

RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

CRYSTAL GROWTH IN EGGSHELLS

Heather Silyn-Roberts

A thesis submitted for the degree of Doctor of Philosophy in Zoology
University of Auckland, 1984.

SUMMARY

Preferred orientation in the eggshells of the crocodiles, turtles and birds is shown by X-ray diffractometry to develop throughout shell deposition. In all shells, the texture that develops is one in which the (001) plane of the unit cell tends to lie parallel to the shell surface. The degree of texture varies from being high in the calcite of the ratite and tinamou shells and the aragonite of the turtle shells to low in the calcite of the crocodilian and carinate shells. A model is proposed for the deposition of the entire eggshell. This model explains the observed textures and fracture morphologies of the shells. In each shell column, crystal deposition is initiated at a single location, from which growth fans out at all angles to the shell normal. In both calcitic and aragonitic shells, growth is in the [001] direction, resulting in an increase in the degree of (001) preferred orientation with distance from nucleation. Where there is unhindered crystal growth, the shells show a crystalline fracture morphology, and the degree of texture that develops is a simple function of the column radius. This type of growth makes up the whole of the turtle shell, the inner 0.3 to 0.4 of the thick ratite shells and the cone layer of the other avian shells. At the start of the central layer of the avian shell, the onset of protein deposition coincides with a hindrance to texture development, which thereafter proceeds at a lower rate. A further hindrance occurs about half-way through the shell, probably caused by a change in the physical characteristics of the protein network. The degree of texture that develops in the avian shell is a function of the column radius and the degree of physical hindrance presented by the protein network. The central layer of the avian shell

has a composite fracture morphology resulting from the intermingling of the network with the inorganic phase. The organic component does not appear to control crystal growth as previously believed, but instead acts as a reinforcing fibrous network.

ACKNOWLEDGEMENTS

- I owe an enormous debt of gratitude to my two supervisors:
 - -: to Professor E.C. Young of the Department of Zoology for his having enough faith in me to allow me to pursue a topic of my own choosing and for his continuous support.
 - -:to Dr. R.M. Sharp of the Department of Chemical and Materials Engineering for his ideas, the hours of discussion and the excitement at the results. It was research as it ought to be and seldom is, and I am profoundly grateful for having been able to work with him.

It is a pleasure to thank Mr. D.J. Stringer of the Department of Chemical and Materials Engineering for his ability to contribute to so many aspects of research.

I am grateful to the following individuals and organisations for supplying me with material: Dr. R. Faust, Frankfurt Zoological Gardens; Dr. J. Lange, Berlin Zoological Gardens; Dr. C. Sheppard, New York Zoological Society; Dr. A. Friday, the Department of Zoology, University of Cambridge; Dr. B. Gill, Auckland War Memorial Museum; Mr. B. Rowe, Otorohanga Zoological Society; Mr. D. Folwell, Auckland Zoological Gardens; Wildlife Service, the Department of Internal Affairs, New Zealand; the Department of Zoology, University of Auckland.

CONTENTS

INTRODUCTION			
Chapter	1. DEV	ELOPMENT OF PREFERRED ORIENTATION IN THE	
	EGGS	SHELL OF THE DOMESTIC FOWL.	7
1.1	Abs	tract	7
1.2	Int	roduction	8
1.3	Spec	cimen preparation	9
1.4	Meth	nod of analysis	10
1.5	Resi	ılts	12
1.6	Disc	cussion	15
1.7	Арре	endix	18
1.8	Refe	erences	19
Chapter 2	2. PREF	FERRED ORIENTATION OF CALCITE IN THE	
	RATI	TE AND TINAMOU EGGSHELLS.	20
2.1	Abst	cract	21
2.2	Intr	oduction	22
2.3	Mate	erials and methods	23
2.4	Resu	11ts	25
2.	4.1	Kiwi	27
2.	4.2	Ostrich	27
2.	4.3	Tinamou	27
2.	4.4	Emu and cassowary	27
2.	4.5	Rhea	29
2.	4.6	Moa	29
2.	4.7	Carinate orders other than Tinamiformes	30
2.5 Discussion		ussion	31

2.6	References	34
Chapter 3.	PREFERRED ORIENTATION OF CALCITE IN THE	
	AEPYORNIS EGGSHELL.	36
3.1	Abstract	37
3.2	References	40
Chapter 4.	PREFERRED ORIENTATION OF CALCITE AND ARAGONITE	
	IN THE REPTILIAN EGGSHELLS.	42
4.1	Abstract	42
4.2	Introduction	44
4.3	Materials and methods	45
4.3	.1 Method of analysis	46
4.4	Results	51
4.4	1 Testudines	52
4.4	.2 Crocodylia	54
4.5	Discussion	54
4.6	References	58
Chapter 5.	CRYSTAL GROWTH AND THE ROLE OF THE	
	PROTEIN NETWORK IN EGGSHELLS.	62
5.1	Abstract	63
5.2	Introduction	64
5.3	Fracture morphology	66
5.3.	1 Turtles	66
5.3.	2 Crocodiles	67
5.3.	3 Birds	67
5.4	A model for crystal growth in a single column	68

	5.4.1	Nucleation and direction of crystal growth	68
	5.4.2	Effect of radius of column and distance	
		from nucleation on the intensity ratio	
		of the basal plane	74
5.5	5 Inte	erruption of basic crystal growth	78
	5.5.1	Correlation of interruption with	
		protein distribution in the avian eggshell	78
	5.5.2	Crystal orientation in the central layer	
		of the avian eggshell	80
	5.5.3	Crocodiles and turtles	84
5.6	i A su	ummary of the model and its implications	86
	5.6.1	Effect of the protein network on shell	
		strength	88
	5.6.2	Structure of the protein network	90
	5.6.3	Control of crystal orientation	91
5.7	Refe	erences	92
Chapte	r 6. THE	PORE GEOMETRY AND STRUCTURE OF THE	
	EGGS	HELL OF THE NORTH ISLAND BROWN	
	KIWI	, APTERYX AUSTRALIS MANTELLI .	98
6.1	Summ	ary	99
6.2	Intr	roduction	99
6.3	Mate	rials and methods	100
	6.3.1	Scanning electron microscopy (SEM)	101
	6.3.2	Radial fractures	101
	6.3.3	Polished radial sections	101
	6.3.4	Pore casts	102
	6.3.5	Estimation of pore and cone density	103

6.3	.6 Measurement of volume, surface area	
	and thickness	103
6.3	.7 Measurement of pore area	104
6.4	Results	104
6.4	.1 Outer surface	104
6.4	.2 Radial sections	106
6.4	.3 Inner surface	107
6.4	.4 Pore casts	108
6.4	.5 Calculation of water vapour conductance	109
6.5	Discussion	111
6.6	References	114
Chapter 7.	BSE Z CONTRAST IMAGING OF URANIUM	
	STAINED PORES IN THE AVIAN EGGSHELL.	117
7.1	Summary	118
7.2	Introduction	118
7.3	Methods and results	119
7.4	References	120
Chapter 8.	INTERIOR OPENINGS OF FUNCTIONAL PORES	
	IN THE AVIAN EGGSHELL; IDENTIFICATION IN THE SEM.	122
8.1	Abstract	123
8.2	Introduction	124
8.3	Materials and methods	125
8.4	Results and conclusions	126
8.5	References	128