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Abstract

Use of state-space modeling for stock assessments of salmon population dynamics has been limited

compared to other fish and wildlife species, and this thesis aims to facilitate their application by

investigating advantages of this approach, and resolving some methodological limitations. Other

extensions such as the inclusion of abundance data from multiple stage-classes that have seldom

been considered previously are also developed. A case study is explored where state-space,

stage-structured models (‘life-history models’) are fitted to coho salmon data, and advantages

over traditional models are investigated.

Unfortunately, selecting among a set of candidate models can be difficult for state-space

models owing to the technical nature of some model selection tools, and choices about which

part/s of the model should be focused on. It is shown that currently used measures of data-

level deviance could be improved by use of partially-marginalized deviance measures that allow

differences in process equations between candidate models to be detected.

Whether the selected best model/s are adequate for inference is seldom assessed, or if it

is, methodology is usually vague, and the power of detecting inadequacies has not been reli-

ably assessed to date. It is shown that full assessment of model adequacy requires a partially

marginalized extension of the more widely utilized posterior predictive checks (which are shown

to have low power). Furthermore, the relative properties of test variables constructed based on

different combinations of data and/or parameters/latent states are investigated.

Finally, a significant limitation of state-space models in practice is the difficulty in ensuring all

parameters in the model, and most notably the variance components parameters, are identifiable.
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Previous studies have attempted to constrain variance parameters by, for example, specifying the

observation error variance as a constant after estimating sampling variation of the monitoring

program that produced the abundance data. The latter technique was utilized herein, but before

this was possible, methods for estimating the variance of spawner population size had to be

developed. Novel estimators were developed to overcome this long-standing weakness of salmon

monitoring programs, and a suite of estimators were compared in an extensive simulation study

to determine the most robust methods to be applied when fitting state-space models to salmon

data.
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Chapter 1

Introduction

1.1 General introduction

Models used for the assessment of salmon stocks have remained relatively unchanged for several

decades. Primarily, simple stock-recruitment models are fitted using linear regression, despite

numerous problems with this approach (Ludwig and Walters, 1981; Walters, 1985; Hilborn,

2009). Recently, several authors have recommended state-space versions of these stock assessment

models (Lessard et al., 2008; Su and Peterman, 2011), a development that has been occurring for

some time in the wider field of fisheries science (Maunder, 2003), and also terrestrial ecology (King

et al., 2009). If modeling of salmon stocks was to move away from restrictive traditional stock-

recruitment approaches, other model variations (in addition to state-space structures) become

more feasible. Perhaps the most important is the addition of age- and stage-structure (so called

‘life-history models’), which has been heavily promoted recently (Hilborn, 2009; Knudsen and

Michael, 2009), but they have seldom been applied in practice. This can be partly attributed to

the rarity of datasets containing the abundance of fish in multiple parts of the life-cycle.

A dataset with potential for supporting life-history models, has been collected by the Oregon

Department of Fish and Wildlife whereby coho salmon abundance is monitored at both the

juvenile and spawner stages (and also at the smolt stage in some populations) for multiple stocks
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in the Oregon Coastal Natural (OCN) group of populations. This opportunity to explore more

complex models opens up the potential for a number of questions, for example; Can state-space,

life-history models be reliably fitted to extremely noisy salmon abundance data? What extra

ecological inferences can be made once different parts of the life-cycle can be modeled explicitly?

Will predictive ability of models improve over traditional techniques?

Before addressing such questions these models must be fitted and compared within a reliable

statistical framework. Prior to the development of spatially extensive, state-space, life-history

models to the OCN data, a preliminary case-study was implemented for a long-term high quality

dataset collected for a small population in Lobster Creek in the Alsea catchment. In the early

development of suitable models a number of outstanding issues became apparent, that make

reliable fitting of these types of models challenging. The goals of this thesis were realigned to-

wards investigating and attempting to overcome several methodological issues that were limiting

effective modeling of salmon population dynamics.

State-space models in general can be far more difficult to fit than more traditional models

(Schnute, 1994). In addition to general statistical considerations such as how to choose among

candidate models, and how to determine if a best model/s fits the data adequately, it often has

to be determined whether the data can support a the desired model at all. Together, these issues

are the basis of this thesis.

Perhaps the most important findings are that common methods for selecting among models,

and assessing the adequacy of selected model/s, are deficient. Initially it was found that model

selection is compromised when differences between models occur in certain parts of the state-space

model structure (Chapter 4) and that a better way to approach selection would be to compare

models based on the fit of those parts of the model structure that differ between them. Partial

marginalization was used to develop an alternative selection criteria that improves discriminatory

ability. The usual posterior predictive checking approach to assessing model adequacy was also

found to have low power (Chapter 5). An alternative approach was tested and its derivation was

subsequently found to be very similar in principle to the partially marginalized model selection
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method.

These tools were then applied to models developed for the Lobster Creek dataset (Chapters 2

and 3), which can be considered a case study for developing similar models for the full, spatially

extensive dataset for the wider OCN. However, before any of the desired Lobster Creek candidate

models could be reliably fitted, it was necessary to constrain the variance components parameters,

as has been established in other situations (Schnute, 1994; King et al., 2008). Unfortunately, the

usual methods of obtaining prior information on the observation error variances were elusive for

Lobster Creek because of the absence of techniques to estimate sampling variation for the spawner

stage. Chapter 6 attempts to rectify this long standing problem, and facilitated effective fitting

of the models in the case study presented in Chapters 2 and 3. The developments presented here

will provide a more robust base from which modeling of OCN and other stocks can be extended.

In order to address these specific model developments, background information is provided

about coho salmon biology, population structure and the modeling of their population dynamics,

both past and present.

1.2 Coho salmon biology

Coho salmon (Onchorhynchus kisutch) are one of seven Pacific salmon species, many of which

are extremely important ecologically, culturally and commercially across their distributional

range. They play a critical role in nutrient cycling (Bilby et al., 2001; Naiman et al., 2002), are a

dominant prey species of several threatened species (Sigler et al., 2009; Ward et al., 2009), support

recreational, commercial and indigenous fisheries (Johnson, 1984; Hilborn, 2006; Martell et al.,

2008) and are iconic species for conservation. All species of Pacific salmon share some general

life-cycle features including andronomy, where spawning occurs in freshwater with immature fish

migrating to the ocean to grow before returning to freshwater to spawn, and semelparity, where

all individuals die after spawning. Each species also tends to exhibit high productivity and low

survival rates (Bradford, 1995).
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Coho are distributed over large areas of Russia, parts of Asia and the west coast of North

America, from California north. Ideal spawning habitat is relatively small, low-gradient streams

with suitable spawning gravels. The different Pacific salmon species exhibit varying plasticity of

life-cycle between individuals, with coho following a relatively strict cycle across most of their

distributional range (Groot and Margolis, 1991). Adult coho return to freshwater, typically their

natal stream, to spawn in autumn to early winter (∼ November–February). Eggs and alevins

reside in the spawning gravels overwinter, and fry emerge (∼ March–May) from the gravel and

reside in-stream for around a year before migrating to the ocean as smolts (∼ March–July).

Understanding of smolt movements after ocean entry is relatively poor, however despite

coastal areas are their preferred habitat, it is known that some individuals may migrate hun-

dreds, or even thousands of kilometers from their natal stream (Weitkamp and Neely, 2002).

Evidence suggests that there is some geographical structuring of the migration with some groups

of populations favoring distinct coastal areas over others (Weitkamp and Neely, 2002). Once ma-

turity is reached after about 1.5 years in the ocean, adults return to freshwater to spawn, after

which they die. In a variation to this cycle a small proportion of males mature early after 0.5

years in the ocean and return to spawn at 2 years of age. These precocious males, or ‘jacks’, are

considerably smaller than 3-yr-old males and attempt to ‘sneak’ matings without the usual fights

for dominance undertaken by the older males (Koseki and Fleming, 2006). Coho exhibit strong

homing tendencies with most spawners returning to natal streams, although a small proportion

stray to other parts of the catchment, or between catchments. This straying is an important

mechanism in mitigating localized extinctions (Waples et al., 2009).

The past two centuries have been characterized by widespread declines of many stocks of all

Pacific salmon species with numerous groups of Pacific salmon populations on the west coast of

the USA listed under the Endangered Species Act (Good et al., 2005). About 27 percent of coho

salmon populations in the Pacific Northwest of the USA are estimated to have become extinct

over the last several centuries (Gustafson et al., 2007). This level is higher than observed for

several other species and perhaps reflects their long juvenile freshwater residence, where they
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are exposed to habitat modification, and the fact that their strict life-cycle can result in annual

spawner abundance being dominated by only one year-class. The latter makes coho populations

vulnerable to catastrophic events.

1.3 Structuring of coho salmon populations for conservation:

Oregon Coastal Natural Evolutionary Significant Unit

The widespread range contractions and declines in coho abundance have prompted considerable

management intervention including prioritizing conservation effort amongst groups of coho pop-

ulations (Pinsky et al., 2009). In response to the introduction of the U.S. Endangered Species

Act, populations of each Pacific salmon species were assigned to discrete evolutionarily significant

units (ESU). These are defined as groups of populations that are reproductively isolated from

other groups, and whose conservation is important for the evolutionary potential of the species.

The OCN group of populations is an ESU that has long been the subject of intensive scientific

research (Johnson, 1984; Nickelson et al., 1986) and the data used in this thesis come from Lob-

ster Creek which is a tributary of the Alsea River, one of the populations within the OCN ESU

(Fig 1.1). This unit has been further classified into gene conservation groups (GCGs), subsets

of populations sharing similar genetics (Kostow, 1995). Originally three GCGs were identified

(Kostow, 1995), the Mid-North Coast, Umpqua and South Coast GCGs, but subsequent genetic

analyses resulted in one addition, the Lakes GCG (Ford et al., 2004). For monitoring purposes

the Mid-North Coast GCG is separated into two units, North Coast and Mid-Coast, resulting in

a total of five stratum within the ESU. The focal unit for many conservation and monitoring ob-

jectives is the population, defined as a set of individuals in a geographical region that are largely

reproductively isolated from other such groups (Wainwright et al., 2008). For coho salmon these

units typically relate to river catchments. Fifty six populations were identified within the OCN

by the Oregon Coast Coho Salmon working group based on biological, geographical and ecolog-

ical landscape characteristics. Populations are classified as independent (n=21) or dependent

5



(n=35) based on whether there would be a high or low probability of population persistence over

a 100 yr period in the absence of demographic contributions from other populations, respectively.

1.4 Diagnosing threats to coho salmon persistence

While declines in abundance of some coho populations have been profound, diagnosing the exact

mechanisms involved has been difficult. This is partly because their complicated life-cycle and

exposure to several habitats has resulted in declines being influenced by multiple factors (Brad-

ford and Irvine, 2000). Although identifying factors affecting population fluctuations, or declines,

is often possible, actually quantifying the relative roles of more than one agent is generally more

difficult, given that experimental manipulation of individual threats is usually prohibitive. Con-

sequently, most inferences are based on observational data that are susceptible to the usual issues

involved in correlative techniques (Holland, 1986). Despite these shortcomings it is generally ac-

cepted that there are four factors to which most declines in coho populations, and Pacific salmon

species in general, can be attributed; modification of freshwater habitat, addition of hatchery-

reared fish, harvesting by commercial and recreational fisherman and fluctuations in climatic

conditions.

• Habitat modification. Extensive modification of river catchments where coho spawn

has occurred across their range, especially in the Pacific Northwest (Bilby and Mollot,

2008). Waterways have been channeled, dredged, diverted and have suffered from water

abstraction. Riparian zones have been cleared, and extensive parts of some catchments have

been utilized for forestry and agriculture, or have suffered from urbanization. Consequently,

coho populations in these catchments have been adversely affected. Eggs and alevins are

sensitive to heightened sediment loads in spawning streams resulting from modification

(Scrivener and Brownlee, 1989). Fry and smolt prefer to occupy pool habitat, beaver

ponds and off-channel sloughs, especially for overwintering, all of which have been reduced

by waterway management (Nickelson et al., 1992; Nickelson and Lawson, 1998; Bradford

and Irvine, 2000), and most of the freshwater stages are presumably susceptible to resulting
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Figure 1.1: Map of the location of Lobster Creek within the Alsea River catchment, OCN ESU.
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changes in water temperatures and chemical inputs.

• Impact of hatchery-reared fish. Impacts of hatchery-reared fish on the dynamics of

wild populations are well documented for a range of salmonid species (Chilcote, 2003; Hin-

dar et al., 2006; Ford and Myers, 2008). Two related threats exist, the presence of salmon

farms, and direct releases of hatchery-raised fry and smolts. No salmon farms exist in close

proximity to the OCN range although there is a long history of releases of hatchery-reared

fish. Releases aim to either enhance fisheries for commercial purposes or to supplement

threatened wild stocks. In either case, some hatchery-reared fish subsequently mate with

wild fish as a result of straying from hatchery release points in the former. While impacts of

hatchery fish on absolute population abundance can be positive through increased adults

returning to spawn in streams (Oosterhout et al., 2005), observed impacts on wild fish

have generally been negative (Nickelson, 2003; Wainwright et al., 2008; Buhle et al., 2009).

Mechanisms involved are often difficult to identify but can include competition for limited

resources between released and wild juveniles and smolts, transmission of disease and para-

sites from hatcheries to the wild, and the reduced fitness often observed in hatchery-reared

fish (Fleming and Gross, 1993) which can be propagated to the wild population via genetic

introgression. There is growing evidence that hatchery-reared fish have had a significant

adverse impact on the abundance of coho salmon in the OCN ESU. This is indicated

by a negative relationship between productivity of populations and both the number of

smolt released into a population (Nickelson, 2003), and the proportion of spawners in the

population that are from hatchery origins (Wainwright et al., 2008), and negative density

dependent effects of hatchery-reared spawners at the population level (Buhle et al., 2009).

• Impact of fisheries. Coho populations of the Pacific Northwest have been subjected to a

long history of exploitation by humans. In Oregon this was initially subsistence harvesting

by indigenous peoples but developed into large-scale commercial and recreational fisheries in

the 1800’s (Johnson, 1984). Commercial activity in the early years focused on in-stream net
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fisheries, predominantly on the Columbia River, with ocean-based troll fisheries developing

in the early 1900’s (Johnson, 1984). An important recreational fishery of Oregon coho also

developed, especially after the mid-1900’s, and became a significant proportion of total

numbers harvested (Johnson, 1984). Recreational fishing is concentrated on offshore and

tidewater areas.

It is difficult to estimate the impact that fisheries have had on coho populations due to

uncertainties in estimating total catch, the origin of coho harvested and levels of density

dependence occurring in the populations. However, there is some evidence that impacts

have at times been severe. For instance, exploitation rates of OCN have been estimated to

be exceptionally high at times during recent decades (PFMC 2000), at levels suggested to

be unsustainable using population models (Nickelson and Lawson, 1998). While commer-

cial and recreational fisheries are now tightly regulated, with impacts of fishing on OCN

abundance now limited by restricting allowable exploitation rates below prescribed levels

(PFMC 2000), the efficacy of this management strategy relies on robust preseason forecasts

of run size and accurate estimates of escapement after fishing occurs.

• Fluctuating climatic conditions. Salmon are sensitive to prevailing oceanic conditions

during the marine-rearing stage of their life-cycle and numerous studies have documented

strong correlations between marine survival and various physical and biological variables

in the marine environment, for all Pacific salmon species (Adkison et al., 1996; Pyper

et al., 1999; Mueter et al., 2002). Fluctuations in these variables are typically driven

by large-scale climatic events (Ware and Thomson 2000). Coho salmon appear to have

increased marine survival when sea surface temperatures are low, mixed layer depths are

shallow and sea levels are low, among other conditions (Coronado and Hilborn, 1998;

Beamish et al., 2000; Hobday and Boehlert, 2001; Logerwell et al., 2003; Quinn et al.,

2005). Mechanisms underlying these correlations are difficult to identify but are presumably

related to changes in food abundance and/or quality, predator abundance or physiological
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costs. Recent fluctuations in climate regimes have resulted in extreme variation (over an

order of magnitude) in coho marine survival (Coronado and Hilborn, 1998), making these

processes perhaps the most important in determining levels of spawner returns. In contrast,

relationships between climate and the success of freshwater stages of the coho life-cycle are

poorly studied, although there is some evidence that part of the significant variation in

freshwater survival between years may also be influenced by climatic influences on physical

variables such as flow levels and stream temperature (Lawson et al., 2004).

1.5 Previous models of coho salmon dynamics

Optimal management of salmon populations requires scientific advice in the form of accurate

and precise estimates of spawning stock size, robust preseason (and in some cases within-season)

forecasts of spawning stock size, sound knowledge of determinants of population dynamics, and

the likely responses of populations to management interventions. Most salmon management

therefore relies heavily on constructing and fitting population models to data. Historically these

models have been relatively simple, and in some cases are inadequate in providing advice re-

quired by management agencies. For example, despite a long history of salmon monitoring, and

consequently rich time-series data for some populations, it has proven difficult to separate and

quantify the relative roles of different mechanisms involved in declines (Knudsen and Michael,

2009). Consequently, prescribing appropriate management actions has been difficult. Despite

inherent problems in formulating management advice, decisions need to be made, and making

the most robust inferences, given the available data, becomes a priority.

Numerous studies have fitted stock-recruitment models to OCN coho salmon spawner-abundance

data (Chilcote, 1999; Bradford et al., 2000; Wainwright et al., 2008; Buhle et al., 2009), and other

coho stocks (e.g. Chen and Holtby, 2002). Typically these modeling exercises have attempted to

estimate reference points and set harvest limits (Bradford et al., 2000), assess population status

and viability (Wainwright et al., 2008) or assess relationships between population dynamics and

external variables such as oceanic conditions (Buhle et al., 2009). The Ricker stock-recruitment
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model is the most widely used and is easily fitted to transformed data using simple linear regres-

sion techniques. While there have been some variations to the basic Ricker model, for example

extending the Ricker model to allow density dependent parameters to be modeled hierarchi-

cally across populations (Chen and Holtby, 2002; Barrowman et al., 2003), and various extra

terms are added to the model to account for environmental affects on survival (Chilcote, 1999;

Wainwright et al., 2008; Buhle et al., 2009), the general approach has changed little over recent

decades. Unfortunately there are several shortcomings of the simple Ricker model (and other

spawner-recruit functions) which can have serious consequences for inferences and management

advice. Two major concerns are that widely used statistical techniques for fitting models are

inadequate (Walters, 1985) and current models lack the age-structure to make reliable inferences

about dynamics of coho salmon throughout their life-cycle (Hilborn, 2009). Recently developed

models provide the potential to overcome these traditional problems and form part of the work

in this thesis.

1.6 Improving spawner-recruitment models using a state-space
formulation

While linear regression is a simple technique for fitting to data, its use in modeling spawner-

recruit relationships is beset with problems. For example, the independent variable (spawner

abundance) is assumed to be measured without error, when in reality abundance of spawning

salmon is typically estimated with considerable uncertainty. Unless this is accounted for in

some manner, parameter estimates will tend to be biased (King et al., 2009; Su and Peterman,

2011), and in severe circumstances spawner-recruit relationships will be obscured (Ludwig and

Walters, 1981). Problems also arise from the time-series nature of spawner-recruit data that is

not explicitly accounted for using linear regression (Walters, 1985).

While these problems can be tackled with various corrective methods, such as errors-in-

variables regression, and Walters’ time-series bias correction (Walters, 2009), there is evidence

that corrections can be ineffective (Peterman et al., 2003). Furthermore, most traditional meth-
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ods acknowledge only observation error in their structure. They therefore ignore the presence

of process error, the deviation of population trajectory away from deterministic dynamics (Car-

lin et al., 1992), which is undoubtedly an important factor in the extreme variation present in

observed salmon abundance data (Peterman et al., 2003).

State-space models are a form of latent variable time-series model that are widely used in

modeling animal population dynamics. These models have advantages over traditional models by

providing a more realistic representation of the processes that generated the data. They consist

of three elements, initial conditions, the process model and the observation model. Stochasticity

enters the model in both the process model (process error) and observation model (observation

error). In animal population dynamics the process model specifies the current unobserved state/s

(number of individuals in various age-classes for example) based on previous state/s, and the

process error allows for variation in the demographic rates between years. The observation

equation represents the sampling process, thus relating observed data to the true unobserved

states. So essentially state-space models attempt to partition variance based on the fact that

process error is propagated through time whereas observation error is not. This can result in

improved inferences for parameters that are known to be biased in traditional models (King

et al., 2009; Su and Peterman, 2011) and is also beneficial for making predictions, as only the

appropriate components of variation are propagated into the future (Clark, 2003).

Early examples of state-space models in the fisheries literature include Pella (1993) and

Schnute (1994), who relied on the Kalman Filter for model fitting. More recently a range of

state-space fisheries models have been fitted within a Bayesian framework (e.g. Meyer and Millar,

1999; Millar and Meyer, 2000a; Rivot et al., 2004) which provides considerably more flexibility

in model specification than the Kalman Filter. These types of models are now a routine tool in

marine fisheries stock assessment throughout the world (Hilborn, 2003), although their use in

stock assessments of salmon is far less frequent (but see Rivot and Parent, 2001; Rivot et al.,

2004; Lessard et al., 2008 and others for examples of state-space salmon models).

Part of the relatively slow shift towards state-space modeling for salmon populations has been
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the ease with which traditional models can be fitted. Salmon life-cycles are generally far more

strict than other fish species in that often most individuals progress through different stages of

the life-cycle at the same rate. Simple stock-recruitment models that are clearly inappropriate for

other species may still be reasonable for salmon. Furthermore, these simple models can be fitted

using linear regression, which is simple to carry out, is familiar to most fisheries scientists and

is available in all common statistical packages. State-space models on the other hand typically

requires writing bespoke code which can be intimidating to some, even though the advantages

of such an approach are clear. However, once modeling moves away from traditional techniques

not only will these potential advantages be realized, but other variations in structure become

feasible. For instance, age- or stage-structured models can be explored, especially if abundance

data from multiple parts of the life-cycle is available.

1.7 Life-history models of salmon population dynamics

The quality and length of time-series data varies considerably between stocks of Pacific salmon

species. A unifying theme however is a strong reliance on spawner-abundance data and relatively

simple stock-recruitment models by research and management agencies, which effectively ignore

detail within the life-cycle (Hilborn, 2009). While this in-part reflects the fact that most salmon

data is restricted to spawner abundance, it severely restricts the ability of analysts to partition

different sources of mortality, or estimate the timing of any density dependence. There have

been recent attempts to construct full life-history models incorporating functional relationships

between the various salmon life-history stages and also with external variables such as habitat and

climate (Scheuerell et al., 2006). In general these have relied on estimating individual parameter

values using separate data sources, or in some cases expert opinion, and combining them into

a full simulation model. This is performed in a rather ad hoc manner rather than embedding

inference and parameter estimation in a statistical framework. While this is a valuable exercise

in understanding the study system, and is sometimes the only option when faced with a paucity

of data, significant advantages can be gained from formal model fitting. Previous attempts at
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fitting life-history models for salmon populations appear to be restricted to a small number of

studies including Rivot et al. (2004) and Lessard et al. (2008). However data from multiple

life-history stages certainly exists for a number of of other populations and species (Bradford,

1995; Barrowman et al., 2003).

Recently significant efforts to increase the frequency of adopting life-history models in salmon

research has been encouraged (Hilborn, 2009; Knudsen and Michael, 2009), but until these models

become more widely used there remain uncertainties in their potential utility and the level of

model complexity that can be supported, given the inherent variability of salmon data. In the

case of OCN coho salmon, formulation of integrated models will be governed by the diverse

range of data already available for analyses. The potential for improving inferences is vast

however, including separation of mortality into stage-specific components and linking these vital

rates to covariates, improving precision of forecasts of escapement and determining optimal

monitoring programs to achieve certain objectives, as just some examples. Now that the data

is available, the toolbox of techniques has become relatively well developed and the motivation

for investigating these modeling options has been established, the potential of fitting state-space

life-history models to OCN coho salmon data is ready to be assessed.

1.8 Structure of state-space models

1.8.1 Model structure

At its most basic, a state-space model of animal abundance describes the structure of two linked

processes. These are the unobserved dynamics of the system, which have a time-series component

(the state equation, or process model), and the sampling of how these unobserved states are linked

to observed data via the sampling processes (the observation equation, or observation model).

An example of a Bayesian state-space model of this system with additive errors (which will be
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heavily used in this thesis) can be defined by three equations

nt = f(nt−1,ψ) + εt , for t = 1, 2, ..., T (1.1)

yt = g(nt, ξ) + νt , for t = 1, 2, ..., T (1.2)

n0 ∼ h (1.3)

where nt is the unobserved (latent) abundance of the animal, yt is the observed abundance, both

in year t, and the ψ and ξ are vectors of model parameters. The n have at times been referred to

as parameters, states or auxiliary variables (King, 2012), though throughout this thesis they will

be denoted latent states. The functions f and g represent the deterministic components of the

process and observation models, and εt and νt are the process and observation errors, respectively.

Often (and for demonstration purposes herein) εt and νt are assumed to be normally distributed

with mean zero and variances τ2 and σ2, which are denoted the process and observation error

variances, respectively. In (1.1) and (1.2), errors are assumed to be additive though in practice

could take a multitude of forms. The initial state, n0,i- must receive a prior distribution, h,

under a Bayesian framework.

State-space implementation of a traditional spawner-recruit model for salmon could be rep-

resented by (1.1)–(1.3) with the function f(nt−1,ψ) taken to be a Ricker function (for example),

where nt−1 would become the number of spawners in the brood year that produced the number

of recruits nt. For example, in coho salmon nt would be a (Ricker) function of the number of

spawners present three seasons before i.e. nt ∼ f(nt−3,ψ) + εt.

Similarly, (1.1)–(1.3) can easily be extended to allow the stage-structure necessary for a

sequential life-history model in which case the equations would be

ni,t =fi(ni−,t−1,ψi) + εi,t , for i = 1, ..., I , t = 1, 2, ..., T (1.4)

yi,t =gi(ni,t, ξi) + νi,t , for i = 1, ..., I , t = 1, 2, ..., T (1.5)

ni,0 =hi (1.6)

where subscript i = 1, ..., I now indexes stage, i.e. yi,t is the observed abundance of fish in stage-
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class i in year t. Note that i− denotes the preceding stage-class instead of the more natural

i− 1, as n1,t is a function of n3,t−1, not n0,t−1 as would be suggested by the latter. Importantly,

this structure allows the modeling of stage-specific processes fi(ni,t−1,ψi), which in the cases

explored for coho salmon in Chapter 2 represent the spawning by adults and subsequent survival

of eggs to the juvenile stage f1, the survival of juveniles to the smolt stage f2, and finally the

survival of smolts to the spawner stage when they return to breed f3. The structure in (1.4)–(1.6)

is only possible due to semelparity of salmon and a strict life-cycle which allows cohorts to move

through stages in totality. Violation of these assumptions requires more complicated models

such as those needed for some sockeye (Lessard et al., 2008) and chinook salmon (Scheuerell

et al., 2006) populations, where it is necessary to account for variation in maturation between

individuals for example.

1.8.2 Posterior distributions

If the state-space model is fitted in a Bayesian framework, Bayes theorem needs to be imple-

mented, which for a very simple model with a vector of parameters θ the posterior distribution

of these parameters is given by

p(θ|y) =
p(θ)p(y|θ)

p(y)
(1.7)

∝ p(θ)p(y|θ)

where p(θ) is the prior distribution of the parameters, p(y|θ) is the likelihood function and p(y)

is the normalization constant. Bayes theorem can be applied to the state-space model with

structure defined in (1.1)–(1.3) for example, so that the posterior distribution is given by

p(n, ξ, σ2,ψ, τ2|y) ∝ p(n, ξ, σ2,ψ, τ2)p(y|n, ξ, σ2,ψ, τ2)

= p(n0, ξ, σ
2,ψ, τ2)

T∏
t=1

p(nt|nt−1,ψ, τ
2)p(yt|nt, ξ, σ2)

where the prior distribution of the parameters p(n0, ξ, σ
2,ψ, τ2) includes a prior on the initial

latent state in year 0, and p(yt|nt, ξ, σ2) is the likelihood for the observation process. Note that
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the p(nt|nt−1,ψ, τ
2) can be regarded as the prior specification of nt, and owing to the conditional

independence of the current state from other states (and parameters ξ and τ2), given the previous

states, this is given by

p(nt|n0, ..., nt−1, ξ, σ
2,ψ, τ2) = p(nt|nt−1,ψ, τ

2) . (1.8)

Two general inferences that are often made from the joint posterior distribution involve

calculation of marginal distributions for parameters and/or latent states. Parameters such as

survival of individuals from one year to the next, or maximum population growth rate in density-

dependent models are often of interest for management decisions, while the latent states them-

selves can also be the focus of a study, for instance for robust estimation of population trends of

an endangered species. Obtaining the posterior distribution of the parameters or latent states

requires marginalization, for example the joint posterior of the parameters can be derived by

marginalizing over the latent states

p(ξ, σ2,ψ, τ2|y) =

∫
p(n, ξ, σ2,ψ, τ2|y)dn (1.9)

and to obtain the marginal posterior distribution of individual parameters within θ = (ξ, σ2,ψ, τ2),

further marginalization is required.

1.9 Approximating posterior distributions using MCMC

Carrying out the high dimensional integrations necessary for determining the normalization

constant in (1.7) and when marginalizing over individual parameters or states (e.g. 1.9), is chal-

lenging for complex state-space models. For a very restrictive class of models that includes some

linear state-space models with normally distributed observation and process errors obtaining pos-

terior distributions may be possible using analytical techniques (Calder et al., 2003). However,

this is certainly not the case for most of the models considered in this thesis. Therefore, more

general numerical estimation techniques that are especially useful in situations where non-linear

and non-normal error structures are encountered are needed. These techniques are described
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herein, as these are the techniques used throughout the thesis to approximate the posterior

distributions of parameters and latent states.

Numerical techniques for fitting Bayesian state-space models include methods such as sequen-

tial particle filters that have seen some use (Newman et al., 2006, 2008) and the more widely used

Markov chain Monte Carlo (MCMC) algorithms Gilks et al. (1996). The popularity of the latter

can be attributed to their generality for a wide range of conditions, though also because they

are the basis for user-friendly software packages such as the various forms of BUGS (Bayesian

inference Using Gibbs Sampling; Lunn et al., 2009), and ADMB (Automatic Differentiation

Model Builder; Fournier et al., 2012), among others. These packages circumvent the cumber-

some derivation of the full conditional distributions required when bespoke code is written in

lower-level languages. The BUGS language is used throughout this thesis, and although it can

be very inefficient compared to lower-level code, the ease and speed with which models can be

expanded and modified often compensate for this drawback.

As suggested by its name, BUGS relies heavily on the Gibbs sampler (Geman and Geman,

1984) to sample from the approximate posterior distribution of the parameters and latent states.

The general outline of this approach is provided here. The Gibbs sampler relies on being able

to specify the conditional distribution of each individual parameter or state, given all other

parameters, states and data. By way of example, the conditional distributions of latent states

in the model (1.1)–(1.3), given the conditional independence highlighted in (1.8), are

p(n0|n1,ψ, τ
2) ∝ p(n0)p(n1|n0,ψ, τ

2)

p(nt|yt, nt−1, nt+1, ξ, σ
2,ψ, τ2)

∝ p(yt|nt, ξ, σ2)p(nt|nt−1,ψ, τ
2)p(nt+1|nt,ψ, τ2) for t = 1, ..., T − 1

p(nT |yT , nT−1, ξ, σ
2,ψ, τ2) ∝ p(yT |nT , ξ, σ2)p(nT |nT−1,ψ, τ

2) .

Similarly, conditional distributions can also be constructed for parameters σ2 and τ2 and each

component of parameter vectors ξ, and ψ.

If θ is a vector of all u unknown quantities (parameters and states), θ = (n, ξ, σ2,ψ, τ2),
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the joint distribution of the components is p(θ1, ..., θu) and the conditional distribution of the

ith component is denoted p(θi|θ1, ..., θi−1, θi+1, ..., θu,y), then the Gibbs sampler is given by the

following steps. Specify initial values for each component, (θ0
1, ..., θ

0
u) then generate new values

for each i component of the model in turn, for each j = 1, ..., v iteration of the sampler as

θ1
1 ∼ p(θ1|θ0

2, ..., θ
0
u,y) . . . θ1

i ∼ p(θi|θ1
1, ..., θ

1
i−1, θ

0
i+1, ..., θ

0
u,y) . . .

...

θj1 ∼ p(θ1|θj−1
2 , ..., θj−1

u ,y) . . . θji ∼ p(θi|θ
j
1, ..., θ

j
i−1, θ

j−1
i+1 , ..., θ

j−1
u ,y) . . .

...

θv1 ∼ p(θ1|θv−1
2 , ..., θv−1

u ,y) . . . θvi ∼ p(θi|θv1 , ..., θvi−1, θ
v−1
i+1 , ..., θ

v−1
u ,y) . . .

thus, new values are generated from their conditional distribution where the values for all other

components are those generated either in the preceding or current iteration. Specific techniques

for sampling from the conditional distributions p(θi|θ1, ..., θi−1, θi+1, ..., θu,y) are dependent on

their form. This can vary from direct sampling in conjugate examples with closed-form distribu-

tions, to adaptive rejection sampling, slice sampling, or application of the Metropolis-Hastings

algorithm when the full conditional is unavailable in closed form (Lunn et al., 2009). The re-

sulting samples are a Markov chain that approximate the joint distribution p(θ1, ..., θu) (Gelman

et al., 2003). Thus, once convergence has occurred, and samples early in the chain that may have

been influenced by the starting values have been discarded, the remaining samples can be used

for posterior inferences, and calculating summary statistics such as means and credible intervals,

correlations among components, and derived functions of parameters.

1.10 Development of state-space salmon models and the struc-
ture of this thesis

State-space models have become widely used in both fisheries science (Millar and Meyer, 2000b;

Maunder, 2003; Peterman et al., 2003) and terrestrial ecology (de Valpine and Hastings, 2002;

Calder et al., 2003; Newman et al., 2006) although their uptake has been more limited when
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fitting models of salmon population dynamics (though see Rivot and Parent, 2001; Peterman

et al., 2003; Rivot et al., 2004; Su and Peterman, 2011). Despite their widespread use, and the

general acknowledgment that they have the potential to improve inferences over observation-

or process-error models (Calder et al., 2003; King et al., 2009; Su and Peterman, 2011), there

are a number of areas where research could be focused to improve their use in modeling animal

population dynamics in general, and more specifically the case of fitting state-space models life-

history models to datasets of salmon abundance. This thesis aims to address several of these

outstanding problems.

1.10.1 Chapters 2 and 3: The potential of Bayesian life-history models of
salmon dynamics

Chapters 2 and 3 are a case study for fitting state-space life-history models to coho salmon

abundance data in a pair of streams in coastal Oregon. It is the motivating example for the

methodological improvements developed in the other chapters. The main aims of this chapter

were to investigate whether these models could be effectively fitted to the temporally noisy

datasets typical of salmon populations in practice. The value of adding additional abundance

data (at the juvenile and smolt stages) was determined with respect to the accuracy and precision

of the predictive ability of models, and the breadth of questions that could be answered using

dynamical models. Methods of model comparison evaluated in Chapter 4, model adequacy

evaluated in Chapter 5 and estimators of spawner abundance (and its variance) assessed in

Chapter 6 were utilized in an effort to make inferences in this chapter as robust as possible.

1.10.2 Chapter 4: Multilevel fit of Bayesian state-space population dynamics
models

Much research on state-space animal population dynamics models has focused on the significant

challenge of how to reliably fit models to data. This focus appears to be at the expense of

other aspects of statistical inference such as selecting among models and assessing goodness of

fit. In many studies it appears that once a model is successfully fitted inferences are often made

without consideration about whether it is a ‘good’ model, or better than other models that could
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be considered. When active selection among models does occur, the properties of the selection

tool used is not always well known. As state-space models become more popular and are fitted by

a growing number of analysts with differing degrees of statistical nous there has been a tendency

in recent years towards the use of easily carried-out selection methods such as the Deviance

Information Criteria (DIC) that are a default output of BUGS programs. Chapter 4 investigates

whether this technique is suitable in these situations, focusing especially on models that differ

in the structure of the process model such as (1.1) in the simple example presented above.

1.10.3 Chapter 5: Assessing the adequacy of state-space models of population
dynamics

In the same manner that model selection has received less research focus than aspects of model

fitting, so too has the process of assessing whether a selected model/s are adequate for the spec-

ified objectives of the research. The most frequently used techniques of evaluating the adequacy

of Bayesian models are posterior predictive checks (Rubin, 1984), although their implementation

for state-space population dynamics models has previously been vague (or more commonly no

assessment is carried out), and the suitability of the many choices available for carrying out the

checks for these models remain untested. Chapter 5 attempts to address some of these issues

by formulating checks of different parts of state-space models. This includes investigating not

only posterior predictive distributions, but also partially marginalized predictive distributions

that are part-way between prior and posterior predictive distributions, and which appear to

have merit for testing inadequacies in components of the process model of state-space models in

particular. Furthermore, different test variables are investigated based on different combinations

of data and/or states/parameters in a bid to achieve the main aim of the chapter which is to

assess whether predictive checks can reliably inform the analyst about the adequacy or otherwise

of state-space models.
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1.10.4 Chapter 6: Comparison of estimators of salmon escapement for peri-
odic count data

The focus of Chapter 6 is more narrow than in Chapters 4 and 5. The strength of state-space

models is their ability to partition variation into its rightful components, however this comes

at a cost in that identifiability of all parameters can be difficult to achieve for many models

and datasets (Schnute, 1994; Bolker, 2008; Snover, 2008). This is especially the case for variance

components parameters (e.g. σ2 and τ2 for (1.1)–(1.3)), and often restrictions are placed on these

parameters in the form of informative priors (Meyer and Millar, 1999), specifying the ratio of

observation to process error variance (Schnute, 1994), or specifying the observation error variance

as a constant after estimating sampling variation of the monitoring program that produced the

abundance data (King et al., 2008, 2009). Early versions of the models developed for coho salmon

in Chapter 2 indicated difficulty in estimating the variance component parameters, and so the

latter approach of estimating sampling variability was attempted. However, the methods of

estimating the variance of spawner abundance for periodic count data were largely undeveloped

at the time of model-fitting. This chapter investigated a range of estimators (including several

developed in collaborative work during the thesis; e.g. Millar et al., 2012) using simulation to

decide the most appropriate to use for providing the relevant inputs required for successful model

fitting in Chapter 2.

The thesis concludes with a general discussion (chapter 7) of findings in the individual chap-

ters and the links between them. It also puts the work in the context of the wider field of

state-space modeling of animal population dynamics. As is often the case with a body of work

such as this, a number of questions have been raised by the research presented herein and so

some fertile avenues for future research are outlined.
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Chapter 2

The potential of Bayesian life-history
models of coho salmon dynamics in
Lobster Creek, Oregon:
Methodological development

2.1 Introduction

Modeling of fish population dynamics is often conducted with sparse data, which can only sup-

port the simplest of models. However, there are many situations where the assumptions of simple

models will be violated (Walters and Ludwig, 1981; Walters, 1985), sometimes with severe conse-

quences for management decisions (Walters and Ludwig, 1981; Su and Peterman, 2011). Sparsity

is particularly a problem for semelparous (reproduces once before dying), andronomous (migrate

into the ocean for part of the life-cycle before returning to freshwater to spawn) species as data

are generally restricted to a single, annual count of recruiting, breeding-age individuals as they

return to spawn. The spawner stage of the life-cycle is where estimation of population size is

most feasible and where individuals are most easily observed by the public, making this stage the

focus of conservation actions. Furthermore, recreational and commercial fisheries target these

mature individuals, and so this is the stage where harvest impacts are assessed (Quinn and De-

riso, 1999). Large parts of the life-cycle are therefore effectively unobserved, which limits the

breadth of questions that can be answered from these data. For instance it is impossible to

partition variation in survival between freshwater and marine phases, which reduces the power
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of environmental impact assessments in spawning streams, as just one example.

There are a number of monitoring programs that have estimated abundance of salmon over

a range of life stages (e.g. Bradford et al., 1997; Barrowman et al., 2003; Lessard et al., 2008).

In some cases they have been included in stage-structured population models (Lessard et al.,

2008), but often analyses have been ad-hoc or focused on stages in isolation (Bradford et al.,

2000). Even if data from additional stages are available there has been a tendency to ignore it

and continue to fit traditional-type models.

There are several factors that may have led to the continued reliance on traditional models.

Presumably, much can be attributed to the ease with which traditional models can be fitted. For

example, the Ricker model is undoubtedly the most popular model fitted to stock-recruitment

data for Pacific salmon, and can be routinely fitted using simple linear regression techniques

after log-transformation of the data (Quinn and Deriso, 1999). Being part of all common statis-

tical packages, these routines are accessible to biologists with even minimal statistical training.

