000; Klip et al., 2001; Ericson et al., 2002; Marees et 

al., 2009]. One study detected an increased rate of histiocytosis in ART children [Källén et 

al., 2005], but there is debate as to whether histiocytosis can be defined as true malignancy 

[Fadeel and Henter, 2003]. Conversely, a very large recent study of over 26 000 ART-

conceived children by the same group showed an increased risk of cancer and histiocytosis 

(odds ratio 1.48); with the cancer risk remaining elevated (odds ratio 1.35) even when 

children with histiocytosis were removed from the analysis [Källén et al., 2010c]. This 

marginal increase in cancer risk was re-affirmed in a recent long-term review of the same 
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population [Finnström et al., 2011]. While both studies suggest an increased risk of cancer in 

ART children, the authors cautioned that the risk observed is probably not attributable to the 

ART procedure itself, but rather a result of many other factors such as the recognized 

increased risk of cancer among children with a history of prematurity [McLaughlin et al., 

2006] or asphyxia [Spector et al., 2005]. 

Further studies on the growing ART population are necessary to determine any associated 

cancer risks. As the vast majority of the ART offspring population are under 30 years of age, 

long-term follow-up studies are warranted to determine if an increased cancer risk emerges 

with age. 

1.5.6.9. Conclusions 

There is growing evidence that ART-conceived children are phenotypically and 

biochemically different from naturally conceived children. However, the mechanism(s) 

leading to these changes have not been elucidated, and may include parental factors, maternal 

drug treatment, culture media, as well as egg and embryo manipulation. While there is a 

possible increase in the risk of imprinted gene disorders in ART offspring, these remain rare. 

Nonetheless, it is not clear if more subtle changes in DNA methylation can lead to the subtle 

changes in phenotype observed in some ART offspring. An increased cancer risk among 

ART children is yet to be conclusively demonstrated, but it is clear that ongoing surveillance 

is required on this population as it ages. 

The population of ART children continues to increase worldwide without a clear 

understanding of associated long-term outcomes. Further knowledge on ART outcomes will 

provide health-care professionals, prospective parents and ART offspring with much needed 

accurate information on any actual risks. 
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1.5.7. Complications and consequences of OSA fertility treatment 

OSA fertility treatment has many associated risks and complications, many of which overlap 

with those associated with ART. A brief outline of the known risks associated with OSA is 

provided here. Those which overlap with ART and which have been described in the review 

will not be repeated.  

1.5.7.1. Obstetric and perinatal 

Not unlike ART, the majority of obstetric and perinatal complications of OSA can be 

attributed to the higher rate of twin and higher order multiple births associated with this 

treatment (Maman et al. 1998). Mothers with twin pregnancies have higher rates of 

pregnancy-induced hypertension, pre-eclampsia, gestational diabetes, hyperemesis, and other 

obstetric complications (Campbell & Templeton 2004). Women undergoing OSA also tend to 

be older, and higher age during pregnancy is another risk factor for these complications 

(Maman et al. 1998). As previously mentioned, multiple birth rates vary widely with OSA 

treatment, depending on whether or not follicle numbers are monitored (Macklon 2005). 

Perinatal complications in twin and higher order multiple pregnancies are well described, and 

include being born prematurely or of low birth weight (Corsello & Piro 2010). In turn, both 

are associated with a multitude of perinatal complications (Santema et al. 1995), such as 

perinatal mortality and morbidity, including neurological and other acute and chronic 

sequelae (Santema et al. 1995; Sherer 2001). 



   

66 
 

It appears that, even in singleton OSA pregnancies, the rates of maternal and perinatal 

complications are higher than in those resulting from natural conception, although lower than 

in ART pregnancies (Adler-Levy et al. 2007; Källén et al. 2002). This increased rate of 

complications in OSA in the perinatal period (compared to naturally conceived pregnancies) 

is likely attributable to maternal characteristics and background subfertility (Evers 2002).  

1.5.7.2. Aneuploidy and other congenital malformations 

Aneuploidy rates in OSA pregnancies are difficult to quantify, as aneuploid pregnancies tend 

to result in early miscarriages. Nonetheless, limited data suggest that OSA offspring have a 

similar rate of chromosomal disorders to those of subfertile parents and the general 

population (Tulandi et al. 2006). There are however, concerns that OSA offspring have an 

increased risk of congenital abnormalities such as neural tube defects (Schardein 1993; 

Tulandi et al. 2006). It is of interest therefore, that repeated doses of clomiphene may be 

associated with a slightly increased risk of congenital malformations, including neural tube 

defects and hypospadias (Elizur & Tulandi 2008). Overall, the data are conflicting, and 

further studies are required. Currently, evidence suggests that OSA offspring have a similar 

rate of congenital abnormalities compared to those who were conceived naturally, after 

maternal factors including age, parity, and subfertility are taken into account (Klemetti et al. 

2005; 2010; Zhu et al. 2006). 

1.5.7.3. Growth and adiposity 

Only one study has assessed height outcomes in OSA conceived children, and no studies have 

assessed BMI or body composition in these children. The one study assessing height 

compared 45 OSA children to 203 naturally conceived controls and to 83 ART-conceived 

children (Makhoul et al. 2009). This study found that height was significantly different 

among the groups (Figure 1.6).  

However, the height of OSA children was not significantly different to that of naturally 

conceived children. It is worth noting that the cohort consisted entirely of children born of 

very low birth weight and almost half of participants were twins (Makhoul et al. 2009), both 

factors known to affect childhood height (Hack et al. 2002; Hack et al. 2003; IJzerman et al. 

2001). In addition, the socio-economic status of the cohort is unclear, which is another factor 

known to influence height in childhood (Silventoinen 2003). 
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1.5.7.4. General health, cancer, and other risks 

There is a marked paucity of studies assessing the general health of children conceived with 

OSA (Klemetti et al. 2010). OSA children seem to have poorer health (as assessed by hospital 

admissions) than naturally conceived counterparts (Klemetti et al. 2010). However, the 

poorer health of OSA children was mostly attributable to perinatal problems, which were 

associated with complications of prematurity and low birth weight. The risk of childhood 

cancer in OSA children compared to the general population is unknown as the data are 

extremely limited (Lightfoot et al. 2005; Puumala et al. 2012b).  

 

 

 

 
Figure 1.6. Height standard deviation score (SDS) at 6–10 years of age in IVF-conceived (IVF-C), ovulating agents-
conceived (OA-C) and naturally conceived (NC) groups. 
Reproduced with permission form BMJ Publishing Group Ltd and the Royal College of Paediatrics and Child Health 

(Makhoul et al. 2009). 

 

Copyright © BMJ Publishing Group Ltd & Royal College of Paediatrics and Child Health. All rights reserved.
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Overall, it is clear that OSA children are an under-researched group, with a marked paucity of 

robust studies assessing physical outcomes in childhood. The limited number of studies on 

certain childhood outcomes included participants who were born prematurely and/or of low 

birth weight. Furthermore, background parental subfertility is often suggested as a possible 

contributing factor. Thus, the true impact of OSA on childhood outcomes has not been 

assessed to date.  

1.5.8. Subfertility 

As previously outlined (Savage et al. 2011), parental subfertility may be an important factor 

in obstetric and perinatal outcomes, as well as in many childhood outcomes in OSA (and 

ART) offspring. As a result, several studies have attempted to assess the potential effects of 

subfertility. Many of these studies have been already outlined in relation to outcomes on ART 

and OSA offspring, so that they will only be briefly discussed here.  

Parental subfertility is associated with poorer obstetric and perinatal outcomes, such that 

subfertile mothers are more likely to suffer miscarriage and have children born prematurely, 

of low birth weight, and SGA (Ludwig 2009). Rates of congenital abnormalities (Zhu et al. 

2006) and rare imprinting disorders (Doornbos et al. 2007) are also higher among the 

offspring of subfertile parents. While associations between parental subfertility and childhood 

cancer risk have been explored, there is currently no proven link (Puumala 2010; Puumala et 

al. 2012b).  

It is clear that OSA fertility treatment represents a departure from natural conception and that 

this departure leads to many changes in the oocyte and the early fetal environment. 

Nonetheless, there is a remarkable paucity of research assessing the various outcomes of this 

large population in childhood and adulthood. The vast majority of research to date has 

assessed outcomes on ART offspring. As a result, currently, the effects of ovarian stimulation 

on offspring outcomes can only be inferred from these studies. Importantly however, as 

outlined OSA and ART only share ovarian stimulation in common, with ART going on to a 

far more invasive and complex process. Therefore, it is necessary to specifically investigate 

the possible impact of OSA on offspring outcomes. Further, it is also important to separate the 

effects of OSA from those associated with background parental subfertility.  
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1.6. Hypotheses 

As outlined, changes in the early environment, particularly at the times of gametogenesis and 

embryogenesis, are associated with alterations in offspring phenotype and metabolism. There 

is evidence that the process of ART is associated with such alterations in the offspring. Since 

ovarian stimulation comprises part of the ART process, we hypothesised that children 

conceived with ovarian stimulation alone (without ART) would differ to those conceived 

naturally. In addition, advancing maternal age is associated with an increase in endogenous 

FSH production in the mother, which is a form of 'endogenous ovarian hyperstimulation'. 

Therefore, we also hypothesised that increasing maternal age would be associated with 

phenotypic and metabolic changes in the offspring. 

However, following an extensive literature review and ample discussions on study design to 

address the above hypotheses, it became clear that there are other important parental factors 

that may impact on offspring phenotype and metabolism. We have identified three additional 

factors deemed to be important: background parental subfertility, paternal age, and birth 

order. As a result, we have subsequently expanded on our original hypotheses. 

Background parental subfertility (i.e. duration to conception) have been shown to affect 

outcomes in naturally conceived children compared to ART conceived children. Therefore, 

we hypothesised that children of subfertile children would differ to those who were naturally 

conceived. 

Paternal age is also associated with changes in offspring outcomes, including disease risk. 

Since average paternal age at childbirth is also increasing and it is closely correlated with 

maternal ages, the potential effects of paternal age on offspring outcomes require 

investigation. Birth order is another inherently important 'parental factor' that should be 

assessed in our cohorts. Thus, we hypothesises that both increasing paternal age and birth 

order would be separately associated with changes in the naturally conceived offspring in 

childhood. 

As a result, the overarching hypothesis of this thesis is that a number of parental factors 

would be associated with alterations in offspring phenotype and metabolism.  
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1.7. Summary of issues and aims 

A number of important factors have been discussed so far: 

 The importance of the early fetal environment and its vulnerability to even minor 

changes. 

 The possible role of epigenetics in the early fetal environment, as well as its potential 

role in the developmental origins of health and disease.  

 The changing demography of parental factors over the past several decades, with 

remarkable shifts in human behaviour: 

 The increase in maternal and paternal ages at childbirth by almost four years  

 The decreasing number of children being born per couple, with first-borns now 

representing more than 50% of all births 

 The large increase in the number of couples undergoing fertility treatment, which is 

perhaps the greatest change in reproductive behaviour observed so far 

Considering the above changes, some important conclusions can be drawn at this stage:  

1. As parental factors change (such as increasing age at childbirth), there are many 

associated physiological changes in the respective parent. These alterations extend to 

their gametes, which go on to fertilize. Even minor changes in gametes or the fetal 

environment (including the uterus or placenta) can lead to marked changes in the 

offspring.  

2. Only in relatively recent years have a limited number of studies directly assessed the 

possible effects of maternal and paternal ages at childbirth on offspring outcomes, 

with some evidence of resulting changes in phenotype and disease risk.  

3. While studies of the impact of birth order on offspring outcomes are more numerous, 

few have directly assessed the effects of birth order per se. Further, none have 

eliminated all important confounding factors, such as socio-economic status. 

4. The outcomes on ART offspring have received comparatively more attention, but in 

contrast, very few studies have examined OSA children. In addition, parental 

subfertility is an important factor in offspring outcomes, but no studies have assessed 

its potential effect on offspring phenotype or metabolism.  
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With these issues in mind, this thesis will examine the potential impacts of each parental 

factor on childhood outcomes: 

 conception with OSA fertility treatment (Chapter 2)  

 parental subfertility (Chapter 2) 

 birth order (Chapter 3) 

 maternal age at childbirth (Chapter 4) 

 paternal age at childbirth (Chapter 5) 
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Chapter 2. Ovarian stimulation alone 

Preface 

This chapter contains the unaltered text of an already published article. 

 Authors: Savage T, Peek JC, Robinson EM, Green MP, Miles HL, Mouat F, Hofman 

PL, Cutfield WS.  

 Title: Ovarian stimulation leads to shorter stature in childhood 

 Journal: Human Reproduction 

 Year of publication: 2012 

 Volume: 27 

 Issue: 10 

 Pages: 3092-3099 

 Impact factor: 4.48 

 Journal’s aims and scope: “Human Reproduction features full-length, peer-reviewed 

papers reporting original research, clinical case histories, as well as opinions and 

debates on topical issues. Papers published cover the scientific and medical aspects of 

reproductive physiology and pathology, endocrinology, andrology, gonad function, 

gametogenesis, fertilization, embryo development, implantation, pregnancy, genetics, 

genetic diagnosis, oncology, infectious disease, surgery, contraception, infertility 

treatment, psychology, ethics and social issues. The highest scientific and editorial 

standard is maintained throughout the journal along with a rapid rate of publication.” 
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2.1. Abstract 

Background: We aimed to determine whether children conceived with ovarian stimulation 

alone (OSA) would differ phenotypically and biochemically from naturally conceived 

children of fertile and subfertile parents. 

Methods: Healthy pre-pubertal children aged 3–10 years, born at term, after singleton 

pregnancies were recruited in Auckland (New Zealand), and were allocated into three groups: 

i) children conceived following OSA, and naturally conceived children of ii) subfertile and iii) 

fertile parents. Anthropometric, endocrine, and metabolic parameters were recorded. 

Children’s heights and BMI were expressed as standard deviation score (SDS) and corrected 

for genetic potential (i.e. parental height or BMI). 

Results: 352 children were studied: 84 OSA subjects and 268 naturally conceived controls 

consisting of 54 children of subfertile parents and 214 children of fertile parents. Children of 

subfertile and fertile parents did not differ in measured outcomes. Overall, OSA children were 

shorter than children of both subfertile (SDS score -0.08 ± 0.09 vs 0.32 ± 0.07; P=0.001) and 

fertile (SDS score -0.08 ± 0.09 vs 0.45 ± 0.10; P=0.004) parents when corrected for genetic 

height potential. OSA boys were shorter than boys of subfertile (SDS score -0.18 ± 0.14 vs 

0.42 ± 0.16; P=0.03) and fertile (SDS score -0.18±0.14 vs 0.35 ± 0.08; P=0.01) parents. 

There was also a trend towards OSA girls being shorter than girls of subfertile parents 

(P=0.06), but not significantly shorter than those of fertile parents (P=0.17). OSA children 

also had lower corrected BMISDS than children of subfertile (SDS score -0.90 ± 0.15 vs -

0.37 ± 0.17; P=0.06) and fertile (-0.90 ± 0.15 vs -0.34 ± 0.10; P=0.008) parents. Among 

metabolic parameters, fasting glucose was lower in OSA children than in children of fertile 

parents (4.62 ± 0.07 vs 4.81 ± 0.04; P=0.006). 

Conclusions: Conception after OSA was associated with shorter stature, particularly in boys, 

compared to naturally conceived children of fertile and subfertile parents.  

2.2. Introduction 

Almost 1 in 7 couples have difficulty conceiving, with many going on to seek fertility 

treatment 
1
. It is estimated that 2.5 to 7% of children in Western countries are conceived with 

the help of ovarian stimulation alone (OSA) 
2,3

 compared to 1 to 4% conceived through in 

vitro fertilisation (IVF) 
3
. Most fertility treatment utilises ovarian stimulation; either alone or 
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as part of the process of IVF 
4
. Ovarian stimulation is widely used in the treatment of 

infertility and the majority of women who undergo OSA receive either clomiphene citrate 

and/or follicle stimulating hormone (FSH), often in conjunction with timed intercourse or 

intra-uterine insemination 
4
. 

There is evidence that IVF children are phenotypically different to naturally conceived 

children, having for example, higher rates of congenital abnormalities 
5
 and rare imprinting 

disorders 
6
. When childhood stature has been examined, several studies have found that IVF 

children were taller than naturally conceived children 
7-12

.  

There is a growing recognition that parental subfertility may play an important role in some 

of the differences seen in children conceived after IVF, suggesting that parental subfertility 

should be considered in studies assessing outcomes on children conceived via IVF or with the 

help of other fertility treatments 
7,13-15

. 

While several studies (reviewed elsewhere 
16,17

) have assessed childhood outcomes after IVF 

conception, there is a marked paucity of studies assessing similar outcomes following OSA 

conception. Since IVF is a complex treatment combining several steps, including ovarian 

stimulation, embryo culture, and embryo selection; it is unclear whether ovarian stimulation 

plays a role in the observed height differences between IVF children and those conceived 

naturally. Thus, we have studied phenotypic and metabolic measures of children conceived 

through OSA in an attempt to answer this question. We aimed to determine whether children 

conceived with the help of OSA would be phenotypically and biochemically different to 

naturally conceived children of fertile and subfertile parents. 

2.3. Methods 

2.3.1. Subjects 

Only healthy pre-pubertal children aged 3 to 11 years, of European ethnicity, born at term 

(37–41 weeks gestation) after singleton pregnancies, and of birth weight appropriate for 

gestational age were included in the study. OSA subjects were recruited from a patient 

database of couples who attended for infertility treatment at Fertility Associates in Auckland 

between 2000 and 2006. Couples included in the study were those treated for unexplained 

infertility or mild male infertility. Children of women with a diagnosis of polycystic ovarian 

syndrome (PCOS) (based on pelvic ultrasound) were excluded from the study, because of the 
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possible association between maternal PCOS and phenotypic differences in their children 
18

. 

Mothers of naturally conceived children did not undergo a pelvic ultrasound to rule out 

PCOS, but the children with a maternal history of PCOS were excluded from the study. The 

children of mothers who smoked, had a chronic illness, pre-existing or gestational diabetes, 

or glucose intolerance during pregnancy were also excluded from the study.  

OSA mothers received one of three fertility treatment regimens: 1) clomiphene citrate 

(Serophene) (Merck Serono, NSW, Australia) for 5 days (dose: 25–100 mg day
-1

, mean dose 

50 mg day
-1

); 2) clomiphene for 5 days (dose: 25–150 mg day
-1

, mean dose 75 mg day
-1

), and 

FSH (Puregon, Merck Sharp & Dohme, Tipperary, Ireland) or Gonal F (Merck Serono, NSW, 

Australia) alternative days (75-150 IU dose
-1

, mean total dose: 360 IU); or 3) FSH daily (75-

150 IU dose
-1

, mean total dose 375 IU). Ovarian response was monitored by serum 

oestradiol, LH or ultrasound as appropriate; with hCG triggering (250 µg Ovidrel; Merck 

Serono, NSW, Australia) if an LH surge had not occurred prior to intra-uterine insemination 

(82%) or timed intercourse (18%). All OSA children were conceived using sperm from the 

mother’s partner, so that the offspring of donor sperm were not included. Exclusion criteria 

for OSA children included those who had a known medical syndrome, a chronic illness, on 

treatment with regular medications, or those identified on early scan as multiple pregnancy 

('vanishing twin' syndrome).  

All OSA children enrolled were also asked to invite family friends and school friends to 

participate in the study as controls. Control mothers and children were subject to the same 

inclusion and exclusion criteria as OSA children. All participants (OSA subjects and controls) 

were of higher socio-economic status according to their residential address and the “decile 

score” of the school they attended. Every census year, the Ministry of Education compiles a 

decile score of every school in New Zealand 
19

. A decile score indicates the extent to which a 

school draws students from low or high socioeconomic communities, so that decile 1 

indicates lowest and 10 highest socio-economic status. All participants in the study were of 

decile 9 or 10 socio-economic status. We effectively ensured that control children were of 

similar age, ethnicity, and socio-economic status as OSA children.   

Study participants were allocated into three groups: children conceived with the help of 

ovarian stimulation (OSA), and two control groups of naturally conceived children (of fertile 

and subfertile parents). In order to identify any potential contribution of parental subfertility 

to measured outcomes, control children were categorised based on the time taken for their 
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parents to conceive. Subfertility is generally accepted as failure to conceive after more than 

12 months of unprotected intercourse 
20

, so control children were divided into children of 

fertile parents (duration to conception <12 months) and those of subfertile parents (duration 

to conception >12 months). We did not specifically seek out children of subfertile parents 

when recruiting naturally conceived control children. Instead, we recruited naturally 

conceived children in large numbers in order to opportunistically capture more children of 

subfertile parents in the study. At assessment, along with routine medical and obstetric 

history, we clarified that all control children were naturally conceived. We informed parents 

in writing that information regarding mode and duration to conception would be sought on 

the day of their child’s assessment. We determined the duration to conception (in months) by 

means of open-ended interview questions, which were conducted by the same medical doctor. 

This optimized the accuracy of recall of “time to conception” as described by Joffe 
21

. 

2.3.2. Study design 

Standing and sitting height were measured using a Harpenden stadiometer. Children’s weight 

and body composition were assessed using dual-energy x-ray absorptiometry (DXA Lunar 

Prodigy 2000; General Electric, Madison, WI, USA). Each child had a bone age x-ray to 

assess biological maturity, which was assessed by a single blinded paediatric endocrinologist 

using pre-established standards 
22

. Parental height, weight, and body mass index (BMI) were 

recorded. Children’s birth weight was transformed into standard deviation scores (SDS), as 

per standards based on birth weight data for approximately 500,000 “healthy newborns” in 

Sweden 
23

, which are also applicable to our study population.  

Children’s and parental heights were transformed into SDS 
24

. Mid-parental height SDS 

(MPHSDS) was calculated for each child, taking into consideration the sex of the child 
25

. 

Children’s heights SDS were then individually corrected for their genetic potential (parental 

contribution), using the formula: child’s height SDS minus MPHSDS. Children’s and 

parent’s BMI’s were transformed into SDS and mean parental BMISDS (MPBMISDS) was 

calculated for each child 
26

. Each child’s corrected BMISDS was calculated individually 

using the formula: child’s BMI SDS minus MPBMISDS. The SDS system expresses the 

extent of the deviation of a given value from the standard population mean. Each SDS is 

calculated as the individual value minus the mean value for the reference population (given 

gender and age), divided by the standard deviation (SD) of the reference population. Thus, 

the mean reference point is zero 
27

.  
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A fasting morning blood sample was obtained from each child for assessment of metabolic 

and growth factors. Plasma insulin was measured using an Abbott AxSYM system (Abbott 

Laboratories, Abbott Park, IL, USA) by microparticle enzyme immunoassay (Abbott 

Diagnostics, Wiesbaden, Germany) with an inter-assay coefficient of variation (CV) of <5%. 

Glucose, triglyceride, cholesterol, HDL-C, and LDL-C concentrations were measured on a 

Hitachi 902 autoanalyser (Hitachi High Technologies Corporation, Tokyo, Japan) by 

enzymatic colorimetric assay (Roche, Mannheim, Germany) with an inter-assay CV of 1.2% 

for glucose, and <5% for cholesterol, triglycerides, HDL-C, and LDL-C. Insulin resistance 

was calculated using the homeostasis model (HOMA-IR) 
28

. Commercially available ELISAs 

(R&D Systems, Minneapolis, MN, USA) were used to evaluate plasma IGF-I (DSL-100, 

intra-assay CV 2.8%, inter-assay CV 9.2%), and IGF binding protein 3 (IGFBP-3) (DSL-10-

6600, intra-assay CV 3.1%, inter-assay CV 9.9%). Commercially available ELISA kits 

(Meddiagnost, Reutlingen Germany) were used to evaluate IGF-2 (E-30, intra-assay CV 

1.9%, inter-assay CV 6.3%).  

