

LIBRARY Te Tumu Herenga THE UNIVERSITY OF AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

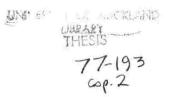
Copyright Statement

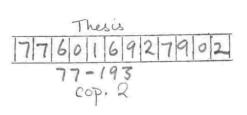
The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>


General copyright and disclaimer


In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

SOURCES OF VARIANCE IN THE DETECTION OF AUDITORY SIGNALS WITH SPECIAL REFERENCE TO UNSTABLE DECISION CRITERIA

G.D. Bridgman

Thesis submitted as a requirement for a PhD

Acknowledgements

(iii)

In the preparation of this thesis I am much indebted to:

Professor R.J. Irwin (my supervisor) for making it possible and for the invaluable assistance he has given at all stages of development.

Dr S. Ambler, for his assistance with the statistics.

Mr P.A. Sergent, for his assistance with the computer.

Mrs E Stout, for the transformation that her typing produced.

ABSTRACT

Data from twelve auditory signal detection experiments show that a model general to all signal detection tasks explains results better than specific auditory models. This thesis examines models of the detection of sinusoids in Gaussian white noise, all predicting linear ROC-curves on normal-normal co-ordinates, but differing in their predictions for the ROC-curve slope.

Distinction is made between stimulus distributions, transducer distributions and response-inferred distributions. Response-inferred distributions include variance from stimuli, transducers and unstable criteria.

The first three experiments (rating) showed that slope increases with increases in p(sn) and in the number of categories available for describing the presence of the signal. An explanation for this data assumes that the 'yes-no' criterion has the least variance and other criteria have variances proportional to their distances from the 'yes-no' criterion. This explanation is developed into a model of selective attention in which the variance of all real criteria is a function of their distancesfrom an optimal criterion. Faulty memory is the assumed cause of criterion variance.

Predictions that follow from the model are

- (i) there is a decline in criterion variance as signal strength increases;
- (ii) there is a U- (or inverted U-) shaped function relating slope and signal strength;

(v)

- (iii) criterion variance is less in forced-choice tasks than in'yes-no' tasks; and
- (iv) slope is partially determined by task design and any other factor which affects the subject's memory for signal or noise.

Experiments 4-6 establish that the concept of criterion variance also applies to yes-no procedures, and Experiments 7-11 substantiate predictions made by the model of selective attention. Data from Experiments 5, 7, 8, 9 and 10 are analysed in terms of models of sinusoidal burst and gap detection. None of the probabilistic models is adequate, but Zwislocki's (1969) deterministic model of temporal summation accounts for the data.

A model of response-inferred distributions is presented in which the mathematical relationships of the variances and locations of criteria, of signal strength and of stimulus variances to the slope of the ROC-curve are described. Equations for the optimal criterion, the variance of individual criteria and a measure of sensitivity uncontaminated by criterion variance are derived. Re-analysis of data using the model of response-inferred distributions supports the predictions of the model of selective attention.

The model of response-inferred distributions predicts 'peaked' rating ROC-curves which are similar to two-state functions and commonly observed in the literature. However, both two-state and high-threshold theories are unable to explain the data.

Experiment 12 compares the model of response-inferred distributions with Pike's (1973) multiple observations model for latency data and finds the latter model inferior.

(vi)

Criterion variance is shown to account for at least half of the varianc e of the response-inferred distributions, and consequently, it is argued that TSD results should be viewed more in terms of the general processes which produce criterion variance than modality-specific models of signal processing.

В		TABLE OF CONTENTS	PAGE
CHA	PTER	ONE - MODELS OF THE DETECTION PROCESS	1
	1.1	Introduction	l
	1.2	The Gaussian Assumption	4
	1.3	The ROC-curve and Threshold Theories	12
		1.3.1 Alternatives to TSD	13
		1.3.2 High-Threshold Theory	14
		1.3.3 Two-State Theory	15
	1.4	Stimulus-Oriented Theories of Detection	17
		1.4.1 The 'Signal-Known-Exactly' Model	18
Ē.		1.4.2 The Envelope-Detector Model	19
		1.4.3 The Energy-Detector Model	21
	1.5	Neural Theories of Temporal Summation	23
,	,	1.5.1 The Neural-Counting Model	23
		1.5.2 The Neural-Timing Model	25
	1.6	Cognitive Factors in Detection	28
	1.7	Concluding Remarks	33
снар	ਆ ਸ਼ੁਤ ਆ		
GI II II		WO - APPARATUS, PROCEDURES AND STATISTICS Apparatus	34
	2.2		34
	2.2	second in percention hypertments	35
	2.4		41
			45
	2.5	Subjects	46
	2.6	Threshold Theory Statistics	46
		2.6.1 Least-Squares & Maximum-Likelihood Ratios	48
		2.6.2 Comparison of Best-Fit Functions on Linear	
		and Normal Co-ordinates	49
		2.6.3 Two-State Theory and TSD Best-Fit Functions	
		on Normal Co-ordinates	51

