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Abstract 

In forensic DNA analysis a profile is typically produced from a biological sample 

collected from the scene of a crime and compared with the DNA of one or more 

persons of interest (POI). Single source pristine profiles are relatively easy to interpret 

and their analysis has achieved worldwide acceptance as a reliable scientific method. 

However, profiles from crime scenes are frequently compromised in quality, or 

quantity or both. Stochastic factors are often present in compromised profiles which 

complicate interpretation. Stochastic factors can include; heterozygous balance, allelic 

dropout, and increased stutter peaks and are characteristic of low template DNA 

(LtDNA) samples. Complicating interpretation even further is that in many cases, 

crime scene samples are composed from two or more people. The number of 

contributors can be unclear. The presence of three or more alleles at any locus signals 

the existence of more than one contributor, although it can be difficult to distinguish 

between the presence of a low level second contributor and stochastic effects. 

This research investigates the behaviour of LtDNA profiles. The traditional 

guidelines, used in conventional DNA interpretation, are investigated with respect to 

their application to LtDNA profiles. Statistical models are created for; heterozygous 

balance, dropout, and stutter. These models use the explanatory variables identified in 

the data exploratory section of this research to describe the behaviour of each of the 

aforementioned stochastic effects. These models have been built with the aim that 

they will be implemented in a probabilistic approach to DNA interpretation.  

This research also examines different approaches for the interpretation of forensic 

DNA profiles and the available methods for the calculation of the weight of the 

evidence of the profile. A two person LtDNA mixture is interpreted using different 

methods and the resulting statistics are presented. This is done with the aim of 

demonstrating how the same LtDNA evidence can be interpreted differently under 

current interpretation guidelines. It is important that that limits of current 

interpretation models are understood and are not extended beyond their means.  
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1: INTRODUCTION  
In 1985 a ground breaking paper was published titled “Forensic application of DNA 

fingerprints” [1]. This paper delivered one of the single biggest advancements in 

forensic science in the 20th century. It detailed for the first time, a method for the 

identification of individuals using DNA profiling.  

Any biological sample, including blood, semen, saliva, vaginal fluid and hair, is a 

potential source for DNA analysis. DNA is relatively stable and under optimal 

conditions does not change over time, allowing samples which were collected many 

years previously to be compared to samples collected recently [2]. 

Since 1985, DNA profiling has solved crimes, served as a legal base for opening old 

cases, freed wrongly convicted individuals, and is now considered the gold standard 

in the characterisation of forensic biological evidence. It has also undergone many 

stages of evolution.  

1.1 The evolution of DNA profiling 

The original method described by Gill et al., [1] was based upon the equally ground 

breaking paper “Individual-specific ‘fingerprints’ of human DNA” [3].  Jeffreys et at., 

[3] pioneered an approach which utilised tandem-repetitive DNA sequences or 

“minisatellites”. These minisatellites were made of relatively long repeating units of 

DNA, the number of repetitions differing between individuals. The minisatellites were 

flanked by a sequence of DNA containing a cleavage site that was recognized by a 

restriction enzyme and would result in the DNA being cut into fragments of varying 

lengths (a technique called restriction fragment length polymorphism or RFLP). 

When these fragments were analysed using gel electrophoresis, which separated them 

by size and then visualised using multilocus probes that hybridised many minisatellite 

loci at once, the result looked like a barcode – this gave rise to the term “DNA 

fingerprinting”. 

Minisatellite analysis was usually restricted to violent and other serious crimes 

because it required a relatively large amount of good quality DNA, usually a visible 

blood or semen stain 25mm in diameter or larger. Additionally, the technique 
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contained a number of steps which made it time consuming. Interpretation of the 

resulting gels was also difficult [4]. 

The same RFLP technology was used in the next stage of DNA profiling except single 

locus probes were used in place of multilocus probes. This technique was called 

single-locus probes in New Zealand and the United Kingdom and variable number 

repeats (VNTR) in the United States of America. This may seem like a backwards 

step in the progress of DNA fingerprinting, but visualisation of a single locus at a time 

allowed analysts to determine if one or two alleles were present in the gel (i.e. if the 

contributor was a homozygote [5] or a heterozygote - assuming the second allele of a 

heterozygote had not run off the end of the gel). Therefore a statistic could be 

calculated for the evidential weight of a “match”.  However, the number of repeating 

units within the minisatellites was small compared to the minisatellite region plus the 

flanking sequence of DNA. The gel-based technology of the time, made it difficult to 

differentiate between alleles that differed by only one or two repeat units. 

In the mid-1990’s DNA profiling evolved to encompass the use of the polymerase 

chain reaction (PCR). In the words of Kary Mullis, the creator of PCR, “PCR makes 

life much easier for molecular biologists; it gives them as much of a particular DNA 

as they want” [6-8]. The inclusion of PCR in forensic DNA analysis meant that DNA 

profiles could now be generated from much smaller quantities of starting DNA 

template. The methods described previously required around 500 ng for a successful 

outcome whereas with the inclusion of PCR 1 ng or less could generate a profile.  

The use of minisatellites was also phased out in favour of short tandem repeat (STR) 

loci. STR loci consist of repeated sequences of two to seven nucleotides that are 

generally less than 350 bp in total length. These are much smaller than minisatellites 

which ranged between one kb and 20 kb in size [9]. The ratio of the repeat unit to 

flanking sequence of DNA is smaller in STRs than minisatellites which means that 

the distance between alleles that differ by one repeat unit is improved. This made the 

differentiation of alleles easier when using resolution by polyacrylamide gel 

electrophorese (PAGE).  

The first widely used STR based analysis technique was the “quadruplex” [10], a 

technique that analysed four STRs in one reaction, known as a multiplex [11]. The 
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discriminatory power of the quadruplex was not very strong so it was often coupled 

with single-locus probe profiling (VNTRs).   

The quadruplex evolved with the addition of two more STRs and was renamed the 

second generation multiplex (SGM)[12]. The SGM also included a marker that 

targeted amelogenin, a sex specific gene so the sex of the contributor could now be 

determined. In 2000, the United Kingdom replaced SGM with SGM Plus which had 

an additional four loci, bringing the total to 10 loci plus amelogenin [13]. This meant 

the discriminatory power of the multiplex was much improved and the chance of an 

adventitious match was reduced.  Automated detection of peaks was also introduced 

using capillary gel electrophoresis [14].  

There is a wide choice of such loci for use in DNA analysis due to the abundance of 

STRs in the human genome. Selection for their use in forensic casework usually 

depends on their discriminating power, their structure and their ability to co-amplify 

with other STR loci in a single multiplex reaction. The multiplex currently in use in 

New Zealand is the AmpFℓSTR® Identifiler® PCR Amplification kit. This kit co-

amplifies and simultaneously detects 15 internationally recognised STRs [15]. 

1.2 The interpretation of DNA 

1.2.1 Generation of a statistic 

As DNA profiling techniques have evolved so have the statistical methods used to 

evaluate the evidentiary value of the resulting DNA profile. The ultimate purpose of 

DNA profiling is to ascertain if two samples share a common source. This could be 

crime scene to person of interest or crime scene to crime scene. However, there are 

varying degrees of the strength of a match. For example, the number of loci included 

in the analysis will greatly affect the discriminatory power of the result. The more loci 

included in the analysis, the more discriminating the result will be. Therefore, without 

some measure of the strength of the evidence, the result of an examination can be 

misleading.  

There are three general conclusions that can result from the analysis of a DNA profile; 
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1). An exclusion; The profiles are different and must have originated from 

different sources. No statistic is required to support the evidential value of an 

exclusion. 

2). Inconclusive; It is not possible to determine from this analysis if the DNA 

samples share a common source. This may be due to a number of reasons 

including contamination of the sample(s), degradation of the sample(s), or 

inhibition of the amplification. No statistic is required to support the evidential 

value of an inconclusive result. 

3). Inclusion; The profiles share the same alleles at the loci analysed and may 

have originated from the same source.  A statistic is required to measure the 

strength of this result.     

If two profiles share the same alleles this can arise because;  

1) The two profiles share a common source, or 

2) The two profiles coincidentally share the same alleles. 

Therefore the “match statistic” or strength of the evidence takes into consideration the 

rarity of the alleles in a defined population. Initially, a standard way to measure the 

strength of an inclusion was to count the occurrence of the particular genotype in a 

random sample of the appropriate population. Then using classical statistical 

formulas, upper and lower confidence limits were placed on the estimate [16].  

This method developed into using allelic frequencies instead of genotype frequencies. 

Allele frequencies refer to the rarity of the allele within a defined population and were 

calculated by the number of times the allele was observed in the appropriate database 

divided by the total number of alleles observed at that locus. The frequency of the 

genotype at each locus would then be calculated assuming Hardy Weinberg (HW) 

equilibrium [17].  

HW equilibrium assumes random mating and can be stated symbolically. If we let pi 

and pj be the proportions of two alleles Ai and Aj within a population, then the HW 

expectations are [17]: 
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 Homozygous genotypes: AiAi: = pi
2 

 Heterozygous genotypes: AiAj = 2pipj 

The HW equilibrium is based on the laws of segregation and independent assortment 

[2]. These laws state that each gene pair behaves independently, and is therefore 

statistically independent. As a result, the frequency of each genotype at a locus can be 

multiplied across the profile to produce an overall estimate for frequency of the 

observed profile within a defined population. This is called the product rule [17]. 

A concern that arose regarding the use of the product rule questioned population sub-

structure. Some people expressed serious concern that within defined census groups 

(such as Asian, Hispanic, North American Caucasian) there are subgroups and people 

tend to stay within their subgroups [18-21]. This means that allele frequencies aren’t 

homogenized between the subgroups and the census group.  

The need to account for possible population substructure lead to the 1992 

recommendation by the US National Research Council (NRC) to apply the ceiling 

principle [16]. The ceiling principle used the allele frequency that was the largest, 

regardless of ethnicity. It also used upper confidence limits, subject to an overall 

minimum of 10% as an interim measure, which could be reduced to 5% after further 

research.The product rule was then used to calculate the frequency of the profile. The 

ceiling principle was deemed to be conservative because the largest allele frequency 

was used at each locus [16].  

The recommendation of the use ceiling principle by the NCR generated wide criticism 

as the method was seen to be complicated and ad-hoc [22]. In 1994 Balding and 

Nichols proposed an alternative method called the “sampling formula”, which in their 

words was “logically coherent and conservative while not understating the high 

discriminatory power of DNA profiling” [23].  

The sampling formula of Balding and Nichols is an overcorrection for population 

substructure. It models the belief that if we have observed allele Ai in the population 

before then we are more likely to see it again.  More specifically, if there are x  copies 
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of allele Ai in a sample of n alleles, then the probability that the next allele will be of 

type Ai is: 

 ( ) ( )
( )i i copies of ,

1 p
Pr A | A

1 1
ix

x n
n

θ θ
θ

+ −
=

+ −
 

where pi is the probability of allele Ai, and θ  is the coancestry coefficient (FST). 

The use of the sampling formula was recommended in NCRII 1996 [17]. 

These statistics are generally presented using one of two types of methods; the 

frequentist approach or the logical approach.  

1.2.2 Presenting a statistic 

1.2.2.1  Frequentist approach 

The frequentist approach uses probabilities or genotype frequencies to address the 

evidence ( )E  given a hypothesis 1H , ( )1Pr |E H  . The hypothesis might be as simple 

as saying that the observed profile is from someone unrelated to the person of interest.  

Coincidence probability or random match probability (RMP) and the probability of 

exclusion are frequentist approaches that are used by the forensic science community.  

The coincidence approach 

The coincidence approach or RMP assesses if two profiles share the same 

alleles due to chance (coincidence).  Allele frequencies are calculated using 

data that assumes HW equilibrium and no linkage disequilibrium (the non-

random association of alleles at two or more loci that may or may not be on 

the same chromosome). The frequency of the genotype is then calculated 

using the product rule [24].  

Probability of exclusion 

The probability of exclusion or random man not excluded (RMNE) offers an 

approximation of the proportion of the population that has a genotype 
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composed of at least one allele not observed in the profile. For example, the 

person of interest (POI) is not excluded, what the probability that a random 

person would be excluded as the donor of this DNA?  It is inferred that the 

POI is unlikely a random person ( )( )1Pr |E H , therefore the evidence supports 

the null hypothesis ( )( )0Pr |E H  that the POI is the donor of the DNA. The 

higher the exclusion probability the more support given to the null. For 

example, the exclusion probability: “Approximately 99.99999% of unrelated 

males would be excluded as the source of this DNA”, implies strong support 

for the null hypothesis that the POI is the donor of the DNA [24].  

Both the coincidence approach and the probability of exclusion appear easy to 

implement and are simple to explain to a jury. It has been argued that they are more 

conservative and more easily understood than the logical approach [25]. The main 

issue with these methods is that only part of the evidence is assessed (i.e. the crime 

scene DNA profile), the profile of the POI is not taken into account in the calculation. 

The danger in such an analysis is the inference that comes from thinking that because 

the probability of the DNA profile given the POI is not the source of the DNA 

( )( )1Pr |E H  is small; the probability of the profile given the POI is the source of the 

DNA ( )( )0Pr |E H  is large.  

1.2.2.2 The logical approach 

The logical approach is better known as the likelihood ratio (LR). The classical LR 

approach consists of the comparison of the likelihood of obtaining the observed DNA 

profile given alternative competing hypotheses; typically termed the prosecution 

hypothesis and the defence hypothesis (Equation 1.1). 

   
Pr( | )
Pr( | )

p

d

E H
LR

E H
=       Equation 1.1 

where E represents the evidence, 

pH is the prosecution’s hypothesis, and 

dH is the defence’s hypothesis. 
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In a single contributor simple DNA profile, the probability of observing the evidence 

given the hypothesis that the POI is the contributor is 1 under pH . Under dH  it is 

assumed an unknown person, unrelated to the POI, is the true contributor. Therefore, 

the probability of observing the evidence, conditioned on an unknown contributor is 

modelled by the probability of observing the genotype in the target population; 

Equation 1.2; where Pr( | ) 1pE H =  and f  is the frequency of the genotype in a 

defined population 

1LR
f

=
       

Equation 1.2  

 

The LR is discussed further in Chapter 2. 

1.2.2.3 Extensions to the logical approach 

The classical LR defined under the logical approach works well for relatively simple 

analyses with clearly defined propositions under the prosecution and defence 

hypotheses. However, sometimes it is difficult to simplify a casework profile into two 

propositions. For example, if a profile is recovered from a crime scene ( )cG , and the 

POI’s profile ( )sG  cannot be excluded from the crime scene profile, under the LR we 

could state the following propositions:  

pH : The DNA came from the POI. 

dH :  The DNA came from a male not related to the POI. 

However, note that the propositions are not exhaustive. What about males that are 

related to the POI? Genetics would suggest these people are the most likely to share a 

similar profile to the POI and are therefore the most important to consider under the

dH . The dH  can accommodate relatives if that is the hypothesis put forward by the 

person of interest. However, there are experts who state that it is not the responsibly 

of the POI or independent analysts (defence analysts) to put forward the dH and that 

this hypothesis should include all situations from the outset.   
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What is required is a method that can handle many propositions. This can be 

implemented under the LR and derived from Bayes Theorem using Equation 1.3: 

1

2 2
2

Pr( | , , )

Pr( | , , , ) Pr( | , )

c s
N

c s i i
i

G G H ILR
G G H H I H H I

=

=

∑
    Equation 1.3 

where for a population of size N, the POI is indexed as person 1 and the 

remaining members of the population as 2,…,N. The proposition that person i 

is the source of the DNA is Hi. Since the POI is indexed as person 1 the 

proposition that the POI is the source of the DNA is H1. The propositions 

H2…HN are the propositions where the source of the DNA is not the POI. I 

refers to the information at hand, i.e. the offender is European. 

This method is also computationally intense and would require automation or 

software for its implementation. This research does not discuss this method in any 

more detail as this research requires the designation of dH  in situations to 

demonstrate the effect of different analysis methods on the resulting statistic.  

However, this extension to the logical approach is not without merit and could be 

used in the development of interpretation methods for complex mixtures where the 

resolution of genotypes under the dH is complex.  

1.3 Problems with interpretation  

The interpretation methods discussed in the previous section all function adequately 

when single source good quality DNA profiles are analysed. However, forensic DNA 

samples are often sub-optimal in quantity, or quality, and can be further complicated 

by factors such as the number of contributors to the profile. If the contributors to a 

profile are both present in similar quantities then, individual genotypes can often not 

be distinguished (complex mixtures). Additionally, if (a) contributor(s) is present at 

very low levels then it becomes difficult to distinguish between alleles of a minor 

profile and stochastic effects.  
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1.3.1  “Problem” profiles 

The advent of increasingly more sensitive DNA analytical techniques has enabled 

scientists to generate profiles from samples that contain much smaller amounts of 

DNA. There is an approximate relationship between the resulting peak height in a 

profile and the amount of DNA template present in the original extract [27, 28].  If the 

quantity of DNA is low in the original extract then this often results in a reduction in 

peak heights in the resulting profile and problems with profile interpretation can arise 

[29].  

Samples analysed with enhanced detection sensitivity techniques are often called low 

copy number (LCN) [30, 31] or low template DNA (LtDNA) samples [32, 33].  LCN 

analysis originated largely in Australia and generally refers to the use of increased 

PCR cycles to enhance the sensitivity of the DNA analysis [34]. However, some of 

the literature has adopted the term LCN to describe all samples that contain low levels 

of DNA.  

There are various techniques used to improve the sensitivity of DNA profiling, other 

than increasing the PCR cycle number, and this has resulted in ambiguity regarding 

the use of the term LCN. Caddy et. al., [32] introduced the term LtDNA which refers 

specifically to samples that contain low levels of DNA, regardless of the subsequent 

enhancement technique used to address this issue.  

Another complication in the classification of DNA samples as LtDNA is the lack of a 

clear definition that can be applied to delineate between LtDNA profiles and 

conventional profiles.  Budowle et al., suggest in two separate papers that all profiles 

that give a quantification value of under either 100 pg or 200 pg should be defined as 

LtDNA [2, 35]. However, we believe that the application of an official threshold is 

unwarranted and will result in the misclassification of profiles. LtDNA profiles 

typically exhibit increased variability and increased stochastic effects.  An increase in 

variability means that there can be problems with the reproducibility between profiles, 

while an increase in stochastic effects can make the interpretation of the profile 

difficult. However, profiles that contain over 200 pg of DNA can also exhibit these 

stochastic effects. Equally, profiles 199 pg and under may not exhibit any of these 

effects and can behave like conventional profiles.  Additionally, if the resulting DNA 
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profile contains more than one contributor, then the quantification value does not take 

into account the relative contribution from each person. That is, although the overall 

quantification value may be well over the 200 pg threshold, the minor contributor may 

donate less than 200 pg of DNA [36-40]. 

We believe that the resulting electropherogram (epg) is the best indicator of the 

quantity of DNA present in the sample. In this research we regard any DNA profile 

whose epg exhibits stochastic effects, which makes subsequent interpretation of the 

profile difficult, as LtDNA. 

1.3.2 Stochastic factors  

Due to the kinetics of the PCR process a small number of DNA templates in any 

amplification will experience random or stochastic sampling effects. If there are only 

a limited number of starting templates, as in LtDNA samples, and these sampling 

effects occur in the early cycles of PCR amplification, the resulting DNA profile 

morphology can be compromised. Only those alleles that are amplified efficiently 

during the first few cycles will be able be detected, specifically, with a heterozygous 

locus, unequal sampling of alleles can result in a failure to detect one or both alleles.  

Loss of a single allele is referred to as allele dropout while the loss of both alleles is 

referred to as locus dropout (Figure 1). Heterozygote balance refers to the ratio of 

peak heights (or areas) between the two alleles of a heterozygous locus and often used 

by analysts as a guideline when interpreting profiles.  In LtDNA samples, 

heterozygote pairs are more prone to imbalance (Figure 1). Peaks from a heterozygote 

locus may be very imbalanced, with one of the alleles giving a much larger peak than 

the other. An analyst may then judge the difference between the peaks to be so great 

that they cannot be paired under the conventional heterozygote interpretation 

guidelines. Heterozygote balance is discussed further in Chapter 7 and dropout is 

discussed in Chapters 5 and 6.   

Another complicating variable in DNA interpretation is the presence of stutter peaks. 

Here, stutter refers to the mis-copy of an allele resulting in an amplicon one repeat 

sequence shorter than the parent allele. Stutter is a by-product of the PCR process and 

also appears in full, single source DNA profiles. It has been reported within the 
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literature that increased variability in stutter percentages are present in LtDNA 

samples [41]. This can make it difficult to determine if the observed peak is in fact 

stutter. However, because stutter is a PCR by-product it is more likely that the 

resulting stutter peak height is dependent on the number of cycles used in the PCR 

process rather than the amount of DNA template present. Consequently it is LCN 

samples that are likely to have increased (mean) stutter peaks not LtDNA samples. 

This misconception is most likely a “hangover” from the confusion regarding 

LCN/LtDNA nomenclature. However, in mixed DNA profiles stutter peaks can be 

confused with a low level minor contributor making the interpretation of the profiles 

difficult (Figure 1). Stutter is discussed further in Chapters 8 and 9.   

A third variable that can complicate interpretation is allele drop in (Figure 1). Drop in 

refers to extraneous alleles (unrelated to the crime scene) being amplified in the 

analysis. Drop in is related to the increase in sensitivity of the PCR process. This extra 

DNA is usually limited to one or two alleles and is attributed to “DNA falling from 

the ceiling” [42] (a random event) rather than laboratory or consumable based 

contamination. Drop in is usually limited to LCN samples and be calculated by 

observing the number of drop in events that occur within a specific lab. The 

calculation of the probability of drop in is not discussed within this research but the 

methods in which to include a probability of drop in within the calculation of a 

statistic for the weight of evidence is briefly touched upon in Chapter 2. 
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Figure 1: Examples of variations to a single source heterozygous locus (top centre) 
that complicate DNA interpretation. 

These stochastic effects create uncertainty when designating peaks as alleles or 

pairing alleles as genotypes. Therefore they cannot be interpreted like a single source 

good quality profile where the results are more certain and follow the two step 

interpretation process (inclusion followed by the calculation of a statistic). Instead 

interpretation becomes more questionable and needs to be probability based. For 

example, one might ask, “what is the probability of seeing this peak if it is stutter?” 

Or, “what is the probability of this profile if the POI is the contributor?” As yet there 

is no consensus as to the best method to answer these questions. This has resulted in 

judicial issues regarding the acceptance of LCN and LtDNA evidence.  

1.4 General acceptance of LtDNA and LCN evidence 

LCN evidence was severely criticised in the court case R vs Hoey ([2007] NICC 49, 

20 December, 2007). Part of the evidence in this case was DNA left on explosives 

connected to an attack in which 29 people were killed and over 200 injured. The judge 
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questioned the validity and the reliability of the LtDNA analysed using the LCN 

technique [[2007] NICC 49]. Although the Judge did not rule the evidence 

inadmissible, his comments were so damning that LCN work in the United Kingdom 

was shut down.   

The comments most relevant to interpretation were;  

• that there was no international agreement on the validation of LCN analysis, 

• the Azores conference held in 2005 had ended with agreement only that more 

work was needed in that area [43], and 

• that the lack of agreement in LCN analysis was in marked contrast to 

conventional DNA profiles for which there was internationally-agreed 

validation guidelines and definitions approved by the Scientific Working Group 

on DNA Analysis Methods (SWGDAM).  

The UK’s Forensic Science Regulator (Andrew Rennsion) commissioned an 

independent and objective view of the standards of the science used in the analysis of 

trace amounts of human DNA. That review conducted by Professor Brian Caddy 

(with the assistance of Dr Adrian Linarce and Dr Graham Taylor) was released on the 

12th of April 2008 and concluded that the technique was “robust” and “fit for 

purpose” [32]. The review also enumerates 21 recommendations for specific 

improvements that should be undertaken to improve the methodology, including: the 

development of a consensus on the interpretation of test results and efforts to establish 

“best practices” for interpretation. LtDNA/LCN has since been reinstated in the 

United Kingdom, however no such consensus on the interpretation of results has been 

established.  

Gilder et. al., (2008) have stated that they feel that the conclusions of the review are 

inconsistent with its recommendations in a number of respects [44]. For example, it is 

difficult to determine how a forensic technique could be deemed adequately validated 

for use in the courtroom when there is not yet an agreement on how its results should 

be interpreted. They state that this establishes grounds for concern about how earlier 

LCN cases have been interpreted. Additionally there are a number of recent articles 

that highlight interpretation inconsistencies for LtDNA profiles [45-48]. 
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The lack of a consensus on the best practice for the interpretation of LtDNA profiles 

is problematic, especially as the SWGDAM 2010 guidelines state that “the laboratory 

must perform statistical analysis in support of any inclusion that is determined to be 

relevant in the context of a case, irrespective of the number of alleles detected” [49]. 

There are several types of statistical methods that an analyst can use to evaluate the 

significance of an inclusion. However not all of the methods can accommodate the 

stochastic effects associated with LtDNA. Regardless of this fact, these statistical 

methods are being applied, at times, incorrectly, and presented in court. Mixed DNA 

profiles that cannot be separated into individual contributors are also problematic to 

interpret and like LtDNA profiles, are subject to the opinions of the examiner, raising 

issue of bias in interpretation.   

Geddes, L., highlights a LtDNA mixture case in which two probabilities for the same 

DNA profile, calculated using the same statistical method, were presented in court 

and differed by factor of approximately 2000 (1 in 47 vs. 1 in 95,000) [50].  When the 

profile was examined in a review of the evidence, a third analyst obtained a 

probability of 1 in 13 using a variation of the original statistical method. When a 

statistical method was used that attempted to take into account the stochastic effects, 

the resulting statistic indicated that the DNA profile was two times more likely if it 

came from the person of interest (POI) than someone unrelated to the POI else, 

evidence so weak it is virtually inconclusive. However, the lower two statistics were 

not presented in court and the defendant was convicted. 

This is not an isolated incident. In 2005, Dr John Butler at NIST issued a range of 

forensic laboratories in the USA, the same mixture DNA and reference profiles and 

asked them to provide their conclusions about whether the profiles “matched” [46]. 

Results were reported using a variety of statistical methods but for those probabilities 

presented using the same statistical method, the final figures differed by 10 orders of 

magnitude.  

Dror et al., (2011 [48]) carried out a similar experiment in which 17 expert DNA 

analysts, who were working in casework in an accredited government laboratory in 

North America, were presented with a mixed LtDNA profile and reference profiles 

from a sexual assault case. In the original case the analyst determined that the suspect 

“could not be excluded” from the LtDNA profile. Of the 17 experts asked to reanalyse 
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the case, one analyst concluded the suspect “could not be excluded”, four analysts 

concluded “inconclusive”, and 12 analysts concluded “exclude”. These analysts all 

work in the same laboratory and follow the same interpretation guidelines.  This study 

highlights the subjectivity that can be present in the interpretation of complex or 

LtDNA profiles. It also emphasises the importance of establishing a consensus on the 

best practice for interpretation.  

The increased variability of LtDNA profiles was recognised in the late 1990’s and an 

interpretation strategy called the statistical model was developed that significantly 

compensated for the stochastic effects present [51]. However, statisticians haven’t had 

the funding to adapt this theory to forensic use. 

The aim of this research was to investigate the behaviour of LtDNA. Traditional 

guidelines used to interpret conventional DNA profiles were investigated with regards 

to their application to LtDNA profiles. The behaviour of DNA at low levels was 

investigated with respect to heterozygous balance (h), dropout (Pr(D)) and the stutter 

ratio (SR). The distributions of the resulting low level data under these guidelines 

were modelled using statistical methods. The resulting models can be applied across 

all DNA profiles amplified at 28 cycles, irrespective of the distinction between 

conventional and LtDNA profiles.  

This research focused on identifying LtDNA and complex mixture profiles from 

casework data. These profiles were then utilised in investigating the behaviour of the  

distributions of the guidelines and in the model construction.  We feel that this is an 

important distinction from theoretical studies or empirical studies that use pristine 

DNA, pristine DNA dilutions or pristine DNA mixtures.  Although there is research 

that shows that there is no difference between pristine and casework heterozygote 

balance (h) data [52], we are aware that there is an observable degradation slope in 

casework data which effects higher molecular weight alleles more than lower weight 

molecular alleles [53]. This molecular weight based effect will not be so obvious in 

analyses that are locus/ratio based i.e. heterozygous balance (h) or the stutter ratio 

(SR). However, this effect may be more pronounced in analyses that compare loci 

across a profile. In particular, higher molecular weight alleles will be more prone to 

dropout than lower weight molecule alleles. In addition, by utilising casework data we 
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obtained a large representation of alleles that are present in the population, compared 

to pristine studies that often arise from only a few donors.  