In contrast, more sophisticated techniques generally require coding specific to the individual

analyses. Furthermore, traditional stock-recruitment models assume vital rates are common to

all individuals in a brood year which, although very limiting for species with plastic life-cycles

(Lessard et al., 2008), is less of an issue for species such as coho and pink salmon that exhibit

strict life-cycles. There is also a lack of evidence that more complex stage-structured models

lead to better estimates of abundance, and improved management decisions, and whether they

can be reliably fitted to available data. Thus, until more examples of life-history models occur

in the literature, it is difficult to assess how limiting traditional approaches are.

Recently emphasis has been placed on exploring the efficacy of ‘life-history models’ of an-

dronomous fish populations (Hilborn, 2009; Knudsen and Michael, 2009), which partition in-

dividuals into discrete age- or stage-classes, with separate vital rates (survival, movement etc.)

linking the classes. Moving away from the restrictive assumptions of traditional stock-recruitment

analysis also allows the possibility of improving other aspects of model structure. For example,

multiple sources of stochasticity, including process and observation error, can be accounted for if
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models are fitted within a state-space modeling framework (Carlin et al., 1992; Peterman et al.,

2003; Su and Peterman, 2011). Partitioning error into its rightful components will not only al-

low the underlying dynamics of the system to be estimated more appropriately, but predictions

of future dynamics and decision analyses will also be more robust, given that only appropri-

ate sources of error will be propagated forward through time (Clark, 2003). Furthermore, the

state-space framework simultaneously overcomes several obstacles encountered in traditional

stock-recruitment models, including the errors-in-variables (Walters and Ludwig, 1981), and

time-series bias problems (Walters, 1985).

Often a Bayesian approach will be adopted to make these models tractable, which simulta-

neously permits the incorporation of prior information about certain model parameters. This

is closely linked to the ongoing development of integrated models in the wider field of fisheries

science (Maunder, 2003), which combine disparate datasets into coherent models, potentially

enhancing their inferential power. The framework for fitting state-space models is extremely

flexible, allowing numerous extensions to basic population models, such as incorporating ecolog-

ical hypotheses directly into the model in a structural manner. An example would be directly

modeling survival between stages as a function of habitat covariates. This is especially pertinent

given the large volume of research dedicated to identifying the ecological determinants of varia-

tion in survival of salmon during their freshwater residency (Solazzi et al., 2000; Lawson et al.,

2004; Johnson et al., 2005; Petrosky and Schaller, 2010).

One such example is Solazzi et al. (2000), who investigated the impact of changes in the

amount of rearing habitat available to coho salmon, on abundance and survival in Lobster Creek.

They tested their hypotheses on the raw observed abundance data, and survival rates derived

directly from them. This approach suffers similar problems to those explained above, not least

that observed abundance is assumed to be measured without error. That study allows more

sophisticated techniques to be directly compared to their simple approach, with the strengths

and weaknesses of each then able to be assessed. Solazzi et al. (2000) utilized a dataset of coho

salmon abundance from Lobster Creek, Oregon, which is long-term, of high quality, and consists
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of counts at three stages of the life-cycle. It therefore lends itself well to a case study of developing

alternatives to simple traditional model-building techniques.

The goals of this chapter are manifold. Firstly, structured models that partition the coho

salmon population into important life-stages for coho salmon are constructed in Section 2.2.2.1.

These are then fitted to the Lobster Creek dataset within a Bayesian state-space modeling

framework to partition stochasticity into its appropriate components. Stage-specific vital rates,

including the timing and magnitude of compensatory parameters, are investigated, and inferences

are compared to previous studies that fitted traditional models to only spawner abundance data.

Extra variables are added to basic models in Section 3.2.5 to assess whether habitat effects can

be detected during the freshwater components of the life-cycle, especially in the presence of

substantial environmental stochasticity. The value of including juvenile and/or smolt data in

model-fitting is then assessed by constructing a suite of models in Section 2.2.4 that differ in the

number of stages modeled, and comparing the predictive performance of each (Section 3.2.6).

This case study will provide a reference for fitting similar models to datasets that are currently

being collected which have a substantially wider spatial extent.

2.2 Methods

2.2.1 Datasets

2.2.1.1 Study site

Lobster Creek is a tributary of the Alsea River on the mid-coast of Oregon (Fig 1.1; Section 1.3).

Annual rainfall in the Alsea Basin is typically 150–250 cm, and summer water temperature is

between 11–17oC. In its upper reaches Lobster Creek divides into the East Fork (EF) and Upper

Mainstem (MF). Downstream smolt traps are located in the lower reaches of both forks and

the study reaches extend from the smolt traps to the upper extent of coho salmon occupation

(approximate reach lengths; EF=3.5 km, MF=4.7 km).

Datasets analyzed herein are taken from ODFW survey reports (Johnson et al., 2005; Lorion,

2011), which also provide details of motivation for sampling and methodology. The details
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relevant to this study are provided below.

2.2.1.2 Habitat manipulation experiment

In the summer of 1991 the rearing habitat in MF was manipulated in an attempt to increase

survival of the freshwater stages of the coho life-cycle (Solazzi et al., 2000). Logs were placed

in the stream channel to create dam pools and additional woody debris were placed in pools

to increase habitat complexity. Off-channel alcove pools were also excavated. In February 1996

flooding led to extensive scouring of MF and most of the added rearing habitat was washed out

of the study reach. Similar flood damage occurred in EF in the winter of 1999, and in response

creation of rearing habitat was undertaken in the summer of 1999 using debris jams although

this modification was minor compared to that undertaken in MF and aimed to repair damage

rather than enhance it above previous levels.

2.2.1.3 Habitat surveys

Surveys of the extent of rearing habitat were carried out in Lobster Creek over part of the study

period, using the methodology of Hankin and Reeves (1988). Summer habitat was assessed

during late August–early September over 1988-2002 and in 2006, while winter surveys were

assessed during December–January in 1990-91, 1991-92, 1995-96, and 2004-05, in both streams.

An additional winter survey was conducted in MF in 1993-94. Rearing habitat was estimated

as the sum of the areas of alcove, dam and beaver pools (Solazzi et al., 2000). Summer habitat

surveys were used as an index of rearing habitat as this was when monitoring was most frequent

(Fig 2.1). The dynamics of winter rearing habitat appeared to be similar to summer habitat,

although data was less frequent then.

Rearing habitat would ideally be quantified by a continuous covariate that could be linked

to salmon vital rates within the models, however the rearing habitat index contains numerous

missing values, especially at the beginning and end of the time-series, which are difficult to ac-

commodate in state-space models. Furthermore, the combined area of disparate rearing habitats

is a crude measurement of habitat resources available to affecting coho salmon, and there will
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Figure 2.1: Area of rearing habitat in EF (a) and MF (b), Lobster Creek, from 1988–2006. Rearing habitat
is the sum of dam, beaver and alcove pools. Solid and open dots represent summer and winter habitat surveys
respectively, and the dotted lines represent the interpolation of data for missing years achieved using cubic
splines fitted to all data. Vertical dotted and dashed lines indicate the timing of habitat augmentation and
flooding events, respectively.

almost certainly be a significant amount of sampling error in its estimation. An alternative

approach was utilized whereby the index of rearing habitat (Fig 2.1) was simplified to a binary

variable indicating the presence (one), or absence (zero), of additional rearing habitat. Addi-

tional habitat was considered to be present immediately after the habitat addition experiment

in 1991 in MF until it was destroyed in 1996, thus the index was zero for all years in EF and all

years other than 1991–1995 in MF. This index variable was denoted Ij,t for stream j = 1, 2, in

year t = 1, 2, ..., T .

2.2.1.4 Juvenile abundance

The size of summer rearing populations of juveniles was estimated during August and September

using a combination of techniques (Lorion, 2011). From 1988–2002 the number of juveniles was

counted by snorkeling in every third pool. In a subset of these pools electro fishing was undertaken

to estimate the proportion of fish missed during snorkeling, and this ‘correction factor’ was used

to correct the latter. In non-pool habitat (riffles, glides, rapids) electro fishing was conducted

using the removal method (Seber and Le Cren, 1967) with two or more passes. An overall

population estimate for each reach is provided in Lorion (2011), and was made by multiplying
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the mean pool count by the number of pools and by multiplying mean densities in each non-pool

habitat by their respective areas, then adding these two metrics together.

From 2003–2011 only pool counts were conducted and total population estimates were made

by scaling the pool estimates by the ratio of pool counts to total population size in the years

1988–2002 (Lorion, 2011). Estimated abundance of juveniles and its variance in stream j in year

t were denoted y1,j,t and ς2
1,j,t, respectively, where the 1 in the first subscript denotes stage-class

1 (juveniles).

2.2.1.5 Smolt abundance

From 1988–2011 the number of smolt migrating downstream during spring was estimated using

modified incline plane traps which were placed at the lower limit of the study reaches in both

streams. Traps were operated from the first week in March until smolt ceased to be captured,

usually around early June (Lorion, 2011). Traps were checked daily over this period. Trap

efficiency was estimated by marking a sample of individuals, releasing them upstream of the

trap, and then recording the proportion caught in the trap over the rest of the trapping season.

Raw counts were corrected to account for trap efficiency and the corrected counts were denoted

y2,j,t, for stream j in year t, where the 2 in the first subscript denotes stage-class 2 (smolt).

Variance estimates given in Lorion (2011) were obtained using the bootstrap routine presented

by (Thedinga et al., 1994), and were denoted ς2
2,j,t.

2.2.1.6 Spawner abundance

The number of spawners returning to both streams was estimated by conducting periodic visual

counts (the interval between counts was generally ∼ 7–10 d) and analyzing the data using

trapezoidal area-under-the-curve (AUC) methodology (English et al., 1992; Irvine et al., 1992).

Counts of spawners were made by an observer/s walking the length of habitable stream in the

study reach. Firstly, ‘fish-days’, Fj,t, in stream j, in year t, was estimated using the trapezoidal

AUC estimator (Irvine et al., 1992; F̂T in Section 6.2.2.2). To simplify notation, the fish-days
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for a single stream in a single year is given by

F̂ = 0.5

R−1∑
r=1

(dr+1 − dr)(cr + cr+1)

= 0.5

[
(d2 − d1)c1 + (dR − dR−1)cR +

R−1∑
r=2

(dr+1 − dr−1)cr

]
where dr and cr are the day of spawning season and count of spawners for sampling occasion r =

1, ..., R. This calculation represents the sum of trapeziums under a curve connecting individual

counts in a periodic count dataset (see Fig 6.1). When non-zero counts were encountered on

the first or last sampling occasion (7 out of 50 samples) zeros were added l (stream-life; the

number of days between a fish arriving and dying) days prior to, or after, the non-zero count (as

described in Section 6.4.6) which is equivalent to the standard practice (Bue et al., 1998; Parsons

and Skalski, 2009, Chapter 6).

An estimate of population size of spawners in stream j, in year t, denoted y3,j,t (equivalent

to ÊT in Section 6.2.2.2) where the 3 in the first subscript denotes stage-class 3 (spawners), can

then be derived by correcting for stream-life l and observer efficiency v (the probability that a

spawner is observed during sampling) as

ŷ3,j,t = F̂j,t × z

where z = 1/(l × v). Estimates of l (µ = 11.670, σ = 0.847; Zhou, 2000) and v (µ = 0.755, σ =

0.035; Solazzi, 1984; Zhou, 2000) were assumed, and have been used previously for correcting

estimates of fish-days from Lobster Creek (Johnson et al., 2005; Lorion, 2011). Variance of

the fish-days estimator, V̂ar(F̂j,t) was estimated using the TAUC variance estimator (V̂ar(F̂T );

Section 6.2.2.2). Variance of escapement, was estimated by taking into account the uncertainty

in the estimates of l and v, using sequential application of the delta method (Millar and Jordan

In Press) by first calculating

V̂ar(k) =
l2V̂ar(v) + v2V̂ar(l)

z2

and then the second application gives

τ2
3,j,t = F̂ 2

j,tV̂ar(z) + z2V̂ar(F̂j,t)
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where ς2
3,j,t denotes the variance estimate for stream j, in year t, for stage-class 3 (spawners).

2.2.2 Construction of models

2.2.2.1 Coho salmon model structure

State space models of coho salmon population dynamics were developed from the basic compo-

nents introduced in Section 1.8. Compared to many age- and stage-structured models used to

represent other animal species (Caswell, 2001), coho salmon models are relatively simple owing

to their strict 3-year life-cycle, which allows all individuals in a cohort to transition through the

modeled life-stages in totality. Furthermore, their mortality soon after spawning prevents the

need to recycle individuals back into the population following the spawner stage, and that stage

is the only one contributing to the next generation through reproduction. As a consequence the

entire population can be modeled by the transitions between the three stages of the life-cycle

for which estimates of abundance are available for Lobster Creek. For simplicity models are

presented on the log-scale, and thus a general representation of the process model is

logni,j,t = log ñi,j,t−1 + εi,j,t , where log ñi,j,t = fi(logni−,j,t−1,ψi) (2.1)

where fi are stage-specific functions (with the stage-class-specific vectors of parameters, ψi)

linking abundance in each stage-class to abundance in the preceding stage-class (denoted i− as

specified in Section 1.8), in the preceding year, and logni,j,t and εi,j,t are the abundances of

fish (latent states) and process errors, respectively, both for stage-class i, in stream j in year t.

Thus logn1,j,t, logn2,j,t and logn3,j,t denote the log-abundance of juveniles, smolt and spawners,

respectively. Note that the time between sampling the three stages was not exactly one year, for

instance the time periods between spawner-fry and fry-smolt are less than a year, and between

smolt-spawner well over a year. Thus t indexes the year with which the counts are associated,

rather than an exact census date as assumed in other types of models (e.g. Caswell, 2001). The

deterministic components of the process model, log ñi,j,t in (2.1), are important quantities for

model comparisons carried out in Section 2.2.6.

The fi are functions that represent the deterministic processes affecting the transition of fish
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between the stages from year t−1 to year t. For example, the production of eggs by spawners that

survive to become juveniles (f1) or the survival from juvenile to smolt stages (f2). These functions

can take a variety of forms depending on the assumed dynamics of the system. Often the process

errors at each stage, ε1,j,t, ε2,j,t and ε3,j,t would be considered independent over streams and

over years within streams. In these cases the errors could be modeled in each stream separately

as normally distributed with mean zero and stream-specific process error variance parameters

(see model M∗BLL in appendix Section 8.1 for an example of this structure). It will be shown

in Section 3.2.2 that this assumption conflicts with the data. Consequently, process errors are

assumed to have a temporal component common to both streams, and thus were modeled as

normally distributed on the log-scale such that

εi,j,t = ωi,t +$i,j,t , ωi,t ∼ N(0, τ2
i ) , $i,j,t ∼ N(0, δ2

i ) (2.2)

where ωi,t are the temporal, and $i,j,t are the spatial components of process error, each with a

mean of zero and stage-class-specific variances τ2
i , and δ2

i , respectively.

The observed abundances of fish, yi,j,t, were linked to the latent states via observation equa-

tions which represent the sampling processes. These are absolute estimates of abundance rather

than the relative indices often used in fisheries, thus by again modeling on the log-scale the

general observation equation is given by

logyi,j,t = logni,j,t + νi,j,t (2.3)

where νi,j,t are the observation errors, which are assumed to be normally distributed on the log-

scale, i.e. νi,j,t ∼ N(0, σ2
i,j,t). Variance parameters σ2

i,j,t, are the stage-class-, stream- and year-

specific sampling variances for logyi,j,t from the monitoring programs at the juvenile (Section

2.2.1.4), smolt (Section 2.2.1.5) and spawner stages (Section 2.2.1.6). These were calculated

from ς2
i,j,t such that the back-transformed distribution would maintain the same CV as estimated

in those sections. Note that these enter the model as constants rather than parameters to

be estimated, owing to the difficulties that can sometimes be encountered with partitioning

observation and process errors in state space models (Schnute, 1994; King et al., 2008, 2009; see
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Chapter 6 for further details). To complete the Bayesian state-space model formulation, prior

distributions are specified for all parameters including the initial latent states, details of which

are given in Section 2.2.5.

2.2.2.2 Initial process model variations

There are numerous options for parameterizing the process model, including both linear and

non-linear dynamics. The most simple model considered, assumes abundance to be simply a

linear function of the abundance of the preceding stage, in the preceding year. The three process

equations of this model are

logn1,j,t = logΦJ + logn3,j,t−1 + ε1,j,t (2.4)

logn2,j,t = logΦP + logn1,j,t−1 + ε2,j,t (2.5)

logn3,j,t = logΦS + logn2,j,t−1 + ε3,j,t (2.6)

where ΦJ is the rate of production of juveniles by spawners in the preceding year, and ΦP and

ΦS are survival rates to the smolt and spawner stages, from the preceding stage in the preceding

year, respectively. Note that ΦJ could be a wide range of non-negative numbers (note that

this ‘survival’ parameter can, and will generally be, larger than 1 because multiple juveniles are

produced by each individual spawner) and so is modeled on the log scale, while ΦP and ΦS are

constrained between zero and one. Consequently, the latter are modeled on the logit-scale with

associated logit-transformed parameters ϕP and ϕS as follows

ΦP = logit−1
(
ϕP
)

ΦS = logit−1
(
ϕS + λOt

)
where λ is the extra survival parameter, and Ot is a covariate calculated as the log of survival

of hatchery fish from their release as smolt until their return as spawners. This approach has

previously been adopted by Chilcote (1999) and Wainwright et al. (2008) to help explain variation

in marine survival, and the covariate is known as the Oregon Production Index (OPI). Because
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survival from smolt to spawners is extremely low this relationship results in ΦS being proportional

to exp(Ot).

Nonlinear dynamics were investigated by utilizing two functions often implemented in fisheries

modeling, the Beverton-Holt (Beverton and Holt, 1957) and Ricker (Ricker, 1954) functions (an

example that exhibits the differences between them is given in Fig. 3.7). Using the juvenile

stage for demonstration purposes a process equation with Beverton-Holt dynamics at this stage

is given by

logn1,j,t = logαJ + logn3,j,t−1 − log

(
1 +

n3,j,t−1

KJ
j

)
+ ε1,j,t (2.7)

where αJ is the number of juveniles produced per spawner at low spawner abundance, KJ
j is

the number of spawners at which the number of juveniles produced is half the asymptotic level

(the carrying capacity of juveniles) and this carrying capacity is at αJ × KJ
j . The production

parameter, αJ , was assumed to be common to both streams as this parameter is more likely to

be related to physiological limits of spawners etc., while the compensation parameter, KJ
j , was

assumed to be stream-specific, as the factors limiting juvenile abundance such as the extent of

rearing habitat are likely to vary between streams.

Similarly, a model with Ricker dynamics for the juvenile process equation is given by

logn1,j,t = logαJ + logn3,j,t−1 − βJj n3,j,t−1 + ε1,j,t

where αJ is the number of juveniles produced per spawner at low spawner abundance and βJj

determines the rate (again stream-specific) at which compensation occurs as spawner abundance

increases. The number of spawners at which the number of juveniles produced is maximized can

thus be given by 1/βJj . In contrast to the Beverton-Holt function, overcompensation occurs in

the Ricker function, with the number of juveniles decreasing to an asymptote at zero at high

spawner abundances. The initial set of models (Table 2.1) was constructed using models with

different combinations of linear, Ricker and Beverton-Holt process equations, and these will be

presented in Section 2.2.2.3.
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2.2.2.3 Model notation and expansion

Throughout, models (M) are denoted by the form of their process equations at the three stages,

with subscripts indicating linear (L), Beverton-Holt (B) or Ricker (R) functions. For example,

MBLL has a Beverton-Holt function for the juvenile process equation and linear functions for the

smolt and spawner equations, which correspond to (2.7), (2.5) and (2.6), respectively. Similarly,

MLLR combines the linear process equations (2.4), (2.5) and a Ricker function at the spawner

stage (Table 2.1). The addition of habitat covariates to process models is presented in Section

2.2.3, which adds another level (denoted h) to the subscript. Thus, a model denoted MBhLL

would have a habitat covariate added to (2.7) but would otherwise be identical to MBLL, while

MBhLhL would also have a habitat covariate added to (2.5). Lastly, models in Section 2.2.4

involve excluding data at selected stages (and hence exclude the process equations at those

stages also; Table 2.1). Excluded stages are denoted N , thus by way of example, model MBNL

is a model fitted to juvenile and spawner data only (smolt data excluded).

Model refinement was undertaken in an iterative manner starting from the most simple model

MLLL. The adequacy of the model was assessed using a suite of predictive checks (Chapter

5), and when inadequacy was identified the model structure was modified accordingly. Model

fit, as measured by the posterior mean of partial deviance (D(θ)m, and its stage-class-specific

components; Section 4.2.5), examination of residuals and direct evaluation of parameter estimates

were also utilized when deciding whether a model should be expanded. The partial deviance and

partially marginalized predictive checks are novel tools for model building and were developed

(in Chapters 4 and 5) to overcome the inadequacies of the standard data level deviance and

more widely applied posterior predictive checks. Expansion ended when a model appeared to

adequately describe the features of the data considered important (Chapter 5). This process

was compared to the more rigid approach of selecting among models using the marginalized

deviance information criterion (DICm; Section 4.2.5). This involved fitting a full set of candidate

models differing only in the structure of their process equations. For any given model in this set,
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density dependence was assumed to occur in at most one stage (to prevent overfitting), and this

assumption was tested using predictive checks. This resulted in seven models in the set (initial

models; Table 2.1).

Finally, models initially fitted to the data did not allow for the correlation in process errors

between stream assumed in (2.2). These models with uncorrelated process errors were quickly

identified as inadequate for modeling the data and are not presented in detail here. An example

of this type of model is given in appendix Section 8.1 and is denoted M∗BLL where the ‘*’ indicates

the different process error structure to MBLL presented above.
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Table 2.1: Comparison of the deterministic components (log ñi,j,t) of the juvenile, smolt and spawner process equations for the models considered for formal
model comparison. The three sets of models refer to three stages of model fitting.

Model Juvenile Smolt Spawner
Initial
MLLL log ΦJ + logn3,j,t−1 log ΦP + logn1,j,t−1 log ΦS + logn2,j,t−1

MRLL logαJ + logn3,j,t−1 − βJj n3,j,t−1 log ΦP + logn1,j,t−1 log ΦS + logn2,j,t−1

MBLL logαP + logn3,j,t−1 − log

(
1 +

n3,j,t−1

KP
j

)
log ΦP + logn1,j,t−1 log ΦS + logn2,j,t−1

MLRL log ΦJ + logn3,j,t−1 logαP + logn1,j,t−1 − βPi n1,j,t−1 log ΦS + logn2,j,t−1

MLBL log ΦJ + logn3,j,t−1 logαP + logn1,j,t−1 − log

(
1 +

n1,j,t−1

KP
j

)
log ΦS + logn2,j,t−1

MLLR log ΦJ + logn3,j,t−1 log ΦP + logn1,j,t−1 logαS + logn2,j,t−1 − βSj n2,j,t−1 + λOt

MLLB log ΦJ + logn3,j,t−1 log ΦP + logn1,j,t−1 logαS + logn2,j,t−1 − log

(
1 +

n2,j,t−1

KS
i

)
+ λOt

Habitat

MBhLL logαJ + logn3,j,t−1 − log

(
1 +

n3,j,t−1

KJ
j (1+γIj,t)

)
log ΦP + logn1,j,t−1 log ΦS + logn2,j,t−1

MBLhL logαJ + logn3,j,t−1 − log

(
1 +

n3,j,t−1

KJ
j

)
log Φ́P + logn1,j,t−1 log ΦS + logn2,j,t−1

MBhLhL logαJ + logn3,j,t−1 − log

(
1 +

n3,j,t−1

KJ
j (1+γIj,t)

)
log Φ́P + logn1,j,t−1 log ΦS + logn2,j,t−1

Exclusion

MNBL excluded logαP + logn3,j,t−2 − log

(
1 +

n3,j,t−2

KP
j

)
log ΦS + logn2,j,t−1

MBNL logαJ + logn3,j,t−1 − log

(
1 +

n3,j,t−1

KJ
j

)
excluded log ΦS + logn1,j,t−2

MNNB excluded excluded logαS + logn3,j,t−3 − log

(
1 +

n3,j,t−3

KS
i

)
+ λOt

Notes: Survival rates ΦP , Φ́P differed in their parameterization. For most models smolt survival was modeled on the logit scale, ΦP =
logit−1(ϕP ), although for MBLhL and MBhLhL survival was modeled as a function of the habitat covariate, e.g. Φ́P = logit−1(ϕP + ηIj,t).
Similarly ΦS = logit−1(ϕS + λOt) for all models.
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2.2.3 Developing models with habitat effects

Once an adequate model had been constructed in Section 2.2.2.3, a further extension of the mod-

els involved investigating the possibility that habitat modification significantly influences coho

salmon dynamics. A priori, habitat manipulation was hypothesized to increase egg–juvenile and

juvenile–smolt survival, by increasing the availability and quality of rearing habitat. Habitat

covariates were added to the juvenile and smolt process equations in-turn, and then simultane-

ously, and improvements in fit and the examination of posterior densities of relevant parameters

were used to determine whether the resulting models improved inferential performance.

The initial expansion of models in Section 2.2.2.3 (results given in Section 3.2.2) led to the

acceptance of MBLL as the most appropriate for the data. This model suggested compensation

occurring at the juvenile stage, thus it seems logical that an increase in rearing habitat will lead

to a higher carrying capacity rather than simply increasing survival rates. A linear relationship

was therefore assumed between the carrying capacity (αJ ×KJ
j ) and the index of rearing habitat

(Ij,t; Section 2.2.1.3) which is achieved by reparameterizing the Beverton-Holt juvenile process

equation (2.7). The smolt process equation was also modified to investigate the possibility that

rearing habitat benefits this part of the life-cycle. No compensation was identified at this stage

during the model expansion in Section 2.2.2.3 and so it was assumed that habitat would affect

survival, rather than compensatory dynamics. The two modified process equations are thus given

by

logn1,j,t = logαJ + logn3,j,t−1 − log

(
1 +

n3,j,t−1

KJ
j (1 + γIj,t)

)
+ ε1,j,t (2.8)

logn2,j,t = logΦ́P + logn1,j,t−1 + ε2,j,t , where Φ́P = logit−1(ϕP + ηIj,t) (2.9)

where γ and η are parameters determining the strength of the relationships between the habitat

covariate and the carrying capacity of the Beverton-Holt function (2.8), and survival of fish

from the juvenile to the smolt stage (2.9), respectively. Three models are possible depending on

whether habitat was assumed to affect the juvenile and/or the smolt stages; MBhLL consisting

of (2.8), (2.5) and (2.6), MBLhL consisting of (2.7), (2.9) and (2.6), and MBhLhL consisting of

38



(2.8), (2.9) and (2.6) (habitat models; Table 2.1).

2.2.4 Developing models with stages excluded

A major question about the performance of life-history models is how much improvement they

make to inferences over models fitted to only spawner abundance data. To assess the value

of juvenile and smolt abundance data with respect to the performance of the model in out-of-

sample prediction of spawner abundance, these data sources were excluded from modeling and the

process equations were modified to account for their absence. Due to only minor improvements

in fit of the habitat models (at least at the spawner stage where prediction is focused) presented

in Section 2.2.3 over MBLL from Section 2.2.2.3, the latter was used as the base model for this

investigation. The performance of models in the absence of spawner data was not considered as

this is generally the focal stage of the life-cycle and is invariably the first stage to be incorporated

into monitoring programs. This left three possible scenarios; juvenile data excluded (MNBL),

smolt data excluded (MBNL) and both juvenile and smolt data excluded (MNNB), with the full

deterministic components of the process equations for these models displayed in Table 2.1.

To represent the absence of juvenile data, a model (MNBL) was considered where the juvenile

process equation was removed completely and the smolt stage was modeled directly as a function

of the spawner stage two years previously i.e.

logn2,j,t = logαP + logn3,j,t−2 − log

(
1 +

n3,j,t−2

KP
j

)
+ ε2,j,t (2.10)

and spawners remain a function of the smolt one year previous ((2.6); Table 2.1). Similarly, a

model representing the absence of smolt data (MBNL) was constructed by modifying the process

model for spawners to be a function of juvenile abundance two years earlier

logn3,j,t = logΦS + logn1,j,t−2 + ε3,j,t , where ΦS = logit−1(ϕS + λOt) .

Finally, the absence of both juvenile and smolt data is represented in a further model (MNNB)

by again modifying the spawner process model such that spawners in year t are a function of
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spawners three years prior, i.e.

logn3,j,t = logαS + logn3,j,t−3 − log

(
1 +

n3,j,t−3

KS
i

)
+ λOt + ε3,j,t . (2.11)

Note that the absence of juvenile data in (2.10) and (2.11) result in the density dependent equa-

tions in MBLL being excluded also, hence the compensatory dynamics are shifted to the next

stage-class in both these models. Partially marginalized predictive checks of models where no

compensation was included (e.g. models denoted MNLL and MNNL) showed that the assump-

tions of linearity in these models conflicted with the data hence they were not presented herein

or considered further.

Measurement of the value of data from the juvenile and smolt stages is difficult using the

exclusion method as model comparison using likelihood-based measures such as D(θ) or DIC

becomes impossible due to different datasets being used for different models. Leave-one-out cross

validation was therefore used to assess the predictive performance of models with and without

different combinations of data from stages. This was carried out as follows; observed spawner

abundance from one year, t (for both streams simultaneously), was excluded from the dataset for

fitting the model being considered, spawner counts in this year were therefore considered missing

values and the model formulation was modified accordingly, by removing the observation model

component for this year. The model was then fitted, model predictions of spawner abundance

(the latent states, n3,j,t) in this year were stored and compared to the observed counts (y3,j,t).

The excluded observations were then added back to the dataset and the next years spawner

counts were excluded, and so on, until data from each year had been excluded once. Due to the

presence of missing values for juvenile and smolt abundance in the first two years of the time-

series, spawner counts were only excluded from year five (1990) onwards, resulting in a sample

size of 21 years in which data was excluded.

2.2.5 Prior distributions for model parameters

Prior distributions for all parameters in the models were specified so that they could be considered

“vague” or “weakly informative” depending on the definitions given by various authors (Punt
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and Hilborn, 1997; Gelman et al., 2003). They were developed with the aim of minimizing their

influence on the resulting posterior distributions. Independent prior distributions were assumed

for all parameters. Normally distributed priors were assumed to be suitable for most parameters,

sometimes on the log-scale. Parameters logni,j,ui , logαi, logKJ
j , logKP

j , logKS
j , logφJ , ϕP , ϕS ,

γ, η and λ were given given normal priors with mean zero and variances set at a large enough

value for each parameter so as to be approximately uniform over the parameter space deemed

to be biologically plausible. Note that logni,j,ui represent the initial states for each stage-class,

where u = (u1, u2, u3) = (3, 4, 4) because the process equations were modeled over different time

periods depending on the presence of observations in the previous stage-class. For juveniles this

period was t = 3, 4, ..., 26, for smolt it was t = 4, 5, ..., 26 and for spawners it was t = 4, 5, ..., 25.

The approach of Gelman (2006) was adopted to formulate priors for the components of process

error variance, by specifying half-Cauchy distributions on the standard deviations, τi and δi, with

scale parameters of one, which is slightly larger than the expected standard deviations. Finally,

the priors for the Ricker compensation parameters, βJj , βPj and βSj were set to be uniformly

distributed such that ∼ U(0, 10).

2.2.6 Calculation of DIC and model computation

The model expansion approach in Section 2.2.2.3 was further validated by comparing the relative

performance of candidate models on the basis of DIC as presented in Chapter 4. DIC can be

calculated using the standard formula

DIC = D(θ) + pD (2.12)

where pD is the effective number of parameters calculated as pD = D(θ) − D(θ̄), D(θ) is the

posterior mean deviance, and D(θ̄) is the deviance evaluated at the posterior means of the

parameters. As seen in Section 4.2.3, DIC and each of its components can be calculated at both

the data (DICd) and partially marginalized (DICm) level, and for each individual stage (indexed

by superscript i) separately, in addition to all stages combined (superscript C). Thus DIC1
m and

D(θ)
1

m denote DIC and posterior mean deviance for the juvenile stage at the marginal level,
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while DICC
m and D(θ)

C

m are the same measures for all stages combined at the data level, for

example. Derivation of DICd and DICm are shown in detail in Section 4.2.5 and so only the

relevant equations for the full model are shown here.

Deviance at the data level assesses the fit of the latent states to the observed data (e.g. it is

calculated using (4.19) in Chapter 4), was calculated for all stages combined as

DC
d = 2

3∑
i=1

2∑
j=1

Ui∑
t=ui

log
(√

2πσ2
i,j,t

)
+

(logyi,j,t − logni,j,t)
2

2σ2
i,j,t

where u = (u1, u2, u3) = (3, 3, 1) indexes the first year of observations for each stage, as estimates

of abundance for juveniles and smolt only began in 1988 (t = 3). Similarly, U = (U1, U2, U3) =

(26, 26, 25) indexes the last year of observations as no estimate of spawner abundance in 2011

(t = 26) were yet available at the time of analysis. DIC at the data level, for the full model,

DICC
d was calculated by inserting DC

d into (2.12).

The marginalized partial deviance is based on the distribution of yi,j,t conditioned on abun-

dance in year t− 1 (e.g. it is calculated using (4.21) - see Section 4.2.5 for the derivation), and

was calculated

DC
m = −2

3∑
i=1

Ui∑
t=ui

log

 1

2πκi,1,tκi,2,t
√

1− ρ2
i,t

exp

(
− 1

2(1− ρ2
i,t)

[
(logyi,1,t − log ñi,1,t)

2

κ2
i,1,t

+

(logyi,2,t − log ñi,2,t)
2

κ2
i,2,t

− 2ρi,t(logyi,1,t − log ñi,1,t)(logyi,2,t − log ñi,2,t)

κi,1,tκi,2,t

]))
(2.13)

where u = (u1, u2, u3) = (3, 4, 4) and U = (U1, U2, U3) = (26, 26, 25), and

κ2
i,1,t = σ2

i,1,t + τ2
i + δ2

i

κ2
i,2,t = σ2

i,2,t + τ2
i + δ2

i

ci,t = ρ× κi,1,t × κi,2,t = τ2
i

ρi,t =
τ2

κi,1,t × κi,2,t
.

By inserting DC
m into (2.12) the partial DIC for the full model, DICC

m, can be calculated.
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Models were fitted using the software OpenBUGS version 3.0.3 (Lunn et al., 2009) which

was implemented via the statistical software R version 2.14.0 (R Development Core Team, 2010)

using the contributed packages BRugs and R2WinBUGS (Sturtz et al., 2005). Two chains of the

MCMC sampler were run for 90 000 iterations, with a burnin of 30 000, and the sample was

thinned to 1 in 6, resulting in 20 000 samples being stored to disk. Convergence of the sampler

was assessed during trial runs using a suite of diagnostic plots and statistics (Geweke, 1992;

Brooks and Gelman, 1998) to confirm that stationarity was achieved before the burnin ended,

for all models. The total number of iterations and thinning rate were established to ensure that

the effective number of samples stored was greater than 1 000 for all parameters. Unless stated

otherwise parameter estimates are presented as posterior means and the limits of 95% central

credible intervals.
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Chapter 3

The potential of Bayesian life-history
models of coho salmon dynamics in
Lobster Creek, Oregon: Presentation
of results

3.1 Linkage to other chapters

The results presented in this chapter build on the methodology presented in Chapter 2, which

were in-turn influenced by each of the other chapter which will come later in the thesis. More

explicitly, the need to investigate model fit using partially marginalized deviance rather than

relying on the more commonly estimated data level deviance is the topic of Chapter 4, and its

comparative performance is investigated in more detail there, using a variety of empirical and

simulated data. The predictive checking framework that will be utilized extensively in sections

3.2.1–3.2.4 is a result of Chapter 5 where the difficulties in detecting inadequacies of state-space

models using well known posterior predictive checks is highlighted. An alternative partially

marginalized predictive distribution is presented there and is shown to have more desirable

properties for the models being investigated in this chapter. Lastly, models with uninformative

prior distributions on the observation error variances are shown to be difficult to fit reliably in

Section 8.2. The topic of Chapter 6 is the determine the best methods for estimating observation

error variance for the spawner stage when periodic count datasets are available. The results of

that chapter are used in calculating σ2
i,j,t in Section 2.2.2.1, and hence are a key component of
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model fitting results presented in Section 3.2 below.

3.2 Results

3.2.1 Inadequacy of simple models

Strong relationships between raw counts in subsequent stages, in subsequent years, were observed,

although there appears to be significant variation in some, particularly between the abundance

of spawners and the abundance of smolts in the preceding year (Fig 3.1 e,f). There appears to be

some nonlinearity in the relationship between juveniles and the number of individuals spawning

in the preceding year (Fig 3.1 a,b).
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Figure 3.1: Plots displaying the relationships between counts at different stage-classes i, in year t, as a
function of counts of the same cohort in the preceding stage-class (i− 1) in the preceding year (t− 1). Labels
y1,t, y2,t and y3,t denote juveniles, smolt and spawners, respectively. Panels a, c, e show counts in EF and the
remainder are for MF.
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Simple models fitted to the dataset were clearly inadequate. The initial assumption that

process errors were independent between steams appeared to be violated at the juvenile and

spawner, and to a lesser extent the smolt stage. Using modelM∗BLL (which assumes no correlation

between the process errors of the two streams; see appendix Section 8.1 for specification of this

model) as an example, the correlation coefficient between the process errors simulated from the

partially marginalized predictive distribution were considerably lower than for the model fitted

to the observed data (Fig 3.2; this test variable is tested by P
(Θ)
ε,i,cor in (5.2.8) in Section 5.2.8).

When the variance components in (2.2) were added to the process error structure, the predictive

distributions became more consistent with the data (Fig 3.3).

It was also necessary to include information on the magnitude of the observation errors.

For instance, although a model constructed with uninformative priors on the observation error

variances (σ2
i,j,t) passed the tests of convergence of the MCMC sampler, the resulting posterior

distributions for the variance components exhibited some worrying characteristics. This included

significant amounts of the posterior density being clustered at zero for several of the variance

parameters (appendix Fig 8.1). Using the estimates of σ2
i,j,t derived from monitoring (Sections

2.2.1.4–2.2.1.6) and assuming that the values were known, resulted in coherent posterior infer-

ences for the variance component parameters, and all models presented herein therefore assume

this structure.

3.2.2 Model expansion

A model with linear process equations at each stage (MLLL) led to datasets simulated from the

partially marginalized predictive distribution that displayed discrepancies that were at odds with

the discrepancies for the observed data. Most notably, the observed process errors were highly

negatively correlated with population size while the replicated process errors were not, suggesting

non-linearity in the system that was not accounted for by the model (Fig 3.4; this test variable

is tested by P
(Θ)
ε,i,den in (5.2.8). The most obvious source of non-linearity appeared to be at the

juvenile stage (Fig 3.1), and this also appeared to be where the most substantial discrepancy
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Figure 3.2: Predictive checks testing for correlation in process errors between streams (the graphical equiv-

alent to P̃
(Θ)
ε,i,cor in Section 5.2.8). The observed discrepancy, D(y), is compared to D(y.rep) which is the

discrepancy measured for latent states simulated from the partially marginalized predictive distribution of model
M∗
BLL (appendix Section 8.1), at the juvenile (a), smolt (b) and spawner (c) stages. Lines represent equality

between the measures.
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Figure 3.3: Predictive checks testing for correlation in process errors between streams (the graphical equiv-

alent to P̃
(Θ)
ε,i,cor in Section 5.2.8). The observed discrepancy, D(y), is compared to D(y.rep) which is the

discrepancy measured for latent states simulated from the partially marginalized predictive distribution of model
MBLL, at the juvenile (a), smolt (b) and spawner (c) stages. Lines represent equalit between the measures.
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between model and data occurred (Fig 3.4 a,b). If a Beverton-Holt function was assumed at the

juvenile stage (MBLL) partially marginalized predictive checks suggested consistency with the

observed data (Fig 3.5). However, if a Ricker function was assumed (MRLL), the inconsistencies

between the observed and replicated process errors remained at the juvenile stage (Fig 3.6). This

is largely the result of the Ricker function overestimating production of juveniles at moderate

abundance of spawners, and predicting overcompensation at high spawner abundance, which

is not supported by the data (Fig 3.7). In contrast the Beverton-Holt function appears to

fit the relationship well and full posterior mean partial deviance of MBLL was D(θ)
C

m=205.8,

considerably lower than for the fully linear model, MLLL (D(θ)
C

m=275.8) and the model with a

Ricker function at the juvenile stage, MRLL (D(θ)
C

m=230.5).

Once non-linearity at the juvenile stage was explicitly modeled, there was little evidence

for substantial discrepancy between model predictions and data with respect to further non-

linearity at either the smolt or spawner stages (Fig 3.5). Furthermore, investigations of other

discrepancies between data and the model using posterior and partially marginalized predictive

checks and analysis of residuals (Chapter 5) failed to identify any obvious inadequacies in the

model.

