CRYSTAL GROWTH IN EGGSHells

Heather Silyn-Roberts

A thesis submitted for the degree of Doctor of Philosophy in Zoology
University of Auckland, 1984.
SUMMARY

Preferred orientation in the eggshells of the crocodiles, turtles and birds is shown by X-ray diffractometry to develop throughout shell deposition. In all shells, the texture that develops is one in which the (001) plane of the unit cell tends to lie parallel to the shell surface. The degree of texture varies from being high in the calcite of the ratite and tinamou shells and the aragonite of the turtle shells to low in the calcite of the crocodilian and carinate shells. A model is proposed for the deposition of the entire eggshell. This model explains the observed textures and fracture morphologies of the shells. In each shell column, crystal deposition is initiated at a single location, from which growth fans out at all angles to the shell normal. In both calcitic and aragonitic shells, growth is in the [001] direction, resulting in an increase in the degree of (001) preferred orientation with distance from nucleation. Where there is unhindered crystal growth, the shells show a crystalline fracture morphology, and the degree of texture that develops is a simple function of the column radius. This type of growth makes up the whole of the turtle shell, the inner 0.3 to 0.4 of the thick ratite shells and the cone layer of the other avian shells. At the start of the central layer of the avian shell, the onset of protein deposition coincides with a hindrance to texture development, which thereafter proceeds at a lower rate. A further hindrance occurs about half-way through the shell, probably caused by a change in the physical characteristics of the protein network. The degree of texture that develops in the avian shell is a function of the column radius and the degree of physical hindrance presented by the protein network. The central layer of the avian shell
has a composite fracture morphology resulting from the intermingling of the network with the inorganic phase. The organic component does not appear to control crystal growth as previously believed, but instead acts as a reinforcing fibrous network.
ACKNOWLEDGEMENTS

I owe an enormous debt of gratitude to my two supervisors:

--to Professor E.C. Young of the Department of Zoology for his having enough faith in me to allow me to pursue a topic of my own choosing and for his continuous support.

--to Dr. R.M. Sharp of the Department of Chemical and Materials Engineering for his ideas, the hours of discussion and the excitement at the results. It was research as it ought to be and seldom is, and I am profoundly grateful for having been able to work with him.

It is a pleasure to thank Mr. D.J. Stringer of the Department of Chemical and Materials Engineering for his ability to contribute to so many aspects of research.

I am grateful to the following individuals and organisations for supplying me with material: Dr. R. Faust, Frankfurt Zoological Gardens; Dr. J. Lange, Berlin Zoological Gardens; Dr. C. Sheppard, New York Zoological Society; Dr. A. Friday, the Department of Zoology, University of Cambridge; Dr. B. Gill, Auckland War Memorial Museum; Mr. B. Rowe, Otorohanga Zoological Society; Mr. D. Folwell, Auckland Zoological Gardens; Wildlife Service, the Department of Internal Affairs, New Zealand; the Department of Zoology, University of Auckland.
CONTENTS

INTRODUCTION

Chapter 1. DEVELOPMENT OF PREFERRED ORIENTATION IN THE EGGSHELL OF THE DOMESTIC FOWL.
 1.1 Abstract 7
 1.2 Introduction 8
 1.3 Specimen preparation 9
 1.4 Method of analysis 10
 1.5 Results 12
 1.6 Discussion 15
 1.7 Appendix 18
 1.8 References 19

Chapter 2. PREFERRED ORIENTATION OF CALCITE IN THE RATITE AND TINAMOU EGGSHELLS.
 2.1 Abstract 20
 2.2 Introduction 21
 2.3 Materials and methods 22
 2.4 Results 23
 2.4.1 Kiwi 25
 2.4.2 Ostrich 27
 2.4.3 Tinamou 27
 2.4.4 Emu and cassowary 27
 2.4.5 Rhea 29
 2.4.6 Moa 29
 2.4.7 Carinate orders other than Tinamiformes 30
 2.5 Discussion 31
2.6 References

Chapter 3. PREFERRED ORIENTATION OF CALCITE IN THE AEPYORNIS EGGSHELL.

3.1 Abstract
3.2 References

Chapter 4. PREFERRED ORIENTATION OF CALCITE AND ARAGONITE IN THE REPTILIAN EGGSHELS.

4.1 Abstract
4.2 Introduction
4.3 Materials and methods
4.3.1 Method of analysis
4.4 Results
4.4.1 Testudines
4.4.2 Crocodylia
4.5 Discussion
4.6 References

Chapter 5. CRYSTAL GROWTH AND THE ROLE OF THE PROTEIN NETWORK IN EGGSHells.

5.1 Abstract
5.2 Introduction
5.3 Fracture morphology
5.3.1 Turtles
5.3.2 Crocodiles
5.3.3 Birds
5.4 A model for crystal growth in a single column
5.4.1 Nucleation and direction of crystal growth 68
5.4.2 Effect of radius of column and distance from nucleation on the intensity ratio of the basal plane 74
5.5 Interruption of basic crystal growth 78
5.5.1 Correlation of interruption with protein distribution in the avian eggshell 78
5.5.2 Crystal orientation in the central layer of the avian eggshell 80
5.5.3 Crocodiles and turtles 84
5.6 A summary of the model and its implications 86
5.6.1 Effect of the protein network on shell strength 88
5.6.2 Structure of the protein network 90
5.6.3 Control of crystal orientation 91
5.7 References 92

Chapter 6. THE PORE GEOMETRY AND STRUCTURE OF THE EGGSHELL OF THE NORTH ISLAND BROWN KIWI, APERTERYX AUSTRALIS MANTELLI.

6.1 Summary 99
6.2 Introduction 99
6.3 Materials and methods 100
6.3.1 Scanning electron microscopy (SEM) 101
6.3.2 Radial fractures 101
6.3.3 Polished radial sections 101
6.3.4 Pore casts 102
6.3.5 Estimation of pore and cone density 103
6.3.6 Measurement of volume, surface area and thickness
6.3.7 Measurement of pore area
6.4 Results
6.4.1 Outer surface
6.4.2 Radial sections
6.4.3 Inner surface
6.4.4 Pore casts
6.4.5 Calculation of water vapour conductance
6.5 Discussion
6.6 References

Chapter 7. BSE Z CONTRAST IMAGING OF URANIUM STAINED PORES IN THE AVIAN EGGSHHELL.
7.1 Summary
7.2 Introduction
7.3 Methods and results
7.4 References

Chapter 8. INTERIOR OPENINGS OF FUNCTIONAL PORES IN THE AVIAN EGGSHELL; IDENTIFICATION IN THE SEM.
8.1 Abstract
8.2 Introduction
8.3 Materials and methods
8.4 Results and conclusions
8.5 References