1.5 Thesis structure 

The following chapters are made up of papers presented in their journal format, 

including references (in the reference style of the journal the paper was published in). 

The papers that have appeared are consistent with their published version except 

where noted in the preceding introduction of the chapter. As a result there is some 

repetition between chapters, primarily within the introductory sections, however each 

chapter can stand alone and be read independently of the other chapters.  

The papers have been written with the aim of bridging communication between 

statisticians and the people we hope will use these methods – forensic biologists. 

Therefore, this thesis also contains additional explanatory chapters that detail why a 

particular method was chosen or that contain additional data analysis.  

Chapter 2 provides a detailed discussion on the merits of the likelihood ratio and why 

the LR was chosen as the methodological framework to calculate the statistic. The 

merits of the likelihood ratio are discussed alongside the merits and short-comings of 

the other widely used framework in DNA interpretation, random man not excluded. 

RMNE is widely used and there has been apprehension to move towards a LR 

framework. This chapter aims to clarify why the LR is the logical (and only) method 

that can be used to interpret complex mixtures and LtDNA. 

Chapter 3 discusses the various models that are used to evaluate the LR. The binary 

model, the semi-continuous model and the continuous model are compared with 

respect to their limitations and as to how far they can be extended to cope with 

LtDNA and complex mixtures.  

Chapter 4 compares three models that are used when determining the genotypes 

possible under the LR hypotheses. Two of these models, termed the F and Q models 

take into account peak height, or quantitative information and are extensions of the 

binary model. The third model, termed the unconstrained combinatorial approach 

does not use peak heights and only makes use of the qualitative data in the profile. 

These three methods are used to interpret the same low level two person mixture and 
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a statistic is then calculated for each of them using the LR. This chapter highlights the 

shortcomings of models that do not make use of quantitative data. It also provides 

tables of formulae for many situations for one, two and three contributors using the F, 

Q and UC models.    

Chapter 5 investigates the effect of the inclusion of a dropout probability in the 

generated statistic. The DNA Commission of the ISFG stressed the importance of 

considering the probability of allelic dropout (Pr(D)) in its recommendation on 

mixture interpretation, but how to best assess Pr(D) was not formalised. This chapter 

demonstrates how important the estimation of Pr(D) is in calculating the weight of 

evidence under the LR.  

Chapter 6 calculates a probability of dropout using casework data and logistic 

regression. This builds on previous work by Tvedebrink et al. [54]. Peak height data is 

utilised as a proxy for DNA template and a degradation slope is included that is based 

on molecular weight. This model is compared to Tvedebrink’s for transportability. i.e. 

how well do these respective models that are trained on one set of data, work on a 

second set of data. This was done in order to ensure that the model would be able to 

be utilised in casework.  

Chapter 7 investigates heterozygote balance (h). We concentrated on building a model 

for the expected h given the observed average peak height for a locus. Data were 

collected that allowed this distribution to be modelled. The variance of h is shown to 

decrease at a rate inversely proportional to the average peak height at the locus ( )φ . 

The variance of h is most extreme at LtDNA levels. The difference in the number of 

repeat units between the heterozygous alleles at a locus ( )δ  was also found to have 

an effect on h. Using statistical modelling techniques, a model was built that uses δ  

and φ to give an expected estimate for h, as well as an interval that h would be 

expected to fall within (with reasonable probability).  

Chapter 8 identifies and models the drivers of the stutter ratio (SR) in forensic DNA 

profiles. The SR describes the ratio of the stutter peak to its parent peak.  The longest 

uninterrupted sequence (LUS) of repeat units in an allele was found to affect SR. A 

locus effect was also seen. A linear model was designed which describes the 
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behaviour of the expected SR with respect to locus and LUS. The expected (mean) SR 

was not affected by parent peak height and is more likely to be dependent on PCR 

cycle number. 

Chapter 9 describes additional work investigating the drivers of stutter. In particular, 

what causes loci to stutter differently? D21S11 is examined in detail as it was noted 

that D21S11 does not follow the typical linear behaviour with respect to LUS as the 

other loci. In addition to investigating D21S11, this chapter compares The Next 

Generation Multiplex (NGM™ SElect Kit) SR data to AmpFℓSTR® Identifiler® SR 

data. Because NGMTM SElect uses 30 cycles of PCR and AmpFℓSTR® Identifiler® 

uses 28, the observed SR for NGMTM SElect data is higher. Using the difference in SR 

a “PCR efficiency” value was created which can be used to give an approximate 

probability of SR for D21S11 for any cycle number. 

Chapter 10 is the discussion, conclusion and future areas of work identified in this 

research. Forensic DNA analysis is a huge asset to law enforcement, yet at the 

extremes of its applications there are limitations and the boundaries of these limits are 

now under critical review.  

The introduction of statistics to forensic science has not always been an easy process 

for forensic biologists and reluctance to introduce seemingly more complicated 

methods is understandable. However how best to interpret complex and LtDNA 

profiles is a challenging and highly topical subject and requires discussion. It is 

important that the limits of current interpretation models are communicated and that 

models that can cope with the stochastic factors associated with LtDNA are 

introduced in a manner in which the forensic biology community will accept and 

adopt.  

http://marketing.appliedbiosystems.com/mk/submit/NGM_RD?_JS=T&rd=bo
http://marketing.appliedbiosystems.com/mk/submit/NGM_RD?_JS=T&rd=bo
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2: USING THE LIKELIHOOD RATIO TO 

REPORT THE STATISTICAL WEIGHT OF DNA 

EVIDENCE 

The introduction of DNA profiling constitutes one of the most important 

advancements in the criminal justice system. Forensic DNA analysis is a huge asset to 

law enforcement and is seen as a robust and objective forensic discipline. However, 

with improvements in technology, the limits of DNA profiling are now being tested. 

Increased sensitivity in analysis techniques means that a wider range of evidence 

types, previously thought to hold little evidential value because of the limited quantity 

of available DNA, can now be submitted for DNA analysis. Consequently, the 

resulting DNA profile is often compromised in quality. The increase in sensitivity of 

the analysis techniques also means that very low levels of DNA, not previously 

identified in routine analyses are now detected, resulting in an increase in the analysis 

of DNA mixtures.  

The interpretation of DNA mixtures can be complicated. If the contributors to a 

profile are both present in similar quantities then individual genotypes cannot be 

distinguished. Additionally, if (a) contributor(s) is present at very low levels 

(LtDNA), then it becomes difficult to distinguish between alleles of a minor 

contributor and stochastic effects. These stochastic effects include; stutter, 

heterozygous balance, dropout, and drop in, and are the defining characteristics of 

LtDNA profiles.  

Here, stutter refers to the mis-copy of an allele resulting in an amplicon one repeat 

sequence shorter than the parent allele. Stutter also appears in full, single source, 

DNA profiles, however in LtDNA samples the difference in height between the stutter 

peak and the parent peak can decrease, making it difficult to determine if the observed 

peak is in fact stutter.  Additionally, if there are other smaller peaks present in the 

profile that could make up a minor component of a DNA mixture then the designation 

of stutter peaks becomes complicated.   
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Heterozygous balance refers to the ratio of peak heights (or areas) between the two 

alleles of a heterozygous locus.  In LtDNA samples, heterozygous pairs are more 

prone to imbalance (Figure 2.1). An extreme manifestation of heterozygous imbalance 

is allele dropout.  

 

 

Figure 2.1: An electropherogram showing balanced heterozygous alleles on the left 
and imbalanced heterozygous alleles on the right. RFU are on the Y axis and allele 
designation is on the X axis. 

Allele dropout is the failure of one of the alleles of a heterozygous pair to reach the 

detection threshold, either because it has not amplified or it is present in such low 

volumes it avoids detection. Therefore, the locus appears to be homozygous. Both 

alleles at a locus can also fail to be detected. This is termed extreme or locus dropout.   

In addition to alleles failing to be amplified, extraneous alleles (unrelated to the crime 

scene sample) can be amplified, or “drop in”. This extra DNA is usually limited to 

one or two alleles and is attributed to “DNA falling from the ceiling” (a random 

event) rather than laboratory or consumable based contamination [1]. These stochastic 

effects create uncertainty in the interpretation of crime scene samples and therefore 

make it difficult to evaluate the weight of the evidence.   
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2.1 The interpretation of DNA 

Traditionally the interpretation of DNA profiles has been thought of as a two-step 

process (Figure 2.2). The initial step involves the interpretation of the 

electropherogram (epg). Thresholds and guidelines are often used by forensic 

laboratories to aid in determining if peaks present in the epg can be designated as 

alleles, if alleles at a locus can pair (determining the genotype at a locus), and finally 

to aid in resolving the contributor(s) profile.   

The second step involves comparing the resolved contributor profile to a reference 

profile. If the reference profile cannot be excluded from the contributor profile, then it 

is customary to provide some form of statistic to evaluate the weight of the evidence.  

 

Figure 2.2: Schematic of the DNA interpretation process. 

Two popular methods used to calculate the statistical weight for DNA profiles include 

the Random Man Not Excluded (RMNE) and the Likelihood Ratio (LR). 

2.1.1 The Random Man Not Excluded 

The RMNE in itself is as a two-step process. First, the suspect must be included as a 

contributor to the profile (a match) and then, given that a match is declared, the 

fraction of a defined population that would also match the contributor profile is 

calculated. RMNE supporters advocate its use because “it is more straightforward to 

implement and is easier to explain in court than the LR” [2]. However, “ease of 

explanation” is not an acceptable criterion [3]. 

The “match step” is a weakness of the RMNE. If there is uncertainty about the 

composition of a crime scene sample, then an “inclusion” can become blurry. If there 
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is the possibility of dropout and or drop in, then there is uncertainty that the observed 

profile faithfully reflects the true contributor.   

Traditionally, problematic loci have been left out of the RMNE calculation. This is 

equivalent to treating them as a “one” (neutral) in the calculation. However this 

approach is biased as it does not account for the exclusionary potential of the locus.  

This uncertainty should be reflected in the statistic. The LR is able to incorporate this 

uncertainty. 

2.1.2 The likelihood ratio 

The LR does not require the “match or non-match” way of thinking, although it did 

use “match or non-match” for a long time. The need to designate an inclusion or 

exclusion is avoided because the conditioning that is used in the calculation negates 

the requirement for a two-step approach [4]. The classical LR approach consists of the 

comparison of the likelihood of obtaining the observed DNA profile given alternative 

competing hypotheses; typically termed the prosecution hypothesis and the defence 

hypothesis. Subjective bias can be avoided because utilising the LR, a statistical 

model can be employed that measures the strength of evidence that can favour the 

defence as well as the prosecution [4]. 

A number of LR based models have been described in the literature that can be used to 

interpret complex DNA profiles that (may) exhibit dropout and or drop in [4-13]. 

Because the LR requires a model to evaluate the probability of the evidence under 

each hypothesis it is the difference in these models that differentiates the various LR 

models. Although LR based methods have been in the literature for more than a 

decade, widespread laboratory acceptance of the LR has been slow. This is thought to 

be largely due to lack of understanding on the basis behind the LR, an inability to 

calculate it and the belief that the resulting statistic is difficult to explain in court.  

However, the LR has been acknowledged to be the most powerful and relevant 

statistic used to calculate the weight of the DNA evidence [14], and is recommended 

by the DNA commission of the International Society of Forensic Genetics (ISFG) in 

mixture interpretation [14].  
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In 2008, the United Kingdom’s Forensic Science Regulator commissioned a review of 

LtDNA techniques. One of the conclusions of this review states that the development 

of a consensus on the interpretation of LtDNA profiles needs to be established [15]. 

As yet there is no consensus as to the best practice for the interpretation of complex 

mixtures or LtDNA profiles, however there are recommendations available [16]. 

There are a number of recent articles that highlight interpretation inconsistencies for 

these profiles [17-19].  

There is difficulty in standardising interpretation due to different laboratories 

following different guidelines (Step one, Figure 2.2) and the lack of a consensus as to 

the most appropriate method to calculate the statistical weight of “incomplete” 

profiles that might match a reference profile (Step two, Figure 2.2). Regardless, the 

Scientific Working Group on DNA Analysis Methods (SWGDAM) 2010 guidelines 

state that “a laboratory must perform statistical analysis in support of any inclusion 

that is determined to be relevant in the context of a case, irrespective of the number of 

alleles detected”  [20]. 

Given that the SWGDAM guidelines states that a statistic must be calculated for an 

“inclusion” despite there being the possibility of missing alleles from the contributor 

profile, and the review of LtDNA techniques calling for a consensus in interpretation, 

it is logical that an agreement on the most appropriate method to calculate an 

“inclusion” statistic is the sensible place to begin interpretation standardisation.  

The recommendation of the use of the LR by the ISFG, and the evidence within the 

literature that indicates that the LR is the only method that can comprehensively 

evaluate the stochastic phenomena associated with complex profiles, suggests that the 

LR is the logical methodological framework that should be used in DNA 

interpretation. Therefore it is important that the capabilities and limits of the LR in 

regards to forensic DNA interpretation are explored and understood. The challenges 

in terms of statistical interpretation and in communicating the results to a criminal 

justice system must also be discussed. 
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2.1.2.1 Exploring the likelihood ratio 

The LR is not exclusive to forensic DNA interpretation. It is used in many situations 

in statistics and is contained within Bayes’ theorem (Equation 2.1) [6].  

 1 1 1

2 2 2

Pr( | , ) Pr( | , ) Pr( | )
Pr( | , ) Pr( | , ) Pr( | )

H E I E H I H I
H E I E H I H I

= ×   Equation 2.1 

where: 

 1H  is hypothesis one, 

 2H  is an alternate hypothesis to 1H , 

 E  represents the evidence, and  

 I  represents background relevant information. 

Bayes’ theorem follows directly from the laws of probability and can be expressed in 

words as: 

 Posterior odds = likelihood ratio x prior odds. 

In a forensic DNA context, the prior odds are the odds on the hypothesis before the 

DNA evidence. This is restricted to information relevant and admissible to the case. 

The posterior odds reflect the prior odds updated by the weight of the evidence (LR). 

The role of the scientist is to present only the LR. In reporting the LR alone, the 

scientist is not offering an opinion on the hypothesis.  

The typical LR approach for forensic DNA analysis consists of the comparison of the 

likelihood of obtaining the observed DNA profiles given the alternative competing 

hypotheses of the prosecution pH  and the defence dH  (Equation 2.2).  
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Pr( | , )
Pr( | , )

p

d

E H I
LR

E H I
=      Equation 2.2:  

where: 

under pH , the POI  contributed to the sample, and 

under dH , an unknown person unrelated to the POI contributed to the sample. 

For single source  profiles where there is sufficient DNA in the sample for the alleles 

to realistically reflect the true contributor and the observed profile “matches” that of 

the POI, then under pH , the probability of observing the evidence given the 

hypothesis that the POI is the contributor is (usually) one. Under dH  it is assumed an 

unknown person is the contributor and as there is sufficient DNA to assume that the 

peaks present correctly represent the alleles of the true contributor, the probability of 

observing the evidence, conditioned on an unknown contributor can be modelled by 

the conditional probability of observing the genotype in the target population; 

Equation 2.3.  

1LR
f

=       Equation 2.3  

where Pr( | ) 1pE H =  and f  is the probability of observing the genotype in a 

defined population  

Generally f  is a very small number which results in a large LR. This indicates that 

the LR supports the prosecution’s hypothesis.  

2.2 The interpretation of DNA when dropout it possible 

Whenever dropout is a possibility there is also uncertainty that alleles present in the 

sample realistically reflect the true contributor. Therefore the numerator of the LR 

cannot be 1, and the denominator of the LR cannot be restricted to the frequency of 

the called profile within the population. Instead, this number should reflect the 

likelihood of other profiles being possible if alleles have dropped out.  If the 
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possibility of drop out is not included in the calculation then the resulting probabilities 

will be too small, resulting in possible bias against the POI. 

Supporters of the RMNE have extended the method to deal with problem loci by 

omitting the loci from the calculation completely. Ignoring a locus essentially gives it 

a value of “one”. This ignores the exclusionary potential of the locus. For example, if 

in a LtDNA sample a peak is present at 299 RFU (with a homozygote threshold of 

300 RFU) and there is no second peak present, then a heterozygote is not likely.  The 

probability of the second allele dropping out is low and it is more than likely the 

contributor is homozygous at this locus. In a RMNE calculation this locus would be 

ignored and treated as  “neutral”  (as the allele is below threshold, therefore drop out 

is deemed possible [21]).  

In reality the value of this locus cannot be one (neutral). The value of this locus must 

reflect the low probability that the partner allele has dropped and that the contributor 

is more than likely homozygous at this locus.  

 

Figure 2.3: Two different epg scenarios seen alike under the RMNE 

Van Nieuwerburgh  et al. [2] describe a method they developed for the RMNE that 

allows for allelic dropout without omitting the locus.  The Van Nieuwerburg method 

makes the assumption that a given number of alleles may have dropped out and then 

accepts any profile in the population that matches as “not excluded”. The problem 

with this method is that dropout is assigned – i.e it is assumed to have occurred at the 

exact rate needed to include the POI. This again is raising similar issues where 
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possible exclusionary loci are designated incorrectly and the increases the likelihood 

ratio for innocent non-excluded persons. This is aided in part by the RMNE method 

not making use of the quantitative data– i.e. it does not see peak height. Alleles are 

considered present when above the stochastic threshold and absent when not. That the 

RMNE does not see peak heights makes the designation of possible “dropped out” 

alleles even more problematic. For example, the epg on the left in Figure 2.3 shows a 

single peak at a locus at 299 RFU. It is likely that the peak is a homozygote and the 

probability that a partner allele has dropped out is low.  Assigning ‘dropout’ to this 

locus would include all heterozygous suspects bearing the observed peak.  Most of 

these should be assigned a very low weight of evidence.   

However, if the same peak was only just over the limit of detection and there was 

another smaller peak just below the limit of detection then it is likely that that locus is 

heterozygous, and the peak below threshold has dropped out (epg on the right, Figure 

2.3). Although RMNE interprets these two situations in the same manner we can see 

that they are different which is why the probability of drop out should be factored into 

calculations at these loci.  

We can assess the probability of the evidence given the hypothesis at each locus using 

the LR (Equation 2.4).   

  Pr( | )GE H       Equation 2.4 

where: 

 E  is the evidence, or peak heights at the locus, and 

 GH  is the hypothesised genotype at the locus. 

Buckleton and Gill [22] describe, in depth, a method that they developed to assess 

profiles using a locus by locus process. This method is described briefly here in order 

to demonstrate how the LR can be broken down. However other methods have since 

been published that extend this style of thinking using automated systems [9, 23-25]. 

These systems are likely to give a statistic that more accurately incorporates available 
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information. They are increasingly complex and difficult to explain. This is discussed 

further in Chapter 3. 

It may seem strange to interpret the locus based on a hypothesis without ever trying to 

resolve the genotypes of the contributor(s) at the locus. However, this method is 

justified mathematically and represents a welcome and useful release from the need to 

make arbitrary decisions in pre-processing the profile.  Consider a locus with a single 

peak at 70 RFU at position A. One must consider what is necessary, is to assess the 

probability of seeing this single A peak IF the contributor is an AA homozygote and 

to assess the probability of this single A peak IF the contributor is an AX 

heterozygote. Clearly if the peak is high, then the chance of observing a single A peak 

form an AX heterozygote is low and so forth. These assessments should be based on 

empirical data and are best described with the example below:  

Consider the following scenario: Table 2.1; A LtDNA sample has been analysed and 

at a locus in replicate 1, a peak is present in position A. The peak is high and is 

probably an AA homozygote. However there is still a possibility (although low) that 

the partner allele has dropped out; AX. In order to explain an AA homozygote, both A 

alleles must not have dropped out ( )2D . In order to explain an AX heterozygote, the A 

allele must not have dropped out but the partner allele has dropped out ( )D . The 

probability of the genotype ( )Pr M j is multiplied by the probability of the event (i.e. 

dropout or not dropout) and then, using the format of Table 2.1  the product column is 

summed. The Pr( | )dE H is the summed product (all possible genotypes, regardless of 

their probability) and the Pr( | )pE H  is whichever cell in the product column 

represents their POI.  The probability of dropout is central to this methodology and 

many papers have been published exploring this [5, 10, 26-29]. Chapters 5 and 6 

discuss this further.   

 

 



Using the likelihood ratio to report the statistical weight of DNA evidence 

 

34 
 

Table 2.1: The Buckleton and Gill model 

Mj PrMj R1 AA Product 

AA Pr( | )AA x  
2D  2 |AA xD P  

AX 2 Pr( | )AX x  DD  |2 AX xDDP  

 
2 | |2AA x AX xD P DDP+  

 

The beauty of Buckleton and Gill presenting their methodology in such a simple 

tabulated format is that it can be extended to cope with a number of other stochastic 

factors or other phenomena which are present in complex profiles. For example, if a 

second peak was present in the above example, then the probability of it having 

dropped in ( )C  could be considered along with the probability of it being a stutter 

peak (modelling stutter is discussed further in Chapter 8).  

2.3 Conclusion 

DNA profiling using STR variants is a well-established robust method. The ensuing 

interpretation of single source, simple profiles is usually routine. However, LtDNA 

casework poses additional challenges for interpretation in terms of heterozygous 

balance, allele dropout, stutter and drop in. The LR can be adapted to reflect the 

effects of these phenomena without compromising its statistical, or scientific, validity. 

The same cannot be said for the RMNE statistic. It is for this reason that we believe 

that the LR is the most sensible summary of the statistical weight of the evidence. 

The LR is the methodological framework utilised in the rest of this research.  
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This paper is a summary of the current interpretation models available for the analysis 

of complex mixtures and low template DNA samples. In this paper “model” refers to 

the methods in which a genotype is determined and interpreted using the likelihood 

ratio. The models are broken down into three families; binary, semi-continuous, and 

continuous.  The merits of each family are discussed alongside their limitations. This 

paper aims to educate forensic biologists on the models that are, or have been in use, 

and why those methods may be becoming outdated. Software is mentioned where 

appropriate so that analysts are aware of the limitations of any automated systems 

they may also be using. This paper aims to come across as a general discussion and 

the sometimes complicated mathematics of some of the models is intentionally 

avoided. The main objective of this work is to demonstrate to forensic biologists that 

there are limitations to the models that are currently used in complex mixtures and 

low template DNA sample interpretation and to show that the community will need to 

move towards the application of a continuous model. 
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 3:A COMPARISON OF STATISTICAL MODELS 

FOR THE ANALYSIS OF COMPLEX FORENSIC 

DNA PROFILES 

Keywords 

Forensic DNA interpretation, binary model, drop model, continuous model 

Abstract  

Complex mixtures and LtDNA profiles are difficult to interpret. As yet there is no 

consensus within the forensic biology community as to how these profiles should be 

interpreted. This paper is a review of some of the current interpretation models, 

highlighting their weaknesses and strengths. It also discusses what a forensic biologist 

requires in an interpretation model and if this can be realistically executed under 

current justice systems.  

3.1 Introduction 

In forensic DNA analysis, a profile is typically produced from a biological sample 

collected from the scene of a crime and compared with the DNA profile of one or 

more persons of interest (POI).  Traditional DNA analysis is sequential. Initially an 

electropherogram (epg) is produced.  This raw output is processed by assigning peaks 

as allelic, stutter or artefactual.  The deduced profile is then compared to the POI (if 

available), with the intention of producing either an inclusion, or an exclusion. If an 

inclusion is reached, then it is customary to provide a statistic to support the strength 

of the evidence. Analysis can involve either human or computerised processing, based 

on empirically devised guidelines, and can be complicated by factors such as the 

number of contributors to the profile, and the quality and quantity of the DNA.   

Single source “pristine” profiles are relatively simple to interpret and their analysis 

has achieved worldwide acceptance as a reliable scientific method. However, profiles 

from crime scenes are frequently compromised in quality, or quantity, or both 
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(LtDNA). Stochastic factors are often present for such compromised profiles which 

complicates interpretation. These can include heterozygote imbalance, increased 

stutter peaks, allelic dropout, locus dropout, and drop in [1, 2]. Complicating 

interpretation even further is that in many cases, crime scene samples are composed 

from two or more people. Such profiles are referred to as mixtures. 

The interpretation of mixtures can be difficult. The number of contributors is often 

unclear. The presence of three or more alleles at any locus signals the existence of 

more than one contributor, although it often is difficult to tell whether the sample 

originated from two, three, or even more individuals because the various contributors 

may share alleles. The number of contributors to the mixture is often assigned either 

by using the fewest number of individuals needed to explain the alleles [3-5], or by 

maximum likelihood methods [6].  In many cases there will be a major and a minor 

contributor present in the sample and the profiles can be resolved and interpreted as 

single source profiles. However, many profiles cannot be separated and are deemed 

“unresolvable”. These complex mixtures are challenging to interpret and as yet, there 

is no consensus as to how such profiles should be dealt within the forensic biology 

community.  

A 2010 article in New Scientist [7] highlights the disparity of practice in the 

interpretation of complex mixtures. In this article an epg from a previously 

analysed complex mixture was presented to 17 analysts in the same government 

laboratory for interpretation. Only one analyst agreed with the original finding, that 

the POI could not be excluded from the mixture. Four analysts deemed the 

evidence inconclusive, while the remaining 12 said that the POI could be excluded 

as having contributed to the mixture.  

For a field which is widely regarded as objective, such a range of conclusions for 

the same evidence is worrying. Additionally, if the analyst is presented with the 

profile of a POI along with case circumstances strongly indicating that they are the 

offender, there is the perturbing issue of bias.  If the accompanying statistic does 

not correctly represent the strength of the inclusion (or if no match statistic is 

provided) then there is the risk of the DNA evidence being misrepresented in 

court.  
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A 2005 study [8] highlights that not only are complex mixtures difficult to 

interpret, it can also be difficult to determine how many people have contributed to 

the mixture. The authors showed that more than 70% of four person mixtures 

could be wrongly interpreted as two or three person mixtures. In New Scientist [9] 

one of the authors from the 2005 study, Dan Krane states: “If you can’t determine 

how many contributors there were, it is ludicrous to suggest that you can tease 

apart who those contributors were or what their DNA profiles were”.   

The following work is a review of some of the current interpretation models. We 

attempt here to highlight the weaknesses and strengths of these models. We also 

attempt to address the question of what a forensic biologist requires in a model and 

if this can be realistically implemented under current justice systems.  

3.2 Calculation of a statistical weight 

The DNA Commission of the International Society of Forensic Genetics (ISFG) 

recommends the use of the likelihood ratio ( )LR in mixture interpretation [10]. 

The LR  is accepted to be the most powerful and relevant statistic used to calculate 

the weight of the DNA evidence.  It is the ratio of the probability of the evidence 

( )E  given each of two competing hypotheses, 1H  and 2H , given all the available 

information, I . The available information, I , is taken to include the knowledge of 

the genotypes of the known contributors, K , the POI, S , and any other relevant 

and admissible evidence: 

  1

2

Pr( | , )
Pr( | , )

E H ILR
E H I

=   

The interpretation models discussed in this paper all utilise the likelihood ratio. 
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3.3 Interpretation models 

3.3.1 The binary model 

The binary model is probably better defined as a family of models rather than one 

specific model.  The models in this family share the characteristic that they assign 

genotypes as possible or impossible given the data. 

We define the genotype of the crime stain as cG , and the genotypes of proposed 

donors as iG  for donor i .  For an N  donor mixture there are N  proposed genotypes, 

iG .  We will denote the thj  combination of N  genotypes, jS .  We can interpret the 

binary models as assigning a value of zero or one to Pr( | )C jG S  

The binary model assigns the values zero and one to the unknown probabilities, 

Pr( | )C jG S , based on reasonable methods that approximate the relative values of 

Pr( | )C jG S .  In essence Pr( | )C jG S  is assigned a value of zero if it is thought that this 

probability is very small relative to the other probabilities. Pr( | )C jG S  is assigned a 

value of one if it is thought that this value is relatively large.  As such, it is an 

approximation.  Currently in most forensic biology laboratories this probability 

assignment is done manually and by the application of analysis thresholds and other 

rules based on empirical data. 