Changing the form of the process equation at one stage had little effect on the fit of the

model at other stages. For example, most of the improvement in fit of the models with Beverton-

Holt-type compensation at the juvenile stage, not surprisingly occurred at that stage, and all

models in the initial set displayed relatively similar fit to the data at the subsequent smolt stage

(D(θ)
2

m=48.9–52.2; Table 3.1).

When the marine survival covariate O and associated parameter λ were removed from MBLL

the fit was considerably poorer with full posterior mean partial deviance, D(θ)
C

m, increasing from

205.8 to 214.4. Most notable periods where the covariate improved fit at the spawner stage were

1994–1998, the last few years of the time-series, and most obviously in 1992 in EF (Fig 3.8).
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Figure 3.4: Predictive checks testing for correlation between process errors εi,j,t and the deterministic esti-

mates of population size log ñi,j,t (the graphical equivalent to P̃
(Θ)
ε,den in Section 5.2.8). The observed discrep-

ancy, D(y), is compared to D(y.rep) which is the discrepancy measured for latent states simulated from the
partially marginalized predictive distribution of model MLLL. Lines represent equality between the measures.
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Figure 3.5: Predictive checks testing for correlation between process errors εi,j,t and the deterministic esti-

mates of population size log ñi,j,t (the graphical equivalent to P̃
(Θ)
ε,den in Section 5.2.8). The observed discrep-

ancy, D(y), is compared to D(y.rep) which is the discrepancy measured for latent states simulated from the
partially marginalized predictive distribution of model MBLL. Lines represent equality between the measures.
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Figure 3.6: Predictive checks testing for correlation between process errors ε1,j,t and the deterministic es-
timates of population size log ñ1,j,t for the juvenile stage. The observed discrepancy, D(y), is compared
to D(y.rep) which is the discrepancy measured for latent states simulated from the partially marginalized
predictive distribution of model MRLL. Lines represent equality between the measures.
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Figure 3.7: Comparison of models assuming Beverton-Holt (MBLL; a,b) and Ricker (MRLL; c,d) functions
at the juvenile stage. Dots are the observed values, yi,j,t, and lines are the posterior mean estimates for the
respective models for the relationship between spawners and juveniles, in EF (a and c), and MF (b and d).

●

●

●

●

● ●

●

●
● ● ●

●
● ●

●

●

●

●

●

●

●
●

● ●

●

1985 1990 1995 2000 2005 2010

0.0

0.2

0.4

0.6

0.8

Year

C
ou

nt
 (

x1
00

0)

●

●

●

●

● ●

●

●
● ● ●

●
● ●

●

●

●

●

●

●

●
●

● ●

●

EF−S

● ● ●
●

● ●

●

●
● ● ● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

1985 1990 1995 2000 2005 2010

0.0

0.2

0.4

0.6

0.8

Year

C
ou

nt
 (

x1
00

0)

● ● ●
●

● ●

●

●
● ● ● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

MF−S

Figure 3.8: Estimated values of the latent states representing abundance of salmon in the spawner stage in
East Fork (EF) and Mainstem (MF), Lobster Creek for the best fitting state-space model (MBLL; red lines)
and the same model with the ocean survival covariate, O excluded (blue lines) from 1986–2011. Dots are the
observed counts and lines are posterior means.
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3.2.3 Model comparison using DIC

Formal comparison of models using DICm largely supported the results of the expansion method

of model building, with MBLL identified as the most parsimonious among the candidate models

without habitat covariates (Table 3.1). The compensation occurring between the spawner and

juvenile stages in this model was essential for fitting the data well, as evidenced by all high

ranking models (∆DICC
m < 59.0) including compensation at this stage of the life-cycle (Table 3.1).

Furthermore, the Beverton-Holt function was again suggested to be more suitable at the juvenile

stage than the Ricker function, which fitted the data poorly by comparison (∆DICC
m = 30.4).

Models with nonlinear functions in the process equations for the smolt and spawner stages

(MLBL,MLRL,MLLB,MLLR) fitted the data poorly in comparison to MBLL (∆DICC
m > 59.0)

suggesting that any compensation at the smolt or spawner stages was far less important than

compensation at the juvenile stage.
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Table 3.1: Comparison of Deviance Information Criterion (DIC) across a suite of models of coho salmon dynamics that differ in the structure of the process
equations. The posterior mean deviance of the model is denoted D(θ) and pD is a measure of the effective number of parameters in the model. The partial
set compares DIC at the partially marginalized level, DICm, while the data set compares DIC at the data level, DICd. Superscripts 1, 2, 3 and C indicate
juveniles, smolt, spawners and the complete model (all stages combined).

Juveniles Smolts Spawners Total

Level Model D(θ)
1

pD1 DIC1 D(θ)
2

pD2 DIC2 D(θ)
3

pD3 DIC3 D(θ)
C

pDC DICC ∆DICC

Partial MBLhL 37.9 6.8 51.5 42.3 7.6 57.5 115.9 4.2 124.2 196.1 18.6 233.3 0.0
MBhLhL 39.3 7.5 54.2 42.2 7.7 57.6 115.6 4.2 124.1 197.1 19.4 235.9 2.6
MBLL 38.6 6.5 51.7 51.4 6.0 63.5 115.7 4.2 124.2 205.8 16.8 239.3 6.0
MBhLL 39.3 7.6 54.5 50.5 6.1 62.8 115.4 4.2 123.9 205.3 17.9 241.1 7.9
MRLL 65.8 8.8 83.4 50.0 6.6 63.1 114.7 4.2 123.1 230.5 19.6 269.6 36.4
MLLR 106.4 6.2 118.7 49.3 6.5 62.4 105.1 6.0 117.2 260.8 18.8 298.3 65.0
MLLB 109.2 6.1 121.5 49.4 6.6 62.6 107.3 6.3 119.8 265.9 19.0 303.9 70.7
MLLL 113.1 6.1 125.3 48.9 6.8 62.6 113.8 4.4 122.7 275.8 17.4 310.5 77.3
MLRL 112.9 6.2 125.2 51.3 6.5 64.2 114.0 4.4 122.7 278.2 17.0 312.2 78.9
MLBL 112.8 6.2 125.2 52.2 6.6 65.4 114.1 4.3 122.8 279.1 17.1 313.4 80.1

Data MRLL -105.3 41.4 -22.6 -194.4 46.0 -102.4 -54.6 41.9 29.3 -354.3 129.3 -95.7 0.0
MLLL -106.7 42.4 -21.9 -194.4 45.9 -102.7 -55.8 42.6 29.3 -357.0 130.8 -95.3 0.4
MLRL -107.5 43.3 -21.0 -193.9 45.8 -102.4 -56.0 42.6 29.3 -357.4 131.7 -94.1 1.6
MLLB -106.7 42.2 -22.3 -195.7 46.2 -103.2 -50.5 41.1 31.6 -352.9 129.5 -93.9 1.8
MBhLhL -101.0 39.5 -22.0 -193.5 46.0 -101.5 -59.8 45.0 30.2 -354.3 130.5 -93.3 2.4
MBhLL -101.3 39.9 -21.4 -194.4 46.1 -102.2 -60.0 45.3 30.6 -355.7 131.3 -93.0 2.6
MLBL -107.6 43.6 -20.3 -194.0 46.0 -102.0 -56.0 42.7 29.3 -357.5 132.3 -93.0 2.7
MBLL -100.6 39.4 -21.7 -194.5 46.1 -102.2 -59.3 45.4 31.4 -354.4 130.9 -92.5 3.2
MBLhL -99.9 39.0 -22.0 -193.3 45.9 -101.5 -58.9 45.2 31.5 -352.2 130.1 -92.0 3.6
MLLR -106.4 42.2 -22.0 -195.7 46.1 -103.4 -46.4 40.0 33.6 -348.5 128.3 -91.8 3.9
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Table 3.2: Estimates of the standard deviations of the temporal (τ) and spatial components of process errors
(δ) for model MBLL. Displayed are the posterior means and standard deviations for the three stage-classes.
Also shown are the observation error standard deviations (ς) that were fixed constants in the model, with the
mean and standard deviation shown being calculated over all years over both streams.

τ δ ς

Stage-class mean sd mean sd mean sd

Juveniles 0.36 0.08 0.23 0.08 0.12 0.04
Smolt 0.26 0.11 0.36 0.07 0.07 0.11
Spawners 1.05 0.21 0.55 0.12 0.22 0.10

3.2.4 Fit and diagnostics for the best model

The latent states, ni,j,t, of the best model among the initial set (MBLL) appeared to fit the

data for each stage very well (Fig 3.9). This is a consequence of the low observation error

variances assumed at the three stages which resulted from the intense monitoring programs.

These directly led to high precision in the estimates of the underlying abundances at each stage,

though especially for smolts. Substantial variation in abundance occurred over the modeling

period for each stage (Fig 3.9). There was a pattern observed for spawners and smolts, and

to a lesser extent juveniles, of high abundance at the beginning and end of the time series,

with very low abundance observed during ∼1995–2000. Mean abundance of spawners increased

approximately 133- and 623-fold between the lowest observed abundance in 1998 and the highest

in 2003, in the EF and MF respectively.

Due to the the high precision in the estimates of abundances, most unexplained variation

in the data was attributed to process error. For both the juvenile and smolt stages, process

errors showed similar patterns, with temporal process error standard deviation (τ), and the

spatial process error standard deviation (δ) being of similar magnitude for these stage-classes,

with roughly half the variation attributed to temporal and the other spatial components (Table

3.2). In contrast, both components of process error were considerably higher for the spawner

stage, with a larger proportion being attributed to temporal, rather than spatial variation for

this stage-class (Table 3.2).
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Figure 3.9: Estimated values of the latent states (ni,j,t) representing abundance of coho salmon from the best
fitting state-space model (MBLL) from 1986–2011. Counts are displayed in the thousands, and represent the
juvenile (a,b), smolt (c,d) and spawner stages (e,f), for the EF (a,c,e) and MF (b,d,f) of Lobster Creek. Dots
are the observed counts, red lines are posterior means and the gray regions represent 95% credible intervals of
the latent states.
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Figure 3.10: Posterior mean estimates of coho salmon abundance based on the deterministic components
of the process equations of two models for Lobster Creek from 1986–2011. Abundance is displayed in the
thousands, and represents the juvenile (a,b), smolt (c,d) and spawner stages (e,f), for the EF (a,c,e) and MF
(b,d,f). Dots are the observed counts, and the red solid lines and gray regions are the posterior means and
95% credible intervals, respectively, for MBLL. The blue dashed lines are the posterior means for an identical
model but with habitat covariates at both the juvenile and smolt stages (MBhLhL). Blue dashed lines are
almost identical to the red lines for the spawner stage so are obscured.

57



Comparing the estimated deterministic components of the process model (log ñi,j,t; (2.1) in

Section 2.2.2.1) of MBLL to the observed data indicates the ability of the model to explain

variation in abundance one year ahead (Fig 3.10). Fit appears adequate and a large part of

the variation in abundance for each stage-class appears to be explained by abundance of the

preceding stage, in the preceding year. The most notable deviations occur at the spawner stage

in both streams from 2002–2011, when observations of spawner numbers are substantially higher

than the expectations from the deterministic process model (Fig 3.10). Although the observed

spawner numbers were high over that period, observed smolt numbers were close to average, and

while the values for survival of hatchery smolt were high (O), they were similar to the period

from 1986–1991 when the observed survival from smolts to spawners was much lower (Fig 3.10).

These patterns were largely reflected in general predictive checks (appendix Section 8.4). For

the most part, partially marginalized predictions of replicate data, ỹrepi,j,t, from MBLL appear to

be largely comparable with the observed data for the juvenile and smolt stages, with only a few

individual years showing consistent discrepancies. However, systematic inconsistencies between

observed and replicated data were detected for the spawner stage (appendix Section 8.4). The

model appears unable to achieve the high observed abundances in the early 2000’s in both streams

and consistently produces replicated data higher than the observed abundance during parts of

the low-abundance phase in the mid-1990’s in MF.

3.2.5 Fit of habitat models

The habitat models with a covariate at the smolt stage (MBLhL, MBhLhL) explained more of the

variation in the data (D(θ)
C

m=196.1–197.1) than MBLL (D(θ)
C

m=205.8) and resulted in lower

DIC values (∆DICC
m >3.4–6.0; Table 4.4). The parameter estimates of γ and η also suggested

that there was evidence for relationships between demography and habitat modification, however

there was considerable uncertainty in posterior distributions of both parameters. The estimates

of η by MBhLhL predicted that survival of smolt in years with enhanced rearing habitat to be

1.65 (1.12–2.35) times that in normal years, with 99.3% of the posterior density greater than
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1 (Fig 3.11). There was more uncertainty in the estimation of γ, with the asymptote of the

Beverton-Holt function (the carrying capacity) for juveniles estimated to be 1.68 (0.88–3.36)

times higher during years with enhanced habitat, and 93.3% of the posterior density was greater

than 1. The model with only a covariate at the juvenile stage displayed similar fit to MBLL as

measured by D(θ)
C

m (205.3 vs 205.8) and DICm (241.1 vs 239.3).
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Figure 3.11: The relative increase in (a) survival of smolts, and (b) asymptote of the Beverton-Holt function
describing compensation at the juvenile stage, when rearing habitat was enhanced in Main Fork in comparison
to normal conditions. Lines displayed are the estimated posterior densities for model MBhLhL (solid lines), the
same model with independent process errors between streams (M∗

BLL; gray lines) and for models with only
one habitat parameter (dotted lines; a, MBLhL, b, MBhLL).

The improvements in fit of MBhLhL over MBLL are displayed in Figure 3.10. The addition of

habitat parameters at both the juvenile and smolt stages allowed the deterministic component of

the process model to attain levels close to the observed counts in MF in the years following the

habitat addition. In contrast, MBLL underestimated abundance in these years by a substantial

amount. This is most obvious in 1993 and 1994 for juveniles, and 1994 and 1995 for smolts.

It is interesting to note that failure to account for correlation in process errors between

streams affected estimates of habitat effects. Estimates of parameters γ and η, and thus the

change in survival and change in carrying capacity, in M∗BLL showed greater uncertainty and/or

a greater proportion of their density below one than MBLL (Fig 3.11; gray lines).
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Table 3.3: Results of leave-one-out cross validation tests of the performance of models where juvenile and/or
smolt data were excluded from the dataset, assessed by comparing predicted spawner abundance in ‘missing
data’ years with observed abundance. Measurements are bias, standard deviation, root mean squared error
and mean half width of 95% central credible intervals of posterior estimates of the latent states in the spawner
stage-class.

EF MF Total

Model Bias SD RMSE HW Bias SD RMSE HW Bias SD RMSE HW
MBLL 46 228 232 505 71 185 198 651 59 206 214 578
MNBL 67 251 259 565 80 203 218 680 73 225 237 623
MBNL 63 247 255 565 68 184 196 660 65 215 225 613
MNNB 126 276 304 803 95 277 293 814 111 274 295 808

3.2.6 Importance of data from each stage

Cross validation indicated that all models tested had relatively poor performance with respect

to predicting spawner abundance in the years where data was excluded (Table 3.3). Mean bias

was greater than 59 spawners for all models and very high variation was present in estimates

of spawner abundance in the excluded years (mean 95% credible interval half-widths 578). All

summary statistics were relatively similar for MNBL and MBNL, although they were all worse

than observed for the model for the full dataset, MBLL. Performance of MNNB at predicting the

latent abundances was considerably worse than the other three models, with bias, RMSE and

credible interval half-widths about 1.9, 1.4 and 1.4 times larger than the equivalent measures for

MBLL

3.3 Discussion

3.3.1 General description of dynamics of spawner abundance

Fluctuations in abundance of Pacific salmon are highly correlated across many populations,

and there are even correlations among populations of different species (Adkison et al., 1996;

Mueter et al., 2002). The dynamics of spawner abundance in Lobster Creek broadly follow

those described for coho salmon elsewhere in the Pacific North-West (Beamish et al., 2000;

Bradford and Irvine, 2000), and within the OCN ESU (Wainwright et al., 2008; Buhle et al.,

2009), to which Lobster Creek belongs. In general, the early–mid-1990’s were a period of poor
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marine survival of coho salmon (Beamish et al., 2000, 2008; Koslow et al., 2002), with declines in

abundance occurring to the point where many populations reached historically low abundances

(Wainwright et al., 2008; Buhle et al., 2009). In contrast, the 2000’s have returned to more

favorable conditions and, while displaying marked variability, escapements have rebounded to

more healthy levels again. Escapement of spawners in Lobster Creek followed this pattern very

closely, with the exception being that abundance early in the time-series in MF (1986–1991) was

very low and similar to the levels observed during the generally poor period exhibited in EF and

other populations (1993–1998).

The mechanisms involved in these dynamics have been well discussed previously (e.g. Brad-

ford and Irvine, 2000) and for this reason will not be presented in detail herein. Long-term

declines since at least the early 1900’s have been attributed to the synergistic effects of over-

harvesting by fisheries (Johnson, 1984), unfavorable climatic conditions (Beamish et al., 2000),

modification of spawning habitat - both in-stream and via changes in surrounding land use

(Hartman et al., 1996; Bilby and Mollot, 2008), and a negative influence of hatchery-released

fish (Chilcote, 2003; Nickelson, 2003; Buhle et al., 2009). However, most of the annual variation

in abundance of spawners during the time-series available for Lobster Creek can presumably be

attributed to prevailing climatic conditions, especially during the ocean stage of the life-cycle

(Beamish et al., 2000). Survival rates of smolts to spawners in Lobster Creek varied by more than

an order of magnitude, displaying just how much spawner abundance can vary even when smolt

abundance is relatively constant. In general, ocean conditions that include features such as cold

sea-surface temperatures, weak downwellings and later spring transition dates, among others,

appear to be favorable for the survival of coho salmon once they enter the marine environment

(Hobday and Boehlert, 2001; Botsford and Lawence, 2002; Logerwell et al., 2003). These condi-

tions appear to be controlled by a combination of large-scale climatic and ocean current systems,

and local weather and sea patterns (Mueter et al., 2002). There is also evidence that relatively

abrupt changes, or regime shifts, occur in these processes, which has led to the distinct periods of

favorable (2000’s) and unfavorable (1990’s) conditions for coho and several other pacific salmon
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species (Beamish et al., 2000; Irvine and Fukuwaka, 2011).

3.3.2 Changes in juvenile and smolt abundance

The dynamics of juvenile and smolt abundance in Lobster Creek generally followed that of

spawners, although changes between the favorable and unfavorable periods were less extreme,

especially for juveniles. In fact in some years during the early–mid-1990’s juvenile abundances

reached moderate levels, exhibiting the potential for high productivity even when escapement of

spawners is very low. This demonstrates that the freshwater and oceanic stages are ‘decoupled’

from each other to some degree and reiterates that to gain a full understanding of abundance

throughout the life-cycle and the role of coho in both habitats, then monitoring in both is

essential. Inferring the status of freshwater stages from spawner counts will clearly be unsound.

The reasonable fit of the deterministic components of both the juvenile and smolt process

models indicates that juvenile and smolt abundance can largely be explained by a Beverton-

Holt-type non-linear relationship and a linear relationship with abundance of the previous stage

in the previous year, respectively. Without compensation in the former relationship, the deter-

ministic components of the process model would predict juvenile abundance in years following

high spawner abundance well above the observed counts, for instance during many of the years

2001–2011. The remaining unexplained process error in the juvenile and smolt stages could have

been introduced from a variety of sources, for example environmental variation related to flow

rates, water temperatures, depredation etc. Including covariates to account for these processes

has the potential to improve the inferential and predictive properties of the model, but requires

formulation of appropriate hypotheses and measures of the covariates themselves.

3.3.3 Inflated process errors at the spawner stage

Despite the adequate performance of the juvenile and smolt process models, both temporal

and spatial components of the process errors were moderate at both stages. By comparison

though, process errors at the spawner stage were considerably larger, especially the temporal

component, indicating that the deterministic components of the spawner process model showed
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limited ability in explaining variation in the observed counts. Furthermore, this inflated process

error was evident not only in the estimates of the variance components but also the predictive

performance of the models in the cross validation, which displayed relatively high uncertainty, and

the variability in partially marginalized predictive distributions for the latent states of spawners.

The latter resulted in statistical checks of model adequacy that suggested that the best models

showed weakness for this stage, and there were discrepancies between the data and replicated

data simulated from the model (Appendix Section 8.4). While this is not ideal, instead of

‘rejecting’ the model it merely suggests that profitable future work would include investigation

of the (presumably) environmental determinants of this unexplained error.

The inadequacy of the spawner process model appears to be due to the OPI covariate being

unable to predict the very high abundances observed during several periods of the time-series.

This was most notable during some of the years between 2002–2011, when the deterministic

components substantially underestimated the observed abundance. The OPI was high for the

early and late periods but dropped to a low level in the early–mid-1990’s. While spawner

abundance followed a similar pattern, it was substantially lower during the early period than

towards the end of the time-series, especially in MF. This presumably prevented smolt to spawner

survival being directly proportional to OPI, resulting in the bias. OPI therefore appears to be

an inadequate covariate for marine survival of the wild populations in Lobster Creek. The

deficiencies of OPI are perhaps not surprising given the difficulties in its estimation, the large-

scale nature of it’s estimation, and the possibility of considerable differences in the survival

abilities of hatchery and wild stocks, especially over a range of environmental conditions (Einum

and Fleming, 2001; Buhle et al., 2009).

3.3.4 Using models for prediction

One of the consequences of high process error is that predictive performance will be very im-

precise (as evidenced by the cross validation exercise), which makes setting management targets

for future runs highly uncertain. This would make these models appear to be unsuitable for
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this purpose when compared to currently implemented methods, however it may be that they

are just more realistic in their treatment of uncertainties occurring in the system. The latest

preseason prediction of OCN coho abundance made by the Pacific Fishery Management Council

(Pacific Fishery Management Council, 2012) is based on multi-modal inference over a set of gen-

eralized additive models that differ in the explanatory variables used to model past abundances.

The latter largely involve a range of physical oceanic variables with only one model containing

the number of spawners three years earlier as a predictor variable, and no consideration of the

underlying population dynamics. While this approach (and earlier versions e.g. Pacific Fishery

Management Council, 2009) have been moderately successful in the past (Pacific Fishery Man-

agement Council, 2012) due to the profound effects of ocean conditions on escapement levels,

formal decision analysis for management decisions such as setting harvest limits requires robust

uncertainty estimates (Punt and Hilborn, 1997). The latter are presumably significantly under-

estimated in currently implemented predictive models due to the absence of process uncertainty.

If state-space life-cycle models similar to Lobster Creek were to be used for prediction and

setting management targets for OCN coho salmon, then improving the deterministic components

of the spawner process model to reduce predictive uncertainty at this stage, should be the highest

priority, as their use with the current levels of uncertainty are questionable. This may be achieved

by expanding the range of covariates considered when explaining marine survival, such as specific

physical measurements of ocean conditions or perhaps broad-scale climatic indices, for example.

Due to the computational demands of state-space models, vast numbers of candidate models are

prohibitive, thus considerable thought would be required to pare the set down to a manageable

number. Prior studies of relationships between marine survival for coho salmon and physical

processes (e.g. Hobday and Boehlert, 2001; Botsford and Lawence, 2002; Logerwell et al., 2003)

could be useful in this regard.
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3.3.5 Locating timing of compensation with life-history models

Rarely, if ever, have the vital rates for the transitions between the three most distinct stages

of the coho life-cycle been investigated using structural models, although Bradford et al. (2000)

investigate three stages in an ad hoc manner. For coho, as with other Pacific salmon, the most

prevalent use of modeling has been spawner-only stock-recruitment analyses, often aiming to

identify the strength of compensation and setting management reference points (e.g. Adki-

son et al., 1996; Barrowman and Myers, 2000). Compensation is almost always assumed, and

generally compensation parameters are found to be strong, although it should be noted that

alternative, density-independent models are seldom considered.

Several studies of coho salmon which utilized observation error-only models have detected

compensation between the spawner and smolt stages (when juvenile abundance estimates are

unavailable; Bradford et al., 2000; Barrowman et al., 2003). Others have investigated seasonal

habitat selection during the juvenile stage in the OCN region, and have suggested that compensa-

tion was likely to be occurring during this part of the life-cycle (Nickelson et al., 1992; Nickelson

and Lawson, 1998). This was attributed to the limitation in the availability of suitable rearing

habitat and the territorial behavior of juveniles at that time. Models of coho salmon in Lobster

Creek generally support these inferences and suggest that the majority of compensation is that

stream occurred by the time juveniles were surveyed in their first summer after emergence.

3.3.6 Detecting responses to perturbations

Habitat covariates were successfully incorporated into the state-space model, and detected in-

creases in the capacity of juveniles and survival of smolts, despite the presence of substantial

process error. Results largely agree with the inferences of Solazzi et al. (2000) who suggested

that survival from the juvenile to smolt stages, and to a slightly lesser degree, the abundance of

juveniles, benefited from additional rearing habitat. That the current study suggested a poten-

tial increase in the carrying capacity of juveniles with additional rearing habitat (although there

was significant uncertainty around this difference), indicates the advantages of using a structural
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modeling approach where various derived parameters, in this case carrying capacity, can be easily

accommodated into testing. In contrast, Solazzi et al. (2000) only assessed changes in juvenile

abundance which do not account for the size of the spawner population in the preceding year,

which could add significant variation to the data being compared.

There are several other advantages of incorporating covariates or indicator variables into

structural models over alternative, more ad hoc approaches. The former partitions variation

between different sources, lessening the potential for random variation to be attributed to the

‘effect’ being tested. For example, survival (to be related to the covariate) is measured between

estimates of latent variables in adjoining years rather than between raw, observed counts. Fur-

thermore, habitat effects on multiple vital rates and abundance parameters can be investigated

simultaneously due to the flexibility of the Bayesian state-space formulation, rather than apply-

ing multiple univariate tests with different response variables (Solazzi et al., 2000). Lastly it

is difficult to envisage how traditional models/analyses relying on linear regression could detect

relationships between compensation parameters (at the juvenile stage in this study for example)

and covariates without undertaking an ad hoc two-step process.

3.3.7 Predictive advantages of life-history models

When juvenile and/or smolt data were excluded from the dataset used for modeling, large dif-

ferences in predictive performance were observed using a cross validation approach. Traditional

stock-recruitment models are most closely related to the spawner-only situation of model MNNB,

although they generally assume only observation error in the response variable, and most often

assume a Ricker instead of a Beverton-Holt model. Notably this was the worst performing of

the ‘exclusion’ models tested, exhibiting the highest values for all summary statistics in the cross

validation exercise, suggesting that including juvenile and smolt data in models has substantial

benefits for prediction. Interestingly, the consequences of excluding only juvenile data (MNBL),

and only smolt data (MBNL), were similar and it is difficult to address which would be more

suitable to include in monitoring programs if funding necessitated making a choice between them.
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It could be argued that measuring smolt abundance allows survival over the entire life-cycle to be

partitioned into freshwater and oceanic components most effectively, although the estimation of

density dependence is extremely important for determining where in the life-cycle management

can be directed to release the population from limitation, for example. In the case of the latter,

measuring abundance close to the timing of density dependence seems sensible and so monitoring

of juvenile abundance may be desirable.

These inferences relate solely to the predictive performance of models with respect to spawner

abundance. For example, there is a strong possibility that the predictive performance of MNBL

would be considerably worse than MBLL if the cross validation was performed at the smolt

stage instead. In addition, there are other benefits to including data from all stages such as the

ability to reliably partition survival between different stages and identifying the true location of

compensation. Which stages are most important to monitor will depend on the objectives of the

study. The modeling can provide some guidance however, as the results indicate that juvenile

and smolt data can both improve prediction of spawner abundance, and their availability allowed

the investigation of a range of hypotheses such as the effects of various factors during different

parts of the life-cycle that would otherwise be impossible.

3.3.8 Conclusions

The state-space life-history model for the Lobster Creek dataset demonstrated the flexibility of

the approach, especially when fitted within a Bayesian framework. In general these models can

be modified to test a wide variety of hypotheses, with the main constraint being whether all

parameters in the model are identifiable. For the purposes of the Lobster Creek model this was

achievable, and despite relatively high levels of uncertainty, the effects of habitat modification

on coho salmon dynamics appear detectable. This dataset is unusual however in that monitoring

was undertaken to high standards over a long time frame (Lorion, 2011). Datasets for the wider

OCN coho populations exhibit some challenging features, including much more complicated

monitoring programs, which would require careful construction of state-space models. However,
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the potential gains that can be made in inferential and predictive ability as displayed by the

Lobster Creek model suggest that these efforts may be worthwhile.
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Chapter 4

Multilevel fit of Bayesian state-space
population dynamics models

4.1 Introduction

A major challenge when studying animal population dynamics using time-series of abundance

data is the presence of multiple sources of uncertainty. In the past, analyses failed to partition

uncertainty into its appropriate components, usually in response to meeting the assumptions of

relatively crude statistical models (Polacheck, Hilborn, and Punt, 1993). Increasing sophistica-

tion of modeling techniques over the last two decades has lead to the present situation, where

complex models of population dynamics incorporating several sources of stochasticity, are rou-

tinely fitted to data. Key to these developments have been the adoption of state-space models

(Carlin, Polson, and Stoffer, 1992), which link sub-model/s describing the hidden population

processes in the system (process models), with those describing how these hidden states have

been observed (observation models), and integrated models (which generally include state-space

structures) which allow the joint analysis of multiple sources of demographic and abundance

data (Maunder, 2003).

These models have undoubtedly improved many aspects of inferences that are made from this

type of data, including, superior estimation of demographic parameters (Besbeas et al., 2002,

2003; Thomas et al., 2005), in some cases parameters that would not otherwise be identifiable

(Abadi et al., 2012), and more robust prediction (Clark, 2003). The costs are, firstly, that high

dimensionality of the models make them difficult to fit, and generally precludes the use of tra-
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ditional statistical software. For this reason, the flexibility of the Bayesian framework when

fitting models using Markov chain Monte Carlo (MCMC) techniques has led to it being widely

adopted by a growing number of analysts in statistical ecology, and especially for state-space

models of population dynamics (Gimenez et al., 2009). Secondly, the presence of hierarchical

structures makes selecting among a set of candidate models difficult, at least using an information

theoretical-type (Akaike, 1973) approach. Using information theory, model selection typically

involves trading off model fit and complexity, however for hierarchical models the latter is diffi-

cult to define, as what constitutes a ‘likelihood’ is not unique (Spiegelhalter et al., 2002). This is

not to say that information theory offers the optimal solution to model choice, especially in light

of alternative Bayesian techniques, such as Bayes factors (Kass and Raftery, 1995), reversible

jump MCMC (RJMCMC) (Green, 1995), minimum message length (Wallace, 2005) and posterior

predictive loss (Gelfand and Ghosh, 1998), which often implicitly account for model complexity.

However, there is little consensus, even among statisticians, as to which is the best approach for

certain situations. Many of the alternatives will not generally be considered by ecologists owing

to the technical nature of their calculation, or practical problems in their implementation. Fur-

thermore, there has been a recent strong emphasis placed on information theoretical approaches

by both frequentist (Burnham and Anderson, 2002) and Bayesian (McCarthy, 2007; Gimenez

et al., 2009) ecologists.

One variant of the information theoretic approach involves comparing models on the basis of

the Deviance Information Criterion (DIC; Spiegelhalter et al., 2002). DIC is calculated by adding

the mean posterior deviance from MCMC samples, D(θ) (a measure of model adequacy), and

a penalty function, the estimate of the effective number of parameters in the model, pD (model

complexity). The statistic pD is itself calculated as D(θ) − D(θ̄) where D(θ̄) is the deviance

calculated at the posterior point estimate of the parameters (usually the mean) and is sometimes

termed the ‘plug-in’ estimate.

DIC is well suited to the analysis of a wide range of models because the complexity of the

model (as estimated by pD) can be estimated even in the presence of hierarchical structures,
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it is trivial to calculate from MCMC samples, and is an output from WinBUGS, the most

utilized software for carrying out ecological analyses in a Bayesian framework. Unsurprisingly,

it has quickly become popular in a number of applied disciplines (e.g. Berg, Meyer, and Yu,

2004; Wilberg and Bence, 2008; Shriner and Yi, 2009), including modeling animal population

dynamics (e.g. Schaub et al., 2007; Abadi et al., 2012; Rhodes et al., 2011). In a recent review of

integrated models in terrestrial ecology, three of thirteen studies undertaking integrated modeling

in a Bayesian framework utilized DIC for selecting among models (Schaub and Abadi, 2011),

with many additional (‘non-integrated’) state-space applications also adopting this approach

(e.g. Holdo et al., 2009; Davies and Jonsen, 2011; Moore and Barlow, 2011; Zhou et al., 2011).

Presumably, this number will increase markedly in years to come as state-space and integrated

modeling continues to move away from investigations of statistical properties towards practical

ecological applications (Schaub and Abadi, 2011).

Unfortunately, DIC has several contentious properties. Among others, questions have been

raised about its theoretical justification, the choice of the ‘plug-in’ estimator and the fact it is only

a point estimate, the sensitivity to reparameterization that can result from the use of θ̄ as a plug-

in, and critically, the choice that has to be made as to which parameters in the model are to be

focused on (Dawid, 2002; Meng and Vaida, 2006; Smith, 2002; Spiegelhalter et al., 2002; Celeux

et al., 2006). The latter is particularly relevant for models with hierarchical structures. For

instance, different values of DIC can be calculated depending on what is considered the likelihood

and what is considered prior information for the model, and consequently, what constitutes θ

in the above description. Indeed, Bolker (2008) predicted ‘that ecologists will rapidly begin to

misuse deviance information criterion (DIC), since it is computed automatically by WinBUGS

and is the easiest method of Bayesian hierarchical model selection.’ Herein it is established that

this is already occurring for state-space models recently fitted to animal abundance data, where

the calculation of DIC has been misplaced within the model.

The problem with naive use of DIC occurs when the differences in models being compared

occur in the process model. The standard estimate of DIC is based on the fit of the latent states
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to the observations of abundance, however substantial process errors can compensate for an

inadequate process model. This may result in poor performance in selecting among models, and

erroneous metrics of the distance of the best model from others in the set. This was recognized by

Moore and Barlow (2011) who compared a suite of state-space models fitted to transect survey

data for whales. They noted large process errors present in the system that resulted in similar

fit between models being compared, and undertook an ad hoc approach to model selection by

refitting the models with only observation error included, and then comparing them on the basis

of DIC. Similarly, Schaub et al. (2012) also raise the issue of DIC being unsuitable for certain

classes of hierarchical integrated models and again select among models based on simplified

versions, before making inferences from the equivalent full model. This is clearly an undesirable

situation, and so a more robust approach is presented here to deal with these problems.

This unreliability of DIC when selecting among models is similar to the problems encountered

by Millar (2009) for overdispersed count data, and the random effects one-way analysis of variance

example in Spiegelhalter et al. (2002). In both those cases the focus of the DIC was shifted

from the data level to the next level up in the hierarchy by integrating out the data level

random effects to obtain a marginalized likelihood. Here an analogous approach is suggested.

While the potential of refocusing information criteria has been suggested elsewhere (Spiegelhalter

et al., 2002; Meng and Vaida, 2006; Plummer, 2006; Millar, 2009, also see Vaida and Blanchard,

2005 for a classical treatment of the same issue), this approach does not appear to have been

previously utilized in the current context. This may be because the notion of model focus is

not as meaningful in state-space models due to their temporal component. Indeed, it is shown

that the marginalized likelihood does not correspond to a true likelihood and hence can not be

interpreted as the likelihood arising from a re-focused model. Nonetheless, the predictive criterion

resulting from marginalization would appear ideally suitable for many situations where state-

space models are applied, and it is suggested herein that it could potentially be interpreted as a

partial likelihood in the sense that it utilizes only the relevant portion of the likelihood. Schaub

et al. (2012) correctly recognize that the default calculation of DIC in WinBUGS is inappropriate
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for state-space models with extra hierarchical structure beyond one level of stochasticity, in each

of the process and observation models, however it is shown herein that marginalization will also

often be required for application of standard state-space models. This suggests that for many of

the occasions DIC has been previously used in these situations, it has been done so incorrectly

(e.g. Schaub et al., 2007; Holdo et al., 2009; Rhodes et al., 2011; Abadi et al., 2012).

Several simple simulated examples are initially presented in this chapter to clarify situations

when the calculation of DIC must be shifted. The process of calculating DIC at the higher level

is demonstrated, and marginalization is carried out to illustrate the consequences of misuse of

the standard form of DIC. The results of the simple examples are then extended to consider the

dataset of abundance of a coho salmon population in Lobster Creek, Oregon. Datasets are then

simulated to represent realistic dynamics in this system, and a candidate set of models based on

those considered in practice are fitted to each dataset to compare the discriminatory behavior of

DIC calculated at multiple levels. The results of these simulations will provide a basis for which

the utility of DIC in selecting among state-space population dynamics models can be assessed,

for not only the Lobster Creek situation but also other applications of these models.

4.2 Methods

4.2.1 Calculation of DIC

A detailed outline of the derivation of DIC and its properties is given by (Spiegelhalter et al.,

2002), however the details relevant to this study are presented below. The deviance of a model

with parameters θ is defined as

D(θ) = −2 logp(y|θ) + 2 log l(y)

where y denotes the observed data and l(y) is a standardizing function. As l(y) is a function of

the data alone, and is common to all models, it is ignored for the purposes of model selection
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and the discussion below. DIC is calculated as

DIC = 2D(θ)−D(θ̄) (4.1)

= D(θ) + pD

where pD is the effective number of parameters calculated as pD = D(θ)−D(θ̄), with D(θ) being

the posterior mean deviance, and D(θ̄) is the deviance evaluated at the posterior estimates (often

the means) of the parameters θ. Using this formulation pD can be interpreted as a measure of

the difficulty of fitting the model, or the reduction in uncertainty attributable to estimation.

4.2.2 Structure of state-space models

At its most basic, a state-space model of animal abundance describes the dynamics of two linked

processes. These are the unobserved dynamics of the system, which have a time-series component

(the state equation, or process model), and the dynamics of how these unobserved states are

linked to observed data via the sampling processes (the observation equation, or observation

model). An example of such a model (previously presented in Section 1.8) is given by three

equations

nt = f(nt−1,ψ) + εt , for t = 1, 2, ..., T (4.2)

yt = g(nt, ξ) + νt , for t = 1, 2, ..., T (4.3)

n0 ∼ h

where nt is the latent state and yt is the observation, both in year t, and ψ and ξ are vectors of

model parameters. In general the states and observations could be multidimensional, but herein

they will be univariate and correspond to the true abundance of an animal and its observed

abundance, respectively. Functions f and g represent the deterministic components of the process

and observation models, and εt and νt are the process and observation errors, respectively. Often

εt and νt are assumed to be normally distributed with mean zero and variances τ2 and σ2,

which are denoted the process and observation error variances, respectively. In (4.2) and (4.3)

errors are assumed to be additive but, in practice, could take a multitude of forms. The prior
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distribution, h, is placed on the initial state n0 under a Bayesian framework. To keep future

notation concise the deterministic component of the process model will at times be denoted ñt,

i.e. ñt = f(nt−1,ψ).

4.2.3 Focus of DIC for state-space models

4.2.3.1 Standard DIC for state-space models

The joint density function (of data and parameters) for a Bayesian state-space model with nor-

mally distributed process and observation errors is easily obtained as the product of terms from

sequentially conditioning on the elements of the sequence (n0, n1, y1, n2, y2, ..., nt, yt), whereby

each element is conditioned on all preceding elements. Letting n[−t] denote all elements in the

sequence preceding nt (and similarly for y[−t]), it is the case that

p(nt|n[−t], ξ, σ
2,ψ, τ2) = p(nt|nt−1,ψ, τ

2)

p(yt|y[−t], ξ, σ
2,ψ, τ2) = p(yt|nt, ξ, σ2) .

The joint density function is therefore

p(y,n, n0, ξ, σ
2,ψ, τ2) = p(y|n, ξ, σ2)p(n|n0,ψ, τ

2)p(n0,ψ, ξ, τ
2, σ2) , (4.4)

where n = (n1, ..., nt), and

p(y|n, ξ, σ2) =

T∏
t=1

p(yt|nt, ξ, σ2) , (4.5)

and

p(n|n0,ψ, τ
2) =

T∏
t=1

p(nt|nt−1,ψ, τ
2) .

DIC of state-space models is currently implemented using the data likelihood from (4.5), and is

denoted DICd herein.

4.2.3.2 Partial DIC for state-space models

It is much less natural, but nonetheless still valid, to obtain the joint density function in (4.4)

by sequentially conditioning on the elements of the sequence (n0, y1, n1, y2, n2, ..., yt, nt) in that
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order. Then, it is the case that

p(nt|n[−t], ξ, σ
2,ψ, τ2) = p(nt|nt−1, yt,ψ, τ

2)

p(yt|y[−t], ξ, σ
2,ψ, τ2) = p(yt|nt−1, ξ, σ

2) .