2.3.3. Statistical analysis 

ANOVA was used to compare baseline characteristics of parents and children in each group 

(OSA, subfertile, and fertile). Data were analysed with both sexes combined, as well as 

separately for boys and girls. Linear mixed models followed by Tukey’s post hoc 

comparisons were used to investigate differences in anthropometric measures. Models 

included family as a random effect to control for the presence of siblings. Metabolic and 

endocrine data (plasma glucose, insulin, HOMA-IR, triglycerides, cholesterol, HDL-C, LDL-

C, cholesterol: HDL ratio, IGF-I, IGF-II, and IGFBP-3) were analyzed in a similar manner 

with child’s age and sex included in the model where appropriate. Multiple analysis of 

variance (MANOVA) was used to compare the combined effects on corrected height SDS, 

IGF-I and IGFBP-3 among groups (OSA, subfertile, and fertile). Means ± SEM are reported 

for baseline data; means ± SEM adjusted for other variables in the model are reported for 

other measures. Analyses were carried out in SAS v.9.1 (SAS Institute, Cary, NC, USA) and 

Minitab v.16 (Pennsylvania State University, PA, USA). Significance was determined if 

P<0.05. 
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2.3.4. Ethics approval 

Ethics approval for this study was provided by the Northern Y Regional Ethics Committee, 

and written informed consent was obtained from parents of all participants. Depending on the 

child’s age, written or verbal consent was obtained from all children.   

2.4. Results 

2.4.1. Study population 

206 OSA mothers were eligible to be contacted for participation in the study when inclusion 

and exclusion criteria were applied. 92 mothers (45%) were un-contactable due to out-of-date 

contact details and 30 mothers (15%) declined to participate. In all, 84 of 114 (74%) 

contactable candidates participated in the study. There were no discernible differences in 

known baseline characteristics between participants and non-participants.  

A total of 352 children aged 7.33 ± 0.12 years were studied: 84 OSA subjects and 268 

naturally conceived controls, comprising of 54 children of subfertile parents and 214 children 

of fertile parents. The mothers of OSA children received drug treatment for ovarian 

stimulation with clomiphene alone (n=26; 31%), a combination of FSH and clomiphene 

(n=53; 63%), or FSH alone (n=5; 6%), and most (n=69; 82%) also underwent intra-uterine 

insemination as part of treatment. 80% of OSA children (35 girls and 32 boys) had parents 

with unexplained infertility, while the remaining 20% (10 girls and 7 boys) had a father with 

mild male factor infertility  (21%). Among the naturally conceived controls, 54 of 268 (20%) 

were children of subfertile parents, as they were conceived after 12 months or more of 

unprotected intercourse. 

Parental and birth characteristics of each group are summarised in Table 2.1. Boys and girls 

from each group (OSA, children of subfertile and fertile parents) were of similar age (Table 

2.2 & Table 2.3), and their age and sex distribution was also similar. Comparison of children 

of subfertile parents to children of fertile parents yielded no differences in measured 

anthropometric, endocrine, or metabolic parameters. OSA children were shorter than children 

of subfertile parents (SDS score -0.075 ± 0.09 vs 0.32 ± 0.07, P=0.001) and were also shorter 

than children of fertile parents (-0.075 ± 0.09 vs 0.45 ± 0.10, P=0.004) when corrected for 

MPHSDS. OSA children also had a lower BMI SDS than children of subfertile parents (SDS 
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score -0.90 ± 0.15 vs -0.37 ± 0.17; P=0.06) and children of fertile parents (-0.90 ± 0.15 vs -

0.34 ± 0.10; P=0.008) when corrected for MPBMISDS.  

When the sexes were compared separately, OSA boys were shorter than boys of subfertile 

(P=0.03) and fertile (P=0.01) parents after correction for MPHSDS (Table 2.2). Similarly, 

OSA girls tended to be shorter than girls of subfertile (P=0.06) but not shorter than girls of 

fertile parents (P=0.17) when corrected for MPHSDS (Table 3). OSA boys had lower IGFBP-

3 levels than boys of subfertile (P=0.03) and fertile parents (P=0.03; Table 2.2). Comparison 

of the combined effects on corrected height SDS, IGF-I, and IGFBP-3 among groups 

demonstrated distinct differences between OSA boys compared to boys of subfertile 

(P=0.002) and fertile parents (P=0.003). It should also be noted that boys and girls in all 

groups displayed similar biological maturity based on individual bone age assessments (Table 

2.2 & Table 2.3). 

 

 

Table 2.1. Parental and birth characteristics of children in ovarian stimulation alone (OSA), subfertile, and fertile groups. 
*P<0.05 for comparison with OSA, †P<0.05 for comparison with SF. Where appropriate, data are means ± SEM. 

Parameter OSA Subfertile Fertile 

n 84 54 214 

Mid-parental height SDS 0.95 ± 0.08 0.64 ± 0.08 * 0.86 ± 0.05 

Maternal BMISDS 0.30 ± 0.12 0.66 ± 0.15 0.34 ± 0.07 

Mean parental BMISDS 0.63 ± 0.09 0.93 ± 0.12 0.70 ± 0.05 

Maternal age at delivery (yrs) 36.9 ± 0.4 35.5 ± 0.33 *  32.8 ± 0.3 *† 

Time to pregnancy (mths) 24 ± 2.3 22 ± 1.5  2.9 ± 0.15 *† 

Gestation (wks)  39.1 ± 0.15 39.3 ± 0.17 39.5 ± 0.08 

Birth weight SDS 0.05 ± 0.1 0.14 ± 0.12 0.22 ± 0.06 

Firstborns (%)  56 61 50 

Sex ratio (% males) 47 46 47 

Breast-feeding rates at 6 months (%) 62 59 63 
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Table 2.2. Anthropometric, and fasting serum endocrine and metabolic parameters in boys from ovarian stimulation 
alone (OSA), subfertile, and fertile groups. 
*P<0.05 for comparison with OSA. Data are means ± SEM. 

BOYS OSA Subfertile Fertile 

n 39 26 123 

    

Anthropometric    

Age (yr) 7.49 ± 0.37 7.56 ± 0.47 7.34 ± 0.19 

Bone age–age (yr) -0.01 ± 0.13 -0.51 ± 0.22 -0.16 ± 0.10 

Height SDS 0.74 ± 0.16 0.94 ± 0.19 0.95 ± 0.09 

HtSDS–MPHSDS -0.18 ± 0.14 0.42 ± 0.16 * 0.35 ± 0.08 * 

Sitting HtSDS 0.02 ± 0.24 0.36 ± 0.30 0.53 ± 0.15 

BMISDS 0.06 ± 0.17 -0.07 ± 0.21 -0.05 ± 0.10 

BMISDS–MPBMISDS -0.6 ± 0.22 -0.32 ± 0.27 -0.13 ± 0.14 

Body fat % 16.1 ± 0.9 16.5 ± 1.5 14.8 ± 0.5 
    

Endocrine & metabolic    

Insulin (mU L-1) 4.66 ± 0.37 5.34 ± 0.43 4.97 ± 0.22 

Glucose (mmol L-1) 4.64 ± 0.07 4.86 ± 0.08 * 4.83 ± 0.04 

HOMA-IR  0.97 ± 0.09 1.19 ± 0.10 1.10 ± 0.05 

Cholesterol (mmol L
-1

) 4.10 ± 0.13 4.15 ± 0.16 4.26 ± 0.08 

HDL-C (mmol L-1) 1.36 ± 0.06 1.33 ± 0.07 1.35 ± 0.03 

Chol: HDL-C ratio 3.26 ± 1.90 3.65 ± 1.00 4.95 ± 1.40 

LDL-C (mmol L-1) 2.40 ± 0.10 2.45 ± 0.13 2.44 ± 0.06 

Triglycerides (mmol L-1) 0.68 ± 0.05 0.79 ± 0.06 0.68 ± 0.03 

IGF-I (μg L-1) 93 ± 6 111 ± 7 102 ± 3 

IGF-II (μg L-1) 763 ± 19 756 ± 19 733 ± 8 

IGFBP-3 (μg L-1) 2309 ± 126 2829 ± 161 * 2683 ± 76 * 
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Table 2.3. Anthropometric, and fasting serum endocrine and metabolic parameters in boys from ovarian stimulation 
alone (OSA), subfertile, and fertile groups. 
*P<0.05 for comparison with OSA. Data are means ± SEM. 

GIRLS OSA Subfertile Fertile 

n 45 28 91 

    

Anthropometric    

Age (yr) 7.10 ± 0.32 7.43 ± 0.47 7.24 ± 0.23 

Bone age–age (yr) -0.26 ± 0.14 -0.09 ± 0.12 -0.11 ± 0.10 

Height SDS 0.96 ± 0.14 0.68 ± 0.18 0.87 ± 0.10 

HtSDS–MPHSDS -0.002 ± 0.13 0.48 ± 0.15 0.29 ± 0.09 

Sitting HtSDS 0.22 ± 0.20 -0.07 ± 0.24 0.02 ± 0.14 

BMISDS -0.48 ± 0.15 -0.27 ± 0.18 -0.30 ± 0.10 

BMISDS–MPBMISDS -1.10 ± 0.18 -0.49 ± 0.22 -0.40 ± 0.13 * 

Body fat % 18.9 ± 0.0 21.6 ± 1.2 19.1 ± 0.6 

    

Endocrine & metabolic    

Insulin (mU L-1) 4.66 ± 0.37 5.34 ± 0.43 4.97 ± 0.22 

Glucose (mmol L-1) 4.64 ± 0.07 4.86 ± 0.08 * 4.83 ± 0.04 

HOMA-IR  0.97 ± 0.09 1.19 ± 0.10 1.10 ± 0.05 

Cholesterol (mmol L
-1

) 4.10 ± 0.13 4.15 ± 0.16 4.26 ± 0.08 

HDL-C (mmol L-1) 1.36 ± 0.06 1.33 ± 0.07 1.35 ± 0.03 

Chol: HDL-C ratio 3.26 ± 1.90 3.65 ± 1.00 4.95 ± 1.40 

LDL-C (mmol L-1) 2.40 ± 0.10 2.45 ± 0.13 2.44 ± 0.06 

Triglycerides (mmol L-1) 0.68 ± 0.05 0.79 ± 0.06 0.68 ± 0.03 

IGF-I (μg L-1) 93 ± 6 111 ± 7 102 ± 3 

IGF-II (μg L-1) 763 ± 19 756 ± 19 733 ± 8 

IGFBP-3 (μg L-1) 2309 ± 126 2829 ± 161 * 2683 ± 76 * 

 

 

Overall, OSA children had lower fasting glucose than control children (children of subfertile 

and fertile parents combined) (4.62 ± 0.07 vs 4.81 ± 0.04 mmol/l; P=0.006). In addition, HDL 

concentrations in OSA girls were higher than in girls of fertile parents (P=0.01) and tended to 

be higher than in girls of subfertile parents (P=0.09; Table 2.3). As a result, OSA girls had 

lower total cholesterol to HDL ratios than girls of fertile parents (P=0.01), and also tended 

this way compared to girls of subfertile parents (P=0.09; Table 2.3).  
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2.5. Discussion 

This study found that, when corrected for their genetic height potential, children conceived 

following OSA were shorter than children of fertile and subfertile parents. On average OSA 

boys were 3 centimetres shorter than boys of subfertile and fertile parents, with a trend 

towards shorter stature in OSA girls compared to girls of subfertile parents. Importantly, the 

children studied did not display evidence of delayed biological maturation, as children’s bone 

ages matched their chronological age 
25

. Thus, the observed height reduction among OSA 

children is likely to persist into adulthood. Furthermore, when the combined effects on 

corrected height SDS, IGF-I, and IGFBP-3 were evaluated, there were clear differences 

between OSA boys and boys of fertile and subfertile parents. 

To our knowledge, this is the first study to assess auxological, metabolic, and hormonal 

outcomes in OSA children born at term and of normal birth weight. It is also the first study of 

prepubertal outcomes in fertility treatment children (OSA or IVF) to have two separate 

control groups, consisting of children of subfertile and fertile parents. The finding of shorter 

stature in OSA children was unexpected, and contrasts with a previous study that found 

similar height to controls in OSA children born at very low birth weight 
9
. Our findings also 

contrast with the taller stature of IVF children found in several studies  
7-11

.  

IVF differs substantially to OSA, as IVF involves several further steps, including external 

fertilisation and embryo culture and selection. In addition, ovarian stimulation for IVF differs 

to OSA, as it utilises different drug regimens at higher doses, aiming to produce 6 to 10 

follicles for IVF versus 2 to 3 follicles for OSA 
29

. Furthermore, clomiphene is frequently 

utilised in OSA, but rarely used in ovarian stimulation for IVF 
4
. Hence, the contribution of 

ovarian stimulation to the height of either OSA or IVF children is likely to be complex, and 

may depend on several factors including the type and degree of ovarian stimulation. 

One potential reason for the differences observed between OSA and naturally conceived 

children may be that ovarian stimulation leads to alterations in genomic imprinting in the 

oocyte or embryo, with consequent programming of endocrine changes. As the timing of 

imprinting overlaps with the timing of ovarian stimulation, interventions in oocyte maturation 

could have an impact on imprinting and methylation 
15

. In fact, several studies have found 

that ovarian stimulation for IVF alters DNA methylation of imprinted and non-imprinted 

genes 
30-33

, and a recent investigation suggested that the degree of ovarian stimulation may 

influence the extent of methylation change in the oocyte 
34

. Further, imprinted genes involved 
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in growth regulation can also be altered by ovarian stimulation for IVF 
31

. Although there is 

no direct evidence linking clomiphene to methylation changes, such alterations can be 

associated with tamoxifen 
35,36

, which is a structurally similar compound to clomiphene 
37

. 

Thus, it is possible that ovarian stimulation may cause imprinting changes at critical points in 

early embryonic development, leading to the phenotypic differences seen in our study 

population. It is also conceivable that sexually dimorphic imprinting could explain the more 

pronounced height difference observed in OSA boys, but this remains speculative at this 

stage. Future work should examine the DNA of OSA children for differences in methylation 

of imprinted and non-imprinted genes when compared to naturally conceived children. 

Another possible explanation for the observed differences in OSA children may be indirect 

effects of clomiphene citrate or FSH on the oocyte or developing embryo. FSH is used as part 

of ovarian stimulation for IVF, and this process has been shown to alter intra-uterine 

chemokines, cytokines, and growth factors; but it is unknown whether these changes affect 

phenotype 
38

. Nonetheless, clomiphene has many well recognised effects on the intra-uterine 

environment, including altered embryonic adhesion 
39

 and endometrial thickness 
40

, which 

may impact on embryonic development. Clomiphene is also associated with reduced serum 

levels of IGF-I and increased levels of IGFBP-3 in some women after standard treatment for 

OSA, but it is unknown if these alterations affect the developing oocyte or embryo 
41,42

. With 

metabolites of clomiphene detectable in maternal serum more than one month after 

administration 
37

, it is possible that clomiphene could have subtle effects in the developing 

oocyte or embryo, leading to subsequent phenotypic changes.  

This study compared outcomes in OSA children to those born of subfertile and fertile parents 

in order to differentiate the contribution of parental subfertility separately from that of the 

fertility treatment itself. It is therefore of interest that children of fertile and subfertile parents 

were similar in all anthropometric, endocrine, and metabolic parameters measured in our 

study, even though the subfertile control group was comparatively smaller (n=54). The 

inclusion of children of subfertile parents in this study was important, as they are the most 

logical comparison group for children conceived by OSA or IVF 
43

. It seems that parental 

subfertility is an important factor determining peri-natal and childhood outcomes in IVF 

offspring 
13-15

, and may account in part for the higher rate of congenital abnormalities and 

imprinting disorders amongst the IVF population 
5,6,44-46

. However, as children of fertile and 

subfertile parents had similar heights, the observed shorter stature among OSA children in our 

study is unlikely to be explained by parental subfertility. Nonetheless, it is important to 
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emphasise that OSA and IVF children are in reality a distinct population to children of 

subfertile parents, as the latter were eventually conceived naturally, whereas OSA and IVF 

children were not.  

We also observed metabolic differences (including lower fasting glucose and higher HDL) in 

OSA children. To our knowledge, no previous studies have examined metabolism in OSA 

children, and those on IVF children yielded conflicting results (reviewed by 
47

. It is unclear 

whether these relatively subtle metabolic changes could have any long-term significance, but 

these are further evidence that OSA children are different to those conceived naturally. 

The strengths of this study include restriction of the study population to a higher socio-

economic group and single ethnicity in an effort to reduce confounders. Further, the height of 

each child in our study was individually corrected for parental stature (MPHSDS), which is 

the most important determinant of childhood height 
25

. We encountered only three previous 

studies that corrected for this fundamental factor of genetic height when assessing childhood 

height in OSA or IVF children 
9-11

. In contrast, a possible limitation of our study is that we 

cannot rule out with certainty the existence of PCOS cases among the mothers of OSA or 

control groups. However, any OSA mothers with a positive ultrasound or history of PCOS 

were excluded from the study, and all control mothers had a negative history of PCOS 
48

. 

Furthermore, it is worth noting that no mothers (OSA and controls) had a history of glucose 

intolerance, and the mean maternal BMISDS was well within the normal BMISDS range in 

all groups. Another possible weakness of the study is that the duration to conception reported 

by parents of children in the subfertile group may be subject to recall bias, but we optimized 

our methods to maximize recall accuracy. A further possible weakness was the relatively 

small number of children of subfertile parents (n=54) compared to the number of children of 

fertile parents (n=214). Therefore, a larger study with a greater number of children in the 

subfertile group may be required to clarify possible differences in anthropometric, metabolic, 

or hormonal outcomes between children of fertile and subfertile parents.  

2.6. Conclusion 

OSA children, particularly boys, have shorter stature than children of fertile and subfertile 

parents. There is also evidence that OSA children have an altered metabolic phenotype. Since 

OSA children comprise up to 7% of all births in Western countries, it is important to 

determine whether these differences persist or accentuate during puberty and into adulthood. 
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Further studies are necessary to fully understand any potential long-term consequences to 

children and adults conceived with this widely used fertility treatment.  
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Abstract 

Background: There is evidence suggesting that first-born children and adults are 

anthropometrically different to later-borns. Thus, we aimed to assess whether birth order was 

associated with changes in growth and metabolism in childhood. 

Methods: We studied 312 healthy pre-pubertal children: 157 first-born and 155 later-borns. 

Children were aged 3–10 years, born 37–41 weeks gestation, and of birth weight appropriate-

for-gestational-age. Clinical assessments included measurement of children’s height, weight, 

fasting lipid and hormonal profiles, and DXA-derived body composition. Data are adjusted 

means and 95% confidence intervals. 

Results: First-borns were taller than later-borns (p<0.0001), even when corrected for parents’ 

heights (0.31 vs 0.03 SDS; p=0.001). There was an incremental height decrease with 

increasing birth order, so that first-borns were taller than second-borns (p<0.001), who were 

in turn taller than third-borns (p=0.007). Further, among sibling pairs both height SDS 

(p=0.009) and corrected height SDS (p<0.0001) were lower in second- vs first-born children. 

Consistent with differences in stature, first- (p=0.043) and second-borns (p=0.003) had higher 

IGF-I concentrations than third-borns. Both first- (p<0.001) and second-borns (p=0.004) also 

had reduced abdominal adiposity (lower android fat to gynoid fat ratio) when compared to 

third-borns. Other parameters of adiposity and blood lipids were unaffected by birth order. 

Conclusions: First-borns were taller than later-born children, with an incremental height 

reduction from first to third birth order. These differences were present after correction for 

genetic height, and associated to some extent with alterations in plasma IGF-I. Our findings 

strengthen the evidence that birth order is associated with phenotypic changes in childhood. 

Introduction 

There is a trend towards smaller families with an increasing number of couples having fewer 

children. As a result, there has been a steady increase in the population of first-born children 

relative to later-borns, and first-borns now represent over 60% of all births in the developed 

world
1,2

. The trend towards smaller families began in the mid-20
th

 century, but over the past 

two decades more couples are choosing to have only one or two children
2
. Fertility rates have 

consequently fallen to a mean of 1.56 live births per woman in Europe, reflecting the trend 

towards smaller families as well as an overall reduction in birth rates
1
. Changes in family size 
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have occurred for a number of reasons, such as increased availability of contraception, 

economic pressures, and advanced maternal age at first childbirth
2
. This is notwithstanding 

the impact of official national policies, such as the “one child” policy in China that has been 

in existence for over thirty years
3
. 

There is evidence that birth order affects offspring phenotype and disease risk. Taller stature 

in first- compared to later-borns has been previously described in children
4,5,6

, adolescents
7
, 

and adults
8-11

. However, all of these studies were conducted in populations including subjects 

from a broad range of socio-economic groups
4-6

 and/or children’s heights were not corrected 

for parental height
4
. First-born adults are at higher risk of obesity than later-borns

7,9,12,13
. 

Compared to later-borns, first-born children were also shown to have a higher risk of type 1 

diabetes
14

 and higher blood pressure
15

. One adult study has described a less favourable lipid 

profile in first-borns
11

, but there are no data on the potential effects of birth order on blood 

lipids in childhood. Thus, we aimed to determine whether first-born children would have 

different height, body composition, metabolism, and hormonal profiles compared to later-

born children. 

Methods 

Ethics approval 

Ethics approval for this study was provided by the Northern Y Regional Ethics Committee 

(Ministry of Health, New Zealand). Written informed consent was obtained from parents or 

guardians, as well as verbal or written consent from each child as was appropriate to their 

age. 

Subjects  

We undertook a large project examining the effects of parental and prenatal factors in the 

offspring. From this larger project, we have examined the impact of conception with ovarian 

stimulation drugs on the growth and metabolism of children
16

. Children conceived after 

ovarian stimulation were asked to invite family friends and school friends who were naturally 

conceived to participate in the study as controls
16

, so that these controls were recruited 

randomly by study participants. Thus, in this current study we assessed only the entire 

naturally conceived cohort that was recruited from this larger project.  

Only healthy, developmentally normal, pre-pubertal children aged 3–10 years, born full-term 

(37–41 weeks gestation) were studied. All children were of New Zealand European ethnicity, 
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naturally conceived, born of singleton pregnancies, and of birth weight appropriate-for-

gestational-age (birthweight >-2 and <2 standard deviation scores (SDS)). Exclusion criteria 

also included signs of puberty (Tanner stage 2 breast development in girls and testicular 

volume >3 ml in boys or evidence of adrenarche), receiving medication that could affect 

insulin sensitivity or growth, and having a first degree relative with diabetes. Children were 

also excluded if born to mothers with gestational diabetes, pre-eclampsia, gestational or pre-

existing hypertension, chronic illnesses, or prolonged maternal drug use (including tobacco). 

All participants were of higher socio-economic status according to their residential address 

and the “decile score” of the school they attended
17

. A decile score reflects the socio-

economic status of the school communities, where decile 1 indicates lowest and 10 highest 

socio-economic status
17

. All participants in the study were of decile 9 or 10 socio-economic 

status 

Study parameters 

All clinical assessments were carried out at the Maurice & Agnes Paykel Clinical Research 

Unit (Liggins Institute, University of Auckland). Standing height was measured using a 

Harpenden stadiometer. Each child was measured between 7.30 and 8.00 am by the same 

paediatrician, using standard techniques for accurate height measurement as per Schilg et 

al.
18

. Children’s weight and body composition were assessed using dual-energy x-ray 

absorptiometry (DXA Lunar Prodigy 2000; General Electric, Madison, WI, USA). Apart 

from the total body fat percentage, other DXA-derived parameter of interest was abdominal 

adiposity, which was expressed as the android fat to gynoid fat ratio. This ratio is provided by 

the manufacturer’s software, based on an automated sectioning of specific areas of the 

body
19

. A number of studies in children have shown that proportionally greater adiposity in 

the upper body (i.e. android fat) is associated with an increased risk of adverse metabolic 

outcomes
20-22

. Each child had a bone age X-ray to determine biological maturity, which was 

blindly assessed by a single paediatric endocrinologist using pre-established standards
23

. 

Maternal and paternal height and weight were measured, and body mass index (BMI) was 

calculated. Maternal obstetric history was also recorded to clarify parity and identify the birth 

order of each subject.  

