http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
PROTON POLARIZATION

IN THE

$^3\text{He}(d,p)^4\text{He}$ REACTION

A thesis submitted
to the University of Auckland
for the degree of Doctor of Philosophy

BY

JOHN FREDERICK CLARE

University of Auckland,
ABSTRACT

The proton polarization in the $^3\text{He}(d,p)^4\text{He}$ reaction induced by unpolarized deuterons has been measured at deuteron lab. energies of 2.0, 2.8, 3.9 and 6.0 MeV for 20 angles between 0° and 150° (c.m.). Statistical uncertainties are typically ± 0.01.

The measurements were made with a proton polarimeter in which the left-right asymmetry of scattering at 60° (lab.) in ^4He is determined. The polarimeter employs "venetian-blind" collimation of the protons by conical vanes and 75 cm2 plastic scintillator detectors. Four detectors are included for use in polarization transfer experiments. For 10.5 MeV protons and a helium pressure of 250 p.s.i. the target thickness is 3 MeV and the efficiency per detector per unpolarized proton incident is 10$^{-4}$. For each polarimeter detector a triple coincidence with a 15 ns resolving time was required with two scintillator transmission detectors preceding the polarimeter. Spectra of random coincidences were accumulated simultaneously and subtracted. Asymmetries resulting from polarimeter-target misalignment and other geometrical effects are discussed. All results quoted are geometric means of pairs of measurements for 180° rotation of the polarimeter and are also arithmetic means of such measurements to left and right of the ^3He target. The absolute analyzing power is estimated by computer simulation of trajectories to be -0.638 ± 0.020 for protons entering at 10.3 MeV.

The product of polarization and cross section is fitted to an expansion of first-order associated Legendre polynomials using these results and earlier measurements. Only four terms are required except at 6.0 MeV where a fifth is necessary. The energy dependence of these coefficients suggests resonances in ^3Li at deuteron energies of 6.0 MeV (odd coefficients) and 7.5 MeV (even coefficients) in agreement with results for the polarized-beam analyzing powers (1). Comparison of the results with vector-polarized-beam (1) and polarized-target (2) analyzing powers shows no evidence for the postulated simple relations (3) based on DWBA calculations. Comparison of the results with recent measurements of the neutron polarization in the mirror reaction (4) shows no significant differences.

The theory of angular correlations in charged particle reactions is developed and used to calculate outgoing nucleon polarizations. Expressions are given for polarization transfer coefficients. These coefficients are
evaluated in terms of the T-matrix elements for the interference of various channels with the dominant S-wave, $J^\pi = \frac{3}{2}^+$ channel in 3He(d,p)4He at the 0.43 MeV resonance. Two experiments to measure combinations of these elements are discussed.

(2) Leemann, Ch., W. Gruebler et al., 1971, in Polarization Phenomena in Nuclear Reactions (University of Wisconsin Press), p. 548
PLATE I

The proton polarimeter, reaction target and ancillary equipment as used in the polarization measurements. The reaction target chamber and pass counters are shown in more detail in plate IV. The polarimeter is supported by the vertical plate at its left end. The polarimeter and pass counters are mounted on a frame which rotates about the reaction target.
PREFACE