Hence

p(y,n, n0, ξ, σ
2,ψ, τ2) = p∗(y|n, ξ, σ2)p∗(n|n0,y,ψ, τ

2)p(n0,ψ, ξ, τ
2, σ2) ,

where

p∗(y|n, n0, ξ, σ
2) =

T∏
t=1

p(yt|nt−1, ξ, σ
2) , (4.6)

and

p∗(n|n0,y,ψ, τ
2) =

T∏
t=1

p(nt|nt−1, yt,ψ, τ
2) . (4.7)

It is proposed herein that the density in (4.6) be used to implement DIC. This term has the

intuitive appearance of a partially marginalized likelihood and the associated DIC will be denoted

DICm. However, it is important to note that it has no formal interpretation as a likelihood

because y are also contained in (4.7). It is for this reason that (4.6) is termed a partial likelihood

herein. Similarly, it would not be appropriate to say that the focus of the deviance has been

changed.

It is interesting to take a closer look at (4.7), which is ignored by using partial deviance. It

could be argued that this term represents the degree to which the process equation has been

altered by having observed yt. This is precisely the concern that was raised in Section 4.1,

namely that the standard DIC can be compromised when process errors compensate for poor

deterministic process equations. Therefore, the level at which calculation of DIC is most suitable

is dependent on context, although it will be shown that DICm is more suitable for situations

where models in a candidate set differ in the structure of their process model, which is frequently

the case in the applications of these models (e.g. Schaub et al., 2007; Holdo et al., 2009; Abadi

et al., 2012; Moore and Barlow, 2011; Rhodes et al., 2011).
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4.2.4 Testing criterion with simulation

Herein, the general approach to testing the performance of the two forms of DIC is to simulate

replicate datasets from a known model (which will be referred to as the true model), fit a set of

candidate models that includes the true model and one or more alternative models, to the data,

and observe the ability of DICd and DICm in identifying the true, data-generating model.

4.2.4.1 Poisson-gamma example

This example represents the situation where an animal population occurs at low abundance. In

these cases sampling programs typically result in count data that are incorporated within a state-

space model by assuming a discrete observation model based on Poisson or negative binomial

sampling distributions for example (e.g. Abadi et al., 2012). Process models can take many

forms and typically involve both deterministic and stochastic elements with numerous choices

to be made about the structure of each, depending on the dynamics of the population and the

aims of the study. In light of this, an example is presented here to represent an unstructured

population at low abundance, with a count-based sampling process.

The observation and process models are assumed to follow Poisson and gamma distributions,

respectively, which makes for simple analytical calculation of the partially marginalized DIC while

also providing a similar structure (albeit, much simplified) to models that may be considered in

practice. These equations are

yt|nt ∼ Pois(nt) , t = 1, 2, ..., T ,

and

nt|α, nt−1,β ∼ Gamma(α, δt(α, nt−1,β)) , t = 1, 2, ..., T (4.8)

where yt and nt are again the observed and latent abundances, and α and δt(α, nt−1,β) are

the shape and rate parameters of the gamma density, respectively. The latter are calculated

δt(α, nt−1,β) = α
ñt

, where ñt is the deterministic component of the process model, and β are

parameters in this deterministic component. Three competing models were considered for the
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dynamics of ñt, the Ricker (MR; (4.9)), Gompertz (MG; (4.10)) and an exponential growth

model (ME ; (4.11))

ñt = β0nt−1exp(−β1nt−1) (4.9)

ñt = β0nt−1exp(−β1lognt−1) (4.10)

ñt = β0nt−1 (4.11)

where β0 is the maximum population growth rate and β1 is a compensation parameter that

quantifies the reduction in the rate of population growth due to density dependent processes

(limited food etc.).

To test the performance of DIC at different levels of the hierarchy the following algorithm

was implemented; 1) simulate a vector of latent states (n∗) from the Ricker process model,

where the ‘∗’ denotes that they are simulated values (4.8) and (4.9), 2) simulate a new vector

of data (y∗) from ∼ Poisson(n∗), 3) fit the three competing models to the simulated dataset,

4) calculate DIC at both the data and partially marginalized levels of the hierarchy, and store,

5) repeat the process N times and calculate summary statistics. Parameter values used for the

simulations were set at β1 = 0.005, n1 = 10, and T = 30, for all scenarios, while the values

of α and β0 were varied. Four scenarios were considered, corresponding to all combinations of

values of α = {50, 80} and β0 = exp{0.3, 0.6} to allow different population dynamics, and levels

of observation and process error in the simulated data. For each scenario N = 250 simulations

were carried out.

Data were generated in the statistical software package R 2.14.0 (R Development Core Team

2010) and the competing models were fitted in OpenBUGS 3.0.3 (Lunn et al., 2009) which

were linked using the packages R2WinBUGS and BRugs. Prior distributions were specified as

n0 ∼ LN(2.5, 0.25), logβ0 ∼ N(0, 10 000), and β1 ∼ Uniform(−5, 5) for all scenarios. The prior

for α was specified as α ∼ LN(3.867, 0.09) and α ∼ LN(4.337, 0.09) when scenarios involved

true values of α of 50 and 80, which are moderately informative, and allow convergence of the

sampler for all model parameters. For each simulated dataset each model was fitted by running

78



two MCMC chains for 40 000 iterations, with samples stored for 1 in every 2 samples after a

burnin of 20 000, resulting in a total of 20 000 samples available for inferences. Convergence

typically occurred much faster than 20 000 iterations but this burnin was specified conservatively

to ensure that convergence occurred before storage of samples for all simulated datasets. The

total number of iterations and thinning rate were established to ensure that the effective number

of samples stored was greater than 1 000 for all parameters.

The identical processes were repeated for another set of scenarios though with datasets gen-

erated from ME , rather than than MR. Parameter values were kept the same except that β0

took on the values β0 = {0.05, 0.09} and β1 is not used in this generation model. The simulation

process was not repeated with data generated from MG because that model is very similar to

MR and results were expected to be consistent.

The data level density is the default choice of DIC in WinBUGS and for the Poisson-gamma

state space model this is given by

p(yt|nt) ∼ Poisson(nt)

and, consequently the deviance at this level is calculated

Dd = −2
T∑
t=1

logp(yt|nt) = −2
T∑
t=1

yt lognt − nt − logyt! . (4.12)

The deviance Dd can then be used in (4.1) to calculate DICd.

The evaluation of DICm for the Poisson-gamma model requires one-dimensional integration

to be able to calculate (4.6) which can be achieved analytically and results in a partial deviance

based on the negative-binomial distribution as follows

Dm = −2
T∑
t=1

logp(yt|nt−1, α,β)

= −2
T∑
t=1

log

∫ ∞
0

p(yt|nt)p(nt|nt−1, α,β)dnt

= −2

T∑
t=1

log

[
(yt + α− 1)!

yt!(α− 1)!

(
α

ñt + α

)α( ñt
ñt + α

)yt]
(4.13)
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where ñt is calculated from (4.9)–(4.11). The partial DIC is then given by using Dm in the

calculation of (4.1).

It must be noted that there are different parameterizations that can be used when calculating

D(θ̄) from (4.12) and (4.13). In WinBUGS the default method is to use the posterior means

of the stochastic parents of n and ñ, if they exist. In the case of the latter this would involve

the posterior means of (nt−1, α,β). A more natural approach, and one that appears to be more

stable, is to calculate the posterior means of ñ directly and use them in (4.13) to calculate Dm,

and that is the technique utilized for all models considered herein.

4.2.4.2 Log-normal example

State-space models of very abundant species often employ log-normal observation and process

models (e.g. Meyer and Millar, 1999). Using similar notation to the Poisson-gamma example,

and undertaking the calculations on the log-scale, the observation and process models are given

by

logyt|lognt, σ
2 ∼ N(lognt, σ

2) , t = 1, 2, ..., T , (4.14)

lognt|lognt−1, r,K, τ
2 ∼ N(log ñt, τ

2) , t = 1, 2, ..., T (4.15)

where σ2 and τ2 are the observation and process error variances, respectively, and the deter-

ministic component of the process model, log ñt, was considered to be derived from either of

two competing functions. The parameterization of the discrete logistic model (ML) commonly

encountered in terrestrial ecology is given by

log ñt = log
[
nt−1 + rnt−1

(
1− nt−1

K

)]
where K and r are parameters representing the carrying capacity and intrinsic maximum popu-

lation growth rate, respectively. An alternative model, denoted the logistic-stepped model (MS),

accommodates a change in carrying capacity part way through the time-series to represent, for

instance, a sudden increase in a food source that was previously limiting population growth.
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This model is formulated

log ñt = log

[
nt−1 + rnt−1

(
1− nt−1

K (1 + γIt)

)]
(4.16)

where It is an indicator variable taking the value of 1 or 0 in year t when the factor releasing the

population from limitation is present or absent, respectively, and γ is a parameter determining

the strength of the relationship between the carrying capacity and the indicator variable.

The same simulation algorithm as the Poisson-gamma example was utilized. Datasets were

simulated from MS ((4.14), (4.15) and (4.16)), and both competing models were then fitted to

each dataset. Parameter values used for the simulations were K = 50 000, r = 0.4, n1 = 10 000,

γ = 0.5, It = 0 for t = 1, 2, ..., 25 and 1 for t = 26, 27, ..., 40, T = 40 and σ = 0.1 for all scenarios,

while τ was varied over the set τ = {0.02, 0.07, 0.1, 0.15, 0.2}, resulting in five scenarios that

had a range of process to observation error ratios. Prior distributions for the parameters in the

models were; K ∼ Gamma(50, 0.001), r ∼ Uniform(0, 1), logn0 ∼ N(9, 4), γ ∼ N(0, 4), σ ∼

LN(−2.548, 0.49) and τ ∼ Uniform(0, 10). In these types of models identifiability of parameters

such as the variance components is often compromised unless prior information is available.

Several of these prior distributions are moderately informative to ensure robust estimates of

posterior distributions. This would correspond to situations in practice where prior information

is received from past studies of the same, or congeneric, species etc. For each scenario, 250

simulations were performed.

Another set of scenarios was investigated where datasets were simulated from ML and both

competing models were again fitted and compared. Parameter values for five scenarios were

identical to above except that parameter γ was absent from the simulation model.

The data level density for this example is

p(logyt|lognt, σ
2) ∼ N(lognt, σ

2)
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and the corresponding deviance is therefore

Dd = −2

T∑
t=1

logp(logyt|lognt, σ
2)

= T log(2πσ2) + 2
T∑
t=1

(logyt − lognt)
2

2σ2

Using Dd in (4.1) allows the calculation of DICd.

The marginalization required to calculate the partial deviance is explicit in this case since the

observation and process equations are both linear and normally distributed. Specifically, yt|nt−1

is normal with mean log ñt and variance τ2 + σ2. The partial deviance is therefore

Dm = −2
T∑
t=1

logp(logyt|log ñt, σ
2, τ2)

= −2
T∑
t=1

log

∫ ∞
−∞

p(logyt|lognt, σ
2)p(lognt|log ñt, τ

2)dnt

= T log
(
2π
(
σ2 + τ2

))
+ 2

T∑
t=1

(lognt − log ñt)
2

2(σ2 + τ2)
. (4.17)

Using Dm from (4.17) in (4.1) allows the calculation of DICm.

4.2.5 Lobster Creek coho salmon example

4.2.5.1 Evaluation of DIC on an empirical dataset

A set of candidate models which differed only in the form of the deterministic components of their

process equations were fitted to the Lobster Creek dataset, with the details of their structure

presented in Sections 2.2.2–2.2.3 and Table 2.1. The necessary details are repeated here. The

observation model for this example was

logyi,j,t|logni,j,t, σ
2
i,j,t ∼ N(logni,j,t, σ

2
i,j,t) , i = 1, 2, 3, j = 1, 2

where logyi,j,t are the observed log-abundances, logni,j,t are the latent states, and σ2
i,j,t are

observation error variances, each for stage-class i, in stream j, in year t. It should be noted that

observations of abundance for the juvenile and smolt stages (y1,j,t and y2,j,t) were only available

for t = 3, 4, ..., 26, while observations of abundance for spawners (y3,j,t) were only available for

t = 1, 2, ..., 25 (Sections 2.2.1.4–2.2.1.6). The variances σ2
i,j,t were derived from the sampling
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variances estimated as part of the monitoring programs (see Sections 2.2.1.4–2.2.1.6) and these

were included in the model as constants rather than parameters to be estimated (e.g. King et al.,

2008).

The general process model can be represented by

logni,j,t = fi(logni−,j,t−1,ψi) + εi,j,t , i = 1, 2, 3, j = 1, 2

where it must again be noted that i− denotes the preceding stage-class instead of the more

natural i−1, as n1,t is a function of n3,t−1, not n0,t−1 as would be suggested by the latter. The fi

are stage-specific functions representing the deterministic processes (with the stage-class-specific

vectors of parameters ψi) linking abundance in each stage-class to abundance in the preceding

stage-class in the preceding year, and εi,j,t are the process errors. The process equations were

modeled over different time periods depending on the presence of observations in the previous

stage-class. For juveniles this period was t = 3, 4, ..., 26, for smolt it was t = 4, 5, ..., 26 and for

spawners it was t = 4, 5, ..., 25. The process errors were in turn modeled

εi,j,t = ωi,t +$i,j,t , ωi,t ∼ N(0, τ2
i ) , $i,j,t ∼ N(0, δ2

i ) (4.18)

where ωi,t are the temporal, and the $i,j,t are the spatial components of process error, each with

a mean of zero and stage-class-specific variances τ2
i , and δ2

i , respectively. The deterministic com-

ponents of the process model, denoted log ñi,j,t, were calculated log ñi,j,t = fi(logni−1,j,t−1,ψi).

The details of the structure of fi(logni−1,j,t−1,ψi) for each individual model considered are given

in Table 2.1.

Although the Lobster Creek example has additional stage-classes, and more complicated

process models, it is fundamentally similar to the log-normal example (Section 4.2.4.2) and this

is reflected in the similarities when calculating DICd and DICm. The data level density for these

models was

p(logyi,j,t|logni,j,t, σ
2
i,j,t) ∼ N

(
logni,j,t, σ

2
i,j,t

)
83



and, consequently the deviance at this level is calculated

Dd = −2
3∑
i=1

2∑
j=1

Ui∑
t=ui

logp
(
logyi,j,t|logni,j,t, σ

2
i,j,t

)
(4.19)

= 2
3∑
i=1

2∑
j=1

Ui∑
t=ui

log
(√

2πσ2
i,j,t

)
+

(logyi,j,t − logni,j,t)
2

2σ2
i,j,t

where u = (u1, u2, u3) = (3, 3, 1) as estimates of abundance for juveniles and smolt only began

in 1988 (t = 3), and U = (U1, U2, U3) = (26, 26, 25) as no estimates of spawner abundance for

2011 (t = 26) were yet available at the time of analysis. Again, DICd is calculated using Dd in

(4.1).

Calculating the partial deviance again requires marginalization, which is very similar to the

log-normal example, and is thus available in closed form. The partial deviance is consequently

calculated by

Dm = −2

3∑
i=1

2∑
j=1

Ui∑
t=ui

logp(logyi,j,t|logni−1,j,t−1,ψi, σ
2
i,j,t, τ

2
i , δ

2
i )

= −2

3∑
i=1

2∑
j=1

Ui∑
t=ui

log

∫ ∞
−∞

p(logyi,j,t|logni,j,t, σ
2
i,j,t)p(logni,j,t|logni−1,j,t−1,ψi, τ

2
i , δ

2
i )dni,j,t .

(4.20)

To evaluate (4.20) it is useful to note that the process errors in (4.18) can be reparameterized in

the form of a bivariate normal distribution for the two streams, and so after partial marginal-

ization a bivariate normal distribution will also result, and is given by

p(logyi,j,t|logni−1,j,t−1,ψi, σ
2
i,j,t, τ

2
i , δ

2
i ) ∼ N(µi,t,Σi,t)

where the mean vector, µi,t, and the covariance matrix, Σi,t, for stage i and year t, are given by

µi,t =

 log ñi,1,t

log ñi,2,t

 , and Σi,t =

 κ2
i,1,t ci,t

ci,t κ2
i,2,t
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and

κ2
i,1,t = σ2

i,1,t + τ2
i + δ2

i

κ2
i,2,t = σ2

i,2,t + τ2
i + δ2

i

ci,t = ρ× κi,1,t × κi,2,t = τ2
i

ρi,t =
τ2

κi,1,t × κi,2,t
.

Consequently, the partially marginalized deviance is given by

Dm = −2
3∑
i=1

Ui∑
t=ui

log

 1

2πκi,1,tκi,2,t
√

1− ρ2
i,t

exp

(
− 1

2(1− ρ2
i,t)

[
(logyi,1,t − log ñi,1,t)

2

κ2
i,1,t

+

(logyi,2,t − log ñi,2,t)
2

κ2
i,2,t

− 2ρi,t(logyi,1,t − log ñi,1,t)(logyi,2,t − log ñi,2,t)

κi,1,tκi,2,t

]))
(4.21)

where u = (3, 4, 4) and U = (26, 26, 25). Inserting Dm into (4.1) results in the calculation of

DICm.

Note that DICm is calculated over a slightly more restricted range when using (4.21), as in

practice the process model is typically initiated in the year following the first observation in the

time-series (e.g. Schaub et al., 2007; Abadi et al., 2012), and this was the case in Chapter 2. For

completeness DICd was calculated over the restricted range used in (4.21) for the calculation of

DICm, in addition to the default calculation in (4.19). However, the relative comparison of DICd

and DICm was almost identical for both metrics, and consequently only the latter is presented

here.

4.2.5.2 Lobster Creek simulations

The simulation process used model MBLL as the generation model and followed the same al-

gorithm as adopted in the previous examples. Data were generated from MBLL by simulating

250 datasets directly from the approximate posterior predictive distributions stored in the model

fitting in Chapter 2. The set of candidate models, including the data-generating model, were

fitted to each dataset, and models were compared using both DICd and DICm.
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Only three alternative models were considered owing to the considerable computational de-

mands of the repeated application of MCMC on simulated datasets. The set was constructed

to include examples of models that differed by small and large amounts from the true model, to

compare the discriminatory behavior of DIC in these situations. These included models where

instead of a Beverton-Holt function there was a Ricker (MRLL), or linear (MLLL) function at the

juvenile stage, and a model which was identical to MBLL except that survival from the juvenile

to smolt stages was modeled as a function of rearing habitat (MBLhL; see Section 2.2.2.3 for

more details of these models, including the priors used).

4.3 Results

4.3.1 Poisson-gamma example

The proportion of simulations where MR was correctly selected over the alternatives varied

significantly between scenarios. In general DIC struggled to distinguish between MR and MG

at both the data and partially marginalized levels when logβ0 = 0.3 (Table 4.1), although DICm

always performed better than DICd, and when logβ0 = 0.6 it nearly always correctly selected

MR. DICm correctly identified model MR as superior to ME in all simulations, across all

scenarios (Table 4.1). Similar behavior was exhibited by DICd when logβ0 = 0.6, however ME

was incorrectly selected in a moderate proportion of simulations when logβ0 = 0.3 (P=0.06–0.11).

At the data level, pD increased when logβ0 was raised from 0.3 to 0.6, and decreased slightly

when α was raised from 50 to 80 (Table 4.1). At the partially marginalized level, pD decreased

slightly when logβ0 was raised from 0.3 to 0.6, but remained similar when α was 50 or 80. The

difference in pD between the exponential growth and the other models was never consistently

close to the expected value of one less for the former at either the data or partially marginalized

level.

Mixed results were exhibited when datasets were generated from ME . In general, DIC at

both levels struggled to correctly select ME over the alternative models. However, DICm still

always performed better at correctly selecting the true model over the others, with P ranging
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Table 4.1: Performance of DICd and DICm in correctly detecting the true (data generating model) as more
parsimonious than two alternative models, across four scenarios where data were generated from models with
different values of the parameters logβ0 and/or α. The top and bottom panels show results for scenarios where
data was simulated from MR and ME respectively.

Data Level Partially Marginalized

Generating Mod logβ0 α Fitted Model D(θ) pD DICd P D(θ) pD DICm P

MR 0.3 50 MR 196.6 14.4 211.0 216.4 6.2 222.6
MG 197.1 14.1 211.2 0.60 217.2 6.7 223.8 0.87
ME 198.2 14.0 212.2 0.89 221.1 7.4 228.6 1.00

0.3 80 MR 197.6 12.2 209.7 212.1 6.0 218.2
MG 198.1 11.9 210.1 0.68 213.0 6.6 219.5 0.90
ME 199.5 12.2 211.7 0.94 217.9 7.5 225.4 1.00

0.6 50 MR 220.2 19.5 239.6 253.0 4.6 257.6
MG 221.8 18.9 240.7 0.87 256.9 5.5 262.3 0.97
ME 223.8 19.8 243.6 1.00 270.6 6.0 276.6 1.00

0.6 80 MR 220.6 17.1 237.7 245.4 4.6 250.0
MG 222.9 16.5 239.4 0.90 249.8 5.7 255.5 0.99
ME 225.5 18.2 243.7 1.00 266.7 6.4 273.1 1.00

ME 0.09 50 ME 190.5 12.4 202.9 209.2 7.2 216.4
MR 190.3 12.7 203.0 0.58 209.3 7.5 216.9 0.76
MG 190.4 12.6 203.1 0.56 209.5 7.5 217.0 0.76

0.09 80 ME 188.9 10.3 199.2 202.1 7.1 209.2
MR 188.8 10.5 199.3 0.66 202.3 7.5 209.8 0.78
MG 188.9 10.5 199.4 0.68 202.3 7.4 209.7 0.72

Notes: Parameter estimates are means over the 250 simulated datasets for each scenario. P is calculated as the
proportion of simulations in which the Ricker model was correctly detected as better than the model in that row.
All standard errors for D(θ), pD and DIC were less than 0.5, 0.1 and 0.5 respectively.
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between 0.72–0.78, in contrast to 0.56–0.68 for DICd. Estimates of pD were more similar across

all models at the data level than at the partially marginalized level, where pD for MR and MG

were ∼ 0.5 higher than for ME .

4.3.2 Log-normal example

Performance of DICd was worse than DICm across all scenarios when data were generated from

ML, though particularly when the simulated ratio of process to observation error was lowest

(Table 4.2). The data generating MS was actually selected against in nearly all simulations

(100% of simulations when τ = 0.02 and 0.07) for these scenarios . In these situations the

deterministic components of the process model explain the data poorly, resulting in process

errors being inflated, relative to the true model. As the ratio of process to observation error

variance determines the shrinkage of the n towards y, the n will sometimes actually fit the data

better for the alternative, rather than the true model. An example of this phenomenon is given

in Figure 4.1.

As the ratio of process to observation error increased a number of trends occurred; the

performance of DICd improved, the performance of DICm declined, the data level pD for MS

increased, while for ML it declined slightly, until pD was almost equivalent when τ = 0.2, pD at

the partially marginalized level declined slightly for both models, D(θ) of MS model decreased

slightly at the data level but increased moderately for ML, D(θ) at the partially marginalized

level increased for both models, though at a slightly greater rate for MS (Table 4.2). The

difference in pD between models at the partially marginalized level remained relatively close to

the expected difference of one for all scenarios, in contrast to the difference at the data level

where it varied considerably.

Statistics were more similar between models when data were generated from ML, however

DICm still performed better (P = 0.77− 0.88) than DICd (P = 0.44− 0.49), across all scenarios

(Table 4.3). The estimated pD and DIC at the data level were very similar between MS and

ML. At the partially marginalized level the difference in pD was close to the expected value of
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Figure 4.1: Example of a dataset simulated from the log-normal MS under a scenario with (τ = 0.07, σ =
0.1). Open dots are the simulated observations (y∗). Displayed are the posterior estimates of the latent states
(n; a) and the deterministic components of the process model (ñ; b), for the two competing models, ML (blue
line) and MS (black line). Panels c and d display the true simulated abundance (black lines) and the posterior
means of the estimated latent states (red lines) and the limits of their 95% credible intervals (shaded areas),
for ML (c) and MS (d) models, respectively. Models were fitted to the simulated observations for years 1–40
only and from years 41–50 represent model predictions of n beyond the fitting period. The indicator variable
It was zero for the years 1–25 and 41-50, and one for years 26-40.
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Table 4.2: Performance of DICd and DICm in correctly detecting MS (data generating model) as more
parsimonious than ML, across five scenarios where data was generated from models with different values for
the observation and process error standard deviations, σ and τ respectively.

Data Level Partially Marginalized

σ τ Fitted Model D(θ) pD DICd P D(θ) pD DICm P

0.10 0.02 MS -85.3 11.3 -74.0 -66.7 7.8 -58.9
ML -116.2 21.9 -94.3 0 -47.6 7.2 -40.4 1.00

0.10 0.07 MS -88.1 14.2 -73.9 -53.0 8.2 -44.8
ML -111.7 21.6 -90.1 0 -46.2 7.0 -32.2 1.00

0.10 0.10 MS -93.9 16.6 -77.3 -41.0 8.1 -33.0
ML -108.3 21.2 -87.0 0.15 -31.9 6.8 -25.1 0.97

0.10 0.15 MS -96.4 18.4 -78.0 -22.8 7.4 -15.4
ML -103.4 20.9 -82.4 0.32 -23.0 6.3 -10.4 0.90

0.10 0.20 MS -95.7 19.1 -76.6 -6.2 6.9 0.7
ML -98.8 20.5 -78.3 0.46 -1.6 5.8 4.2 0.81

Notes: Parameter estimates are means over the 250 simulated datasets for each scenario. P is
calculated as the proportion of simulations in which MS was correctly detected as better than
ML. All standard errors for D(θ), pD and DIC were less than 1.4, 0.3 and 1.2 respectively.

Table 4.3: Performance of DICd and DICm in correctly detecting ML (data generating model) as more
parsimonious than MS across five scenarios where data were generated from models with different values for
the observation and process error standard deviations, σ and τ respectively.

Data Level Partially Marginalized

σ τ Fitted Model D(θ) pD DICd P D(θ) pD DICm P

0.10 0.02 MS -85.6 11.4 -74.2 0.44 -66.5 7.7 -58.8 0.88
ML -84.4 10.6 -73.8 -67.0 6.6 -60.4

0.10 0.07 MS -93.0 14.9 -78.1 0.44 -52.7 8.1 -44.6 0.81
ML -92.2 14.6 -77.6 -52.9 7.1 -45.7

0.10 0.10 MS -92.1 16.3 -75.8 0.49 -41.0 7.9 -33.2 0.77
ML -92.7 16.2 -76.4 -40.8 6.9 -33.9

0.10 0.15 MS -93.5 17.8 -75.7 0.48 -22.2 7.5 -14.7 0.83
ML -93.4 17.7 -75.7 -22.3 6.5 -15.8

0.10 0.20 MS -94.4 18.6 -75.7 0.48 -6.7 6.9 0.2 0.78
ML -94.3 18.8 -75.5 -6.6 5.9 -0.7

Notes: Parameter estimates are means over the 250 simulated datasets for each scenario. P is
calculated as the proportion of simulations in which ML was correctly detected as better than
MS . All standard errors for D(θ), pD and DIC were less than 1.5, 0.3 and 1.2 respectively.
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Table 4.4: Comparison of DICd and DICm of a suite of models of coho salmon dynamics that differ in the
structure of the process equations that were fitted to the Lobster Creek dataset. Details of the structure of
models are given in Section 2.2.2.2.

Data Level Partially Marginalized

Fitted Model D(θ) pD DICd ∆DICd D(θ) pD DICm ∆DICm
MBLhL -352.2 130.1 -92.0 0.0 196.1 18.6 233.3 0.0
MBhLhL -354.3 130.5 -93.3 -1.2 197.1 19.4 235.9 2.6
MBLL -354.4 130.9 -92.5 -0.5 205.8 16.8 239.3 6.0
MBhLL -355.2 131.4 -92.4 -0.3 205.3 17.9 241.1 7.9
MRLL -354.3 129.3 -95.7 -3.6 230.5 19.6 269.6 36.4
MLLR -348.5 128.3 -91.8 0.3 260.8 18.8 298.3 65.0
MLLB -352.9 129.5 -93.9 -1.9 265.9 19.0 303.9 70.7
MLLL -357.0 130.8 -95.3 -3.2 275.8 17.4 310.5 77.3
MLRL -357.4 131.7 -94.1 -2.0 278.2 17.0 312.2 78.9
MLBL -357.5 132.3 -93.0 -0.9 279.1 17.1 313.4 80.1

one, and the DIC was slightly higher for MS , as would be expected with the addition of an extra

parameter that explains little of the variation in the data.

4.3.3 Lobster Creek coho salmon example

All models were estimated to have similar fit to the empirical dataset when compared using DICd

(Table 4.4). The maximum ∆DICd was 3.6 even though process models among the different

models represent very different dynamics. At the partially marginalized level, DICm suggested a

group of models that all exhibited Beverton-Holt-type density dependence at the juvenile stage,

had similar fit to the data. All other models had either Ricker-type density dependence or linear

dynamics at the juvenile stage and showed very poor fit relative to the best-fitting models. The

differences in pD among models appear to be more intuitive at the partially marginalized, than

the data level.

Both DICd and DICm correctly selected the true model, MBLL over the Ricker model, MRLL,

and linear model, MLLL, for nearly every simulated dataset (Table 4.5). DICm performed better

at selecting MBLL over MBLhL than DICd but the proportion of simulations where the true

model was considered worse than MBLhL was more frequent than comparisons with the other

models (0.43 and 0.18 for DICd and DICm, respectively).
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Table 4.5: Performance of DICd and DICm in correctly detecting the true model, MBLL as more parsimonious
than alternative models for datasets simulated to represent the population dynamics of coho salmon in Lobster
Creek.

Data Level Partially Marginalized

Fitted Model D(θ) pD DICd P D(θ) pD DICm P

MBLL -232.4 127.3 -105.4 226.5 16.9 243.4
MRLL -225.9 129.4 -96.5 0.98 270.6 19.1 289.7 1.00
MLLL -230.6 132.0 -98.5 0.99 319.8 15.9 335.7 1.00
MBLhL -232.4 127.4 -105.0 0.57 226.8 17.6 244.4 0.82

Notes: Parameter estimates are means over the 250 replicate simulations. P is
calculated as the proportion of simulations in which MBLL was correctly detected
as better than the model in that row. All standard errors for D(θ), pD and DIC
were less than 0.3, 0.3 and 0.3 at the data level, and 2.6, 0.4 and 2.5 at the partially
marginalized level, respectively.

Differences in D(θ) and DIC were more pronounced at the partially marginalized than the

data level. Even when models could be discriminated between, estimates of ∆DIC between the

true and alternative models were often small at the data level (Fig 4.2). Consequently, if models

are considered to be comparable if they are within ∆DIC= 2 of each other (as was tentatively

suggested by Spiegelhalter et al. (2002) though see Plummer (2008) for discussion of comparing

models based on ∆DIC), then the proportion of times MBLL would be considered ‘significantly’

better than MRLL and MLLL becomes more different at the two levels of DIC. For example the

proportion of simulations where MBLL would be selected over MRLL and MLLL decreased to 0.94

and 0.90, respectively for DICd but remained at 1 for both comparisons when DICm was used.

The differences in pD between models were also closer to the values expected a priori at the

partially marginalized level than at the data level. For example it would be expected that MRLL

would have the same, MBLhL would have one more, and MLLL would have one less parameter

than MBLL.

4.4 Discussion

4.4.1 DIC for state-space models

DIC is a predictive criterion, aiming to identify models with superior out-of-sample predictive

performance. State-space models are interesting in this respect in that they often overfit the
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Figure 4.2: Histograms of the distribution of ∆DIC between models fitted to the simulated Lobster Creek
coho salmon datasets. The ∆DIC measures the difference in DIC between the data generating model (MBLL)
and the Ricker model (MRLL; a, d), smolt survival model (MBLhL; b, e) and linear model (MLLL; c, f),
measured at the data level (a–c) and the partially marginalized level (d–f). Histograms represent 250 simulated
datasets.
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data, because the stochastic elements of their structure can allow apparently good fit to the

data, but result in poor predictive performance. There is generally a trade off between the

observation and process errors and this will determine the relative fits of the latent states, n,

and the deterministic components of the process model, ñ.

For the log-normal example, the posterior mean of the latent states at time t is the precision-

weighted mean of the prior log population size, of which log ñt is the mean, and the observed

population size, logyt, at time t. It follows that if process error variances are high relative to

observation error variances then the n will be estimated to be close to the observations, for all

competing models, even if the deterministic components ñ are a poor description of the system.

Consequently, all models will fit well and have similar DIC values at the data level. This is

observed in the scenarios with higher τ2/σ2 ratios in Table 4.2 and for the empirical dataset

from Lobster Creek.

In practice, DIC calculated at the data level will therefore struggle to discriminate between

models when the τ2/σ2 ratio is high (as observed by Moore and Barlow, 2011), which will gener-

ally occur when populations fluctuate a lot (e.g. fisheries) and/or when the drivers of variation

are not well known, for instance when unidentified (and unmodeled) environmental conditions

drive annual variation in abundance. This was observed for the Lobster Creek dataset where

most models in the candidate set fitted similarly well, despite the substantial differences in the

dynamics that they represent. The overfitting of models results in poor predictive performance

of ‘well fitting’ models, as evidenced by the systemic problems of the simple logistic model (ML)

in projecting the future dynamics of the population in the log-normal example (Fig 4.1). If DICd

is utilized in situations where the simulations suggest that DICm is more suitable, the risk of

spurious selection of models with inadequate deterministic components is high. In these cases

predictions of future states will not only be biased, but inflated process errors will result in much

less precise estimates than could be justified from the data.

When differences between models occur in the process equations, the more intuitive results at

the partially marginalized level also extend to the estimates of effective numbers of parameters
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in the models. As just one example, in the scenarios where models had an extra parameter that

explained little of the variation in the data, estimates of pD at the partially marginalized level

were typically around one higher for the model with an extra parameter, as was expected. At

the data level results were often counterintuitive. Examples of this include the Lobster Creek

simulation example when comparing MBLL with a model with an extra parameter that had

very little explanatory power (MBLhL), and also the simple log-normal example when data were

simulated from ML, and parameter γ in MS provided no extra explanatory ability.

When the deterministic components of the process model are poor at explaining variation in

the data, inflated process errors will result. This leads to shrinkage of n towards the observations

and higher estimated number of effective parameters at the data level, relative to adequate

models. This was noted for ML in the log-normal example when the simulated τ2/σ2 ratio was

low, and for many simulations the (inadequate) ML was estimated to fit the data better than

the true model at the data level (Table 4.2, Fig 4.1). In practice these models would hopefully

be identified as inadequate using diagnostic tools (such as posterior and partially marginalized

predictive checks; Chapter 5), as otherwise the inadequacies of these ‘worse’ models would allow

them to be actively selected over better models, rather than just being selected by chance alone.

The latter can occur when there is low power to differentiate between models, for instance when

there are large process error variances in the system and models have difficulty in distinguishing

signal from noise, such as when τ = (0.15, 0.2) in Table 4.2.

4.4.2 Are the examples representative?

It could perhaps be argued that the Poisson-gamma and log-normal examples are somewhat

contrived, in that these issues would be readily diagnosed by assessing model adequacy in con-

junction with undertaking model selection. For example, model inadequacies should be detected

by predictive checks after constructing appropriate discrepancy measures (Rubin, 1984; Gelman

et al., 2005; Chapter 5). However, there is a tendency to assess model adequacy after completion

of model comparison (Burnham and Anderson, 2002), and often on only the best model. This
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could result in inadequate models remaining in the candidate set during comparison, which has

obvious risks owing to the sensitivity of the components of DICd to these inadequacies. In these

situations it must be remembered that pD, and consequently DIC, are only valid if they fit the

data adequately, and so models such as the exponential growth model in the Poisson-gamma

example may produce pD estimates at odds with intuition. Lastly, the examples presented are

simplified versions of candidate sets commonly compared in practice (e.g. Colchero et al., 2009),

for which similar results are to be expected. This suggests they do have merit in supporting the

results observed for the Lobster Creek example which was derived from an empirical dataset.

4.4.3 Where to focus in practice?

Simulations suggest that when differences between models occur in the process equations, cal-

culating DIC at the partially marginalized level leads to more robust discrimination between

models. Introductions to DIC often state that the appropriate choice of level is determined by

the parameters that are of interest (Spiegelhalter et al., 2002; Gelman et al., 2003), or by how

predictions are to made e.g. are predictions for new observations from existing, versus entirely

new groups, in the simple random effects model example (Gelman et al., 2003). For state-space

models, it is natural for the latent states to be of interest, as these are generally the focus of

management strategies, and so it is easy to see why DIC has generally been adopted at the data

level (in addition to it being the default calculation in BUGS). The results herein suggest it is

more profitable for choice of focus to be made based on where the differences between models in

the candidate set occur, rather than these previous arguments that do not appear to have been

successfully heeded by ecologists.

Following this argument, while differences in the process model will require marginalization

of DIC, there are perhaps situations where the DICd will be more appropriate, such as when two

or more models have the same process model but different observation models. This situation

appears to be less common in practice (though see Davies and Jonsen, 2011), as interest in

population biology is often directed at the underlying dynamics of the population, rather than
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the sampling process by which the data was gathered.

It should also be noted that the most severe consequences of using DICd (instead of DICm) for

selecting among models with different process equations will occur when the process model can

compensate for any deficiencies by increasing process error. This clearly occurs when normally

distributed process errors are assumed, however it is expected that less dispersed process models

such as the binomial and Poisson processes used in some situations (e.g. Abadi et al., 2012)

will have a restricted ability in allowing latent states to fit the data well when the deterministic

components fit the data poorly. For these scenarios DICd will potentially perform better than

indicated by the examples presented herein. However, DICm is still expected to perform at

least as well as DICd in these situations given that differences between models still occur in the

deterministic part of the process model, and regardless, it is questionable how often a process

model without overdispersion of some kind will be suitable for typical animal populations.

4.4.4 Alternatives to DIC for selecting among models

There are many alternatives to DIC for selecting between hierarchical Bayesian models, which

differ not only in their philosophies, but also their difficulty of calculation and computational

requirements. In general, it appears that ecologists apply DIC on practical grounds, due to

the simplicity of its calculation at the data level rather than any philosophical advantages over

alternative techniques. Marginalization has significant consequences for this choice. For some

combinations of process and observation models analytical marginalization will be possible, and

DIC can still be calculated directly from the MCMC output. In fact, it can be fully implemented

within BUGS using the cut function, if the analyst so desires. However, there are advantages

to calculating any form of DIC (including DICd) external to BUGS as it allows more flexible

calculation of D(θ̄). For instance, deviance can be assessed at the posterior means of the latent

states (nt) directly, rather than as a function of the posterior means of the stochastic parents

of nt, as it is implemented in BUGS. There are situations where correlated parameters lead

to (avoidable) negative pDs and unreliable DICd in BUGS, and a similar problem appears to
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have been encountered by Davies and Jonsen (2011) who report negative pDs for state-space

biomass dynamics models of fish. If marginalization is not tractable, numerical integration will

be essential, and the computational advantages of DIC over alternative methods will quickly

diminish. In these situations it seems unlikely that ecologists will continue to select DIC for

purely practical rather than philosophical reasons.

The most frequently cited alternatives include various information criteria (AIC, BIC etc.;

Burnham and Anderson, 2002), posterior predictive loss (Gelfand and Ghosh, 1998), and Bayes

factors (Kass and Raftery, 1995). Information criteria and the posterior predictive loss approach

also rely on explicitly calculating deviance and thus suffer from the same issues of focus as DIC.

Furthermore, the challenge of measuring model dimension for state-space models will continue

to be a limitation of the information criterion other than DIC. The ad hoc application of AIC by

specifying a certain number of parameters (e.g. Lessard et al., 2008), which often assumes that

each latent state can be counted as one parameter, is clearly a risky endeavor.

Bayes factors differ from DIC philosophically, in that they attempt to identify a ‘true’ model

Kass and Raftery (1995), rather than a model with optimal out-of-sample prediction. In practice

they can be difficult to compute and suffer from instability when very diffuse priors are used for

parameters in some models in the set. This is frequently the case in practice for ecological models

and is certainly so for the set of models considered for coho salmon in Lobster Creek, which makes

the use of Bayes factors problematic for this dataset. Furthermore, model development is often

an iterative process where models are expanded or contracted as different aspects of the model,

or problem, are explored. This is not suited to the simultaneous analysis required by Bayes

factors where the full candidate set must be known a priori. An advantage of Bayes factors is

they readily allow implementation of multimodal inference (Burnham and Anderson, 2002; King

et al., 2009). However, they are unlikely to be used frequently in practice as numerical routines

to calculate them have to be coded explicitly rather than relying on prescribed routines in

higher-level languages such as BUGS. Note though, that for a (very) restricted set of conditions

WinBUGS can implement RJMCMC which can be used to calculate Bayes factors using its
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JUMP function (King et al., 2009), but unless/until a general form becomes available in BUGS

or other easily implemented software, this technique is unlikely to see much use by practitioners.

