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SUMMARY

Preferred orientation in the eggshells of the crocodiles, turtles and
birds is shown by X-ray diffractometry to develop throughout shell
deposition. In all shells, the texture that develops is one in which
the (001) plane of the unit cell tends to lie parallel to the shell
surface. The degree of texture varies from being high in the calcite
of the ratite and tinamou shells and the aragonite of the turtle
shells to low in the calcite of the crocodilian and carinate shells. A
model is proposed for the deposition of the entire eggshell. This
model explains the observed textures and fracture morphologies of the
shells. In each shell column, crystal deposition is initiated at a
single location, from which growth fans out at all angles to the shell
normal. In both calcitic and aragonitic shells, growth is in the [001]
direction, resulting in an increase in the degree of (001) preferred
orientation with distance from nucleation. Where there is unhindered
crystal growth, the shells show a crystalline fracture morphology, and
the degree of texture that develops is a simple function of the column
radius. This type of growth makes up the whole of the turtle shell,
the inner 0.3 to 0.4 of the thick ratite shells and the cone layer of
the other avian shells. At the start of the central layer of the avian
shell, the onset of protein deposition coincides with a hindrance to
texture development, which thereafter proceeds at a lower rate. A
further hindrance occurs about half-way through the shell, probably
caused by a change in the physical characteristics of the protein
network. The degree of texture that develops in the avian shell is a
function of the column radius and the degree of physical hindrance

presented by the protein network. The central layer of the avian shell




has a composite fracture morphology resulting from the intermingling
of the network with the inorganic phase. The organic component does
not appear to control crystal growth as previously believed, but

instead acts as a reinforcing fibrous network.
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