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Abstract

Networked control systems (NCSs) refer to a class of systems where the components

such as plants, sensors, actuators and controllers are connected via a communication

network. This configuration provides several advantages over the traditional point-to-

point structure such as modularity, ease of maintenance and low construction cost. NCSs

enable several practical applications such as unmanned aerial vehicle and remote control

of the plant, which are difficult to achieve with the traditional point-to-point structure.

The presence of network inevitably, however, introduces delays and data loss as signals

travel through the network, meaning that the controllers in NCSs are to stabilize the

system while overcoming the adverse effects caused by the presence of the network.

As continuous signals are transmitted via a network, they are converted to clusters of

data called packets and these packets of data are transmitted through the network. Hence,

it is natural to consider the plant and the controller in discrete-time domain where new

information about the systems components are available at each sampling instance. In

this thesis, discrete-time representation of the plant is considered and the controller/filter

design methodologies are developed based on Lyapunov-Krasovskii functional.

The focus of the research is to develop controller and filter design methodologies

for NCSs which takes the aforementioned network constraints into account. Hence the

network needs to be modelled and taken into consideration when designing the con-

troller/filter. In particular, a finite state Markov chain is used in this research to model the

network-induced delays and data loss where each mode in the Markov chain corresponds

to the delays in the network. Difficulties of obtaining a completely known transition prob-

ability matrix, which describes the transitions between the modes of the Markov chain,

in real world is acknowledged in this research and some of the elements in the transition

probability matrix are allowed to be unknown. In this thesis, a robust H∞ state feedback

controller design for linear and nonlinear NCSs are first developed where the transition

probability matrix of the Markov chain is assumed to be completely known. Based on



theses methodologies, robust H∞ state feedback controller, robust H∞ filter and robust

H∞ dynamic output feedback controller design methodologies for NCSs are presented

where the transition probability matrix is allowed to be partially known. It is shown that

the case with either completely known or unknown transition probability matrix can be

considered as a special case of the presented approaches.

Study of nonlinear systems is important as every real system contains nonlinearities.

Takagi-Sugeno (T-S) fuzzy model has been shown to be effective in modelling nonlinear

systems which describes a global nonlinear system with a series of local linear models

blended using membership functions. In this thesis, robust fuzzy H∞ state feedback, ro-

bust fuzzy H∞ filter and robust fuzzy H∞ dynamic output feedback controller design are

considered where the nonlinear NCSs are described by T-S fuzzy model, with main focus

on partially known transition probability matrix in the Markov chain. Special attention

is given to premise variables of the plant to correctly model NCSs where there exists a

network between the plant and the controller. It has been addressed that many existing

literature on nonlinear NCSs modelled by T-S fuzzy model fail to acknowledge this issue,

making the existing approaches impractical. Furthermore, a methodology to incorporate

membership functions into the controller/filter designs via sum-of-squares approach is pre-

sented to ensure that the controller is specific for the membership functions of the system.

This has not been considered in existing studies of nonlinear NCSs, making the existing

results conservative as the controllers are valid for any shape of membership functions.

Iterative algorithms to convert nonconvex problems into optimization problems are also

presented so that existing mathematical tools can be used to obtain a controller/filter.

Finally, the effectiveness of the proposed design methodologies are demonstrated us-

ing numerical examples in this thesis. The simulation results show that the proposed de-

sign methodologies achieve the prescribed performance requirements. Comparisons with

existing methodologies without considering membership functions are made for robust

fuzzy H∞ state feedback controller and robust fuzzy H∞ dynamic output feedback con-

troller to illustrate that incorporating membership functions results a larger stabilization

region, demonstrating the advantage of the presented methodologies.
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1
Introduction

1.1 Introduction to Networked Control Systems

In the last decade, there has been a significant advance in communication systems, which

subsequently changed the way people carry out their daily lives. With wider bandwidth

available on mobile networks, smartphones are becoming common, allowing people to

access Internet at their fingertips. The days when a mobile phone is used to make calls

are long gone. Widespread of broadband Internet allows people to get in touch with

another and even see each other no matter where they are around the world, as long as

there is an Internet connection. Not only did these advances make direct contributions to

the way people carry out their lives, it also opened a lot of new doors that had not been

possible before in many disciplines of engineering.

In control systems, this advance resulted in a new area of research called networked

control systems (NCSs) where the control loop is closed via a communication network.

The purpose of NCSs is to control through the network, not control of the network. This

setup provides several advantages over the traditional point-to-point architecture such as

modularity, quick and easy maintenance, integrated diagnostics and low construction

1
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cost [1–8]. Typical examples of NCSs are remote control systems, factory automation,

unmanned vehicle navigation and motor vehicles, as shown in Figure 1.1. There has been

several common-bus network architectures introduced to facilitate NCSs but NCSs can

also use existing architectures to transfer information. This particular setup is useful in

practice as there no longer is the need that the controller is close to the plant, allowing

controllers around the world to be gathered in one location. The special setup of NCSs

makes the system modularized therefore when faults occur in the system, the faulty

module can simply be replaced/repaired. Furthermore, since the system can be configured

to use existing networks, the construction cost is low as there no longer is copper wire

connecting the system components. This also makes the system mobile and combined

with modularity, it makes maintenance of NCSs easy. For these reasons, NCSs have been

receiving increasing attention in recent years.