Peak heights can vary between in epgs when replicates are run from the same sample. 

This variation between replicates from the same sample can be more dramatic if the 

sample is low template LtDNA. In LtDNA samples, some peaks at a locus may fail to 

reach the predetermined threshold to call a peak an allele in one replicate, but may 

exceed the threshold in a different replicate, therefore allowing it to be called.  Since 

there is observable variation in replicates it is not possible that any crime scene profile 

(given a genotype set jS ) could occur with probability one, although zero is still 

possible.  The reality is that all the probabilities, Pr( | )C jG S , have some value in the 

interval [ )0,1 . 
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The most rudimentary implementation of the binary model treats alleles as present or 

absent and does not take into account peak height information [11-13].  We will term 

this the qualitative binary model.   

Consider a set of allelic peaks 1..., MA A .  All sets of N  genotypes that have these M  

alleles and no others are deemed included.  Genotype sets are constrained by 1H  and 

2H  (termed the allowed sets). The LR  is assigned using the ratio of the sum of the 

probabilities of all allowed sets under 1H  and 2H  

The computer programme POPSTATS, in common use in North America, 

implements this approach following the formulae of Weir et al. [12].  These formulae 

use the product rule and make no assessment of sampling uncertainty.  This approach 

also appeared in the now obsolete DNAMIX I software [12].  It should be noted that 

this approach cannot be used if dropout is possible and if used may result in a 

seriously non-conservative assessment of the data. It is therefore not recommended 

for the interpretation of LtDNA or complex mixtures.  

DNAMIX II extended this approach to include a subpopulation correction following 

NRC II recommendation 4.2 and implements the formulae of Curran et al. [13].  

DNAMIX II makes no assessment of sampling uncertainty and, again, cannot be 

reliably used on profiles where dropout is possible.   

DNAMIX III implements the formulae described in Curran et al. [13] and provides a 

limit on the confidence interval based on the work of Beecham and Weir [14].  The 

confidence interval itself is dependent on the extent of population substructure and the 

number of subpopulations.  The software is not appropriate for profiles where dropout 

is possible.  

Shortfalls in the qualitative binary approaches described above, such as the failure to 

take into account peak height and the inability to account for the possibility of dropout 

lead to the development of extensions which we will term the semi-quantitative binary 

model. 

The semi-quantitative binary model declares some of the combinations that would 

have been allowed under the qualitative binary model as possible or impossible [5, 
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15]. Scientists use expert judgment together with a number of empirical guidelines to 

decide which genotype combinations at a locus can be excluded [5].  This assignment 

is often based on expert judgement or heuristics employing limits on variation in the 

mixture proportion ( )mx  and heterozygote balance ( )h .   

The semi-quantitative model is mainly applied manually. However,  GeneMapper® 

ID-X is a programme designed for the automated designation of forensic STR profiles 

[16].  It incorporates a mixture analysis tool that uses the number of peaks, peak 

height information, mx  and interpretation guidelines to resolve two person mixed 

profiles in a semi-automated fashion based on Gill et al., [3].   

Traditionally, the semi-quantitative binary model accounts for the possibility of drop-

out by omitting the locus or using the 2 p  rule.  The 2 p  rule assigns the probability 

2Pr( )iA  for the observation of a single allele, iA , whose partner may have dropped 

out. The 2 p  rule had been assumed to be conservative in all circumstances, however 

this has proved a false assumption and is no longer recommended for use [10, 17]. 

One method to extend the binary model to profiles where dropout may have occurred 

(but alleles matching the POI are present within the profile) uses the ‘ F ’ designation 

to denote an allele that may have dropped out or ‘failed’.  In this system the F  

designation represents any allele at the locus in question, including alleles already 

observed [18].  

An alternate extension method uses a ‘ Q ’ designation in place of the F .  A Q  

designation represents any allele at the locus except for those alleles already present. 

The formulae for the Q  model can become very complex. As it is applied manually, 

this method is not readily extended to higher order mixtures (those containing more 

than two contributors) but there is the potential for automation of these extensions 

[19-21]. 

The UK Forensic Science Service (FSS) developed software, PENDULUM, that is 

automated and applies rules based on empirical data to assist in designating genotype 

sets as possible or not possible and uses the F  designation [15]. However, 
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PENDULUM ends the process at these designations and does not proceed to calculate 

a LR , nor does it provide any other calculation of a statistical weight. 

Binary models have served well for a number of years and in a great many cases.   

The primary motivator for change is that the binary models described above cannot 

deal with a locus showing a non-concordance.  This is a locus where at least one allele 

of the POI is not seen in the profile.  In addition, none of the models can take into 

account multiple replicates.  The challenges associated with the phenomena of 

dropout and drop in, in particular, have led to the evolution of a model which assesses 

the crime scene profile utilising primarily the concept of a probability of dropout. 

3.3.2 The semi-continuous model 

Figure 3.1 shows two examples of non-concordances when the POI is the genotype 

(7,9). Example A shows a large concordant 7 peak which is just under the 

homozygote threshold and no peak at the 9 allele position.  Example B shows a small 

concordant 7 peak and a below threshold 9 peak. Previously both examples would 

have been treated using the 2 p  rule under the binary models. If we use subjectivity to 

assess the two examples we can see that they are both quite different. In reality there 

is considerable support for the genotype 7,7 in example A while in example B there is 

more support the genotype 7,9.  Using the 2 p  rule in situations such as example A is 

non-conservative, which has led to the development of the Buckleton and Gill model 

[4, 22]  

 

Figure 3.1. Two examples of non-concordance where POI = 7,9.  A large concordant 

7 allele with no 9 peak observed (non-tolerable non-concordance) and B small 

B A 
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concordant 7 allele with a non-concordant 9 peak visible sub-threshold (tolerable non-

concordance).  Stochastic threshold = 300 RFU, Limit of detection 50 RFU. 

The Buckleton and Gill model  assigns a probability to the event of an allele not 

appearing, ( )Pr D . This is usually shortened to D . (i.e. the probability that an allele 

would dropout) [19, 22, 23].  It can also factor in the presence of additional genetic 

material, referred to as drop in, Pr( )C . In this model drop in is distinct from 

contamination. Drop in is not reproducible and is limited to only a few peaks per 

profile, whereas contamination refers to the presence of portions of reproducible 

extraneous DNA.  This method also can cope with multiple replicates (for a more 

thorough discussion refer to Buckleton and Gill [24]).  

The probability of dropout appears in both the numerator and denominator of the LR.  

There is no mathematical or logical reason why it should be the same in the numerator 

and denominator.  There is also good reason to believe that it may be different at 

different loci within a profile and different between profiles.   

The FSS implemented this approach in the software, LoComatioN [19].  However, the 

epg is still evaluated qualitatively first.  The scientist must call peaks as alleles and 

assign stutter peaks.  The assigned peaks are then entered into the computer program 

and the probabilities of the profile for all possible genotype sets are calculated.  The 

software can calculate a likelihood ratio for a range of propositions manually entered 

into the program by the analyst.  It enables a rapid evaluation of multiple propositions 

which would otherwise be laborious and error prone [19].  

However, no peak height information is utilised when designating genotype sets. For 

example, in Figure 3.2, all of the genotype combinations would be given the same 

weight [20, 22, 25].  

Tvedebrink et al., [26, 27] have suggested various improvements to the assignment of 

the probability of dropout.  All of these methods use the profile itself to assess one or 

two covariates used to assign the probability of dropout. The treatment of the 

probability of dropout as a parameter assessed from the profile can be problematic as 

there is a recycling of the information.  It would be better to treat the probability of 

dropout as a random variable and integrate it out [28].  This would require a sensible 
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distribution to describe the probability of dropout. Such a distribution would vary 

from case to case.  As yet such concepts have been mentioned but not implemented. 

The semi-continuous model is an improvement in the way complex mixtures and 

LtDNA profiles are interpreted.  However it still does not make full use of the 

available information from the epg.  Consider the epg shown in Figure 3.2.  If we treat 

this as a two-person mixture, then six genotype combinations are deemed possible.  

These are:  

Individual 1 Individual 2 

7,9 11,13 

7,11 9,13 

7,13 9,11 

9,11 7,13 

9,13 7,11 

11,13 7,9 

 

 

Figure 3.2 Artificial epg of four-peak locus for a two-person mixture 
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The combinations 7,11: 9,13  and 9,13: 7,11 are well supported by the peak heights.  

However, under the semi continuous model (and binary models) the profile is 

assigned the same probability for all of the genotype combinations listed.  When this 

concept is extended to multiple loci only one combination will be the most supported.   

Addressing these shortcomings leads into the concept of the continuous model.  This 

model seeks move away from very discreet all ( )Pr( | ) 1C jG S =  or nothing 

( )Pr( | ) 0C jG S =  nature of the binary model by making better use of the available 

information.   

3.3.3 The continuous model 

We define a fully continuous model for DNA interpretation as one which assigns a 

value to the probability Pr( | )C jG S  using some model for peak heights for all peaks in 

the profile.  These models have the potential to handle any type of non-concordance 

and may assess any number of replicates without pre-processing and the 

consequential loss of information. Continuous models are likely to require models to 

describe the stochastic behaviour of peak heights and potentially stutter.  

Many of the qualitative or subjective decisions that the scientist has traditionally 

handled such as the designation of peaks as alleles, the allocation of stutters and 

possible allelic combinations may be removed.  Instead, the model takes the 

quantitative information from the epg such as peak heights, and uses this information 

to calculate the probability of the peak heights given all possible genotype 

combinations.  Removing the subjectivity or qualitative analysis of the profile will 

ensure consistency in DNA interpretation and reporting across laboratories.   

TrueAllele is an example of commercial software implementing a continuous model 

[29].   
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3.4 General acceptance of a universal DNA model 

It is appropriate, when assessing the advantages and weaknesses of these models, to 

begin by discussing which aspects of an interpretation model are desirable and/or 

suitable in the forensic context.  Accuracy, reliability and comprehensibility are 

definitely desirable aspects of a DNA interpretation model.  None of these are easy to 

define in this context.  

If we think of the product of an interpretation model as a likelihood ratio, then we 

may think of accuracy as closest to the true answer.  The true answer in DNA 

interpretation is somewhat elusive and plausibly does not exist at all.  For this paper 

we will think of accuracy as making the best use of all the available information in a 

logically robust manner.   

We will use the word reliability in this context to refer to the chance of serious 

misapplication of the method, either to a situation for which it is unsuited or 

misapplication to a situation for which it is suited. 

Comprehensibility may come in two forms.  Is the method comprehensible to the 

forensic scientist?  Is the method explainable to a court?  There is therefore interplay 

between comprehensibility to the scientist and reliability (Figure 3.3).  This point is 

possibly worth some expansion.   

It is often assumed that complex and especially computerised methods are at most risk 

and this is plausible.  However the risk exists for any method, computerised or 

otherwise, to be misunderstood.  
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Figure 3.3 Summary of the relationship of the different models for forensic DNA 

interpretation  

The simplest model, when assessed against these criteria, is the qualitative binary 

model. One could easily justify the argument that it is the most comprehensible and 

reliable.  And yet there is evidence that this is not so.  This method is not suitable for 

profiles where dropout is possible but it is often applied to such profiles.  It may be 

that if interpretation is not given sufficient importance within an organisation, then 

adequate training and research resources may not be invested in it.  Organisations 

giving low priority to interpretation may choose simple systems and also have low 

investment in interpretation training and research.   The conclusion is that even the 

simplest method may descend into the category of misunderstood.   

The semi-quantitative binary model, when applied manually as usually is the case, is 

the one that has the scientist most intimately involved in the interpretation.  This 

places considerable training and research requirements on the organisation but in 

many ways this is a good thing.  Parameters of importance for interpretation need to 

be assessed such as variability in heterozygote balance and stutter peak heights.  Staff 

must be trained to a high degree of competence but, again, this is desirable both from 

a professional standards viewpoint, and from the ability of the scientist to represent 

the evidence in court.  However the binary model, in any version, is incapable of 

handling non-concordances.  This is the primary motivator for a move away from this 

method.  There is also the difficulty in extending the model to multi-person mixtures.   

Bayesian approaches to DNA interpretation

Semi-continuous 
modelBinary Model Fully continuous 

model

Increasing complexity
Increasingly harder to explain
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The Buckleton and Gill model retains many of the best aspects of the semi-

quantitative binary model but allows extension to profiles showing non-concordances.  

Software is required to extend to mixtures of three or more persons or to multiple 

replicates.  Programs have been developed [19, 22]. 

Coming finally to the continuous model; this approach is undoubtedly the premier 

choice in terms of accuracy as defined here, if we can adequately model the behaviour 

of peak height with empirical observation and verify the mathematical logic of the 

development from these foundations. Such methods will need to be consigned to a 

computer.  Training and research demands will be considerable to underpin the 

approach and to allow scientists to represent the evidence in court [30], as the 

continuous model is likely to be the least comprehensible of the three models [31, 32].  

Additionally, computer software is only as reliable as the analyst that is using it. 

There is the risk that, with complicated automated programs, analysts will not 

understand the limitations and the program will be inadvertently used in situations 

where it is not appropriate to do so.  However, properly developed and used, the 

continuous model will make the best use of the available information and give a 

considerable enhancement in objectivity [33, 34].  Replicates may be easily 

accommodated [35, 36].  The mathematics may be placed in the public domain by 

publication and hence it will be available for scrutiny by other qualified experts or 

subject to examination in court [37]. In many ways a well described mathematical 

process is more transparent than the often subjective decisions of experts.   

3.5 Conclusion 

DNA profiling is the stronghold in the characterisation of forensic biological 

evidence. The advent of increasingly more sensitive DNA analytical techniques has 

enabled scientists to generate profiles from samples that contain much lower amounts 

of DNA. This means that a wider range of evidence types can be analysed. However, 

the benefit of increased sensitivity, at times, means a reduction in profile quality and 

problems with profile interpretation due to the nature of the evidence types being 

sampled. Complex mixtures and LtDNA have stochastic factors present that 

complicate interpretation and current interpretation models are struggling.  
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Although extensions have been made to binary models we are being forced to move 

away from them, largely due to their inability to handle non-concordances but also by 

the difficulty in extending the semi-quantitative method to multi-person mixtures and 

the associated loss of information when expedients are used.   

The options to move forward with are the semi-continuous Buckleton and Gill model 

and the continuous approach.  Both of these are defensible scientifically.  Of the two 

the continuous model makes best use of the available information.  Since both are 

likely to be encapsulated into software the risk of them being misused must be 

ameliorated.  This will be a challenge but perhaps a worthwhile one in terms of 

professionalism.   

What must be decided is if we should move towards a model that is most likely to 

deliver us the more accurate answer, yet the mechanics are complex to explain to a 

jury and additionally raises the risk of our interpretation scientists becoming 

somewhat redundant, or if we should move towards a method where the scientist has 

a more hands on approach and the model is easier to explain to a jury but does not use 

all the information available.  

Realistically, the model which makes best use of the available evidence has to be 

implemented. Therefore, we must advocate a move to a continuous method founded 

on sound biological models, which themselves are based on empirical data.  
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This paper compares three models that can be used to determine the possible genotype 

combinations present in a low level mixture. Two of these models use the quanititative data 

available from the profile but a third  method, termed the unconstrained combinatorial 

approach, does not. The models that use the quantitative data (because they use quantitiative 

data) can accommodate the possible dropout of alleles unrelated to the person of interest. The 

unconstrained combinatorial approach cannot account for dropout. This paper takes a low 

level two person mixture and uses each of the three models to interpret the profile and 

compare with a POI. The resulting inclusion statistic is calculated using the likehood ratio. 

The resulting LRs differ in magnitude and demonstrate the variabilty in interpretation models. 

The aim of this paper is to show biologists that different LRs can result from the 

interpretation of the same profile and why it is important to understand the limitations of the 

model you are using.  

This work was supported in part by grant 2011-DN-BX-K541 from the US National Institute 

of Justice.  Points of view in this document are those of the authors and do not necessarily 

represent the official position or policies of the U.S. Department of Justice.  The authors 

would like to thank Catherine McGovern, Richard Wivell, and two anonymous reviewers for 

their contributions towards this paper. 

  

http://dx.doi.org/10.1016/j.fsigen.2011.04.013


The interpretation of low level mixtures 

 

59 
 

CHAPTER 4: AMENDMENTS 
After publication the following errors were noticed in the manuscript:  

Table 4.2: Person of interest profile (POI) and LR for each locus for the three different 

models; 

• FGA contained an incorrect allele probability in the LR calculation. 

• TH01 was missing a “2” from the calculation to account for the heterozygous locus.  

• The above two errors lead to a miscalculation in the overall LR for each of the 

models.   

These corrections have been updated in the text and are included below (Table A.1).  

Table A.1: Amendments to Table 4.2: Person of interest profile (POI) and LR for each locus 
for the three different models 

Locus POI LRUC LRQ LRF 

TH01  7,7 1.02 3.46 3.46 

FGA  21,25 5.98 5.98 5.98 

LR   2.88x1006 2.15x1005 4.38x1003 

 

Table 4.3: UC, F and Q model LR calculations for locus D21S11, where POI = (28,30) 

• The formula for the Pr(E|Hd) under the F model was missing an addition sign. 

• The formula for the Pr(E|Hd) under the Q model was missing an addition sign. 

These corrections have been updated in the text and are included below (Table A.2). 
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Table A.2: Amendments to Table 4.3: UC, F and Q model LR calculations for locus D21S11, where POI = (28,30) 

F model Allelic vector (28,30) 

Pr(E|Hd)=  

( )( ) ( )( )
( )( )

28 3012 1 1
1 1 2

p pθ θ θ θ
θ θ

+ − + −

+ +
 

Q model Allelic vector (28,30) 

Pr(E|Hd)=  

( )( ) ( )( )
( )( )

( )( )
( )

( )( )
( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

28 30

28 30 28 28 30 30

28 30

2 1 1
1 1 2

6 2 1 6 2 1 2 2 1 3 1 2 2 1 3 1
6

1 3 1 3 1 3 1 4 1 3 1 4

3 2 1 2 1
1 3 1 4

p p

p p p p p p

p p

θ θ θ θ
θ θ

θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ
θ θ

+ − + −
×

+ +

 + − + − + − + − + − −
− − + + 

+ + + + + + 
 + − + − + + +   
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4: THE INTERPRETATION OF LOW LEVEL 
MIXTURES 
 

Abstract 

The occurrence of mixed DNA profiles in forensic samples is not uncommon.  

Interpretation of these profiles however can be challenging.  In this paper we compare 

three different models for interpreting mixed DNA profiles prior to the calculation of 

a statistical weight.  Two of these models take into account the peak height of the 

alleles.  The third method uses an unconstrained combinatorial approach.  We 

compare the statistical weights calculated after applying the three different models to 

one low level two-person mixed DNA profile derived from a crime sample and 

provide tables of equations that can be applied to many different scenarios including 

single source and two and three person mixed DNA profiles. 

Keywords  

Forensic DNA interpretation, Low template DNA, mixed DNA profiles, Binary model 

4.1 Introduction 

In forensic DNA analysis, mixed DNA profiles arise from samples containing DNA 

from two or more people. In some circumstances alleles from a true contributor may 

not be visualised in the electropherogram (epg). This is thought to arise because of 

limitations in the quantity and or quality of the template DNA in the original sample 

and is called allele dropout.  Epgs that exhibit exaggerated stochastic effects such as 

allele dropout are termed low template DNA (LtDNA). 

In some cases DNA from one contributor to a mixed DNA profile may be present in a 

larger amount than DNA from another contributor.  This component is sometimes 

referred to as originating from the major contributor and may be interpreted as a 

single source DNA profile.  In other cases none of the contributors to the mixed DNA 

profile can be inferred. 
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Typically the hypotheses of interest will be whether or not the person of interest 

(POI), could be a contributor to the DNA profile.  Although the genotype of this 

person is typically known it is desirable that all subjective judgements regarding the 

epg are made without knowledge of this genotype. This goes to issues of bias being 

raised by some scientists at court [1].  For example, the examiner should determine if 

dropout is possible at a locus before looking at a reference profile.   

After these judgements are made the mixed profile is compared with the POI.  If the 

POI cannot be excluded, then it is customary to provide some measure of the weight 

of the evidence.  For mixed DNA samples this weight of evidence is typically 

supplied by calculating an exclusion probability (RMNE) or its complement the 

cumulative probability of inclusion (CPI), a random match probability (RMP), or a 

likelihood ratio (LR).  Whenever dropout is a possibility a meaningful exclusion 

probability cannot be calculated for the full profile.  RMNE may still have a meaning 

in this situation if, for example, two contributors represent the bulk of the DNA (the 

major contributors) and there is a third or additional trace contributor.  Both the RMP 

and the LR approach may be extended to deal with situations where dropout is 

possible and there are no non-concordant alleles.  A non-concordant allele is one 

present in the POI that is not visualised in the epg.  The LR approach, but not the 

RMP, may be further extended to handle the situation where non-concordant alleles 

exist.   

For mixed DNA profiles at low levels with exaggerated stochastic effects (LtDNA) 

the calculation of a LR may proceed by either a binary [2], a semi-continuous [3], or a 

fully continuous method [2, 4].  The binary method treats alleles as present or absent, 

the semi-continuous method assigns a probability to the events of dropout or non-

dropout but still treats alleles as present or absent.  Fully continuous methods deal 

with the probabilities of stochastic events (like dropout) based on the heights of the 

peaks visualised at a locus. These methods improve in power, flexibility and elegance 

in the order binary, semi-, and fully continuous.  However the simplicity of binary 

methods retains much appeal and allows manual or semi-manual implementation.  

There is no modification of the binary method that can deal with a non-concordant 

allele in a comprehensive manner [5].  In this paper we explore methods to extend the 
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binary method to complex mixtures that have no non-concordant alleles when 

compared to the POI.   

We term DNA mixtures n person mixtures where n stands for the number of 

contributors.  It is inadvisable to push existing models too far with regard to the 

number of contributors.  However there is considerable interest in interpreting at least 

2 and 3 person mixtures. Computation, manual or otherwise, is simplified if a mixture 

can be resolved into profiles attributable to one or more contributors. Previous authors 

[6-10] have described methods to split a mixture, either fully or partially, into its 

component parts.  The computation is simplified because the number of possibilities 

for the unknown contributors is reduced. Use of a mixture resolution method prior to 

evidence evaluation is termed the “constrained conditional method” [11]  and the 

splitting termed “deconvolution”.  However in some complex mixtures such 

deconvolution is either not possible or is avoided simply for ease of implementation  

[11].   

Methods have been offered that automate the application of the unconstrained 

combinatorial method in those cases where dropout is not possible [12, 13].  Neither 

of the original papers explicitly mentions the condition that dropout must not be a 

possibility for these methods to be applicable.  Perhaps more regretfully the recently 

published ISFG recommendations [11] also fail to give an explicit warning.  The use 

of the unconstrained combinatorial method to LtDNA mixtures without any allowance 

for dropout is a misapplication of the method.  In this paper we have referred to it as 

the unconstrained combinatorial method (UC). 

In this paper we describe two methods to extend the use of the binary method to 

complex mixtures where dropout is possible but where there are no non-concordant 

alleles.  This type of modelling will not hold if there are any alleles present which are 

inconsistent with those of the individuals believed to be relevant to the hypothesis.  

We compare these methods with the UC.   

The two methods that we introduce are termed the F and the Q methods where F is 

used to designate any allele and Q to designate any allele other than those already 

observed.   
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4.2 Methods 

In order to understand the theory, the following statistical and biological principals are 

helpful. 

4.2.1 Conversion of the observed peaks to alleles 

It is often possible to infer the minimum number of copies of each type of each allele 

from the observed peaks at a locus.  At a minimum there is one copy of each allele 

observed above the designated limit of detection but often it is possible to infer the 

existence of extra copies of these alleles.  When converting peaks into alleles a 

number of contributing factors are taken into account including; the number of 

assumed contributors to a DNA profile, peak height ratio, average mixture proportion, 

and known conditioning profiles if available and applicable.  The allelic vector may 

be different under the prosecution (Hp) and the defence (Hd) hypotheses since the 

known profiles differ by at least the POI. 

Consider the example in Figure 4.1. If we assume this profile is a two person mixture, 

then the 14 peak exceeds the stochastic threshold (sometimes referred to as the 

homozygote threshold), T, where dropout of one allele at a homozygous locus is 

deemed possible. This indicates the presence of two 14 alleles.  The allelic vector 

becomes ( )13,14,14,15 . 

 

Figure 4.1 Example of a 3 peak locus, with one peak above and two below the 

stochastic threshold, T 
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4.2.2 Ambiguity in the allelic vector 

In certain circumstances it may not be possible to infer a unique vector of alleles, but 

there might be a limited number of possibilities.  Consider, for example, the scenario 

in Figure 4.2. This is an idealized example of a two person mixture with three peaks 

of equal height above T. We can infer that there is one more copy of the 13, 14, or 15 

allele but we cannot tell which allele is duplicated.  The possible allelic vectors are 

therefore ( )13,13,14,15 , ( )13,14,14,15  and ( )13,14,15,15 . 

 

Figure 4.2 Example of a 3-peak locus, with all peaks above the stochastic threshold, 

T. 

4.2.3 Permutations 

Once the peaks at a locus have been converted to alleles the next step is to calculate 

the number of permutations. The number of permutations is the number of ways that 

the alleles can be arranged as pairs. For example; if at a given locus the alleles 13, 14, 

15, and 16 are observed, then the possible allele combinations for a two person 

mixture are as follows: 
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Individual 1 Individual 2 

13,14 15,16 

13,15 14,16 

13,16 14,15 

14,15 13,16 

14,16 13,15 

15,16 13,14 

Within each of the combinations above each set can be ordered two ways, for example 

13,14 or 14,13 and 15,16 or 16,15.  This factor of two for each combination, takes 

into account the allele being maternal or paternal in origin. For each combination 

there are 4 possible orders, so for 6 combinations the permutation set is 24. 

In general the number of permutations at a locus exhibiting mi copies of allele Ai is 

given by 

 

Where n is the total number of alleles at the locus and m is the number of times each 

allele is seen at the locus.  The ! denotes a factorial.  The factorial of a positive integer 

j, denoted by j!, is the product of all positive integers fewer than or equal to j. For 

example, 2! 44 3 14 2× × × == . 

For Figure 4.1, the number of permutations is 
4! 12

1!2!1!
= . 

4.2.4 Assigning the allelic designation for a locus 

We assume that the observed peaks have been converted into alleles for a mixed 

profile with n  contributors and the total number of alleles at that locus is 2n≤ .  In 

some instances where dropout may have occurred a “placeholder” is required. For 

example, consider a locus where the alleles 13,14 and 15 are observed and the peak 

heights are below stochastic threshold, T indicating that dropout is possible. We might 

1 2 1 2

!
, ,..., ! !,..., !l l

n n
m m m m m m
 

= 
 
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assume that the profile is a two person mixture on the basis of the number of (above 

threshold) peaks seen at other loci.  The proposed allelic vector then becomes 

( )13,14,15, F  where F is the placeholder indicating possible allelic dropout. 

4.2.5 Assigning probability using the F model 

An F designation represents all possible alleles at a locus, including those already 

observed, and is used to denote possible dropout.  Figure 4.3 shows an example of a 

three peak locus in a two person mixed DNA profile 

 

Figure 4.3 Example of a 3-peak locus, with all peaks below the stochastic threshold, 

T 

Only one F allele is needed to explain the possible allelic vector at this locus where 

the fourth allele may or may not have dropped out. In this example F represents all 

possible alleles at that locus, including the alleles 13, 14, 15.  The number of 

permutations is calculated using F as a placeholder and then F is dropped from the 

equation.  The allelic vector becomes ( )13,14,15, F .  Therefore, for the example 

given in Figure 4.3 we seek to calculate ( )Pr 13,14,15, |F X  where X is the set of 

“conditioning” alleles that consists of individuals relevant to the hypothesis such as 

the POI/suspect/complainant profile. 

 
( ) ( )

( )

4!Pr 13,14,15, | Pr 13,14,15, |
1!1!1!1!
24Pr 13,14,15 |

F X F X

X

=

=  
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4.2.6 Assigning probability using the Q model 

The Q model uses more information than the F model by calculating the probability 

of all possible allelic combinations for that locus.  In the Figure 3 example above the 

possible allelic combinations are: 

[13,13,14,15] [13,14,14,15] [13,14,15,15] [13,14,15,Q] 

In this model, the Q designation represents all other possible alleles at that locus 

except for the alleles already observed.  In this example the Q represents all other 

alleles possible at this locus except for (13,14,15). 