The aims and scope of this investigation of the $^3\text{He}(d,p)^4\text{He}$ reaction have changed considerably since it was started. In 1965 the AURA I, 1.2 MeV polarized deuteron accelerator appeared to be nearing completion and the author, in work done for an M.Sc. thesis, tested an experimental arrangement for monitoring the deuteron tensor polarization by measuring the anisotropy of $^3\text{He}(d,p)$ protons. However later in 1965 it became apparent from studies of $T(d,n)$ at Basel and of $^3\text{He}(d,p)$ by L. Brown in Washington that even close to the $^3\frac{1}{2}^+$ resonance at 0.43 MeV there was a contribution from some other reaction mechanism and that this reduced the analyzing powers of the reaction by an unknown amount. Brown and McIntyre suggested that the second mechanism was the formation of a $^1\frac{1}{2}^+$ state by S-wave deuterons. The author's earlier work followed from this. The aim was to determine the extent to which this or any other mechanism contributed at deuteron energies near the $^3\frac{1}{2}^+$ resonance and the principal tool was the AURA I polarized deuteron beam. The construction of a proton polarimeter was originally suggested by Glavish who was interested in its use in determining the vector polarization of the AURA I beam. The author realized that by using a polarimeter to do what is now known as a polarization transfer experiment it would be possible to determine both real and imaginary parts of the interference term between the two S-wave channels. This experiment, which became the original thesis topic, is described in §3.4 The proton polarimeter described in chapter 4 and the gas-target assembly of §5.1 were designed solely for this experiment. The design, construction and some initial testing of the polarimeter were done during 1966 to mid 1968. The construction of reliable thin-walled gas-target capsules for this work was for some time a cause for concern but a completely satisfactory technique for fabricating these was evolved and is described in appendix E. The author was at the same time involved in the work on the AURA I accelerator which was not proceeding as well as had been hoped. In 1968 and early 1969 the first and only experiment was done with this accelerator. This experiment was the analyzing-power measurement $T(\bar{d},n)^4\text{He}$ at $\theta = \cos^{-1}(\pm 1/\sqrt{3})$ and the tentative conclusion from it was that P-wave channels were involved at energies below 500 keV. A repetition of this experiment on the $^3\text{He}(\bar{d},p)^4\text{He}$ reaction became the second thesis topic. This is discussed in §3.5. Work on it started in August 1968 but the accelerator was not available until May 1969. Subsequently, despite major efforts over the next year, it was found impossible to keep a satisfactory polarized beam on the target. The main problem lay in maintaining a
satisfactory vacuum in the strong field ionizer which was in the Van de Graaff terminal. The second problem was that much of the accelerator-PIS installation was now eight years old and many parts were wearing out. Eventually it became obvious that the installation could not be made to work without major changes and it was abandoned. In May 1970, with the polarimeter complete but lacking satisfactory detector electronics and still in need of mechanical changes, the author decided to make the polarization measurements $^3\text{He}(d,p)^4\text{He}$ for 2 to 6 MeV deuterons using an unpolarized beam from the AURA II accelerator. The author regrets the length of this preamble but feels it is necessary to explain the presence of chapters two and three and the length of time spent on the thesis.

The aims in measuring these $^3\text{He}(d,p)$ polarizations were:

(i) To look for levels in ^6Li. With so few nucleons involved the system should be susceptible to detailed analysis.

(ii) To obtain information about the spin dependence of the forces involved in the interaction. This reaction is peculiarly suitable for this purpose because highly-polarized targets exist and thus three types of one-polarization experiment are possible. At the time of starting good angular distributions were known for two of these experiments (polarized-beam and polarized-target analyzing powers) but the proton polarizations were not so well known.

(iii) To obtain information about the charge independence of nuclear forces by making comparisons with the mirror reaction $^7\text{Li}(d,n)^7\text{He}$.

Chapter 1 is a review of recent work and contains no original material. Experimental observations on a large number of different reactions that suggest the existence of levels in ^5Li are discussed in §1.1 and theoretical predictions of levels are discussed in §1.2; these sections are the background to aim (i). The background to aim (ii) is provided in §1.3 in which relations between the observable polarization parameters and the nature of the spin dependence of the interactions involved are discussed. The data available for comparing these parameters are listed in §1.4.

Chapter 2 is a development (§2.1) of the angular correlation formalism needed in chapter 3 with particular emphasis (§2.2) on the calculation of outgoing polarization. The method used in §2.2 is simpler than that of Welton (1960); it is not original but needed to be properly stated as it has been used incorrectly several times. This formalism is applied to several types of experiment in §2.4; most of these formulae have not been given in their present form before. The theory of polarization transfer in $Y_1(X_1,\frac{1}{2})Y_2$
reactions and the hybrid \(H \) coefficients used in §2.5 are the authors own work, done before publication of the closely-related spherical tensor \(C \) coefficients used by the Basel and Zurich groups and the cartesian coefficients of the Los Alamos group.