			PAGE
2.7	Detect	ion Indices	53
CHAPTER	THREE -	BIASED RATING CONTINUA	56
3.1	A Revi	ew of Standard TSD Tasks for Auditory Rating Data	56
	3.3.1	The Slope of the ROC-curve as a Function	
		of Signal Strength	56
	3.1.2	Rating Procedures with Continuous Background	
		Noise	60
	3.1.3	Slopes of the ROC-curve in Intensity Discrim-	
		ination Tasks	62
3.2	A Revi	ew of Other Data	64
	3.2.1	Visual Discrimination and Detection Tasks	64
	3.2.2	Other Sensory Discrimination and Detection Tasks	66
	3.2.3	Memory Experiments	68
	3.2.4	Summary of the Rating ROC-curves	70
3.3	Experi	ment 1	71
	3.3.1	Procedure	72
	3.3.2	Results and Discussion	73
3.4	Experi	ment 2	75
	3.4.1	Procedure	75
	3.4.2	Results and Discussion	77
3.5	5 Experi	iment 3	78
	3.5.1	Procedure	78
	3.5.2	Results and Discussion	80
3.6	5 Furthe	er Analysis of Experiment 3	82
	3.6.1	Altering the Decision Rule	82
	3.6.2	Criterion Variance and the Effect of	
		Instructions and p(sn)	83

(x)

PAGE 3.6.3 The Second and Third Decision Rules 87 3.6.4 The Effect of Criterion Variance on Sensitivity 89 CHAPTER FOUR - THE YES-NO PROCEDURE 92 4.1 A Review of Some Yes-No Experiments with Human Subjects 92 4.1.1 Yes-No Experiments which use Continuous Background Noise 92 4.2 Animal Yes-No Experiments 93 4.3 Experiment 4 99 4.3.1 Procedure 99 4.3.2 Results and Discussion 102 4.3.3 Attending to the Absence or the Presence of the Signal 105 4.4 Experiment 5 107 4.4.1 Procedure 107 4.4.2 Results and Discussion 109 4.5 Selective Attention 111 4.5.1 Broadbent's Filter Model and the Critical Band Model 112 4.5.2 Selective Attention in Simple Detection Tasks 115 4.5.3 The Energy-Detector Model's Analysis of Experiment 5 118 CHAPTER FIVE - MODELS OF CRITERION VARIANCE AND THE DETERMINANTS OF SLOPE 5.1 Triesman's Model of Criterion Variance 122 5.2 Wicklegren's Criterion Variance Model

124

(xi)

(xii)

				PAGE
		5.2.1	Criterion Variance and the Yes-No and Rating	
			Tasks	124
		5.2.2	Criterion Variance and the Forced-Choice Task	126
	5.3	Learni	ng Models	127
	5.4	Non-Se	nsory Determinants of Slope	131
		5.4.1	Asymmetry in Detection Tasks	131
		5.4.2	Slope and Memory	132
	5.5	Experi	ment 6	137
		5.5.1	Procedure	138
		5.5.2	Results and Discussion	139
	5.6	Experi	ment 7	140
		5.6.1	Procedure	140
		5.6.2	Results and Discussion	141
·CHAP	TER S	IX - S	IGNAL CONTINUOUS, SIGNAL INFREQUENT EXPERIMENTS	143
	6.1	Experi	ment 8	143
		6.1.1	Procedure	143
		6.1.2	Results and Discussion	144
	6.2	Experi	ment 9	148
		6.2.1	Procedure	148
		6.2.2	Results and Discussion	148
	6.3	Experi	ment 10	152
		6.3.1	Procedure	152
		6.3.2	Results and Discussion	152
	6.4	Energy	-Detector, Neural-Counting and Neural-	
		Timing	Models	157
		6.4.1	Energy-Detector and Neural-Counting Models	157
		6.4.2	The Neural-Timing Model	158

(xiii)