The number of permutations for each allelic combination is worked out as for the F 

model. The number of permutations is calculated using Q as a placeholder. Q is then 

substituted out of the calculation.  Because the probability of all alleles at a locus adds 

to one, the probability of the composite allele Q is one minus the observed alleles at 

that locus.  In this example the probability of Q is 13 14 151Qp p p p= − − − , where pi is 

the frequency of allele Ai in the subpopulation. 

Q is best substituted out at the end stages of the calculation for ease.  For example, the 

full calculation using the scenario above develops into: 

( ) ( )

( ) ( ) ( )

( )
( )
( )
( )

4! 4!Pr 13,13,14,15 | Pr 13,14,14,15 |
2!1!1! 1!2!1!

4! 4!13,14,15,15 | Pr 13,14,15, | 12Pr 13,14,15 |
1!1!2! 1!1!1!1!

Pr 13 |13,14,15,
Pr 14 |13,14,15,
Pr 15 |13,14,15,

2Pr |13,14

Pr

,15,

X X

X Q X X

X
X
X

Q X

+ +

+ =

 
 + 
 +

 

×


+ 

 

Ignoring population substructure (which we do not recommend for criminal cases), 

this becomes 

 ( )( ) ( )13 14 15 13 14 15 13 14 15 13 14 15 13 14 1512 2 1 12 2p p p p p p p p p p p p p p p+ + + − + + = − − −  
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4.2.7 Assigning probability using the UC method 

The UC method does not take into account peak heights and therefore, does not 

convert peaks to alleles or account for the possibility of dropout.  

It sums the probabilities of all sets of n contributors (2n alleles) that explain the 

mixture but have no alleles outside the mixture.  It is the requirement to “have no 

alleles outside the mixture” that leads to the discrepancy when dropout is possible. 

For the example given in Figure 4.3, using the UC method, the probability (ignoring 

substructure) becomes: 

( )
( )
( )
( )

Pr 13 |13,14,15,

12Pr 13,14,15 | Pr 14 |13,14,15,

Pr 15 |13,14,15,

X

X X

X

 
 
+ 
 + 

= ( )13 14 15 13 14 1512 p p p p p p+ +  

This probability remains the same for all loci that have three peaks regardless of 

whether one of those peaks represents two alleles or if one or all of the peaks are 

below the stochastic threshold T.   

4.2.8 Applying the sampling formula 

Once the allele designations have been applied and the permutation multipliers have 

been calculated, the sampling formula of Balding and Nichols [14] is applied.   

The sampling formula is a correction term for population substructure that models the 

belief that if we have observed allele A in the population before then we are more 

likely to see it again.  More specifically, if there are x  copies of allele A in a sample, 

(X), of n alleles then the probability that the next allele will be of type A is: 

 ( ) ( )
( )
1

Pr |
1 1

ax p
n

XA
θ θ

θ
+ −

=
+ −

 

where pa is the probability of allele A, and θ  is the coancestry coefficient (FST). 
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4.2.9 Comparison 

In general, the probabilities produced by the UC model are smaller than those 

produced by the Q model, which in turn are smaller than those produced by the F 

model. Since the LR is the ratio of two of these probabilities it is not trivial to predict 

the effect on the LR.  In our experience the LR for the F model is always lower than 

the LR for the Q model and we are unable to construct any artificial situation where 

the LR for the Q model is less than that for the F model. 

There is a variety of methodologies and models for resolving mixed DNA profiles and 

calculating weights of evidence.  It is expected that the models which use more of the 

information might be considered to give answers which are nearer to a fair and 

reasonable assessment of the evidence.  Of the three models discussed here the Q 

model makes best use of the available information.   

4.2.9.1 Example 

In this example we compare the three methods, described in the previous section, for 

assigning an LR to an unresolvable two person mixed DNA profile.  The profile epg is 

given in Figure 4.5 and the peaks and heights in Table 4.1.  The person of interest 

profile is displayed in Table 4.2.  The calculated LR for each of the three models is 

also provided for each locus and a combined total. 

The calculations using each of the three methods with two loci, D21S11 and 

D3S1358, are provided in Tables 4.3 and 4.4 respectively.  The LRs were calculated 

based on the allele frequencies for the New Zealand Caucasian population and a  of 

0.02 [15].  The stochastic threshold we have applied is 300 RFU. 

In the supplementary material we provide the formulae for many situations for 1 to 3 

contributors, respectively, using the F, Q, and UC models.  In addition, we also 

provide calculations for two loci for a three person mixed DNA profile. 

  

θ
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Figure 4.5 Epg of a two-person Identifiler® mixed DNA profile 
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Table 4.1 Peaks and heights from DNA profile, Figure 4.5, and allelic vector used for 

the F and Q models, taking into account peak heights 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marker Peak Height 
(RFU) 

Allelic vector for F and Q 
models 

D8S1179 
12 529 

(12, 13, 14) 13 411 
14 568 

D21S11 28 127 (28, 30) 30 229 

D7S820 
8 111 

(8, 10, 11) 10 245 
11 336 

CSF1PO 10 129 (10, 12) 12 50 

D3S1358 15 495 (15, 15, 16, 16) 16 1126 

TH01 
6 125 

(6, 7, 7, 9.3) 7 804 
9.3 240 

D13S317 
8 73 

(8, 10, 12) 10 89 
12 119 

D16S539 

9 223 

(9, 11, 12, 13) 11 409 
12 246 
13 587 

D2S1338 
17 110 

(17, 20, 25, 25) 20 170 
25 506 

D19S433 

13 1166 

(13, 14, 15, 16.2) 14 1164 
15 477 

16.2 454 

vWA 17 92 (17, 18) 18 133 

TPOX 8 586 (8, 8, 11) 11 221 

D18S51 

13 189 

(13, 14, 15, 16) 14 432 
15 328 
16 112 

D5S818 11 184 (11, 12) 12 159 

FGA 

21 
22 
24 
25 

188 
70 
68 

126 

(21, 22, 24, 25) 
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Table 4.2 Person of interest profile (POI) and LR for each locus for the three different 

models, from Figure 4.5 

Marker POI LRUC LRQ LRF 

D8S1179 12,14 4.14 0.67 0.44 

D21S11 28,30 5.74 3.07 1.86 

D7S820 10,11 3.72 2.10 1.56 

CSF1PO 10,10 2.23 0.96 0.56 

D3S1358 15,15 2.61 1.95 1.95 

TH01 7,7 1.02 3.46 3.46 

D13S317 8,10 10.95 9.12 7.96 

D16S539 11,13 1.52 1.52 1.52 

D2S1338 25,25 2.41 7.77 7.77 

D19S433 13,14 1.02 1.02 1.02 

vWA 17,18 4.42 2.48 1.40 

TPOX 8,8 1.06 0.98 0.56 

D18S51 14,15 3.23 3.23 3.23 

D5S818 11,12 2.10 1.51 0.63 

FGA 21,25 5.98 5.98 5.98 

 2.88x1006 2.15x1005 4.38x1003 
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Table 4.3: UC, F and Q model LR calculations for locus D21S11, where POI = (28,30) 

UC Allelic vector (28,30) 

Pr(E|Hp) = 1 x 2Pr(28,30|28,30) + Pr(28,28|28,30) + Pr(30,30|28,30)  

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

28 30 28 28 30 302 1 1 1 2 1 1 2 1
1 1 2 1 1 2 1 1 2

p p p p p pθ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ

     + − + − + − + − + − + −
+ +     

+ + + + + +          
 

 

Pr(E|Hd)= 2Pr(28,30|28,30)[2Pr(28,28|28,30,28,30) + 3Pr(28,30|28,30,28,30) + 2Pr(30,30)|28,30,28,30] 

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

28 28 28 30

28 30

30 30

2 2 1 3 1 3 2 1 2 1
1 3 1 4 1 3 1 42 1 1

1 1 2 2 2 1 3 1
1 3 1 4

p p p p
p p

p p

θ θ θ θ θ θ θ θ
θ θ θ θθ θ θ θ

θ θ θ θ θ θ
θ θ

 + − + − + − + −
+ 

+ + + ++ − + −  ×  + + + − + − + + + 

 

F 
model 

Allelic vector (28,30) 

Pr(E|Hp)= 1 
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Pr(E|Hd)= 12Pr(28,30|28,30) 

( )( ) ( )( )
( )( )

28 3012 1 1
1 1 2

p pθ θ θ θ
θ θ

+ − + −

+ +
 

Q 
model 

Allelic vector (28,30) 

Pr(E|Hp)= 1 

 

Pr(E|Hd)= 

( )
( ) ( )

4Pr(28,28,28,30 | 28,30) 6Pr(28,28,30,30 | 28,30) 4Pr(28,30,30,30 | 28,30) 12Pr(28,28,30, | 28,30)
12Pr(28,30,30, | 28,30)
12Pr(28,30, , | 28,30)

6 6Pr 28 | 28,28,30,30 6Pr 30 | 28,28,30,30 2Pr 28,28 | 2

2Pr 28,30 | 28,30

Q
Q

Q Q

+ + +
+
+

− − +

= ×

( )
( )
( )

8,28,30,30

2Pr 30,30 | 28,28,30,30

3Pr 28,30 | 28,28,30,30

 
 
+ 
 + 
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( )( ) ( )( )
( )( )

( )( )
( )

( )( )
( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

28 30

28 30 28 28 30 30

28 30

2 1 1
1 1 2

6 2 1 6 2 1 2 2 1 3 1 2 2 1 3 1
6

1 3 1 3 1 3 1 4 1 3 1 4

3 2 1 2 1
1 3 1 4

p p

p p p p p p

p p

θ θ θ θ
θ θ

θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ
θ θ

+ − + −
×

+ +

 + − + − + − + − + − −
− − + + 

+ + + + + + 
 + − + − + + + 
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Table 4.4: UC, F and Q model LR calculations for locus D3S1358, where POI (15,15).   

UC Allelic vector (15,16) 

Pr(E|Hp)= Pr(16,16|15,15) + 2Pr(15,16|15,15) 

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

16 16 15 161 1 2 2 1 1
1 1 2 1 1 2
p p p pθ θ θ θ θ θ
θ θ θ θ

 − + − + − −
+ 

+ + + +  
 

 

Pr(E|Hd)= ( ) ( ) ( ) ( )2Pr 15,16 |15,15 2Pr 15,15 |15,16,15,15 3Pr 15,16 |15,16,15,15 2Pr 16,16 |15,16,15,15+ +    

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

( )( ) ( )( )
( )( )

15 15 15 16

15 16

16 16

2 3 1 4 1 3 3 1 1
1 3 1 4 1 3 1 42 2 1 1

1 1 2 2 1 2 1
1 3 1 4

p p p p
p p

p p

θ θ θ θ θ θ θ θ
θ θ θ θθ θ θ

θ θ θ θ θ θ
θ θ

 + − + − + − + −
+ 

+ + + ++ − −  ×  + + + − + − + + + 

 

 

F 
model 

Allelic vector (15,15,16,16) 

Pr(E|Hp)= Pr(16,16|15,15) 
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( )( ) ( )( )
( )( )

16 161 1
1 1 2
p pθ θ θ
θ θ

− + −

+ +
 

 

Pr(E|Hd)= 6Pr(15,15,16,16|15,15) 

( )( ) ( )( ) ( )( ) ( )( )
( )( )( )( )

15 15 16 166 2 1 3 1 1 1
1 1 2 1 3 1 4

p p p pθ θ θ θ θ θ θ
θ θ θ θ

+ − + − − + −

+ + + +
 

Q 
model 

Allelic vector (15,15,16,16) 

Pr(E|Hp)= Pr(16,16|15,15) 

( )( ) ( )( )
( )( )

16 161 1
1 1 2
p pθ θ θ
θ θ

− + −

+ +
 

 

Pr(E|Hd)= 6Pr(15,15,16,16|15,15) 

( )( ) ( )( ) ( )( ) ( )( )
( )( )( )( )

15 15 16 166 2 1 3 1 1 1
1 1 2 1 3 1 4

p p p pθ θ θ θ θ θ θ
θ θ θ θ

+ − + − − + −

+ + + +
 

 



The interpretation of low level mixtures 

 

 79 

4.3 Conclusions 

In this work, we have extended the binary model using two different methods to deal 

with complex mixtures that have no non-concordant alleles. Both methods are able to 

take into account the possibility of dropout.  We have compared the performance of 

these models with the misapplication of the unconstrained combinatorial method, UC.  

We stress that these methods will not hold if there are non-concordances.   

The UC method is not appropriate. It does not use all the information available and 

may be extremely misleading.  In addition as the formulae used do not deal with 

dropout the effect on the LR is unpredictable.  There is a considerable risk that the LR 

will be significantly non-conservative.  We are unable to recommend the UC method 

whenever dropout is possible for this reason. These limitations in the UC method are 

known [12, 13] and analysts should be aware of them when using this method for the 

interpretation of LtDNA profiles.   

The F model does not use all of the available information as efficiently as the Q 

model.  However, the formulae are easier to apply and in our experience the F model 

always produces a lower LR than the Q model.  It is possible to produce LRs using the 

F model that are so much lower than those produced by the Q model that we feel that 

in these situations, the F model assigns the wrong weight to the evidence. For 

example, the F model may produce a LR less than 1 in some situations where such a 

LR is not reasonable when compared with the Q model. 

The Q model is more complex than the F model and for analysts may appear 

somewhat more daunting. However, the formulae for both models can be easily 

implemented in a computer programme which, once validated, lifts considerable 

burden from the analyst   

All things considered, we support the use of the Q model as it makes best use of the 

available evidence. However, the F model is still an acceptable approximation in 

some situations and is clearly easier to implement and less error prone. 

It is important to highlight that none of these methods make full use of the available 

information.  They are effectively methods to extend the working life of the binary 

model but better models are now becoming available.  More intelligent models that 
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can accommodate an assessment of the probability of dropout and drop in offer a way 

forward that makes better use of the available data.  These could include semi-

continuous models like LoComatioN [16] or fully-continuous models like TrueAllele 

[4].  We are also aware that the Forensic Science Service has a fully continuous model 

in development (DNA Insight), but this is not currently commercially available [17].  

These models, in our opinion are better suited for the interpretation of LtDNA profiles 

than the binary model.  
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Appendix A: Supplementary material 

Table 4.5: Formulae for many situations for 1 contributor using the F, Q and UC 
models.  We use X to represent the alleles from known individuals who may be  
assumed to be from the same subpopulation as the POI. 

Peaks Alleles Model Formula 
2 2 (A,B) UC, F & Q 2Pr( , | )A B X  

1 

ALL UC Pr( , | )A A X  
2 (A,A) F & Q Pr( , | )A A X  

1 (A) 
F 2Pr( | )A X  
Q ( ) ( )( )Pr | 2 Pr |A X A X−  
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Table 4.6: Formulae for many situations for 2 contributors using the F, Q and UC models 

Peaks Alleles Model Formula 

4 4 
(A,B,C,D) UC, F & Q 24Pr( , , , | )A B C D X  

3 

ALL UC ( ) ( ) ( ) ( )( )12Pr , , | Pr | , , , Pr | , , , Pr | , , ,A B C X A A B C X B A B C X C A B C X+ +  
4 

(A,B,C,D) F & Q 12Pr( , , , | )A A B C X  

3 (A,B,C) 
F 24Pr( , , | )A B C X  
Q ( ) ( ) ( ) ( )( )12 Pr , , | 2 Pr | , , , Pr | , , , Pr | , , ,A B C X A A B C X B A B C X C A B C X− − −  

2 

ALL UC ( ) ( ) ( ) ( )( )2Pr , | 2Pr , | , , 3Pr , | , , 2 Pr , | , ,A B X A A A B X A B A B X B B A B X+ +  
4 

(A,A,B,B) F & Q 6Pr( , , , | )A A B B X  

4 
(A,A,A,B) F & Q 4Pr( , , , | )A A A B X  

3 (A,A,B) 
F 12Pr( , , | )A A B X  
Q ( ) ( ) ( )( )2Pr , , | 6 4Pr | , , , 3Pr | , , ,A A B X A A A B X B A A B X− −  

2 (A,B) 

F ( )12Pr , |A B X  

Q ( )
( ) ( ) ( ) ( )

( )
6 6Pr | , , 6Pr | , , 2Pr , | , , 2Pr , | , ,

2Pr , |
3Pr , | , ,

A A B X B A B X A A A B X B B A B X
A B X

A B A B X

− − + + 
  + 

 

1 
ALL UC Pr( , , , | )A A A A X  

4 F & Q Pr( , , , | )A A A A X  
3 F 4 Pr( , , | )A A A X  
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Q ( ) ( )( )Pr , , | 4 3Pr | , ,A A A X A A A X−  

2 
F 6 Pr( , | )A A X  
Q ( ) ( ) ( )( )Pr , | 6 8Pr | , , 3Pr , | , ,A A X A A A X A A A A X− +  

1 
F 4Pr( | )A X  
Q ( ) ( ) ( ) ( )( )Pr | 4 6Pr | , 4Pr , | , Pr , , | ,A X A A X A A A X A A A A X− + −  
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Table 4.7: Formulae for many situations for 3 contributors using the F, Q and UC models 

Peaks Alleles Model Formula 

6 6 
(A,B,C,D,E,F) 

UC 720Pr( , , , , , | )A B C D E F X  
F & Q 720Pr( , , , , , | )A B C D E F X  

5 

ALL UC ( )
( ) ( ) ( )
( ) ( )

Pr | , , , , , Pr | , , , , , Pr | , , , , ,
360Pr , , , , |

Pr | , , , , , Pr | , , , , ,

A A B C D E X B A B C D E X C A B C D E X
A B C D E X

D A B C D E X E A B C D E X

+ + 
  + + 

 

6 
(A,A,B,C,D,E) F & Q 360Pr( , , , , , | )A A B C D E X  

5 (A,B,C,D,E) 

F 720Pr( , , , , | )A B C D E X  

Q ( )
( ) ( ) ( )

( ) ( )
2 Pr | , , , , , Pr | , , , , , Pr | , , , , ,

360Pr , , , , |
Pr | , , , , , Pr | , , , , ,

A A B C D E X B A B C D E X C A B C D E X
A B C D E X

D A B C D E X E A B C D E X

− − − 
  − − 

 

4 

ALL UC ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

2Pr , | , , , , 3Pr , | , , , , 3Pr , | , , , ,

3Pr , | , , , , 2Pr , | , , , , 3Pr , | , , , ,
60Pr , , , |

3Pr , | , , , , 2Pr , | , , , , 3Pr , | , , , ,

2Pr , | , , , ,

A A A B C D X A B A B C D X A C A B C D X

A D A B C D X B B A B C D X B C A B C D X
A B C D X

B D A B C D X C C A B C D X C D A B C D X

D D A B C D X

+ + 
 
+ + + 
 + + + 
 + 

 

6 
(A,A,B,B,C,D) F & Q 180Pr( , , , , , | )A A B B C D X  

6 
(A,A,A,B,C,D) F & Q 120Pr( , , , , , | )A A A B C D X  

5 (A,A,B,C,D) F 360Pr( , , , , | )A A B C D X  
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Q ( )
( ) ( ) ( )

( )
6 4Pr | , , , , , 3Pr | , , , , , 3Pr | , , , , ,

60Pr , , , , |
3Pr | , , , , ,

A A A B C D X B A A B C D X C A A B C D X
A A B C D X

D A A B C D X

− − − 
  −   

4 (A,B,C,D) 

F 360Pr( , , , | )A B C D X  

Q ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

6 6Pr | , , , , 6Pr | , , , , 6 Pr | , , , ,

6Pr | , , , , 2Pr , | , , , , 3Pr , | , , , ,

60Pr , , , | 3Pr , | , , , , 3Pr , | , , , , 2 Pr , | , , , ,

3Pr , | , , , , 3Pr , | , , , , 2 Pr ,

A A B C D X B A B C D X C A B C D X

D A B C D X A A A B C D X A B A B C D X

A B C D X A C A B C D X A D A B C D X B B A B C D X

B C A B C D X B D A B C D X C C

− − −

− + +

+ + +

+ + + ( )
( ) ( )

| , , , ,

3Pr , | , , , , 2Pr , | , , , ,

A B C D X

C D A B C D X D D A B C D X

 
 
 
 
 
 
 
 + + 

 

3 

ALL UC ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

Pr , , | , , , 2Pr , , | , , , 2Pr , , | , , ,

2Pr , , | , , , 3Pr , , | , , , 2Pr , , | , , ,
30Pr , , |

Pr , , | , , , 2Pr , , | , , , 2Pr , , | , , ,

Pr , , | , , ,

A A A A B C X A A B A B C X A A C A B C X

A B B A B C X A B C A B C X A C C A B C X
A B C X

B B B A B C X B B C A B C X B C C A B C X

C C C A B C X

+ + 
 
+ + + 
 + + + 
 + 

 

6 
(A,A,B,B,C,C) F & Q 90Pr( , , , , , | )A A B B C C X  

5 (A,A,B,B,C) 
F 180 Pr( , , , , | )A A B B C X  

Q ( ) ( ) ( ) ( )( )30Pr , , , , | 6 4Pr | , , , , , 4Pr | , , , , , 3Pr | , , , , ,A A B B C X A A A B B C X B A A B B C X C A A B B C X− − −  

4 (A,A,B,C) F 180Pr( , , , | )A A B C X  
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Q ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

6 8Pr | , , , , 6Pr | , , , , 6Pr | , , , ,

30Pr , , , | 3Pr , | , , , , 4Pr , | , , , , 4Pr , | , , , ,

2Pr , | , , , , 3Pr , | , , , , 2Pr , | , , , ,

A A A B C X B A A B C X C A A B C X

A A B C X A A A A B C X A B A A B C X A C A A B C X

B B A A B C X B C A A B C X C C A A B C X

− − − 
 
+ + + 
 + + + 

 

3 (A,B,C) 

F 120Pr( , , | )A B C X  

Q ( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( )

4 6Pr | , , , 6Pr | , , , 6Pr | , , ,

4Pr , | , , , 4Pr , | , , , 4Pr , | , , ,

6Pr , | , , , 6Pr , | , , ,

30Pr , , | 6Pr , | , , , Pr , , | , , , 2Pr , , | , , ,

2Pr , , | , , , 2Pr , ,

A A B C X B A B C X C A B C X

A A A B C X B B A B C X C C A B C X

A B A B C X A C A B C X

A B C X B C A B C X A A A A B C X A A B A B C X

A A C A B C X A B B

− − − +

+ +

+ +

+ − −

− − ( )
( ) ( ) ( )
( ) ( ) ( )

| , , ,

2Pr , , | , , , 3Pr , , | , , , 2Pr , , | , , ,

Pr , , | , , , 2Pr , , | , , , Pr , , | , , ,

A B C X

A C C A B C X A B C A B C X B B C A B C X

B B B A B C X B C C A B C X C C C A B C X

 
 
 
 
 
 
 
 
 
− − − 
 − − − 

 

2 

ALL UC ( )
( ) ( ) ( )
( ) ( )

6Pr , , , | , , 15Pr , , , | , , 20Pr , , , | , ,
Pr , |

15Pr , , , | , , 6Pr , , , | , ,

A A A A A B X A A A B A B X A A B B A B X
A B X

A B B B A B X B B B B A B X

+ + 
  + + 

 

6 
(A,A,A,B,B,B) F & Q 20Pr( , , , , , | )A A A B B B X  

5 (A,A,A,B,B) 
F 60Pr( , , , , | )A A A B B X  
Q ( ) ( ) ( )( )5Pr , , , , | 12 9Pr | , , , , , 8Pr | , , , , ,A A A B B X A A A A B B X B A A A B B X− −  

4 (A,A,B,B) 

F 90Pr( , , , | )A A B B X  

Q ( )
( ) ( ) ( )

( ) ( )
18 24Pr | , , , , 24Pr | , , , , 9Pr , | , , , ,

5Pr , , , |
16Pr , | , , , , 9Pr , | , , , ,

A A A B B X B A A B B X A A A A B B X
A A B B X

A B A A B B X B B A A B B X

− − + 
  + + 

 

3 (A,A,B) F 60Pr( , , | )A A B X  
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Q ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

60 120Pr | , , , 90Pr | , , , 90Pr , | , , ,

Pr , , | 120Pr , | , , , 60Pr , | , , , 24Pr , , | , , ,

45Pr , , | , , , 40Pr , , | , , , 15Pr , , | , , ,

A A A B X B A A B X A A A A B X

A A B X A B A A B X B B A A B X A A A A A B X

A A B A A B X A B B A A B X B B B A A B X

− − + 
 
+ + − 
 − − − 

 

2 (A,B) 

F 30 Pr( , | )A B X  

Q ( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

30 60Pr | , , 60Pr | , , 90Pr , | , , 60Pr , | , ,

60Pr , | , , 60Pr , , | , , 60Pr , , | , ,

Pr , | 30Pr , , | , , 30Pr , , | , , 6Pr , , , | , ,

6Pr , , , | , , 15Pr , , , | , , 15Pr , ,

A A B X B A B X A B A B X A A A B X

B B A B X A A B A B X A B B A B X

A B X A A A A B X B B B A B X A A A A A B X

B B B B A B X A A A B A B X A B

− − + +

+ − −

− − +

+ + + ( )
( )

, | , ,

20Pr , , , | , ,

B B A B X

A A B B A B X

 
 
 
 
 
 
 
 + 

 

1 

ALL UC Pr( , , , , , | )A A A A A A X  
6 F & Q Pr( , , , , , | )A A A A A A X  

5 
F 6Pr( , , , , | )A A A A A X  
Q ( ) ( )( )Pr , , , , | 6 5Pr | , , , , ,A A A A A X A A A A A A X−  

4 
F 15Pr( , , , | )A A A A X  
Q ( ) ( ) ( )( )Pr , , , | 15 24Pr | , , , , 10Pr , | , , , ,A A A A X A A A A A X A A A A A A X− +  

3 
F 20Pr( , , | )A A A X  
Q ( ) ( ) ( ) ( )( )Pr , , | 20 45Pr | , , , 36Pr , | , , , 10Pr , , | , , ,A A A X A A A A X A A A A A X A A A A A A X− + −  

2 

F 15Pr( , | )A A X  

Q ( )
( ) ( ) ( )

( )
15 40Pr | , , 45Pr , | , , 24Pr , , | , ,

Pr , |
5Pr , , , | , ,

A A A X A A A A X A A A A A X
A A X

A A A A A A X

− + − 
  + 

 

1 F 6Pr( | )A X  
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Q ( )
( ) ( ) ( ) ( )

( )
6 15Pr | , 20Pr , | , 15Pr , , | , 6Pr , , , | ,

Pr |
Pr , , , , | ,

A A X A A A X A A A A X A A A A A X
A X

A A A A A A X

− + − + 
  − 
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Figure 4.6 Epg showing TPOX and D18S51 loci of a three-person Identifiler® mixed DNA profile 

 

Table 4.8 Peaks and heights from DNA profile, Figure 4.6, POI profile and LR for the three different models 

Marker Peak Height (RFU) Allelic vector for F  and Q models POI profile UCLR  QLR  FLR  

TPOX 

8 

9 

11 

251 

534 

417 

( )8,9,11  9,11 

 

2.38 

 

 

2.22 

 

 

1.00 

 

D18S51 

12 

13 

15 

18 

25 

228 

496 

64 

97 

308 

( )12,13,15,18,25  13,25 

 

16.50 

 

 

15.84 

 

 

14.24 
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5: THE INFLUENCE OF THE PROBABILITY OF 

DROPOUT ON THE WEIGHT OF THE EVIDENCE  
The challenge of how to best account for the possibility that alleles have dropped out is 

central to the implementation of extended interpretation methods to cope with LtDNA and 

complex mixtures. 

The DNA commission of the International Society of Forensic Genetics (ISFG) stressed the 

importance of considering allelic dropout in the recommendation on mixture interpretation 

[1]. However, the question of how to assess the probability of dropout (Pr(D)) was not 

formalised. The estimation of Pr(D) is important because it influences the estimation of the 

weight of evidence in the calculation of the likelihood ratio (LR). 