Those polarization transfer coefficients \(H \) for the \(^3\text{He}(d,p)\) experiment which are relevant at energies near the \(^{3+}_{2/2}\), 0.43 MeV resonance are evaluated in §3.2. A more comprehensive tabulation has been published since this work was first done and the \(H \) formalism has been recast to simplify comparison of the two. In §3.3 the information now available on the original thesis topic—the extent to which various mechanisms contribute near the \(^{3+}_{2/2}\) resonance and their effect on the analyzing power—is reviewed. The original polarimeter experiment is discussed in §3.4 and shown to be still relevant. The second thesis topic, the "null-angle" \(^3\text{He}(d,p)\) measurement is discussed in §3.5. All of §3.4 and most of §3.2 is original work.

The design and performance characteristics of the proton polarimeter, reaction target, and the detectors and electronics are given in chapters 4 to 6. Achieving the present, very satisfactory polarimeter system has taken a great deal of time and effort; indeed the majority of the author's productive research time has been spent on this. Specific details of the polarimeter and apertures are in the final subsections of §4.2 and §4.3 and in tables 4-I and 5-I. Because of the marked sensitivity of \(^4\text{He}, 60^\circ\)-vanned polarimeters to misalignment a detailed and original analysis of geometrical effects is given in §4.5. The reaction target chamber is unusual in that the deuteron beam is stopped immediately behind the target; this feature, which was a consequence of designing the system for deuterons of less than 1 MeV, allows detection of protons at scattering angles down to 0° but is probably a source of much of the background radiation seen in the polarimeter detectors.

It was not possible at Auckland to calibrate the polarimeter with a proton beam of known polarization. Chapter 7 contains an estimate of the analyzing power, based on the known \(^4\text{He}\) analyzing powers and calculated by computer simulation of proton trajectories. The important results are in table 7-IV.

The \(^3\text{He}(d,p)\) polarization measurements are reported in chapter 8 with the polarizations being given in tables 8-I to 8-V and the polynomial expansion coefficients in table 8-XIII. These measurements are compared with previous results in §9.1. The conclusion relevant to aim (ii) is reported in §9.2: none of the postulated angle-independent relations between the polarization parameters holds. The conclusion relevant to aim (i) is reported in §9.3:
tentative confirmation of the resonance-like effects previously seen at deuteron energies of 60 and 7.5 MeV. The background to aim (iii) — charge independence of nuclear forces — is discussed in §9.4 and examination of the results shows them to be consistent with this hypothesis but not able to provide a good test of it.

The measurements herein are to be supplemented by further work by the Auckland few-nucleon group with the present apparatus at deuteron energies of 5 MeV and below 2 MeV. As a result of all the various types of polarization measurements there is now a large amount of data available on spin-dependent effects in this reaction. It is hoped that this will provoke more detailed attempts to understand the spin dependence of the forces involved in the five-nucleon system.

A number of technical matters have been relegated to appendices. The computer programs used have been included therein for completeness; they are all the author's work apart from the polynomial fitting program which is a modification of an existing program. The Madison Convention for polarization nomenclature has been used except that in some chapters P is used for proton polarization. Differences between symbols in §7.2 and §7.4 exist because of the desire that symbols in the text correspond to those used in writing programs.

Many people have assisted with the work described herein. I wish to thank particularly:

Professor E.R. Collins, my supervisor, for many useful discussions and for critical comments on the manuscript of this thesis;

Dr R. Garrett, who became my supervisor after Professor Collins went on leave, for his encouragement, many helpful discussions and many hours spent taking results;

Dr H.F. Glavish, co-supervisor 1966-68, for discussions on angular correlation theory and the design of the experiments of chapter 3;

Mr A. Chisholm, for discussions on the fast coincidence electronics;

Dr H. Naylor, Mr W. Wood, and Mr M. Keeling for assistance in getting and keeping the largest possible deuteron beam current on the target;
Mr Blair and the workshop staff for the high quality of the construction of the mechanical apparatus; and

Mrs A. Partridge for the very high standard of typing evident herein done from a difficult manuscript with a patience that assisted me greatly.