		PAGE
6.	5 Deterministic Models of Temporal Summation and Decay	164
	6.5.1 Zwislocki's Exponential Model	166
	6.5.2 Change and Integrative Detectors	168
CHAPTER	SEVEN - A MODEL OF RESPONSE-INFERRED DISTRIBUTIONS	173
7.	1 Response-Conditional ROC-curves	173
7.	2 Extending Wicklegren's Model	177
7.	3 The Effects of d' st' st' $x_1' x_2$ and r on Slope	182
7.		187
7.	5 The Optimal Criterion	192
7.	5 Deriving d' from the Model	194
7.	7 Deriving s, Optimal x f and v from the Model st	198
7.8		201
7.9	Experiment 10 Revisited	204
7.10) Experiments 8 and 9 Revisited	206
7.13	Does $s_{st} = 1.0?$	210
7.12	Experiment 11	212
	7.12.1 Procedure	215
	7.12.2 Results and Discussion	217
CHAPTER	EIGHT - TWO-STATE THEORY AND LATENCY DATA	223
8.1	Threshold Theory	223
8.2	Two-State Threshold Theory	223
8.3	Two-State Threshold Theory and the Model of Response-	
	Inferred Distributions	233
8.4	Peaked Rating ROC-curves	235
8.5	Pike's Multiple Observations Model	239
8.6	More Peaked Rating ROC-curves	242
8.7	Experiment 12: Procedure and Instructions	244
8.8	Conclusion	257

(xiv)

	PAGE
APPENDIX I - STATISTICS	263
APPENDIX II - THE PROGRAM USED FOR THE	
ANALYSIS OF THE DATA	271
APPENDIX III - FULL SUMMARY OF DATA	281
REFERENCES	357

LIST OF FIGURES

		PAGE
1.1	TSD Stimulus Distributions	5
1.2	A TSD ROC-curve	10
1.3	A High-Threshold Theory ROC-curve	15
1.4	A Two-State Theory Isosensitivity Contour	15
1.5	A TSD ROC-curve produced from Three Two-State	
	Threshold Points	16
1.6	A TSD ROC-Curve on Normal Co-ordinates	20
2.1	The Response Console used in Experiments 3-12	37
2.2	The Sequence of Events	43
2.3	Best-fit TSD Functions	49
3.1	Slope as a Function of Av.log. β - Experiment 1	74
3.2	Slope as a Function of Av.log. β - Experiment 2	76
4.1	Slope vs Av.log Experiment 4	103
4.2	Slope vs Av.log Experiment 4	103
4.3	d' vs Av.log Experiment 4	105
4.4	Av. d' vs dB-SPL - Experiment 5	108
4.5	Av.d' vs E/N - Experiment 5	118
4.6	Av. d from the Psychometric Function - Experiment 5	119
5.1	Ambler's (1974) 'Response Strength Function'	129
6.1	Slope vs dB-SPL (SA) - Experiment 8	145
6.2	Slope vs dB-SPL (SP) - Experiment 8	145
6.3	Slope vs dB-SPL - Experiments 5 and 8	146
6.4	Slope vs dB-SPL (SA) - Experiment 9	147
6.5	Slope vs dB-SPL (SP) - Experiment 9	147
6.6	Av.log. Slope vs d' - Experiments 8 and 9	149
6.7	Slope vs gap duration - Experiment 10	151
6.8	Slope vs burst duration - Experiment 10	151
6.9	Av. Slope vs Av. d' - Experiment 10	151

(xv)

(xvi)

		PAGE
6.10	d'_e vs E/N – a Comparison with Data from Markowitz	
	and Swets (1967)	154
6.11	d'_e vs E/N - Experiments 5, 7, 8 and 10	158
6.12	d' vs d' Predicted by Luce and Green's (1972) Neural-	
	Timing Model	161
6.13	d' vs Burst and Gap Duration - Experiment 10	163
6.14	d'_e vs $\Delta y(t)$ - Experiments 5, 7, 8, 9 and 10	167
6.15	Predicted $\Delta y(t)$ when P/N x Duration is a Constant	169
7.1	Probability Densities for a Type 2 ROC-curve	174
7.2	d' and slope (Type 2 ROC-curve) vs d' (Type 1)	175
7.3	Stimulus, Criterion and Response-Inferred Distributions	176
7.4	Slope vs x1	179
7.5	Slope vs d'	184
7.6	Real and Simulated ROC-curves - Experiment 3	197
7.7	Rating ROC-curves from Markowitz and Swets (1967)	198
7.8	ROC-curves re-analysed by the Model of Response-	
	Inferred Distributions - Experiment 3	202
7.9	Burst and Gap Duration vs Av.log. and Optimal log. β	
	- Experiment 10	204
7.10	Burst and Gap Duration vs Av. σ_{β} - Experiment 10	206
7.11	d'st vs ∆y(t) - Experiment 10	207
7.12	dB-SPL vs Av.log. β and Optimal log. β_x - Experiments	
	8 and 9	208
7.13	dB-SPL vs Av. σ_{β} - Experiments 8 and 9	209
7.14	d_{st} vs $\Delta y(t)$ - Experiments 8 and 9	207
7.15	d' vs ∆y(t) - Experiment 7	207
7.16	dB-SPL vs Av. σ_{β} - Experiment 7	211
7.17	dB-SPL vs Av. σ_{β} when s = 0.76 (SI) - Experiment 7	213