Children’s birth weight, height, BMI, and parental heights were transformed into SDS
24

. Mid-

parental height SDS (MPHSDS) was calculated for each child
25

. Children’s heights SDS 

were then individually corrected for their genetic potential (parents’ heights), using the 

formula: child’s height SDS minus MPHSDS. Parents’ BMI were transformed into SDS, and 
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the mean parental BMISDS (MPBMISDS) was calculated for each child
26

. The SDS system 

expresses the extent of the deviation of a given value from the standard population mean. 

Each SDS is calculated as the individual value minus the mean value for the reference 

population (given gender and age), divided by the standard deviation of the reference 

population. Thus, the mean reference point is zero
24

. 

Following an overnight fast, morning blood samples were drawn to measure serum glucose, 

insulin, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density 

lipoprotein cholesterol (LDL-C), triglycerides, insulin-like growth factor-I (IGF-I), IGF-II, 

IGF binding protein-3 (IGFBP-3). An insulin resistance score (HOMA-IR) was also 

computed using fasting glucose and insulin concentrations
27

. 

Assays 

Glucose concentrations were measured on a Hitachi 902 autoanalyser (Hitachi High 

Technologies Corporation, Tokyo, Japan) by enzymatic colorimetric assay (Roche, 

Mannheim, Germany), with an inter-assay coefficient of variation (CV) of 2.1%. Insulin 

concentrations were measured using an Abbott AxSYM system (Abbott Laboratories, Abbott 

Park, IL, USA) by microparticle enzyme immunoassay, with a CV of 5.7%. Total cholesterol, 

HDL-C, and LDL-C concentrations were measured using a Hitachi 902 autoanalyser, with 

CV of 8.9%, 11.4, and 10.1, respectively. Commercially available ELISA kits E20, E30, 

E03A, E07, and E09 (Mediagnost, Reutlingen, Germany) were used for quantitative 

determination of serum IGF-II, IGF-II, IGFBP-3, leptin, and adiponectin, respectively; assay 

sensitivities were 0.09, 0.02, 0.1, 1.0, and 0.6 ng/ml, with CV of 3.1, 5.0, 9.6, 6.7, and 3.0%, 

respectively. 

Statistical analysis 

Mean age was compared using one-way ANOVA and sex ratio with Fisher’s exact test, both 

in Minitab v.16 (Pennsylvania State University, State College, PA, USA). Children were 

separated into two groups according to their birth order: first-borns and later-borns. 

Comparisons between birth order groups were carried out using linear mixed models in SAS 

v.9.2 (SAS Institute, Cary, NC, USA). All models accounted for important confounding 

factors, mainly gender, birth weight SDS, gestational age, and maternal age. All models 

included family identification number as a random factor, to account for the clustering of 

siblings. Other factors were controlled for as required, depending on the outcome response of 

interest: for lipids, hormones, and outcomes associated with glucose homeostasis – age and 
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BMISDS were included; for anthropometric data – age and the appropriate parental factor 

(i.e. MPBMISDS or MPHSDS); and for blood pressure parameters – height and total body fat 

percentage. For a smaller number of outcomes, data were re-analysed with subjects split into 

three groups according to birth order (first-, second-, and third-borns).  

The interaction effect between birth order and gender was tested in all models. Outcomes 

were only assessed separately for boys and girls when there was an indication of a differential 

response to birth order between genders. In addition, main outcomes were analysed 

separately for all sibling pairs of first- and second-born children. Where appropriate, data 

were log-transformed to approximate a normal distribution. Data are provided as means and 

95% confidence intervals adjusted for the confounders in multivariate models (back-

transformed were appropriate).  

Results 

In all, 343 eligible children volunteered to participate, but 31 were subsequently excluded: 22 

were born prematurely or small-for-gestational-age, 5 were pubertal, 3 children had mothers 

with gestational diabetes or glucose intolerance, and one child was on medications known to 

influence growth. Thus, a total of 312 children took part in the study: 157 first-borns (50%) 

and 155 later-borns (50%) (Table 3.1; Figure 3.1). Later-borns were comprised of 119 

second-born and 36 third-born children (Figure 3.1). 68 children were sibling pairs (n=136) 

and 12 families had three siblings who participated in the study (n=36). 

 

Figure 3.1. Summary of the study’s recruitment process 
 

343 volunteers

Later-borns
(n=155)

First-borns
(n=157)

Third-borns
(n=36)

Second-borns
(n=119)

312 participants

31 did not fit 

inclusion criteria
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Table 3.1. Baseline characteristics and fasting serum endocrine and metabolic parameters in first-born versus later-born 
children. 
Age and MPHSDS data are mean ± SD; other data are means and 95% confidence intervals adjusted for other confounding 

factors (including birth parameters and age) in the multivariate models. Abdominal adiposity is the android fat to gynoid 

fat ratio. 

 First-borns Later-borns p-value 

n 157 155  

Sex ratio (boys) 54% 54%  

Age (years) 8.1 ± 2.1 6.5 ± 1.9 <0.0001 

Chronological age – bone age (years) -0.19 ± 0.93 -0.11 ± 0.69 0.49 

Gestation (weeks) 39.8 (39.6–40.0) 39.6 (39.4–39.8) 0.13 

Birth weight (kg) 3.48 (3.41–3.55) 3.60 (3.53–3.67) 0.011 

HtSDS 1.08 (0.93–1.23) 0.67 (0.52–0.82) <0.0001 

MPHSDS 0.77 ± 0.72 0.89 ± 0.77 0.17 

HtSDS–MPHSDS 0.42 (0.29–0.55) 0.13 (0.00–0.26) <0.0001 

BMISDS -0.09 (-0.27–0.08) -0.05 (-0.23–0.13) 0.84 

Abdominal adiposity 0.59 (0.56–0.62) 0.63 (0.60–0.66) 0.11 

Total body fat (%) 17.9 (16.8–18.9) 16.6 (16.5–18.7) 0.65 

Total cholesterol (mmol/l) 4.33 (4.21–4.46) 4.41 (4.28–4.53) 0.56 

LDL-C (mmol/l) 2.47 (2.36–2.58) 2.56 (2.44–2.67) 0.35 

HDL-C (mmol/l) 1.37 (1.32–1.43) 1.39 (1.33–1.45) 0.64 

Triglycerides (mmol/l) 0.73 (0.69–0.78) 0.76 (0.71–0.81) 0.88 

Insulin sensitivity (HOMA-IR) 1.22 (1.10–1.35) 1.24 (1.12–1.36) 0.79 

IGF-I (μg/l) 109 (101–118) 112 (103–120) 0.67 

IGF-II (μg/l) 739 (723–755) 747 (731–763) 0.51 

IGFBP-3 (μg/l) 2554 (2401–2707) 2635 (2478–2792) 0.41 

 

The characteristics of the study population are outlined in Table 3.1. First-borns were of 

similar gestational age, but of lower birth weight than later-borns with a mean birth weight 

difference of 120 grams (p=0.011; Table 3.1). First-borns were older than later-borns 

(p<0.0001; Table 3.1), while second-born children were older than third borns (p<0.05; Table 

3.2).  

First-borns were taller than later-borns (p<0.0001), even when corrected for parents’ heights 

(p<0.001; Table 3.1). In fact, there was an incremental height decrease from first- to third-

borns. Thus, first-borns were taller than second-borns (p<0.001), who were in turn taller than 

third-borns (p=0.007; Table 3.2; Figure 3.2). Further, when sibling pairs were assessed, both 

height SDS (p=0.009) and corrected height SDS (p<0.0001) were lower in second-borns 
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compared to first-born children (Figure 3.3). Importantly, there were no differences in 

children’s biological maturity (as assessed by bone age estimation) among groups (Table 3.1 

& Table 3.2). 

Although total adiposity was unaffected by birth order, abdominal fat (android fat to gynoid 

fat ratio) was reduced in both first- (p<0.001) and second-borns (p=0.004) compared to third-

born children (Table 3.2). IGF-I concentrations were higher in both first- (p=0.043) and 

second-borns (p=0.003) compared to third-borns (Table 3.2). Conversely, blood lipids and 

other hormonal parameters were unaffected by birth order (Table 3.2). 

There were no sex-dependent differences between boys and girls according to birth order. 

Exploratory analyses among first-borns on main study outcomes showed no differences 

between first-borns who had siblings (n=109; 69%) compared to those who were an only 

child (n=48; 31%).  

 

Table 3.2. Baseline characteristics and fasting serum endocrine and metabolic parameters in first-, second-, and third-
born children. 
Age and MPHSDS data are mean ± SD; other data are means and 95% confidence intervals adjusted for other confounding 

factors (including birth parameters and age) in the multivariate models. *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001 

for comparisons with first-borns; †p<0.05, and ††p<0.01 for comparison with third-borns. Abdominal adiposity is the 

android fat to gynoid fat ratio. 

 First-borns Second-borns Third-borns 

n 157 119 36 

Age (years) 8.1 ± 2.1 6.7 ± 1.8****† 5.8 ± 2.1**** 

Sex ratio (boys) 54% 54% 51% 

Chronological age – bone age (years) -0.19 ± 0.93 -0.15 ± 0.72 0.02 ± 0.53 

Gestation (weeks) 39.8 (39.6–40.0) 39.6 (39.4–39.9) 39.4 (39.0–39.8) 

Birth weight (kg) 3.48 (3.41–3.55) 3.59 (3.51–3.66)* 3.66 (3.52–3.81)* 

HtSDS 1.08 (0.93–1.23) 0.67 (0.50–0.83)*** 0.70 (0.39–1.00)* 

MPHSDS 0.77 ± 0.72 0.90 ± 0.74 0.87 ± 0.91 

HtSDS–MPHSDS 0.42 (0.29–0.55) 0.19 (0.06–0.32)***†† -0.14 (-0.37–0.08)**** 

BMISDS -0.09 (-0.27–0.08) -0.07 (-0.26–0.12) 0.04 (-0.32–0.40) 

Abdominal adiposity 0.59 (0.56–0.62) 0.61 (0.58–0.64)† 0.71 (0.64–0.77)** 

Body fat (%) 17.9 (16.8–18.9) 17.5 (16.3–18.6) 18.3 (16.1–20.5) 

IGF-I (μg/l) 109 (101–118) 115 (106–124)†† 96 (80–113)* 

IGF-II (μg/l) 739 (723–755) 752 (735–769) 725 (693–757) 

IGFBP-3 (μg/l) 2554 (2401–2707) 2647 (2487–2808) 2554 (2272–2836) 
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Figure 3.2. Height SDS corrected for mean parental height among first- (n=157), second- (n=119), and third-born (n=36) 
children. 
Data are means and 95% confidence intervals, adjusted for other confounding factors in the multivariate model. 

***p<0.001, ****p<0.0001 vs first-borns; ††p<0.01 vs third-borns. 

 

Figure 3.3. Height SDS and height SDS corrected for mean parental height from subgroup analyses on first- and second-
born children from sibling pairs in the same family (n=136). 
Data are means and 95% confidence intervals, adjusted for other confounding factors in the multivariate model. **p<0.01 

and ****p<0.0001.  
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Discussion 

We found that first-born children were approximately 2.5 centimetres taller than later-borns, 

with birth order also having a graded effect on height, with an incremental height reduction 

from first to third birth order. These differences equated to a mean height decrease of 1.3 cm 

from first- to second-borns, and a further decrease of 2.0 cm from second- to third-born 

children. Further, in keeping with their taller stature, first- and second-borns had higher IGF-I 

concentrations than third-borns. This latter observation is consistent with our study findings, 

as IGF-I is an important mediator of childhood growth
28

. 

The major strengths of our study were our contemporary cohort (born after the year 2000), 

consisting exclusively of children of higher socio-economic status (where nutrition was 

plentiful, irrespective of birth order) and of single ethnicity (New Zealand European). 

Importantly, each child’s height was also individually corrected for accurately measured 

parental heights (i.e. genetic potential). Further, children across birth order groups had similar 

BMI, meaning that height differences were not driven by childhood obesity
29

. Notably, as 

there were no differences in biological maturity between groups (as assessed by bone age X-

rays), our study indicates that the observed differences in height between birth order groups 

are more likely to persist into adulthood
25

. 

Previous studies assessing the impact of birth order on childhood height also found that first-

borns were 1–2 cm taller than later-born children
4-6

. However, their data were not corrected 

for parental heights, which are the most important predictors of offspring height
25,30

. In 

addition, these childhood studies included participants from all socio-economic groups, and 

only two studies included limited adjustments for socio-economic status
4,6

. The latter has a 

strong effect on height, with 1–2 cm differences observed between children of lower and 

higher socio-economic groups
31

, with more marked effects (2–6 cm) on adult height
30

. This 

issue is further compounded when we consider that greater family size (i.e. increasing birth 

order) is strongly associated with lower socio-economic status
32

. A large British study 

provided evidence that number of siblings also affects childhood height, independently of 

socio-economic status
33

. However, the latter study did not assess possible effects of birth 

order, and our data showed no differences in stature between first-borns who were an only 

child versus first-borns with siblings. 

Adult studies demonstrating taller stature in first-borns have been conducted in developing 

countries
7,9-11

, where increasing family size reduces the availability of nutrition in childhood
34
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and may explain the shorter stature of later-born offspring
31

. The only adult study conducted 

in a developed country comprised a cohort of adults born in post-war England, a time of 

limited availability of food
8
.  

While children in all birth order groups in our study had similar BMI and total body fat 

percentage, third-born children had higher abdominal fat than first- and second-borns. 

Increased abdominal fat is a risk factor for the metabolic syndrome
35

, and third-born children 

may be at a greater risk of this disease than both first- and second-borns. The only other 

childhood study assessing the effect of birth order on childhood adiposity found that first-

borns had a greater BMI than later-borns at 4 years of age, but similar BMI and body 

composition in adolescence
7
. Our findings also contrast with several adult studies that have 

found that first-borns had greater BMI and/or increased adiposity when compared to later-

borns
9,11-13

. As our cohort consisted of pre-pubertal children, it remains possible that further 

differences in adiposity between first- and later-born children could emerge in adolescence or 

adulthood.  

We found no effects of birth order on blood lipid profiles in childhood. Although this is the 

first study to examine such effects in children, one adult study found that first-borns had less 

favourable lipid profiles compared to later-borns
11

. As our cohort included pre-pubertal 

children, possible birth order effects on lipids may be yet to emerge. 

There is no clear single explanation for the observed taller stature of first-born children or the 

graded height reduction with increasing birth order, and several mechanisms may be 

responsible for these differences. Taller stature in first-born children may be mediated by 

increased levels of growth hormone (GH) and IGF-I receptors compared to later-borns
36

. A 

study comparing first- and later-born sheep revealed marked differences in the hepatic GH–

IGF axis
36

. Compared to later-borns, first-born lambs had a persistent increase in hepatic GH-

receptor mRNA
36

, as well as up-regulated hepatic IGF-I receptor mRNA
36

. These receptor 

differences were accompanied by a trend towards a higher crown to rump length in first-born 

one-month-old lambs, but unfortunately no details on any subsequent phenotypic differences 

were provided
36

. These findings suggest that first-borns may have increased GH and IGF-I 

receptor responsiveness, and increased growth may accompany these receptor differences. It 

is possible that these findings provide some insight into the mechanism responsible for the 

height differences observed between first- and later-born children.  
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Implantation and placentation seem to differ between first and later pregnancies, and first-

born fetuses may receive a reduced nutrient supply in utero compared to their later-born 

siblings
37,38

. However, “fetal restriction” is associated with shorter stature in childhood
38,39

. 

Therefore this mechanism is not consistent with our findings on taller stature among first-

born children.  

Alternatively, differences in implantation and placentation between first- and later-borns may 

trigger more subtle changes in the early fetal environment. These include possible epigenetic 

changes (i.e. alterations in gene expression not caused by changes in DNA sequence
40

) in 

imprinted genes regulating childhood growth. Gene imprinting is a regulatory process that 

takes place at gametogenesis, embryogenesis, and placentation. Imprinted genes may be 

altered by subtle changes in the early fetal environment, subsequently affecting phenotype
40

. 

Birth order has been previously described to alter imprinted genes involved in growth, such 

as H19 and IGF-II
41

. Therefore, it is possible that birth order may lead to alterations in 

placental imprinted genes, leading to subsequent changes in childhood growth.  

Possible limitations of this study include the age differences between birth order groups, but 

children’s heights and BMI were converted to SDS to minimize possible effects of age and 

gender on auxological outcomes. Furthermore, not only were other measured outcomes 

corrected for age in statistical models (where appropriate), but there were also no differences 

in biological maturity among groups. There was also a relatively small number of third-born 

children (n=36), but this group was still large enough for important differences between birth 

order groups to be detected. In addition, as our cohort comprised a homogenous group of 

children of same ethnicity and higher socio-economic status, our findings may not be directly 

applicable to the general population. However, this homogeneity means that we eliminated 

these two important factors known to affect phenotype and metabolism in childhood, so that 

the effects of birth order could better evaluated.  

In conclusion, we observed that first-born children were taller than later-borns, with an 

incremental height reduction observed from first to third birth order. Overall, the mechanisms 

responsible for these differences remain unexplained and further investigation is required. 

Given the continuing worldwide trend towards smaller families, the proportion of first-borns 

in the population is likely to continue to grow. As a result, the possible effects of birth order 

on childhood and adult phenotype and disease risk warrant further evaluation. 
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Abstract 

Background: Maternal age at childbirth continues to increase worldwide. We aimed to assess 

whether increasing maternal age is associated with changes in childhood height, body 

composition, and metabolism. 

Methods: 277 healthy pre-pubertal children, born 37–41 weeks gestation were studied. 

Assessments included: height and weight corrected for parental measurements, DXA-derived 

body composition, fasting lipids, glucose, insulin, and hormonal profiles. Subjects were 

separated according to maternal age at childbirth: <30, 30–35, and >35 years. 

Results: Our cohort consisted of 126 girls and 151 boys, aged 7.4 ± 2.2 years; maternal age at 

childbirth was 33.3 ± 4.7 years (range 19–44 years). Children of mothers aged >35 and 30–35 

years at childbirth were taller than children of mothers aged <30 years by 0.26 (p=0.002) and 

0.23 (p=0.042) SDS, respectively. There was a reduction in childhood BMISDS with 

increasing maternal age at childbirth, and children of mothers aged >35 years at childbirth 

were 0.61 SDS slimmer than those of mothers <30 years (p=0.049). Children of mothers aged 

30–35 (p=0.022) and >35 (p=0.036) years at childbirth had abdominal adiposity reduced by 

10% and 13%, respectively, compared to those in the <30 group. Children of mothers aged 

30–35 years at childbirth displayed a 19% increase in IGF-I concentrations compared to 

offspring in <30 group (p=0.042). Conversely, IGF-II concentrations were lower among the 

children born to mothers aged 30–35 (6.5%; p=0.004) and >35 (8.1%; p=0.005) compared to 

those of mothers aged <30 years. Girls of mothers aged 30–35 years at childbirth also 

displayed improved HOMA-IR insulin sensitivity (p=0.010) compared to girls born to 

mothers aged <30 years.  

Conclusions: Increasing maternal age at childbirth is associated with a more favourable 

phenotype (taller stature and reduced abdominal fat) in their children, as well as improved 

insulin sensitivity in girls. 

4.1. Introduction 

Over the past three decades, maternal age at first childbirth has increased by approximately 4 

years in most developed countries [1]. This shift in reproductive behaviour means that most 

children are currently born to mothers aged more than 30 years [1]. The reasons for the 
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postponement of childbirth include increased availability of contraception, greater 

educational and career opportunities for women, economic pressures, and personal choice [2] 

There is growing interest in the possible contribution of increasing maternal age to the future 

health of the offspring. Increasing maternal age has been linked to greater risk of type 1 

diabetes [3], as well as higher blood pressure in childhood[4] and higher rates of type 2 

diabetes[5] in adulthood. Increasing maternal age is also associated with increased rates of 

obstetric and perinatal complications, including fetal loss, pre-eclampsia, premature delivery, 

and low birth weight [6] 

Older mother also have children with increased rates of chromosomal and other genetic 

disorders, which are thought to be largely due to a decline in oocyte quality [7]. The timing of 

the onset and rate of this decline in oocyte quantity and quality is a subject of on-going 

debate [7]. Nonetheless, there is a substantial reduction in female fertility from 30 years of 

age, which may signal the start of oocyte decline [8]. However, some authors suggest that 

oocyte quality and quantity declines most sharply after 35 years of age [9], while others 

describe a gradual decline from menarche to menopause [10]. Increasing age is also 

associated with physiological changes in the mother’s reproductive system, such as changes 

in gonadotropin and other hormone levels [11,12]. 

These alterations in the early fetal environment may contribute to changes in the physical 

characteristics and disease risk of the offspring, but it is unknown whether maternal age 

directly affects the growth or metabolism of their children. Thus, in this study we aimed to 

assess whether increasing maternal age would be associated with changes in height, body 

composition, as well as lipid and metabolic profiles in the offspring in childhood.       

4.2. Methods 

4.2.1. Ethics statement 

Ethics approval for this study was provided by the Northern Y Regional Ethics Committee 

(Ministry of Health, New Zealand). Written informed consent was obtained from parents or 

guardians, as well as verbal or written consent from each child as was appropriate to their 

age. 
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4.2.2. Subjects 

We undertook a large project examining the effects of parental and prenatal factors in the 

offspring. From this larger project, we have examined the impact of conception with ovarian 

stimulation drugs on the growth and metabolism of children [13]. Children conceived after 

ovarian stimulation were asked to invite family friends and school friends who were naturally 

conceived to participate in the study as controls [13], so that these controls were recruited 

randomly by study participants. Thus, in this current study we assessed the entire naturally 

conceived cohort that was recruited from this larger project (Figure 4.1).  

 

 

Figure 4.1. Summary of the study’s recruitment process.  
1 OSA children had been conceived via ovarian stimulation, and were examined in Savage et al. [13]. 2 Controls were friends 

of OSA children to ensure similar age group, ethnicity, and socio-economic status. 3 22 children were born small-for-

gestational age and/or premature; five were pubertal; three were born of a mother with gestational diabetes/glucose 

intolerance; and one child was on medication known to influence growth. 

 

Only healthy, developmentally normal, pre-pubertal children aged 3–10 years, born 37–41 

weeks gestation were studied. All children were of New Zealand European ethnicity, 

naturally conceived, born to singleton pregnancies, and of birth weight appropriate-for-

gestational-age (birthweight >-2 and <2 standard deviation scores (SDS)). Exclusion criteria 

also included signs of puberty (Tanner stage 2 breast development in girls and testicular 

volume >3 ml in boys or evidence of adrenarche), receiving medication that could affect 

insulin sensitivity or growth, and having a first degree relative with diabetes. Children were 

excluded if born to mothers with gestational diabetes, pre-eclampsia, gestational or pre-

existing hypertension, chronic illnesses, or prolonged maternal drug use (including tobacco). 

All participants were of higher socio-economic status according to their residential address 

and the “decile score” of the school they attended [14]. A decile score reflects the socio-

economic status of the school communities, where decile 1 indicates lowest and 10 highest 
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socio-economic status [14]. The “decile score” is a comprehensive assessment of community 

affluence, which takes into account a number of factors such as household income, parental 

occupation, parents’ educational qualifications, number of occupants per dwelling size, and 

government welfare benefits [15,16]. All participants in the study were from schools of decile 

9 or 10. 

4.2.3. Study design 

All clinical assessments were carried out by a single researcher at the Maurice & Agnes 

Paykel Clinical Research Unit (Liggins Institute, University of Auckland). Standing and 

sitting height were measured using a Harpenden stadiometer. Children’s weight and body 

composition were assessed using dual-energy X-ray absorptiometry (DXA Lunar Prodigy 

2000; General Electric, Madison, WI, USA). Apart from the total body fat percentage, the 

DXA-derived parameter of interest was abdominal adiposity, which expressed as the android 

fat to gynoid fat ratio and provided by the manufacturer’s software based on an automated 

sectioning of specific areas of the body [17]. A number of studies in children have shown that 

proportionally greater adiposity in the upper body (i.e. android or male fat) is associated with 

adverse metabolic outcomes [18,19,20]. 

