

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

FLUOROCARBENE COMPLEXES

OF

RUTHENIUM AND OSMIUM

A thesis presented to the University of Auckland for the degree of Doctor of Philosophy in Chemistry

> S. V. Hoskins December 1983

ABSTRACT

This thesis is concerned with the synthesis and properties of fluorocarbene complexes of ruthenium and osmium. Chapter 1 is a review of transition metal CF_3 -complexes and illustrates a number of unusual features of these compounds which makes them suitable for modification into CF_2 -complexes.

To place the fluorocarbene complexes into context, Chapter 2 contains a brief review of transition metal carbene complexes with the emphasis on other halocarbene species.

As described in Chapter 3, CF_3 -complexes of ruthenium can be prepared by the addition of $Hg(CF_3)_2$ to $Ru(CO)_3(PPh_3)_2$. The x-ray crystal structure of $Ru(HgCF_3)(CF_3)(CO)_2(PPh_3)_2$ shows longer C-F bonds in the ruthenium bound CF_3 -group than in the mercury bound CF_3 -group.

Reactions of fluorocarbon complexes with Lewis acids have been explored and $\operatorname{RuCl(CF_3)(CO)_2(PPh_3)_2}$ reacts with BCl₃ to form the known $\operatorname{RuCl_2(CO)(CCl_2)(PPh_3)_2}$. Similarly $\operatorname{OsCl(CF_2H)(CO)_2(PPh_3)_2}$ reacts with one equivalent of BCl₃ to form initially a cationic carbene complex in which the carbene carbon atom substitutes first into a benzene ring of one PPh₃-ligand and, through further reaction with BCl₃, into a ring of the second PPh₃-ligand. The x-ray crystal structures of $\operatorname{OsCl(CO)_2(PPh_2C_6H_4CHC1)PPh_3}$ and $\operatorname{OsCl(CO)_2(PPh_2C_6H_4CH)(PPh_2C_6H_4)}$ are reported.

 $\operatorname{RuCl}(\operatorname{CF}_3)(\operatorname{CO}_2(\operatorname{PPh}_3)_2$ in many of its reactions behaves as a CF_2 -complex precursor and Chapter 4 describes the reaction between the related $\operatorname{RuCl}(\operatorname{CF}_3)(\operatorname{CH}_3\operatorname{CN})(\operatorname{CO})(\operatorname{PPh}_3)_2$ and $\operatorname{Me}_3\operatorname{SiCl}$ to form the first isolable CF_2 -complex, $\operatorname{RuCl}_2(\operatorname{CO})(\operatorname{CF}_2)(\operatorname{PPh}_3)_2$.

 $RuCl_2(CO)(CF_2)(PPh_3)_2$ contains an electrophilic carbene ligand and reacts

rapidly with hard, oxygen and nitrogen containing nucleophiles. A comparison of the reactivity of $\text{RuCl}_2(\text{CO})(\text{CF}_2)(\text{PPh}_3)_2$ and $\text{RuCl}_2(\text{CO})(\text{CCl}_2)(\text{PPh}_3)_2$ is presented and reasons for the differing reactivities proposed.

Chapter 5 shows that d⁸ CF_2 -complexes can be prepared directly from reaction between the more active CF_3 -transfer reagent, $Cd(CF_3)_2$ -glyme, and various zerovalent complexes. The x-ray crystal structures of $M(CO)_2(CF_2)(PPh_3)_2$ M = Ru, Os and OsCl(NO)(CF_2)(PPh_3)_2 are described and the bonding characteristics of the CF_2 -ligand discussed. The carbene ligand of $M(CO)_2(CF_2)(PPh_3)_2$ M = Ru, Os has some nucleophilic character and reacts readily with electrophiles, for example reaction with HCl yields $MCl(CF_2H)(CO)_2(PPh_3)_2$ M = Ru, Os.