5.1 A case example: Garside and Bates 

A 2006 case (Bates, R. v [2006] EWCA Crim 1395) [2] highlights the importance of the 

development of a model that can incorporate the probability of dropout. On the 2nd of October 

2001 Marilyn Garside was stabbed and killed as she answered the door of her elderly 

mother’s house in Rose Lane, Romford, UK. It was the prosecution’s case that the victim’s 

husband, James Garside, had hired Richard Bates to murder her. Samples were taken from 

seven locations in the vicinity of the homicide and analysed for the presence of DNA. The 

results from one of the crime scene samples are presented in the form of a table; Table 5.1 

includes the profile of the deceased and the person of interest (Bates) [3].    

The evidential item labelled, “SJP/22 Area 4 Chrome Handle”, produced an 

electropherogram (epg) that indicated a clear major contributor that corresponded with the 

deceased and a partial minor low level contributor that had eight alleles that differed from the 

deceased. These eight alleles are present in the POI’s profile however the POI has alleles at 

D2S1338 and D18S51 that are not present in the crime scene profile. There is the possibility 

that because the minor contributor is only present at a low level, that these alleles are not 

represented in the epg because they have dropped out. 
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Table 5.1: The partial minor component from the crime scene sample “SJP/22 Area 4 

Chrome Handle” with reference profiles from the deceased and POI. 

 

 

When calculating the probability match for the POI the expert called on by the prosecution 

assumed dropout of the “missing” alleles to have occurred.  At D18S51, where both alleles 

were assumed to have dropped out, the analyst employed the widespread practice of 

assigning a value of one to the locus. This is largely believed to be treating the locus as 

neutral (as a likelihood ratio of one supports neither the prosecution nor defence. This is 

discussed further in Chapter 2). 

Only one allele corresponding with the POI was detected at the locus D2S1338.  The 

prosecution’s expert used the “2p rule” at this locus.  Based on these assumptions the 

resulting probability match reported by the prosecution was 1 in 610,000. 

The defence employed a second expert to interpret the profile who stated that it is not correct 

to assign a value of one to loci that are “missing” data due to the potential exclusionary 

potential of the unreported alleles and that using the “2p rule” may not be conservative. 

However, at the time it was not possible to calculate the effect of the “missing” loci on the 

profile so a “true” match probability could not be obtained, although the expert claimed it 

was likely to be lower than 1 in 610,000.  

When presented with the differing opinions the judge in the case stated: 

Locus Deceased POI Minor component 

D3S1358 16,16 13,16 13 

vWA 15,17 16,16 16 

D16S539 11,12 11,12 — 

D2S1338 20,20 19,22 22 

D8S1179 12,13 8,13 8 

D21S11 30,32.2 30,31.2 31.2 

D18S51 14,14 12,15 — 

D19S433 12,14 12,15 15 

TH01 9.3,9.3 7,7 7 

FGA 23,25 21,21 21 
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“What are the consequences of the impossibility of assigning a statistical weight to the 

voids? The alternatives are to exclude the evidence entirely or to admit it subject to an 

appropriate warning to the jury of the limitations of the evidence, and particularly 

highlighting the fact that although what was found was consistent with Bates’ DNA profile, 

the voids at D2S1338 and D18S51 in particular may have contained an allele or alleles, the 

presence of which would have been wholly exculpatory.  In arriving at the correct conclusion 

it is important to remember that scientific evidence frequently only provides a partial answer 

to a case, or to an issue in a case. However, the test of admissibility is not whether the 

answer is complete, but whether science can properly and fairly contribute to the matter in 

question. . . . .  ”. [2] 

And the Court ruled: 

“We can see no reason why partial profile DNA evidence should not be admissible provided 

that the jury are made aware of its inherent limitations and are given a sufficient explanation 

to enable them to evaluate it.” [2] 

In allowing the admission of partial profiles as evidence (therefore assuming dropout to have 

occurred) the Court has made it imperative that these profiles are correctly represented in 

their evidential value. Therefore it is important that a statistic is calculated that is more likely 

to represent a value closer to the true likelihood of the profile. This calculation must take into 

account the probability that “missing” alleles have dropped out rather than just assuming 

dropout to have occurred.  

5.1.1 Reanalysing the evidence using a dropout proxy 

If we reanalyse the two questionable loci; D18S51 and D2S1338, using a proxy for the 

probability of dropout, the Buckleton and Gill model (Chapter 2) and the Q model (Chapter 

4) (peak height information was not readily available from the SJP/22-4 profile), then we can 

determine the effect that the “missing” alleles may have on the overall statistic. 

At D2S1338 the alleles 20, 20 and 22 are called. The deceased has the genotype [20,20]. The 

genotype of the minor contributor might be [22,22], [22,20] or [22,Q] where Q represents all 

of the other alleles possible at D2S1883 not already called at the locus  . 
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Recall the POI is 19,22.  The evidence given the hypothesis of the prosecution ( )Pr | pE H  

becomes: 

( )Pr | pE H DD=    

where D stands for the probability of dropout and D stands for the probability of an allele not 

dropping out (i.e. the allele has been seen).   

The evidence given the defence’s hypothesis ( )Pr | dE H   must include all of the possible 

genotypes that explain the 22 allele (the allele not attributed to the deceased) as well as a 

correction from Hardy-Weinberg equilibrium. The alleles from the known contributor that 

may mask the presence of the minor contributor’s alleles (in this case the 20 allele) are not 

assigned a value for D as they have already been seen in the profile ( D = 1):  

( ) 20,22|19,22 2 22,22|19,22 ,22|19,22Pr | 2 2d QE H DP D P DDP= + +  

The overall likelihood ratio (LR), with the Balding and Nichols correction [4] applied in the 

end stages (with the approximation 2
2D D≈ ), becomes: 
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220,22|19,22 22,22|19,22 ,22|19,22

20,22|19,22 22,22|19,22 ,22|19,22

20,22|19,22 22,22|19,22 ,22|19,22

20,22|19,22 22,22|19,22 22|

2 2

2 (1 ) 2

2 (1 ) 2

2 (1 ) 2 (1

D
Q

D
Q

D
Q

D

DDLR
DP D P DDP

DDLR
DP D D P DDP

DLR
P D P DP

DLR
P D P D P

≈
+ +

≈
+ + +

≈
+ + +

≈
+ + + −

( ) ( ) ( )( ) ( )( )

19,22 20|19,22 22|19,22

22|19,22 20|19,22,22 22|19,22,22 22|19,22 20|19,22

22 20 22 22 20

)

2 (1 ) 2 (1 )

(1 ) 2 1 (1 ) 2 1 2 1 1

D

D

P P

DLR
P P D P D P P

DLR
P P D P D P Pθ θ θ θ θ θ

−

≈
 + + + − − 

≈
 + − − + + + − + − − − 

 

where iP  is the allele frequency of the ith allele within the defined population and θ  is the 

coancestry coefficient, or STF . In this work we use allele frequencies from the Australian 

Caucasian subpopulation data [5] and a value of θ =0.02. 

In contrast, when the 2p rule is used, the LR is: 

22

1
2( (1 ))DLR

Pθ θ
≈

+ −  

If we try a range of values for D  and compare the resulting LRs to the 2p rule, then we can 

examine the effect of D . We can see from Figure 5.1 that when the probability of dropout is 

very low the 2p rule is not conservative – that is, it is overestimating the value of the 

evidence at that locus. As the probability of dropout nears one then the two LRs start to 

converge. When we plot the ratio of the two LRs (Figure 5.2) we can see that the 2p rule 

overstates the LR fairly dramatically at low level, but then flattens out as the probability of 

dropout increases. 
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Using a proxy of 0.5D = (a rough estimation of what D could be given the epg and the 

hypothesis that the POI is the minor) the LR using the dropout model is 7.7 and the LR using 

the 2p rule is 9.2. Consequently both methods indicate that the evidence given the pH  is more 

likely than the evidence given the dH  however, the 2p rule favours the pH  1.2 times more 

than the model utilising a value for dropout.   

 

Figure 5.1: A comparison of the LRs calculated for D2S1338 using a dropout proxy. The 

solid line is the LR using the 2p rule and dashed line is the LR using the Buckleton and Gill 

model. 
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Figure 5.2: The ratio of the 2p rule LR to the Buckleton and Gill LR 

The analyst called the alleles [14,14] at the locus D18S51. The deceased has the genotype 

[14,14] and the POI has the genotype [12,15] at this locus. If the POI is the true minor 

contributor, both alleles must have dropped out: ( ) 2Pr | pE H D= .  

The probability of the evidence given the defence’s hypothesis is:

( ) 2
14,14|12,15 14, |12,15 , |12,15Pr | 2d Q Q QE H P DP D P= + +  

And the resulting LR becomes: 

( ) ( )( ) ( ) { }

2

2
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We can compare the LRs for a range of values for D to the assigned LR of “1” used in the 
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prosecution. The true value of the locus could favour the defence if the probability of dropout 

is low. If we take the proxy we used for dropout in the earlier example (0.5), then the 

Buckleton and Gill model returns a LR of 0.08 compared to the assigned LR of 1. This means 

that in this example, assigning a 1 at this locus overstates the LR by a factor of 12.5, a non-

insignificant difference in favour of the prosecution.  

 

Figure 5.3: A comparison of the LR calculated for D18S51 using a dropout proxy and the 

Buckleton and Gill model (dashed line) and the LR of 1 (solid line) used by the prosecution. 

5.2 Discussion 

The differences will be compounded in cases where multiple loci are assessed in this manner. 

As the results are multiplied across loci the differences will be much larger in magnitude. 

Although assigning a one to a “missing” locus appears on the outset to be neutral, in reality, 

missing information should down weight the overall statistic. The value of this weight must 

depend on the quality of the profile being analysed. If analysts are assuming alleles are 

“missing”, then this is already an assumption in favour of the prosecution. By assuming there 

are alleles missing we are including the POI at the locus in question when in reality perhaps 

the POI’s genotype at this locus is not missing and it’s actually an exclusion.  

The analysis of these two loci has demonstrated that neither method employed by the 

prosecution in this case was conservative, and that the methods break down as the probability 

of dropout decreases. Loci should be assessed using a probability of dropout in cases where 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

LR
 

Pr(D) 



The influence of the probability of dropout on the weight of the evidence 

 

 100 

dropout is possible, rather than ignoring the possibility it has occurred. This will ensure that 

the LR presented to the court is closer to the “true” answer.  

At the time of the Garside and Bates trial, and until recently, there was no satisfactory model 

for dropout. However, now several models of the probability of dropout have been published 

[6-12]. 

Tvedebrink et al., introduced the concept of modelling the probability of dropout using 

logistic regression [6-8].  Logistic regression is a standard way to estimate the probabilities 

for a random variable with two possible outcomes (i.e. dropout verses no dropout), when it is 

thought that the probability changes with respect to one or more explanatory variables.  The 

logistic model in Tvedebrink’s original paper is straightforward as there is only one 

explanatory variable: Ĥ , which is the average allele peak height across the DNA profile with 

an individual locus effect included in the intercept [7].  

In casework there is often an observable decrease in allelic peak height as the molecular 

weight of the alleles increases. This has been termed the “ski slope” or degradation slope [13, 

14]. Degradation is important to consider when modelling dropout, as higher weight alleles 

have been observed to dropout out more frequently than low weight alleles (Figure 5.4). If an 

average peak height is used across a profile, then it is likely that the probability of dropout 

will be overestimated for low molecular weight alleles and underestimated for high molecular 

weight alleles.  
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Figure 5.4: A plot showing the degradation slope present in a casework profile when the 

peak heights of the alleles are plotted by molecular weight 

In the context of a DNA profile, the best explanatory variable to predict the probability of 

dropout would be the true, but unknown, template available at each locus for amplification, 

rather than a proxy across the profile.  Tvedebrink et al., built on their original model  in a 

recent publication [8] by adjusting the proxy for DNA quantity to correct for degradation. In 

this updated work, the proxy for the available DNA template is an exponential function of 

molecular weight  [15] . However, the group also includes an individual locus effect. The 

inclusion of a locus effect may be justified as experience in casework has suggested that loci 

may dropout with differing probabilities.  

However, we were concerned with the transportability of the 2012 Tvedebrink model [8]. If 

the probability of dropout was calculated including a locus effect using a training set of data, 

then how transportable would those locus coefficients be on different profiles? Theoretically 

the locus effects could include batch-to-batch variability of PCR reagents, the vulnerability of 

each primer to inhibitors known to be prevalent in casework type samples, or environmental 
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conditions and/or contaminants.  Factors influencing the locus coefficients in the training data 

may differ from the casework profile that is being interpreted.  

The following chapter outlines research into the transportability of the original Tvedebrink 

model [7], the 2012 Tvedebrink model [8] and a third model. The third model is a modified 

version of Tvedebrink’s 2012 model with the individual locus coefficients removed. The 

following work also compares the three models on their efficacy using the data they were 

trained on.  
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CHAPTER 6: MODELLING THE PROBABILITY OF 
DROPOUT  
 

A version of this work has been submitted for publication to Forensic Science International: 

Genetics under the title: 

Utilising allelic dropout probabilities estimated by logistic regression in casework. 

The authors on the paper are: 

John Buckleton 1, Hannah Kelly 1, 2, Jo-Anne Bright 1, Duncan Taylor 3, Torben Tvedebrink 4 

and James Curran 2  

1) ESR, PB 92021, Auckland, 1142, New Zealand,  

2) Department of Statistics, University of Auckland, PB 92019, Auckland, 1142, New 

Zealand 

3) Forensic Science SA, 21 Divett Place, Adelaide, SA 5000, Australia 

4) Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7G, 

DK-9220 Aalborg East, Denmark 

 

This paper has been rewritten as a chapter to appear in this thesis. There are sections that 

overlap with the submitted paper such as the results tables and methods section in particular.  

This research expands on the paper that has been submitted predominantly due to the 

difference in the intended target audience. Sections in this chapter have been broadened in an 

effort to make the results of this research more accessible for case work forensic biologists.  

This research investigates dropout in forensic DNA samples. Dropout has been highly topical 

within the literature and is a phenomenon associated with low template DNA.  Models have 

been proposed that calculate the probability of dropout using logistic regression. Two of these 

models are compared with a third model that the authors have built. The comparison tests the 



Modelling the probability of dropout 

 

 106 

three models on their efficacy using the data they are trained on then tests their ability to be 

used on data outside of their training set.  

The aim of this work is to determine if a dropout model is trained using a specific set of data, 

can it be applied to data outside this set?  For example, are there variables that are specific to 

the training profiles that will not translate to other profiles?  This work shows that although it 

has been shown that locus affects the probability of dropout, this is likely to be profile 

specific. These locus effects are likely to be related to the amplification conditions, the 

internal multiplex variability, and other events that change between profiles.  

This work was supported in part by grant 2011-DN-BX-K541 from the US National Institute 

of Justice.  Points of view in this document are those of the authors and do not necessarily 

represent the official position or policies of the U.S. Department of Justice.  The authors 

would like to thank Johanna Veth and Sue Vintiner for their helpful contributions towards 

this paper. 
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6: MODELLING THE PROBABILITY OF DROPOUT  
 

In forensic DNA analysis, if a sample is low level or degraded some alleles may fail to be 

visualized in the resulting electropherogram (epg).  This can be because; 

 1)  they were not present in the aliquot amplified,  

 2) they have not amplified at all, or  

 3) they have amplified but the peak is below some threshold set for assignment 

  of peaks.   

This phenomenon is termed dropout. The DNA commission of the International Society of 

Forensic Genetics (ISFG) stressed the importance of considering allelic dropout in the 

recommendation on mixture interpretation [1]. However, the question of how to assess the 

probability of dropout (Pr(D)) was not formalised.  

A model for the probability of dropout has been published by Tvedebrink et. al., in 2009 [2]. 

It models the probability of dropout using logistic regression and has an explanatory variable 

that uses an average of peak heights across a profile, ( )Ĥ . The model also includes a locus 

effect. This model allows a different intercept per locus ( )0,β


  with a constant slope defined 

by average peak height ( )1 Ĥβ ×  and introduces the concept that the probability of dropout 

differs at each locus. 

Our initial exploratory work confirmed the locus effect identified by Tvedebrink et al. [2] 

(Figure 6.1). This dataset was comprised of approximately 100 casework profiles that were 

identified as exhibiting possible dropout.  Case files were examined and data collated for 

profiles suggesting a single contributor where the circumstances allowed a reasonable 

inference about the source. 
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Figure 6.1: Estimated Pr(D) per locus, averaged across ~100 LtDNA casework profiles. The 

intervals were generated using the posterior distribution of dropout rate (assuming a Beta 

(0.5, 0.5) prior). 

A typical casework electropherogram (epg) has an observable decrease in allelic peak height 

as the molecular weight (mwt) of the alleles increases. This has been termed the “ski slope” 

or degradation slope [3, 4]. Degradation is important to consider when modelling dropout, as 

higher weight alleles have been observed to dropout out more frequently than lower weight 

alleles. This observation implies that the amount of available DNA template pre-

amplification may not be constant across loci. Therefore it is not unexpected that loci dropout 

with differing probabilities.  
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Using the explanatory variable ( )Ĥ , the same amount of available DNA template pre-

amplification, is assumed per locus. Locus specific effects are contained within the intercept 

coefficients ( )0,β


 (including the observed degradation slope).   

A better method to model the probability of dropout is to account for the degradation slope in 

the explanatory variable. This provides an estimate for the true, but unknown, template 

available at each locus. 

6.1 Modelling degradation  

The simplest model for degradation is linear [5]. Under this model, the expected peak height 

declines constantly with respect to molecular weight. The linear model has empirical support 

in that one can take a copy of an epg and draw a downward sloping straight line across the 

apex of heterozygous peaks from the lowest molecular weight locus to the highest molecular 

weight locus [6]. 

However, the suggestion of an exponential relationship for degradation has been made by 

Tvedebrink et al., [7]. This relationship can be justified theoretically as, if the degradation of 

the DNA strand was random with respect to location, then we would anticipate that the 

expected height of peak a, Ea   would be exponentially related to molecular weight and to 

whether the peak was heterozygous or homozygous (Figure 6.2). Let aX be the count of 

allele a. 1aX =   for a heterozygous locus and 2aX =  for a homozygous locus.  The expected 

height, Ea , of peak a is therefore modelled as: 

 1w
0E ˆ eˆ a

a aa aH HX αα= =    

where aw  is the molecular weight of allele a and where ˆ
aH subsumes the concepts of 

template number and degradation.  Thus, ˆ
aH  is a proxy for the available DNA template at 

allelic position a.  
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Figure 6.2: The expected height (Ea) of allele a, is exponentially related to the molecular 

weight of a ( ) if the breakdown of DNA is random. If the probability of a break is p, at any 

of the locations 1…l then the chance of the full fragment being amplified is (1-p)l. 

6.2 Modelling dropout 

The updated Tvedebrink et. al., [7] probability of dropout model, includes the proxy for 

available DNA template per locus  using the exponential function of molecular weight.   

However, this updated model also retains the locus effect in the intercept. Thus the 

parameters of the model are  and . 

It is interesting that Tvedebrink et. al., [7] include a locus effect despite accounting for the 

differing amount of template available at each locus. If template number is removed from 

locus effect, then it is reasonable to assume that any remaining locus effect must be 

amplification specific. That is, batch to batch variability of multimix, the vulnerability of 

each primer to inhibitors, or environmental conditions or contaminants, however, experience 

establishes that a locus effect is observed.  

Consequently, the question arises; do locus effects developed for one set of “training” data 

translate to a future set of data? If multiplex master mix batches, or even samples, differ in 

locus amplification efficiency, then the transportability of the model to future profiles may be 

an issue.  Accordingly it may be advantageous to consider a model that incorporates the 

concept of degradation but does not include a locus effect. 

This work investigates the transportability of the 2009 Tvedebrink model (T1) [2], the 2012 

Tvedebrink model (T2) [7] and a new model (T3). T3 is a revised version of Tvedebrink’s 

2012 model with the individual locus coefficients removed. The following work also 

compares the three models on their efficacy using the data they were trained on.  
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6.3 Method 

T1 uses a function of ln Ĥ   as the explanatory variable and T2 and T3  use ln ˆ
aH . Using this 

approach we model the probabilities of dropout of a single allele Da and of a homozygous 

locus, D2a, as: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0, 1 0, 1

0, 1 0, 1

ˆ ˆln ln 2

2ˆ ˆln ln 21 1

H H

a aH H

e eD D
e e

β β β β

β β β β

+ × + ×

+ × + ×
= =

+ +

 

   
   (for locus ℓ) ......T1 model 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0, 1 0, 1

0, 1 0, 1

ˆ ˆln H ln 2H

2ˆ ˆln H ln 2H1 1

a a

a a
a a

e eD D
e e

β β β β

β β β β

+ × + ×

+ × + ×
= =

+ +

 

 

   (for locus ℓ) ......T2 model 

0 1 0 1

0 1 0 1

ˆ ˆln H ln 2H

2ˆ ˆln H ln 2H1 1

a a

a a
a a

e eD D
e e

β β β β

β β β β

+ +

+ +
= =

+ +
    

............... T3 model 

 

0β   and 1β   are developed from empirical data by logistic regression.  In T1 and T2 the 

values, each locus has a different 0β .  In T3 one 0β  and one 1β   are applied to all loci.   

The three models described, (T1, T2 and T3) were applied to the datasets outlined below.  Ĥ  

and ˆ
aH values were obtained using least squares fitting.  For the methods T1 and T2 the 0β  

values were constrained to within a factor of two of the average to avoid them moving to 

unreasonable values.  For the various datasets, one was chosen to train the models, which was 

then tested against the others.  The threshold for dropout was set at 50 RFU.  Peaks below 

this were deemed to have dropped out (1) and peaks above this were deemed present, or not 

dropped out (0). 

6.3.1 The datasets 

Case files were examined and data collated for profiles suggesting a single contributor where 

the circumstances allowed a reasonable inference about the source. The case file dates varied 

from November 2009 to May 2012.  The DNA samples had been extracted using DNA IQ™ 

(Promega Corporation) method for saliva, bloodstains and trace samples. All samples were 



Modelling the probability of dropout 

 

 112 

quantified using Applied Biosystems QuantifilerTM human DNA detection system (Life 

Technologies, Carlsbad CA) and 1.5 ng of DNA was targeted for Applied Biosystems 

Identifiler® (Life Technologies, Carlsbad CA) amplification on a 9700 thermal cycler 

(Applied Biosystems) with a silver block. Amplified DNA was analysed using a 3130xl 

capillary electrophoresis instrument and DNA profile data was analysed using 

GeneMapperTM ID software (Applied Biosystems).  

Datasets I1 and I2 were made up of 92 and 74 casework samples respectively, and was one 

data set split in approximate time order. Dataset I3 was made up of 47 casework samples that 

were purposely collected to emphasise low template DNA.  

Single source profiles of known origin from blood and semen stains were collated. The DNA 

samples had been extracted using DNA IQ™ (Promega Corporation) and quantified using 

Applied Biosystems QuantifilerTM human DNA detection system (Life Technologies, 

Carlsbad CA) and 1.5 ng of DNA was targeted for Applied Biosystems Identifiler® (Life 

Technologies, Carlsbad CA) amplification on a 9700 thermal cycler (Applied Biosystems) 

with a silver block. Amplified DNA was analysed using a 3130xl capillary electrophoresis 

instrument and DNA profile data was analysed using GeneMapperTM ID software (Applied 

Biosystems). This data was classified as pristine and used to create dataset I4.  

Dataset I4 was made up of 118 pristine samples. 

Buccal swabs collected from 10 volunteers were extracted using DNA IQ™ (Promega) as per 

the manufacturer's directions. Extracted DNA was quantified twice using Applied Biosystems 

Quantifiler™ human DNA detection system (Life Technologies, Carlsbad CA) and an 

average taken. Varying quantities of DNA (1 ng, 500 pg, 250 pg, 100 pg, 75 pg, 50 pg, 10 pg, 

5 pg and 1 pg) were amplified using Promega’s PowerPlex® 21 System in 12.5µL reactions 

on a 9700 thermal cycler (Applied Biosystems) with a silver block.  Amplified DNA was 

analysed using a 3130xl capillary electrophoresis instrument and DNA profile data was 

analysed using GeneMapperTM ID software (Applied Biosystems).  

Dataset P was created from the PowerPlex® data. Dataset P was made up of 70 samples and 

was one dataset run on one plate and split multiple times into equal halves using random 

numbers.  
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6.4 Results 

The log likelihoods of the data for different combinations of model and training sets I1… I4 

are given in Table 6.1.  The log likelihood values were obtained by assigning; 

1
Y

0i


= 
  

where 1 refers to dropout, and 

0 refers to no dropout.  

The distribution of the data is approximated as:
 
 

( )Y Bernoullii iθ≈ . 

The log(odds) for logistic regression 0 1= xβ β+ , which here, is equal to the density: 

( ) ( )ˆlogit ,i f Hθ =   

Where : 

( )
0, 1 1

0, 1 2

0 1 3

ˆ    for T
ˆ ˆ,   for T

ˆ      for T
a

a

H

f H H

H

β β

β β

β β

 + ×
= + ×
 + ×





  

The final scores are calculated by 

( )
( )

     Y 1log

      Y 0log 1
ii

ii

θ

θ

 =
 =−

 

Sets I1 and I2 are an approximately chronological split of one large casework set.  To test if 

the effect seen was based on the chronological split these were subdivided into two sets of 

size 107 and 106 using random numbers.  I1 and I2 are relabelled I1’ and I2’.  The results are 
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also given in Table 6.1.  Set P was pristine DNA.   Five different 35:35 splits of the same data 

were trialled.  The data are presented in Table 6.2.   

 
Set used for training Data set 

Method applied 

T1 T2 T3 

Train I1 -0.51 -0.50 -0.64 

 I2 -1.26 -1.19 -1.09 

 I3 -3.43 -3.39 -3.36 

 I4 -1.25 -1.26 -1.02 

Train I1’ -0.48 -0.47 -0.61 

 I2’ -0.94 -0.93 -0.72 

 I3 -3.49 -3.35 -3.48 

 I4 -1.30 -1.29 -1.03 

 I1 -0.72 -0.75 -0.64 

Train I2 -0.99 -0.88 -1.08 

 I3 -3.23 -3.23 -3.34 

 I4 -1.31 -1.33 -1.05 

 I1’ -0.72 -0.71 -0.65 

Train I2’ -0.61 -0.60 -0.68 

 I3 -3.47 -3.35 -3.36 

 I4 -1.23 -1.21 -1.04 

 I1 -0.74 -0.72 -0.68 

 I1’ -0.67 -0.64 -0.68 

 I2 -1.23 -1.20 -1.14 

 I2’ -0.83 -0.81 -0.71 

Train I3 -2.59 -2.53 -3.26 

 I4 -1.24 -1.20 -1.14 

 I1 -0.77 -0.77 -0.66 

 I1’ -0.73 -0.72 -0.64 

 I2 -1.46 -1.35 -1.16 

 I2’ -0.95 -0.88 -0.74 

 I3 -3.74 -3.59 -3.64 

Train I4 -0.85 -0.84 -0.99 
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Table 6.1. Previous page:  Log likelihoods per profile for different combinations of model 

and training sets I1..I4 and I1’ and I2’.  The highest value in each row is marked in bold.   

 

Table 6.2:  Log likelihoods per profile for different splits of model and training sets for the 

PowerPlex® 21 set.  The highest value in each row is marked in bold.   

Trained on half of set P and 

tested on the other half. 

Method applied 

T1 T2 T3 

Train -1.6 -1.7 -2.2 

 
-3.2 -3.3 -3.8 

Train -1.7 -1.8 -2.8 

 
-3.3 -3.4 -3.2 

Train -2.2 -2.3 -2.9 

 
-2.6 -2.7 -3.1 

Train -1.6 -1.7 -2.4 

 
-3.5 -3.6 -3.6 

Train -2.6 -2.7 -3.6 

 -2.1 -2.1 -2.4 

 

6.5 Discussion 

The bigger, or higher, log likelihood is the more favoured scenario according to the data. In 

almost all tests performed on the Identifiler® sets method T2 produced the highest log 

likelihood in the training set and T3 produced the highest log likelihood in the test sets.  We 

interpret this as meaning that a locus effect does exist but it is profile specific. That is, the 

locus effect that the model is trained on is not transportable. This is not an unexpected result. 