The parameters measured included total body fat percentage, android fat percentage 

(abdominal fat – measured from lower end of ribs and the line drawn through the hip joint), 

and gynoid fat percentage (fat on hips and thighs – measured from the line drawn through the 

hip joints and the middle of thighs). The ratio of the android fat mass to the gynoid fat mass 

(android/gynoid fat) was calculated [21]. Each child also had a bone age X-ray to assess 

biological maturity, which was blindly assessed by a single paediatric endocrinologist using 

pre-established standards [22].  

Maternal and paternal height, weight, and body mass index (BMI) were recorded. Maternal 

obstetric history was also recorded to clarify parity, and relevant medical history. Children’s 

birth weight, height, BMI, and parental height were transformed into SDS [23,24,25]. Mid-

parental height SDS (MPHSDS) was calculated for each child [26]. Children’s heights SDS 

were then individually corrected for their genetic potential (parents’ heights), using the 

formula: child’s height SDS minus MPHSDS. Parents’ BMI were transformed into SDS, and 

the mean parental BMISDS (MPBMISDS) was calculated for each child [27] 
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Following an overnight fast, blood samples were drawn from each child for assessment of 

total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein 

cholesterol (LDL-C), triglycerides, insulin-like growth factor 1 (IGF-I), IGF-II, IGF binding 

protein 3 (IGFBP-3). Children also had glucose and insulin levels measured, and insulin 

sensitivity evaluated using the homeostasis model assessment of insulin resistance (HOMA-

IR) [28] 

Plasma insulin was measured using an Abbott AxSYM system (Abbott Laboratories, Abbott 

Park, IL, USA) by microparticle enzyme immunoassay (Abbott Diagnostics, Wiesbaden, 

Germany) with an inter-assay coefficient of variation (CV) of <5%. Glucose, triglycerides, 

total cholesterol, HDL-C, and LDL-C concentrations were measured on a Hitachi 902 

autoanalyser (Hitachi High Technologies Corporation, Tokyo, Japan) by enzymatic 

colorimetric assay (Roche, Mannheim, Germany) with an inter-assay CV of 1.2% for 

glucose, and <5% for total cholesterol, triglycerides, HDL-C, and LDL-C. Commercially 

available ELISAs (R&D Systems, Minneapolis, MN, USA) were used to measure plasma 

IGF-I (DSL-100, intra-assay CV 2.8%, inter-assay CV 9.2%), IGFBP-3 (DSL-10-6600, intra-

assay CV 3.1%, inter-assay CV 9.9%), and IGF-II (Meddiagnost, Reutlingen Germany; E-30, 

intra-assay CV 1.9%, inter-assay CV 6.3%).  

4.2.4. Statistical analysis 

To examine the possible non-linear effects of maternal age on measured outcomes, subjects 

were separated according to maternal age at childbirth using two maternal age thresholds: 30 

[8] and 35 years [9]. Subjects were divided into 3 groups: children born to mothers aged less 

than 30 years of age (<30), 30 to 35 years (30–35 years), and greater than or equal to 35 years 

(>35).  

Demographics of the study cohort were presented as means ± standard deviation, and 

compared between groups using one-way ANOVA. Random effect mixed models were used 

to compare outcomes among maternal age groups, and accounted for important confounding 

factors including gender, birth weight SDS, gestational age, birth order, and paternal age. The 

maternal identification number was considered as a random factor to account for the 

clustering of siblings. Other factors were controlled for as required, depending on the 

outcome response of interest: for lipids, hormones, and outcomes associated with glucose 

homeostasis – age and BMISDS were included; for anthropometric data – the appropriate 

parental factor (i.e. MPBMISDS or MPHSDS). Outcome data were presented as estimated 
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marginal means with associated 95% confidence intervals. The differences between groups 

were estimated and tested using pairwise comparisons. 

The interaction effect between group and gender was tested in all models. Outcomes were 

only assessed separately for boys and girls when there was an indication of a differential 

response to maternal age between genders. Response variables on glucose homeostasis were 

log-transformed to approximate normality. Statistical analyses were performed using SAS 

version 9.2 (SAS Institute Inc. Cary NC, USA).  All statistical tests were two-sided and 

maintained at a 5% significance level.  

4.3. Results 

A total of, 343 children volunteered to participate, but 31 were excluded: 22 children were 

born small-for-gestational age and/or premature, five were pubertal, 3 were born to a mother 

with gestational diabetes/glucose intolerance, and one child was on medication known to 

influence growth (Figure 4.1). Of the remaining 312 controls, a further 35 had to be excluded 

to incomplete parental age data (Figure 4.1). Thus, our study cohort consisted of 277 children 

(126 girls and 151 boys) aged 3–10 years (7.4 ± 2.2). The offspring of 196 mothers were 

included in this study, as there were 71 sibling groups of 2 or 3 children. Maternal age at the 

time of child birth ranged from 19–44 years (33.3 ± 4.7 years; Figure 4.2), and this maternal 

age distribution is representative of New Zealand European families of higher socio-

economic status [29]. 

Age, sex ratio, birth weight SDS, and gestational age were similar among groups (Table 4.1). 

There were no differences in maternal BMI, mean parental BMI, or duration and rate of 

breast feeding among groups. In addition, children in all maternal age groups had similar 

biological maturity as assessed by bone age X-rays (all p>0.79; Table 4.1).  
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Figure 4.2. Distribution of maternal age at childbirth in the study cohort. 

 

 

 

Table 4.1. Demographics of the study cohort according to their mother’s age at childbirth. 
Data are means ± standard deviation. ***p<0.001 for comparisons with <30 group; †††p<0.001 for comparison with >35 

group. 

 Maternal age at childbirth 

 <30 years 30–35 years >35 years 

n 62 103 112 

Sex ratio (% boys) 55 58 50 

Age (years) 7.6 ± 2.3 7.6 ± 2.0 7.0 ± 2.2 

Bone age – chronological age (years) -0.21 ± 0.97 -0.10 ± 0.80 -0.19 ± 0.71 

Maternal age (years) 26.9 ± 2.8 32.7 ± 1.4***††† 38.0 ± 2.4*** 

Gestational age (weeks) 39.7 ± 1.2 39.8 ± 1.2 39.5 ± 1.2 

Birth weight (kg) 3.54 ± 0.51 3.58 ± 0.53 3.50 ± 0.44 
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4.3.1. Anthropometry 

When corrected for their genetic potential, children of mothers aged 30–35 and >35 years 

were 0.26 (p=0.002) and 0.23 (p=0.042) SDS taller than children of mothers aged <30 

(Figure 4.3; Table S1). There was a reduction in childhood BMI SDS with increasing 

maternal age at childbirth, so that children born to mothers aged >35 years were 0.61 SDS 

slimmer than those of mothers <30 years (p=0.049) (Figure 4.3; Table S1). Increasing 

maternal age at childbirth was also associated with improved fat distribution in the offspring, 

so that children in both 30–35 (p=0.022) and >35 groups (p=0.036) had abdominal adiposity 

which was lower by 10% and 13%, respectively, compared to children of mothers aged <30 

years at childbirth (Figure 4.3; Table S1).  

A leaner phenotype was more apparent among boys born to mothers aged 30–35 and >35 

years. In this group, increasing maternal age at childbirth was associated with a decrease in 

total body fat percentage, which was 12.9% in boys born to mothers aged >35 years 

compared to 14.7% (p=0.053) and 16.6% (p=0.015) in the boys of mothers aged 30–35 and 

<30 years at childbirth, respectively. Among girls, total body fat percentage was not different 

among groups (19.8% for <30 years, 18.5% for 30–35 years, and 19.1% for >35 years; all 

p>0.42). 

4.3.2. Metabolic and hormonal profiles 

Children of mothers aged 30–35 years at childbirth displayed a 19% increase in IGF-I 

concentrations compared to the offspring of mothers aged <30 years (p=0.042; Table 4.2; 

Table S1). Conversely, IGF-II concentrations were lower among the children of mothers aged 

30–35 (6.5%; p=0.004) and >35 (8.1%; p=0.005) compared to those of the mothers aged <30 

years at childbirth (Table 4.2 & Table 4.4). There were no observed effects of maternal age at 

childbirth on their children’s lipid profile (Table 4.2 & Table 4.4). 

Maternal age at childbirth did not affect parameters of glucose homeostasis among boys. 

However, girls of mothers aged 30–35 years at childbirth displayed improved insulin 

sensitivity (p=0.010) as expressed by lower HOMA-IR values (Table 4.3 & Table 4.5).  
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Figure 4.3. Corrected height, corrected BMI, and abdominal adiposity in the offspring of mothers of different ages at 
childbirth. 
Height and BMI standard deviation scores are corrected for mean parental height and mid-parental BMI SDS, respectively. 

Abdominal adiposity is represented by the android fat to gynoid fat ratio. Data are means and 95% confidence intervals, 

adjusted for other confounding factors in multivariate models, including paternal age. *p<0.05 and **p<0.01 vs children of 

mothers aged <30 years at childbirth. 
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Table 4.2. Lipid and IGF profiles in childhood according to maternal age at childbirth. 
Data are means and 95% confidence intervals adjusted for other confounding factors in the multivariate models (including 

paternal age). *p<0.05 and **p<0.01 vs children of mothers aged <30 years at childbirth. 

 Maternal age at childbirth 

 <30 years 30–35 years >35 years 

n 62 103 112 

Lipid profile    

Total cholesterol (mmol/l) 4.35 (4.12–4.51) 4.33 (4.20–4.47) 4.32 (4.15–4.51) 

LDL-C (mmol/l) 2.52 (2.31–2.74) 2.57 (2.45–2.69) 2.51 (2.35–2.67) 

HDL-C (mmol/l) 1.41 (1.31–1.52) 1.34 (1.28–1.40) 1.37 (1.29–1.45) 

LDL-C : HDL-C 1.77 (1.58–2.00) 1.89 (1.77–2.02) 1.83 (1.68– 2.00) 

Hormones    

IGF-I (μg/l) 97 (81–113) 115 (106–125)* 111 (99–123) 

IGF-II (μg/l) 790 (759–823) 739 (721–757)** 726 (702–749)** 

IGFBP-3 (ng/ml) 2803 (2501–3104) 2682 (2508–2855) 2596 (2373–2818) 

 

 

Table 4.3. Parameters of glucose homeostasis among boys and girls according to maternal age at childbirth. 
Data are means and 95% confidence intervals adjusted for other confounding factors in the multivariate models (including 

paternal age). *p<0.05 and **p<0.01 for comparisons with <30 group. 

 Maternal age at childbirth 

 <30 years 30–35 years >35 years 

Boys (n) 34 65 52 

Insulin sensitivity (HOMA-IR) 0.99 (0.79–1.24) 0.98 (0.87–1.11) 0.97 (0.82–1.14) 

Fasting glucose (mmol/l) 4.70 (4.54–4.86) 4.80 (4.70–4.90) 4.85 (4.71–4.98) 

Fasting insulin (mU/l) 4.79 (3.90–5.88) 4.52 (4.04–5.07) 4.47 (3.84–5.20) 

Girls (n) 28 47 51 

Insulin sensitivity (HOMA-IR) 1.49 (1.14–1.95) 1.00 (0.86–1.17)** 1.14 (0.95–1.37) 

Fasting glucose (mmol/l) 4.93 (4.74–5.14) 4.70 (4.59–4.81)* 4.75 (4.62–4.89) 

Fasting insulin (mU/l) 6.75 (5.30–8.61) 4.85 (4.22–5.57)* 5.42 (4.86–6.41) 
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Table 4.4. Height, body composition, lipid profile, and hormonal profiles in childhood according to maternal age at 
childbirth. 
Data are 95% confidence intervals for the differences between estimated marginal means, adjusted for other confounding 

factors in the multivariate models (including paternal age). Respective p-values are provided in brackets. 

 

 

 

  

 Maternal age at childbirth 

 30–35 vs <30 30–35 vs >35 <30 vs >35 

Corrected height SDS 0.10 – 0.42 

(0.002) 

-0.10 – 0.17 

(0.64) 

-0.45 – -0.01 

(0.042) 

Corrected BMI SDS -0.84 – 0.08 

(0.10) 

-0.17 – 0.62 

(0.25) 

0.01 – 1.21 

(0.049) 

Abdominal adiposity -0.090 – -0.010 

(0.022) 

-0.165 – 0.163 

(0.74) 

0.005 – 0.086 

(0.036) 

Lipid profile    

Total cholesterol (mmol/l) -0.26 – 0.27 

(0.99) 

-0.22 – 0.23 

(0.97) 

-0.34 – 0.35 

(0.99) 

LDL-C (mmol/l) -0.19 – 0.28 

(0.69) 

-0.14 – 0.26 

(0.55) 

-0.29 – 0.32 

(0.93) 

HDL-C (mmol/l) -0.19 – 0.04 

(0.21) 

-0.12 – 0.07 

(0.65) 

-0.10 – 0.20 

(0.51) 

LDL-C : HDL-C -0.09 – 0.43 

(0.20) 

-0.16 – 0.28 

(0.60) 

-0.45 – 0.22 

(0.51) 

Hormones    

IGF-I (μg/l) 0.7 – 36.2 

(0.042) 

-11.1 – 19.2 

(0.61) 

-37.4 – 8.3 

(0.21) 

IGF-II (μg/l) -86 – -16 

(0.004) 

-16 – 43 

(0.38) 

20 – 109 

(0.005) 

IGFBP-3 (ng/ml) -437 – 195 

(0.45) 

-177 – 348 

(0.52) 

-212 – 625 

(0.33) 
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Table 4.5. Parameters of glucose homeostasis among boys and girls according to maternal age at childbirth.  
Data are 95% confidence intervals for the ratios between estimated marginal means, adjusted for other confounding 

factors in the multivariate models (including paternal age). Respective p-values are provided in brackets. 

 

 

 

 

 

 

  

 Maternal age at childbirth 

 30–35 vs <30 30–35 vs >35 <30 vs >35 

Boys    

Insulin sensitivity (HOMA-IR) 0.78 – 1.27 

(0.96) 

0.82 – 1.26 

(0.90) 

0.75 – 1.39 

(0.90) 

Fasting glucose (mmol/l) 0.98 – 1.06 

(0.29) 

0.96 – 1.03 

(0.57) 

0.92 – 1.02 

(0.22) 

Fasting insulin (mU/l) 0.74 – 1.19 

(0.62) 

0.83 – 1.23 

(0.91) 

0.80 – 1.42 

(0.64) 

Girls    

Insulin sensitivity (HOMA-IR) 0.50 – 0.91 

(0.009) 

0.69 – 1.12 

(0.28) 

0.90 – 1.89 

(0.16) 

Fasting glucose (mmol/l) 0.91 – 0.98 

(0.036) 

0.95 – 1.03 

(0.54) 

0.98 – 1.10 

(0.20) 

Fasting insulin (mU/l) 0.55 – 0.95 

(0.019) 

0.72 – 1.12 

(0.32) 

0.89 – 1.75 

(0.20) 
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4.4. Discussion 

Our study shows that increasing maternal age at childbirth is associated with a more 

favourable phenotype in their children. This includes an increase in height, a reduction in 

abdominal fat, as well as improved insulin sensitivity in girls.  

On average, children of mothers aged 30–35 and >35 years at childbirth were 1.5 cm taller 

than the offspring of mothers aged less than 30 years. This difference in stature was 

accompanied by higher serum IGF-I concentrations in the children born to older mothers who 

were taller than children born to mothers aged <30 years. This corroborates our findings, as 

IGF-I is an important mediator of childhood growth [30]. Importantly, our finding of taller 

stature with increasing maternal age was present after correction for genetic height, the most 

important determinant of childhood height [26]. Further, we also corrected for other factors 

known to influence childhood height, including gestational age, birth weight [31], and birth 

order [32], as well as accounting for socio-economic status through our cohort selection 

process [33]. As children in all maternal age groups had similar biological maturity as 

assessed by bone age X-rays, it is likely that the observed height differences will persist into 

adulthood [26]. 

Increasing maternal age was also associated with a decreased BMI and a reduction in 

abdominal fat in their children. Increased abdominal fat is a component of the metabolic 

syndrome in childhood and adulthood [34]. Thus, we suggest that children born to mothers 

over 30 years of age may be at a lower risk of metabolic disease and obesity compared to 

those of younger mothers. The observed improvement in insulin sensitivity among girls born 

to older mothers would support this assertion, as a reduction in insulin sensitivity is 

predictive of the metabolic syndrome in adulthood [35,36].  

Children born to younger mothers also had higher IGF-II concentrations that may be 

associated with their increased adiposity, as elevations in serum IGF-II concentrations are 

associated with increased body fat [37].
1
 Causal factors for childhood obesity have been 

extensively investigated [38], but previous studies have found no impact of maternal age on 

childhood BMI [39,40,41]. However, in those studies, maternal age was just one of many 

secondary study outcomes in populations from all socio-economic groups [38]. Since both 

maternal age at childbirth and obesity risk are strongly associated with socio-economic status 

                                                            
1 Interestingly, the IGF2 gene is expressed solely from the paternal allele [61]. 
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[2,42], previous studies might have been unable to accurately detect subtle effects of maternal 

age on childhood BMI or body composition. 

There are a very limited number of studies examining the physical and metabolic outcomes in 

the offspring associated with maternal age at childbirth [3,4,5]. These studies described subtle 

increases in blood pressure [4] and type 1 diabetes risk [3] in childhood, and an increase in 

type 2 diabetes risk in adults [5]. These findings contrast to our observations of a more 

favourable offspring phenotype in childhood associated with increasing maternal age at 

childbirth. However, previous studies included either crude adjustments in their analyses for 

socio-economic status [4] or none at all [3,5], which is important as lower socio-economic 

status is known to be associated with increased blood pressure and type 2 diabetes risk [43]. 

Most importantly, all three studies included subjects who were born small-for-gestational-

age, prematurely, and/or of low birth weight [3,4,5], groups at a greater risk of developing  

hypertension and type 2 diabetes [44,45]. Although Cardwell et al. and Lawlor et al. adjusted 

for birth weight and gestational age in their analyses [3,4], Lammi et al. did not [5]. Lower 

birth weight is associated with higher blood pressure later in childhood and adolescence 

[46,47], and birth weight decreases with increasing maternal age at childbirth [6]. Thus, birth 

weight rather than maternal age may account for Lowler et al.’s observations of higher 

offspring blood pressure in childhood with increasing maternal age at childbirth, as 

postulated by the authors themselves [4]. However, Cardwell et al. did speculate on a number 

of possible explanations for the increased risk of type 1 diabetes in children born to older 

mothers, including immunological changes in the mother and subtle genetic changes in the 

offspring [3]. However, the authors concluded that the mechanisms responsible remain 

unclear [3].  

Similarly, there is no clear single explanation for the observed changes in childhood growth, 

body composition, and metabolism with increasing maternal age at childbirth in our study. It 

is possible that pre-natal and/or post-natal environmental factors are responsible for our 

observations. Increasing maternal age is a well-known risk factor for chromosomal disorders 

in children [7]. However, it is also likely that more subtle gene alterations, such as epigenetic 

changes, take place. Epigenetic changes are alterations in gene expression not caused by 

changes in DNA sequence [48], and may be associated with alterations in phenotype [49]. 

Increasing age is associated with an increased frequency of epigenetic modifications in both 

somatic cells [50] and oocytes [51,52,53]. Thus, it is possible that epigenetic changes that 
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occur in maternal oocytes with increasing age are responsible for our findings on childhood 

growth, body composition, and metabolism.  

Increasing maternal age is associated with several physiological changes, including subtle 

increases in maternal follicle-stimulating hormone (FSH) [54], testosterone and oestrogen 

[55,56] levels. Such hormonal changes have been associated with alterations in maternal 

oocyte DNA, as well as alterations in post-natal growth [57] and metabolism [58] in the 

offspring. Thus, it is possible that changes in maternal hormones with increasing age alter the 

in utero environment, leading to programmed changes in childhood phenotype. 

It is recognised that variations in the post-natal child-rearing environment across the socio-

economic spectrum affects childhood growth and body composition [33,59]. Higher socio-

economic status is associated with a taller and slimmer phenotype in childhood; while 

children reared in lower socio-economic environments tend to be shorter and fatter [33,60]. 

Since our cohort was comprised of a homogenous group of children from higher socio-

economic families, the child-rearing environment is less likely to explain our findings. The 

absence of a clear explanation for our findings and those of other studies [3,4,5] highlights 

the need for investigation of the possible mechanisms responsible for changes in phenotype 

and metabolism in the offspring associated with maternal age at childbirth. 

Limitations to our study include a relatively small cohort of 277 healthy pre-pubertal children 

from approximately 200 mothers. In addition, we studied a homogenous group of children 

(same ethnicity and higher socio-economic status), which may limit application of our study 

findings to the general population, particularly to those of lower socio-economic status. 

However, this homogeneity also meant that we eliminated much of the phenotypic and 

metabolic variability associated with socio-economic status, thus enabling us to better address 

the likely effects of maternal age on measured outcomes.  

4.5. Conclusion 

Our study showed that increasing maternal age at childbirth is associated with taller stature 

and reduced abdominal fat in their offspring in mid-childhood, as well as improved insulin 

sensitivity in girls. The triggers and mechanisms responsible for these differences are unclear, 

but may include a combination of maternal age-related changes in the prenatal and post-natal 

environment. Our study suggests that the worldwide trend towards increasing maternal age is 

unlikely to underpin the increase in obesity rates in childhood.  
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5.1. Abstract 

Background: Paternal age at childbirth has been increasing worldwide, and we assessed 

whether this increase affects growth, body composition, and metabolism in their children. 

Methods: We studied 277 children (aged 3–10 years) born to fathers aged 19.8–51.8 years. 

Assessments included: height and weight adjusted for parental measurements, DXA-derived 

body composition, fasting lipids, glucose homeostasis, and hormonal profiles. 

Results: Children born to fathers aged 31–35 (p=0.009) and >35 years (p=0.021) were 2 cm 

taller than those of fathers aged ≤30 years. Children of fathers aged >35 years at childbirth 

had a lower BMI (-0.32 SDS) than offspring of fathers aged 31–35 (-0.01 SDS; p=0.043) and 

≤30 (0.22 SDS; p=0.019). There were marked effects of paternal age at childbirth on 

childhood blood lipids. LDL-C concentrations in children born to fathers aged >35 years 

were 11% and 21% higher than in children of fathers aged 31–35 and ≤30 years, respectively 

(p<0.01). Total cholesterol to HDL-C ratio was also higher among the children of fathers 

aged 31–35 (12%; p=0.014) and >35 (16%; p=0.004) years at childbirth compared to the ≤30 

group. In addition, HOMA-IR in girls (but not boys) born of fathers aged 31–35 (0.99) and 

>35 years (1.11) indicated better insulin sensitivity compared to offspring in the ≤30 group 

(1.63; p<0.05).  

Conclusions: Increasing paternal age at childbirth is associated with a more favourable 

phenotype in their children (taller and slimmer, with better insulin sensitivity in girls), but 

with a less favourable lipid profile. 

5.2. Introduction 

There has been a major shift in reproductive behaviour over the past several decades with an 

increasing number of couples having children in their thirties and forties.
1
 While the increase 

in maternal age at childbirth has received much attention, an upwards shift in paternal age at 

childbirth is also taking place. In most developed countries, the age at first fatherhood has 

increased from an average age of 29 to 32 years between 1980 and 2000.
2
 As a result, in 

2003, more than 40% of children in the UK were born to fathers aged 35 years or older, and 

this trend towards older age at fatherhood shows no signs of abating.
2
 Many reasons may 

account for the trend towards postponement of fatherhood, including economic pressures and 

personal choice (see review by Roberts et al
3
).  
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Some studies suggest that male fertility and sperm DNA quality start to decline after 

approximately 35 years of age.
4
 Such a decline leads to an increased risk of spontaneous gene 

mutations, DNA damage, and possibly epigenetic changes in sperm genes. However, unlike 

maternal age, there appears to be no clear threshold beyond which male gamete quality starts 

to decline, or when the risk of adverse childhood outcomes definitively increases with 

increasing paternal age at childbirth. The available evidence suggests that 20–30 years may 

represent the lowest paternal age related-risk of adverse health outcomes in the offspring,
5
 

with this risk becoming greater thereafter. There is some evidence that a paternal age at 

childbirth of approximately 35–37 years could mark the start of a non-linear increase in the 

risk to the offspring.
5,6

  

Increasing paternal age at childbirth is associated with a small, but appreciable risk of genetic 

and birth defects, as well as a slight increase in offspring risk of autism, adult psychiatric 

disorders, and some childhood cancers.
2,7

 A recent study found that increasing paternal age is 

associated with a higher rate of obesity amongst offspring in adulthood.
8
 Increasing maternal 

age is associated with alterations in offspring height and body composition
9
 and type 1 

diabetes risk.
10

. However, the possible effects of paternal age on childhood growth and 

metabolism have not previously been examined. Therefore, we aimed to assess whether 

increasing paternal age at childbirth would be associated with changes in the height, body 

composition, metabolism, and hormonal profiles in the offspring in childhood. 