J.F. Clare

Auckland,
CONTENTS

ABSTRACT ii
PREFACE iv
CONTENTS ix
LIST OF PLATES xii

Chapter One THE MASS-FIVE NUCLEI AND POLARIZATION PHENOMENA IN FIVE-NUCLEON EXPERIMENTS 1

1.1 Level structure of the mass-five nuclei: experimental evidence 2
1.2 Level structure of the mass-five nuclei: model calculations 11
1.3 Predicted relations between the parameters of one-polarization experiments on $^3\text{He}(d,p)^4\text{He}$ 13
1.4 Polarization measurements on the $^3\text{He}(d,p)^4\text{He}$ reaction 17

Chapter Two THE THEORY OF ANGULAR CORRELATIONS 19

2.1 Derivation of the angular correlation function 19
2.2 Determination of the polarization of the reaction product 28
2.3 Rules for calculating cross sections and polarizations 30
2.4 Some angular correlation functions 32
2.5 Polarization transfer coefficients for $Y_1(X_{1/2},Y_2$ 34

Chapter Three THE $J^\pi = \frac{3}{2}^+$ RESONANCE 39

3.1 Introduction 39
3.2 Angular correlation expressions for the $^3\text{He}(d,p)^4\text{He}$ reaction 40
3.3 Current knowledge of the magnitude of the matrix elements at low energies 46
3.4 The polarimeter experiment 53
3.5 The null-angle experiment 55

Chapter Four THE PROTON POLARIMETER 58

4.1 Comparison of available analyzers 58
4.2 Physical configuration of the ^4He polarimeter 65
4.3 Detectors and light-guides 69
4.4 Entrance window and pressure vessel 75
4.5 Geometrical systematic errors 77

 Misalignment of the reaction target on the polarimeter axis 77
Chapter Nine

CONCLUSIONS

9.1 Comparison with previous proton polarization measurements for $^3\text{He}(d,p)^4\text{He}$

9.2 Comparison of proton polarization with polarized beam and target analyzing powers

9.3 Energy dependence of the polarization expansion coefficients

9.4 Charge symmetry in the $^3\text{He}(d,p)^4\text{He}$ and $^7\text{Li}(d,n)^4\text{He}$ reactions

APPENDICES

A The quality factor Q for an elastic-scattering polarization analyzer

B Construction of the polarimeter windows

C Expression for the error caused by the misalignment of the reaction target on the polarimeter axis

.1 First-order calculation

.2 Second-order calculation

D Expressions for the asymmetry caused by angle and energy dependence of first-reaction differential cross section

.1 Energy dependence

.2 Angular dependence

E Gas target capsules

.1 Nickel foil targets

.2 Havar foil targets

F Alignment procedures

G The pulse-height-analysis program FRED

H Analyzing-power computation programs

.1 The general analyzing-power problem

.2 Computation of $P(\theta,E)$ and $\sigma(\theta,E)$

.3 Computation of $\langle \cos \phi \rangle$

.4 Program listings
I Expressions for errors in calculation of polarization from observed asymmetries 206
 .1 Error calculation which takes account of random coincidences 206
 .2 Error contributed by uncertainty in the resolving-time ratio 206
 .3 Effect of "internal" background on measured polarizations 207
 .4 Modification of the error formula when background is present 208
J Data analysis programs 209
K The polynomial fitting programs 213
L Evaluation of re-coupling coefficients and rotation matrix elements 216
M Decomposition formula for statistical tensors 218
N Angular distribution for S-waves for both target and beam polarized 220

REFERENCES 221

LIST OF PLATES following page
I The proton polarimeter as used iii
II Interior of the proton polarimeter 64
 (a) end view 64
 (b) side view 64
III (a) The polarimeter entrance window foils and 3He target capsules 75
 (b) The jig used for making the nickel-foil target capsules 75
IV The target chamber and pass counters 87
V The data-acquisition electronics used in the proton polarization measurements 96
Fig. 1-1. Energy levels of 5He and 5Li (from Lauritsen and Ajzenberg-Selove, 1966).