If template number is removed from locus effect, then it is reasonable to assume that any 

remaining locus effect must be amplification or profile specific. Namely, any preferential 

amplification/failure of amplification of loci will be due to inhibition, environmental 

conditions and contaminants – all factors which will be specific to the sample being analysed 

at the time.   
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For the PowerPlex® 21 data T1 regularly gave the highest log likelihoods in the test sets.  We 

interpret this as meaning that pristine source data does not show the expected degradation 

effect and therefore is not suitable to train these logistic systems.  However, it would be 

interesting in future work to remove the locus effect in the T1 model to determine if it 

improves the transportability of the model.   

Of the three methods studied T3 trained on casework data is narrowly the best for immediate 

use in casework due to its portability since it produced the largest log likelihoods more often. 

It is also worthwhile to emphasise that this research used casework profiles. This is important 

as this is the type of data that is most susceptible to locus effects outside of the amount of 

template available for amplification. The T1 and T2 models were developed using pristine 

DNA dilutions, therefore locus effects were likely to be minimal and transportable within the 

authors’ data set.      

We conclude that further development is required in the application of locus specific effects 

and it is likely that these locus effects will vary from profile to profile or between 

amplifications.  
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This paper appeared in Forensic Science International: Genetics, Volume 6, Issue 6, 
December 2012, Pages 729-734. This was a focus issue of Forensic Science International: 
Genetics, titled: Analysis and biostatistical interpretation of complex and low template DNA 
samples.  

The DOI is: http://dx.doi.org/10.1016/j.fsigen.2012.08.002 

The aim of this paper is to model the distribution of heterozygous balance in forensic DNA 
case work samples so that predictions can be made regarding the expected heterozygous 
balance of questioned genotypes. Case work samples are utilised in order to witness the 
stochastic effects, degradation, and other variables that might affect the resulting peak height 
of an allele after amplification. Using case work data also results in a larger representation of 
alleles than dilution or pristine studies that usually only create profiles from a limited number 
of donors.  

In particular, this paper investigates the behaviour of heterozygous balance at low template 
levels. The resulting model that is constructed uses the difference in allele designation as an 
explanatory variable for the expected (mean) heterozygous balance, and the variance of 
heterozygous balance is shown to decrease at a rate inversely proportional to the average 
peak height at the locus. That is, the variance of heterozygous balance is more extreme at low 
template levels.  

Guidelines exist for the interpretation of conventional DNA profiles using heterozygous 
balance, and this work investigates the application of these guidelines to low template work. 
This work shows that the upper boundary of the current guidelines (1.67) is “safe” when the 
average peak height of a profile is above 174 RFU and the lower boundary (0.60) is “safe” 
when the average peak height is above 434 RFU.  Above 1000 RFU, the 95% credible 
intervals developed in this research become much narrower than the traditional guidelines 

http://dx.doi.org/10.1016/j.fsigen.2012.08.002
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which could be useful in the interpretation of complex mixtures as fewer genotype 
combinations would be considered probable.  

This work was conducted with the aim of producing a model that could be incorporated into 
software that utilises a continuous model for the interpretation of forensic DNA profiles. 
Alternatively, we hope this model will be used as an aide by the scientist if using the binary 
model. For example; the scientist can calculate the expected heterozygous balance and 
credible interval and compare these values to the observed values at the locus. The scientist 
can use this comparison to determine how probable the questioned genotype is. 

The BUGS model code is included in the supplementary material, following the references, at 

the end of this chapter. This should allow the reader to apply the methodology to their own 

data set. The code for running JAGS is not included as it is specific to the data set.  

This work was supported in part by grant 2011-DN-BX-K541 from the US National Institute 
of Justice. Points of view in this document are those of the authors and do not necessarily 
represent the official position or policies of the U.S. Department of Justice. The authors 
declare no conflict of interest. The authors would like to thank Catherine McGovern, Sue 
Vintiner and two anonymous reviewers for the helpful contributions towards this paper.  
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7: MODELLING HETEROZYGOTE BALANCE IN 
FORENSIC DNA PROFILES  
 

Abstract 

In this paper we investigate the relationship between heterozygous balance ( h ) and average 

peak height (φ ) in a set of Identifiler®   data. The mean of heterozygote balance is 

unaffected by average peak height but the variance about this mean is much lower at high 

average peak heights.  

Keywords Heterozygous balance; mixed DNA profiles; LtDNA; DNA thresholds; DNA 

interpretation. 

7.1 Introduction 

Modern forensic DNA analysis is dominated by the use of the polymerase chain reaction 

(PCR) to amplify short tandem repeat (STR) loci [1]. Typically DNA, from samples 

associated with a crime, is extracted from body fluids and/or cellular material present on a 

wide range of surfaces. A sample of this extract is taken and amplified using the PCR 

process. The reagents used are tagged with a fluorescent dye that becomes incorporated into 

the amplified product. The resulting post-amplification product can be visualised using 

capillary electrophoresis which results in an electropherogram (epg). Alleles appear as peaks 

in the epg. There is an approximate relationship between the height of the resulting peaks and 

the amount of DNA template in the extract. 

The relationship between height and starting template is stochastic because the sampling, 

extraction, and PCR stages all introduce variability into the process. The factors affecting this 

variability are thought to be both random and systematic. One manifestation of this variability 

is the relative height of the two peaks of a heterozygote; termed heterozygote balance ( h ). 

Heterozygote balance refers to the ratio of peak heights (or areas) between the two alleles of a 

heterozygote. In this paper we will use peak heights exclusively. h  can be regarded as a 

summary of relative variation of peak heights. There are two well-known definitions of 
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heterozygous balance and both are typically referred to as hb . In this paper we will use the 

definition  

 = HMW

LMW

h φ
φ

 (1) 

 where HMW  and LMW  refer to the higher and lower molecular weight allele respectively, 

and where φ  is peak height. We will discuss the alternative definition in Section 7.5.1. 

If multiple epgs were to be formed from the same extract, then the heterozygote balance of 

two alleles at the same locus would vary between epgs. Therefore, in a more formal statistical 

framework, we would call h  a random variable, and describe its pattern of behaviour with a 

probability density function. Many probability distributions are described, or parameterized, 

by their mean, and sometimes their variance. The normal distribution is an extremely 

common example. Therefore, if we can use data to describe the mean and the variance in h , 

then we may be able to model h  using a distribution that exhibits the observed behaviour. 

It is important to understand the variability in h  because h  is used heavily in both the 

interpretation of mixed DNA samples and in the interpretation of low template DNA samples 

(LtDNA). For example, h  may be used to classify combinations of alleles (or genotypes) as 

possible or impossible when considering a mixture. This use of h  is the defining feature of 

the binary model  [2,3]. There are acknowledged shortcomings of the binary model (see [4] 

for an early review) and newer models are able to utilise the peak height information without 

this possible/impossible dichotomy. Such models are inherently superior [5], however they, 

even more so, rely on an understanding of the variability inherent in peak height information. 

Even single source DNA profiling benefits from an understanding of the variability in h . 

At LtDNA levels one peak of a heterozygote may be so imbalanced that it either does not 

exceed the threshold set for the declaration of an allele or it is simply not detected at all. This 

allele is said to have dropped out. The situation where the person of interest has an allele not 

present in the resulting epg is termed a non-concordance [6] and is difficult to interpret at 

LtDNA levels using the binary model [7]. The more elegant solution lies in models that treat 

peak heights and allele designations as probabilistic [5], [8]. 
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Previous work has identified several factors that appear to influence observed heterozygote 

balance. The mean of h  is affected by the difference in the number of repeat sequences (δ ) 

between the alleles at a heterozygote locus. Alleles with a larger number of repeat sequences 

are thought to produce relatively smaller height peaks [4] both because they stutter more but 

also because they amplify less [9]. The variability of h  as a function of the average peak 

height (φ ) of the two peaks has also been investigated [10-12]. These works found that 

variability was much greater at lower peak heights. 

There have been efforts made to statistically model the DNA extraction and amplification 

processes and to observe the effect on heterozygote balance  [13-16]. Comparisons of the 

predictions made by these models with empirical data are encouraging and suggest that at 

least the largest factors affecting the distribution of h  have been identified. In this paper we 

undertake an investigation in an attempt to refine the model. 

7.2 Data preparation 

Ninety five ( = 95n ) single source Identifiler®   DNA profiles were taken from casework 

samples of varying profile quality across a range of sample types including; bloodstains, 

saliva stains and cigarette butts. Samples were extracted using an organic [17] or DNA IQ 

[18] extraction method depending on the sample type. 

All samples were quantified prior to amplification using Quantifiler   (Applied Biosystems) 

on a 7500 (Applied Biosystems) according to the manufacturer's instructions [19]. 

Amplification was performed with Identifiler®  (Applied Biosystems) in a 9700 thermal 

cycler with silver block. Amplified products were separated on 3130xl Genetic Analysers 

(Applied Biosystems) and the analysis of DNA profiling data was undertaken using 

GeneMapper   ID version 3.2 (Applied Biosystems) using the panels and bins provided by 

Applied Biosystems. A peak detection threshold of 25 RFU was applied. All stutter alleles 

that were one repeat unit shorter than the parent allele were retained. Stutter, also known as 

reverse or back stutter, is defined as a minor product that is one repeat sequence shorter than 

the main peak and is thought to be caused by slipped strand mis-pairing during PCR [20]. 

Stutter peaks were included for this analysis as they are thought to provide a more accurate 

approximation to DNA quantity at a locus when their height is combined with that of the 

parent allele. Other types of stutter including forward or over stutter, and double back stutter 

were ignored if present. 
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The difference, δ , in the number of repeat units between alleles at each heterozygous locus 

was calculated by subtracting the allelic designation of the smaller molecular weight allele 

from the allelic designation of the larger molecular weight allele. For example; if at locus 

vWA we were to observe an allelic vector of {15,17} , then = 2δ . All loci where = 1δ  were 

removed from this data set because the stutter from the higher molecular weight allele cannot 

be separated from the lower molecular weight allele. This is important because of the way we 

calculate average peak height. Amelogenin was also removed from the data set because it is 

not an STR. In total, 644  heterozygous loci were retained in the data set. 

The average peak height (φ ) at each locus was calculated to include stutter peaks:  

 
( ) ( )( )

=
2

A S A SHMW LMW
φ φ φ φ

φ
+ + +

 (2) 

 where Aφ  is the height of the allelic peak and Sφ  is the height of its respective stutter peak. 

The heterozygote balance for each heterozygous locus was calculated using Equation (1) and 

statistical analyses were carried out in R [21]. Further information on some of the statistical 

analyses used in this paper can be found in Curran [22]. 

7.3 Exploratory data analysis and modelling 

We attempt here to model both the expectation (mean) and variance of ( )loge h  using a linear 

model with candidate explanatory variables φ , δ  and a locus effect. Many ratios are easier 

to model if logarithms are taken. In this work we experimented with both h  and ( )loge h , and 

found that the model was improved when using ( )loge h . We have therefore persisted with the 

latter. 

Previous work [4] has shown that there is a relationship between the difference in repeat 

units, δ , and ( )loge h . Buckleton et al. [4] and others [23] have reported that, for 

heterozygous STR loci, there is a small, but significant, tendency for the smaller allele to 

amplify more efficiently than the larger allele. Exploratory data analysis on the data used in 

this paper replicates this finding, with h  decreasing on average 3% for each unit increase in 
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δ . In addition, we found no evidence of a difference in h  for different loci, nor was there an 

effect (on the mean) due to φ . 

  

Figure  7.1: Heterozygous balance versus average peak height 

The scatter plot in Figure 7.1 shows the relationship between φ  and ( )loge h . In an idealized 

situation two heterozygous alleles amplified from the same amount of template DNA should 

have the same height in the epg. This idealized relationship is represented by the horizontal 

line at = 1h . In reality, there are a number of factors which may result in differences. 

Previous work [24] has suggested that there is a relationship between average peak height,  

φ , and heterozygous balance. Analysis of our own data shows this effect is an artefact of the 

inferior definition of h  employed in [24] and not a true representation of the underlying 
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behaviour. The black dashed lines in Figure 7.1 are quantile regression [25,26] lines for the 

0.025, 0.500, and 0.975 quantiles of h , with B-splines applied to φ . We use this technique 

to robustly model the mean/median relationship between φ  and ( )loge h  and, more 

importantly the variance relationship between φ  and ( )loge h . We note that the central 

(median) line is slightly lower than the line = 1h  which indicates that, in our data set, the 

higher molecular weight allele is smaller on average than the lower molecular weight allele. 

The median line is also relatively constant over the range of φ  which we take this as 

evidence that φ  has relatively little influence on h . The curved dashed lines are can be 

thought of as roughly representing a 95% prediction interval for h  given a certain value of  

φ . These curves guide us in our choice of model for the variability of h  given φ  Figure 7.1 

shows that variability (represented by the distance between the two curved dashed lines) 

decreases as φ  increases. On this basis we postulate that the observed variation in h  is 

inversely proportional to φ . 

7.4 Model construction 

The data analysis in Section 7.3 enables the construction of a Bayesian model which 

explicitly includes the variance relationship and allows intuitive inferences about the model 

parameters. Our model is similar to that proposed by Tvedebrink et al. [27], but we take a 

Bayesian approach to model fitting rather than using maximum likelihood estimation. We 

briefly compare these two approaches, which yield very similar results, in the appendix to 

this paper. 

We divide the model formulation process up into three distinct stages. These are 1) modelling 

the distribution for h , 2) modelling the mean relationship for h  with respect to δ , and 

possibly φ , and 3) modelling the variance relationship for h . 

We propose that the logarithm of h  is normally distributed or alternatively, that h  is 

lognormally distributed, for a given mean and variance. Whilst this is unlikely to be exactly 

true we consider it to be a fair approximation as Figure 7.1 suggests that the logarithm of h  

is approximately symmetric around the mean. Appealing to symmetry is not a compelling 

argument, as there are many families of symmetric distributions we may choose from. 

However, the normal and the lognormal families have wide acceptance in biology and 
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science in general. Furthermore, we will constrain the mean value of ( )loge h  to pass through 

the origin when = 0δ . This reflects the idea that when = 0δ  we are dealing with a 

homozygote rather than a heterozygote, and so the concept of heterozygous balance becomes 

redundant. We express this as:  

 ( )2( ) ,log i i ie h N µ σ
 (3) 

 i.e. the distribution of ( )log ie h  is Normal with a mean of iµ  and a variance of 2
iσ . The 

parameters iµ  and 2
iσ  depend on δ  and φ . These dependencies are modelled by  

 =i iµ βδ  (4) 

 and  

 
2

2 =i
i

σσ
φ

 (5) 

 respectively. Equation (4) is the mean model, and describes the dependency of the mean 

value of h  on the difference between the numbers of the repeat sequences ( iδ ) as a simple 

linear dependency where the intercept is zero, and β  is the slope on iδ . 

Equation (5) models the observed relationship that the variability in h  decreases as φ  

increases. Again the inverse proportionality model is unlikely to be exactly true but it appears 

to fit the data well. 

The package rjags was used to fit our model in R [28]. JAGS is variant of BUGS [29], a 

statistical package that allows the user to fit Bayesian models using Markov chain Monte 

Carlo (MCMC) techniques. 

The result of the MCMC sampling scheme produces (correlated) samples from the posterior 

distribution of the parameters. Summary statistics on each of the samples of the parameters 

are given in Table 7.1.   
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Table  7.1: Posterior summary statistics from the Bayesian model. 

 

 Statistic   Mean   Median   Std. Dev.   95% HPD  

 β    -0.025   -0.025   0.002   (-0.021, -0.029)  

2
iσ    19.268   19.218   1.092   (17.281, 21.505)  

 

We can use the mean model with the posterior parameter means for crude mean prediction. If 

( )2,log i i ieh N µ σ
, then  

 [ ]
2

= exp
2

i
i iE h σµ

 
+ 

 
 

and  

 [ ] ( )( ) ( )2 2= exp 1 exp 2i i i iVar h σ µ σ− +  

An approximate credible interval for this estimate may be obtained from:  

 ( )*exp i izαµ σ±  

where *zα  is the (1 / 2)α−  quantile of the standard normal distribution. Using our posterior 

means as plug-in estimates of the parameters in this expression we can obtain a 95% credible 

interval from:  

 19.27exp 0.025 1.96δ
φ

 
− × ±  
 

 

For example; if we have two alleles present at a locus, say {15,17}  then = 2δ . Furthermore, 

if the φ  at the locus was 400 RFU , then the expected h  is:  

 19.27exp 0.025 2 0.5 = 0.974
400

 − × + × 
 
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An approximate 95% credible interval for this value is:  

 19.27exp 0.025 2 1.96 = (0.62,1.46)
400

 
− × ±  
 

 

We read this as h  is within the bounds (0.62,1.46)  with probability 0.95. Note that this is a 

credible interval for a new h  value. A credible interval for an average value of h  will be 

much narrower. We can compare the observed value of h  to the credible interval for a given 

φ  and δ  to determine if our data falls within the 95% credible intervals. Note that these 

values fall within the recommended guidelines of (0.60,1.67)  suggested by Buckleton et al. 

[4]. Equivalently, if one has access to a function that calculates the quantiles of a lognormal 

distributed random variable (such as the qlnorm function in R), then a credible interval can be 

obtained by getting the 0.025 and 0.975 quantiles from a lognormal distribution with mean 

0.025 2− ×  and standard deviation 19.27 / 400 . The results from this function are the same 

as our approximate result to four decimal places of accuracy. 

7.4.1 Comparison to the conventional thresholds  

Analysis was undertaken to determine where the conventional thresholds and the 95% 

credible intervals derived in this work intersect. It should be noted that the traditional bounds 

were developed for SGM+  , whereas this work uses Identifiler®  . In the current model the 

traditional lower boundary of 0.60 is `safe' when the average peak height is above 434 RFU. 

The upper boundary of 1.67 is `safe' when the average peak height is above 174 RFU. Figure 

7.2 shows the 95% credible intervals and the conventional h  thresholds with respect to φ . 

The graph shows that the distribution of h  is not even, and widens at low φ . The 

conventional thresholds can be supported when they are outside the 95% credible intervals 

but not once they intersect. The graph also shows that above approximately 1,000 RFU, the 

95% credible intervals become much narrower. These narrower guidelines could be useful in 

the interpretation of complex mixtures at higher levels as fewer genotype combinations 

would be considered possible. 
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Figure  7.2: Fitted values from the lognormal model with and without the effect of δ . The 

horizontal lines represent h  thresholds (0.60, 1.67). The dashed lines indicate the 95% 

credible intervals determined in this work.  

7.4.2 Model assessment  

It is useful to provide some assessment of how well the lognormal distribution models the 

observed data. In the preceding sections we have modelled the conditional distribution of 

heterozygous balance given average peak height and a difference in repeat units. A standard 

tool for evaluating model fit is a quantile-quantile (Q-Q) plot of the residuals. We have a 

minor difficulty in that, unlike a standard regression model, the variance is not constant with 

respect to the explanatory variables. However, we do have an estimate of the variance of each 
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observation, and so we can standardize the residuals so that they have mean zero and unit 

variance. That is,  

 




( )log=
/
i ie

i

i

h
r

βδ

σ φ

−  

We can plot the residuals ir  against the quantiles of the standard normal distribution to get a 

normal Q-Q plot. This is shown in Figure 7.3.  

 

  

Figure  7.3: Normal Q-Q plot using the conditional distribution of h  given φ  
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There is slight upward curvature in the Q-Q plot, which is indicative of right skew in the 

residuals. That is, the lognormal distribution is not capturing all of the skewness of the 

heterozygous balance statistic. Although not presented here, our work with the gamma model 

seems to remove this shortcoming. However, the trade-off in complexity between the gamma 

and lognormal model and a small amount of right skewness leads us to fall more on the side 

of the lognormal model. 

7.5 Discussion 

The ``fuzzy'' nature of the grey lines in Figure 7.2 is due to the inclusion of δ  in the model 

which have been set to the observed δ  values. It is apparent that, although statistically 

significant, δ  has little impact on the credible intervals. The black dashed lines represent the 

95% credible intervals for h  respect to φ  ignoring δ . 

It is important to note that the numerical results here are ``tuned'' for the particular data set 

used. That is, these results may not be transferable from lab to lab and may lose their value as 

machines age. However, the models do transfer and can be easily fitted to new data. 

7.5.1 Comparison of methods used to calculate heterozygous balance  

As mentioned above there are two main methods that are used within the literature to 

calculate heterozygous balance. The calculation:  

 (2) = smaller

larger

h φ
φ

 (6) 

 where smallerφ  and largerφ  represent heights of the alleles with the smaller and larger peak 

heights respectively, is common [24]. 

We suggest, however, that calculating heterozygous balance by this method results in a 

misleading representation of the data and a loss of information content. We attempt to explain 

our reasoning below.  
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Figure  7.4: (2)h  versus φ . The scale is logarithmic. 

Figure 7.4 shows the behaviour of heterozygous balance with respect to average peak height 

when Equation (6) is used to compute heterozygous balance. Below approximately 1,000 

RFU there is a decrease in peak height that results in a decrease in the mean of (2)h . Simple 

linear regression shows that average peak height is a statistically significant predictor of (2)h . 

However, as we have shown, this association of φ  to the mean is induced entirely by the 

statistic used to compute heterozygous balance and the increased variability of heterozygous 

balance (regardless of definition) at lower levels of template DNA. 

We suggest that when calculating heterozygous balance Equation (1) provides a fairer 

representation of the data. In the discussion that follows we will refer to this definition as (1)h
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The definition of (1)h  is fixed. That is, it does not change between two different epgs with the 

alleles present because the lower molecular weight allele will always be so regardless of the 

height of the peak, and similarly for the higher molecular weight allele. It is because of this 

fact that (1)h  supplies us with more information than (2)h . For example, a resulting ratio of 

less than 1 obtained using (1)h  would indicate that the lower molecular weight allele was been 

preferentially amplified. This cannot be determined if we have used (2)h  unless we use 

additional information. 

7.6 Conclusion 

The ultimate goal of this research was to model the joint distribution of h  and φ , as it is a 

convenient and common way of looking at the distribution of peak heights. 

To simplify the modelling we do the usual factoring, so that.  

 ( , ) = ( | ) ( )f h f h fφ φ φ  

In this paper we have concentrated on building a model for ( | )f h φ . Data was collected that 

allowed us to model this distribution, and through data analysis we have identified what we 

regard as a satisfactory model. The difference in the number of repeat sequences (δ ) between 

alleles has been identified as having a significant effect on the mean of h . The variance of h  

has been shown to decrease at a rate inversely proportional to the average peak height at the 

locus. Thus, the variance of h  is most extreme at LtDNA levels. 

We have used Bayesian modelling techniques to build a model that uses δ  and φ  to give an 

expected estimate for h  as well as a credible interval that h  would be expected to fall 

within. Although δ  was shown to be statistically significant, the effect of δ  on the mean was 

relatively small and δ  can, for practical purposes, be dropped from the model. Our model 

appears to describe the observed data well. This model differs to some of the findings within 

the literature [11], [24]. 

We have explicitly modelled the ratio of two peak height measurements in this work. This 

type of modelling may not address the root sources of variation. A better result might be 

achieved by modelling the variation of the peak heights directly with a constant component 
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and a component that is proportional to the amount of template DNA. Such models are 

currently being considered by the authors and a number of other researchers. 

We have demonstrated that defining heterozygous balance in terms of the molecular weights 

of the alleles preserves information. We have also shown that when heterozygous balance is 

defined in this manner, there is no dependency between the average value of h  and average 

peak height. For these reasons, we recommend this calculation over the definition given in 

Equation (6). 

We hope that the model in this work may be used as an aide by the scientist when using the 

binary model. For example; the scientist may use this model to calculate both an expected 

value and credible interval for h  and compare this to the observed h . The scientist can then 

use this comparison to determine if the questioned genotype is probable. 

However, this model is a step away from the threshold based criterion and is a step toward a 

more probabilistic approach. We intend this model to be used in a semi-continuous or 

continuous model for the interpretation of DNA. The threshold based binary model fails 

when there are non-concordances present in a profile (dropout) and we must move toward 

models that can deal with this possibility [5]. Dropout is an extreme version of h  and the 

proposed model can aid the scientist in determining the probability that a partner allele may 

have dropped out of the profile. 
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Appendix - Comparison with Maximum Likelihood Estimators 

The maximum likelihood estimators for our model are reasonably easily derived. They are  

 2
ˆ =mle

yφ δβ
φ δ
• • •

• •

 (7) 

 and  

 ( )2
2

=1

1 ˆˆ =
n

mle i i i
i

y
n

σ φ βδ−∑  (8) 

 where = ( )logi iey h  and •  notation means the summation over all observations, e.g.  
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Equation (8) reduces to  

 2 2

=1

1ˆ =
n

mle i i
i

y
n

σ φ∑  (9) 

when = 0β . In this Appendix we compare the maximum likelihood estimates to the 

estimates we found using MCMC. We used the following priors for β  and 2σ  in our 

Bayesian analysis:  

 6(0,10 )Nβ   

 3 3
2

1 (10 ,10 )
σ

− −Γ  

where the parameterization for the the Gamma distribution is in terms of shape and rate. 

Applying (7) and (8) to our data yields the maximum likelihood estimates in Table 7.2.  
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Table  7.2: Comparison of ML estimates and the estimated posterior means of β  and 2σ . 

  Parameter   MLE   MCMC  

 β   -0.02513   -0.02516  

2σ    19.186   19.269  

 

When = 0β , the posterior mean is 2ˆ = 24.183mcmcσ  and the ML estimate (from (9)) is 

2ˆ = 24.101mleσ .  

Table  7.3: Comparison of ML estimates and Bayesian estimates with respect to coverage 

(%). 

  δ  incl.   MLE   MCMC  

 No  94.41   94.41  

Yes  92.97   95.53  

 

The coverage shows slight differences between the two methods when the effect of δ  is 

included in the model. This is because the posterior distribution of the variance, 2σ  is right-

skewed, and hence the mean will be slightly larger than the median and the mode where the 

maximum likelihood estimate is positioned. 
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Supplementary material (BUGS model specification) 

 
model{ 
    for(i in 1:N){ 
        hb[i] ~ dlnorm(mu[i], tau[i]) 
        mu[i] <- b0 + b1*delta[i] 
 
        tau[i] <- aph[i]*invsigsq 
        sigma[i] <- 1/sqrt(tau[i]) 
    } 
    b0 ~ dnorm(0, 0.000001) 
    b1 ~ dnorm(0, 0.000001) 
    invsigsq ~ dgamma(0.001, 0.001) 
    sigmasq <- 1/invsigsq 
} 
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DRIVERS OF STUTTER IN FORENSIC DNA PROFILES 
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This paper investigates what causes alleles to stutter. The purpose of this paper is to identify 

the drivers of stutter and use them to build a model in which the expected stutter ratio (height 

of the stutter peak divided by the height of the parent peak) can be predicted for a questioned 

peak. It was found that the stutter ratio is affected by the longest uninterrupted repeat 

sequence (LUS) present in the parent allele. Locus also causes the stutter ratio to differ within 

a profile. A linear model is constructed which describes the behaviour of the expected stutter 

ratio with respect to locus and LUS. 

The data used to identify the explanatory variables and to build the model are based on case 

work samples. Case work samples are utilised in order to observe a variety of alleles at each 

locus. It is important to the author that the resulting model is not built based only on the 

behaviour of the stutter ratio of a few alleles and that the research utilises a sample 

representing the alleles present within the New Zealand population.  

This research is undertaken with the intention that the resulting model be implemented in a 

semi-continuous or continuous modelling system for the analysis of forensic DNA profiles. 

The BUGS model code is included in the supplementary material, following the references, at 

the end of this chapter. This should allow the reader to apply the methodology to their own 

data set. The code for running JAGS is not included as it is specific to the data set.  
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8: IDENTIFYING AND MODELLING THE DRIVERS OF 
STUTTER IN FORENSIC DNA PROFILES 
 

Abstract 

This paper investigates the variables that could effect the stutter ratio ( SR ). Bayesian 

modelling techniques are used to model the distribution of the SR  using the parameters 

identified; locus and the longest uninterrupted sequence (LUS). The final model gives an 

expected estimate for the SR  as well as the distribution about this estimate. 

Keywords: stutter; stutter ratio; mixed DNA profiles; LtDNA; DNA thresholds. 