Given the challenges of many of the alternative model-choice methods, and the results shown

here, DIC could still have a role to play in selecting among state-space models, however the

practice of indiscriminately applying DIC at the data level clearly needs to change. Analysts

will have to consider the purpose of their modeling, and the ensuing range of practical and

philosophical issues when selecting which methods will achieve the aims of their study. If this

still leads them to utilizing DIC for selecting among state-space population models, it should at

least be calculated at the appropriate level for the models in their candidate set.

4.4.5 Applying DIC to data from Lobster Creek

In the case of the Lobster Creek data- and model-set (e.g. Section 2.2), DICm is more appropriate,

and while there are clearly some limitations to DIC methods in general, there appeared to be

utility in applying DICm in this situation. This was especially the case for models with large

differences in performance such as the linear vs non-linear models. It appears to have much lower

power for selecting between models that are very similar in structure, for instance one extra

parameter that has little ability in explaining extra variation. This is perhaps not surprising as

process errors were very high for all life-stages (Section 3.2.4) which can make it very difficult to

choose between models, as was also observed in the Poisson-gamma example to a degree. Again,

DICm cannot be considered in isolation for Lobster Creek, but it appears to provide a strong

base from which it can be combined with other techniques such as predictive checks (Chapter 5)

and the model expansion approach advocated by Gelman et al. (2003). Even simple techniques

such as directly observing the posterior distributions of parameters such as γ and η in MBhLhL

(Section 3.2.5) may complement more formal methods in selecting among models. When models

become complicated, and especially in the presence of multiple sources of stochasticity that can

reach high levels, choosing between models is likely to be difficult even with formal measures of

performance available. In fact, choice will often come down to the judgment of the analyst and
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the objectives of the study, and an approach that considers multiple aspects of model fit and

comparison would appear to be a the most suitable choice in these situations.

In most cases, great benefit would be gained from spending more time investigating the

adequacy of models in the set using diagnostic techniques, rather than overvaluing the importance

of single measures of model parsimony. Within such a framework, DIC would contribute to

inferences, but not at the expense of a suite of contributing considerations. This more holistic

approach was hence adopted in Chapter 2 where DICm is used as just one diagnostic when

selecting among the potential models in the candidate set.
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Chapter 5

Assessing the adequacy of state-space
models of population dynamics

5.1 Introduction

The flexibility of state-space models and their advantages over more traditional models have seen

their widespread application in modeling animal population dynamics, both in fisheries science

(Millar and Meyer, 2000b; Maunder, 2003; Peterman et al., 2003) and terrestrial ecology (de

Valpine and Hastings, 2002; Calder et al., 2003; Newman et al., 2006). In the former these

models were quickly utilized for applied work such as stock assessments (McAllister et al., 1994;

Fargo and Richards, 1998; McAllister and Kirkwood, 1998), while development in terrestrial

ecology appears to have been more circumspect. For example, early work by several groups

(Besbeas et al., 2002, 2003; de Valpine and Hastings, 2002) mainly focused on statistical aspects

of fitting models, their advantages over traditional models, and limitations to their application.

Only recently have these models begun to be applied to terrestrial systems in large numbers.

In both fisheries science and terrestrial ecology, perhaps the most investigated area of sta-

tistical inference for state-space models has been the algorithms for fitting models (McAllister

et al., 1994; Meyer and Millar, 1999; Millar and Meyer, 2000b; Newman et al., 2008). Selection

among candidate models has received some work (King and Brooks, 2002b; King et al., 2009)

and was the topic of Chapter 4. However, once the best model/s have been identified there is no

guarantee that they are ‘good’, or ‘adequate’ models, that is, that they fit the data well and are

suitable for the objectives of the model-fitting exercise. Despite this, the vast majority of appli-
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cations of Bayesian state-space models to animal abundance data fail to suitably address model

adequacy. While there are likely some studies where formal model checks have been carried out

but not adequately presented in publications, it appears more common for checks to simply not

be made at all. In fact, in the recent review of integrated models by Schaub and Abadi (2011)

it was suggested that goodness-of-fit tests for these types of models have not been developed.

Furthermore, where techniques such as posterior predictive checks (Rubin, 1984) are actually

used, the necessary details of their implementation are often vague, and not repeatable, with no

discussion of the considerable range of choices that have to be made when assessing the fit of

models in a state-space setting.

The contention of Schaub and Abadi (2011) that goodness-of-fit tests do not exist for state-

space models ignores the flexible, largely simulation-based approaches that have become popular

in a wide range of Bayesian models (Rubin, 1984; Gelman et al., 2003; Sinharay and Stern,

2003). Perhaps the most frequently utilized of these methods of assessing the adequacy of

Bayesian models, are posterior predictive checks (Rubin, 1984; Gelman et al., 2003). These checks

are based on the concept of calculating a test statistic on the observed data, then simulating

replicated datasets from the model and recalculating the test statistic for each simulated dataset.

If the model is adequate with regards to the aspect of the model being tested by the statistic,

then the observed value will be similar to the values calculated from simulation. This is often

summarized by a p-value measured as the proportion of times the statistic for the simulated data

is as extreme, or more extreme than the observed statistic (Rubin, 1984). If a large proportion

of the simulated values are larger or smaller than the observed value then the model is clearly

not consistent with the data, and is perhaps inadequate for the objectives of the study if they

are sensitive to the aspect of the model being tested. More generally, the posterior predictive

approach includes graphical comparison of observed data and data simulated under the model

(Gelman, 2003, 2004) without formal quantification of the consistency between them, although

this can be performed after examining the plot/s if desired.

The posterior predictive check approach has been advocated by King (2012) in the context
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of state-space models, and has been relatively widely adopted in terrestrial applications (e.g.

Rhodes et al., 2011; Cubaynes et al., 2012), but less so in fisheries applications (though see Zhou

et al., 2009). The appeal of posterior predictive checks can largely be attributed to their ease of

computation when models are fitted using numerical techniques, and the flexibility with which

different aspects of a models adequacy can be assessed. Alternative techniques, such as cross

validation and its variants have heavy computational demands that make them less attractive

to analysts. For these reasons it seems likely that posterior predictive checks will continue to

be the method of choice for assessing the adequacy of state-space animal population dynamics

models, and provided they are shown to display favorable properties and improve inferences from

modeling studies, then their uptake will ideally increase.

The question of whether posterior predictive checks have utility is certainly a valid one. These

checks have been shown to be conservative in certain situations although the contention that this

can be attributed to double use of the data (Bayarri and Berger, 2000) has been contested by

proponents of the method (e.g. Stern, 2000). This is related to the long-standing criticism

of posterior predictive checks that they do not always share the properties of traditional null

hypothesis tests which seek to test whether the model is true, and thus it is desirable to have a

specified Type I error rate. This requires the p-value to be asymptotically uniform(0,1) under

the null model, but this is often not the case for posterior predictive checks (Bayarri and Berger,

2000; Robins et al., 2000). The goal of achieving uniformity has in some cases prompted the

calibration of p-values (Steinbakk and Storvik, 2009) which can increase power in ‘rejecting’

models. Alternatively, others regard calibration and the desire of uniformity to be unnecessary,

and in fact a misinterpretation of the objectives of modeling. Gelman et al. (2003) and Gelman

(2007) suggest interpreting p-values directly as probabilities of future data being as, or more

extreme, than the the observed data. This latter philosophy is appealing as state-space models

are used for a certain purpose, be it prediction of a future population abundance, estimation of

current abundance for setting harvest limits etc., and so concern should be placed on whether

the model allows its stated function to be carried out effectively, rather than whether it is the
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‘true’ model.

In addition to the choice of whether p-values should be uniformly distributed under the null,

there are several issues that occur in state-space, and more generally, hierarchical models, that

influence predictive checks. Firstly, decisions must be made regarding which structures in the

model are held constant at the values observed or estimated by the model, and which have new

values generated from appropriate sampling or process distributions. In the context of state-

space models for example, should replicate data be generated from the sampling distribution

p(yt|nt, σ2) (see Sections 1.8 and 4.2.2) with σ2 and latent abundances nt, in year t, kept at

the posterior estimates of the model (this is the standard posterior predictive distribution).

Or alternatively, should replicate data be generated after first drawing new values from the

distribution p(nt|nt−1,ψ, τ
2) where nt−1, ψ and τ2 are kept at the posterior estimates of the

model (this is an ‘intermediate’ or ‘partial’ predictive distribution; Bayarri and Castellanos, 2007;

Sinharay and Stern, 2003; Steinbakk and Storvik, 2009; herein denoted the partially marginalized

distribution). Similarly, there is the choice about how to construct test statistics or discrepancies.

Initial development of posterior predictive checks involved test statistics calculated from only the

observed or replicated data (Rubin, 1984) and these appear to still be the most widely applied

test variables in practice. Gelman et al. (1996) extended the work of Rubin (1984) to allow

discrepancies to be a function of both data and model parameters, while more recently at least

two methodological studies have used discrepancies based solely on parameters (Sinharay and

Stern, 2003; Steinbakk and Storvik, 2009). Gelman et al. (1996) suggest that the choice of how

to replicate data will depend on the part/s of the model of interest, and it seems intuitive that

this will also govern the choice of which level of discrepancy (data, data/parameter, parameter)

will be most suitable, in much the same way that the focus of DIC has to be actively selected

(Chapter 4).

If use of posterior predictive checks is to be encouraged in practice, then a better under-

standing of their properties in these situations is urgently required. The goal of this chapter is

to improve knowledge of their behavior when applied to state-space animal population dynamics
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models. The key questions that need to be answered include; what are the most suitable pre-

dictive distributions (posterior or partially marginalized) for testing adequacy of different parts

of the model? Are test variables best constructed from data, parameters or functions of both?

What types of test functions are best able to detect common inadequacies of state-space models?

Once the best performing predictive checks have been identified, how much power do they have

for detecting inadequacies?

In general this thesis concerns state-space models with normally (usually on the log-scale)

distributed observation and process models. These models have been shown to be relatively

‘robust’ even in situations where data is suspected to have been generated from process that differ

significantly from normal distributions. For example, Brooks et al. (2004) demonstrated their

flexibility in approximating count-based processes except when population size was very small,

and Sinharay and Stern (2003) produced similar results for more simple hierarchical models.

Consequently, most focus of this chapter is placed on detecting inadequacies in the deterministic

components of the process model, and consequently, by the structure of process errors.

The general approach closely follows that used in Chapter 4, and so simulation is called

upon to test whether the deficiencies of inadequate models fitted to data simulated from known

processes can be detected using predictive checks. While constructing appropriate test variables

will often be context-dependent, simulation certainly has the potential to identify some essen-

tial properties that can be generalized across situations. Before simulation can be addressed,

prior and posterior predictive checks and the variations that are possible for state-space and

hierarchical models are first presented in Sections 5.2.1 and 5.2.3. Test variables (test statistics

and discrepancy functions, e.g. Gelman et al., 1996) and Bayesian p-values are defined in Sec-

tion 5.2.2 and a number of simulation examples are presented in Sections 5.2.6–5.2.7. Replicate

datasets for each example are generated from both posterior predictive and partially marginal-

ized predictive distributions, and a range of test statistics and discrepancies are developed to test

different aspects of the model structure. Finally, data are simulated to represent the dynamics

of coho salmon in Lobster Creek as a means to test the predictive methods and test variables
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identified as promising in the earlier examples in a more realistic setting.

5.2 Methods

5.2.1 Prior and posterior predictive distributions

Prediction of future data is easily achieved using a Bayesian model, although there may be choice

over what part of the model is conditioned upon when making these predictions. To illustrate

this point and to present the predictive distributions available, notation similar to that used by

Gelman et al. (1996) and Gelman (2003) is adopted throughout this chapter. The prior predictive

distribution (Box, 1980) of replicate data yrep is given by

p(yrep) =

∫
p(yrep|θ)p(θ)dθ (5.1)

where p(θ) is the prior distribution for θ. The prior predictive distribution is seldom used for

model checking in practice as prior distributions are often specified so as to be uninformative,

and are sometimes improper which can can make calculation of (5.1) impossible. Furthermore,

the usual scenario in practice is that relatively weak prior values have minimal influence on the

posterior distribution and thus the sensitivity of (5.1) to the prior distribution in these situations

is at odds with the focus of the modeling, that is, the prior model is generally not intended to

be a good specification of p(y), and hence model checking is not a relevant issue.

An alternative predictive distribution that has found widespread use in model checking is the

posterior predictive distribution of yrep, which is given by

p(yrep|y) =

∫
p(yrep|θ)p(θ|y)dθ (5.2)

where p(θ|y) is the posterior distribution of the parameters.

Rarely can (5.1) and (5.2) be calculated analytically, and certainly not for non-linear state-

space models like those considered in Chapter 2. Posterior predictive derivation typically pro-

ceeds by first fitting models using numerical techniques such as MCMC, which results in a sample

of θi, i = 1, ..., n, from the posterior distribution p(θ|y), and then generating the replicated data
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yrep from these samples using the distribution p(yrep|θ). The prior predictive approach would

use samples of θ from the prior, rather than posterior distributions.

5.2.2 Test variables and Bayesian p-values

Test summaries can refer to a wide range of diagnostics, from uni- and multivariate test statistics

to graphical representations which may be constructed from data, parameters or functions of

both. Throughout these will collectively be referred to as test variables. The original derivation

of the posterior predictive check involved calculation of test statistics for the observed data T (y),

and replicate data T (yrep) generated from the posterior predictive distribution (Rubin, 1984),

which is given by (5.2). T (yrep) is a reference distribution for the test statistic and the associated

Bayesian p-value is then given by

p = P [T (yrep) ≥ T (y)|y] . (5.3)

This framework was extended by Gelman et al. (1996) to allow more general discrepancy statis-

tics, D(y,θ), to be calculated from functions of both data and parameters, with the associated

p-value calculated

p = P [D(yrep,θ) ≥ D(y,θ)|y] . (5.4)

In practice the p-values (5.3) and (5.4) are calculated numerically using the following al-

gorithm (Sinharay and Stern, 2003). The model is fitted using numerical methods giving the

approximate posterior distribution p(θ|y) in the form of a sample of i = 1, ..., n vectors of pa-

rameters (θi). A replicate yrepi for each of the i = 1, ..., n samples is then generated from the

sampling distribution p(yrep|θ) giving n pairs (yrepi,θi). To calculate (5.3) the single observed

test statistic T (y) is calculated for the observed data y and this is compared to the reference

distribution created by calculating the n test statistics, one for each of the replicates of the data

yrepi, and thus P [T (yrep) ≥ T (y)|y] is easily computed.

In contrast, the discrepancy in (5.4) is by nature a function of both data and parameters,

and so different values of D can result for each θi. Thus n discrepancies form the observed
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distribution, one for each of the samples of θ, and are denoted D(y,θi). This is compared to a

reference distribution of the same size where the discrepancy is calculated for each pair (yrepi,θi),

denoted D(yrepi,θi), and the p-value can again be easily computed as

p =
1

n

n∑
i=1

I[D(yrepi,θi) ≥ D(y,θi)|y]

where I is an indicator function.

5.2.3 Extension to hierarchical and state-space models

Distinguishing between prior and posterior predictive distributions becomes difficult in hierar-

chical models where definitions of priors and likelihoods become less clear. This is a similar

situation to the problem of determining what part of the model to focus on when assessing

model fit (Chapter 4). For demonstration purposes consider a simple hierarchical model with

posterior distribution given by

p(θ,ψ|y) ∝ p(y|θ)p(θ|ψ)p(ψ)

where θ are data level parameters and ψ are hyperparameters. The prior and posterior predictive

distributions of yrep, as suggested by (5.1) and (5.2), are given for this model by

p(yrep) =

∫
p(yrep|θ)p(θ,ψ)dθdψ (5.5)

p(yrep|y) =

∫
p(yrep|θ)p(θ,ψ|y)dθdψ (5.6)

where p(θ,ψ) in (5.5) and p(θ,ψ|y) in (5.6) are the joint prior distribution and joint posterior

distribution of all parameters, respectively, and p(yrep|θ,ψ) has been reduced to p(yrep|θ) due

to the conditional independence of yrep and ψ, given θ.

Now the predictive distributions (5.5) and (5.6) can be further extended to the basic state-

space model described in Section 1.8 and Section 4.2.2. Using the notation given in those sections

the prior and posterior predictive distributions for replicate abundance at time t can be given by

p(yrept ) =

∫
p(yrept |nt, σ2)p(nt, σ

2)dntdσ
2 (5.7)

p(yrept |y) =

∫
p(yrept |nt, σ2)p(nt, σ

2|y)dntdσ
2 (5.8)
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where p(nt, σ
2) and p(nt, σ

2|y) are the joint prior and posterior distributions of the latent states

and the observation error variance. In most cases some of the prior distributions such as p(σ2)

will be uninformative and so the prior predictive distribution becomes difficult to compute, and

again is not generally of interest. Note that for clarity the parameters ξ shown in Sections 1.8

and 4.2.2 are excluded from (5.8)–(5.7) as the observation equations in this chapter are a function

of only n and σ2.

Due to the multiple levels of state-space, and more generally hierarchical models, there is

also a partially marginalized predictive distribution that utilizes the posterior values for the

hyperparameters but the prior values for the data level ‘parameters’ (such as the latent states).

This distribution can be considered to be part-way between (5.7) and (5.8). The partially

marginalized predictive distribution has been investigated by several authors who have given it

different names and sometimes undertaken the calculations in slightly different manners (Bayarri

and Castellanos, 2007; Sinharay and Stern, 2003; Gelman, 2007; Steinbakk and Storvik, 2009).

As suggested by Gelman et al. (1996), all these predictive distributions are variants of posterior

predictive distributions, the only difference being at which level/s either new parameters are

generated from the model or parameter values are kept at the values resulting from calculation

of the joint posterior distribution. Furthermore, the full Bayesian interpretation of the partially

marginalized predictive distribution will be considered in this chapter rather than the ‘empirical

Bayes’ method of Bayarri and Castellanos (2007).

For the simple state-space example the partially marginalized predictive distribution is given

by

p(ỹrept |y) =

∫
p(ỹrept |ñt, σ2, τ2)p(ñt, σ

2, τ2|y)dñtdσ
2dτ2 (5.9)

where ỹrept is the replicate data (it is given this notation to distinguish it from yrept , the data

generated from the posterior predictive approach) generated conditionally on ñt, σ
2 and τ2,

and ñt is the deterministic component of the process model (see sections 2.2.2.1 and 4.2.4.1 for

examples; note also that ñt is a function of parameters ψ, hence they do not appear explicitly

in (5.9)).
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The method of calculating a posterior predictive test variable using (5.8) closely follows that

described in Section 5.2.2. Replicate data in year t is generated from the sampling distribution

p(yrept |nt, σ2) where the values of nt and σ2 are samples from the posterior distribution estimated

using MCMC. Similarly, if the distribution p(yrept |ñt, σ2, τ2) is available in closed form then repli-

cate data for the partially marginalized predictive distribution in (5.9) can be generated directly

using samples of ñt, σ
2 and τ2 from their posterior distributions. If not, a two-stage process can

be implemented by firstly generating new nt from the conditional prior distribution p(nt|ñt, τ2),

and then replicate data can be generated from the sampling distribution p(yrept |nt, σ2) using the

newly generated nt, where ñt, τ
2 and σ2 are again samples from the posterior distribution.

5.2.4 Test variables for predictive checks of state-space models

The possibility of generating reference datasets from different predictive distributions signifi-

cantly increases the choices that can be made when constructing test variables. Especially when

it is considered that these variables can be constructed from data, parameters or both, and the

parameters can be from different levels of the model. It has to be decided at which level/s

adequacy of the model needs to be examined, in the same way that focus of DIC had to be

defined when comparing model-fit in Chapter 4. If the adequacy of the process model or the

full model (both observation and process models) is of interest it seems that predictive checks

will have to include at least some examples based on the partially marginalized predictive dis-

tribution. In general it would appear that two levels of distributions with scale parameters (e.g.

the log-normal/log-normal state-space model; (4.14)–(4.15) in Section 4.2.4.2) would result in

posterior predictive checks based on (5.8) lacking power in detecting model inadequacy due to

process and/or observation errors being inflated in poor (inadequate) models, as occurs when

poor models fit data well at the data-level (Chapter 4). This has been observed in other studies

of posterior predictive checks for simple hierarchical models (Sinharay and Stern, 2003; Bayarri

and Castellanos, 2007).

For clarity all p-values investigated will be given notation that differentiate between whether
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Table 5.1: Notation of p-values used for assessing the adequacy of state-space models.

Notation Test Variable Description

P (y) T (y) Replicate data yrep generated from (5.8); posterior values for n used

P (y,Θ) D(y,Θ) Replicate data yrep generated from (5.8); posterior values for n used

P (Θ) D(Θ) Replicate data yrep generated from (5.8); posterior values for n used

P̃ (ỹ) T (ỹ) Replicate data ỹrep generated from (5.9); posterior values of ñ used

P̃ (ỹ,Θ) D(ỹ,Θ) Replicate data ỹrep generated from (5.9); posterior values of ñ used

P̃ (Θ) D(Θ) Replicate data ỹrep generated from (5.9); posterior values of ñ used

Notes: T (y) and T (ỹ) are test statistics calculated from data, only, D(Θ) are discrepancies that are functions

of parameters, only, and D(y,Θ) and D(ỹ,Θ) are discrepancies that are functions of both data and parameters.

Note that for simplicity Θ includes latent states as well as ‘traditional’ parameters.

replicate data has been generated from the posterior (P ) or the partially marginalized predictive

distribution (P̃ ), and whether the test variable is a function of the data (y or ỹ), parameters

(Θ) or both ((y,Θ) or (ỹ,Θ)), as described in Table 5.1. Note that latent states are classified

as parameters for the purposes of discussion of construction of test variables throughout this

chapter.

5.2.5 General approach to testing

The general approach to testing the effectiveness of posterior predictive checks closely followed the

simulation-based methods utilized for evaluating DIC in Section 4.2.4. Datasets were generated,

and the generating model (‘true’ model) and one or more alternative models were then fitted

to the data. The alternative models differed from the true model by having different structures

such that they might be considered ‘inadequate’ for modeling the data (‘inadequate’ models).

Posterior and partially marginalized predictive checks were then developed and were applied for

all models to evaluate whether they could identify the inadequacy of the alternative model while

remaining consistent with the data for the true model.
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5.2.6 Simulations from a log-normal logistic model

5.2.6.1 A simple logistic model

The data generation model (denoted ML
ln) for this example consisted of a logistic model with

log-normally distributed observation and process errors (the same model was previously used in

Section 4.2.4.2). Consequently, the observation and process models are given by

logyt = lognt + νt (5.10)

lognt = log ñt + εt (5.11)

where νt and εt are the observation and process errors, respectively, both in year t = 1, ..., T , and

are assumed to be normally distributed such that νt ∼ N(0, σ2) and εt ∼ N(0, τ2), where σ2 and

τ2 are the observation and process error variances, respectively. The deterministic component

of the process model, log ñt, was given by the logistic model as

log ñt = log
[
nt−1 + rnt−1

(
1− nt−1

K

)]
(5.12)

where r and K are parameters representing intrinsic maximum population growth rate and the

carrying capacity, respectively.

An exponential growth model (ME
ln) was considered as an alternative model to test whether

the failure to account for the non-linear structure in the generation model could be detected

using posterior, and partially marginalized predictive checks. The deterministic component of

the process equation for this model was given by

log ñt = log (rnt−1)

where r is the population growth rate parameter.

Several scenarios were considered for this example which were achieved by varying parameters

n1, σ and τ in the simulation model. All other parameters were kept constant at; T = 30,

r = 0.4, and K = 50 000. The seven scenarios considered the sets of parameter values (in

order of their application in scenarios); n1 = {10 000, 10 000, 10 000, 10 000, 10 000, 25 000, 40 000},
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σ = {0.05, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1} and τ = {0.1, 0.1, 0.1, 0.05, 0.2, 0.1, 0.1}. This resulted in the

population increasing to carrying capacity (50 000) from different starting population sizes over

the time series (Fig 5.1), and also allowed for a variety of observation to process error variance

ratios.

Prior distributions for the parameters in the models were; K ∼ Gamma(50, 0.001), r ∼

Uniform(0, 1), logn0 ∼ N(9, 4) and τ ∼ Uniform(0, 10). The prior for σ was set at σ ∼

LN(−3.243, 0.490), LN(−2.548, 0.490), and LN(−1.857, 0.490) when the value of σ that was used

to simulate data was 0.05, 0.1 and 0.2, respectively. For each simulated dataset each model was

fitted by running two MCMC chains for 20 000 iterations after a burnin of 20 000, with samples

stored for 1 in every 2 samples, resulting in a total of 20 000 samples available for inferences.

Convergence typically occurred much faster than 20 000 iterations but this burnin was speci-

fied conservatively to ensure that that convergence occurred before storage of samples for all

simulated datasets. A total of 250 simulations were carried out for each scenario.

5.2.6.2 Construction of test variables

A number of checks were investigated for both posterior and partially marginalized predictive

distributions, including test variables that were functions of data, parameters, and both data

and parameters. Several of the test variables were formulated based on hypothesized dynamics

of the specific models. For instance it is expected that when a linear model is fitted to data

from a non-linear system, population growth rate at low and high abundance will be under- and

overestimated, respectively. This inadequacy could potentially be identified by test variables

based on correlations between data or parameters and population size.

By way of example, the correlation coefficient between the estimated process errors (ε) and

deterministic estimates of population size (ñ) are expected to be high, as the ε will be predomi-

nantly positive at low population abundance to compensate for the deterministic components of

ME
ln underestimating abundance, and conversely will be predominantly negative at high popula-

tion abundance. The correlation coefficients calculated for data replicated under the model are
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expected to be lower as ME
ln assumes ε are unrelated to population size, and hence an extreme

p-value is likely (this is the basis for P̃
(Θ)
ε,den (5.14), and the similar P

(y,Θ)
ν,den (5.13) and P̃

(ỹ)
ỹ,den (5.15),

which utilize different data/parameters as test variables).

Other test variables were more general and could perhaps be suitable for upcoming examples,

or other situations where different inadequacies in models are encountered. The full set of p-

values is given below

P
(y,Θ)
ν,den = P [corr (νrep, logn) ≥ corr (ν, logn) |y] (5.13)

P̃
(Θ)
ε,den = P [corr (εrep, log ñ) ≥ corr (ε, log ñ) |y] (5.14)

P̃
(ỹ)
ỹ,den = P [corr (ỹrep − y, log ñ) ≥ 0|y] (5.15)

P
(y,Θ)
ν,aut = P [ρ (νrep) ≥ ρ (ν) |y] (5.16)

P̃
(Θ)
ε,aut = P [ρ (εrep) ≥ ρ (ε) |y] (5.17)

P
(y,Θ)
n,dev = P [−2 p(yrep|n) ≥ −2p (y|n)|y] (5.18)

P̃
(ỹ,Θ)
ñ,dev = P [−2 p(ỹrep|ñ) ≥ −2p (y|ñ)|y] (5.19)

P (y)
var = P [Var (yrep) ≥ Var (y) |y] (5.20)

P̃ (ỹ)
var = P [Var (ỹrep) ≥ Var (y) |y] (5.21)

where corr and ρ indicate the Pearson correlation coefficient and autocorrelation functions re-

spectively, νrep = logyrep−logn, ν = logy−logn , εrep = lognrep−log ñ, ε = logn−log ñ

and −2p(y|n) and −2p(y|ñ) are the data level and marginalized deviances (calculated using the

same formulas as in Section 4.2.4.2) of the parameters in question.

P-values P
(y,Θ)
ν,den and P̃

(Θ)
ε,den test for correlation between population size and the observation

and process errors, respectively, that are not consistent with the assumptions of the model.

Similarly, P̃
(ỹ)
ỹ,den attempts to identify this same deficiency, though using test variables based

only of replicate data from the partially marginalized predictive distribution rather than as a

function of parameters as in (5.13) and (5.14). P-values P
(y,Θ)
ν,aut and P̃

(Θ)
ε,aut test for autocorrelation

in the observation and process errors, respectively. P-values P
(y,Θ)
n,dev and P̃

(ỹ,Θ)
ñ,dev are general tests
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for inadequacy and are very similar to the likelihood-based discrepancy proposed by King and

Brooks (2002a) where the deviance is calculated at the the data level and the marginalized level,

for the former and latter respectively. P-values P
(y)
var and P̃

(ỹ)
var test for differences in the overall

variance of data between the observed and replicated datasets when replications come from the

posterior predictive (5.8) and partially marginalized predictive distributions (5.9), respectively.
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Figure 5.1: Examples of datasets (y) simulated from ML
ln in Section 5.2.6.1, with initial population sizes of

10 000 (a), 25 000 (b) and 40 000 (c).

It should be noted that the p-values resulting from (5.13)–(5.21) are considered extreme if
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they are close to either zero or one, in contrast to traditional p-values that are only considered

extreme when they approach zero. For example, (5.14) is expected to be close to one in situations

where ME
ln is fitted to data generated from ML

ln as correlation between εrep and log ñ is expected

to be higher than between ε and log ñ. Thus, as the p-value approaches one it can be interpreted

simply that the test variable for data replicated under the model is almost always higher than for

the observed data. A p-value close to zero obviously has the opposite interpretation in that the

test variable for data replicated under the model is almost always lower than for the observed

data. An example of the latter is expected to be (5.21) when ME
ln is fitted to data generated

from ML
ln, as the process errors are expected to be inflated for this inadequate model in a similar

manner to that observed in Chapter 4.

5.2.6.3 Simulations from the logistic-stepped model with a covariate

The next example used the logistic-stepped model first encountered in Section 4.2.4.2 as the true

(data-generating) model. This model is very similar to the logistic model in Section 5.2.6.1, with

observation and process errors identical to (5.10) and (5.11), respectively. The deterministic

components of the process model were however modified to accommodate a change in carrying

capacity part way through the time-series to represent, for instance, a sudden increase in a food

source that was previously limiting population growth. The deterministic component of the

process model is given by

log ñt = log

[
nt−1 + rnt−1

(
1− nt−1

K (1 + γIt)

)]
where It is an indicator variable taking the value of either 1 or 0 in year t = 1, ..., T when

the factor releasing the population from limitation is present or absent, respectively, and γ is a

parameter determining the strength of the relationship between the carrying capacity and the

indicator variable. The purpose of this example was to test the ability of predictive checks in

identifying the presence of time-varying carrying capacity. Hence, in addition to the true model

being fitted to the simulated data the more simple, ‘inadequate’ model, ML
ln (Section 5.2.6.1),

was also fitted.
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Figure 5.2: Examples of datasets (y) simulated from MS
ln in Section 5.2.6.3, with initial population sizes of

n0 = 10 000, σ=0.05 and τ=0.05, showing the difference between simulations with γ=0.5 (black lines) and
γ=1 (red lines). Each line is an individual simulated dataset.

Most parameters were kept constant at the following values for all scenarios; T = 40,

n1 = 10 000, r = 0.4, K = 50 000, and It = 0 for t = 1, 2, ..., 25, and 1 for t = 26, 27, ..., 40.

Parameters σ, τ and γ were varied to produce eight scenarios where the sets of parameter val-

ues (in order of their application in scenarios) were; σ = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.05, 0.2},

τ = {0.05, 0.05, 0.1, 0.1, 0.2, 0.2, 0.1, 0.1} and γ = {0.5, 1, 0.5, 1, 0.5, 1, 1, 1}.

All priors for these models were identical to those in Section 5.2.6.1 and the additional

parameter γ had a prior specified as γ ∼ N(0, 4). Model fitting details were the same as in

Section 5.2.6.1 and a total of 250 simulations were carried out for each scenario.

An extra test variable based on the behavior of the process errors was added to those con-

sidered in Section 5.2.6.1. It was hypothesized that ML
ln would overestimate log ñt when the

population level was around the lower carrying capacity at K and subsequently underestimate

log ñt when the higher carrying capacity at K× (1 +γ) was reached later in the time-series when

I = 1. Consequently, test variables based on parameters (P̃
(Θ)
ε,ratio) and data (P̃ ỹỹ,ratio) were con-

structed using the partially marginalized predictive distribution to investigate whether the ratio
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of errors between the two periods differs between the observed and predicted data/parameters.

The p-values of these variables are given by

P̃
(Θ)
ε,ratio = P

[(
1

11

40∑
t=30

εrept − 1

11

20∑
t=10

εrept

)
≥

(
1

11

40∑
t=30

εt −
1

11

20∑
t=10

εt

)
|y

]

P̃ ỹỹ,ratio = P

[(
1

11

40∑
t=30

ỹrept − yt

)
−

(
1

11

20∑
t=10

ỹrept − yt

)
≥ 0|y

]
where the times t = 10, ..., 20 and t = 30, ..., 40 represent the periods where the population is

expected to be near the low and high carrying capacities, respectively.

5.2.7 Simulations from a log-normal exponential growth model

This example involved simulating datasets from an exponential growth model with log-normally

distributed observation and process errors. The true model and a model with a Poisson (instead

of log-normal) process model were then fitted to each dataset to test the ability of predictive

checks to identify situations where the process model is underdispersed. The observation and

process equations of the simulation model (denoted ME
ln) were again given by (5.10) and (5.11)

from Section 5.2.6.1 and the deterministic component of the process model, log ñt, was given

by the simple exponential growth model, (5.12). The alternative (‘inadequate’) model, denoted

ME
po, shared the log-normal observation model (5.10) and the deterministic component of the

process model (5.12) however it differed from ME
ln in that the process equation was modeled as

a Poisson process rather than having log-normal process errors, i.e.

nt|r, nt−1 ∼ Pois(rnt−1) .

Most parameters were kept constant for all scenarios at; T = 30, n1 = 10 000, r = 1.035.

The error standard deviation parameters were however varied, with scenarios having observation

error standard deviations of σ = {0.1, 0.1, 0.1, 0.05, 0.2} and process error standard deviations

of τ = {0.05, 0.1, 0.2, 0.1, 0.1} for the five different scenarios, thus giving varying observation to

process error ratios.

Priors for the models were similar to those in Sections 5.2.6.1 and 5.2.6.3 with logn0 ∼ N(9, 4)

and τ ∼ Uniform(0, 10), while parameter r can potentially take higher values than in previous ex-
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amples and hence it was given the prior r ∼ Uniform(0, 10). When the value of σ used to simulate

data was 0.05, 0.1 and 0.2, the prior for this parameter was σ ∼ LN(−3.243, 0.490),LN(−2.548, 0.490),

and LN(−1.857, 0.490), respectively. The prior for the observation error standard deviation for

(ME
po) was allowed to be uninformative as identifiability is not such an issue in this model, hence

σ ∼ U(0, 10). Again the model fitting details were the same as in Section 5.2.6.1 and a total of

250 simulations were carried out for each scenario.

One additional test variable was considered along with those described in Section 5.2.6.1, and

is given by

P̃
(ỹ)
ỹ,aut = P [ρ(ỹrep − y) ≥ 0|y]

where ρ is again an autocorrelation function. This p-value tests for autocorrelation in the dif-

ferences between data simulated from the partially marginalized predictive distribution and the

observed data, and is an attempt to investigate the same deficiencies as P̃
(ỹ,Θ)
ν,aut and P̃

(Θ)
ε,aut but

using only data instead of functions of parameters.

5.2.8 Simulations from models of Lobster Creek coho salmon

Most interest in the adequacy of models of coho salmon population dynamics in Lobster Creek

(Chapter 2) is concerned with the structure of the process model, especially the deterministic

components, log ñi,j,t. Simulations were therefore carried out to test the utility of a variety

of predictive checks for assessing adequacy of these models. Simulations followed the general

methods presented in Sections 5.2.6–5.2.7 whereby datasets were simulated from a known model,

and that model, and ‘inadequate’ alternative models, were fitted to the data before assessing their

adequacy with a range of discrepancy measures.

The data generation model was essentially identical to that used to simulate data in Section

4.2.5.2. It was based on model MBLL (Section 2.2.2.3) and generates datasets for all three stages

of the coho life-cycle, in both streams, for 26 years. Three models were then fitted to each

simulated dataset; the true model (MBLL), a model with linear functions at each stage (MLLL;

Section 2.2.2.3) and a model (M∗BLL; appendix Section 8.1) where process errors were assumed
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to have stream-specific process error variances, rather than the temporal process error structure

(ωi,t; see (2.2) in Section 2.2.2.1) which were assumed in the former two models. By fitting these

two alternative models the predictive checks could be used to assess the adequacy of fitting a

linear model to a non-linear system, and the adequacy of assuming independent process errors

in a system where temporal correlations exist between streams.

The performance of the various predictive checks on the simple examples in Sections 5.2.6–

5.2.7 were used to choose appropriate test variables for the Lobster Creek simulation. Correla-

tions between process errors and population density were examined in the same manner as (5.14)

in Section 5.2.6.1. P-values were calculated for each stage-class separately and using the juvenile

stage as an example they are given by

P̃
(Θ)
ε,1,den = P

[
corr

(
εrep1,j,t, log ñ1,j,t

)
≥ corr (ε1,j,t, log ñ1,j,t) |y

]
where the 1 denotes the juvenile stage-class and the other subscripts denote the ith stream and

tth year.

Direct correlations in process errors between streams were compared for both the observed and

the partially marginalized predictive process errors, to test the adequacy of assuming independent

process errors between streams (εi,1,t is EF and εi,2,t is MF). A new test variable was constructed

to achieve this, and again using the juvenile stage as an example, the p-values for this test are

given by

P̃
(Θ)
ε,1,cor = P

[
corr

(
εrep1,1,t, ε

rep
1,2,t

)
≥ corr (ε1,1,t, ε1,2,t) |y

]
where corr denotes the Pearson correlation coefficient.

5.3 Results

5.3.1 Log-normal logistic simulations

All p-values based on posterior predictive distributions, and those based on test variables involv-

ing observation errors (ν), autocorrelation functions and deviance calculations for the partially

marginalized predictive distributions, suggested that both the true and inadequate models were
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consistent with the data (Table 5.2). Only P̃Θ
ε,den, P̃

(ỹ)
ỹ,den and P̃

(ỹ)
var identified inconsistencies be-

tween the inadequate model (ME
ln) and the data for this example. Tail area probabilities were

most extreme (P∼ 0 or 1) for these tests for scenarios where n1 = 10 000 and simulated error

variances (σ2 and/or τ2) were low. P-values became less extreme as n1, σ or τ increased. P̃Θ
ε,den

remained very extreme (P>0.96) for all scenarios, however P̃
(ỹ)
ỹ,den and P̃

(ỹ)
var were slightly less

extreme than the former for all scenarios, and p-values suggested much less conflict between the

model and data (P=0.87 and 0.14, respectively) when n1 = 40 000. For these three test variables,

and in fact all those investigated for this example, p-values for the true model (ML
ln) were close to

0.5, correctly indicating an adequate model. In all cases there was very little between-simulation

variation in p-values (all standard errors <0.02), hence only the mean values are displayed in

Table 5.2.

An example of the behavior of replicated data and parameters for both inadequate and

adequate models is displayed in Figures 5.3 and 5.4, respectively. As predicted, the posterior

estimates of the deterministic abundances (ñ; black lines) from ME
ln tended to be lower than

the latent states (n; red lines) when population size was low at the beginning of the time-

series, and higher at the end when the population was fluctuating around the carrying capacity

at high abundance (Fig 5.3). Thus, when new replicate latent states (nrep; blue lines) are

predicted from this model they are randomly spread around the deterministic abundances, and

the differences between the ‘observed’ (estimated) and simulated parameters can be detected

with well constructed partially marginalized predictive checks (though not posterior predictive

checks, as the n remain at the same values for both the observed and replicated data/parameters

in those cases). It can be seen that the variance of the replicate latent states appears higher than

the ‘observed’ latent states (tested for by P̃
(ỹ)
var), and process errors (ε = n − ñ) will be evenly

distributed around ñ for the replicate states, but will decrease from largely positive to largely

negative values for the ‘observed’ states (tested for by P̃
(Θ)
ε,den).

Figure 5.4 shows that the dynamics of both the ‘observed’ and replicated latent states are

relatively similar for the true model ML
ln. Note also that process variation is considerably reduced
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Figure 5.3: Plots of estimated latent states (n) for ME
ln for a single dataset simulated from ML

ln with
n1 = 10 000, σ=0.1 and τ=0.1. Lines indicate posterior estimates of latent states (n; red lines), posterior
estimates of the deterministic states (ñ; black lines) and replicated latent states from the partially marginalized
predictive distribution (nrep; blue lines). Each panel represents one of the i = 1, ..., n samples randomly
selected from the posterior distribution approximated using MCMC.
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compared to ME
ln, which is unsurprising given it is also the data generating model.
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Figure 5.4: Plots of estimated latent states (n) for ML
ln for a single dataset simulated from ML

ln with
n1 = 10 000, σ=0.1 and τ=0.1. Lines indicate posterior estimates of latent states (n; red lines), posterior
estimates of the deterministic states (ñ; black lines) and replicated latent states from the partially marginalized
predictive distribution (nrep; blue lines). Each panel represents one of the i = 1, ..., n samples randomly
selected from the posterior distribution approximated using MCMC.