5.3. Methods 

5.3.1. Study cohort 

We undertook a large project examining the effects of parental and prenatal factors in the 

offspring. From this larger project, we have examined the impact of conception with ovarian 

stimulation drugs on the growth and metabolism of children.
11

 Children conceived after 

ovarian stimulation were asked to invite 4–5 family friends and school friends who were 

naturally conceived to participate in the study as controls,
11

 so that these controls were 

recruited by study participants, and were of similar age group, ethnicity, and socio-economic 

status. Thus, in this current study we assessed the entire naturally conceived cohort that was 

recruited from this larger project (between October 2010 and October 2012).  

Only healthy, developmentally normal, pre-pubertal children aged 3–10 years, born 37–41 

weeks gestation were studied. All children were of New Zealand European ethnicity, 
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naturally conceived, born of singleton pregnancies, and of birth weight appropriate-for-

gestational-age (birth weight >-2 and <2 standard deviation scores (SDS)). Exclusion criteria 

also included signs of puberty (Tanner stage 2 breast development in girls and testicular 

volume >3 ml in boys or evidence of adrenarche), receiving medication that could affect 

insulin sensitivity or growth, as well as having a first degree relative with pre-diagnosed 

diabetes. Children were excluded if born to mothers with gestational diabetes, chronic 

illnesses, or prolonged maternal drug use (including tobacco). All participants were of higher 

socio-economic status according to their residential address and the “decile score” of the 

school they attended. A decile score reflects the socio-economic status of the school 

communities, and it is a comprehensive assessment of community affluence. It takes into 

account a number of factors such as household income, parental occupation, parents’ 

educational qualifications, number of occupants per dwelling size, and government welfare 

benefits. All participants in the study were of decile 9 or 10 (highest) socio-economic status. 

5.3.2. Clinical assessments 

All clinical assessments were carried out by a single researcher at the Maurice & Agnes Paykel 

Clinical Research Unit (Liggins Institute, University of Auckland). Standing height was measured 

using a Harpenden stadiometer. Children’s weight and body composition were assessed using dual-

energy X-ray absorptiometry (DXA Lunar Prodigy 2000; General Electric, Madison, WI, USA). 

Apart from total body fat percentage, the DXA-derived parameters of interest were percentage truncal 

fat, android fat to gynoid fat ratio (an indicator of abdominal adiposity), and bone mineral density 

(L1–L4). Each child also had a bone age X-ray to assess biological maturity, which was blindly 

assessed by a single paediatric endocrinologist using pre-established standards.12  

Maternal and paternal height, weight, and body mass index (BMI) were measured and 

recorded. Maternal obstetric history was also recorded to clarify parity, and relevant medical 

history. Children’s birth weight, height, and BMI were transformed into SDS.
13,14

 Mid-

parental height SDS (MPHSDS) was calculated for each child.
15

 Children’s heights SDS 

(HtSDS) were then individually corrected for their genetic potential (parents’ heights), using 

the formula: "HtSDS–MPHSDS". Parents’ BMI were transformed into SDS, and the mean 

parental BMISDS (MPBMISDS) was calculated for each child. 

Following an overnight fast, blood samples were drawn from each child for assessment of 

total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein 

choleterol (LDL-C), triglycerides, insulin-like growth factor I (IGF-I), IGF-II, IGF binding 
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protein 3 (IGFBP-3). Children also had glucose and insulin levels measured, and insulin 

sensitivity evaluated using the homeostasis model assessment of insulin resistance (HOMA-

IR).
16

 

Plasma insulin was measured using an Abbott AxSYM system (Abbott Laboratories, Abbott 

Park, IL, USA) by microparticle enzyme immunoassay (Abbott Diagnostics, Wiesbaden, 

Germany) with an inter-assay coefficient of variation (CV) of <5%. Glucose, triglyceride, 

total cholesterol, HDL-C, and LDL-C concentrations were measured on a Hitachi 902 

autoanalyser (Hitachi High Technologies Corporation, Tokyo, Japan) by enzymatic 

colorimetric assay (Roche, Mannheim, Germany) with an inter-assay CV of 1.2% for 

glucose, and <5% for total cholesterol, triglycerides, HDL-C, and LDL-C. Commercially 

available ELISAs (R&D Systems, Minneapolis, MN, USA) were used to measure plasma 

IGF-I (DSL-100, intra-assay CV 2.8%, inter-assay CV 9.2%), IGFBP-3 (DSL-10-6600, intra-

assay CV 3.1%, inter-assay CV 9.9%), and IGF-II (Meddiagnost, Reutlingen Germany; E-30, 

intra-assay CV 1.9%, inter-assay CV 6.3%).  

5.3.3. Ethics approval 

Ethics approval for this study was provided by the Northern Y Regional Ethics Committee 

(Ministry of Health, New Zealand). Written informed consent was obtained from parents or 

guardians, as well as verbal or written consent from each child as was appropriate to their 

age. 

5.3.4. Statistical analysis 

Children in our study were divided into paternal age (at childbirth) subgroups approximating 

potentially relevant paternal age thresholds, while also reflecting age ranges known to be 

important for maternal age effects. As a result, to examine the possible non-linear effects of 

paternal age at childbirth on measured outcomes, subjects were stratified into three groups: 

children born to fathers aged less than or equal to 30 years of age (≤30), 31 to 35 years (30–

35 years), and greater than 35 years (>35).  

Mean ages among groups were compared using one-way ANOVA in Minitab v.16 

(Pennsylvania State University, State College, PA, USA). Other comparisons between 

paternal age groups were carried out using linear mixed models in SAS v.9.3 (SAS Institute, 

Cary, NC, USA), which included paternal identification number as a random factor to 

account for the clustering of siblings. All models accounted for important confounding 
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factors, namely gender, birth weight SDS, gestational age, and birth order, and maternal age. 

Other factors were controlled for as required, depending on the outcome response of interest: 

for lipids, hormones, and outcomes associated with glucose homeostasis – children's age and 

BMISDS were included; for anthropometric data – the appropriate parental factor (i.e. 

MPBMISDS or MPHSDS). Following a global test, pairwise comparisons were carried out to 

identify specific differences between groups. Subgroup analyses were also run including only 

data on the recruited siblings.  

The interaction effects between paternal age groups and gender were tested in all models, and 

outcomes only assessed separately for boys and girls if there was indication of a differential 

response between genders. Data on parameters associated with glucose homeostasis were log-

transformed to approximate a normal distribution. Age data are provided as means ± standard 

deviation; other data are means and 95% confidence intervals adjusted for confounders in the 

multivariate models, back-transformed where appropriate. 

5.4. Results 

A total of 343 children volunteered to participate, but 31 were excluded: 22 children were 

born small-for-gestational age and/or premature, five were pubertal, three were born of a 

mother with gestational diabetes/glucose intolerance, and one child was on medication known 

to influence growth (Figure 5.1). Of the remaining 312 controls, a further 35 had to be 

excluded due to lack of paternal age data (Figure 5.1). Thus, our study cohort consisted of 

277 children (126 girls and 151 boys) aged 7.4 ± 2.2 years (range 3–10 years). The offspring 

of 196 fathers were included in this study, as there were 71 sibling groups of 2 or 3 children 

(n=153). Paternal age at childbirth was 35.4 ± 5.4 years (range 19.8–51.8) (Figure 5.2).  
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Figure 5.1. Summary of the study’s recruitment process. 
1 OSA children had been conceived via ovarian stimulation, and were examined in Savage et al. {Savage, 2012 #1276}; 2 

Controls were friends of OSA children to ensure similar age group, ethnicity, and socio-economic status; 3 22 children were 

born small-for-gestational age and/or premature; 5 were pubertal; 3 were born of a mother with gestational 

diabetes/glucose intolerance; and 1 child was on medication known to influence growth. 

 

 

 

Figure 5.2. Distribution of paternal age at childbirth in the study cohort. 
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Age, sex ratio, birth weight, and gestational age were similar among paternal age subgroups 

(Table 5.1). There were also no differences between subgroups in parental anthropometric 

characteristics, including height SDS and BMISDS (data not shown). Importantly, children 

across paternal age subgroups had similar duration and rates of breast feeding (data not 

shown), and there were no differences in biological maturity between subgroups based on 

bone age X-rays (Table 5.1). 

 

Table 5.1. Birth outcomes and biological maturity in our study cohort according to paternal age at childbirth. 
Age data are means ± SD; other data are means and 95% confidence intervals adjusted for other confounding factors in the 

multivariate models, including either maternal age. Biological maturity is represented by the bone age minus the 

chronological age. 

 Paternal age at childbirth 

 ≤30 years 31–35 years >35 years 
n 59 90 128 
Sex ratio (males) 59% 58% 50% 
Age (years) 7.55 ± 2.22 7.59 ± 2.22 7.12 ± 2.15 
Gestational age (weeks) 39.8 ± 1.3 39.8 ± 1.1 39.5 ± 1.2 
Birth weight (kg) 3.58 (3.43–3.73) 3.56 (3.47–3.65) 3.47 (3.39–3.56) 
Biological maturity 0.01 (-0.36–0.39) -0.21 (-0.42–0.01) -0.17 (-0.40–0.07) 

 

 

5.4.1. Anthropometry 

When heights were corrected for genetic potential (HtSDS–MPHSDS), children of fathers 

aged 31–35 (0.35 SDS; p=0.009) and >35 (0.39 SDS; p=0.019) years at childbirth were taller 

than those of fathers aged ≤30 years (0.12 SDS) (Figure 5.3). There was also some evidence 

of reduced adiposity in the offspring with increasing paternal age at childbirth (Figure 5.3). 

BMISDS among children born of fathers aged >35 years (-0.32 SDS) was lower than in the 

offspring of fathers aged 31–35 (-0.01 SDS; p=0.043) and ≤30 (0.22 SDS; p=0.019) years 

(Figure 5.3). Truncal fat (central adiposity) was lower in children of fathers aged >35 years at 

childbirth than in the offspring of fathers aged ≤30 years (12.2 vs 15.0 %; p=0.029) (Figure 

5.3). There were no differences between groups in total body fat, android to gynoid fat ratio, 

or bone mineral density (data not shown). 
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Figure 5.3. Height standard deviation score (SDS) corrected for mean parental height SDS and measures of adiposity 
among the children of fathers of different ages at childbirth. 
Data are means and 95% confidence intervals, adjusted for other confounding factors in multivariate models, including 
maternal age. *p<0.05 and **p<0.01 vs children of fathers aged ≤30 years at childbirth; †p<0.05 vs children of fathers aged 
>35 years. BMI SDS, body mass index SDS. 
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5.4.2. Lipid profiles 

Increasing paternal age at childbirth was strongly associated with less favourable childhood 

plasma lipid profiles in the offspring. Plasma total cholesterol concentrations among children 

of fathers aged >35 years at childbirth (4.52 mmol/l) were higher than in both the 31–35 

(4.18 mmol/l; p=0.002) and ≤30 (4.20 mmol/l; p=0.046) groups. Similarly, LDL-C 

concentrations were higher among the children born to fathers aged >35 years at childbirth 

(2.65 mmol/l) compared to children of fathers aged 31–35 (2.38 mmol/l; p=0.005) and ≤30 

(2.22 mmol/l; p=0.003) years (Figure 5.4).  

HDL-C concentrations in the children of fathers aged 31–35 years at childbirth were lower 

than in the ≤30 group (1.31 vs 1.46 mmol/l; p=0.012), but similar to the >35 group (1.37 

mmol/l; p=0.19). However, the total cholesterol to HDL-C ratio was increased among the 

children of fathers aged 31–35 (3.37; p=0.014) and >35 (3.47; p=0.004) years at childbirth 

compared to the ≤30 group (3.00), due to higher LDL-C concentrations (Figure 5.4). An 

identical pattern was also observed for the LDL-C to HDL-C ratio.  

 

 

 

 

Figure 5.4. Lipid profiles among the 
children of fathers of different ages at 
childbirth.  
Data are means and 95% confidence 
intervals, adjusted for other confounding 
factors in multivariate models, including 
maternal age. *p<0.05 and **p<0.01 vs 
children of fathers aged ≤30 years at 
childbirth; ††p<0.01 vs children of fathers 
aged >35 years.HDL-C, high-density 
lipoprotein cholesterol; LDL-C, low-density 
lipoprotein cholesterol; Total chol, total 
cholesterol.  
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5.4.3. Growth factors and glucose homeostasis 

There were no significant differences in IGF-I and IGFBP-3 concentrations among groups, 

but paternal age had a sex-dependant effect on IGF-II (Table 5.2). Among girls, IGF-II 

concentrations were lower in the daughters of fathers aged 31–35 (p=0.002) and >35 

(p=0.009) years at childbirth compared to the ≤30 group (Table 5.2). In contrast, the exact 

opposite pattern was observed among boys (p<0.05; Table 5.2).  

There was also a sex-dependent effect on glucose homeostasis, with paternal age at childbirth 

affecting girls but not boys (Table 5.2). Fasting insulin concentrations were lower in girls 

born to fathers aged 31–35 (p=0.005) and >35 (p=0.042) years at childbirth compared to the 

girls born to younger fathers (Table 5.2). Thus, girls in the 31–35 and >35 groups were more 

insulin sensitive (i.e. had lower HOMA-IR) than girls born to fathers aged ≤30 years at 

childbirth (p=0.003 and p=0.040, respectively; Table 5.2).  

 

Table 5.2. Growth factors and parameters of glucose homeostasis among boys and girls according to paternal age at 
childbirth. 
Data are means and 95% confidence intervals adjusted for other confounding factors in the multivariate models (including 

paternal age). *p<0.05 and **p<0.01 vs children of fathers aged ≤30 years at childbirth. Data for outcomes with a 

differential response between boys and girls are provided separately for each sex. 

 Paternal age at childbirth 

 ≤30 years 31–35 years >35 years 

Study cohort (n) 62 103 112 

IGF-I (μg/l) 119 (103–136) 107 (97–118) 108 (97–118) 

IGFBP-3 (ng/ml) 2481 (2179–2782) 2615 (2429–2802) 2816 (2616–3016) 

Boys (n) 35 52 64 

IGF-II (μg/l) 693 (652–734)  741 (715–767)* 753 (723–783)* 

Insulin sensitivity (HOMA-IR) 0.95 (0.0.77–1.18) 0.99 (0.87–1.13) 0.98 (0.85–1.14) 

Fasting glucose (mmol/l) 4.75 (4.59–4.92) 4.83 (4.73–4.94) 4.78 (4.66–4.89) 

Fasting insulin (mU/l) 4.51 (3.70–5.50) 4.49 (3.96–5.08) 4.63 (4.06–5.29) 

Girls (n) 24 38 64 

IGF-II (μg/l) 823 (775–868) 736 (708–765)** 741 (715–767)** 

Insulin sensitivity (HOMA-IR) 1.63 (1.21–2.20) 0.99 (0.83–1.19)** 1.11 (0.95–1.30)* 

Fasting glucose (mmol/l) 4.83 (4.62–4.06) 4.71 (4.58–4.84) 4.78 (4.66–4.90) 

Fasting insulin (mU/l) 7.38 (5.63–9.69) 4.84 (4.11–5.69)** 5.22 (4.51–6.04)* 
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5.4.4. Siblings 

Analyses of specific outcomes among sibling groups corroborated most findings on the larger 

cohort, although weaker p-values were obtained in view of the reduction in n (from 277 to 

153). There was a gradual increase in HtSDS–MPHSDS with increasing paternal age at 

childbirth, and non-significant data suggesting a steady reduction in adiposity (Figure 5.5). 

Regarding lipid profiles, children born to older fathers had higher LDL-C concentrations as 

well as higher total cholesterol to HDL-C ratio (Figure 5.5). 

 

Figure 5.5. Anthropometry and lipid profile among siblings born of fathers of different ages (n=153). 
Data are means and 95% confidence intervals, adjusted for other confounding factors in multivariate models, including 

maternal age. *p<0.05 vs children of fathers aged ≤30 years at childbirth; †p<0.05 and ††p<0.01 vs children of fathers aged 

>35 years.  
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5.4.5. Maternal age 

There was a high correlation between paternal and maternal ages (r=0.75; p<0.001). As a 

result, similar stratified analyses were carried out, examining maternal age groups (stratified 

as per the paternal age thresholds) with paternal age included as a continuous variable. These 

data are provided in Table 5.3. The observed patterns of progressive improvement in 

adiposity and worsening lipid profiles were not observed for maternal age (Table 5.3). 

However, there was a significant increase in HtSDS–MPHSDS from the youngest group to 

those born to mothers aged 31–35 years (p=0.012; Table 5.3), with paternal age (as a 

continuous variable) remaining associated with HtSDS–MPHSDS (p=0.033).  

 

5.5. Discussion 

Our study shows that increasing paternal age at childbirth is associated with taller stature and 

reduced adiposity, but a less favourable lipid profile in their children. These changes were 

associated with a relatively young paternal age at childbirth (35.4 years), when one considers 

that in the USA for example, birth rates among fathers aged 35–39 and 40–44 increased by 

approximately 50% over the last three decades.
17

 The influence of paternal age at childbirth 

on height or metabolism in their children has not been described previously.  

Children born to fathers over 30 years of age were approximately 2 cm taller than those of 

fathers aged ≤30 years. Notably, this height difference was present after correction for 

genetic height, the most important determinant of childhood height.
15

 In addition, children in 

the paternal age subgroups had similar biological maturity according to bone age X-rays. 

Thus, the taller stature among children of fathers aged 30 years or more was unlikely to be 

associated with earlier pubertal development, and the observed height differences are likely 

to persist into adulthood.
15
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Table 5.3. Study outcomes among the children of mothers of different ages at childbirth.  
Data are means and 95% confidence intervals, adjusted for other confounding factors in multivariate models, including 

paternal age. Data are means and 95% confidence intervals adjusted for other confounding factors in the multivariate 

models. *p<0.05 vs children of fathers aged ≤30 years at childbirth; †p<0.05 and ††p<0.01 vs children of fathers aged >35 

years. 

 

  

 ≤30 years 31–35 years >35 years 

n 77 126 74 
    

Anthropometry    

HtSDS–MPHSDS 0.18 (0.00–0.35) 0.37 (0.24–0.51)* 0.39 (0.21–0.56) 

Height SDS 0.77 (0.49–1.04) 0.88 (0.71–1.05) 1.00 (0.73–1.27) 

BMI SDS -0.18 (-0.47–0.12) -0.12 (-0.31–0.06) -0.02 (-0.32–0.27) 

Total body fat (%) -0.14 (-0.42–0.14) -0.03 (-0.21–0.15) 0.14 (-0.14–0.43) 

Truncal fat (%) -0.16 (-0.43–0.11) -0.02 (-0.19–0.15) 0.17 (-0.11–0.44) 
    

Glucose homeostasis    

HOMA-IR    

Boys 0.91 (0.75–1.10) 1.02 (0.91–1.14) 0.97 (0.78–1.21) 

Girls 1.24 (0.97–1.59) 1.06 (0.91–1.23) 1.20 (0.97–1.59) 

Fasting insulin (mU/l)    

Boys 4.41 (3.68–5.28) 4.62 (4.16–5.12) 4.54 (3.72–3.54) 

Girls 5.76 (4.59–7.23) 5.07 (4.43–5.80) 5.70 (4.68–6.94) 
    

Hormonal concentrations    

IGF-I (ng/ml) 101 (87–115) 114 (105–122) 113 (98–127) 

IGF-II (ng/ml)    

Boys 761 (725–797) 732 (709–755) 705 (662–748) 

Girls 781 (742–821) 729 (705–754)* 770 (736–805) 

IGFBP-3 (ng/ml) 2691 (2428–2955) 2647 (2480–2815) 2705 (2434–2976) 
    

Lipid profile    

Total cholesterol (mmol/l) 4.40 (4.19–4.63) 4.28 (4.15–4.42) 4.35 (4.14–4.58) 

LDL-C (mmol/l) 2.52 (2.33–2.72) 2.46 (2.35–2.58) 2.40 (2.22–2.59) 

HDL-C (mmol/l) 1.43 (1.34–1.52) 1.30 (1.25–1.36)*† 1.43 (1.33–1.52) 

Total cholesterol : HDL-C  3.14 (2.93–3.37) 3.37 (3.23–3.52) 3.13 (2.91–3.36) 
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As paternal age at childbirth increased, their children displayed a reduction in BMI and 

truncal fat. Since BMI in childhood is predictive of adult BMI, our findings suggest that the 

slimmer children of older fathers may have a lower risk of obesity in adulthood.
18

 Increased 

truncal fat is a component of the metabolic syndrome, so that the children born to fathers 

aged over 30 years may be at a lower risk of metabolic disease and obesity. Importantly, the 

observed improvement in insulin sensitivity seen among girls born of older fathers would 

support this hypothesis, as a reduction in insulin sensitivity is predictive of the metabolic 

syndrome in adulthood.
19

 Nonetheless, there are conflicting reports regarding the effects of 

paternal age at childbirth on offspring obesity. In contrast to our study, a recent large 

investigation found an increased risk of obesity in young adult offspring in association with 

increasing paternal age. However, this was only observed when groups at the extreme of the 

paternal age spectrum were compared (<20 vs >50 years). 
8
 Furthermore, unlike our study, 

they only examined males and parental BMI was not accounted for in their analyses to 

correct for genetically-determined obesity.
8
  

However, increasing paternal age at childbirth was also associated with less favourable lipid 

profiles in their children. Specifically, children of fathers over 30 years of age had higher 

total cholesterol to HDL-C ratios compared to the children of younger fathers. Childhood 

lipid profiles worsened as paternal age at childbirth increased further, so that the children of 

fathers aged over 35 years had higher total cholesterol (due to higher LDL-C concentrations) 

than children of fathers aged ≤35 years. Childhood lipid profiles track or accentuate into 

adulthood.
20

 It is therefore possible that the less favourable lipid profiles in these children 

may deteriorate further later in life, placing them at a greater risk of cardiovascular disease in 

adulthood. 

There is no clear explanation for our observed findings in children in association with 

increasing paternal age at childbirth. This is particularly so for the observation of less 

favourable lipid profiles but lower adiposity in offspring with increasing paternal age, which 

is contradictory to findings on lipid profiles and adiposity in children and adults.
21,22

. Thus, 

the triggers and mechanisms responsible for the influence of paternal age on offspring 

phenotype and metabolism require further investigation. Consequently, the factors leading to 

a taller and slimmer phenotype are potentially different to those associated with a less 

favourable lipid profile. Factors responsible for these differences may be pre-natal, such as 

epigenetic changes in paternal gametes or paternal environmental factors (diet and toxins), or 

due to differences in the post-natal child-rearing environment. Similarly, while higher IGF-II 
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concentrations among the girls born to youngest fathers are likely a result of their greater 

adiposity
23

, the opposite pattern for IGF-II concentrations observed among boys cannot be 

easily explained by differences in adiposity. 

Sperm DNA may undergo subtle gene alterations with increasing paternal age, including 

epigenetic changes
24

 that may be associated with phenotypic changes in the offspring. 

Increasing age is associated with a greater frequency of epigenetic modifications in both 

somatic
25

 and germ cells.
24

 Such gene changes may link advanced paternal age at childbirth 

with increased rates of autism and schizophrenia in the offspring.
26,27

 It is therefore possible 

that increasing age leads to epigenetic changes in paternal sperm genes regulating growth and 

metabolism. We speculate that such gene changes may be subsequently transmitted to the 

offspring, leading to programmed changes in phenotype and metabolism in childhood.  