8.1 Introduction 

The forensic analysis of DNA is often undertaken by the polymerase chain reaction (PCR) 

amplification of short tandem repeat (STR) loci followed by electrophoretic seperation.  The 

AmpFℓSTR® Identifiler® PCR Amplification kit, currently in widespread use, has been 

developed to co-amplify and simultaneously detect 15 internationally recognised 

tetranucleotide STRs [1]. While the multiplexing of STR loci allows for greater 

discrimination between forensic samples, some compromise has to be made with respect to 

the amplification conditions of each locus. One consequence of both the PCR process, and 

the compromises inherent in multiplexing, is that the Taq enzyme responsible for DNA 

replication can miscopy. The most prevalent miscopy results in a loss of one complete repeat 

sequence. This is referred to as back stuttering or N-4 stuttering and is the subject of this 

research.  For simplicity we will refer to this as stutter although strictly stutter would include 

N+4 and N-8 variants.   

The size of a stutter peak is often characterised by stutter ratio, SR.  In the following sections 

we define the stutter ratio as:  

 = S

A

SR φ
φ

          (1) 
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where Sφ  refers to the height or area (hereafter height) of the stutter peak, and Aφ  refers to the 

height of the parent allele. Typically a threshold, T , is set for SR . If a peak is above this 

threshold, then it is designated as allelic. If it is below this threshold, then it could be stutter. 

There is a known relationship between stutter and the number of repeat units in an allele 

whereby stutter increases as repeat unit number increases [2-4]. However if the allele 

contains several repeat sequences interrupted with a conserved, or non-consensus, segment, 

then the relationship appears to be dominated by the longest uninterrupted repeat sequence     

( LUS ) [2, 3, 5]. Brookes et al. [6] defined the longest uninterrupted sequence as the longest 

stretch of basic repeat motifs within an allele. 

It is known that the expected stutter ratio for allele i, [ ]iE SR , varies between and within loci  

[6] and with cycle number [7].  There is variation around this expectation (varSR). 

There is a belief that [ ]iE SR is greater for samples at low template levels. However, any 

effect is unlikely to appear in the expected stutter ratio [ ]iE SR since additional template is 

likely to simply act to make both parent and stutter peak larger preserving the ratio.  But an 

effect would be expected and has been predicted in varSR [7].  The belief that [ ]iE SR is 

greater at low template levels is more likely due to low template DNA (LtDNA) being 

analysed using an increase in PCR cycle number (LCN).  

In a more formal statistical framework we call SR  a random variable and we describe its 

behaviour with a probability density function. In this paper we attempt to model the 

behaviour of SR  using a family of well-known probability density functions. A standard 

approach to modelling data is to choose a parametric family of distributions which might 

describe the observed behaviour, and then to “fit” the distribution using data to estimate the 

parameters that control the family behaviour. Many families of probability distributions are 

parameterised by their mean, and occasionally by their variance. Therefore if we can use data 

to estimate the mean and variance of SR , then we may be able to model SR  using a family 

of distributions that are representative the observed behaviour. 

The interest in understanding the causes of stutter and the variability in stutter product is not 

merely an academic pursuit. There is considerable application of such understanding in both 

the interpretation of mixed source samples, and even in determining if a sample is mixed 
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source at all.  Modern probabilistic methods for the interpretation of mixed or LtDNA 

profiles use probability models that could be informed by empirical studies of stutter.  

Despite considerable work in the field, we are not aware of any comprehensive evaluation of 

the drivers behind SR . Therefore, in this work, we use standard linear regression as a 

screening tool to determine the relationship (if any) between several possible explanatory 

variables and SR .  Because the true template level is not known for any given sample we use 

the parent peak height iφ where i is the allele designation, as a proxy for template.  These 

variables investigated are;  LUS, A-T content, locus,
 

iφ  , and the number of repeat units. 

Since the goal of this work is to produce models for casework use it is necessary to constrain 

the possible explanatory variables to those that will be available in casework.  Bayesian 

modelling techniques may then be used to estimate the model parameters of the distribution 

of SR using those variables deemed to be statistically significant. The final model allows us 

to determine an expected value for SR  for allele, i, [ ]iE SR , and to make probabilistic 

statements about the likely range of values one would expect to see. 

8.2 Data preparation 

A criticism of variability studies is that data sets are constructed using pristine DNA [8]. The 

criticism is that this practice does not adequately mimic casework conditions.  This led Bright 

et. al., to investigate the difference between pristine and casework samples [9].  Although that 

study found little difference between pristine and casework samples it is still likely that the 

best surrogate for casework data is indeed casework data as long as the uncertainty in the 

source of the sample is accepted. 

Of course the true source of a casework sample is never known.  However in some 

circumstances a reasonable assessment may be made.  If the sample is apparently single 

source and “matches” a reference sample then there is some reason to suppose that this is the 

source.  Such an assumption is, of course, completely inappropriate in casework but may be 

permissible in research.   

Profiles that had been assigned as single source in casework, of varying quality and from a 

variety of sample types including saliva stains and cigarette butts were examined for the 

presence of stutter peaks. The DNA from these samples had been previously extracted using 

an organic [10], or DNA IQTM  extraction method [11], depending on sample type. 
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All samples were quantified prior to amplification using Applied Biosystems Quantifiler®   

Human Quantification Kits on a Applied Biosystems 7500 according to the manufacturer's 

instructions [12]. A target of 1ng was amplified with Applied Biosystems Identifiler® Kits 

according to the manufacturer's instructions in a 9700 thermal cycler with silver block. 

Amplified products were separated on Applied Biosystems 3130xl Genetic Analysers and 

analysis of DNA profiles undertaken using Applied Biosystems GeneMapper®  ID version 

3.2.1 using the panels and bins provided. 

A peak detection threshold of 30 RFU was used in the data preparation in order to incorporate 

peaks at a low level. This was to maximise the detection of stutter peaks.  Consider an allelic 

peak of height 500 RFU.  It is likely that it could produce stutter peaks below 50 RFU which 

would not be detected.  This would lead to a considerable missing data problem with all small 

stutters reported simply as “not detected.”  Examination of our baseline noise suggests that 

measurements down to 30 RFU and even lower could be sustained, at least for research.  

Even then considerable numbers of allelic peaks had undetected stutters.  These were inserted 

at 15 RFU since “undetected” means anywhere  between 0 and 30 RFU. 

Heterozygous alleles one repeat unit length apart were removed from the data set to avoid 

confusion surrounding the true height of the smaller allele with the additional N-4 stutter peak 

of the larger allele.  7,771 possible stutter peaks were identified from the re-analysed 

Identifiler® DNA profiles from a large spread of alleles. 

The A-T content was determined from STR sequences taken from STRBase, the STR DNA 

Internet Database [13]. All STRs within the Identifiler®  multiplex have a 75% A-T content 

except for D19S433 and D2S1338 which are 50%.  

The longest uninterrupted sequence ( LUS ) was determined from STR sequences posted on 

STRBase. Three categories of STRs have been identified based on their repeat structure; 

simple, compound and complex. Simple repeats contain core sequences identical in sequence 

and length. Compound repeats contain two or more adjacent simple repeats. Complex repeats 

contain several repeat blocks of variable length with variable intervening sequences. In a 

minority of cases there were several sequences for the same allele designation. In such cases 

the average value of LUS  has been used. This ambiguity is likely to inflate the variance for 

certain alleles. It would be advantageous to know the true sequence of every allele in order to 

obtain the true LUS but this knowledge is currently not available in routine casework. When 
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setting up to model casework the greater uncertainty in sequence must be accepted and is 

correctly reflected in a greater variation in SR. 

The number of repeat units was taken as the allele designation. In simple STRs, the repeat 

units and the LUS  are equivalent, but for compound and complex STRS the repeat unit 

length and LUS  can differ. For example, at locus D19S433 allele 13 is a compound STR 

which has a repeat unit length of 13 but a LUS  of 11. LUS is always smaller than repeat unit 

length if not equivalent.  

The iSR  for each allele was calculated using Equation (1) and statistical analyses were 

carried out using the statistical package R [14]. Further information on some of the statistical 

analyses used in this paper can be found in Curran [15]. 

8.3 Exploratory data analysis and modelling 

We are interested in modelling both the mean [ ]iE SR and the variance (varSRi) of stutter 

ratio. 

The candidate explanatory variables; LUS , A-T content,
 

iφ  , locus and number of repeat 

units were investigated for their effect on [ ]iE SR and varSRi using multiple regression. The 

main effects of each variable, as well as a term for the interaction between locus and LUS  

were included in the initial model. The interaction between locus and LUS  was included in 

order to model the observed phenomenon where stutter appears to behave differently at 

different loci with respect to LUS .   

Exploratory analysis suggests that the predominant effects on SR are LUS (Figure 8.1), locus 

and a LUS-locus interaction.   
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Figure  8.1: A scatter plot showing the relationship between LUS  and stutter 

We found an unexpected effect of parent peak height, iφ , on [ ]iE SR  but the coefficient is 

small 1.3x10-3 suggesting that omitting this explanatory variable will not significantly change 

the prediction.  Note that the coefficient is positive.  This is in opposition to any expectation 

that LtDNA samples stutter more.  

The number of repeat units added very little extra to the model when LUS  was included. 

Although this term was statistically significant ( 15= 8.3 10 0P −× ≈ ), the coefficient was also 

small ( 32.4 10−× ), which, when combined with the relatively small repeat unit numbers (6 – 

34.5), means there would be little effect on the [ ]iE SR . Therefore number of repeat units was 

not included in the model.  

The two loci with low A-T base content do not have exceptional βl0 coefficients.  They are 

the 3rd and 7th largest coefficients in the multiplex.  This would suggest that we have no 

evidence in this dataset for an effect of A-T content.  We also note that A-T content is 
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completely predicted by locus and hence, if locus is present in the model AT content is 

redundant. 

To examine those factors affecting varSRi the residuals of the fitted model were regressed 

against the height of the parent peaks.  There is a significant effect of height on the variance 

of stutter ( 7.16 07)p e= − . However, again the coefficient is small (2.78 08)e −  which 

means that even when the height of the parent peak is in the 1000’s there will be minimal 

effect on varSRi. 

8.4 Model construction  

The data analysis in the preceding section was used to select a linear model which describes 

the behaviour of the expected value (or mean) of iSR  with respect to the locus, l , and LUS . 

This model is given in Equation (2). 

 [ ] 0 1=i l l iE SR LUSβ β+    (2) 

Traditional regression models assume that the data is normally distributed with a mean 

described by a linear function and with constant scatter (variance) about the mean. This 

assumption is often checked by plotting the ordered residuals against the quantiles of a 

standard normal distribution. This plot is called a normal quantile-quantile (Q-Q) plot of the 

residuals. If the normality assumption holds, then the points on a normal Q-Q plot will follow 

a straight line whose slope provides an estimate of the standard deviation about the line. 

Strong curvature in one direction, or the other, is evidence of skewness. Sigmoidal shapes 

usually mean that the data has shorter or longer tails than a normal distribution. This 

behaviour is common if the mechanism generating it, is more variable than can be described 

by a normal distribution - a phenomenon often referred to as heavy tails. A normal Q-Q Plot 

of the residuals from this model is given Figure 8.2 A. The plot shows a large deviation from 

a straight line in the upper end of the plot, indicating that the tail on the right hand side of the 

distribution is longer than expected. We attempted to remedy this by taking the logarithms of 

the data (Equation (3)), however this increased the length of the tails on both sides of the 

distribution. Figure 8.2 shows the normal Q-Q plots of the residuals from both the normal (A) 

and log normal (B) models. As the tails of the distribution contain data of interest (peaks that 

could be deemed either allelic or stutter) we changed the model from normal, and log normal, 

to gamma. The gamma family of distributions are useful for modelling data which can take 
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values from zero to infinity, have a single mode, and which exhibit a degree of skewness to 

the right. The log normal family of distributions also has these properties, but the gamma 

family has a heavier right tail.  

 [ ] 0 1log( ) =i l l iE SR LUSβ β+    (3) 

A 

 

B 

 



Identifying and modelling the drivers of stutter in forensic DNA profiles 

 

 152 

Figure  8.2: A: normal Q-Q plot showing the fit of the residuals from the model to the 

normal distribution and B: the residuals from the logarithms of the data (log normal) 

The gamma family of distributions is a family of continuous probability density functions 

described by two parameters; shape α  and rate Κ  where , > 0α Κ . Sometimes scale, the 

reciprocal of rate, is used instead. The mean and variance of a gamma random variable X  

with shape α  and rate Κ  are given by  

 2
2[ ] = = [ ] = =X XE X and Var Xα αµ σ

Κ Κ
 

Therefore, if we have estimates ˆXµ  of Xµ , and 2ˆ Xσ  of 2
Xσ , then we can obtain estimates of 

α  and Κ  from  

 
2

2

ˆ ˆˆˆ = =
ˆ ˆ

X X

X X

andµ µα
σ σ
 

Κ 
 

 

This mapping allows us to use the traditional specification of a mean model and a variance 

model whilst still using a gamma family of distributions which are not usually described by a 

mean and variance. 

Therefore, in this paper, we model iSR  as a gamma distributed random variable, where the 

expected (mean) behaviour of SRi is a strictly positive linear function of locus and LUS , and 

the variance is constant. We express this statistically as  

 ( ),i i iSR αΓ Κ  

 ( )0 1[ ] = max 0,i l lE SR LUSβ β+  

 2[ ] =iVar SR σ  

The parameters of this model are 0 1,l lβ β  and 2σ . The details regarding the fitting of this 

model are contained in the appendix. 
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8.5 Model assessment 

A plot of the quantiles of SR  from the observed data against the quantiles simulated from the 

model showed that there was a longer observed tail in the observed data than the gamma 

model predicts (data not shown). 

We selected a cut-off point by eye ( 0.12SR ≈ ) where the observed values started to visibly 

depart from the straight line. Using this cut-off we identified 97 observations that, according 

to the model, could be described as having unusually large stutters. The sample numbers from 

these observations were used to retrieve the original epgs. We randomly selected 16 of these 

epgs for investigation. Thirteen samples exhibited pull up, were degraded samples or low 

level mixtures. The remaining three had no detectable cause and presumably were simply 

large stutters.  The two low level mixtures that were identified both had more than one 

“stutter” that did not fit the model.  This suggests that such an approach as outlined here may 

assist in the detection of very low trace contributors.   Recall that all of these 16 samples had 

been passed by human operator as single source and all the peaks assigned as stutter.  These 

peaks were not even noticed as suspiciously large without the application of this model. 

8.6 Using the model 

This model returns the probability density of an observed stutter ratio for a given value of 

LUS  for the parent allele, and the locus l . This information can be used to assess the 

“plausibility” of observing a particular stutter ratio. This could in turn be used in a continuous 

interpretation model or to decide whether a peak is stutter or allelic. 

For example, consider a peak at vWA of height 1400 RFU and a peak in the stutter position 

of 70 RFU, so that the stutter ratio is 0.05 . The parent peak has a LUS  of 11. The predicted 

mean and variance can be calculated using the coefficients obtained from the gamma model 

(Appendix 1). In this example the predicted mean is 0.045. A 95% credible interval for the 

stutter ratio is (0.0279,0.0671) . Our observed ratio lies very close to the middle of this 

interval (0.0475). 
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8.7 Discussion 

This research had two primary aims; to determine the main variables affecting stutter ratio, 

and to then use the variables identified to build a model that could probabilistically evaluate 

observed stutter ratios. Data was collected that allowed us to model the distribution of SR , 

and through data analysis we have identified what we regard as a satisfactory model. 

Both LUS  and locus were found have a significant effect on the mean of SR . Stutter was 

found to be more likely as the uninterrupted sequence in the allele increased in length. That 

is, as LUS  increased SR  increased. There was also significant differences in the mean of 

SR  between loci, even for the same value of LUS . This observed locus effect could be due 

to a number of factors and could be an area of future research for those interested in creating 

commercial STR kits. 

The number of repeat units in the parent allele had a significant but small additional effect on 

the mean of SR  in the regression analysis if LUS was accounted for. Given that the 

relationship appears to be dominated by locus and LUS , the number of repeat units was not 

included in the model. 

Bayesian modelling techniques were used to build a model that used the variables; locus and 

LUS (with an interaction factor), to give an expected estimate for stutter ratio as well as 

predicted upper and lower quantiles within which stutter ratio would be expected to fall. The 

normal, log normal and gamma distributions were trialled with respect to modelling the 

stutter ratio. It was decided that due to the right handed skew of the data, the gamma 

distribution provided the best fit. 

This model is a step towards a more probabilistic approach to identifying stutter. We intend 

this model to be used in a semi-continuous or continuous modelling system for the 

interpretation of STR DNA profile data. Threshold based interpretation is becoming outdated 

with the analysis of more complex mixtures and LtDNA samples whose peaks may not reach 

conventional thresholds. There is a need to move towards an interpretation model that can 

deal with these types of samples. 
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Appendix 1 

Model fitting details 

 We need to specify priors in order to estimate these parameters in the Bayesian framework. 

The priors reflect our knowledge about these parameters before we observe the data. We will 

take a position of no prior information and therefore choose prior distributions that are very 

diffuse, or uninformative. By this we mean that we are stating that the true values could be 

“almost anything”. We will also choose conjugate priors for mathematical and computational 

simplicity. We do not believe that such choices, although subjective, will unduly influence 

the posterior distributions. Therefore, for completeness, our priors are  

 ( )6
0 1, 0,10 , = 1, ,15l l N mβ β 

 

 ( )3 3
2

1 10 ,10
σ

− −Γ  

The package BRugs, an interface to the OpenBUGS programme, was used to fit our model in 

R [16]. BRugs is a statistical package that allows the user to fit Bayesian models using 

Markov chain Monte Carlo (MCMC) techniques. 

The MCMC sampling scheme produces correlated samples from the posterior distributions of 

the parameters. The samples are also correlated with the initial choices for the parameter 

values, but this reduces over time. There is correlation between successive values. Therefore, 

we use a “burn-in” period to make sure that the samples have moved a sufficient distance 

from the initial parameter choices. This involves discarding the first n  samples. In this paper 

we discarded the first = 10,000n  samples. The correlation between successive samples can 

be reduced by “thinning the chain”. This process involves selecting every thk  sampled value. 

We took every 50th  sample from a run of 500,000 to produce a sample of size 10,000 from 

the posterior distribution of each parameter. We chose a relatively big number for the 

thinning process as the successive observations were highly correlated. Taking every 50th  

sample corrected this. The high degree of correlation was induced by the requirement that the 

mean be positive. That is, ( )0 1[ ] = max 0,i l lE SR LUSβ β+ . This meant that many of the 
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proposals were not accepted, and hence the chains had a tendency to remain in the same place 

for a long time. 

Parameter estimates and summary statistics 

 Bayesian estimation procedures yield samples from the posterior distribution(s) of the 

parameter(s) in the model given the data. We list here the posterior mean, median, and the  

2.5 th  and 97.5 th  percentiles which provide a 95% credible interval for each parameter.   
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Table  8.1: Summary statistics from the posterior distributions of 0lβ  by locus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Locus   2.50%   Mean   Median   97.50%  

CSF1PO  -0.045 -0.037 -0.037 -0.029 

D13S317  -0.050 -0.047 -0.047 -0.043 

D16S539  -0.050 -0.044 -0.044 -0.038 

D18S51  -0.043 -0.038 -0.038 -0.032 

D19S433  -0.044 -0.037 -0.037 -0.030 

D21S11  0.004 0.012 0.012 0.020 

D2S1338  -0.019 -0.011 -0.012 -0.004 

D3S1358  -0.053 -0.043 -0.043 -0.033 

D5S818  -0.045 -0.038 -0.038 -0.030 

D7S820  -0.046 -0.041 -0.041 -0.035 

D8S1179  -0.015 -0.007 -0.007 0.001 

FGA  -0.040 -0.034 -0.034 -0.028 

TH01  -0.023 -0.018 -0.018 -0.014 

TPOX  -0.021 -0.016 -0.016 -0.011 

vWA  -0.117 -0.108 -0.108 -0.098 
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Table  8.2: Summary statistics from the posterior distributions of 1lβ  by locus 

Locus 2.50% Mean Median 97.50% 

CSF1PO 0.0064 0.0071 0.0071 0.0078 

D13S317 0.0078 0.0082 0.0082 0.0085 

D16S539 0.0078 0.0083 0.0083 0.0089 

D18S51 0.0073 0.0076 0.0076 0.0080 

D19S433 0.0086 0.0092 0.0092 0.0098 

D21S11 0.0031 0.0038 0.0038 0.0046 

D2S1338 0.0059 0.0065 0.0065 0.0071 

D3S1358 0.0081 0.0089 0.0089 0.0097 

D5S818 0.0069 0.0076 0.0076 0.0082 

D7S820 0.0074 0.0079 0.0080 0.0085 

D8S1179 0.0046 0.0053 0.0053 0.0060 

FGA 0.0068 0.0072 0.0072 0.0075 

TH01 0.0051 0.0058 0.0058 0.0065 

TPOX 0.0039 0.0044 0.0044 0.0049 

vWA 0.0131 0.0139 0.0139 0.0147 

 

Table 8. 3: Summary statistics from the posterior distribution of σ  

   2.50%   Mean   Median   97.50%  

 σ   0.0098 0.0101 0.0100 0.0102 
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Supplementary material (BUGS model specification)  

 
model{ 
    for(i in 1:N){ 
        stutter[i] ~ dgamma(shape[i], rate[i]) 
        log.mu[i] <- b0[marker[i]] + b1*LUS[i] 
 
        mu[i] <- exp(log.mu[i]) 
 
        shape[i] <- mu[i]*mu[i]/(sigma*sigma) 
        scale[i] <- sigma*sigma/mu[i] 
        rate[i] <- 1/scale[i] 
    } 
 
    for(j in 1:15){ 
     b0[j]~dnorm(0, 0.000001) 
    } 
 
    b1~dnorm(0, 0.000001) 
    tau ~ dgamma(0.001,0.001) 
    sigma <- 1/sqrt(tau) 
 
    ## pred code 
    pred.log.mu <- b[15] + b1*11 
    pred.mu <- exp(pred.log.mu) 
    pred.shape <- pred.mu*pred.mu/(sigma*sigma) 
    pred.scale <- sigma*sigma/pred.mu 
 
    post.mean <- pred.shape*pred.scale 
    post.var <- post.mean*pred.scale 
} 
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9: INVESTIGATING THE LOCUS EFFECT ON THE 

STUTTER RATIO 

The investigation into the drivers of stutter identified that both the locus and allele LUS had a 

significant effect on the expected (mean) stutter ratio (SR) (Chapter 8). In this chapter we aim 

to identify the variables that contribute to the locus effect. Figure 9.1 shows the SR per locus. 

We can see that TH01 (µ = 0.022) has the lowest mean SR and D18S51 has the highest mean 

SR (µ = 0.080).  

 

 

Figure 9.1: The SR per locus 

A pairwise comparison of the mean SR values is shown in Table 9.1. We use this to identify 

multiple loci that stutter similarly.   
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Table 9.1: Loci that cannot be differentiated on mean SR 

Locus 1 Locus 2 P Value 
CSF1PO  D13S317  1.000 
CSF1PO  D7S820  0.991 
D13S317  D7S820  0.996 
D16S539  D5S818  0.949 
D21S11  D8S1179  0.998 
D2S1338 D3S1358  0.947 
D2S1338 FGA  0.996 
FGA  D3S1358  0.230 
TH01  TPOX  1.000 
 

The examination of loci that had a similar mean SR indicated that the class of STR might 

affect stutter. STRs can be broken down into three main groups;  

1) simple repeats contain core sequences identical in sequence and length,  

2) compound repeats contain two or more adjacent simple repeats, and  

3) complex repeats may contain several repeat blocks of variable repeat unit length with 

variable intervening sequences.  

 

Table 9.2 lists the STR class, the STR sequence, the allele range present in the dataset, and 

the average SR for each locus in the data used in this research.  
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Table 9.2: STR type, sequence and allele range by locus. 

Locus STR class Sequence Allele Range in Dataset SR 
D16S539 simple [GATA] 8-17 0.048 
D18S51 simple [AGAA] 10-25 0.080 
D19S433 compound [AAGG]/[TAGG] 11-17.5 0.076 
D21S11 complex [TCTA]/[TCTG] 26-34.5 0.054 
D2S1338 compound [TGCC]/[TTCC] 16-26 0.069 
D8S1179 compound [TCTA]/[TCTG] 8-17 0.053 
FGA complex [CTTT]/[TTCC] 18-29 0.070 
TH01 simple [TCAT] 6-10 0.022 
vWA compound [TCTA]/[TCTG] 14-20 0.060 
D3S1358 compound [TCTA]/[TCTG] 11-20 0.068 
CSF1PO simple [AGAT] 8-15 0.040 
D13S317 simple [TATC] 6-16 0.040 
D5S818 simple [AGAT] 9-15 0.049 
D7S820 simple [GATA] 7-15 0.039 
TPOX simple [AATG] 8-12 0.022 
 

We used one way ANOVA to show that different STR classes have different mean stutter 

ratios (Figure 9.2).  Simple repeats had the lowest average stutter ratio (0.044), followed by 

complex repeats (0.062). Compound repeats had the highest average stutter ratio (0.0650).  
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Figure 9.2: SR by STR class 

SR was regressed against LUS and STR class with a LUS-STR class interaction factor using 

linear regression. The resulting adjusted R2 value was 0.73 compared to the adjusted R2 value 

of 0.78 of the LUS-locus model in Chapter 8 (and compared to an adjusted R2 value of 0.65 

for SR vs. LUS only). This indicates that STR class does contribute to the locus effect 

however; there is still some unexplained explanatory variable beyond STR class. 

Past research suggests that the higher the GC content of a locus the more stable the locus is 

due to the additional hydrogen bonds (GC base pairs have three hydrogen bonds while AT 

base pairs have two hydrogen bonds) [1]. Within the AmpFℓSTR® Identifiler® multiplex, 

there are two loci with an AT content of 50% (D19S433 and D2S1338). The remaining 13 

loci have an AT base pair content of 75%. Therefore the expected SR should be lower in loci 

with a higher GC content. However, in this research the two loci that contain the highest 

percentage GC base pairs have two of the highest SRs.  
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The adjusted R2 value slightly increased to 0.74, when the SR was regressed against LUS and 

STR class with a LUS-STR class interaction factor and AT base pair content.  This indicates 

that AT base pair content is not contributing significantly to the model if LUS and STR class 

are included.  When the STR class is dropped from the model the adjusted R2 value becomes 

0.71, indicating that STR class is the better variable to retain in the model.  

The repeat number, or allele designation, was also investigated with regard to its effect on the 

SR. However, because the length of the STR was already somewhat accounted for by the 

inclusion of the variable LUS, a new variable “Allele-LUS” was introduced into the dataset.  

This variable was created by taking the value of the allele designation and subtracting the 

LUS value. This value represents the residual repeat units left in the allele once the longest 

uninterrupted repeating sequence is removed. The resulting adjusted R2 was 0.72, when the 

SR was regressed against LUS and Allele-LUS. When the SR was regressed versus LUS and 

STR class with a LUS-STR class interaction factor, AT base pair content and Allele-LUS the 

resulting adjusted R2 was 0.74. This indicates that Allele-LUS was not contributing anything 

significant towards the locus effect. 

The highest adjusted R2 value that could be obtained when removing locus effect and adding 

variables thought to constitute locus effect was 0.74. This was the model that included STR 

class and AT base pair content. This indicates that although STR class and AT base pair 

content contribute to locus effect there is still some unexplained variation unaccounted for 

that is contained within locus effect.    

As with any multiplex, a compromise has to be made within the PCR conditions for each 

locus. Due to this compromise it is likely that there will be slight behavioural differences 

between loci. These may manifest themselves in differing amplification efficiency of loci. So 

whilst endeavouring to understand the differences in the SR between loci is interesting from 

an academic and manufacturers’ perspective, from a DNA analyst’s perspective it is prudent 

to retain the original model which accounts for the loci effect as a whole.  

9.1 D21S11 

While investigating variables thought to contribute to the locus effect, it was discovered that 

the locus D21S11 did not exhibit the linear relationship between SR and LUS evident within 

the other loci. 
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Figure 9.3 shows the data for D21S11, a complex repeat (Table 9.2).  This plot shows that 

there appears to be some LUS sequences that are stuttering less than expected (Table 9.3). For 

example, the expected SR for alleles with a LUS of 12.66 was 0.062, but the observed SR was 

0.054. The sequences of the alleles present in the data set used (AmpFℓSTR® Identifiler®) 

were recorded using the STRbase D21S11 fact sheet [2], along with their reported LUS 

(Table 9.4).   