(xvii)

Good and Poor Fits to High-Threshold Theory and 8.1 to TSD 224 Luce and Green's (1970a) Model of Detection Processes 8.2 225 8.3 Data Fitted by Two-State and TSD Functions 229 z(q(s)) and z(q(n)) vs dB-SPL - Experiments 8 and 9 8.4 231 ROC-curves from Norman and Wicklegren (1965) 8.5 236 ROC-curves from Wicklegren and Norman (1966) 8.6 236 ROC-curves from Normal and Wicklegren (1969) 8.7 238 ROC-curves from Emmerich (1968) and Watson, Rilling 8.8 and Bourbon (1964) 239 8.9 ROC-curves from Emmerich, Gray, Watson and Tannis (1972)241 ROC-curves from Swets, Markowitz and Franzen (1969); 8.10 Viemester (1970); Markowitz and Swets (1967) 243 TSD-ERROR and TS-ERROR vs dB-SPL or Burst and Gap 8.11 Duration 245 8.12 Confidence and Latency ROC-curves - Experiment 12 251 ROC-curves fitted to the Model of Response-Inferred 8.13 Distributions 252 The Difference in Av. Latency vs $(f_{L} - f_{U})$ 8.14 258 Non-parametric Area vs $\Delta y(t)$ - Experiments 5, 7, 8, 8.15 9 and 10 254

PAGE

(xix)

LIST OF TABLES

2.1	E/N for Signals of 100 msecs Duration	35
3.1	Results of Experiment 1	74
3.2	Results of Experiment 2	76
3.3	Results of Experiment 3	81
3.4	Hypothetical Relative Distribution of Criterion	
	Variance for Three Decision Rules	84
3.5	Slope for the Data of Experiment 3 - Second and	
*	Third Decision Rules	88
3.6	Hypothetical Total Criterion Variance for Three	
×	Decision Rules	90
4.1	Results from bird 287 (taken from Wright, 1972)	95
4.2	Results from rat 15A (taken from Terman and Terman,	
1	1972)	97
4.3	Results from Experiment 4 (second decision rule)	101
4.4	Results from Experiment 4 (third decision rule)	102
4.5	Results from Experiment 5	108
4.6	Predictions for the Energy Detection Model Compared	
	with the Results from Experiment 5	119
5.1	Results of Experiment 6	139
5.2	Results of Experiment 7	141
6.1	Results of Experiment 8	146
6.2	Criterion Locations in Experiment 8	147
6.3	Results of Experiment 9	149
6.4	Criterion Locations in Experiment 9	149
6.5	Results of Experiment 10	152
6.6	Criterion Locations in Experiment 10	155
6.7	Values of v from Experiments 5, 7, 8 and 10	181

PAGE

		PAGE
7.1	Slope changes as a Function of r and rx_1-x_2	181
7.2	y',x,p(s/sn);, p(S/n) and % Responses above	
	the 'yes-no' cutoff point (simulation of Experiment	
	3)	189
7.3	Optimal x, v_i, y'_i, x'_i , % Responses above each criterion	
	and predicted d'_e and s (simulation of Experiment	
	3).	191
7.4	Experiment 3 Re-analysed using the Model of Response-	
	Inferred Distributions	203
7.5	Results of Experiment 11	218
7.6	d', log x, and average - Experiment 11	220
8.1	TSD and Two-State Error Terms, and % Times that	
	TSD Error Terms were Lower (Experiments 1-11)	226
8.2	Latency, Total Responses and Response Bias	
×	Measures - Experiment 12	247
8.3	d', s, TSD-ERROR, TS-ERROR - Experiment 12	249
8.4	Experiment 12 Analysed According to the Model of	
	Response-Inferred Distributions	255

(xx)