Increasing paternal age is also associated with longer duration of exposure to common 

environmental toxicants (e.g. air pollution, and pesticides used on commonly consumed 

foods), which can affect sperm quality or induce epigenetic changes. Paternal alcohol 

consumption can also induce epigenetic changes in sperm,
28

 with possible consequences to 

the offspring. Although not yet demonstrated, it is possible that such environmental factors 

may lead to phenotypic changes and other alterations in offspring outcomes. In addition, even 

paternal dietary habits may affect the offspring.
29

 For example a recent animal study found 

that a pre-conceptional paternal diet rich in carbohydrates was associated with adverse lipid 

profiles in the offspring.
30

 

The post-natal child-rearing environment across the socio-economic spectrum is also known 

to affect phenotype and other health outcomes in childhood.
31,32

 The fact that increasing 

maternal age was also associated with greater stature suggests that environmental factors 

could have a role affecting offspring height. A recent study on nearly 80,000 British children 

showed that increasing maternal age was associated with improved health and better 

developmental outcomes in the offspring in early childhood.
33

 Children reared in families of 

higher socio-economic status tend to be taller and slimmer than those from lower socio-

economic backgrounds.
34,35

 However, our homogenous cohort of children was entirely from 

higher socio-economic families, meaning that our findings are unlikely to be explained by 

differences in child-rearing environment. Further, a more favourable child-rearing 

environment in association with increasing parental age would not explain the contrasting 

finding of a less favourable lipid profile in the offspring of older fathers. 
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A possible limitation of our study is that we studied a homogenous group of children (same 

ethnicity and higher socio-economic status), which may limit application of our study 

findings to the general population, particularly to those of lower socio-economic status. We 

also acknowledge that our measure of socio-economic status ('decile' scores) integrates a 

number of affluence variables, but does not provide detailed information about individual 

parent's income and education. Nonetheless, we believe that our relative homogenous cohort 

has eliminated much of the phenotypic and metabolic variability associated with both 

ethnicity and socio-economic status, allowing us to better address the potential effects of 

paternal age on measured outcomes. It is also important to note that the observed associations 

with paternal age do not necessarily prove causality. Prospective studies are needed to 

specifically assess possible mechanisms through which paternal age may affect growth and 

metabolism in the offspring in childhood.  

5.6. Conclusion 

Our study showed that increasing paternal age at childbirth was associated with taller stature 

and reduced adiposity, but a less favourable lipid profile in their children. Further 

investigation of the possible triggers and mechanisms responsible for these findings is 

warranted. As paternal age at childbirth continues to increase worldwide, it is important to 

further evaluate the possible long-term effects on offspring health. 
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Chapter 6. Discussion 

6.1. Brief summary of findings 

 Conception with the help of fertility medications (OSA) was associated with a 

reduction in childhood height and BMI, and with a slightly more favourable metabolic 

profile 

 Naturally conceived children of subfertile parents did not differ either phenotypically 

or metabolically to children of fertile parents.  

 Increasing birth order was associated with a gradual reduction in childhood height, as 

well as subtle changes in serum IGF-I levels in tandem with this height reduction.  

 Increasing maternal and paternal ages at childbirth were associated with a taller and 

slimmer phenotype in their children. Advancing maternal age was also associated 

with alterations in childhood IGF-II levels in tandem with their slimmer phenotype. In 

contrast, advancing paternal age was associated with less favourable lipid profiles in 

the offspring. 

The above findings have been discussed in detail, and compared to other studies in the 

individual manuscript chapters. Therefore, this discussion chapter will focus on potential 

underpinning triggers and mechanisms. The relevance of our finding will also be discussed in 

a broader context, and areas for future research will be suggested. 

This project has assessed the impact on offspring of a major shift in human reproductive 

behaviour, which has occurred over the past several decades. These behavioural changes have 

been observed in most developed countries, and include an increase in maternal age at 

childbirth by more than 4 years (from 26 to over 30 years of age). In tandem, paternal age at 

childbirth has similarly increased by more than 3 years, and currently stands at approximately 

32 years of age on average. As a result, nowadays more than half of all children in the 

developed world are born to a father aged more than 32 years and a mother aged over 30. 

The reduction in family size and the consequent increase in the proportion of first-born 

children have occurred over a similar period of time, with an increasing number of couples 

having just one or two children. The other important change in human reproductive behaviour 

over the past 30 years has been the dramatic increase in the uptake of fertility treatment, so 
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that up to 1 in 20 children born today were conceived with the help of ovarian stimulation 

fertility treatment.  

The studies in this thesis have tackled the consequences of these changes in parental factors 

on children’s phenotype, hormonal profiles, and metabolism. A common theme discussed in 

each individual study is the possible role of the early fetal environment, and epigenetics as a 

potential underpinning mechanism. In recent years, the putative role of epigenetics has been 

proposed as a potential mechanism for much of the observed changes in phenotype, as well as 

disease susceptibility in response to alterations in the early fetal environment. Some evidence 

to this regard has been obtained in elegant animal studies, but robust data supporting the role 

of epigenetics in such phenotypic changes in humans remains to be established. Furthermore, 

there are no studies linking a continuum of epigenetic changes to genes and changes in gene 

expression, to alterations in circulating hormones, as well as changes in phenotype. 

Nevertheless, epigenetics remains one of the more likely mechanisms responsible for our 

observations, and therefore deserves consideration. Thus, the potential role of epigenetics and 

the early fetal environment will remain an important focal point in this discussion. 

 

6.2. The influence of maternal & paternal ages at childbirth on the growth & 

metabolism of children 

There are no previous studies assessing the impact of paternal age on childhood height and 

metabolism, and studies assessing the impact of maternal age at childbirth on these outcomes 

are limited. We found that increasing maternal and paternal ages at childbirth were each 

associated with an increase in childhood height. While the changes were not identical, 

increasing age of mother or father at childbirth were also associated with a reduction in BMI 

and/or a more favourable body composition in their children.  

6.2.1. Maternal age at childbirth 

We found that a maternal age at childbirth greater than 30 years was associated with a taller 

and slimmer phenotype in their children. While the importance of a slight increase in 

childhood height to long-term health is unclear, these children also displayed an important 

reduction in abdominal adiposity. This is because abdominal fat is one of the most important 

predictors of obesity-related disease, and is a predictor of the metabolic syndrome (Weiss & 
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Caprio 2005; Weiss et al. 2004). Furthermore, differences in childhood body composition 

and BMI are likely to persist or accentuate in adulthood (Freedman et al. 2005; Wells et al. 

2007), which means children born to mothers aged over 30 years may be at a reduced risk for 

later obesity.  

In keeping with their lower abdominal fat, we found lower IGF-II levels in children born to 

mothers over 30 compared to children of younger mothers. It is worth noting that we adjusted 

IGF-II values for total body fat in our statistical analysis (amongst other relevant parameters, 

such as age and gender), thus ensuring observed differences in IGF-II levels were not simply 

representative of increased adiposity (Faienza et al. 2010; Sandhu et al. 2003). This is 

important as serum IGF-II is correlated with adiposity (Sandhu et al. 2003). 

It is possible that serum IGF-II concentrations provide a crude estimate of IGF2 gene 

expression activity (Faienza et al. 2010). Indeed, recent investigations revealed that IGF2 

gene expression may have an important role in obesity and metabolic disease, even in 

childhood (Faienza et al. 2010). Thus, it is possible that a combination of lower IGF-II and 

reduced abdominal fat in children born to mothers aged over 30 years may reduce their risk 

of obesity and metabolic disease in later life. In contrast, children born to younger mothers 

(aged <30 years) may be at increased risk for such health issues.  

6.2.2. Paternal age at childbirth  

Increasing paternal age at childbirth was also associated with an increase in childhood height, 

with children born to fathers over 30 years of age being almost 2 cm taller than those born to 

younger fathers. Importantly, this finding was present after adjustment for maternal age, birth 

order, genetic height, and other confounders. Similar to the maternal age subgroups, children 

in all 3 paternal age groups had similar birth parameters. Importantly, the taller children 

actually had lower BMI and tended to have reduced adiposity compared to the shorter 

children of younger fathers, meaning that their taller stature was not attributable to adiposity 

(Ong et al. 2009). The clinical significance of their slightly taller stature is unknown.  

The most striking finding in our study assessing the impact of paternal age at childbirth on 

childhood outcomes was the marked effect on children’s lipid profiles. Children born to 

fathers aged over 30 years of age had a less favourable lipid profile than children born to 

younger fathers. These findings were unexpected, particularly given that these children with 

relatively poorer lipid profiles were slimmer with a more favourable body composition.  
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While the differences in lipid parameters were not clinically significant, the observed 

differences remain important. For example, the total cholesterol to HDL-C ratio in children 

born to fathers aged under 30 years was 3.00 compared to the ratio of 3.47 in children of 

fathers aged over 35. This is striking, particularly considering the American Heart 

Association suggests that 3.5 is the optimum total cholesterol to HDL-C ratio for adults 

(Lloyd-Jones et al. 2009). Similarly, children of fathers aged more than 35 years had a mean 

total cholesterol of 4.5 mmol/l and LDL-C of 2.6 mmol/l. Again, while these values are 

within normal clinical limits, they are strikingly higher than those of children born to fathers 

aged less than 30 years (4.2 and 2.2 mmol/l, respectively). Childhood lipid profiles tend to 

track or more likely accentuate into adulthood (Webber et al. 1991), and elevations in total 

cholesterol, total cholesterol:HDL-C ratio, and LDL-C are all strongly associated with 

cardiovascular disease risk (Lloyd-Jones et al. 2009). Thus, it appears likely that children 

born to fathers aged more than 30 years (particularly to those older than 35 years) may be at 

an increased risk for poorer lipid profiles and consequent cardiovascular disease in later life. 

However, in contrast to their poorer lipid profiles, the children of fathers aged more than 30 

years at childbirth actually had lower BMI and reduced adiposity than the children of younger 

fathers. While it is not entirely clear if a reduction in body fat in childhood highly correlates 

with future obesity risk (Freedman et al. 2004; Maynard et al. 2001; Schaefer et al. 1998), it 

is established that a lower BMI in childhood is predictive of adult BMI (Freedman et al. 

2005; Wang & Beydoun 2007). 

Therefore, it is more likely that these children, who have poorer lipids, will have a lower risk 

of obesity as adults compared to the children of younger fathers. Also, we found that they are 

slightly taller than their peers born to fathers aged less than 30 years. So, overall, a paternal 

age at childbirth over 30 years is associated with children who are taller and leaner, but with a 

relatively poorer lipid profile. 

6.2.3. Dual roles and relatively young maternal and paternal ages impacting offspring 

phenotype 

As already stated, the findings of the impacts of maternal and paternal ages at childbirth on 

their children’s phenotype and metabolism share the similarities of a taller and slimmer 

offspring born to mothers and fathers aged over 30 years. Importantly, data analyses in each 

study were appropriately adjusted for maternal or paternal ages. Thus, it is likely that both 

maternal and paternal ages have separate effects on offspring outcomes in childhood.  
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Our finding of phenotypic changes in childhood in the offspring born of relatively young 

mothers (over 30 years of age) was somewhat unexpected. As previously outlined, older 

maternal ages over 35 or 37 years are associated with a marked increase in the risk of 

obstetric and perinatal problems, as well as a dramatic increase in the risk of chromosomal 

disorders in offspring (Broekmans et al. 2009). This led us to expect that perhaps only 

maternal ages greater than 35 years would have been associated with differences in childhood 

phenotype. However, it seems that changes in offspring disease risk associated with 

increasing maternal age do not have clear age thresholds. 

The slight increase in risk of type 1 diabetes and of elevated blood pressure in the offspring 

associated with increasing maternal age is essentially linear (Cardwell et al. 2010; Lawlor et 

al. 2004). Nevertheless, there is previous evidence of changes in some maternal factors, even 

from a relatively young age of 30 years. Such changes are signalled by a decline in female 

fertility, accompanied by an increase in maternal hormones such as FSH (Broekmans et al. 

2007). Therefore, it is likely that the triggers and mechanisms responsible for these changes 

are complex and multi-factorial. 

Similarly, our findings of alterations in offspring phenotype and lipid profiles at paternal ages 

at childbirth of 30 and 35 years were somewhat surprising. Much older paternal ages at 

childbirth (over 40 or 50 years) have the strongest association with offspring risk of autism 

(Reichenberg et al. 2006) and adult-onset psychiatric disorders (Peedicayil 2010). Indeed, it 

is often perceived that a paternal age over 40 years may be important in terms of risk to 

offspring (de La Rochebrochard et al. 2003). This is well illustrated by the upper age limit of 

40 years for sperm donation in Europe and the USA, which appears to be largely based on the 

risk of gene mutations to offspring (de La Rochebrochard et al. 2003; Tomlinson et al. 2008). 

However, the latter risk increases exponentially over time, and there seems to be a non-linear 

increase in risk to offspring from a paternal age of 35 or 37 years (Aitken et al. 2004; Kong A 

2012; Singh et al. 2003; Slama et al. 2005; Vestergaard et al. 2005; Wunsch & Gourbin 

2002).  

Therefore, it is possible that a paternal age younger than previously thought may be important 

to offspring risk. Indeed, an increased risk of epilepsy in offspring has been observed in 

children born to fathers aged over 35 years (Vestergaard et al. 2005). Similarly, three studies 

found that a paternal age over 30 or 35 years at childbirth was associated with a minor 

increase in the risk of type 1 diabetes in children (Bingley et al. 2000; Cardwell et al. 2005; 
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Stene et al. 2000). Thus, the paternal ages at which we observed an impact on offspring 

phenotype and metabolism, while relatively young, may add further to the debate on the 

paternal age threshold associated with the lowest risk to offspring. Again, similar to maternal 

age, triggers and mechanisms responsible for the differences in offspring are likely complex 

and multi-factorial. 

Some of the possible triggers and mechanisms responsible for these observed differences in 

childhood outcomes with increasing maternal and paternal ages have been explored briefly in 

the respective manuscripts. I will explore some of the possible triggers and mechanisms more 

thoroughly, as well as mention possible alternatives. 

6.2.4. Parental age and possible pre-natal triggers and mechanisms 

6.2.4.1. Maternal age 

As outlined in the thesis introduction, increasing maternal age is associated with many 

changes in maternal physiology, as well as genetic changes in oocytes (both pre- and post-

conception). Seemingly subtle changes, such as oxidative stress and alterations in maternal 

hormone levels, may also contribute to this process. These changes may trigger alterations in 

oocyte or fetal epigenetics, which in turn, could alter offspring phenotype. It is possible that 

such changes are responsible for the observed effects of maternal age at childbirth on 

offspring auxology and hormone levels in childhood.  

Increasing maternal age is associated with well-recognised deterioration in the quality of the 

maternal oocyte, leading to an increased risk of oocyte aneuploidy (Steuerwald et al. 2007). 

However, increasing maternal age is also likely associated with more subtle genetic 

alterations in the oocyte, such as epigenetic changes (Grøndahl et al. 2010; Hamatani et al. 

2004). Epigenetic changes may lead to altered phenotypic outcomes, as explained in the 

introduction of this thesis. Epigenetic alterations in oocyte may be triggered by several 

different maternal age-related changes. These may occur as part of the normal aging process 

(Richardson 2003; Salpea et al. 2012) or due to age-related epigenetic changes in oocytes 

themselves (Grøndahl et al. 2010; Hamatani et al. 2004; Steuerwald et al. 2007). Oocyte 

aging itself has been associated with alterations in several genes, such as those involved in 

mitochondrial function and oxidative stress, as well as alterations in the expression of genes 

involved in chromatin structure, DNA methylation, and genome stability (Hamatani et al. 

2004; Steuerwald et al. 2007; Yue et al. 2012). Thus, pre-ovulatory oocyte aging (which 
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occurs in tandem with increasing maternal age) is associated with alterations in gene 

expression.  

An interesting concept of post-ovulatory aging has also been explored, although most studies 

have focused on the impact of such aging to oocytes extracted for external fertilisation for the 

process of IVF (Emery et al. 2005; Nagy et al. 2006). These studies have demonstrated a 

reduction in oocyte integrity in such oocytes, after a relatively brief period of 1 to 2 days 

(Emery et al. 2005; Reichman et al. 2010). While this is important to the IVF process, such 

information may also shed light on another type of oocyte aging that occurs with increasing 

maternal age. There is evidence that the frequency of sexual intercourse amongst couples 

reduces with increasing age (Dunson et al. 2002; Weinstein & Stark 1994). After ovulation, 

the ‘window of fertility’ for a woman is approximately 5 to 10 days (Wilcox et al. 1995). 

Thus, if a woman has sexual intercourse less frequently with increasing age, it is likely that 

her oocyte will experience an increased duration of post-ovulatory aging prior to fertilisation. 

The possible consequences to the oocyte have been outlined in detail by Takahashi et al. 

(Takahashi et al. 2011), and include reactive oxygen species leading to mitochondrial injury, 

as well as abnormal oocyte intracellular calcium regulation. Such processes may lead to 

alterations in oocyte epigenetics or other changes.  

Oxidative stress 

Another possible source of age-related alterations in oocytes is oxidative stress, which 

increases with age (Finkel & Holbrook 2000) and impacts on oocyte gene quality (Robaire et 

al. 2012). This may lead to a reduction in genetic regulatory processes in the oocyte, such as 

altered DNA repair mechanisms as well as possible epigenetic changes (Lim & Luderer 

2010). Oocyte mitochondrial dysfunction has also been associated with oxidative stress, 

which may lead to reduced oocyte competence (Steuerwald et al. 2007).  

Maternal hormones 

Increasing maternal age is also associated with greater endogenous production of FSH, which 

rises in tandem with a diminishing oocyte pool (Broekmans et al. 2009). It is well recognised 

that rates of spontaneous twinning increase with increasing maternal age (Abel & Kruger 

2012; Hoekstra et al. 2008). This is a result of a form of “endogenous ovarian 

hyperstimulation”, whereby elevated levels of FSH are associated with an increased 

frequency in the ovulation of more than one oocyte (Prior 2005). There is some evidence 

from assisted reproductive technology that exogenous FSH administration is associated with 
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changes in the DNA methylation of oocytes (Market-Velker et al. 2010; Sato et al. 2007). 

Thus, it is possible that higher levels of endogenous FSH with increasing maternal age may 

also lead to epigenetic or imprinting changes in oocyte genes (Market-Velker et al. 2010; 

Sato et al. 2007).  

Other possible causes of the differences observed in children with increasing maternal age are 

changes in pregnancy levels of maternal testosterone and other steroid hormones. Two 

studies have shown an age-related increase in maternal testosterone during pregnancy (Troisi 

et al. 2003; Wang & vom Saal 2000), but another investigation found decreased maternal 

testosterone levels with increasing maternal age (Carlsen et al. 2003). A study in sheep found 

that administration of testosterone to pregnant ewes reduced fetal growth but increased 

postnatal growth (Crespi et al. 2006). There were also changes in offspring levels of growth 

factors and growth hormone receptors after testosterone exposure in utero (Crespi et al. 

2006). Therefore, it is possible that subtle age-related increases in maternal testosterone 

levels during pregnancy may contribute to the height differences seen in children born to 

older mothers.  

Maternal testosterone and oestrogen levels also change with increasing age (Panagiotopoulou 

et al. 1990; Troisi et al. 2003), and there is evidence from animal studies that changes in 

levels of such hormones during pregnancy may alter fetal and postnatal growth (Crespi et al. 

2006; Wang & vom Saal 2000), as well as insulin sensitivity (Eisner et al. 2000).  

Uterine aging 

Senescence (biological aging) of the uterus and other female reproductive structures may 

alter the fetal environment with increasing maternal age (Zenke & Chetkowski 2004). Age-

related changes to the uterus may alter the vascular flow to the fetus of older mothers (Cano 

et al. 1995). A change in vascular flow to the fetus (such as placental insufficiency leading to 

low birth weight) is a risk factor for childhood insulin resistance and shorter stature 

(Chaussain et al. 1994). Thus, alterations in uterine vascular flow in older mothers may lead 

to programmed changes in the fetus, which could manifest as physical differences in 

childhood. Indeed, it is well recognised that birth weight reduces with increasing maternal 

age (Lee et al. 1988), and it is thought that this change is due to alterations in placental 

efficiency (Fretts et al. 1995; Harman & Talbert 1970). However, nutrient restriction to the 

fetus is associated with lower birth weight and an increased risk of shorter stature in 
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childhood (Hack et al. 1995). This contrasts with our finding of taller stature in children with 

increasing maternal age, making this association less likely to explain our observations.  

It is possible that any one or a combination of these maternal age-related changes could 

trigger alterations in oocyte or fetal epigenetics, imprinted genes, as well as other described 

cellular changes in oocyte. It is also possible that changes in hormone levels or uterine 

physiology could alter offspring programming and phenotype. If alterations in maternal 

factors trigger epigenetic changes, it is possible that such alterations could lead to changes in 

imprinted genes regulating offspring growth or other genes. Imprinted genes, such as H19 are 

involved in childhood growth and are vulnerable to imprinting changes (Reik et al. 2001a). 

IGF-2 gene expression is also vulnerable to epigenetic changes (Giannoukakis et al. 1993), 

which are not only associated with alterations in fetal growth (Fowden et al. 2006), but have 

also been linked to differences in body composition in childhood (Ong et al. 2002a) and 

adulthood (Fowke et al. 2010).  

6.2.4.2. Paternal age at childbirth 

Some possible triggers and mechanisms which may be responsible for the changes seen in 

children born to fathers of different ages have already been outlined in the manuscript. 

However, it is worthwhile exploring these in some more detail, and addressing other possible 

triggers and mechanisms which may be responsible for these the observations in our study.  

Increasing paternal age is associated with changes in male gamete quality, and this has been 

discussed in Chapter 1. Such changes may impact on sperm genes and other factors, with 

possible consequences to offspring phenotype.  

Aging of the male gamete 

Changes in the male gamete in association with increasing age have been the subject of far 

less research than those in female gametes. Furthermore, such age-related changes in male 

gametes are far less dramatic than those seen in female gametes. Alterations also appear to 

occur gradually in males, rather than at relatively clear age threshold as in women. Further, it 

is important to note that, although the changes that take place in male gametes with 

increasing age are relatively subtle, these may still impact on offspring outcomes.  

Similar to the effects of maternal age, male gametes deteriorate with increasing age, with the 

occurrence of single gene defects being the most widely recognised risk associated with 

increasing paternal age (Crow 1997). The exponential increase in the occurrence of single 
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gene defects in sperm with increasing male age illustrates the vulnerable nature of sperm 

genes to the passage of time (Kong A 2012).  

Epigenetics 

There is evidence of epigenetic changes and imprinting errors occurring in sperm genes with 

increasing paternal age (Curley et al. 2011; Oakes et al. 2003). These age-related changes 

include hyper-methylation, altered chromatin packaging and integrity (Zubkova & Robaire 

2006), amongst other epigenetic alterations (Kokkinaki et al. 2010; Wyrobek et al. 2006). 

Indeed, a positive correlation between paternal age and levels of DNA methylation in 

newborns has been described in humans (Adkins et al. 2011). However, such changes in 

genes have yet to be linked to any phenotypic differences in offspring. Nevertheless, there is 

increasing circumstantial evidence that epigenetic changes in sperm genes may be the 

underlying mechanism leading to increased risk of a number of diseases in the offspring of 

older fathers, including schizophrenia, bipolar disorder, and autism (Farrer et al. 1991; 

Peedicayil 2010; Perrin et al. 2007). Thus, while this field of research remains in its early 

stages, it seems likely that epigenetic changes in paternal sperm genes may be important 

mediators of later disease risk, and may also affect phenotype in the offspring.  

Environmental toxicants 

Increasing age inevitably leads to an increased duration of exposure to environmental 

toxicants. Thus, for example, a 20-year-old father has far less cumulative exposure to 

toxicants than a father aged 40 years. Common exposures include alcohol intake and air 

pollution, as well as exposure to agrochemicals (through consumption of common 

foodstuffs). 