 

 

Figure 9.3: SR vs. LUS for D21S11 
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Table 9.3: Expected and Observed SR Values for D21S11 using LUS 

LUS Expected 
SR Mean 

Observed 
SR Mean 

Observed 
SR Median 

8 0.042 0.035 0.035 
8.66 0.045 0.038 0.037 
9.5 0.048 0.046 0.046 
10 0.051 0.038 0.040 
10.5 0.053 0.054 0.054 
11 0.055 0.057 0.058 
11.5 0.057 0.067 0.068 
12.66 0.062 0.054 0.054 
13 0.063 0.074 0.073 
14 0.068 0.076 0.076 
 

It was noted that alleles 30 and 31.2 had the same recorded value of LUS (11) and therefore, 

theoretically, should stutter similarly. Figure 9.4 shows the SR of these two alleles. These two 

alleles stutter quite differently and the distinctive behaviour of the two alleles explains the 

large variability of the SR at LUS = 11 in Figure 9.3. The only notable difference between 

these two alleles is a TATCTA addition to the end of the 31.2 allele (Table 9.4). It is 

surprising to find that the longer allele has a lower SR as traditionally it has been thought that 

longer alleles had a higher SR [3].        
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Figure 9.4: The SR of alleles 30 and 31.2 for D21S11 LUS 11 

Allele – LUS was regressed against SR for the D21S11 data to see if there was any 

relationship present (Figure 9.5, the 0.5 designations represent 2 bp of a 4 bp repeat). No 

obvious relationship, that could be explained biologically, was evident between SR and the 

number of residual repeat units.  
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Figure 9.5: SR vs. Allele-LUS for D21S11 

There are two observable relationships when the SR is regressed against allele designation 

(Figure 9.6). The alleles that have a 0.2 designation (i.e. the alleles with the TATCTA 

addition; 29.2, 30.2, 31.2, 32.2, 33.2, 34.2) stutter linearly with respect to each other, but they 

stutter less than they should compared to the alleles without the TATCTA addition.  There 

appears to be a decrease in the observed SR, associated with the TATCTA addition, which is 

difficult to explain using our knowledge in this area. We speculate that these alleles have 

been mis-sequenced and their LUS is actually shorter than what they have been designated.  It 

would be worthwhile to sequence these alleles in future work.  
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Figure 9.6: SR vs. allele for D21S11 

9.2 D21S11: NGMTM SElect & AmpFℓSTR® MiniFilerTM 

Additional single source profiles of varying quality, and from a variety of sample types, were 

identified from casework.  The DNA from these samples had been previously extracted either 

using an organic [4], or DNA IQ  extraction method [5], depending on the sample type. 

All samples were quantified prior to amplification using Applied Biosystems Quantifiler®  

Human Quantification Kits on a Applied Biosystems 7500 according to the manufacturer's 

instructions [6]. A target of 1 ng was amplified using either NGMTM SElect or AmpFℓSTR® 

MiniFilerTM kits according to the manufacturer's instructions in a 9700 thermal cycler with 

silver block. Amplified products were separated on Applied Biosystems 3130xl Genetic 

Analysers and analysis of DNA profiles undertaken using Applied Biosystems GeneMapper  

ID version 3.2.1 using the panels and bins provided. 

A peak detection threshold of 50 RFU was used. 629 possible stutter peaks were identified in 

the AmpFℓSTR® MiniFilerTM dataset and 4646 possible stutter peaks were identified in the 

NGMTM SElect data set.  
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SR was plotted against LUS at locus D21S11 for each of the datasets (Figure 9.7 and Figure 

9.8) to determine if the SR behaved as expected with respect to LUS using these kits. When 

looking at Figure 9.7, the AmpFℓSTR® MiniFilerTM data set, it is difficult to determine if the 

SR is behaving as expected. The circled points appear to be off-trend but there is a lack of 

data at this point to support this hypothesis.   

 

Figure 9.7: SR vs. LUS for D21S11 using AmpFℓSTR® MiniFilerTM data 

Figure 9.8 shows that the alleles with a LUS of 11.5 in the NGMTM SElect dataset have a 

higher SR then expected with respect to the alleles with a LUS of 11. This reiterates what was 

seen in the AmpFℓSTR® Identifiler® data set. The peculiarities at the other LUS values as 

seen in the AmpFℓSTR® Identifiler® kit are not as obvious in the NGMTM SElect data set as 

at there is a lack of data at some LUS values (10,  13).  
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Figure 9.8: SR vs. LUS for D21S11 using NGMTM data 

Plotting the D21S11 NGMTM SElect SR data by allele (Figure 9.9), allows the alleles with a 

LUS of 11 to be separated (30 and 31.2) and the difference in the observed SR between these 

two alleles with the same LUS is more obvious.  These two alleles with a shared LUS in both 

the AmpFℓSTR® Identifiler® and NGMTM SElect data sets are evidence that this locus 

warrants further investigation. These alleles were also investigated using the AmpFℓSTR® 

MiniFilerTM kit. Allele 30 had an observed SR of 0.083 and allele 31.2 had an observed SR of 

0.077 which suggests that AmpFℓSTR® MiniFilerTM data may have similar behaviour to 

AmpFℓSTR® Identifiler® and NGMTM SElect data. However, the lack of AmpFℓSTR® 

MiniFilerTM data made this assumption hard to prove.  
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Figure 9.9: SR vs. Allele for D21S11 using NGMTM SElect data 

9.3 SR by PCR cycle number 

Stutter peaks accrue with every PCR cycle.  Given our belief that stutter has some molecular 

basis, as yet not fully understood, it is reasonable to suppose that there is some constant 

probability, x, that a given molecule will stutter at each cycle.  This suggests that there is a 

probability of approximately 1-x that the allele will copy correctly.   

Let allelic template at cycle t be Tt, then the expected amount of template is: 

[ ] ( )1 2t tE T T x−= −  

and the expected stutter template (St) at cycle t is:  

[ ] ( )1 12t t tE S S x xT− −= − +  

Then the expected stutter ratio, (SR) is equal to:  
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At t = 0 SR = 0, hence the expected SR is: 

 [ ] ( )2t
txE SR

x
=

−   

This suggests that the SR increases linearly with cycle number t.  If we know SRt and t, then 

this equation may be solved for x, giving us a more fundamental parameter that is invariant 

with respect to cycle number.  
 

Using the observed SR and LUS at D21S11 for the AmpFℓSTR® Identifiler® data (28 

cycles) and the NGMTM SElect data (30 cycles), the approximate probability of stutter for 

each cycle of PCR could be ascertained using numerical optimisation techniques to calculate 

the minimum sum of the observed minus expected SR values. 1 PCR eff− , where PCR eff is the 

PCR efficiency, gives an approximate value for the probability of stutter (Table 9.4).  

Table 9.4: Calculation of the expected SR per PCR cycle. 

LUS Cycle number Observed SR Expected SR per cycle 

12.66 
28 0.0539 

0.004044 
30 0.0633 

 

The probability of stutter at each PCR cycle can be calculated for each locus and each LUS 

value.  This is novel as it has been observed that stutter varies depending on PCR cycle 

number, with SR increasing in samples that have been amplified using additional PCR cycles.   

Assigning stutter in low template samples that have been amplified using LCN techniques 

(increasing PCR cycles from 28 up to 34) is problematic and has not yet been addressed in 

this research.  However, using this method the expected SR can be calculated for a given 

locus and LUS at any cycle number.  For example, at D21S11, LUS 12.66; the expected SR at 

28 cycles is 0.0567. At 34 cycles this value increases to 0.0688.  
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This is a different and more fundamental way of thinking about stutter in forensic DNA 

profiles. However, this research only looked at one locus and two LUS values. A much larger 

investigation would need to be undertaken to take this research any further.  

9.4 Conclusion 

The main aim of this chapter was to identify variables that caused loci to stutter differently. 

The class of STR present at the locus was found to be significant. However, there was still 

some unexplained explanatory value to locus beyond STR class. The variables, AT base pair 

content and Allele-LUS were investigated but found to contribute little to the observed locus 

effect. It is likely that the locus effect includes a PCR effect and therefore can never be fully 

accounted for. It is prudent to retain the original model that accounts for the loci effect as a 

whole. 

During the investigation into locus effect it was noted that D21S11, unlike the other loci, did 

not exhibit a linear relationship between SR and LUS. This observation warranted further 

investigation.  It was discovered that there were two distinct linear relationships when the SR 

was plotted against allele (Figure 9.6). The alleles that have a 0.2 designation stutter linearly 

with regards to each other, but they stutter less than they should in regards to the alleles 

without the 0.2 designation. Some alleles within the NGMTM SElect dataset also did not 

stutter as would be expected with regards to LUS. This is possibly due to the alleles having 

been labelled with an incorrect LUS/allele designation. The classification of D21S11 deserves 

further investigation.  
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Table 9.4: Alleles present in the D21S11 data set 

Allele Repeat structure LUS Average 
LUS 

26 
[TCTA]4 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]8 

8 
8 

 

28 
[TCTA]4 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]10 

10 
9.5 

28' 
[TCTA]5 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]9 

9 

30 
[TCTA]6 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]11 

11 

11 
30' 

[TCTA]5 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]11 

11 

30" 
[TCTA]4 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]12 

12 

30"' 
[TCTA]6 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]10 

10 

30.2 
[TCTA]5 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]10 TA TCTA 

10 
10 

30.2' 
[TCTA]5 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]11 TA TCTA 

11 

32 
[TCTA]6 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]13 

13 
13 

32' 
[TCTA]5 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]13 

13 

32.2 
[TCTA]5 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]12 TA TCTA 

12 

12.66 32.2' 
[TCTA]4 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]13 TA TCTA 

13 

32.2" 
[TCTA]5 [TCTG]6 [TCTA]2 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]13 TA TCTA 

13 

34.2 
[TCTA]4 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]14 TA TCTA 

14 14 

27 
[TCTA]4 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]9 

9 

8.66 27' 
[TCTA]6 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]8 

8 

27" 
[TCTA]5 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]9 

9 

29 
[TCTA]4 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]11 

11 10.5 
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29' 
[TCTA]6 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]10 

10 

29.2 
[TCTA]5 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]10 TA TCTA 

10 10 

31 
[TCTA]5 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]12 

12 

11.5 
31' 

[TCTA]6 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]12 

12 

31" 
[TCTA]6 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]11 

11 

31"' 
[TCTA]7 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]11 

11 

31.2 
[TCTA]5 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]11 TA TCTA 

11 11 

33.2 
[TCTA]5 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]13 TA TCTA 

13 

12.66 33.2' 
[TCTA]6 [TCTG]5 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]13 TA TCTA 

13 

33.2" 
[TCTA]6 [TCTG]6 [TCTA]3 TA [TCTA]3 TCA [TCTA]2 
TCCA TA [TCTA]12 TA TCTA 

12 
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10: DISCUSSION, CONCLUSION AND FUTURE 
RESEARCH  
 

There can be little doubt that the advent of DNA typing constitutes one of the most important 

advances in forensic science of the 20th century. More than two decades have passed since 

Sir Alec Jeffrey’s ground-breaking publication [1], and DNA typing is now routinely 

undertaken in forensic investigations worldwide. 

The last two decades have seen DNA typing evolve from determining if a person of interest is 

excluded as the source of a biological sample to calculating the strength of evidence that the 

person of interest is the contributor of the biological sample, with the inclusion of statistical 

genetics. This is evident in the National Research Council’s publication (NRC II) [2] in 

which it is said that the “ultimate purpose of DNA typing is to test the hypothesis that a 

particular person is the source of an item of biological evidence”.  

10.1 The interpretation of low template DNA 

With the increasing sensitivity of the analysis techniques utilised in DNA typing, it is 

appropriate to discuss how far DNA interpretation can be pushed. The stochastic effects 

inherent in low template DNA profiles can complicate the interpretation of DNA typing, but 

the preceding chapters of this thesis have demonstrated that these factors can be modelled, 

and the probability of these events occurring, given the data, can be assessed. 

Dropout, perhaps one of the most concerning manifestations of the analysis of smaller 

quantities of DNA was investigated in Chapters 5 and 6. Chapter 5 demonstrated how 

important the inclusion of a probability of dropout was on the calculation of the weight of 

evidence. Although assigning a “one” to a locus with potential dropout appears on the outset 

to be a neutral statistic in favour of neither the prosecution nor the defence, in reality any 

“missing” evidence should down weight the overall statistic.  The probability that the data is 

“missing” should be assessed using the information available from the profile. The relative 

peak heights of the present data can indicate to the analyst the probability that the questioned 

allele has dropped out. 
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Chapter 6 investigated the application of a probability of dropout model. Models suggested 

by Tvedebrink et al. [3, 4] were compared to a third model that used the peak heights of the 

peaks present in a profile, conditioned on molecular weight, as an explanatory variable in the 

calculation of the probability of dropout using logistic regression. This chapter showed that 

the probability of dropout could be adequately modelled and implemented in a calculation of 

the evidential weight under the likelihood ratio method.    

Heterozygous balance (h) was discussed in Chapter 7. It was found that the average (h) did 

not change significantly in regards to peak height. This means that the average (h) does not 

deteriorate at low template DNA levels as previously thought [5]. However, the variance of 

(h) was shown to decrease at a rate inversely proportional to the average peak height at a 

locus. The variance of (h) was most extreme at low template levels. Using statistical methods 

a model was built that could be used to give an estimate for expected (h) as well as an 

interval that (h) would be expected to fall within, with reasonable probability. However, the 

resulting model was complicated and it is expected that future work will not utilise (h) and 

will instead focus on the variability of peak heights [6]. 

Chapters 8 and 9 investigated stutter. Chapter 8 identified and modelled the drivers of the 

stutter ratio (SR). It was found that the longest uninterrupted sequence (LUS) and the locus 

had an effect on (SR). A linear model was designed which used LUS and locus to describe the 

behaviour of the expected SR.  The SR was not affected by peak height and therefore did not 

behave differently at low template levels than in “conventional” profiles. The model that was 

built can be applied across all DNA profiles regardless of their classification as low template 

or conventional.   

The SR was shown to be dependent on PCR cycle number. Profiles that were amplified using 

increased cycle number (such as in LCN analysis) showed increased stutter. Chapter 9 

investigated calculating a PCR efficiency value, which could be used to give an approximate 

probability for the expected SR given any cycle number. This study only used the data from 

one locus (D21S11) and one LUS (12.66) and would need to be extended to be of any use in 

case work.  

Chapter 9 also investigated the irregularity of D21S11. D21S11 did not exhibit the linear 

relationship between SR and LUS evident within the other loci. It is the opinion of the author 
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that D21S11 may have been mis-sequenced and the designated LUS is longer than it should 

be. It would be worthwhile to sequence these alleles in future work.   

Chapter 2 demonstrated that the probabilistic assessment of these stochastic effects can only 

be undertaken using a method that can deal with the probability or likelihood of the event in a 

sensible and logical manner. The only method that can cope with an assessment of this type is 

the likelihood ratio. The conditioning step used in the likelihood ratio removes the need for 

the analyst to designate an inclusion or exclusion step early on in the interpretation and the 

likelihood of stochastic events can be accommodated within the formulation of the 

hypotheses. The formulation of the hypotheses and the manner in which they are then 

assessed also safeguards the evidence and the analyst from bias, as the probability of the 

evidence given an unlikely hypothesis will not be supported by the LR.  

This is contrary to the belief of some authors who argue that bias is inherent in the 

interpretation of low template DNA. This argument stems from the belief that evidential 

profiles should be resolved in full before they are compared to a person of interest’s profile to 

avoid the issue of reverse conditioning. 

However, the issue of reverse conditioning is handled appropriately within the LR based 

method. For example, when assessing if a questioned peak could be stutter or allelic, the 

question becomes; “what is the probability of seeing this peak (at this height) if it is stutter?” 

If the evidence (epg) does not support the hypothesis that the peak is stutter then the resulting 

probability will reflect this. The evidence cannot be manipulated to “fit” the hypothesis if 

undertaken correctly.   

The probabilistic models built within this research can be implemented under extensions to 

the binary models as discussed in Chapter 3. This is possibly the easiest implementation for 

forensic biologists to understand and requires a much more “hands on” approach than 

automated systems. However, the downfall of having a hands on approach is that the method 

becomes error prone. Some of the calculations are laborious and computationally intense as 

evident within Chapter 4 and in particular the Q model. 

Binary models have served well for a number of years and the primary push to move away 

from this method of interpretation is that these models cannot deal with non-concordances. 

That is, these models cannot deal with a locus where at least one allele of the POI is not seen 
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in the profile. (Although Chapter 4 dealt with dropout under the binary model, these dropout 

events were not alleles relating to the POI and instead related to the hypothesis that alleles 

from a different contributor had dropped out).  

This has resulted in the development of the semi-continuous model. Using the methodology 

of Buckleton and Gill [7], the probability of dropout (and other stochastic events such as drop 

in) can be included in the LR calculation. However, the semi-continuous model still does not 

make full use of all of the information available from the evidence. For example, Chapter 3 

refers to an example containing an epg that comprises four peaks from a two person mixture. 

Using both the binary and semi-continuous models the combinations of alleles at this locus 

are deemed either possible (1) or not possible (0). In reality, given the peak heights of each 

allele there will be a genotype that is most supported by the data. This has led to the 

development of the continuous model.  

The continuous model assigns a value to the probability of the profile genotype given the 

hypothesised genotype. These models have the potential to handle any type of non-

concordance and may assess any number of replicates without pre-processing and the 

consequential loss of information. Many of the sometimes subjective decisions made by the 

analyst – such as the designation of peaks as alleles, the designation of stutter peaks and the 

possible genotype combinations may be removed and instead, assessed by the continuous 

model which makes use of the quantitative information present in the profile to assess the 

probability these events. It is the author’s opinion that the forensic biology community should 

move towards utilising continuous models in their assessment of all DNA profiles. 

Some of the issues associated with the interpretation of low template DNA have been 

identified and discussed prior to this work.  However there has been apprehension within the 

forensic community to move towards interpretation models that can cope with the stochastic 

effects present in low template DNA. This is possibly due to the “fear of the unknown” in 

that there is belief that these models operate beyond the comprehension of biologists. That is 

a fear that is common with the automation or introduction of software within any domain. 

However, in this situation I believe it is unfounded.  

The stochastic effects that are modelled in this research, although a defining characteristic of 

low template samples, are also present in conventional profiles and many, if not all, 

experienced DNA analysts will be familiar with them. The degradation slope discussed in 
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Chapter 5 is evidence that high molecular weight alleles are already often analysed at low 

template levels. Heterozygous balance and stutter are guidelines already utilised in the 

analysis of conventional profiles and the expectation of these values was shown to be 

invariant depending on peak height.  

That leaves only the comprehension of the probabilistic models themselves. The author of 

this research is neither a statistician nor a biologist and the purpose of this research was to 

present these statistical models in a manner in which would be received by the forensic 

biology community.  

The introduction of statistics to forensic science has not always been an easy process and the 

reluctance to introduce seemingly more complex statistical methods is understandable. 

However, with the increase in sensitivity of DNA profiling techniques, low template samples 

are becoming more common. How best to interpret these samples is a challenging and highly 

topical subject.  

There is no doubt that the expertise of a DNA analyst is highly valued and there are many 

occasions where an expert can look at a profile and, using their experience and knowledge, 

gained through many thousands of hours of analysis, interpret the profile by “eye”. However, 

there are now frequent challenges to DNA interpretation guidelines – in that no specific 

guidelines exist. There are recommendations, but as of yet there is no worldwide standard 

that details how one must interpret a profile. It is time that this is addressed. The author is not 

recommending that all aspects of a DNA analysis be standardised, but rather that the 

assumptions of the analysis be clearly stated and that the analysis is repeatable. If one decides 

to use a continuous model as recommended by the author, then the assumptions and/or 

hypothesis of the model must be defined.  

It is not realistic to expect the entire forensic community to implement the same model and 

thus variations in reported evidential weights are to be expected. However, it is not 

acceptable for the general conclusion (i.e. exclusion, inconclusive, inclusion) to differ 

between analysts as discussed in Chapters 1 and 3. The factors contributing to the 

interpretation problems discussed in these chapters have been addressed in this research and 

the author stresses that the first step in regulating DNA interpretation is for the forensic 

biology community to implement the LR as the standard statistical calculation for DNA 
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interpretation. The stochastic effects modelled in this research cannot be implemented under 

the other widely used statistical method; random man not excluded (RMNE).    

If the move towards implementing a continuous model is undertaken, then this model must be 

validated and understood by the user as to the extent of its capabilities. Continuous models 

should not be shown to be better by obtaining the highest LR.  They should be proven better 

by their ability to best represent the evidence, and there will be situations in which these 

models will not be able to be utilised. These situations must be understood by the user.   

For example, the author foresees situations in which some complex mixtures will be too 

difficult to analyse using clearly defined propositions, under the defence hypotheses, in 

particular. If sensible propositions cannot be formulated under the hypotheses then it follows 

that a LR cannot be calculated.  

10.2 The interpretation of complex mixtures 

The interpretation of complex mixtures is difficult. The logical approach (LR) involves 

assumptions about the number and the identity of the contributors to the mixture. 

Consequently a number of calculations are sometimes required and the deconvolution of the 

mixture can be problematic.  

The difficulty in the deconvolution of mixtures has led to some laboratories not presenting a 

match statistic in court, and simply “not excluding” a person of interest from the mixture if 

their alleles are present. However, several courts consider the statistical calculation the most 

important piece of the DNA evidence and will not allow DNA evidence that does not have an 

accompanying statistic [8, 9]. 

For example; in the court of appeal in the People v. Coy II [10], the appellant contested the 

analysis of a mixed DNA profile. Under examination was the evidence of a forensic biologist 

who testified at length as to the meaning of the DNA evidence. The analyst denied that any of 

the test results enabled her to testify positively that the DNA belonged to either the person of 

interest or the victim. However, she concluded that on the basis of the test results, neither the 

POI nor the victim could “be excluded as a possible contributor” to the mixed DNA sample. 

The analyst then went on to say that “once we determine that two samples could have come 
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from the same source then we could calculate a statistical estimate to give a likelihood of how 

common or how rare it is to find that set of characteristics in another individual,”  

However, she performed no statistical interpretation of the results regarding the mixed DNA 

sample because “our laboratory policy is we do not calculate statistical estimates for mixed 

samples”. In the appeal the judge referred to the following statement by the Committee on 

DNA Technology in Forensic Science: 

“To say that two patterns match, without providing any scientifically valid estimate of the 

frequency with which such matches might occur by chance, is meaningless”. 

And the following from US v. Yee, [11]: 

“Without the probability assessment, the jury does not know what to make of the fact that the 

patterns match: the jury does not know whether the patterns are as common as pictures with 

two eyes or as unique as the Mona Lisa”.  

Subsequently, the judge in the People v. Coy II ruled that the DNA evidence was 

inadmissible without a statistical weight to indicate the strength of the “match”.  

A high degree of variability currently exists with the calculation of statistics in mixture 

interpretation. Different laboratories follow different mixture interpretation guidelines and 

furthermore, different analysts following the same guidelines often interpret those guidelines 

differently. There is no current concordance on the “right” method for mixture interpretation.  

A 2005 NIST study [12] presented participating laboratories with mixtures representing four 

different case scenarios. NIST requested that the results be reported as though they were from 

a real case including attaching a statistical value and a copy of their laboratory mixture 

interpretation guidelines.  

Results differed in ~10 orders of magnitude for a statistic calculated from the same profile. In 

addition the following quotes were also obtained:  

“Our laboratory does not “pull out” any profile from a mixture for interpretation or 

statistical purposes”, and; 

“We currently do not calculate and report statistics on mixture samples”.   
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The Scientific Working Group on DNA Analysis Methods (SWGDAM) Interpretation 

Guidelines for Autosomal STR Typing by Forensic DNA Testing Laboratories 2010 [13], 

states that: 

“3.5. When major or minor contributors cannot be distinguished because of similarity in 

signal intensities, the sample is considered to be an indistinguishable mixture. The 

classification as indistinguishable may be limited to some, not all, of the loci for which DNA 

typing results are obtained and does not imply that the profile is uninterpretable. Individuals 

may still be included or excluded as possible contributors to an indistinguishable mixture”. 

and: 

“4.1. The laboratory must perform statistical analysis in support of any inclusion that is 

determined to be relevant in the context of a case, irrespective of the number of alleles 

detected and the quantitative value of the statistical analysis”.  

These guidelines (as opposed to standards) and the aforementioned court cases are clear 

indicators that the forensic biology community needs to introduce, and/or standardise mixture 

interpretation. This research has briefly touched upon mixtures in Chapter 4, but as these 

models were implemented using the logical approach (LR), the propositions under the 

defence hypothesis still need to be defined. In the opinion of the author, in the interpretation 

of unresolvable/complex mixtures, defining the propositions under the defence hypothesis 

becomes difficult and the number of possible genotype combinations becomes large quickly 

(even using a constrained approach).  

Chapter 8 investigated the stutter ratio (SR) which is likely the most questioned variable 

within complex or LtDNA mixtures, for example, “is this peak stutter, or is there a second 

low level contributor present?” Within this chapter, the explanatory variables; the longest 

uninterrupted repeat sequence (LUS) and the locus, were shown to affect the SR. The 

distribution of the mean SR was able to be modelled using the explanatory variables and the 

probability of observing a peak (at height x, given the parent peak height y) could be 

predicted. i.e. The probability of observing peak x given it is stutter could be calculated. In 

assessing the functionality of the model, an interesting set of data were observed. These data 

deviated from the assumed distribution of the model, and could be described as unusually 

large stutters (according to the model). The sample numbers from these observations were 
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used to retrieve the original epgs. A random sample of the observations was investigated and 

within these observations low level mixtures were identified. These epgs had previously been 

passed by a human operator as single source and all of the peaks were assigned as stutter 

(although for this research the limit of detection was lowered to 30 RFU, and the original 

profiles were analysed at 50 RFU). These peaks were not noticed as suspiciously large 

without the application of this model. The author recommends the use of this model (or a 

similar model) to aid in the designation of peaks as either stutter or allelic.   

In this thesis we describe mixtures that 

- show evidence as having come from three or more contributors 

- have severe heterozygous imbalance, or excessive dropout 

- are difficult to formulate hypotheses for 

as complex mixtures. Cases that exhibit any of the features listed above require specialist 

interpretation by senior case working scientists. Continuous models, such as those described 

in this thesis, and the software that implements them, are extremely important tools in the 

expert examiners’ tool box. However, there will always be cases which are beyond 

interpretation. The reasons may be articulated quite easily in the LR framework. For example, 

take a gang rape scenario with an unspecified number of assailants. The victim asserts she 

thinks she was raped by four men, but it could be as many as eight. How should one 

formulate hypotheses in cases such as this where there are multiple accused, some of who 

have plead guilty, some of whom are being tried separately, and there is uncertainty about the 

exact number of contributors? Detractors of the LR see this as a weakness of the LR method 

itself. However, we believe it is a strength because it gives a logical set of reasons why 

interpretation was not carried out. The fact that a method, such as RMNE, can calculate a 

statistic regardless of circumstance merely highlights the assertion of many commentators 

that the RMNE does not address the questions of interest to the courts.   

However, there is the possibility of future probabilistic models being built that can interpret 

such complex mixtures. These models will assess the likelihood of the evidence given the 

hypothesis that the POI is a contributor to the DNA mixture. They will not require an input 

regarding the number of contributors and will use the quantitative data available directly from 
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the epg. Therefore there will be no thresholds aside from a limit of detection and analysts will 

not be designating peaks as alleles or calling genotype combinations. Such a model will be 

exhaustive and computationally intense. Every possible combination of peaks will be 

assessed probabilistically and given a weight. For example, the probability of a peak if it is  

stutter will be weighted along with the probability of the same peak if it is allelic. Possible 

genotype combinations will also be weighted as to their likelihood of occurrence and those 

most likely will be given higher weights. This method of interpretation differs from the step 

by step resolution depicted in Figure 2.2. 

Significant laboratory work and experimentation will need to be done to prove the necessary 

input for such a model. Significant statistical modelling work will need to be done to build 

the models which evaluate the evidence realistically and fairly. And lastly significant training 

will need to be put in to ensure that the model is understood by the forensic biology 

community and does not fall victim to the “black box” syndrome.  
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