5.3.2 Log-normal logistic-stepped simulations

Most of the test variables, including those that performed well in the previous example, suggested

that both MS
ln and ML

ln were adequate models for the simulated data (Table 5.3). Only the

example-specific p-values P̃
(Θ)
ε,ratio and P̃

(ỹ)
ỹ,ratio which were both based on partially marginalized

predictive distributions suggested that ML
ln was in anyway inadequate. The p-values for these

test variables were less extreme when the covariate value was low (γ=0.5) and when either

observation or process errors (σ or τ) were high. When those conditions were met P̃
(Θ)
ε,ratio and
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Table 5.2: Posterior predictive p-values for the true model (ML
ln) and an inadequate model (ME

ln) fitted to
datasets simulated for the log-normal logistic example. Scenarios were investigated using different values for
the initial population size (n1), observation error variance (σ2) and process error variance (τ2). P-values less
than 0.1 or greater than 0.9 are in bold.

n1 σ τ Model P̃
(ỹ,Θ)
ν,den P̃

(Θ)
ε,den P̃

(ỹ)
ỹ,den P̃

(ỹ,Θ)
ν,aut P̃

(Θ)
ε,aut P

(y,Θ)
n,dev P̃

(ỹ,Θ)
ñ,dev P

(y)
var P̃

(ỹ)
var

10 000 0.1 0.1 ML
ln 0.50 0.52 0.51 0.50 0.54 0.50 0.46 0.50 0.47

ME
ln 0.58 1.00 0.99 0.51 0.43 0.47 0.43 0.41 0

25 000 0.1 0.1 ML
ln 0.51 0.57 0.57 0.49 0.53 0.50 0.46 0.48 0.41

ME
ln 0.61 0.99 0.96 0.52 0.59 0.49 0.45 0.39 0.03

40 000 0.1 0.1 ML
ln 0.51 0.63 0.61 0.48 0.51 0.50 0.46 0.48 0.39

ME
ln 0.57 0.96 0.87 0.50 0.60 0.51 0.48 0.44 0.14

10 000 0.1 0.05 ML
ln 0.51 0.50 0.50 0.55 0.58 0.50 0.47 0.49 0.48

ME
ln 0.59 1.00 1.00 0.51 0.41 0.47 0.42 0.40 0

10 000 0.1 0.2 ML
ln 0.51 0.57 0.58 0.48 0.50 0.50 0.46 0.49 0.42

ME
ln 0.56 0.99 0.98 0.50 0.52 0.49 0.45 0.44 0.01

10 000 0.05 0.1 ML
ln 0.51 0.54 0.54 0.49 0.49 0.51 0.46 0.49 0.45

ME
ln 0.57 1.00 1.00 0.49 0.25 0.49 0.44 0.43 0

10 000 0.2 0.1 ML
ln 0.50 0.58 0.55 0.44 0.42 0.47 0.43 0.49 0.41

ME
ln 0.57 0.99 0.97 0.47 0.43 0.46 0.42 0.42 0.02

P̃
(ỹ)
ỹ,ratio were as low as 0.79 and 0.78, respectively, but when γ=1 and σ and τ were less than 0.2

then p-values were generally above 0.9 (Table 5.3).
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Table 5.3: Posterior predictive p-values for the true model (MS
ln) and an inadequate model (ML

ln) fitted to datasets simulated for the log-normal logistic-
stepped example. Scenarios were investigated by varying the values for change in carrying capacity (γ), observation error variance (σ2) and process error
variance (τ2). P-values less than 0.1 or greater than 0.9 are in bold.

γ σ τ Model P̃
(ỹ,Θ)
ν,den P̃

(Θ)
ε,den P̃

(ỹ,Θ)
ν,aut P̃

(Θ)
ε,aut P

(y,Θ)
n,dev P̃

(ỹ,Θ)
ñ,dev P

(y)
var P̃

(ỹ)
var P̃

(Θ)
ε,ratio P̃

(ỹ)
ỹ,ratio

0.5 0.1 0.05 MS
ln 0.51 0.57 0.54 0.57 0.50 0.48 0.48 0.46 0.46 0.46

ML
ln 0.53 0.70 0.53 0.52 0.48 0.45 0.46 0.30 0.93 0.91

1 0.1 0.05 MS
ln 0.51 0.53 0.53 0.56 0.50 0.47 0.48 0.46 0.47 0.47

ML
ln 0.53 0.69 0.53 0.47 0.48 0.44 0.46 0.30 0.94 0.93

0.5 0.1 0.1 MS
ln 0.52 0.55 0.50 0.53 0.50 0.47 0.48 0.44 0.48 0.48

ML
ln 0.53 0.67 0.51 0.51 0.49 0.46 0.46 0.32 0.89 0.89

1 0.1 0.1 MS
ln 0.50 0.56 0.50 0.54 0.50 0.47 0.49 0.44 0.46 0.46

ML
ln 0.52 0.67 0.51 0.48 0.49 0.45 0.48 0.33 0.92 0.91

0.5 0.1 0.2 MS
ln 0.52 0.64 0.48 0.48 0.50 0.47 0.48 0.35 0.41 0.41

ML
ln 0.51 0.63 0.49 0.50 0.50 0.47 0.49 0.37 0.79 0.78

1 0.1 0.2 MS
ln 0.51 0.65 0.47 0.48 0.50 0.47 0.49 0.35 0.42 0.42

ML
ln 0.51 0.63 0.49 0.48 0.49 0.46 0.49 0.36 0.87 0.86

1 0.05 0.1 MS
ln 0.51 0.57 0.49 0.49 0.50 0.46 0.49 0.42 0.44 0.44

ML
ln 0.52 0.70 0.49 0.39 0.50 0.45 0.47 0.29 0.91 0.91

1 0.2 0.1 MS
ln 0.52 0.56 0.54 0.55 0.50 0.47 0.48 0.43 0.46 0.46

ML
ln 0.53 0.56 0.52 0.64 0.50 0.47 0.48 0.38 0.85 0.85
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Table 5.4: Posterior predictive p-values for the true model (ME
ln) and an inadequate model (ME

po) fitted to
datasets simulated for the Poisson process error example. P-values less than 0.1 or greater than 0.9 are in bold.

σ τ Model P̃
(ỹ,Θ)
ν,den P̃

(Θ)
ε,den P̃

(ỹ,Θ)
ν,aut P̃

(Θ)
ε,aut P̃

(ỹ)
ỹ,aut P

(y)
var P̃

(ỹ)
var

0.1 0.05 ME
ln 0.51 0.65 0.54 0.59 0.65 0.49 0.39

ME
po 0.48 0.51 0.22 0.48 0.35 0.52 0.51

0.1 0.1 ME
ln 0.52 0.79 0.50 0.57 0.63 0.48 0.27

ME
po 0.50 0.57 0.08 0.48 0.18 0.49 0.49

0.1 0.2 ME
ln 0.50 0.85 0.49 0.54 0.62 0.49 0.18

ME
po 0.48 0.54 0.01 0.49 0.10 0.55 0.55

0.05 0.1 ME
ln 0.50 0.77 0.49 0.54 0.40 0.49 0.26

ME
po 0.48 0.54 0.02 0.48 0.12 0.48 0.48

0.2 0.1 ME
ln 0.53 0.78 0.55 0.59 0.35 0.46 0.30

ME
po 0.51 0.54 0.19 0.49 0.35 0.45 0.45

5.3.3 Poisson process model simulations

Only P̃
(ỹ,Θ)
ν,aut and P̃

(ỹ)
ỹ,aut detected any deficiencies in ME

po when fitted to data simulated from ME
ln

(Table 5.4). Both these test variables were based on partially marginalized predictive distribu-

tions and aimed to detect autocorrelation in errors of the fitted model that are not assumed in

the structure of that model. However, even p-values for these test variables were only extreme

for scenarios with higher process error variances (τ >0.05 for P̃
(ỹ,Θ)
ν,aut and > 0.1 for P̃

(ỹ)
ỹ,aut). The

p-value P̃
(ỹ)
ỹ,aut, which is based on the replicated data alone, had substantially less power in de-

tecting autocorrelated errors than P̃
(ỹ,Θ)
ν,aut , which is based on both data and parameters. Both

these p-values were more and less extreme when observation error variances for the scenario were

lower and higher, respectively.

An example of the inadequacy of ME
po is shown in Figure 5.5. For this scenario (σ=0.1

and τ=0.1) it is clear that the autocorrelation of observation errors for data replicated under the

model (νrep = ỹrep−nrep) using a partially marginalized predictive distribution is substantially

less than the autocorrelation of the observation errors when the model is fitted to the observed

data (ν = y − n).
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Figure 5.5: Plots of observed data (abundance - y; black lines) simulated from ME
ln and posterior estimates

of the latent states (n; red lines) for ME
po fitted to the data. Blue lines are replicate data (ỹrep) generated

from the partially marginalized predictive distribution under ME
po. Each row represents one simulated dataset,

and each panel within the row represents one of the i = 1, ..., n samples randomly selected from the posterior
distribution approximated using MCMC for that dataset. Simulation parameters used to generate the datasets
shown were; n1 = 10 000, σ=0.1 and τ=0.1.
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Table 5.5: Posterior predictive p-values for three models fitted to datasets simulated for the Lobster Creek
example, the true model (MBLL), a model without a non-linear function for the juvenile stage (MLLL), and a
model assuming independent process errors between streams (M∗

BLL). P-values less than 0.1 or greater than
0.9 are in bold.

Model P̃
(Θ)
ε,1,den P̃

(Θ)
ε,2,den P̃

(Θ)
ε,3,den P̃

(Θ)
ε,1,cor P̃

(Θ)
ε,2,cor P̃

(Θ)
ε,3,cor

MBLL 0.47 0.52 0.43 0.53 0.51 0.54
MLLL 0 0.43 0.41 0.54 0.51 0.54
M∗BLL 0.47 0.52 0.44 0.95 0.83 1.00

5.3.4 Lobster Creek simulations

P-values were largely as expected given the known deficiencies of the fitted models, with MLLL

identified as inadequate in accounting for non-linearity at the juvenile stage (P̃
(Θ)
ε,1,den=0), while

the linear functions at the smolt and spawner stages were correctly identified as adequate (Ta-

ble 5.5). Model M∗BLL was identified as inadequate in modeling correlation of process errors

between streams for the juvenile and spawner stages (P̃
(Θ)
ε,1,cor=0.95, P̃

(Θ)
ε,3,cor=1; Table 5.5), al-

though the predictive checks suggested that this inadequacy was not present at the smolt stage

(P̃
(Θ)
ε,2,cor=0.83), despite the data at this stage also being simulated with correlated process errors.

5.4 Discussion

5.4.1 Posterior and partially marginalized predictive checks

A number of aspects of predictive checks were investigated in this chapter including whether

they should be carried out based on partially marginalized predictive distributions, where new

values for the latent states n are drawn from the conditional prior, or posterior predictive dis-

tributions where the states are drawn from their posterior distributions. Test statistics for both

types of predictive check were also calculated based on data, parameters/states and functions of

both to assess whether this affected the power of the approach in detecting inadequate models.

The examples used reflect the general conditions encountered when modeling animal population

dynamics, and more specifically the case of salmon stock assessment. Consequently, emphasis

was mainly placed on detecting deficiencies in the deterministic and stochastic components of
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the process model as this is typically where most choices in the structure of the model have to be

made. In these situations a number of generalizations can be made from this simulation study.

Partially marginalized predictive checks performed much better than posterior predictive

checks when deficiencies in the model were located in the deterministic components of the process

model. In some cases posterior predictive checks were not even considered as their utility is

clearly limited. For instance, a posterior predictive equivalent of P̃Θ
ε,den could be calculated for

the examples in Sections 5.2.6 and 5.2.6.3, however it would be insensitive to the inadequacies

in the deterministic components of the process model being investigated. This is because the

process errors will have already compensated for the inadequacies and generating replicate data

from the posterior estimates of n (via (5.8)) will nearly always be consistent with the observed

data. A possible exception to this is the Poisson process model example (Section 5.2.7) where an

appropriate posterior predictive check might detect the inadequacy of ME
po as in this case it was

located in the stochastic, rather than deterministic components of the process model. However,

there appears to be little reason to adopt this approach when inadequacy is easily detected by

the partially marginalized predictive checks.

Because partially marginalized predictive checks involve simulating new values for the latent

states (n) it seems logical to formulate test variables based on the parameters/states at this

level of the model, as this is where interest often lies. Test variables based only on underlying

parameters of simple hierarchical models have also been considered by Sinharay and Stern (2003)

and Steinbakk and Storvik (2009), and these types of test variables (P̃Θ) performed well for the

state-space examples considered herein. For example, when linear models were hypothesized

to be inadequate in Sections 5.2.6.1 and 5.2.8, it was relatively easy to construct test variables

based on the expected behavior of the process errors (ε) alone, while it is often more difficult

to construct traditional test variables that are a function of data alone. This has been noted in

the past by others (Steinbakk and Storvik, 2009), and is perhaps one reason behind the frequent

reliance on omnibus test variables such as the chi-squared (Gelman et al., 1996), Freeman-Tukey

(Brooks et al., 2000) and likelihood statistics (King and Brooks, 2002a).
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5.4.2 Comparing test variables at different levels of the model

As was shown in the examples considered herein, it is often relatively simple to reformulate test

variables from being functions of parameters, to functions of data alone. This can be achieved

by investigating the differences between the replicated and observed data and applying the test

for the hypothesized deficiency on this difference, rather than directly on the parameters of

interest. In this chapter many of the P̃Θ were constructed based on the process errors, ε. To

calculate similar p-values as a function of data alone (e.g. P̃ ỹ) the difference ỹrep − y was first

calculated. The equivalent test function was then applied (e.g. correlation with population size),

and the value of the test was compared to zero, rather than a reference distribution as occurs

with the other test variables. This approach seemed to work relatively well because the general

inadequacies of the deterministic process models are propagated through the generation of nrep

from p(n|ñ, τ2) and then further onto ỹrep from p(ỹrep|n, σ2), and results in differences between

ỹrep and y in these models. It is difficult to see how this would ever be the desirable option

however, as stochasticity is induced for both of these distributions which has the potential to

ameliorate conflict between data and models if process and/or observation error variances are

large.

Using Section 5.2.6.1 as an example of the differences between test variables as functions of

data or parameters, tests P̃
(Θ)
ε,den and P̃

(ỹ)
ỹ,den aim to identify the same discrepancy between the fitted

model and replications under the model, namely that non-linearity present in the data cannot

be reliably modeled by a linear model. This will be evidenced by unusual (given the assumptions

of the model) patterns in the process errors, and by extension differences between y and ỹrep.

The most significant difference between P̃
(Θ)
ε,den and P̃

(ỹ)
ỹ,den is that the latter is simulated with two

distributions with scale parameters (τ and σ) rather than just the stochasticity of the process

model, and so it is expected that by chance some replicated test variables will be more likely to

be similar to the observed test variables than in the case of P̃
(Θ)
ε,den. This is reflected in the results,

for instance P̃
(ỹ)
ỹ,den has less power than P̃

(Θ)
ε,den in Section 5.3.1, P̃

(ỹ)
ỹ,ratio has slightly less power than
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P̃
(ỹ,Θ)
ν,aut in Section 5.3.2, and P̃

(ỹ)
ỹ,aut had less power than P̃

(ỹ)
ỹ,aut in Section 5.3.3. The difference

in power between P̃Θ and P̃ ỹ will be partly determined by the form of the test variable. For

instance, a variable that is a mean over a number of data/parameter/state values (e.g. multiple

years) will be more robust than a statistic based on only one data point/parameter/state.

5.4.3 The use of omnibus tests

Omnibus tests are often utilized as a means of conveniently applying posterior predictive checks

to new modeling situations however they were observed to have poor power in the examples

examined here. However, it must be noted that little effort was placed in determining the most

powerful omnibus test that could be applied for the examples considered, given that formulating

test variables for specific aspects of the models was the main aim of this study. It seems likely

that they will have limited potential unless the inadequacies of the model are severe, especially

if the inadequacy occurs somewhere in the process model. Well thought-out discrepancies that

are specific to the situation being considered certainly appear to be the best approach and

also directly allow the assessment of whether the objectives of the modeling can be met (if

the discrepancies are constructed with these objective in mind). However, it is certainly more

difficult to develop specific test statistics, and it appears that omnibus test variables are generally

attractive because they circumvent most of the hardest aspects of measuring the adequacy of a

model. That is, determining exactly what the purpose of the model is, what aspects of the model

consequently need to be adequate, how to construct appropriate tests for these aspects, and how

much difference between observed data and data replicated under the model is required before

the model is modified or an alternative considered. The effort and careful thought needed in

addressing these factors will however certainly enhance the analysts understanding of the model

and its adequacy for the dataset at-hand.

5.4.4 Interpreting p-values and graphical summaries

Emphasis throughout this chapter has been placed on p-values rather than graphical comparison

of observed data/parameters and those generated under the model. This perhaps reflects the
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situation in practice where the later are rarely utilized, or at least presented in published work,

but this should not be taken to mean that p-values are superior. In fact, they are entirely

compatible with each other. The main reason for the heavy use of p-values herein is the ease

with which their calculation can be automated and summarized using simulation. However, well

constructed graphical summaries have the ability to assess multiple aspects of the model, some

of which may not have been considered a priori, and it is generally very easy to confirm a visual

discrepancy by also calculating p-values. In fact, several of the test variables considered herein

were only constructed after first examining appropriate graphical summaries.

Once a p-value has been calculated, or a graphical comparison of observed and replicated

data/parameters constructed and interpreted, the consequences for inferences or further model

development may not be immediately obvious. Firstly, the lack of extreme p-values does not

guarantee an adequate model, it merely suggests that it is sufficient for replicating the aspect of

the data examined by the test. For this reason, robust model checking will involve constructing

test variables (or graphs) for all of the aspects of the model most important for achieving the

objectives of the study. Similarly, the most cited weakness of posterior predictive checks is their

conservatism for hierarchical models (Bayarri and Castellanos, 2007; Steinbakk and Storvik,

2009). The two levels of flexible distributions (distributions with scale parameters) in most of

the models explored allow the latent states to nearly always fit the data well, and so data, and

test variables from them, replicated under the model with latent states fixed at the ‘observed’

values (posterior predictive distribution), will nearly always be close to those observed. This is

the same situation as observed for DICd in Chapter 4. In contrast to posterior predictive checks,

tests based on the partially marginalized distributions were relatively powerful when they are

carefully constructed, which goes some way to appeasing the doubts of Bayarri and Castellanos

(2007) and Steinbakk and Storvik (2009).

It should also be noted that even if conservatism of predictive tests is encountered it is not

necessarily a problem (Sinharay and Stern, 2003; Gelman, 2007). It merely suggests the model

is able to predict data with characteristics similar to observed dataset even when the model is
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known to be ‘incorrect’. It seems to be the case that the deficiencies commonly encountered in

state-space applications often occur at a level not tested by posterior predictive checks, which

test the full model with respect to producing data for new observations from the same groups

(in a simple hierarchical model context). Sinharay and Stern (2003) suggest that this indicates

‘robust’ models, and this appears to be true for those models investigated herein in that normal

distributed errors for both process and observation models produce very flexible models. Thus

the deficiencies that are often of interest in the process model will have to be investigated using

partially marginalized predictive checks.

The decisions that have to be made when extreme p-values (or graphical summaries) are

observed are similar to those addressed above for tests that indicate consistency between the

model and data. An extreme p-value does not automatically indicate an unusable model, that is,

one that has to be modified or necessitates an alternative to be considered. We know before fitting

it to data that the model is wrong and so the question becomes, how wrong does it have to be

before it becomes unusable? In some cases an extreme p-value may indicate substantial conflict

between model and data but will still be usable for the purposes of the study. Consider the test

for non-linearity in Section 5.2.6.1. If the purpose of the modeling is to predict future abundance

then extreme p-values identifying inadequacy of the linear (exponential growth) model should be

heeded, as predictions will overestimate and underestimate the true abundance when population

size is low and high respectively. This will consequently impact on robust management of harvest

regulations, conservation planning etc. In contrast, graphical summaries in Section 8.4 that

display information similar to P̃ ỹvar suggest that the process model is inadequate for describing

variation in abundance of coho spawners in Lobster Creek, presumably due the inability to model

the affects of climate variation adequately. If the purpose of that model was to separate survival

of fish into freshwater and marine components then the model will still have utility. Prediction

of future abundance may well be compromised to a degree though. It should be noted though

that the inflated process errors for that model will make prediction intervals wide but as stated

in Chapter 2, if prediction is deemed important for that system would benefit greatly from
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development of this aspect of the model. One possible method of helping determine whether the

magnitude of conflict is practically important is to put more emphasis on confidence intervals of

test statistics for the replications under the model, rather than calculating only p-values.

5.4.5 Predictive checks and model selection

It is possible to question the use of predictive checks by arguing that many aspects of inade-

quacy being identified could perhaps be evident in more traditional model assessment, such as

examination of residuals etc. In addition, if a certain inadequacy is being tested then gener-

ally an alternative model is being considered (at least in the analysts mind) and so it could be

asked why should it not be rephrased as a model selection problem using DIC, Bayes factors

etc.? This point could of course be made for model checking of traditional models as well, and

it has previously been suggested that checking of a single model should only be undertaken in

the early, exploratory periods of an analysis before formal methods are used (e.g. Piccinato,

2000). Even if this were true, it can be difficult to compare state-space models when they differ

only in their deterministic components (Chapter 4), let alone when they differ at multiple levels

such as error structures etc. which are also often the focus of predictive checks (e.g. P̃
(Θ)
ε,cor in

Section 5.2.8). In fact, many analysts adopt an approach that expands models based entirely on

predictive checks (Gelman et al., 2003; Gelman, 2004; Kery and Schaub, 2011) rather than using

formal model selection techniques at all during statistical analysis (this was the basis of Section

3.2.2 in Chapter 2).

5.4.6 Conclusions

In the context of state-space models of animal population dynamics, predictive checks appear

to have substantial potential and ideally their use will become more widespread. More explicit

description of which predictive distributions, and what type of test variables have been utilized

is needed in published work before checks of model adequacy will become standard in the field,

as currently there appears to be little emphasis on establishing whether fitted models (or best

model/s among a candidate set) can meet the objectives of those studies. Based on this chapter
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the path towards identifying adequate model/s would have several steps. The objectives of the

study must be well defined, the part/s of the model that are to be focused on must be decided

(this will partly be determined by which units of replication are of interest), appropriate test

variables must be constructed and assessed using p-values or graphical summaries, and finally it

must be evaluated whether any conflict between data and models is significant enough to warrant

further model development.
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Chapter 6

Comparison of estimators of salmon
escapement for periodic count data

6.1 Introduction

Escapement of salmon is usually defined as the number of adult fish that avoid mortality and

return to spawn in a certain reach, or waterway (Hilborn and Walters, 1992; Quinn and Deriso,

1999). This measure is frequently the focus of management actions, being an estimate of pop-

ulation size at the life-history stage most-valued by fisherman, conservation managers and the

general public. It is also the basis of most assessments of stock status, and allows quantification

of the link between subsequent generations of individuals (Beverton and Holt, 1957; Quinn and

Deriso, 1999). In contrast to species with more complicated life-cycles, data for a salmon stock

is usually restricted to this single measure, at this single stage-class.

Unfortunately, escapement can be difficult to estimate. A fundamental issue is that indi-

viduals return to the study reach and spawn over an extended period of time. Because they

are semelparous, and because mortality of individuals can occur quickly after spawning, this

means that not all individuals will be present at the site simultaneously. This is not necessarily

a problem, as under ideal conditions a full census (or very close to it) can be achieved for certain

waterways by using weirs or dams to enumerate the number of fish passing daily (e.g. Irvine

et al., 1992; Bue et al., 1998; Szerlong and Rundio, 2008). Typically though, this approach will

be logistically prohibitive, except for well funded studies with low spatial extent. Alternative

techniques are usually adopted when spatial scale of an assessment is increased.
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Very commonly, alternatives to censuses involve estimating abundance at a sample of days

throughout the season, often using visual survey methods (e.g Irvine et al., 1992). Resulting data

are termed periodic counts, and a number of techniques are available to estimate escapement

from them. There are other methods available, such as mark-recapture studies, however their

use is numerically insignificant in practice compared to periodic count methods (Knudsen, 2000;

Parsons and Skalski, 2009).

Perhaps the most popular escapement estimators for periodic count data are based on trape-

zoidal ‘area-under-the-curve’ (TAUC) techniques (Ames, 1984; English et al., 1992), where the

total number of ‘fish-days’ is estimated by calculating the area under a curve connecting the

counts over the sampling period (Fig 6.1), and escapement is derived by accounting for observer

efficiency (the proportion of fish in the steam that are detected) and the stream-life (the time

between entry into the study reach and death) of spawning fish. An alternative to this estimator

fits a parametric model to the counts with the model parameterized such that escapement is a

parameter estimated during maximization of the likelihood (Hilborn et al., 1999). This technique

assumes that the arrival of salmon over the spawning season follows a Gaussian curve and has

been denoted the likelihood AUC, parametric AUC and HARR (Hilborn arrival model) by Holt

and Cox (2008), Parsons and Skalski (2009) and Millar et al. (2012), respectively, despite it not

strictly being an AUC technique. Herein this estimator will be denoted HARR. This estimator

has the advantage that variance in escapement can be derived from standard maximum like-

lihood (ML) techniques. Recently, Millar et al. (2012) introduced a similar method (denoted

GAUC herein) that fits a Gaussian curve directly to the observed periodic counts within a gen-

eralized linear model (GLM) framework. The area under the fitted model is then calculated, and

escapement is derived by accounting for observer efficiency and stream-life in the same manner

as when using the TAUC method. The estimates produced by GAUC are almost identical to

the estimator of Hilborn et al. (1999) except that they are more stable numerically and can be

carried out easily in many statistical software packages (Millar et al., 2012).

Another class of methods is the average spawner (AS) estimators, that treat the periodic
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counts as a random sample from the full spawning run and multiply the mean count by spawning

season duration to estimate fish-days. Escapement is again derived from fish-days using the same

techniques as for AUC methods. These estimators have received favorable reviews recently (Holt

and Cox, 2008; Parsons and Skalski, 2009) but have seldom been applied in practice.

Finally, the peak count (PC) method can perhaps be considered a special case of an estimator

for periodic counts, in that the estimate of escapement is simply the maximum observed count

over the periodic count dataset (Parsons and Skalski, 2009). It is not an absolute estimate

of escapement however, and thus it is subject to the associated risks that come with basing

management decisions on indices of abundance (Anderson, 2001). Note that there are methods

for calibrating these relative estimates against absolute escapement (reviewed by Parsons and

Skalski, 2009), but they are rarely used in practice. Despite the weaknesses of peak counts, they

are, or are among, the most widely used estimators for some salmon species (Knudsen, 2000;

Parsons and Skalski, 2009).

Once periodic count data has been obtained there is clearly some choice about which esti-

mator to apply, but little is known about their relative properties. Ideally, choice of estimator

would be based on it exhibiting several essential features including low bias, the availability of

valid variance estimates which result in confidence intervals with good coverage properties, weak

assumptions, and robustness to violation of these assumptions. Ease of implementation is also

important, as analyses are often conducted by salmon biologists with little statistical background.

Of the desirable properties of the estimators, the lack of widely used variance estimators is

perhaps the most significant weakness in those currently being applied. The inadequacies of rely-

ing on only point estimates are widely acknowledged in statistics, but have been largely ignored

in studies monitoring salmon escapement. Associated estimates of uncertainty are essential for

valid inferences from studies using periodic count data. For example comparing escapement be-

tween sites or times, conducting impact assessments on salmon abundance and basing population

viability assessments on escapement estimates will be weak when based solely on point estimates.

An immediate example of the benefits of estimating uncertainty, and the motivation for this
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chapter, comes when fitting dynamic models to salmon abundance data (e.g. Rivot and Parent,

2001; Peterman et al., 2003; Su and Peterman, 2011, and Chapter 2 herein). In practice it can

be difficult to partition the variation in the data between observation and process error when

state-space models are fitted to time-series of counts (Schnute, 1994). Often prior information on

one or both of these variances, or their ratio, is necessary to achieve identifiability of all model

parameters (Schnute, 1994; King et al., 2008, 2009). It is difficult to formulate reasonable prior

distributions for observation error variance (for example, parameters σ2
3,j,t in Section 2.2.2.1) for

state-space models of salmon dynamics when estimators of variance in escapement are either

unavailable, or whose reliability has not been assessed. Development of robust variance estima-

tors will potentially be the key to facilitating the successful fitting of state-space models to some

datasets of salmon abundance.

There are several reasons why the variance of escapement estimates has seldom been calcu-

lated in studies using periodic count data. Most importantly, variance estimators have simply

not been available for TAUC and peak count estimators, and these are the most frequently ap-

plied techniques in practice (Knudsen, 2000; Parsons and Skalski, 2009). However, there are also

difficulties in identifying exactly what the estimated variance represents.

Uncertainty in escapement estimates is introduced from a number of sources including uncer-

tainty in 1) observer efficiency, 2) the detection of fish, 3) the selection of study reaches within the

population of interest, 4) the selection of days that are sampled, and 5) in stream-life estimates

used to convert fish-days into escapement (Parsons and Skalski, 2009). It has not always been

made clear which of these sources of uncertainty have been accounted for in the various variance

estimators applied in the past.

A further issue when defining what variance of estimators of escapement represents is that

there are major differences in the assumptions of the estimators that can broadly be categorized

into design- and model-based approaches. The parametric versions of AUC (Holt and Cox, 2008;

Parsons and Skalski, 2009; Millar et al., 2012) are model-based estimators which treat the set

of counts as a single realization of underlying stochastic processes and attempt to estimate fish-
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days as a function of a model with one or more parameters. The robustness of the estimates

is conditional on the model being an adequate representation of the underlying processes. In

contrast, design-based approaches (TAUC and AS methods) treat the abundances as fixed, with

stochasticity occurring in the selection of the days to be sampled. Design-based estimators have

the advantage of generally being unbiased for parameters such as population means and totals,

independent of the nature of the underlying population, however their precision will depend

on the suitability of the design for the population structure (chapter 8 of Cochran, 1977). For

example, high variance in escapement is expected when the temporal structure of fish arrivals in

streams is effectively ignored by treating periodic counts as a random sample over the spawning

season. This distinction is seldom made with respect to estimating salmon escapement, and has

led to confusion regarding the properties of some estimators (Parsons and Skalski, 2009). There

are certainly potential advantages in both approaches. For instance design-based estimators may

hold promise is situations where spawning runs have multiple pulses of fish entering the stream,

which are hard to model adequately. However, sampling of escapement is rarely designed with

the assumptions of estimators, and their variance, in mind. Indeed, most frequently a systematic

sample is obtained for logistical convenience which has consequences for the validity of most

design-based estimators (chapter 8 of Wolter, 2007). The practical significance of design choices

such as this has yet to be determined for period count estimators.

Clearly, there are a number of challenges facing practitioners when analyzing periodic count

data and guidance for choosing appropriate estimators and their implementation should be a

high priority if salmon monitoring and inferences made from resulting estimates are to be im-

proved. These challenges are reflected in the fact that choice among estimators currently appears

to be based on convenience, or at times institutional standard practice, rather than on statistical

grounds. This seems likely to continue until robust comparisons of the properties of all suitable

estimators are implemented and the results disseminated. Undertaking this comparison and

focusing on the estimators of escapement, and the associated estimates of variance in escape-

ment, will be the focus of this chapter, and will simultaneously guide the choice of estimator for
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producing the escapement estimates (and their variance) used to fit the state-space models in

Chapter 2.

Previous studies have compared estimators across different classes of data, for example AUC

versus mark-recapture methods (Korman et al., 2002; Parken et al., 2003), while others have

focused on several estimators within a single class, such as Millar et al. (2012), who assessed

properties of several AUC estimators. Holt and Cox (2008) simulated the dynamics of salmon

runs to test the ability of AUC, AS and PC estimators in detecting trends in salmon abundance.

They identified AS estimators as most suited to their objectives, although these were slightly

different to the usual application of escapement estimates, in that indices of abundance can

sometimes be adequate for trend detection. Furthermore, their study contained methodological

errors that unfairly influenced the comparison of estimators (as pointed out by Millar et al.,

2012). However, their results do highlight the possibility that some widely-used estimators have

poor inferential properties compared to alternatives. The most general assessment of escapement

estimators was carried out by Parsons and Skalski (2009, 2010). They conducted an extensive

review that focused on the statistical properties of a suite of estimators of salmon escapement

(across several data-types such as periodic counts, passage counts, mark-recapture data etc.),

including statistical bias, validity of assumptions and the availability of associated variance esti-

mates. Among the estimators for periodic count data, they identified the AS method as having

the most desirable statistical properties, followed by TAUC. The latter was suggested to be

statistically biased and did not account for uncertainty from the selection of sampling days.

While these previous comparisons of estimators, especially those of Parsons and Skalski (2009,

2010), are a valuable addition to the literature, they need to be augmented by assessing the prac-

tical (in addition to statistical) properties of a comprehensive set of estimators that appear to

have the most potential for periodic count data. For instance, a complete assessment of estima-

tors must investigate their bias and precision, and coverage rates of confidence intervals under

conditions encountered in practice. This is a difficult assignment as it requires estimators to be

applied to datasets where the true escapement is known, and to make the results general across
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species and different types of waterways a wide variety of datasets would be needed. Unfor-

tunately, few datasets amenable to this approach are available (though see Irvine et al., 1992;

Bue et al., 1998), and their generality is questionable. One alternative approach to approxi-

mating estimator performance under field conditions is to carry out simulations that represent

the dynamics of salmon spawning runs and the sampling process through which periodic counts

are obtained. This approach was previously adopted by Holt and Cox (2008) and Millar et al.

(2012), and is utilized in this chapter to assess the practical properties of the candidate set of

escapement estimators for periodic count data with the aim of complementing the theoretical

work of Parsons and Skalski (2009).

The structure of this chapter is as follows. The important features of periodic count datasets

such as the definitions of spawning season and fish-days are presented in Section 6.2.1. The

definition of variance in the estimate of escapement for the various methods and the conditions

assumed in its estimation are then addressed. The suite of estimators under consideration are

introduced in Sections 6.2.2–6.2.4, their derivations are presented, and the availability and form

of associated variance estimators are especially noted. Three classes of estimator are investigated,

AUC (Sections 6.2.2.1, 6.2.2.2), AS (Sections 6.2.3.1–6.2.3.3) and PC (section 6.2.4) methods.

Several variants are compared within classes. For instance, several variance estimates for AS

methods for standard systematic count data are compared, in an attempt to reduce the bias

known to occur in these situations (Wolter, 2007). Similarly, AS methods are most suited to

random sampling designs (Parsons and Skalski, 2009) and so the possibility of collecting periodic

count data using simple, and stratified random sampling is explored. Technically, periodic count

data refers to sets of counts collected by systematic, or roughly systematic sampling, though for

the purposes of this chapter the definition is extended to also include random samples which share

most of the same fundamental properties. Furthermore, comparisons included in this chapter

explore recent advances in AUC estimators that have been made since the review by Parsons and

Skalski (2009), including development of the GAUC estimator and proposed variance estimates

for TAUC techniques Millar et al. (2012).
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Once estimators have been defined, the simulation-based approach of assessing the estimators

is introduced in Section 6.2.6, by presenting the structure of the data-generating model and the

range of scenarios investigated in the simulations. The results of the simulations are presented

in Sections 6.3.1–6.3.3 where the performance of estimators are compared with regard to bias,

precision and the coverage rates of their confidence intervals. These comparisons include as-

sessment of differences in performance of estimators for systematic and random sampling-based

designs (Section 6.3.2). Finally, the relative merits of all estimators are discussed in Section 6.4.

In situations where periodic counts have already been collected via a systematic sample, this

comparison will provide guidance for salmon biologists in selecting the most appropriate estima-

tor for the specific conditions encountered in their studies. Where data is yet to be collected,

the comparison among estimators, and between alternative sampling designs, will lend itself to

practitioners making informed decisions about designing data collection and analysis to meet the

objectives of their study.

6.2 Methods

6.2.1 Definitions for the estimation of escapement

6.2.1.1 Definition of periodic counts

The length of the spawning season (the period between the 1st fish arriving in the study reach and

the last fish dieing) must be well defined for several of the estimators of escapement. Exceptions

include the GAUC (and HARR - which is not calculated herein) estimator which estimates

season-length implicitly along with abundance, and PC methods where season length is not

utilized. Season-length (in days) for the remaining estimators is denoted N , while the days of

the season are denoted dj for j = 1, ..., N . In most applications the season length is defined

(sometimes implicitly) as the time between midday of the first day, d1, and midday of last day,

dN , i.e. N = dN−d1 (Irvine et al., 1992). Periodic counts are typically collected via a systematic

design where counts are made at approximately regular intervals (typically around a week) after

the initial count. Counts are denoted ci where i = 1, ..., n indexes the sampling occasion over
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the total of n counts. Sampling stops at cn when surveyors deem that the spawning season has

been completed, usually after one or more zero counts have been observed.

6.2.1.2 Definition and calculation of fish-days and escapement

Most of the estimators examined herein require an estimate of the number of fish present in the

stream on each day of the spawning season, based on the periodic count sample c = c1, ..., cn.

In general there will be issues in detecting fish such that c will be negatively biased due to

observers consistently missing a fraction of the individuals present on the sampling day. If the

proportion detected on sampling occasion i is denoted vi (termed observer efficiency), then a set

of corrected counts would be calculated c̃ = c1/v1, ..., cn/vn. In general however, only estimates

of observer efficiency (v̂i) will be available. The different estimators then generally use these

counts to estimate the number of fish present on every day of the season, with the sum over all

days denoted fish-days F̂ . This is not an estimate of true escapement as individuals are present

on multiple days. The estimate of fish-days is divided by an estimate of stream-life (the length

of time between a fish entering the study area and it dying; l̂) to estimate escapement, E, e.g.

Ê =
F̂

l̂
. (6.1)

Estimates of observer efficiency will in most cases only be available for the whole season

(and often these will have been estimated in different streams and/or years) rather than for each

i = 1, ..., n survey. This simplifies calculations and in these cases an equivalent estimate to (6.1)

results from calculating fish-days from the uncorrected counts, c, and then correcting fish-days

for observer efficiency and stream-life simultaneously, e.g.

Ê =
F̂

l̂ × v̂
(6.2)

where v̂ is an estimate of observer efficiency for all counts. The choice between (6.1) and (6.2)

is made independent of which estimator is being used, among those considered herein. Thus,

only (6.2) is utilized in this chapter as observer efficiency is considered constant and known

throughout (see Section 6.2.1.3) for the comparison of estimators.
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6.2.1.3 Variance of fish-days and escapement

Each of the estimators considered herein begins by estimating the variance of F̂ , denoted Var(F̂ ).

The exceptions to this are PC estimators which have no valid variance estimator, and the HARR

estimator which includes escapement as a parameter in the model and estimates its variance

using standard ML techniques. Because the GAUC variant has been found to be superior to the

very similar HARR (Millar et al., 2012), the latter is not considered herein and thus the slightly

different technique for estimating variance for that estimator is not presented.

The model-based AUC estimators (GAUC) treat the sampling-days as fixed and the counts

are considered one realization from stochastic processes of the system, thus variance estimates

will consequently represent the variation in estimated fish-days that would occur over these

potential realizations. In contrast, the design-based AS estimators treat the counts as fixed and

uncertainty in estimates of fish-days represents variation induced from the selection of days to

be surveyed (the TAUC estimator presented in Section 6.2.2.2 is a hybrid of the approaches in

that the estimate of escapement is design-based while the variance in this estimate is model-

based). The variance represents the variation in escapement over a set of hypothetical replicate

samples that could have been collected via identical sampling processes. In practice, the variance

estimated by both approaches, V̂ar(F̂ ), will represent variation in the detectability of individuals

and process variation in the numbers of fish entering and dying throughout the spawning season.

It should be noted that Parsons and Skalski (2009) apply finite population correction factors

when using AS estimators but these are not implemented herein. Sampling of fish abundance

occurs at some time during the day and is used as an approximation for the number of fish

present on that given discrete day, even though the arrival and death of fish are continuous

processes. Likewise, when the inferences from the sample are extended to the full season to

estimate fish-days, the choice of day as a unit is relatively arbitrary. Separating the continuous

time of the season into different discrete units, say half-days etc., may well be just as justifiable

as full days, and clearly this would affect the influence of a finite population correction factor.
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In general, interest is ultimately directed at estimating escapement (Ê; (6.2)), and ideally

also a robust estimate of its variance, Var(Ê). The latter must account for uncertainty in v

and l in addition to uncertainty in the estimate of fish-days, Var(F̂ ). These additional sources

of uncertainty cannot be accounted for with periodic count data alone. Previous studies have

only been able to include these components of variation by incorporating prior information on

variation in v and/or l (Hilborn et al., 1999), or utilizing additional data such as from tagging

studies (Szerlong and Rundio, 2008) or replicate counts at each sampling occasion (Parken et al.,

2003). Without these data, or prior values, variance estimates are restricted to measuring uncer-

tainty in fish-days and this is the basis for the comparison of estimators in this chapter. While

reliable inferences about escapement rely on these extra sources of uncertainty being included,

the methods for accommodating them will generally be the same across estimators, for example

variance in fish-days will first be estimated and then the additional sources of uncertainty will be

incorporated using techniques such as analytical approaches based on the delta method (Millar

et al., 2012), bootstrapping (Parken et al., 2003) or Bayesian methods. This chapter therefore

focuses on the estimation of uncertainty in fish-days only, as this is the limitation of periodic

count data, and is also where most differences between estimators will exist. Consequently, in-

ferences from this study are expected to be general to situations in practice where uncertainty

in v and l is addressed, and the absence of their uncertainty herein reflects the desire for clarity

in the most important differences between estimators.