Figure 1.1: Typical examples of networked control systems

Configuration of NCSs can be broken down into two main categories shown as follows

[9]:

1. Direct structure. This structure is the typical structure considered in the research

of NCSs where the system components such as plant, sensor, controller and actuator

are connected through a communication network as shown in Figure 1.2. The con-

troller and the plant may be in different physical locations and directly connected

via a network. The sensor data is transmitted via the network in packets. The
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controller will compute the control signal based on the packet data received and

transmits the control signal in packets via the network. In such implementation, a

single hardware may be used for multiple controllers.

Figure 1.2: Direct structure of networked control systems

2. Hierarchial structure. This type of structure consists two controllers as shown

in Figure 1.3. The main controller sends the reference signal to the remote system

where the local controller will use this reference signal to control the plant. In this

structure, the main controller may run at longer sampling period than the local

system. The main controller can be implemented to handle multiple several remote

systems.

Figure 1.3: Hierarchial structure of networked control systems

Note that the control methodologies for the direct structure can still be applied to

the hierarchial structure by treating the local system as a plant. For this reason, most of

existing studies in NCSs have focused on the direct structure [9].

In NCSs, as already explained, the signal between the sensor and the controller

or between the controller and the actuator is transmitted via a network. Traditional

controller designs used in point-to-point architecture, therefore, cannot be used directly

as they do not consider the presence of the network and assume instantaneous transfer of
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signal within the system. The presence of network makes the analysis more complicated

as it introduces constraints that need to be considered. In general, the introduction

of network degrades the performance of the system and worse, destabilize the system,

meaning that the controller in NCSs needs to minimize the adverse effects of the network.

Figure 1.4 shows an example of NCSs in medicine called teleoperation. In this

example, the surgeon is performing a surgery from a remote location and any information

is transmitted via a network. The surgeon receives visual information as well as the

patient’s vitals via the network and performs the surgery using the robot located with the

patient. Any command given by the surgeon is transmitted via the network and the robot

follows the command it receives over the network. Instead of traditional surgery where

the patient and the surgeon is in the same room, this special setup allows the patient to

be remotely located while receiving treatment from a doctor anywhere in the world. This

is a typical example of remote control that is now possible with NCSs.

Figure 1.4: An example of networked control systems in remote surgery

In the previous example, machines and cameras (sensor) record the information

about the patient (plant) and send the information through the network. The surgeon

(controller) makes decisions (control signal) based on this information and it is passed to

the robots (actuator) where they execute the decision the surgeon makes. As shown in this

analogy, NCSs provide opportunities that have not been possible in the past. However,

in order to utilize the advantages of NCSs, such as low installation cost, mobility and

modularity, one needs to understand the constraints/challenges of introducing a network

as a medium in control systems.

1.2 Constraints in Networked Control Systems

As mentioned in the previous section, the introduction of network degrades the perfor-

mance of the overall system. This means that a specific controller design scheme for
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NCSs is required [1–5, 10–12] and requires one to understand the fundamental issues aris-

ing from introducing a network. As information is transmitted via a network in NCSs,

the same kind of constraints that appear in communication networks are also present in

NCSs.

In the traditional point-to-point structure where the system components are con-

nected via copper wire, infinite transmission bandwidth is assumed. This, along with the

fact that the controller is located close to the plant, means that information is instan-

taneously received as soon as it is transmitted. However, in NCSs, information is put

together in a packet and is transmitted through the network at time instances. Not only

does it take a certain amount of time for these packets to travel through the network,

they need to be created from the transmitter and interpreted at the receiver’s end. These

combined time corresponds to network-induced delays and it may be constant, time vary-

ing or random, depending on the network topologies being employed. Furthermore, due

to various reasons such as buffer overload or noise, the packets may be lost and never

received by the receiver. This phenomenon, called packet dropouts, results a piece of

information never being available on the other side of the network. The existing theories

that does not consider these constraints may not achieve stability of NCSs [1–5, 10–12].

These common issues in NCSs can be easily understood by a simple analogy of pigeon

post as shown in Figure 1.5. The pigeons in this analogy represent the packets and the

message they carry are the information that is being passed through the network. It is

easy to see that, it will take a certain amount of time for the pigeons to deliver the message

to the destination. The amount of time it takes depends on the pigeons and conditions of

the sky that the pigeons fly. At the time instance t1 in Figure 1.5, it takes τ(t1) amount of

time for the blue pigeon to deliver the message, illustrating the network-induced delays.