A comparison between $\operatorname{RuCl}_2(\operatorname{CO})(\operatorname{CF}_2)(\operatorname{PPh}_3)_2$ and $\operatorname{Ru}(\operatorname{CO})_2(\operatorname{CF}_2)(\operatorname{PPh}_3)_2$ reveals that the reactivity of the carbene ligand is controlled by the electron density at the metal centre, *i.e.* is oxidation state dependent.

TABLE OF CONTENTS

ABSTRACT			i	
ABBREVIATIONS			v	
CHAPTER 1	TRANSITION METAL CF3-COMPLEXES			
	- A REVIEW			
	1.1	Synthesis	2	
	1.2	Structure and bonding	8	
	1.3	Reactions	17	
CHAPTER 2		SITION METAL CARBENE COMPLEXES		
	- A I	REVIEW	28	
	2.1	Structure and bonding	29	
	2.2	Synthesis	32	
	2.3	Reactions	40	
	2.4	Halocarbene complexes	54	
CHAPTER 3	CF ₃ -COMPLEXES OF RUTHENIUM AND OSMIUM 64			
÷	3.1	Hg(CF ₃) ₂ as a CF ₃ -transfer reagent	65	
	3.2	Reactions of Ru(HgCF ₃)(CF ₃)(CO) ₂ (PPh ₃) ₂	71	
	3.3	Reactions of RuCl(CF3)(CO)2(PPh3)2 at		
		the metal centre	76	
	3.4	Reactions of the CF3-ligand	85	
	3.5	Conclusions	102	
(a)	3.6	Synthesis and reactions of Ru(CO)(CS)(PPh3)3	103	
		Table of i.r. data	109	
		Table of ¹ H n.m.r. data	112	
2,		Experimental	114	

CHAPTER	4	SYNTHESIS AND REACTIONS OF RuCl ₂ (CO)(CF ₂)(PPh ₃) ₂			
		AND OsCl ₂ (CO)(CFCl)(PPh ₃) ₂	135		
		4.1 Synthesis	135		
		4.2 Cation formation	138		
		4.3 Reactions with nitrogen nucleophiles	139		
		4.4 Reactions with oxygen nucleophiles	143		
		4.5 Reactions with sulphur nucleophiles	150		
		4.6 A comparison between RuCl ₂ (CO)(CF ₂)(PPh ₃) ₂			
		and $RuCl_2(CO)(CCl_2)(PPh_3)_2$	151		
		4.7 Concluding remarks	153		
		Table of i.r. data	155		
±		Table of ¹ H n.m.r. data	156		
		Experimental	157		
CHAPTER	5	PREPARATION AND PROPERTIES OF ZEROVALENT			
		CF2-COMPLEXES OF RUTHENIUM AND OSMIUM	163		
		5.1 Preparation	163		
		5.2 Spectroscopic and structural properties	167		
		5.3 Reactions of Cd(CF ₃) ₂ .glyme with Ru(II)			
		and Os(II) complexes	178		
		5.4 Reactions of zerovalent CF ₂ -complexes	180		
		5.5 A comparison between Ru(CO) ₂ (CF ₂)(PPh ₃) ₂			
		and $\operatorname{RuCl}_2(CO)(\operatorname{CF}_2)(\operatorname{PPh}_3)_2$	186		
		Table of i.r. data	190		
		Experimental 1	191		

REFERENCES

ACKNOWLEDGEMENTS

iv

196

203

ABBREVIATIONS

Me	methyl
Et	ethyl
i _{Pr}	isopropyl
ⁿ Bu	<i>n</i> -butyl
t_{Bu}	tertiary butyl
Ph	phenyl
ру	pyridine
en	ethylenediamine
Ср	pentahapto-cyclopentadiene
bae	N,N-bis(acetylacetonato)ethylenediamine
Bipy	bipyridyl
COD	1,5-cyclooctadiene
diphos	(1,2-dipenylphosphino)ethane
dmgH	dimethylglyoxime
DMP	N,N'-dimethylpiperazine
DMSO	dimethylsulphoxide
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
EtPO	4-ethyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane
PPN	µ-nitrido-bis(triphenylphosphine)
TPP	tetraphenylporphyrin
m	minute
S	second
М.р.	melting point