6.2.2 AUC estimators

6.2.2.1 AUC using a Gaussian spawner model

The GAUC method was proposed by Millar et al. (2012) as a very similar, but more easily (and

reliably) implemented alternative to the HARR estimator of Hilborn et al. (1999). If the counts

are again denoted c, then this estimator assumes that the expected count of spawners on day d,

follows the Gaussian curve

E(cd) = a exp

(
− (d−m)2

2τ2

)
(6.3)
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where a is the maximum height of the curve, m is the day of peak spawners, and τ is the standard

deviation.

Fish-days is the area under the curve of spawner abundance, and because the normal density

function integrates to unity the GAUC estimator of fish-days, FG, is simply

FG = a

∫ ∞
−∞

exp

(
− (d−m)2

2τ2

)
dd = a

√
2πτ .

Calculation of F̂G is facilitated by re-expressing (6.3) as a log-linear model, by taking logs on both

sides. Estimation occurs from a sample of counts which are now denoted ci, where i = 1, ..., n

indexes the sampling occasion and di is the day-of-season on which the count is made. The

log-linear model with a quadratic term is thus given by

log (E (ci)) = loga− (di −m)2

2τ2

≡ β0 + β1di + β2d
2
i , (6.4)

where the regression coefficients correspond to

β0 = loga− m2

2τ2

β1 =
m

τ2

β2 = − 1

2τ2
.

The above equations can easily be inverted to obtain a and τ as functions of β0, β1 and β2, and

allow F̂G to be expressed as a function of the estimated regression coefficients,

F̂G =

√
π

−β̂2

exp

(
β̂0 −

β̂2
1

4β̂2

)
. (6.5)

Equation (6.4) is a log-linear model with regression coefficients (β0, β1, β2), which is easily

implemented in a generalized linear modeling framework by assuming the counts are Poisson-

distributed. The quasi-likelihood, overdispersion correction for GLMs (Millar, 2011) is utilized to

allow the variance of the counts to be proportional to, rather than equal to (under the standard

Poisson GLM), the expected count, e.g.

Var(ci) = φE(ci)
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where φ is an overdispersion parameter, itself calculated

φ̂ =
1

n− 3

n∑
i=1

(ci − ĉi)2

ĉi
.

Alternative approaches such as mixed models could also be considered although for each incre-

mental increase in model complexity, the probability of methods being taken up by practitioners

decreases, and so they are not considered herein. The quasi-likelihood GLM will produce ML

estimates (β̂0, β̂1, β̂2), from which F̂G is obtained from (6.5). The approximate variance of this

estimator, denoted V̂ar(F̂G) is obtained from the covariance matrix of (β̂0, β̂1, β̂2), via application

of the delta method (Millar et al., 2012).

The final step in estimating escapement involves using (6.2) to divide fish-days by the product

of stream-life (l) and observer efficiency (v) (which are assumed known herein), i.e.

ÊG =
F̂G
l × v

. (6.6)

By assuming that l and v are known, the estimate of variance of the GAUC escapement

estimator is given by

V̂ar(ÊG) =
V̂ar(F̂G)

l2v2
. (6.7)

Note that in practice uncertainty in the estimation of l and v can be readily be incorporated at

this stage using a variety of methods suggested in Section 6.2.1.3, and by Parsons and Skalski

(2009) and Millar et al. (2012).

6.2.2.2 Trapezoidal AUC with model-based variance estimator

Trapezoidal area-under-the-curve (Irvine et al., 1992) is the most frequently applied of the AUC

methods, and is calculated

F̂T = 0.5
n−1∑
i=1

(di+1 − di)(ci + ci+1) (6.8)

= 0.5

[
(d2 − d1)c1 + (dn − dn−1)cn +

n−1∑
i=2

(di+1 − di−1)ci

]
(6.9)
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where the ci are again the counts on the i = 1, ..., n sampling occasions and di are the days of

these counts. If c1 and cn are fixed zeros then this reduces to

F̂T = 0.5

n−1∑
i=2

(di+1 − di−1)ci , (6.10)

and so if the ci are independent

Var(F̂T ) = 0.25
n−1∑
i=2

(di+1 − di−1)2Var(ci)

which is the variance formula in Irvine et al. (1992). An obvious estimator of Var(F̂T ) is

V̂ar(F̂T ) = 0.25

n−1∑
i=2

(di+1 − di−1)2V̂ar(ci) . (6.11)

However, until the recent proposal of Millar and Jordan (In Press), a valid estimator of V̂ar(ci)

has been elusive. They showed that by fitting the GLM model using (6.4) in the GAUC approach

then V̂ar(ci) could be obtained as

V̂ar(ci) = φ̂ĉi

and, (6.11) can be simplified to

V̂ar(F̂T ) = 0.25 φ̂
n−1∑
i=2

(di+1 − di−1)2 ĉi .

6.2.3 Average spawner estimators

6.2.3.1 AS estimators for systematic samples

The average spawner (AS) method has rarely been used in practice, and details of its imple-

mentation are scarce. For instance, it is not immediately obvious how to handle zeros or how

to define season-length. Counts are again denoted ci where i = 1, ..., n indexes the sampling

occasion. To be consistent with AUC methods, it seems logical to assume that N = dn − d1, for

a set of n periodic counts, and d1 and dn are the day-of-season of tail counts c1 and cn, which

equal zero. For demonstration purposes it is assumed that the sampling interval di+1 − di is

constant throughout the season, but this is not essential.
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A natural AS estimator of fish days for systematic samples (Fsys) is

F̂sys = c̄N =
N

n

n∑
i=1

ci =
N∑n
i=1 pi

n∑
i=1

pici (6.12)

where pi = di+1−di−1, as sampling intervals are assumed to be constant pi = pi+1 = ... = pn ≡ p.

Note that this is the estimator proposed by Parsons and Skalski (2009) as alternative to (6.9),

in an attempt to overcome the difficulties of estimating a variance for the latter. Because the

systematic sample is assumed to have zeros at either tail, the contributions of the first and last

counts, c1 and cn, to the sum in (6.12) are p × c1 and p × cn respectively, from which it is

immediate that p/2 days before the 1st count and p/2 days after the last count are included in

the calculation (Fig 6.1). This amounts to the spawning season being extended beyond the usual

definition of its limits (dn− d1), or equivalently, all counts are being considered (erroneously) to

have equal weighting. The tail counts should have half the weighting of the others otherwise the

estimator will be negatively biased.

The AS estimator will be unbiased if weights for non-tail counts are twice those for the 1st

and last counts, i.e. wi = b for i = 2, 3, ..., n− 1 and wi = b/2 for i = 1 and n. The estimator of

fish-days is now given by

F̂sys = c̄wN , where c̄w =

∑n
i=1wici∑n
i=1wi

(6.13)

where c̄w is the weighted mean of the counts.

The corrected AS estimator in (6.13) is now equivalent to the TAUC estimator (FT ) for a

constant sampling interval, because if we let wi = 2p for i = 2, 3, ..., n− 1, and wi = p for i = 1,

then

F̂sys =
n∑
i=1

wici

= p(c1 + cn) +
n−1∑
i=2

2pci

= 0.5

[
(d2 − d1)c1 + (dn − dn−1)cn +

n−1∑
i=2

(di+1 − di−1)ci

]
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Figure 6.1: A hypothetical example of a periodic count dataset and visual display of estimators of fish-days.
Black dots are the counts, the red dot is the peak count estimate and the dotted vertical lines are the implicit
limits of the spawning season. The line in (a) is the fitted curve using the GAUC method and the gray area
under the curve is the estimate of fish-days. The TAUC method in (b) sums the area of individual trapeziums
(an example is given in red) under the curve connecting the counts to give an estimate of fish-days. The AS
method in (c) gives equal weights for each count which implicitly extends the spawning season beyond the
1st and last count. The weights are indicated by the width of the gray blocks and the red blocks are the
inappropriate weights of the tail counts. The AS method with the tail-counts correctly weighted at half the
weights of the internal counts is given by (d).
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which is identical to (6.9). If sampling intervals vary, the results hold, but the weights must be

adjusted accordingly if the estimator is to equivalent to FT .

Estimating Var(F̂sys) is difficult given the absence of unbiased estimators available for system-

atic samples (Wolter, 2007). However, several methods of overcoming this deficiency have been

proposed in other fields (Wolter, 2007; Fewster, 2011), and also within the salmon escapement

literature (Skalski et al., 1993; Reynolds et al., 2007; Skalski et al., 2009), though it should be

noted that these latter applications differ significantly from the periodic count datasets addressed

herein.

The most obvious estimator assumes that the systematic sample can be treated as a simple

(weighted) random sample. It is assumed that the variance of each count is equal, Var(c1) =

Var(c2) =, ...,= Var(cn), and the weights are normalized to sum to one, and so the associated

variance of fish-days is given by

V̂ar1(F̂sys) = N2V̂ar

(
n∑
i=1

wici

)
= N2

n∑
i=1

w2
i V̂ar(ci) = N2

∑n
i=1 (ci − c̄)2

n− 1

n∑
i=1

w2
i .

This estimator is known to be poor in cases when there is significant correlation structure in the

sample (Wolter, 2007; Millar and Olsen, 1995), as can be expected to occur in salmon periodic

count data.

A series of alternative variance estimators are listed by Wolter (2007), in an effort to account

for various potential forms of correlation that may be present in a sample. Two that appear to

be well suited to periodic count data are Wolter (2007)’s v2 and v4, which can be calculated for

the weighted case as

V̂ar2(F̂sys) = N2
n∑
i=1

w2
i

n∑
i=2

(ci − ci−1)2

2(n− 1)
(6.14)

V̂ar3(F̂sys) = N2
n∑
i=1

w2
i

n∑
i=3

(ci − 2ci−1 + ci−2)2

6 (n− 2)
. (6.15)

These estimators invoke a post-stratification of the systematic design the data were collected

under. Both estimators assume overlapping ‘stratum’ to allow an increase in differences compared

to non-overlapping designs (such as Wolter’s v3). While several other variance estimators may
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appear to have potential for periodic count data, e.g. estimators based on higher order contrasts

than (6.14)–(6.15), or non-overlapping designs, they are not considered in this study owing to

concerns that they lack the degrees of freedom necessary to provide valid estimates for periodic

count data, that can at times be sparse.

6.2.3.2 AS estimators for random samples

If a simple random sampling scheme is used to gather the periodic count data, rather than a

systematic design, then the estimator of fish-days F̂rs is simple to calculate, and does not suffer

from the biasness of (6.12). Using the same notation as the systematic design (Section 6.2.3.1),

fish-days F̂rs is given by

F̂rs = c̄N , where c̄ =
1

n

n∑
i=1

ci

and the estimate of variance is given by

V̂ar(F̂rs) = N2 s
2

n

where s2 is simply the sample variance

s2 =
1

n− 1

n∑
i=1

(ci − c̄)2 .

6.2.3.3 AS estimators for stratified random samples

If periodic count data are collected based on a stratified random sampling design, and the stratum

are denoted k for 1, ...,K, nk and Nk are number of days sampled and the total number of days

both in stratum k, respectively, ci,k are the counts for sample i = 1, ..., nk in stratum k and s2
k is

the sample variance for the nk samples in stratum k. An estimate of total fish-days F̂srs is then

calculated

F̂srs =
K∑
k=1

Nk c̄k , where c̄k =
1

nk

nk∑
i=1

ci,k

where c̄k is the stratum mean count, and variance is given by

V̂ar(F̂srs) =

K∑
k=1

N2
k

s2
k

nk
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where s2
k is the sample variance for the nk samples in stratum k.

s2
k =

1

nk − 1

nk∑
k=1

(ci,k − c̄k)2 . (6.16)

6.2.4 Peak count method

The peak count escapement estimate is simply

Ep = max{c1, ..., cn}

where c1, ..., cn are the periodic counts for surveys i = 1, ..., n. Note that although the estimator

is denoted Ep this is an index of escapement only, not an absolute estimate. No estimate of

variance of escapement is available for this estimator.

6.2.5 Estimating escapement and construction of confidence intervals

For each of the AUC and AS estimators in Sections 6.2.2.1–6.2.3.3, the appropriate estimates of

fish-days (F̂ ) were substituted into (6.6) instead of FG, to estimate escapement. The estimates of

fish-days variance, V̂ar(F̂ ), were substituted into (6.7) instead of V̂ar(F̂G), to allow estimation of

variance of the escapement estimate. Estimates of escapement and its variance for each technique

were denoted; TAUC - ET and V̂ar(ÊT ) (Section 6.2.2.2), AS for systematic samples - Êsys and

V̂ar(Êsys) (Section 6.2.3.1), AS for simple random samples - Êrs and V̂ar(Êrs) (Section 6.2.3.2),

AS for stratified random samples - Êsrs and V̂ar(Êsrs) (Section 6.2.3.3).

Confidence intervals (95%) were constructed as Ê± tdf
√

V̂ar(E), where tdf is the appropriate

student-t quantile calculated using degrees of freedom specific to the estimators. For V̂ar1(Êsys),

V̂ar2(Êsys), V̂ar3(Êsys) and V̂ar(Êrs) degrees of freedom were given by df = n − 1, while for

V̂ar(ÊT ) and V̂ar(ÊG) they were given by df = n− 3.

The Satterthwaite approximation was utilized for (Êsrs, V̂ar(Êsrs)) as variances for each

strata are unlikely to be equal for periodic count data. These approximations were calculated

df =

(
K∑
k=1

aks
2
k

)2 / K∑
k=1

(
aks

2
k

)2
(nk − 1)

where ak =
Nk (Nk − nk)

nk

where the s2
k are the variances of counts from stratum k, which are defined in (6.16).
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6.2.6 Evaluation using simulation

6.2.6.1 Baseline simulation

Periodic count data were generated under a model similar to that given by Millar et al. (2012).

Normally distributed arrival times were assumed such that the cumulative number of fish entering

(SAd ) and dying (SDd ), in the hypothetical study reach on day d were

SAd = E

∫ d

0

1√
2πτ

exp

(
−(u−m)2

2τ2

)
du (6.17)

SDd = E

∫ d−l

0

1√
2πτ

exp

(
−(u−m)2

2τ2

)
du (6.18)

respectively, where E is escapement, l is a constant stream-life and m and τ are the mean and

standard deviation of the arrival time distribution (in days). The number of fish present on day

d is calculated SPd = SAd −SDd and SP = (SP1 , ..., S
P
N∗) is a vector of abundances over the N∗ days

in the simulated spawning season. N∗ was set at 365 days to ensure the season covered the entire

range of days where fish predicted by (6.17)–(6.18) were non-negligible. A fixed stream-life of 10

days was chosen for all scenarios as a roughly average salmon stream-life, given meta-analyses

by Bue et al. (1998), Lady and Skalski (1998) and Holt and Cox (2008). It should be noted that

escapement estimates are usually corrected for observer efficiency, v, however this parameter

was set at unity for all scenarios as it influences all estimators equally, and thus can be ignored

without unduly affecting comparisons.

The distributions of m and τ were based upon the posterior distributions produced in the

Bayesian meta-analysis of pink salmon escapement of Su et al. (2001). Parameter values for

individual simulations were generated according to their hierarchical model such that

m ∼ N(µm, γ
2
m) ,

τ ∼ LN(2.6, 0.01) , (6.19)

where LN denotes a log-normal distribution, and

µm ∼ N(208, 2.25) ,

γ2
m ∼ χ2

22 ,
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where χ2
22 denotes a chi-square distribution with 22 degrees of freedom. Note that the expected

day of peak arrival is day-of-year 208, which corresponds to 27 July in a non-leap year. This was

the peak arrival for pink salmon from Su et al. (2001) but for simulations the date of the year is

essentially arbitrary and will not affect inferences for coho or other salmon species.

Escapement levels were set at E = 100, 1 000 and 10 000 for the main set of simulation

scenarios. These cover situations ranging from scarce to very productive populations (or large

study areas). Comparative performance of estimators is not expected to change substantially for

E > 10 000, e.g. in situations representing super-abundant populations such as pink or sockeye

salmon in various river systems (e.g. Hilborn, 2006; Holt and Peterman, 2007), and this was

confirmed with preliminary simulations.

‘Observable’ stream counts were simulated on all days-of-year (1–365), and were denoted

c∗ = (c∗1, ..., c
∗
365). These are the vector of counts from which the periodic count sample was

selected using the sampling designs outlined in Section 6.2.6.3. This is a much longer duration

of sampling than would occur in practice, but it ensures that the sampling period covers the

full period where salmon are present, for all simulations. These simulated counts were generated

by adding a sub-model representing the process of sampling true abundance, Spd , on each day

d, by way of visual survey methods. The sampling process was set such that the variance of

the generated counts was proportional to their mean, by simulating c∗d from a negative binomial

distribution with mean Spd and an appropriately chosen size parameter calculated Ωd = Spd/(q−1).

This is in contrast to the more usual form where the variance is a quadratic function of the mean

(e.g. Millar, 2011). Several different values of the proportionality constant were considered,

though in the main set of scenarios these were q = 1, 2 and 5 for escapements of 100 or under,

and q = 1, 10 and 100 for escapements over 100. Examples of the relationships between variation

in the simulated data and the expected count are shown in Figure 6.2 for each value of q. These

values were chosen to allow simulated datasets to be similar to the wide range of datasets observed

in practice.
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Figure 6.2: Relationship between standard deviation (SD) of the negative binomial sampling process model
and the expected count. Panel (a) shows the relationships for low expected counts (1–100) while (b) shows the
same relationships at high expected abundance (>100). Lines from lowest to highest in both panels represent
distributions with q=1,2,5,10 and 100.
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6.2.6.2 Multimodal arrival distribution

Multimodality in peak count datasets are often observed for a variety of salmon species (e.g.

Holt and Cox, 2008; Szerlong and Rundio, 2008), and are generally attributed to clustered entry

of fish to the study reach related to changes in environmental conditions, such as flow rate. To

account for this phenomenon, the arrival distribution (6.17) was modified to be a mixture of two

or more normal distributions. Components of the mixture are indexed by h = 1, ...,H, and the

proportions of the total escapement occurring in each component were determined randomly, by

simulating H − 1 iid Uniform(0,1) random variables and ordering them from smallest to largest,

0 ≡ U[0] < U[1] < U[2] < ... < U[H−1] < U[H] ≡ 1 ,

where U[j], j = 1, ...,H−1 denotes the jth smallest. The hth arrival pulse contributed escapement

Eh, given by

Eh = (U[h] − U[h−1])E , h = 1, ...,H .

The largest arrival pulse had an arrival time distribution as specified in the unimodal case

(6.19). The lesser components were distributed such that the date of peak arrival, mh, had a

standard deviation of a little over two weeks,

mh ∼ N(208, 152) . (6.20)

The standard deviation of arrival times was set proportional to Eh such that the largest pulse

would have the same standard deviation as the baseline case (6.19), and the smaller pulses would

tend to be of shorter duration,

τh ∼
Eh
Emax

LN(2.6, 0.12) ,

where Emax is the escapement from the largest arrival pulse. Across the scenarios explored h

varied between one and four.

6.2.6.3 Sampling schemes

The next step in the simulations was to select a sample of counts from the vector of potentially

observable counts (c∗) to which to apply the candidate estimators. For each replication of the
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simulation model, three datasets were selected and stored; a systematic (SYS), a simple random

(RS) and a stratified random sample (SRS). In general the term periodic count refers to a

systematic, or at least roughly systematic sample of counts. However, as pointed out by Parsons

and Skalski (2009), there may be advantages to randomly selecting a sample of counts in either

a simple or stratified manner. The SYS sample was simply selected as every pth count from day

t=1 onwards. To ensure that the RS sample size was roughly equivalent to the SYS sample, a

sample of size n = N∗/p (rounded appropriately) counts were randomly selected from c∗. To

achieve an equivalent-sized SRS sample, c∗ was split into stratum of size 2N∗/p days and two

samples were randomly selected within each stratum.

The systematic sample is the main focus herein as it is the most common design in practice.

These datasets were analyzed with estimators ET , EG and Esys (with the three associated

variants of the variance estimator for the latter; V̂ar1(Ê), V̂ar2(Ê) and V̂ar3(Ê)). The estimator

Ers was applied to the simple random samples, and Esrs was applied to the stratified random

samples. Thus in the results section the estimates Êrs and Êsrs are calculated from different

data to the other estimators, though each dataset is selected from the same vector of potentially

observable counts, c∗.

Due to the unrealistically long season-length assumed for most scenarios, many zero counts

usually occur before and after the true spawning season in the simulated datasets. Excess zeros

were trimmed to leave only one zero count immediately before the first non-zero count, and one

after the last non-zero count, for all three sampling schemes (SYS, RS and SRS). For simulated

datasets where an even number of counts were selected in the SRS sample, each stratum had

two counts, i.e. nk = 2. For simulated datasets with an odd number of counts selected, the first

stratum accommodated the extra count and the size of this stratum in days was extended to be

1.5 times the size of the other strata (e.g. N1 = 1.5Nk, and n1 = 3).
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6.2.6.4 Parameter Scenarios

Given the number of different values to be investigated for each of the four parameters that were

allowed to vary between scenarios, a factorial design was utilized to allow for all combinations of

parameter values, resulting in 81 scenarios. These cover variations in E = {100, 1 000, 10 000},

q = {1, 10, 100}, H = {1, 2, 3} and p = {3, 7, 11} and form the basis of the evaluations of all

estimators (for SYS, RS and SRS samples).

Further scenarios were investigated for a subset of estimators. For instance the implications

of non-constant p was only investigated on estimators fitted to systematic sample data. Non-

constant p was achieved by allowing time between surveys to randomly vary between a minimum

of three and maximum of 11 days, with a mean of seven days. This was accomplished by setting

di − di−1 = 3 + εi, where εi ∼ Binomial(8, 0.5).

A further subset of scenarios was simulated for only systematic samples and the associated

estimators to investigate estimator performance at very low abundance of spawners. This aimed

to evaluate whether there are practical difficulties of fitting ML-based estimators, such as EG (and

consequently, ET due to it relying on EG to calculate V̂ar(ÊT )), and whether AS estimators for

systematic samples may be more stable in these situations. Escapement was set at E = {25, 50}

to achieve this, with the other parameters varied being; q = {1, 100}, H = {1, 3} and p =

{3, 7, 11}. These scenarios were not investigated for the simple and stratified random samples as

Ers and Esrs do not have convergence issues for any datasets.

6.2.6.5 Measurement of estimator performance

Estimators were compared across n∗ = 10 000 simulated datasets for each scenario. The basis

of comparisons were statistics of estimator performance that included, 1) mean bias measured

across simulations as B̄(Ê) = 1/n∗
∑n∗

i=1 Êi − E, where Êi is the estimate of escapement for

the particular estimator in question, for simulation i, and E is the true escapement from which

the dataset was simulated, 2) root mean squared error (RMSE), which is the expected value of

the squared difference between Ê and E, and can be calculated RMSE =

√
B̄(Ê)2 + Var(Ê),
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where Var(Ê) is the variance of the escapement estimate across the simulations, 3) coverage

of confidence intervals of each estimator, where the intervals are estimated as in Section 6.2.5

and coverage is defined as the proportion of simulations where the interval contains the true

escapement E, 4) mean half-width of the confidence intervals.

For many scenarios EG would produce a small number of unstable results, generally overesti-

mating E, and thus inflating B̄(Ê) and Var(Ê). For comparisons of estimators that included EG,

alternative measures of estimator performance were used; median bias, median confidence inter-

val half-width and median absolute deviation which is calculated MAD = median
(
|Êi − E|

)
.

6.3 Results

6.3.1 Comparison of AS method variance estimators for systematic samples

The AS variance estimator most suitable for systematic samples was selected from V̂ar1(Êsys),

V̂ar2(Êsys) and V̂ar3(Êsys) before comparing ÊG, ÊT and Êsys. With the exception of a restricted

set of scenarios (E=1 000 and high q), V̂ar1(Êsys) performed poorly on the simulated data (Table

6.1). Median confidence interval half-widths for this estimator were almost always the highest

among the three. This resulted in large coefficients of variation for this estimator, generally in

the vicinity of ∼ 0.25, and for a large proportion of scenarios coverage rates were either 100% or

very close to it, far higher than the nominal rate.

Across the range of scenarios considered, V̂ar3(Êsys) consistently performed better than the

alternatives, displaying the most narrow median confidence interval half-widths and coverage

rates closest to the nominal rate (Table 6.1). The later was mostly due to coverage of V̂ar3(Êsys)

being lower than the excessively conservative confidence intervals of the other two estimators,

although when confidence intervals were too narrow (as occurred in some scenarios with low

escapement (E=100) and/or very high overdispersion), coverage of V̂ar3(Êsys) was often furthest

from the nominal rate. Although the differences between estimators were generally slight in these

scenarios. In general however, confidence intervals were still too conservative, with coverage

rates still above nominal when overdispersion was low to medium and escapement was 1 000 or
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Table 6.1: Comparison of three estimators (θ̂) of variance of AS estimates of escapement for systematic
samples of periodic counts. Datasets were simulated in scenarios where the number of modes of the arrival
distribution of spawners (H) varied between one and three, and overdispersion of the sampling process q varied
between one and 100. Performance measures are the median standard error, median 95% confidence interval
half-width and percentage coverage of confidence intervals across simulations for different scenarios.

E=100 E=1 000 E=10 000

H q θ̂ HW Cvg HW Cvg HW Cvg

1 low V̂ar1(Ê) 57.5 100.0 596.8 100.0 6163.7 100.0

V̂ar2(Ê) 27.4 99.5 213.0 100.0 2041.7 100.0

V̂ar3(Ê) 19.1 94.8 94.2 99.7 750.4 100.0

1 med V̂ar1(Ê) 58.4 100.0 593.6 100.0 6065.7 100.0

V̂ar2(Ê) 32.0 98.0 270.0 99.6 2116.0 100.0

V̂ar3(Ê) 25.5 93.8 187.9 95.0 932.1 99.7

1 high V̂ar1(Ê) 62.2 98.7 695.6 95.7 6025.9 100.0

V̂ar2(Ê) 42.9 94.7 545.7 91.5 2692.4 99.6

V̂ar3(Ê) 38.6 91.2 520.3 89.1 1878.3 94.6

2 low V̂ar1(Ê) 52.7 100.0 550.7 100.0 5722.2 100.0

V̂ar2(Ê) 27.8 99.2 221.1 99.8 2146.3 99.8

V̂ar3(Ê) 21.1 96.3 126.6 99.2 1172.1 99.5

2 med V̂ar1(Ê) 53.8 99.8 546.5 100.0 5619.7 100.0

V̂ar2(Ê) 32.6 98.0 273.7 99.3 2216.6 99.8

V̂ar3(Ê) 27.2 94.5 207.2 96.1 1274.6 99.2

2 high V̂ar1(Ê) 58.4 98.3 666.2 95.4 5546.0 100.0

V̂ar2(Ê) 43.0 95.1 550.9 92.1 2733.9 99.3

V̂ar3(Ê) 39.5 92.3 527.2 90.6 2073.5 96.5

3 low V̂ar1(Ê) 49.4 100.0 512.6 100.0 5350.8 100.0

V̂ar2(Ê) 27.3 99.1 219.9 99.8 2124.5 99.9

V̂ar3(Ê) 21.5 96.7 136.7 99.4 1256.5 99.5

3 med V̂ar1(Ê) 50.7 99.7 512.6 100.0 5242.3 100.0

V̂ar2(Ê) 32.0 97.7 271.5 99.1 2184.2 99.8

V̂ar3(Ê) 27.3 94.7 214.5 96.6 1356.5 99.4

3 high V̂ar1(Ê) 55.7 98.1 640.7 95.0 5242.2 100.0

V̂ar2(Ê) 42.7 94.7 540.8 92.0 2725.8 99.1

V̂ar3(Ê) 39.6 92.4 520.9 90.3 2141.2 96.4

Notes: Parameter estimates are calculated over 10 000 simulations for each sce-
nario, and coverage is the percentage of simulations where the true escapement
was contained within the confidence interval of the estimator. The sampling
interval was set at seven days for all scenarios presented. Low, medium and high
overdispersion was set at 1, 2 and 5 for E=100, and 1, 10 and 100 for E > 100.
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10 000. Estimator V̂ar3(Êsys) was consequently selected as the variance estimator for Êsys when

comparing its performance with AUC and random sample AS estimators (Table 6.2).

6.3.2 Comparison of estimators of escapement and its variance

Bias was low for all estimators across nearly all scenarios investigated (Table 6.2). Consequently,

MAD was largely determined by the variability of each estimator across simulations. The rel-

ative MAD of the estimators did not change substantially over the range of escapement levels

simulated.

Escapement level did however strongly influence the coverage rates of all estimators, though

especially the estimators for systematic samples (ÊT , Êsys, ÊG). In general coverage of most

estimators was slightly lower then the nominal rate when E=100 (except when q=1). The

exception was Esrs which had coverage rates consistently higher than 95%. Coverage of all

estimators increased substantially at higher escapements, to the point where confidence intervals

were often far too conservative. When E = 10 000 coverage rates for all estimators, for almost

all scenarios, were higher than the nominal rate, often by a significant margin. The exception

was Êrs which had confidence intervals very close to the nominal rate across all scenarios at that

escapement level.

Overdispersion had perhaps the strongest influence on estimator performance with higher

overdispersion leading to increased bias and MAD, and lower coverage rates, for all estimators.

This was particularly evident when escapement was low. In contrast, increasing the number of

modes in the arrival distribution of spawners from one through three did not substantially affect

bias or the MAD of any of the estimators. However, coverage rates generally increased with

additional modes for ÊT and ÊG, but remained relatively stable for the AS estimators. These

patterns relating to modality were relatively consistent across the different levels of escapement.

Overall it is difficult to identify a best-performing estimator from this set of simulation scenar-

ios, with each displaying different characteristics that resulted in their comparative performance

being scenario-specific. In general, estimator performance was relatively similar within-scenarios
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Table 6.2: Performance of escapement estimators (θ̂) with different numbers of modes in the arrival distri-
bution H, and levels of overdispersion q. Performance measures are median bias, MAD of the estimator and
coverage of confidence intervals.

E=100 E=1 000 E=10 000

H q θ̂ Bias MAD Cvg Bias MAD Cvg Bias MAD Cvg

1 low ÊT 0.1 5.7 94.8 -0.4 17.8 94.9 0.9 56.2 94.6

Êsys 94.8 99.7 100.0

ÊG 0.1 5.7 94.8 -0.3 17.8 94.8 1.0 56.3 94.7

Êrs 1.5 17.7 95.4 4.5 175.8 95.6 -45.2 1859.6 95.4

Êsrs 0.1 7.6 98.2 -0.4 54.2 98.7 -19.4 501.9 98.7

1 med ÊT -0.6 7.8 93.7 -0.4 56.3 92.7 4.4 178.7 93.0

Êsys 93.8 95.0 99.7

ÊG -0.1 8.0 93.9 -0.2 55.9 92.7 5.2 178.8 93.2

Êrs 1.5 17.8 94.9 19.1 180.8 95.6 12.6 1796.9 95.3

Êsrs -0.6 9.7 98.0 -3.2 75.3 98.1 -2.6 536.0 98.8

1 high ÊT -1.3 12.7 91.9 -15.8 177.5 87.5 -31.6 576.1 90.9

Êsys 91.2 89.1 94.6

ÊG -0.4 12.8 92.2 -9.1 178.5 88.1 -29.5 575.5 90.9

Êrs 0.7 20.0 93.7 -4.8 233.6 92.2 148.0 1790.9 95.4

Êsrs -1.3 13.9 97.1 -23.5 181.6 95.9 -27.8 752.3 98.5

2 low ÊT -0.3 5.7 97.9 -0.4 18.6 99.3 -1.8 66.0 99.9

Êsys 96.3 99.2 99.5

ÊG 0.7 5.8 98.0 3.1 19.3 99.3 12.8 71.6 99.9

Êrs 1.1 15.9 95.1 7.9 161.4 95.7 -110.6 1636.3 95.1

Êsrs -0.6 7.6 98.3 -1.8 52.2 98.5 -20.1 509.8 98.3

2 med ÊT -0.6 7.8 96.7 -1.8 56.4 97.0 -4.7 182.5 99.3

Êsys 94.5 96.1 99.2

ÊG 0.8 8.0 97.0 4.5 58.1 97.1 20.4 187.4 99.2

Êrs 0.8 16.3 95.1 13.9 165.2 95.4 -68.1 1640.1 95.7

Êsrs -0.6 9.7 98.0 -4.6 77.3 98.4 -27.8 548.3 98.4

2 high ÊT -0.6 12.5 94.0 -20.0 174.7 90.0 -19.4 557.7 96.6

Êsys 92.3 90.6 96.5

ÊG 1.3 12.9 94.8 4.7 179.9 91.1 28.4 567.1 96.7

Êrs 0.6 19.2 93.7 -10.0 231.0 91.6 45.8 1703.2 95.5

Êsrs -1.3 13.9 96.9 -27.7 188.6 95.7 -41.1 760.4 98.3

3 low ÊT -0.1 5.7 98.8 -0.4 18.6 99.9 -1.9 71.9 100.0

Êsys 96.7 99.4 99.5

ÊG 1.3 6.0 98.9 4.6 19.9 99.9 24.3 80.8 100.0

Êrs 0.8 15.3 95.3 -1.6 151.2 95.5 -144.1 1493.3 95.5

Êsrs 0.1 7.6 98.4 -1.8 52.2 98.3 12.1 503.1 98.3

3 med ÊT -0.6 7.8 97.0 -3.5 57.2 98.2 -1.9 187.5 99.8

Êsys 94.7 96.6 99.4

ÊG 1.4 8.3 97.3 6.7 59.1 98.3 38.2 197.5 99.8

Êrs 0.8 15.7 94.8 6.4 154.7 95.1 -56.0 1552.4 95.7

Êsrs -0.6 9.7 97.9 -4.6 76.7 98.3 -5.4 530.4 98.2

3 high ÊT -1.3 12.7 94.7 -28.4 180.9 90.5 -13.1 569.3 97.8

Êsys 92.4 90.3 96.4

ÊG 2.0 13.3 95.7 1.8 185.7 91.9 70.6 580.3 97.9

Êrs -0.1 18.0 93.4 -8.6 223.5 91.4 64.6 1572.6 95.8

Êsrs -1.3 13.9 96.8 -25.6 183.1 95.6 -12.8 760.2 98.2

Notes: 10 000 simulations were undertaken for each scenario, and coverage is the percentage
of simulations where the true escapement was contained within the confidence interval of
the estimator. Coverage for Esys was determined using confidence intervals constructed from

V̂ar3(Ê). The sampling interval was set at seven days for all scenarios presented. Low, medium
and high overdispersion was set at 1, 2 and 5 for E=100, and 1, 10 and 100 for E > 100.
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and they displayed the same general trends across different levels of E, H and q as explained

above. Perhaps the most notable general differences occur in MAD between the estimators for

different sample-types. MAD was consistently highest for Êrs across most scenarios, followed by

Êsrs, with the three remaining estimators for the systematic sample exhibiting the lowest values.

6.3.3 Influence of sampling interval

Comparison of estimators for different lengths of sampling interval are only displayed for a subset

of the scenarios simulated (q=low and H=2; Table 6.3), as a representative sample of the full

set of scenarios simulated. The patterns attributed to the sampling interval were also common

to scenarios with other overdispersion levels and number of modes in arrival distribution, and

their exclusion simply provides clarity in the tabular comparison of the estimators.

The estimators displayed different responses to changes in the length of sampling intervals.

Coverage rates for estimators ÊT , ÊG and Êrs decreased when p was increased from 3 through

11. The magnitude of the decrease was dependent on the escapement scenario, decreasing by

1.5–2.8 percentage points between p of 3 and 11, for an escapement of 100, and 0.6–3.9 percentage

points for an escapement of 10 000 (Table 6.3). Coverage for Êsys increased when p increased

from 3 to 11, by 2.7, 4.4 and 4.2 percentage points when escapement was 100, 1 000 and 10 000,

respectively. Coverage for Êsrs increased when p increased from 3 to 11, by 2.6, 2.3 percentage

points when escapement was 100 and 1 000, respectively, and decreased by 0.1 percentage point

when escapement was 10 000. Whether these changes shifted coverage rates for the estimators

closer or further away from the nominal rate was scenario-dependent, as coverage rates for

the base-case of p=7 could be higher or lower than nominal, depending on the estimator and

escapement-level.

Bias and MAD of most estimators increased by small to moderate levels when p increased

from 3 to 11. This was most obvious for Êrs in absolute terms, although bias and MAD were

high for this estimator even when E = 100 and so in relative terms the change with sampling

interval was similar to the other estimators.
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Table 6.3: Performance of five estimators (θ̂) of escapement for simulated datasets with three levels of
sampling intervals, p=3, 7 and 11 days. Performance measures are median bias, median absolute deviation of
the estimator and coverage of confidence intervals constructed from estimator variance. Overdispersion was
set at 2 when E=100 and at 10 when E > 100, and the number of modes in the arrival distribution was set
at two for all scenarios presented.

E=100 E=1 000 E=10 000

p θ̂ Bias MAD Cvg Bias MAD Cvg Bias MAD Cvg

3 ÊT -0.1 5.2 97.1 -1.0 37.1 98.0 2.3 116.9 99.5

Êsys 93.6 94.3 95.8

ÊG 1.6 5.6 97.4 5.9 38.7 98.1 27.3 124.4 99.5

Êrs -0.3 9.6 96.7 -0.8 94.0 97.3 7.3 946.7 97.7

Êsrs -0.1 5.5 95.6 -1.3 39.7 95.8 -10.5 184.3 98.0

7 ÊT -0.6 7.8 96.7 -1.8 56.4 97.0 -4.7 182.5 99.3

Êsys 94.5 96.1 99.2

ÊG 0.8 8.0 97.0 4.5 58.1 97.1 20.4 187.4 99.2

Êrs 0.8 16.3 95.1 13.9 165.2 95.4 -68.1 1640.1 95.7

Êsrs -0.6 9.7 98.0 -4.6 77.3 98.4 -27.8 548.3 98.4

11 ÊT -1.0 10.0 95.6 -3.4 71.4 96.2 -3.2 220.1 98.9

Êsys 96.3 98.7 100.0

ÊG 0.1 10.0 95.9 0.1 71.4 96.3 12.2 223.4 98.9

Êrs 0.9 21.8 93.9 -4.3 215.2 93.6 -325.5 2107.2 93.8

Êsrs -1.0 14.2 98.2 -4.5 120.0 98.1 -21.9 937.3 97.9

Notes: Parameter estimates are calculated over 10 000 simulations for each scenario, and cov-
erage is the percentage of simulations where the true escapement was contained within the
confidence interval of the estimator. Coverage for Êsys was determined using confidence inter-

vals constructed using V̂ar3(Ê).

166



Table 6.4: Performance of two estimators (θ̂), ÊT and Êsys, in estimating the true escapement of simulated,
systematic, periodic count datasets with variable sampling intervals. Performance measures are mean bias,
estimator standard deviation and mean root mean squared error. The sampling interval was randomly varied
around a mean of seven days, while the number of modes of the arrival distribution was set at one or three,
and overdispersion of the counts varied between one and 100.

E=100 E=1 000 E=10 000

H q θ̂ Bias RMSE Bias RMSE Bias RMSE

1 low ÊT 0.0 8.5 0.2 27.0 -0.6 89.7

Êsys 0.2 9.8 1.5 62.6 6.2 596.1

1 med ÊT 0.2 12.0 0.1 84.5 2.7 267.1

Êsys 0.3 12.9 1.1 99.0 12.8 636.6

1 high ÊT 0.2 18.8 -1.9 266.0 1.1 852.0

Êsys 0.4 19.3 -0.4 268.2 16.3 1008.3

3 low ÊT 0.0 8.6 -0.5 28.9 -2.7 139.5

Êsys 0.1 9.6 0.3 56.8 -2.9 541.2

3 med ÊT 0.0 12.0 -0.3 85.8 -2.4 286.0

Êsys 0.1 12.8 0.8 96.7 -2.3 590.0

3 high ÊT -0.2 19.0 -5.9 268.3 -1.2 850.9

Êsys -0.1 19.4 -4.8 270.2 4.9 977.2

Notes: Parameter estimates are calculated over 10 000 simulations for each sce-
nario. Low, medium and high overdispersion was set at 1, 2 and 5 for E=100,
and 1, 10 and 100 for E > 100.
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When variability in the sampling interval was simulated, ÊT showed very similar behavior

to equivalent scenarios with a constant sampling interval. However, RMSE for Êsys was inflated

compared to scenarios with constant sampling intervals, resulting in this estimator having a

higher RMSE than ÊT for most scenarios. This was particularly apparent in scenarios with

higher escapements (E > 100) and low and medium overdispersion.