The possible role of common environmental toxicants in alterations in sperm genes is 

becoming increasingly apparent (Perera & Herbstman 2011). Indeed, the potential role of 

such toxicants in epigenetic changes in germ cells (as well as possible consequences to the 

fetus in utero) is of concern (Perera & Herbstman 2011). Since it is inevitable that increasing 

paternal age would be associated with an increased accumulation of toxicant exposure, older 

fathers are more likely to experience any consequent epigenetic changes in germ cells (Tarin 

et al. 1998).  

Male diet & behaviour 

Another male factor that is potentially important to offspring programming is preconception 

male diet (Ferguson-Smith & Patti 2011; Lim & Song 2012). A recent animal study revealed 
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that a carbohydrate-rich paternal diet led to up-regulation of lipid biosynthesis genes in 

offspring (Carone et al. 2010). Men’s BMI tends to increase after the age of 30 years (Flegal 

& Troiano 2000), and this weight gain is likely related to excessive carbohydrate 

consumption. Therefore, it is possible that such dietary changes in men over 30 could lead to 

programmed changes in the lipid metabolism of their offspring. While most studies are 

focusing on the impact of male diet on semen quality, motility, and morphology (Attaman et 

al. 2012), human studies assessing the possible impact of male diet on offspring phenotype 

and disease risk would be fascinating.  

Oxidative stress & telomere length 

Reactive oxygen species are free radicals that can cause oxidative stress-induced damage to 

nucleic acids, proteins, and other cell components, which are thought to accumulate with age 

(Harman 2006) The possible role of age-related increases in these reactive oxygen species in 

sperm remains largely unknown, but they may possibly contribute to sperm DNA damage 

(Aitken et al. 2003; Robaire et al. 2012).  

An interesting paternal age-related change in DNA that takes place is an associated increase 

in offspring telomere length (De Meyer et al. 2007; Njajou et al. 2007). Sperm telomeres 

increase in length with increasing male age, and it is proposed that this leads to the increased 

telomere length in offspring of older fathers (De Meyer et al. 2007). Shorter telomeres are 

increasingly evident in disease states, and longer telomeres may be a biomarker for longevity 

(Nordfjäll et al. 2009). This change is of interest as it appears to be a positive change in 

sperm DNA with increasing age, which may confer an advantage to offspring. While an 

increase in offspring DNA telomere length has been associated with increasing paternal age 

(Nordfjäll et al. 2009), the consequences to offspring (if any) are still unknown (Eisenberg 

2011). 

6.2.5. Parental age and the post-natal environment 

While all families in our cohort were of higher socio-economic status, it is possible that 

increasing age confers different maternal and paternal characteristics and behaviour, even in a 

relatively homogenous group. As a result, maternal and paternal age-related differences in the 

post-natal environment of child rearing need to be considered as possible mechanisms 

responsible for the phenotypic changes in the offspring observed in our study.  
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6.2.5.1. Diet and exercise 

Men and women who have children when they are under the age of 30 years may have 

inherently different attitudes to child-rearing compared to those who have children at older 

ages (Bornstein et al. 2006; Ragozin et al. 1982). Such differences in attitudes may impact on 

childhood dietary and exercise habits. Indeed, increasing age of mothers and fathers is 

associated with a better diet in their children (Brown et al. 2008; Northstone & Emmett 

2005), and this is often due to greater parental knowledge about food choices (Robinson & 

Godfrey 2008). As healthier food choices help protect against obesity (Summerbell et al. 

2005), such maternal and paternal age-related behaviours may help explain why children of 

older mothers and fathers in our cohort had reduced adiposity.  

However, in contrast, increasing age of mothers and fathers is associated with a reduction in 

their own exercise levels (Macera et al. 2005), which, in turn, leads to reduced levels of 

activity and exercise in their children, who tend to emulate their parents’ behaviour (Mitchell 

et al. 2011). Increasing age of parents is also associated with a reduction in active childhood 

play, irrespective of the parents’ own activity levels (MacDonald & Parke 1986; Moore et al. 

1991). As exercise and obesity are intrinsically linked (Summerbell et al. 2005), we would 

therefore expect that increasing age of parents would lead to increased adiposity in their 

children. 

On balance, increasing maternal and paternal ages at childbirth are associated with improved 

diet, but reduced exercise levels in their children. Thus, it seems likely that any dietary 

improvements in children of older parents would be offset by a reduction in their physical 

activity levels. Nonetheless, even if parents’ child-rearing behaviours differed slightly with 

increasing age, it is unlikely to fully explain the observed changes in height, BMI, body 

composition, hormone levels, and lipid profiles with increasing maternal and paternal ages at 

childbirth.  

6.2.6. Conclusion 

Our study findings show that advancing maternal and paternal ages at childbirth are 

associated with taller and slimmer phenotype in their children. The striking changes in 

childhood lipid profiles associated with increasing paternal age at childbirth are in stark 

contrast to this taller, leaner phenotype. This is important as changes in phenotype in 

childhood may have long-term implications. 
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It is possible that these alterations in childhood phenotype and metabolism are triggered by a 

combination of the many changes that occur in male and female gametes or the early fetal 

environment in association with advancing maternal and paternal ages. We assessed a cohort 

who was likely to have a similar child-rearing environment, based on similar socio-economic 

status. Although parents’ ages may have led to subtle differences in the environment of child-

rearing, such differences are unlikely to explain the observed differences in childhood 

phenotype and metabolism.  

While we found that children born to parents aged over 30 years were taller and slimmer, it is 

important that this is not seen as reassuring to prospective parents aged over 30, and 

particularly for prospective mothers aged over 35 years old. The established risks to offspring 

of increasing maternal age at childbirth, particularly that of chromosomal disorders 

(Broekmans et al. 2009), outweighs any benefit of having a child with a taller and leaner 

phenotype. In comparison to the risks of increasing maternal age at childbirth, increasing 

paternal age at childbirth is associated with a much lower risk of severe outcomes in the 

offspring, but these risks still exist and include autism and gene defects (Kong A 2012). 

Furthermore, our finding of an association between increasing paternal age and less 

favourable lipid profiles in children provides further reasons for caution about the possible 

risks of increasing paternal age at childbirth. Future research will help clarify the additional 

risks and possible benefits to offspring of increasing maternal and paternal ages at childbirth. 

6.2.7. Directions for future research  

Clearly, the impact of maternal and paternal ages at childbirth is under-researched. While our 

study was cross-sectional, it is clear that large prospective studies would best evaluate the 

effects of maternal and paternal ages at childbirth on childhood outcomes. Ideally, 

prospective parents would be enrolled prior to conception, so that all facets of their pre-

pregnancy diet, behaviour, physiology and other influential factors could be examined. 

Longitudinal follow up throughout pregnancy and subsequent on-going assessments of 

parents and children would provide a wealth of important information. 

If such comprehensive studies detected pivotal parental factors affecting offspring outcomes, 

the information could be utilised to introduce interventions to modify offspring risks. 

However, these studies require enormous commitment of resources, time and take decades to 

yield meaningful results. There are nonetheless, many large longitudinal studies on-going 
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worldwide that could possibly address a number of important questions on this topic. In the 

meantime, contemporary studies could address more specific research questions. 

Future studies need to tackle specific areas of public health interest. Our findings suggest that 

children born to mothers and fathers aged less than 30 years may be at risk of future obesity, 

and we need to clarify this risk across the socio-economic spectrum. Detailed information on 

childhood diet and exercise levels in association with maternal and/or paternal age at 

childbirth would be of great interest and relevance. Such data could better target already 

limited public health resources and education towards more specific groups, when initiating 

interventions to reduce childhood obesity and future disease risk. Furthermore, more in depth 

assessment of the association between maternal and paternal ages at childbirth with adult 

lipid profiles and type 2 diabetes risk are clearly warranted. 

Also, as previously discussed, the limited data assessing the impact of maternal age at 

childbirth on adult offspring mortality indicated that increasing maternal age is associated 

with reduced life-span in the offspring (Liu et al. 2011b). Work on paternal age and offspring 

mortality is equally limited (Gavrilov & Gavrilova 2000), and was based on historic data. 

Given the dramatic rise in maternal and paternal ages at childbirth over the past few decades, 

it is important to adequately assess possible long-term risks to offspring. 

Exploration of the relative contributions of maternal and paternal ages at childbirth to the 

phenotypic changes in offspring needs to be clarified. This could be tackled in several ways. 

A first step might be to utilise animal models of divergent ages, which would provide 

important data and help direct the design of further human studies. Secondly, offspring of 

parents with widely divergent ages could be studied, thereby clarifying the effect of the older 

parent on offspring outcomes. Finally, epidemiological studies could also address this 

question, but would require a large study population and rigorous methodology.  

 

6.3. Birth order  

6.3.1. The influence of birth order on the growth and metabolism of children 

We found that first-born children were approximately 2.5 centimetres taller than later-born 

children. We also found that birth order had a graded effect on height, with an incremental 

height reduction from first to third birth order. These differences equated to a mean height 
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decrease of 1.3 cm from first- to second-borns, and a further decrease of 2.0 cm from second- 

to third-born children. In addition, in keeping with their taller stature, first- and second-borns 

had higher IGF-I concentrations than third-borns.  

We have already examined our findings and have compared them to previous studies. 

However, it is pertinent to broadly comment on our results, and outline their contribution to 

this area of research. Importantly, we observed an incremental reduction in childhood height 

with increasing birth order, demonstrating effects beyond that of first-borns compared to 

later-borns. Ours is the first study to assess the gradual impact of birth order in childhood 

outcomes. Further, while several studies have previously examined the impact of birth order 

on childhood height, we were the first to do so while minimising important confounders; 

while one previous study has assessed the impact of birth order on childhood BMI (Wells et 

al. 2011), ours is the first study on a homogenous group in a developed country. In addition, 

there are no previous data assessing the impact of birth order on childhood metabolism.  

We detected no differences in adiposity or metabolism with increasing birth order, which are 

important negative findings per se. The increased BMI described in adult first-borns 

(Reynolds et al. 2010; Stettler et al. 2000) means that the transition from a slim first-born 

child to a heavier first-born adult phenotype occurs after the onset of puberty. The possible 

impact of birth order on adult lipid profiles also needs further assessment, as only one limited 

study has tackled this issue to date (Siervo et al. 2010). 

6.3.2. Possible triggers and mechanisms  

Although some possible triggers and mechanisms have been outlined briefly in the respective 

manuscripts, it is pertinent to expand on some of these possibilities, as well as include some 

possible alternative mechanisms.  

6.3.2.1. Pre-natal factors 

Fetal restriction 

Several authors suggest that the in utero fetal restriction model is the most likely mechanism 

responsible for the effect of birth order on offspring outcomes (Dahly & Adair 2010; 

Gluckman & Hanson 2004b; Reynolds et al. 2010; Siervo et al. 2010; Wells et al. 2011). 

Limited data suggest that relative fetal restriction occurs in first pregnancy (see Chapter 1), as 

implantation and placentation are less invasive, there is reduced efficiency in the delivery of 

nutrition to the first-born fetus (Gluckman & Hanson 2004b; Prefumo et al. 2006). Therefore, 
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the placenta invades the uterine wall more efficiently in later pregnancies, leading to a more 

effective flow of nutrients to the later-born fetus (Khong et al. 2003; Litwin et al. 2010; 

Prefumo et al. 2006). Indeed, this mechanism is thought to be at least partially responsible for 

the recognised slightly lower birth weight (approximately 200 g) of first-borns compared to 

later-borns described in large population studies (Oken et al. 2003). A difference in birth 

weight between first- and later-borns is also seen in many other mammal species, including 

sheep (Hyatt et al. 2010), mice (Reading 1966 1142), and seals (Bowen et al. 1994).  

It is recognised that in utero restriction (leading to, for example, a fetus being born SGA) is 

associated with increased risk of obesity (Chernausek 2012), insulin resistance (Hofman et al. 

2004; Veening et al. 2002), and increased blood pressure (Levy-Marchal & Jaquet 2004; Yiu 

et al. 1999) in childhood (Hofman et al. 1997). However, children exposed to nutrient 

restriction in utero (e.g. SGA children) tend to be shorter than their peers in childhood and 

adulthood (Chernausek 2012). Therefore, while the fetal restriction model is likely important 

in the overall context of birth order, it is not does explain the observed height reduction with 

increasing birth order in our study. Therefore, alternative mechanisms need to be considered. 

Epigenetics and imprinting 

A possible explanation for the taller stature of first- compared to later-born children may be 

that the differential placentation between first and subsequent pregnancies is associated with 

epigenetic changes in imprinted genes regulating growth. As imprinted genes are abundantly 

expressed in the placenta, they are also vulnerable to changes in the placental or external 

environment (Nelissen et al. 2011). Indeed, imprinting control mechanisms appear to be more 

sensitive to environmental cues in placental than embryonic or fetal tissues (Fortier et al. 

2008; Wei et al. 2010). 

Placental imprinted genes vulnerable to changes include those involved in growth, such as 

IGF2 and H19 (Bourque et al. 2010). Placental expression of H19 has been found to be 

increased in pregnancies complicated by fetal growth restriction compared to non-restricted 

pregnancies (Koukoura et al. 2011). Since first-borns are relatively growth restricted in utero, 

they may have altered H19 expression. Therefore, this could lead to altered programming of 

their post-natal growth, and possibly explain their taller stature. However, this assertion is 

speculative at this stage.  
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Offspring hormones 

Alternatively, it is possible that this differential growth between first- and later-born children 

may be mediated by differences at the level of the growth hormone receptor in the offspring 

(Geary et al. 2003; Hyatt et al. 2007). First- and later-born sheep have marked differences in 

their hepatic GH–IGF axis, and first-borns also have up-regulated hepatic IGF-I receptor 

mRNA (Hyatt et al. 2007). These receptor differences were accompanied by a trend towards 

a higher crown to rump length in first-borns at age one month. Unfortunately, details on 

phenotype were not provided beyond this age (Hyatt et al. 2007).  

These data suggest that first-borns may have increased GH and IGF receptor responsiveness 

compared to later-borns, providing some insight into a possible mechanism for the taller 

stature of first-borns. However, the triggers for these changes remain elusive. While studies 

assessing the existence of such changes in humans are practically challenging, it is certainly 

an area which warrants investigation.  

Maternal hormones 

Maternal hormone levels in pregnancy (including oestrogen) have been found to be higher in 

primiparous mothers compared to multiparous mothers (Bernstein et al. 1986; 

Panagiotopoulou et al. 1990). Such differences include higher cord blood oestrogen and 

progesterone (Maccoby et al. 1979), and dehydroepiandrostenedione sulphate (DHEAS) 

concentrations (Troisi et al. 2003) in first- compared to later-borns. Indeed, the elevated 

breast and testicular cancer risk in first- compared to later-born adults is hypothesised to be 

linked to this in utero exposure, with some limited evidence to support it (Hsieh et al. 1991; 

Prener et al. 1992). 

Animal studies yield some evidence that elevations of androgens and/or oestrogens in utero 

are associated with changes in fetal and post-natal growth (Crespi et al. 2006; Wang & vom 

Saal 2000). However, maternal hormone levels in pregnancy are influenced by many factors, 

including maternal age and birth weight (Troisi et al. 2003), both of which also influence 

post-natal growth. Therefore, it is uncertain if differences in maternal hormone levels during 

pregnancy are a likely mechanism for phenotypic differences in offspring associated with 

birth order.  

Maternal pregnancy diet 

There is ample experimental evidence that maternal diet in pregnancy influences offspring 

phenotype and outcomes (Dolinoy et al. 2006; Samuelsson et al. 2008). Overall, a balanced 
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healthy diet promotes normal fetal and post-natal growth. There is evidence that women gain 

more weight in the first than in any subsequent pregnancies, and that weight gain is positively 

correlated with birth weight (Seidman et al. 1989).  

The quality of maternal diet in relation to parity has been the subject of limited research 

(Godfrey et al. 1996; Knudsen et al. 2007; Scholl & Chen 2009). Interestingly, the limited 

data comparing diet in first and later pregnancies suggest that first-time mothers have a 

healthier diet and are more likely to take vitamin and/or micronutrient supplements (Scholl et 

al. 1997). Such differences in maternal diet during pregnancy may explain phenotypic 

differences, such as the taller stature of first-born children.  

Maternal psychological stress  

Maternal stress levels tend to be higher in first than in subsequent pregnancies (Paarlberg et 

al. 1996), and many animal and human studies showed that maternal stress can affect the 

fetus, and lead to alterations in offspring phenotype and disease risk (reviewed by Vaughan et 

al. 2011). Evidence suggests that these changes in the maternal environment are associated 

with changes in placental imprinted genes, including those involved in growth (Vaughan et 

al. 2011). However, to date such changes have only been associated with fetal growth 

restriction and other adverse outcomes, none of which are associated with an increase in post-

natal height (Mulder et al. 2002; Rondo et al. 2003). Therefore, this mechanism is most 

unlikely to explain the taller stature of first-borns.  

6.3.2.2. Post-natal factors 

Tanner (1989) suggested that first-borns benefit from a nutritionally plentiful environment, as 

they are an ‘only child’, at least for a while. This proposed mechanism to explain the taller 

stature of first-borns is relevant in poorer socio-economic groups, where family resources are 

limited. As previously discussed, although undernutrition has a marked effect on height 

(Bhutta et al. 2008), it does not explain the taller stature of first-borns in our cohort, as all 

children were reared in an plentiful environment, irrespective of birth order.  

The taller stature of first-borns may also be related to an excessive ‘catch-up’ weight and 

height gain from birth (Dunger et al. 2007; Ong et al. 2009; Ong et al. 2002b). Ong, Dunger 

et al. (Dunger et al. 2007; Ong et al. 2002b) demonstrated that first-borns who were of lower 

birth weight had an increased risk of more rapid weight (and consequently height) gain, and 

therefore taller stature in mid-childhood (Dunger et al. 2007; Ong et al. 2002b). This is not 
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surprising given the known association between elevated BMI and taller stature in childhood 

(Metcalf et al. 2011). In contrast, the taller first-borns in our cohort had a similar BMI and 

body composition to the shorter later-borns. Furthermore, our findings persisted even after 

correction for birth parameters in the statistical model. These are critical differences between 

our study and both Dunger et al. (2007) and Ong et al. (2002b), as we demonstrated an effect 

of birth order and not birth weight or obesity.  

Other post-natal environmental differences among birth orders have been proposed in 

psychological studies (Paulhus et al. 1999; Sulloway 2001; 2007), where the first-born and 

the ‘middle child’ are often the subjects of investigation. Numerous publications have 

outlined the differing psychological aspects related to birth order within a family, but none 

appear to impact on phenotype or disease risk, at least not in childhood. However, it is 

possible that the psychological impact of birth order affects behaviour (e.g. higher rates of 

smoking in later-born adults (Argys et al. 2006)), and may need to be considered in future 

studies.  

6.3.3. Conclusion 

Our findings of differing height and subtle changes in adiposity and serum growth factor 

levels add weight to the assertion that first-borns are phenotypically different to later-borns. 

The triggers and mechanisms responsible are unclear, but are not explained by the often 

quoted fetal restriction model. However, it seems likely that a pre-natal trigger is responsible 

for this effect. The animal study finding altered GH and IGF-I mRNA receptor 

responsiveness in association with birth order may provide the best insight into a possible 

mechanism mediating the taller first-born phenotype.  

First-borns represents between 60 to 70% of the newborn population in the Western World 

today. Further investigation on the possible differences in phenotype and disease risk 

between first-born and their siblings in childhood and adulthood is warranted. This is 

particularly the case given that the trend towards couples having smaller families looks likely 

to continue, and is likely to escalate. Therefore, it is likely that first-borns will represent more 

than half the population over the age of 40 or 50 years in the coming decades. If birth order 

brings altered disease risk and phenotype with it, then it is critical that we have as much 

information as possible on such risks to better inform public health policy.  
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6.3.4. Directions for future research  

Further study is required to assess the implications of the emerging predominance of first-

borns in the population. Prospective, longitudinal studies assessing pre-pregnancy parental 

behaviour and long-term follow up of offspring throughout child-rearing would best assess 

the impact of birth order. These studies require rigorous design to tackle the many complex 

variables and confounding factors associated with birth order. However, in practical terms, 

the heterogeneity of social, economic, and environmental factors in such studies are 

challenging and difficult to untangle.  

Such large population studies in humans are worthwhile, but valuable information could be 

gained from animal studies enabling a controlled environment to investigate specific birth 

order effects on offspring outcomes. Clearly, animal models on sheep or primates who tend to 

have singleton offspring are required for such studies. Human studies need to target specific 

questions which are modifiable, and may impact on health and disease risk factors of 

offspring in relation to birth order. For example, maternal behaviours (such as diet, exercise, 

and sleep) during first and subsequent pregnancies are likely to differ, but little is known 

about such differences. It is also unknown if these differences impact on offspring outcomes. 

If pivotal maternal behavioural factors were uncovered that affect offspring outcomes, this 

would enable mothers and health-care professionals to modify such behaviours.  

Although adult studies have found that first-borns are at risk of obesity, these were limited 

and paid little attention to the possible biological triggers and mechanisms responsible (Dahly 

& Adair 2010; Reynolds et al. 2010; Stettler et al. 2000). Indeed, there is only limited 

evidence of differences in implantation and placentation between first and later pregnancies 

(Khong et al. 2003; Litwin et al. 2010; Prefumo et al. 2006). 

It is also important to assess the association of birth order with long-term disease risk. 

Surprisingly, there is only one study assessing the association between type 2 diabetes and 

birth order (Lammi et al. 2007), with limited conclusions as a result of confounders.  
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6.4. Ovarian stimulation 

This was the first study to examine the anthropometric, metabolic, and hormonal outcomes in 

children conceived with the help of OSA born at full term. It was also the first study on 

children conceived with the help of fertility treatment (OSA or ART) to utilise two control 

groups of naturally conceived children from fertile and subfertile couples.  

OSA children were shorter than naturally conceived children by an average of 2.5 cm. This 

height difference was more pronounced in OSA boys, who were on average, 3 cm shorter than 

naturally conceived boys. OSA children also had a lower corrected BMI and showed subtle 

metabolic differences compared to controls. These findings point towards OSA children 

exhibiting a different phenotype compared to naturally conceived children.  

As discussed by Savage et al. (2012) (Chapter 2), only one study has previously assessed 

height in OSA children whom tended to be taller (Makhoul et al. 2009). However, the study 

population consisted of children born of very low birth weight, and almost half of participants 

were twins (Makhoul et al. 2009). Our finding of shorter stature in OSA children contrasts 

with the taller stature of ART children (Green et al. 2010; Makhoul et al. 2009; Miles et al. 

2005; Miles et al. 2007; Pruksananonda 2001; Saunders et al. 1996). Indeed, when 

comparing our findings to those of Miles et al. (2005) (who assessed ART children using a 

similar experimental design), our OSA subjects were approximately 6 cm shorter than the 

ART children. This suggests that the height differences between OSA, ART, and naturally 

conceived children are of different and complex aetiologies. 

6.4.1. OSA versus ART 

As discussed, although ART and OSA share the process of ovarian stimulation, ART consists 

of several further steps, including external fertilisation, embryo culture, and embryo 

selection. Furthermore, the drugs used for ovarian stimulation for ART differ and are at a 

higher dose than those used for OSA (van Rumste et al. 2008). Since OSA children are shorter 

and ART children are taller than naturally conceived controls, there seems to be something 

inherent in the process of ovarian stimulation that leads to shorter stature.  

Therefore, it seems likely that the additional steps in ART may be pivotal in the reversal of 

the shorter stature to taller stature. Embryo culture is associated with changes in gene 

imprinting and even different compositions of culture media are associated with changes in 

birth weights (Dumoulin et al. 2010). Thus, this extra step in ART is a possible mechanism 
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accounting for the taller stature in these children. However, it is important to remember that 

the embryos selected for transfer in ART are usually the ‘best’ one or two embryos (Ziebe et 

al. 1997). Selection criteria vary, but the biggest embryo is often selected, contributing to the 

taller phenotype of ART children.  

Given this contrasting height outcome, it is important to try to disentangle the possible 

triggers and mechanisms responsible for the shorter stature of OSA children.  

6.4.2. Possible triggers and mechanisms  

The likely reasons for the differences seen in OSA children are an effect of the ovarian 

stimulation process on the epigenetic process of the oocyte/embryo, or a direct drug effect 

altering the uterine environment, cytokines, or growth factors. Other possible reasons for the 

observed phenotypic changes in OSA children may be related to alterations in paternal sperm 

for the process of intra-uterine insemination, or an effect of maternal stress on the developing 

embryo.  

6.4.2.1. Pre-natal 

Fetal programming and epigenetics  

OSA constitutes a major departure from the normal process of gametogenesis, leading to 

marked changes in the early fetal environment compared to natural conception. It is possible 

that OSA leads to changes in the epigenetic process in the oocyte via an increase in 

endogenous FSH through the actions of clomiphene, and/or due to an effect of exogenous 

FSH (Savage et al. 2012; Chapter 2). However, with the exception of one human study (Sato 

et al. 2007), the evidence of an effect of FSH on oocyte or embryo epigenetics has been 

extrapolated from animal models assessing the effects of ART (reviewed by van Montfoort et 

al. 2012). Several studies have attempted to elucidate if differences are present in the 

epigenome of ART children (Savage et al. 2011). Overall, these studies yielded conflicting 

findings of either a minor effect or no effect of ART on the epigenome and related processes 

such as gene methylation (Gomes et al. 2009; Horsthemke & Ludwig 2005; Katari et al. 

2009; Oliver et al. 2011; Puumala et al. 2012a; Santos et al. 2010a; Sato et al. 2007; Tierling 

et al. 2010).  

Placental and cord blood samples of naturally conceived infants compared to infants 

conceived by OSA and ART were recently assessed for epigenetic changes (Rancourt et al. 

2012). No differences in methylation levels at imprinting control regions were found, but 
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subtle differences in H19 methylation and gene expression of OSA and ART were detected 

(Rancourt et al. 2012). These changes require further study in order to decipher whether they 

are reproducible or of any significance in terms of impact on phenotype. Thus, while 

epigenetics and possible imprinting changes may provide the most logical explanation for our 

observations, the evidence is circumstantial. Furthermore, epigenetic changes attributed to the 

process of ovarian stimulation have not yet been correlated with phenotypic changes in 

offspring.  

Effect of ovarian stimulation drugs on the early fetal environment 

The observed differences in OSA children may be a direct effect of clomiphene citrate and/or 

FSH on the oocyte or developing embryo. The possible triggers and mechanisms have been 

discussed in detail by Savage et al. (2012) (Chapter 2), but a brief summary is provided here. 

FSH alters intra-uterine chemokines, cytokines, and growth factors in stimulated oocytes 

(Boomsma et al. 2010), and clomiphene is associated with a reduction in serum levels of 

IGF-I in women after standard treatment for ovarian stimulation (Fiad et al. 1998). However, 

it is unknown if these changes impact on the developing oocyte or embryo. 

Animal studies have demonstrated subtle effects of clomiphene at a cellular level, more 

specifically, enhancement of cellular apoptotic processes in ovaries, fallopian tubes, villi, and 

decidual tissues (Chaube et al. 2006; Shao et al. 2009). Furthermore, clomiphene has many 

well recognised effects on the intra-uterine environment, including altered embryonic 

adhesion (Valbuena et al. 2001) and endometrial thickness (Nakamura et al. 1997), amongst 

others. With metabolites of clomiphene detectable in maternal serum more than one month 

after administration (Homburg 2005), it is possible that clomiphene could have effects at a 

subtle level in the developing oocyte or embryo leading to phenotypic changes. Further 

research assessing the impact of clomiphene at a cellular level and the possible link to 

phenotypic changes (if any) is required.  

Maternal psychological stress 

Maternal psychological stress is understandably higher both prior to, and during pregnancies 

conceived with help of fertility treatment, when compared to naturally conceived pregnancies 

(Harata et al. 2012; Oddens et al. 1999). However, the only studies assessing fertility 

treatment-related stress were in couples undergoing ART (Oddens et al. 1999; Schmidt 

2009). While OSA also constitutes fertility treatment and is no doubt a stressful experience, it 

is likely to be less stressful than ART, which is a far more invasive treatment.  
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Many animal and human studies showed that maternal stress can affect the fetus, leading to 

alterations in offspring phenotype and disease risk (reviewed by Vaughan et al. 2011). 

Evidence suggests that such changes in the maternal environment are associated with changes 

in placental imprinted genes, including those involved in growth (Vaughan et al. 2011). 

Maternal stress is also associated with alterations in the maternal hypothalamic-pituitary 

adrenal (HPA) axis, which in turn impacts fetal hormone regulation (Mulder et al. 2002). 

Subsequently, these changes can increase the risk of adverse obstetric and neonatal outcomes 

(Austin & Leader 2000; Mulder et al. 2002), as well as an increased risk of behavioural 

problems in childhood (Talge et al. 2007). 

Animal studies elegantly demonstrate that maternal pregnancy stress is associated with 

reduced growth in offspring (Emack et al. 2008). In humans, severe maternal stress, 

psychological problems, depression, and other mood disorders during naturally conceived 

pregnancies have also been associated with reduced growth in offspring (Patel et al. 2004; 

Traviss et al. 2012). It is therefore possible that severe maternal stress may alter childhood 

growth, leading to the shorter stature of OSA children. However, this is not consistent with 

the higher maternal stress experienced by ART mothers, who go on to have taller children. 

Nonetheless, it is plausible that maternal stress in OSA could programme shorter stature in 

offspring, but that this programming could be reversed in ART by the powerful additional 

steps of embryo culture and selection. As previously outlined, these additional steps of 

embryo culture and selection may be very important in the generation of the height 

differences between OSA and ART children. This area clearly requires further study. 

Male factors – intra-uterine insemination & infertility 

The process of intra-uterine-insemination (IUI) may also alter the properties of male semen, 

consequently affecting offspring phenotype. Over 80% of OSA mothers in our cohort 

underwent IUI of father’s sperm.  

The technical process of IUI varies, but generally involves selection of the most motile 

sperm, which are removed from semen by the process of sperm washing (Qasim et al. 1996). 

Cytokines in semen are increasingly recognised as important factors in the regulation of 

implantation (Robertson 2007; Robertson et al. 2009), and these cytokines may influence 

fetal programming (Sjoblom et al. 2005). While this work is of interest, it is unknown 

whether the removal of seminal fluid impacts offspring outcomes, and this area warrants 

further research in animal models and humans.  
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Another possibility is that the infertility of fathers in the OSA group is associated with 

transmission of altered genes to offspring, and consequent differential phenotypic outcomes. 

Sperm of infertile males has a higher rate of epigenetic and imprinting defects that can be 

transmitted to offspring (Dada et al. 2012) However, fathers with male factor infertility only 

comprised 21% of OSA fathers in our cohort, making this a less likely mechanism for the 

observed changes in phenotype OSA children. Nevertheless, the possible role of male factor 

infertility and its possible impact on offspring outcomes cannot be dismissed, and needs to be 

considered in future studies of OSA children.  

6.4.2.2. Post-natal  

Overall, ART conceived children appear to fare a little better than their naturally conceived 

peers in terms of social adjustment and general psychological well-being (Wilson et al. 

2011). We could not identify similar studies on OSA children, but these outcomes in ART and 

OSA children are likely to be similar. However, there is no evidence showing that ART or 

OSA conceived children are reared differently to their naturally conceived peers. In particular, 

there is no evidence of any differences in the post-natal rearing environment that could 

explain the differences in height, BMI and subtle metabolic differences between OSA and 

naturally conceived children.  

6.4.2.3. Subfertility 

While assessing outcomes in OSA children, we also conducted another important study 

comparing anthropometry, metabolism, and hormonal profiles in children of subfertile and 

fertile parents. There were no significant differences between these two groups, either overall 

or when comparing sexes separately. This is the first time such a study has been conducted, 

and although our group of children of subfertile parents was relatively small (n=54), the study 

had sufficient power to detect differences in main outcomes between children of fertile and 

those of subfertile parents. As a result, our negative findings are particularly important, as 

previous studies assessing ART conceived children cautioned that their observations could 

be, at least partially, attributable to parental subfertility (Savage et al. 2011).  

Parental subfertility is associated with an increased risk of low birth weight, premature 

delivery, congenital abnormalities, and imprinting disorders in the offspring (Doornbos et al. 

2007; Ludwig 2009; Zhu et al. 2006). Therefore, it has been increasingly suggested that 

subfertile parents are inherently different to fertile parents, so that their children may have a 
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different phenotype (Ludwig 2009; Savage et al. 2011). Thus, we expected to find differences 

in anthropometric, biochemical, or hormonal parameters between children of subfertile and 

fertile parents, but no significant differences were observed.  

Our negative findings are important, and suggest that subfertility is unlikely to be a major 

contributing factor the different outcomes observed in ART and OSA children. It is 

nonetheless necessary to highlight that subfertile, OSA, and ART parents all share subfertility 

as a common background characteristic. As a result, while subfertile parents eventually 

conceive naturally, parents who undergo OSA or ART do not. Therefore, it is possible that 

there is something inherently different about OSA or ART parents that may alter their 

children’s phenotype. However, if such differences exist, they remain unknown and warrant 

further research.  

6.4.3. Conclusion 

This is the first study to assess the growth and metabolism in OSA children born at full term. 

We also carried out the first study comparing growth and metabolism in children of fertile 

and subfertile parents. The triggers and mechanisms responsible for the shorter stature, lower 

corrected BMI, and subtle metabolic differences in OSA children (compared to naturally 

conceived children of fertile and subfertile parents) is unclear. These may be related to 

altered fetal programming, likely triggered by the ovarian stimulation process leading to 

alterations in imprinted genes, as well as by a direct effect of potent drugs such as 

clomiphene.  

6.4.4. Directions for future research  

Even though clomiphene has been used in fertility treatment regimes for decades, it is an 

under-researched drug, with potentially potent effects outside that of ovarian stimulation. 

While efforts continue towards more “controlled ovarian stimulation” a recent review entitled 

“Controlled ovarian stimulation: who's kidding who?” (Macklon 2005) sums up the progress 

that has yet to be made in this area. Nevertheless, advances continue in the area of fertility 

treatment, with greater consideration that success is a singleton birth at full term. It is likely 

that the long-term health of fertility treatment offspring will become an area of greater focus. 

The vast majority of the ART conceived population are aged less than 30 years, but there is a 

larger and older population of OSA conceived adults that have never been studied. The same 

lack of data applies to adults born of subfertile parents. 
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The possible involvement of epigenetics or imprinting changes in the observed differences in 

OSA offspring is a complex area that required investigation. The crucial roles of process of 

epigenetics and imprinting at gametogenesis and embryogenesis are becoming increasingly 

clear, and, as technology advances in the area of epigenetics, further valuable information 

will be gathered in this field. However, much further work is required before a parallel 

between epigenetic or imprinting changes at a gene level can be correlated with phenotypic or 

metabolic changes in offspring. It is crucial that such work continues as it may impact on 

clinical practise. For example, certain doses or combinations of ovarian stimulation drugs 

may be associated with a threshold effect on imprinting gene regulation. If such an effect is 

uncovered, this would lead to changes in fertility drug doses and regimes in clinical practise. 

The process of OSA is complex and varies between patients and centres, with differing drug 

doses and protocols utilised. Such differences need to be considered when attempting to 

decipher any particular facet of OSA as an important trigger leading to changes in OSA 

children. Ideally, a multi-centre multinational longitudinal study should be utilised to tackle 

the many questions surrounding OSA fertility treatment and the impact on offspring 

phenotype. Such studies could obtain high quality data on parental factors, treatment 

protocols, as well as offspring phenotype and health profiles. The next step towards 

correlating any phenotypic differences with epigenetic or imprinting differences could be 

tackled. Such research will furnish OSA offspring, prospective parents, and health 

practitioners with information on any real risks associated with OSA conception, either in the 

short or long term.  

Finally, a central register of OSA treated parents and of children conceived by OSA needs to 

be established. The wide availability of drugs such as clomiphene (often prescribed by family 

doctors and on offer in the internet) makes this a challenging prospect. 
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6.5. Changes in height – does it matter? 

The major findings common to all four studies covered in this project were observed changes 

in childhood height. These observations in association with parental factors may have 

implications for long-term health and disease risk. Importantly, in the absence of differences 

in biological maturity and due to the correction for parental heights, it is likely that the 

differences in stature will likely persist into adulthood. Furthermore, the observed changes in 

childhood height are likely to represent real alterations in the programming of growth, which 

may have additional short- and long-term effects.  

6.5.1. Childhood 

The height increase of approximately 2 cm observed in children born to mothers and fathers 

aged more than 30 years and in first-borns may not represent a clinically important height 

increase for all children. However, this seemingly small height increase may be important to 

children (and parents) on the shorter range of the height spectrum.  

The height decrease of 2.5 cm observed in OSA children (3 cm in boys) equates to a reduction 

of almost 0.5 SD in the growth curve. Thus, for a child genetically destined to have a height 

on the tenth centile by virtue of genetic potential, this 3 cm difference represents a significant 

reduction in stature. Further, this height reduction is likely to persist or even accentuate at 

final height attainment. To put a 3 cm difference in context, the height gain obtained from 

four years of daily growth hormone injections in children with idiopathic short stature is 

approximately 4 cm (Deodati & Cianfarani 2011).  

There is debate regarding the possible social advantages of taller stature in childhood. There 

is evidence that taller children have a better quality of life (Ambler et al. 2012), but according 

to other studies childhood height has little effect on happiness or social success (Gill 2006; 

Voss & Sandberg 2004).  

6.5.2. Height and disease risk in adulthood 

Taller stature in adulthood has been associated with greater economic and social success 

(Harper 2000; Oreffice & Quintana-Domeque 2010; Wayne & Cooper 1987). However, as 

higher socio-economic status is associated with taller stature, that factor rather than height 

itself may be responsible for the economic and social success (Bowles & Gintis 2002). 
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Although these are relevant issues, of even greater interest is whether changes in height in 

childhood are predictive of health and disease risk in later life.  

Although an area of relatively limited research, it appears that taller stature may be associated 

with a higher rate of chronic disease, increased morbidity with age, and a consequent shorter 

lifespan (Samaras & Storms 1992; Samaras et al. 2003). It is speculated that the longer 

lifespan of women may be at least in part, attributable to their relative shorter stature 

compared to men. In fact, the two correlate quite well as women are on average 8% shorter 

than men, and live 8% longer (Samaras et al. 2003). Animal studies are in line with these 

findings, as smaller animals within the same species (e.g. dogs) tend to live longer (Li et al. 

1996; Samaras et al. 2003) 

Taller stature per se has been found to be a risk factor for adult cancer (De Stavola et al. 

2000; Gunnell et al. 2001; Marchand et al. 1991). For example, taller adults have higher rates 

of breast cancer (van Den Brandt et al. 2000), prostate cancer (Engeland et al. 2003; 

Giovannucci et al. 1997), and colon cancer (Andersson et al. 1997; Giovannucci et al. 1996). 

Attempts to quantify this risk suggest that a height difference greater than 5–6 cm is 

associated with increased relative cancer risk (Ahlgren et al. 2004; The Emerging Risk 

Factors Collaboration 2012; Tretli 1989; van Den Brandt et al. 2000). However, even an 

increase of 1–2 cm in height has been found to be associated with an increased risk of cancer 

(Chan et al. 1998; Lukanova et al. 2001). The latter studies in particular, are important given 

the height difference of 2–3 cm observed in our studies.  

In contrast to cancer risk however, there are reports that cardiovascular disease risk reduces 

with increasing height (The Emerging Risk Factors Collaboration 2012). Importantly, this 

finding was present after adjustment for BMI, waist circumference, diabetes, smoking status, 

lipid profiles, and other confounders (The Emerging Risk Factors Collaboration 2012). 

However, other reports find similar rates of cardiovascular disease in shorter people (Walker 

et al. 1995). Also, it is contended that the observation of lower cardiovascular disease risk in 

taller people may be associated with factors other than height, such as dietary differences in 

taller people of higher socio-economic status (Samaras & Storms 1992). Regardless, in a 

comprehensive review of the subject, Samaras et al. (2003) found that all-cause mortality 

rates are lower in shorter compared to taller people. 

There appears to be some health risks associated with taller stature, which may offset the 

perceived social advantages. While speculative, it is possible that the changes in childhood 
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height in association with parental factors assessed in our studies may have far reaching 

effects in terms of future health and disease risk.  

 

6.6. Strengths and limitations of our studies 

Specific strengths and possible limitations of our studies have been discussed in the 

individual manuscripts. However, it is relevant to outline some of these aspects here. 

6.6.1. Strengths  

The single greatest strength of our studies was the assessment of a homogenous population of 

children (and families) of single ethnicity and higher socio-economic status. These factors are 

major confounders in all main outcomes assessed in this project, including height 

(Silventoinen 2003), BMI and body composition (Deaton 2007; Stunkard et al. 1986; Thomas 

et al. 1991; Wang & Lobstein 2006), as well as glucose metabolism and lipid profiles 

(Mahley et al. 2001; van den Berg et al. 2012). As a result, our homogenous cohort allowed 

us to obtain a much more reliable assessment of the effects of the parental factors in question 

on childhood outcomes. Thus, our project contrasts to most previous studies, which have for 

example assessed populations across all socio-economic groups.  

Other strengths included: 

 The utilisation of DXA scans to assess body composition, which has important 

advantages over more crude methods of assessment (Mazess et al. 1990; Taylor et al. 

2000; Wong et al. 2002). 

 All our statistical models were robust and appropriately accounted for the major 

confounding factors. 

 Heights of all children were corrected for mid parental height. This is crucial as 

parental height determines over 80% of a child’s height variability (Silventoinen 

2003).  

 Biological maturity of our subjects was assessed using bone age X-rays, which 

permitted us to rule out advanced (or delayed) development as the cause for the 

observed height differences.  

 Children’s BMI were also individual corrected for parental BMI, which is also an 

important predictor of childhood BMI (Fogelholm et al. 1999).  
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 All children and their parents were clinically assessed by the same person, thus 

eliminating any potential inter-individual variation in auxological measurements and 

other data gathering. 

 Our strict exclusion criteria meant that no children born at low-birth-weight or SGA 

were studied, unlike numerous previous studies that failed to exclude these groups. 

This is important as low-birth-weight and SGA children represent a different 

phenotype and disease risk profile, potentially clouding the effects of parental factors 

on childhood outcomes.  

 All assessments were carried out by a medical doctor, to maximize the accuracy of 

pertinent medical background information and of clinical assessment of children and 

parents. 

6.6.2. Limitations 

There were a number of general limitations of our studies: 

 Our project involved cross-sectional cohort studies. Although longitudinal studies on 

a larger population would be ideal, cross-sectional studies such as ours yield 

meaningful results more rapidly, assisting in the inception and design of future 

prospective studies.  

 Recruitment of study participants was done at random, but it is possible that our 

cohort might have suffered from volunteer bias. However, we only assessed healthy 

children of higher socio-economic status, which means that volunteers were unlikely 

to be seeking free health care assessment. In addition, eligible siblings invariably 

participate as well, implying that a child from a particular family was not volunteered 

out of concern for their health.  

 The age distribution of fathers and mothers of recruited children were biased towards 

those aged in their 30s Even if our cohort suffered from volunteer bias, this is unlikely 

to affect our study outcomes significantly. This is because we have no reason to 

believe that younger or older parents would preferentially volunteer their children for 

a study or that a higher proportion of first or later-born children would be 

preferentially volunteered by their parents as participants. Also, the maternal age, 

paternal age and birth order distribution of our cohort approximately matched the 

demographics of the general population of higher socio-economic New Zealand 

European children and parents. 
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 Since our cohort consisted of a homogenous cohort of a single ethnicity and of higher 

socio-economic status, our results may not be directly applicable to the general 

population. However, as this homogeneity also allowed us to better assess the true 

effects of particular parental factors, our findings are most likely applicable to the 

wider community.  

 We also had no information on the epigenetic profile or imprinting genes of the 

children studied or their families. Thus, it was not possible to correlate our observed 

changes in phenotype with potential genetic alterations.  

 

6.7. Final remarks 

We are witnessing perhaps one of the most dramatic demographic changes since the post-war 

baby boom. Maternal and paternal ages at childbirth are increasing at a dramatic rate, 

whereby almost half of the children nowadays are born to mothers aged over 30 years and 

fathers aged over 35 years. This upward shift in reproductive behaviour is pushing 

prospective parents into attempting to have children at an age when their fertility is in 

decline. Consequently, the uptake of fertility treatment is increasing, whereby 1 in 20 

children are conceived with the help of ovarian stimulation fertility treatment alone, and this 

is notwithstanding the additional 1 to 3% of children conceived by ART. Couples are also 

having just one or two children, resulting in a dramatic increase in the proportion of first-

borns in the population. This decrease in family size is a choice for some parents, but is a 

consequence of their increased age and declining fertility for many.  

These changes in parental behaviours are inter-dependent and synergistic, and are leading an 

evolving demographic transition towards older age at parenthood, smaller families, and an 

exponential increase in the demand for fertility treatment that shows no signs of abating. The 

possible short- and long-term consequences of these changes in parental factors to offspring 

phenotype and metabolism are largely unknown and under-researched. We have uncovered 

that maternal and paternal ages at childbirth, birth order, and conception with the help of 

fertility medications impact on childhood phenotype and metabolism. These changes in 

parental factors are associated with a height change in childhood ranging from 1–3 cm, as 

well as significant alterations in childhood BMI and body composition. Furthermore, we have 

found that children’s metabolism and hormonal profiles are also affected by changes in these 

clearly influential parental factors.  
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Offspring phenotype and metabolism are determined by the influences of genetics and the 

environment of rearing. Where possible, we have adjusted for heritable genetic parameters 

and assessed a cohort who was likely to have a similar post-natal rearing environment. This 

enabled us to better assess the effect of each parental factor examined in our studies.  

The many changes that take place in maternal and paternal genes and physiology with 

increasing age make it difficult to decipher the exact triggers and mechanisms responsible for 

the observed changes in the offspring. Similarly, the physiological, hormonal, and other 

changes that take place with differing birth order are complex, and are likely to impact on the 

developing fetus in several different ways. OSA has perhaps the most complex and disruptive 

influence on maternal oogenesis, hormonal levels, uterine environment, genes, amongst other 

effects. This is notwithstanding the possible alterations in paternal sperm associated with 

OSA, either as part of sperm preparation for in utero insemination or due to the inherent 

subfertility of the prospective father.  

Clearly, maternal and paternal ages, birth order, and OSA are intrinsically associated with 

changes in the vulnerable early environment of gametogenesis or embryogenesis, or both. 

The vulnerability of the developing fetus to alterations in their early environment is becoming 

more apparent, with increasing evidence that offspring phenotype and metabolism are subject 

to programming in utero.  

The implications of our findings for the long-term health and disease risk for these children 

remains largely unknown. While assessment of the impact of maternal age at childbirth on 

offspring outcomes and disease risk is the subject of some research, data on the short- and 

long-term effects of paternal age at childbirth is limited. The possible impacts of birth order 

(and in particular of being first-born) also require further study. 

ART has been the subject of intense research, but it is unclear why OSA (a common fertility 

treatment) has been largely neglected, with no data on its long-term effects on offspring 

health or disease risk. This is particularly surprising given that OSA has been commonly 

utilised for more than four decades. Although the use of ART is increasing, it is likely that 

OSA will continue to be widely used as a fertility treatment, particularly as funding for 

expensive ART treatment becomes unfeasible for already over-stretched health budgets. 

Further knowledge on the possible influences of these parental factors on childhood and adult 

phenotype and disease risk will furnish individuals, parents, and health care professionals 
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with much needed information. Current practises in the USA attempting to increase public 

awareness about the real decline in fertility associated with increasing maternal age should be 

emulated and expanded. Public and possibly even school-based education should inform of 

the risks of chromosomal and other disorders accompanying increasing maternal age, as well 

as the small, but real risk of offspring gene defects with increasing paternal age. The 

mistaken belief that fertility treatment slows the biological clock also needs to be remedied, 

and replaced with knowledge of the very real decline in fertility that accompanies increasing 

age.  
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