6.3.4 Evaluation of stability of estimators

Invalid escapement estimates can result from either non convergence of the ML optimizer (for

EG and Var(ÊT )), or in simulations where only zero counts occur in the periodic count sample,

by chance. The latter occurrence results in non-convergence of EG (and V̂ar(ÊT )) and produces

estimates of escapement of zero for the design-based estimators (ET , Esys, Ers and Esrs) but

this was very rarely observed (a maximum of 11% of simulated datasets contained only zeros for

one scenario, Table 6.5, for all other scenarios this value was less than 2% and was usually zero)

and hence values are not given in Table 6.5. Non-convergence was only problematic at lower

escapement levels, with estimates being valid for almost all simulations, for all scenarios with

E ≥ 50 (Table 6.5). For scenarios with escapement of less than 50, the occurrence of invalid

estimates was heavily scenario-specific. Estimates were invariably valid when overdispersion

was low, but the proportion that were invalid quickly increased for any scenario with high

overdispersion. This was compounded in situations where the number of modes increased, the

frequency of sampling decreased and escapement level decreased. As few as 0.72 of estimates

were valid in the worst-case scenario (E=10, q=5, H=3, p=11). The mean number of samples in

the simulated periodic count datasets (n̄) showed very similar patterns, with n̄ lower for scenarios

with lower proportions of estimates valid, and vis versa (Table 6.5).

6.3.5 Evaluation of peak count bias

The peak count estimator was negatively biased for all scenarios investigated, usually severely

(Fig 6.3). It appeared to be most sensitive to the interaction between escapement level and

overdispersion level for a given scenario. The estimator was least biased when overdispersion
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Table 6.5: Comparison of proportion, P , of simulations where valid estimates of escapement were achieved
for ÊG, and the mean sample size of periodic counts, n̄, achieved, for different scenarios with low escapement
levels (E = 10–1 000).

E=10 E=25 E=50 E=100 E=1 000

p H q P n̄ P n̄ P n̄ P n̄ P n̄
3 1 low 1.00 22.1 1.00 25.4 1.00 27.7 1.00 29.8 1.00 35.7

high 0.89 18.3 1.00 22.2 1.00 24.7 1.00 26.9 1.00 27.4
3 low 0.97 25.3 1.00 28.2 1.00 30.2 1.00 31.9 1.00 37.1

high 0.77 21.6 0.95 25.4 0.99 27.5 1.00 29.5 1.00 29.9
7 1 low 1.00 9.6 1.00 11.2 1.00 12.3 1.00 13.3 1.00 16.0

high 0.92 7.6 1.00 9.6 1.00 10.9 1.00 12.0 1.00 12.2
3 low 0.98 11.0 1.00 12.5 1.00 13.5 1.00 14.3 1.00 16.5

high 0.83 8.8 0.96 11.0 0.99 12.2 1.00 13.2 1.00 13.4
11 1 low 0.99 6.5 1.00 7.7 1.00 8.4 1.00 9.1 1.00 10.9

high 0.74Ψ 5.1 0.99 6.6 1.00 7.4 1.00 8.2 1.00 8.3
3 low 0.98 7.4 1.00 8.6 1.00 9.2 1.00 9.7 1.00 11.2

high 0.72 5.7 0.98 7.4 0.99 8.3 1.00 9.0 1.00 9.1

Notes: Parameter estimates are over 10 000 simulations for each scenario. The proportion of simulations
that are not viable for ÊG are those where only zero counts were included in the simulated dataset or the
ML optimizer failed to converge for that simulated dataset. Low, medium and high overdispersion was set
at 1, 2 and 5 for E ≤ 100, and 1, 10 and 100 for E=1 000.

Ψ For this scenario 11% of simulated periodic count datasets contained only zero-counts. For all other
scenarios this value was below 2%, and was usually zero.
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Figure 6.3: Mean relative bias of the peak count estimator of escapement for simulated periodic count data.
Relative bias on the y-axis is calculated (ÊP −E)/E where E and Êp are the true and estimated escapements
over the 10 000 simulations for that scenario. The x-axis indicates the number of modes for the scenario. The
three graphs display the results for scenarios with escapements E ranging from 100 (top graph) to 10 000
(bottom graph). The three panels indicate the sampling interval p specified for the scenarios, ranging from
three to 11 days from left to right. Light gray, dark gray and black dots indicate scenarios with low, medium
and high overdispersion, q, which were 1, 2, and 5 for E=100, and 1, 10 and 100 for E ≥ 1 000. Error bars
represent ± one standard deviation.
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was high relative to the escapement level, which is most evident when E=1 000 and q=100

(Fig 6.3). When the number of modes of arrival for a scenario increased from one to three Ep

displayed only very slightly higher bias, and similarly, estimates of escapement became slightly

more negatively biased when the sampling interval increased from three to 11 days. Relative

bias of the peak count estimator stabilized at around -70% for all scenarios when E was 10 000.

For some scenarios, most notably those with high overdispersion, there was moderate variation

in the estimates over the simulations within scenarios.

6.4 Discussion

6.4.1 Comparative performance of estimators for systematic samples

The results of this simulation-based study show that it is difficult to make broad generalizations

about the comparative performance of estimators for systematic periodic counts. The three

estimators (ÊT , ÊG, Êsys) displayed relatively similar performance across all scenarios. Certainly,

the recently cited advantages of AS estimators over the widely implemented trapezoidal AUC

estimator (Holt and Cox, 2008; Parsons and Skalski, 2009) were not realized in the simulations.

In fact, the unweighted AS estimator in (6.12) in Section 6.2.3.1 was found to be negatively biased

when zero-tail counts were present, while in situations where no zero counts are encountered (e.g.

the example given in Parsons and Skalski, 2009) it will be positively biased and it is also difficult

to see how season length could be determined in these cases.

The corrected AS estimator and its associated estimators of variance were found to be viable

alternatives to ÊT , however there appears to be no clear advantage in suggesting practitioners

switch to them from their current estimators, providing they start estimating Var(ÊT ). Parsons

and Skalski (2009) cited bias, and lack of an associated variance estimator, as weaknesses of ÊT ,

which have both been allayed to some degree in this chapter. ÊT was shown to be effectively

unbiased in practice for a wide range of scenarios, and is actually equivalent to the corrected

(weighted) version of the AS estimator for systematic samples (Êsys) when the sampling interval

was constant. The only differences in performance statistics between these two estimators, at
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least for the scenarios with constant sampling intervals, occurred due to the (generally rare)

incidence of V̂ar(ÊT ) not being calculable for some simulated datasets.

In the case of variable sampling intervals within a spawning season, ÊT performed adequately,

while Êsys displayed inflated RMSE compared to equivalent scenarios with a constant sampling

interval. This result is logical, as ÊT explicitly accounts for variable weights of counts in its

calculation, while the standard estimator for Êsys based on fish-days estimator (6.13) assumes

equal weightings for the non-tail-counts. Clearly, if non-constant sampling intervals are encoun-

tered in practice it must be accepted that Êsys will be worse-performing than ÊT . If appropriate

weightings are added to (6.13) to remedy this, then it will again be equivalent to ÊT .

The simulations also highlighted that the performance of ÊG was also very similar to ÊT ,

and it appears that neither estimator can generally be considered superior. In the context of the

discussion in this chapter most focus between ÊG and ÊT estimators will be placed on the latter,

given the similar behavior between them, and the fact that ÊT has been, and will presumably

continue to be, the most widely used estimator for periodic count data.

6.4.2 Comparative performance of variance estimators for systematic samples

A previous weakness of ÊT was that it did not produce a variance estimate, although this has

recently been addressed by the estimator of Millar and Jordan (In Press). However, comparing

its performance with variance estimators for AS methods is challenging owing to the difficulties

in calculating the latter for systematic samples. Wolter (1984, 2007) and Fewster (2011) discuss

general approaches to confronting the analysis of systematic samples. They suggest that most op-

tions can be separated into three approaches based on whether estimators; ignore the systematic

design and utilize random sample-based estimators, assume various post-sampling stratification

schemes, or attempt to describe the underlying structure of the data. The estimators compared

for systematic periodic count data follow this demarcation well. The most simple variance esti-

mator, V̂ar1(Êsys), falls into the first category, V̂ar2(Êsys) and V̂ar3(Êsys) the second, and the

AUC-based techniques are an attempt at modeling the underlying structure encountered over
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the spawning season.

The different approaches of the variance estimators of the different methods led to greater

differences in performance than in the escapement estimators themselves. If structure in the

sample is known to be present a priori, and this is generally the case for the majority of salmon

periodic counts, then ignoring it will reduce the inferential potential of the data. The poor

performance of V̂ar1(Êsys) is an example of when failing to admit to the underlying structure

leads to overly conservative variance estimates. The other two approaches address the structure,

though by opposing means. The estimators V̂ar2(Êsys) and V̂ar3(Êsys) rely on post stratification

to approximate the structure post-hoc, by using higher-order differences to account for correlation

between adjacent counts. In contrast, V̂ar(ÊG) and V̂ar(ÊT ) rely on positing a model for the

structure (in this case a model based on unimodal, normally distributed arrivals and deaths),

and estimate uncertainty in the model formally using likelihood-based techniques. Providing

the model is reasonably accurate and general, this latter approach seems logical, although it is

clearly sensitive to violation of the model. This was evident when the performance of V̂ar(ÊG)

and V̂ar(ÊT ) changed substantially with variation in the number of modes of the simulation

model (and hence dynamics differed from that assumed by the model), while the other design-

based variance estimators remained relatively stable.

Although there were clear differences between the best AS estimator V̂ar3(Êsys) and the AUC

estimators, they showed similar general patterns in performance over the scenarios. Whether

V̂ar3(Êsys) was more, or less conservative than V̂ar(ÊT ) and V̂ar(ÊG), was scenario-dependent

which resulted in the coverage of no estimator being consistently closer to the nominal rate.

Consequently, it appears that there are no general advantages of implementing V̂ar3(Êsys) over

V̂ar(ÊT ) if variation in the dynamics of spawning runs in practice reflect the variation explored

in the simulations. It should also be noted that it is difficult to justify the variance estimators

for Esys as a statistically superior alternative to V̂ar(ÊT ) given that they are themselves an

approximation to an appropriate variance for systematic samples.
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6.4.3 Performance of AS estimators for random samples

Simulation also provided the opportunity to explore the potential of alternative sampling designs

to which AS methods are more suited, including simple random, and stratified random designs

(Parsons and Skalski, 2009). However, if the three designs are compared solely on the basis of

performance in the simulations, then Êsys would be selected over Êsrs, and especially over Êrs,

due to the inflated MAD of the latter two. As bias of all three estimators was relatively similar,

most of the differences in MAD originate from the higher precision of Êsys across simulations.

The decrease in precision of estimators from systematic to stratified random, and further to

simple random sampling, is well recognized (Cochran, 1977). This is due to the potential of some

samples in random designs being highly clustered and/or covering a restricted area of the sample

space, by chance. Similarly, for a given sampling intensity, stratified random designs will always

have samples with some adjacent counts being closer together than for systematic designs, as the

latter has the maximum possible spread in timing of counts for that sampling intensity. However,

as noted in Section 6.4.1 it is far more difficult to formulate a justifiable variance estimate for the

systematic sample estimator and this is a significant weakness when comparing it to randomized

designs.

Perhaps a more promising design-based sampling method for the salmon spawning season

would be a properly implemented systematic design, for example the multiple-start systematic

sample (Wu, 1986; Wolter, 2007). This would combine both the high precision of Êsys and the

availability of a valid, theoretically justified, variance estimator. Again though, the probability

of this approach being utilized seems at least as, though probably even more unlikely, than for

random and stratified random designs, especially within the constraints of many monitoring

programs, which limit the sample sizes of surveys.

Interestingly, the performance of both random sample variance estimators reflected the per-

formance of the escapement estimators, in that they did not display marked improvement over

the systematic variance estimators (either AS or AUC). The exception to this generalization
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is perhaps the performance of V̂ar(Êrs) which often, though not always, produced confidence

intervals with coverage closer to the nominal rate than other estimators.

While the assumptions of the random-sample-based estimators are more easily met, the

practical success of the systematic estimators in the simulations and the preference shown by

practitioners for these estimators, suggest that these will continue to be the choice for salmon

biologists. Certainly, sampling designs for salmon monitoring in the past appear to be driven

by practical rather than statistical considerations. The absence of variance in estimates of es-

capement in the vast majority of salmon research and monitoring are testament to this. In the

absence of clear practical advantages of random sample estimators over systematic sample alter-

natives, their use will likely remain minimal. This is especially the case given the disadvantages of

random sampling perceived by practitioners. For example, systematic sampling makes planning

work schedules for upcoming seasons easier, and it will seem inefficient to many practitioners if,

by chance, random samples in a given year fall very close together, or on subsequent days, in a

random design.

6.4.4 Performance of the peak count estimator

The last estimator to be considered is the peak count estimator. This is not a completely

satisfactory estimator, owing to its inability to produce an absolute escapement estimate (unless

they are calibrated to true abundance somehow), and an absence of a viable variance estimator.

However, it is one of the more numerically dominant estimators in practice (Knudsen, 2000;

Parsons and Skalski, 2009), and the simulations investigated provided a platform to test its

efficiency. Such relative indices of abundance such as peak counts are less desirable for informing

management (Anderson, 2001), especially for applications that require absolute abundance such

as calculating the proportion of the population removed by fisheries. Often relative indices are

deemed adequate for trend detection, where assumptions are more easily met, and this was the

focus of Holt and Cox (2008)’s study. This assumes proportionality between peak counts and true

abundance, and while this assumption should clearly be assessed with empirical and simulated
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data, this has seldom occurred. While Holt and Cox (2008) provide some valuable advice on the

use of peak counts for trend detection, little comparison of peak counts and true abundance and

this relationship over different scenarios, was presented in their study.

The simulations showed that the assumption of proportionality was reasonable at high es-

capement where little difference in relative bias occurred between scenarios, and there was little

variation between simulations within scenarios. However at lower escapements relative bias was

affected by different levels of overdispersion and for some scenarios there was significant variation

in bias between simulations within some scenarios. If this variation occurred between sites or

years in practice, then peak counts will be unreliable as a relative abundance index. At high

escapements, the peak count estimator stabilized at about 30% of the true escapement level

across all scenarios. This is largely related to the dynamics of the spawning runs assumed in

the simulations. For example, a much steeper arrival distribution and a longer stream-life would

result in peak counts being closer to the true level. However, the simulations show that for

dynamics similar to those commonly observed in practice, peak counts may easily account for

a relatively small proportion of the fish contributing to the run, with severe consequences for

applications such as estimating fishing mortality.

In reality, peak counts will be an even more unstable estimator of abundance than indicated

here as detection probability will often be less than one, and this was not accounted for in the

simulations. For this reason the changes in bias between scenarios must be considered relative

rather than absolute. Furthermore, variation in detectability will contribute to variation in the

proportionality between sites or years and will further limit the value of the peak count method,

even for the analysis of trends. This has been noted in several studies (e.g. Shardlow et al., 1987;

Bue et al., 1998), and corrections for detection are less frequently applied for this estimator than,

for example, ÊT (Parsons and Skalski, 2009).
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6.4.5 Limitations of trapezoidal AUC and its variance

The estimator ÊT (in conjunction with V̂ar(ÊT )) appears to be a reasonable practical option

for estimating escapement. There are several limitations to its implementation however. One

disadvantage of V̂ar(ÊT ) compared to AS variance estimators is the possibility that it will be

incapable of estimating variance for some datasets. It is derived from the GLM model (6.4) fitted

using maximum likelihood that forms the basis of ÊG, and thus exhibits the same susceptibility

to non-convergence exhibited in Section 6.3.4. However, the estimator of escapement itself, ÊT ,

is the standard trapezoidal AUC method it is very stable, in contrast to ÊG. In fact, it shows

the same behavior as Êsys, in that it is theoretically capable of estimating escapement for any

dataset. Clearly though, when ÊT is used in conjunction with its ML-based variance estimator,

V̂ar(ÊT ), it will require care in ensuring data is adequate for estimation.

From the simulations explored, non-convergence of V̂ar(ÊT ) would appear limited to situ-

ations involving very low escapements in conjunction with high overdispersion, which will not

generally be the case except for some of the more endangered salmon stocks. In those cases

the most pragmatic approach is perhaps a two-step analysis where ÊT and V̂ar(ÊT ) are calcu-

lated first, and in the event of instability an alternative AS variance estimator could be utilized,

perhaps V̂ar3(Esys). Such a composite estimator was examined in the simulations but was not

presented as its performance was obviously part-way between the two individual estimators, with

the exact position depending on the frequency of non-valid estimates encountered for V̂ar(ÊT ),

in each scenario.

An intermediate step between switching from V̂ar(ÊT ) to V̂ar(Esys) for challenging datasets,

would be to still utilize ÊT , and calculate variance using a more simple GLM formulation. For

example, an intercept-only model with the two extra coefficients excluded. This results in a much

more stable estimator given the extra degrees of freedom, and is generally capable of fitting the

same datasets as Êsys. However, due to the fact that the link function of a GLM ensures that

the expected value is determined on the untransformed scale (giving the sample mean, c̄), this
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estimator (and consequently its variance) is equivalent to the naive, equal weighting version of

Êsys given by (6.12), and its subsequent use would be a poor choice for systematic samples.

Another potential weakness of ÊT is that its variance relies on the parametric model at

the core of ÊG being a reasonable representation of the true dynamics of salmon arrivals and

deaths. This is highlighted by the larger differences in performance statistics for AUC compared

to AS variance estimators when the number of modes in the arrival distribution changed. This

is an example of the true dynamics differing from the assumed model for V̂ar(ÊT ), while the AS

estimator makes fewer assumptions about the dynamics and so is less affected when modality

changes. In most situations where arrival distributions are approximately unimodal then the

model presented should be adequate, though the potential of more flexible models (splines etc.)

is a topic for further research.

6.4.6 Presence of non-zero tail-counts

A problem often encountered in periodic count sampling is a failure for monitoring to extend over

the entire spawning season (Bue et al., 1998; Hilborn et al., 1999). In these situations non-zero

counts are observed for the first and/or last count/s (denoted non-zero tail-counts), and this

is evidence that the monitoring program is deficient. No methods can reliably compensate for

this inadequacy, but various assumptions can be utilized. For example, a correction factor has

been used in the past for TAUC estimators (Hilborn et al., 1999) and details of this method are

presented in Section 6.2.2.2. This approach can also be generalized to other estimators.

The purpose of this chapter was to compare the estimators for the data for which they were

developed not how they perform when poor monitoring programs are implemented, and thus

comparisons were restricted to datasets with zero tail-counts. The application of estimators

when non-zero tail-counts are encountered has been discussed elsewhere (Hilborn et al., 1999;

Szerlong and Rundio, 2008; Millar et al., 2012), and in these cases EG would appear to be a

suitable choice, however it must be stressed that monitoring that results in non-zero tail-counts

must be avoided if at all possible as all estimates will become worse in these situations.
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6.4.7 Practical implementation of escapement estimators

The set of estimators examined herein did not include carcass and redd counts, mark-recapture

techniques and the original HARR alternative to EG (Holt and Cox, 2008; Parsons and Skalski,

2009; Millar et al., 2012). Carcass and redd counts were not favored by Parsons and Skalski

(2009) due to inherent bias and/or violation of their assumptions, and for most species (with the

exception of chinook salmon) they are rarely implemented in practice (Knudsen, 2000; Parsons

and Skalski, 2009). While mark-recapture holds promise it is not ideally suited to large-scale

monitoring programs and is again less common than periodic count methods. Lastly, the HARR

estimator has effectively been made redundant by the very similar (and easier to implement)

GAUC estimator of Millar et al. (2012). For these reasons the AUC and AS estimators that

were investigated appear to be more suitable for most sets of periodic count data currently being

collected, and thus some general issues of their practical implementation need to be addressed.

If TAUC methods and systematic sampling continue to be favored by practitioners, it is

difficult to address exactly how these estimates should be used for inference. Quite possibly this

will be case-specific. For example, the variance estimate V̂ar(ÊT ) only addresses part of the

uncertainty in escapement. Total uncertainty can be separated into the components affecting

single sites, which are uncertainty in; detection of fish, choice of days to be surveyed, observer

efficiency, and stream-life. While other sources are introduced when escapement for a waterway

involves multiple sites (either in time or space), this can usually be handled in a standard manner,

and so uncertainty at single sites is the focus herein. Robust inferences clearly require variance

estimates for escapement that reflect this total variability, otherwise proceeding with simplified

estimators will produce overly optimistic confidence intervals. Several previous studies have

attempted to account for multiple sources of uncertainty in escapement as possible, by various

means.

Parsons and Skalski (2009) assume independence among different sources of variance and

suggest the use of the standard total variance formula, with variances from each component as-
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sumed to be available, perhaps from different datasets. Hilborn et al. (1999) and Su et al. (2001)

used prior information on steam-life and/or observation efficiency parameters and implement

models using penalized likelihood and Bayesian methods, respectively. These approaches allow

uncertainty in these parameters to be propagated through to the final estimates of escapement.

Other studies have included estimates of detection during individual counts (Szerlong and Run-

dio, 2008) or uncertainty estimated from repeated sampling (Parken et al., 2003). However, each

of these methods of combining sources of uncertainty requires auxiliary information in the form

of data, or prior distributions. Unfortunately the probability of collecting additional data at

all study sites to allow simultaneous estimation of different sources of variance seems unlikely

given that only periodic count data are collected for the majority of monitoring programs. Fur-

thermore, the fact that very few salmon biologists estimate any sort of variance in escapement

suggests that it will be even more difficult to encourage attempts to account for multiple sources.

This study did not attempt to overcome the issue of accounting for all uncertainty sources.

The specific target was to compare the various options available for estimating variance in fish-

days relating to the observation of fish on sampling days (not including the uncertainty in esti-

mating observer efficiency v). The optimal approach of extending this variance estimate to an

appropriate total variance estimate is likely to be case-specific. In many cases, the data, or prior

knowledge required, will simply not be available. Sometimes ad hoc approaches such as using

previous estimates of residence time and observer efficiency and their respective variances, from

the same, or other study sites for that species, can be applied. This is not without its risks

however, as the applicability to the new dataset will remain unknown. This is especially the

case given variation in these parameters observed within and between studies (e.g. Bue et al.,

1998; Holt and Cox, 2008). The emphasis will be on the analyst to assess the best method

of combining information, and in some cases acknowledging when inadequacies in the data are

insurmountable. In all cases the question will need to be asked, do we have enough information

available to meet the objectives of the research or monitoring?
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6.4.8 Escapement estimates for state-space modeling

This comparison of estimators of escapement and its variance has consequences not only for

monitoring programs, but also for fitting state-space population models to time-series of salmon

escapement estimates. The advantage of these models over more traditional population, or stock-

assessment models is that they have the ability to partition uncertainty in the time-series into

components relating to the sampling of abundance (observation error) and uncertainty related

to the inherent variability in the dynamics of the animal population (process error). This ability

results in a suite of advantages for inference and prediction (Clark, 2003). Unfortunately, for

many datasets the information content in the data is too low to reliably partition uncertainty into

these components. It is simply the case that not all parameters in these relatively complicated

models are identifiable. Often the only way to fit adequate models is to constrain the variance

parameters, by specifying their ratio (Schnute, 1994), specifying informative priors for one or

both error variances when fitting models under a Bayesian framework (Meyer and Millar, 1999),

or by setting one of them as a known constant/s (King et al., 2008, 2009). Often this last

option is exercised as the point estimates of abundance (the observations) used for modeling

sometimes have associated variances already estimated, and these can be set as the observation

error variances in each year (King et al., 2008, 2009).

In fact, the motivation for exploring the estimators and their variance here originated from

a lack of an estimate that could be used as prior information for the observation error variance

parameter in state-space salmon models. Preliminary modeling of OCN coho data suggested that

identifiability was difficult to achieve when models were fitted to time-series that contained only

point estimates of escapement. The development of viable estimators of variance in ÊT , and their

performance on simulated data, means that there is now the option of investigating the potential

of applying state-space models to the assessment of OCN salmon stocks, by using V̂ar(ET ) as a

base from which observation error variance in the state-space models can be constrained, as was

explored in Chapter 2.
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Chapter 7

General Discussion

7.1 Goodness of fit of state-space salmon models

Much of the foundational work on state-space models of animal population dynamics focused

on implementation of model fitting (McAllister et al., 1994; Millar and Meyer, 2000b) and de-

termining whether all parameters could be identified for certain classes of models and datasets

(Schnute, 1994; Magnusson and Hilborn, 2007). Now however, these models are widely applied

for empirical problems in ecology and their proliferation in use has raised questions about their

robustness in certain situations (Snover, 2008). It appears that in the rush to apply what are to

many analysts, attractive models, some of the foundations of robust model-fitting have suffered.

This is particularly true of assessment of model adequacy (Chapter 5), which is seldom addressed

explicitly in published work, and to a lesser degree the selection among models (Chapter 4). With

the advent of on-line supplementary materials for journal articles, space restrictions are no longer

an excuse to prevent analysts including assessments of model adequacy in papers, particularly

in graphical form. This would allow fellow researchers to judge the robustness of model-fitting

and would lead to explicit tests of adequacy to become more prevalent. In time, widespread use

would lead to not only more applied cases, but also methodological interest Together, these may

allow generalizations to be made across studies (e.g. certain test variables) that will make the

choices of analysts easier in the future. Publication of unreliable models (e.g. Chaloupka and

Balazs, 2007; Snover, 2008) will likely be reduced significantly when model adequacy becomes

more widely understood and tested.
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7.2 Selecting among state-space salmon models

Selecting among even simple statistical models has long been contentious and analysts often fall

into different camps based on various philosophical and/or practical considerations (Kass and

Raftery, 1995; Burnham and Anderson, 2002). The issues are compounded when selecting among

state-space models due to the difficulties in defining model complexity and what constitutes

model fit, as was seen in Chapter 4. Unfortunately, there are clear weaknesses in all commonly

considered model selection tools.

It is expected that the problems with DIC that are highlighted in Chapter 4 will lead to

less reliance, or at least more circumspect use of this method in the future. Similar problems

will occur with ad hoc application of other easily calculated information criteria such as AIC

and BIC, in addition to difficulties in specifying a model complexity penalty for those methods.

Consequently, the model expansion method advocated by Gelman et al. (2003); Gelman (2004)

and Kery and Schaub (2011) is appealing in that it avoids formal model selection per se, is

relatively easy to carry out and is a natural way to build models. For instance, it is often not

until a model is constructed and fitted that its inadequacies become clear, or alternative forms

are considered. That is, modeling animal population dynamics is often an iterative process

which fits this modeling approach well. However, it is not clear how considerations such as

model uncertainty (typically handled by way of multimodal inference) could be carried out in

this framework or whether this would even be desired.

Perhaps the most logical alternatives to those that attempt to trade off fit and complexity

are Bayes factors and RJMCMC. The computational challenges of these techniques are more

formidable however. The main reason that use of state-space models in fisheries and terrestrial

ecology has taken off is that they have become relatively easy to fit for fisheries scientists and

biologists using higher-level languages. Ease of computation also appears to be the reason for

the widespread use of DIC in ecology. Thus, until specific routines become easier to implement

in software packages it seems unlikely that either RJMCMC or Bayes factors will be widely
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implemented in practice as analysts have to balance the robustness of their analyses with the

time constraints in carrying them out. Continual software development in these areas, perhaps

even software specific to dynamical modeling of animal population dynamics (the early stages of

development of such a tool has been indicated by Newman et al., 2008), would be very beneficial

for progress in the field, especially if it could be combined in some way with semi-automated

generation of various predictive distributions and related diagnostics for assessing adequacy, as

suggested by Gelman (2004). There appears to be ample potential for a comparison of model

selection techniques for state-space models, especially those with structures similar to models

commonly fitted in studies of animal population dynamics, and such studies would provide

extremely valuable guidance for practitioners in this field.

7.3 The value of state-space life-history models

The inadequacies of traditional salmon stock-recruitment models fitted using linear regression

have long been known (Walters and Ludwig, 1981; Walters, 1985), but emphasis on moving

towards alternatives has become more prevalent only recently (Peterman et al., 2003; Lessard

et al., 2008; Hilborn, 2009; Su and Peterman, 2011). Traditional models will likely continue to

be the method of choice by a lot of fisheries biologists in spite of their limitations, unless more

case studies such as Chapter 2 continue to be presented. Unfortunately most datasets in practice

are not of as high quality as that from Lobster Creek, and most are restricted to monitoring

of escapement. Where possible it appears that fitting state-space versions of stock-recruitment

models will be desirable given the potential reduction in bias of parameter estimates (King et al.,

2009; Su and Peterman, 2011) and their more parsimonious treatment of uncertainty when pre-

dicting future population size, amongst other factors. However, if state-space models cannot be

fitted due to problems with identifiability the best pathway to robust inference is difficult to

prescribe, though perhaps the advice given by Bolker (2008) is pertinent. He suggests consider-

ing several different methods of fitting observation-error-only or process-error-only models and

comparing the results, while techniques such as simulating data similar to the observed dataset
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and assessing the consequences of violation of assumptions of more simple models are alternative

options.

Ensuring identifiability is particularly challenging in cases where flexible distributions with

scale parameters are used in both the process and observation models. This is partly the reason

for the issues that were encountered in Chapters 4 and 5, as the flexibility of the models allow

inadequate process models to be compensated for and it is therefore difficult to select among

models and detect inadequacies based on the fits of the latent states alone. In situations where

distributions with fixed dispersion (such as Poisson or Binomial) would be used these problems

are expected to be less severe, and this was observed to a degree in the Poisson process model

example in Sections 5.2.7 and 5.3.3. In these cases the widely used data level DIC and posterior

predictive checks may well detect the best model amongst the set, and detect model inadequacy,

but they will remain inferior to the partially marginalized DIC and predictive checks when the

process equation is the part of the model of interest. Furthermore, animal population dynamics

can be highly variable, are often poorly understood and estimating population abundance is

often beset with difficulties, which makes the suitability of distributions with fixed dispersion

highly questionable in practice. However, if data alone cannot support more challenging flexible

models, restrictions (priors etc.) may have to be placed on problematic parameters.

The methods developed in Chapter 6 are expected to help analysts to estimate sampling

variance at the spawner stage when periodic count data are available, and this is expected to

facilitate the fitting of some state-space models that would otherwise be unstable. One aspect of

the method of using the estimated variances as the observation error variances in the model in

Chapter 2 that warrants further study, is whether there are alternative methods of constraining

these parameters. In effect, the method in Chapter 2 (fixed observation error variances) places

an extremely informative prior at exactly the values estimated on the empirical data. This

prevents the posterior distribution of the variance parameters to change even if they conflict

with the data. Two methods that may have utility in relaxing this constraint are 1) allowing

each variance estimate in year t to come from a common higher-level distribution with appropriate
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hyperparameters and/or 2) placing priors (rather than fixed values) on the variance parameters

in each year t, σ2
t , in the form of scaled chi-squared distributions with hyperparameters given by

the empirically estimated variance, σ̂2
t , and the degrees of freedom of the periodic count dataset

in that year, i.e.

σ2
t ∼ σ̂2

t

χ2
df

df
.

Both of these techniques would aim to provide relatively strong prior information to ensure stable

posteriors, but at the same time allow the posterior distribution to be modified if they conflict

substantially with the data.

In addition to introducing state-space structures to traditional models, the extra life-cycle

complexity added in Chapter 2 allowed a number of advantages over traditional approaches. It

is increasingly important that agencies assess whether the objectives of their monitoring can be

achieved by only sampling at the spawner stage. This is obviously a poor approach when focus is

placed on factors influencing dynamics during freshwater residency, owing to the vast amounts of

uncertainty introduced by variation in marine survival that reduce the inferential power of using

spawner abundance as a response variable. It is difficult to prescribe where extra monitoring

effort should be focused for future studies however, as the aims and optimal monitoring programs

will be case-specific. The most obvious extra stage to monitor if resources were limited is the

smolt stage as then survival can be partitioned into its two most general components, freshwater

and marine survival.

7.4 Expanding life-history models to spatially extensive datasets

The limited spatial extent and lack of replication of the study reaches in Lobster Creek, and

the unknown degree of its generality to other coho salmon populations mean that inferences

cannot be extended beyond the study area. The consistency of monitoring and the high quality

of the the dataset (consistent monitoring effort, absence of missing values etc.) did make it

a valuable dataset for trialling new analytical techniques however. The obvious next step in

developing models of OCN coho salmon is to construct life-history models based on the GRTS
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dataset (Stevens, 2002) which is collected over the full set of populations in the ESU. Previous

modeling efforts for these populations have been limited to traditional techniques. Recently,

Wainwright et al. (2008) utilized a variety of modeling approaches to assess future viability

of coho salmon populations in the OCN ESU. These included fitting Ricker stock-recruitment

models to spawner abundance data (assuming no observation error) using the traditional linear

regression method. Similarly, Buhle et al. (2009) fit similar models to the OCN stock-recruitment

dataset, though they modify model-structure to account for the effects of hatchery-bred fish on

population dynamics. Again, observation error was unaccounted for.

Upscaling state-space models to data from the full set of OCN populations is theoretically de-

sirable. Parameter estimates will generally be less biased than observation-error-only or process-

error-only models (King et al., 2009; Su and Peterman, 2011), providing the model parameters

are identifiable, and the model is suitable for the dynamics of the system being modeled. Not

only would they allow improved inferences about the critical factors determining population dy-

namics, such as oceanic conditions, freshwater habitat etc., but prediction of future abundance

will be more robust given the ease with which prediction can be carried out in the Bayesian

framework, and the fact that only relevant sources of stochasticity will be projected forward in

time (Punt and Hilborn, 1997; Clark, 2003). This latter advantage is particularly relevant for

coho salmon owing to the importance placed on prediction of abundance prior to the spawning

run, which includes ensuring the sustainability of commercial and recreational (Pacific Fishery

Management Council, 2012).

Care will be necessary when expanding life-history models to the GRTS dataset. There are

a number of factors that may pose more of a challenge to successful model fitting than were

encountered for the Lobster Creek data, such as the prevalence of zero counts, the low counts

in many reaches, missing data and the shorter time-series of counts available. The most obvious

way to model the data would be at the population level where a life-history model is fitted to a

single time-series of abundance for each population for the relevant stages of the life-cycle. The

abundance estimates would be derived from either the design-based methods underpinning the
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GRTS monitoring scheme (Stevens, 2002) or model-based methods such as hierarchical models

for count data. The alternative would be to fit population models at the individual reach-level

as this is where the demographic processes are occurring, and modeling at this level has the

potential to account for some of the reach-level variation that is typical of many salmon datasets

(e.g. Pess et al., 2010; Steel et al., 2012). Whether such models could be fitted reliably in practice

remains to be seen.
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Chapter 8

Appendices

8.1 A model with stream-specific process error variances

A model, denoted M∗BLL, that was very similar to MBLL is used to demonstrate an alternative

structure of the process errors. The deterministic components were identical to MBLL and are

given by

logn1,j,t = logαP + logn3,j,t−1 − log

(
1 +

n3,j,t−1

KP
i

)
+ ε1,j,t

logn2,j,t = logΦP + logn1,j,t−1 + ε2,j,t , and logΦP = logit−1(ϕP )

logn3,j,t = logΦS + logn2,j,t−1 + ε3,j,t , and logΦS = logit−1(ϕS + cOi,t)

where all parameters have the same interpretations as in Section 2.2.2.2 except the process

errors which are modeled; ε1,j,t ∼ N(0, σ2
1,j), ε2,j,t ∼ N(0, σ2

2,j) and ε3,j,t ∼ N(0, σ2
3,j), where σ2

i,j

are process error variances for each i stage and j stream.

8.2 A model with uninformative priors on all variance compo-
nents

All models presented in Chapter 2 specify the values for the age-class-, stream- and year-specific

observation error variances, σi,j,t. An alternative approach is to ignore these estimates and specify

‘uninformative’ priors on observation error variances. For such models the general observation

equation is

logyi,j,t = logni,j,t + νi,j,t (8.1)
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where the observation errors νi,j,t are normally distributed on the log-scale such that νi,j,t ∼

N(0, σ2
i ), where σ2

i are age-class-specific observation error variances. The priors for these variance

parameters were uniform distributions σ2
i ∼ U(0, 10) (very similar results were also obtained

using Cauchy priors such as presented in Section 2.2.5). An example of posterior distributions

of variance parameters from a model using this approach, that shares an identical process model

the best fitting model in Chapter 2 (MBLL), is shown in Figure 8.1.
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Figure 8.1: Posterior distributions of variance components parameters for a model with uninformative priors
on all variance parameters. Parameters are standard deviations for the temporal components of process errors
(τi; a–c), the spatial components of process errors (δi; d–f), and the observation errors (σi; g–i). Standard
deviation parameters are specific to juveniles (a,d,g), smolt (b,e,h) and spawners (c,f,i).
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8.3 Correction of the TAUC estimator for non-zero tail-counts

If non-zero tail counts are encountered in periodic count datasets then (6.8)–(6.9) in Section

6.2.2.2 will be negatively biased. A correction factor has previously been used (Hilborn et al.,

1999) to minimize this bias by predicting the number of fish-days before the first (F̂−1
T ) or after

the last count (F̂+n
T ), based on the stream-life of fish. Assuming both the first (c1) and last (cn)

counts were non-zero, these, along with the corrected estimate of total fish-days, are given by

F̂−1
T =

c1l

2
(8.2)

F̂+n
T =

cnl

2
(8.3)

F̂T = 0.5

[
F̂−1
T + F̂+n

T +
n−1∑
i=1

(di+1 − di)(ci + ci+1)

]
(8.4)

where l is again stream-life. Of course only one or other of (8.2) or (8.3) would be applied if only

one non-zero count was encountered at the start or end of the periodic counts. The estimate of

fish-days given by (8.4) is equivalent to extending the periodic count dataset by one count at

each end by imputing a zero count l days before the first count (denoted c0) and l days after the

last count (denoted cn+1). This then allows the usual calculation (6.8) of fish-days, though for

the extended sample, e.g.

F̂T = 0.5

[
(c0 + cn+1)l̂ +

n−1∑
i=1

(di+1 − di)(ci + ci+1)

]

= 0.5
n∑
i=1

(di+1 − di)ci

where d1 − d0 and dn+1 − dn = l̂. By redefining the correction factor in this way it can also be

used when AS estimators (Section 6.2.3) are fitted to data with non-zero tail-counts, and makes

them directly comparable to the TAUC estimator in these situations.
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8.4 Graphical partially marginalized predictive checks for MBLL
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Figure 8.2: Examples of partially marginalized predictive dynamics of juvenile abundance in EF, Lobster
Creek. The red line is the observed data (y1,1,t) and the black lines are individual predictions of replicated data
(ỹrep1,1,t) with each figure displaying one replicates randomly selected from the full set of simulated datasets.

192



1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

1990 2000 2010

50
00

15
00

0

A
bu

nd
an

ce

Figure 8.3: Examples of partially marginalized predictive dynamics of juvenile abundance in MF, Lobster
Creek. The red line is the observed data (y1,2,t) and the black lines are individual predictions of replicated data
(ỹrep1,2,t) with each figure displaying one replicates randomly selected from the full set of simulated datasets.
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Figure 8.4: Examples of partially marginalized predictive dynamics of smolt abundance in EF, Lobster Creek.
The red line is the observed data (y2,1,t) and the black lines are individual predictions of replicated data (ỹrep2,1,t)
with each figure displaying one replicates randomly selected from the full set of simulated datasets.
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Figure 8.5: Examples of partially marginalized predictive dynamics of smolt abundance in MF, Lobster Creek.
The red line is the observed data (y2,2,t) and the black lines are individual predictions of replicated data (ỹrep2,2,t)
with each figure displaying one replicates randomly selected from the full set of simulated datasets.
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Figure 8.6: Examples of partially marginalized predictive dynamics of spawner abundance in EF, Lobster
Creek. The red line is the observed data (y3,1,t) and the black lines are individual predictions of replicated data
(ỹrep3,1,t) with each figure displaying one replicates randomly selected from the full set of simulated datasets.
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Figure 8.7: Examples of partially marginalized predictive dynamics of spawner abundance in MF, Lobster
Creek. The red line is the observed data (y3,2,t) and the black lines are individual predictions of replicated data
(ỹrep3,2,t) with each figure displaying one replicates randomly selected from the full set of simulated datasets.
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