At t2 time instant, the red pigeon, while traveling to deliver the message, was shot down

by a hunter and never arrived at the destination. This phenomenon in NCSs is the packet

dropout where the information in the packet is lost. These two are the most important

and common issues that appear in NCSs. In the case of green and black pigeons, because

of the random network-induced delays, the green pigeon that was sent before the black

pigeon arrived after the black pigeon. From the destination, it seems that the green pi-

geon carries a newer message and may discard the message the black pigeon is carrying.

This issue, called packet reordering is caused by the random communication delays and

its effect is similar to packet dropout, in that the message the black pigeon is carrying is

lost.

When a signal is transmitted via a network in a form of packets, each packet in-

evitably experience network-induced delays and is subject to packet dropout. Figure 1.6

shows typical issues that may arise in NCSs. Both origin and destination are time-driven
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Figure 1.5: An analogy of constraints in networked control systems

for the purpose of this explanation. At time instance, tk−1, the origin transmits a packet,

highlighted in blue. This packet is received by the destination at time tk−1 + τ k−1
sc , where

τ k−1
sc is the network-induced delay at tk−1. The destination uses a time-driven compo-

nent therefore it will only obtain the new information from the buffer at time tk. Unlike

the traditional point-to-point structure, the transfer of information is not instantaneous;

therefore by the time the destination receives the signal about the origin, the information

is not up-to-date. As seen in the figure, at time tk, when the destination receives the

packet highlighted in blue, the actual information at the origin is different, highlighted in

red. This means that the action taken at the destination is based on the past information:

at time tk, the signal received by the destination contains the information at time tk−1.

This is the most important issue in NCSs which leads to degradation of performance or

instability. Packet dropout exacerbate this issue even further. For example, at time tk,

the origin sends another packet, highlighted in red. If packet dropout occurs and this

packet is lost while it travels through the network, the most recent data at time tk+1 at

the destination is still the same packet it received at time tk, which contains the infor-

mation of origin at time tk−1, highlighted in blue. Note that in time-driven components,

these delays will be multiple integers of the sampling period.

It is noteworthy that, in the case when the system component on the receiver is

time-driven, the packet dropout can be seen as prolonged delay of more than one sampling

instance. In Figure 1.6, the packet sent at time tk has arrived the destination but the

delay is longer than one sampling period. In this case, as there was no new information at

time tk+1, the destination uses the most recent data successfully transmitted, highlighted
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Figure 1.6: Timing of information transfer of a network

in blue. At time tk+2 the destination receives two packets, highlighted in red and black.

Since the packet highlighted in black is the most recent, the destination will use the packet

at time tk+1, effectively creating packet dropout. As explained in the next chapter, this

characteristic can be used to model packet dropouts in relation to network-induced delays.

The type of delays, whether it is constant, time varying or random, largely depends

on the types topologies that networks use. The following paragraphs introduce two types

of networks with different medium access control protocols [9].

The first type of network is called cyclic service network and this type of network

protocols such as IEEE standard 802.4, SAE token bus, PROFIBUS, IEEE standard 805.5,

fiber distributed data interface (FDDI) architectures and FireWire transmits the signal

in cyclical order [13–16]. In these networks, the delays are deterministic and periodic.

However, in practice, this periodic property may experience variations and this property

can be destroyed. For example, when packet dropouts occur, as previously explained,

the delay effectively increases by one sampling period, no longer satisfying periodic delay.

Furthermore, discrepancies in clock generators also contribute towards the loss of periodic

property in cyclic service network.

The second type of network is where many of the common networks such as Ethernet

and Internet belong to, called random access network, where the delays are stochastic

[17]. This type of network is more common in the real world hence many researchers have

focused on this type of network. Since the delays are stochastic, probability theory is

usually employed to model such network. The next section presents some of the existing

studies on NCSs such as network modelling approaches and various controller designs.
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1.3 Studies on Networked Control Systems

The concept of using a network to transmit signals within the system is novel but the

presence of delays in the system has been considered since the 18th century. These systems

are called time delay systems and they differ from NCSs as time delay systems contain

delays within the plant, instead of between system components [10, 18–26].

It is unclear when networked control systems were first developed but many believe

that Bosch GmbH engendered the concept in 1983 when it studied feasibility of using

networked devices within an automobile. It developed Control Area Network (CAN), a

network medium dedicated for NCSs, which is widely used in car manufacturing in Europe

[3]. The terminology, NCSs, however, did not appear until Gregory C. Walsh coined the

term in 1998 when he provided a closed-loop structure where the controller and the sensor

are connected via a serial communication channel.

The majority of the research in NCSs are regarding stability analysis [2, 5, 27–

36] and the controller needs to minimize the adverse impact of the presence of network

to achieve stability. As a consequence, the study of modelling these constraints is very

important in the stability analysis of NCSs. More specifically, many existing approaches

focus on modelling the network-induced delays as this is the most prominent constraint in

NCSs. There are several ways researchers have attempted to incorporate the constraints

in NCSs, mainly network-induced delays and packet dropouts and some of the approaches

are presented in this section. Also presented are some of the controller design approaches

that have been published in recent years to provide a brief overview of existing studies in

NCSs.

1.3.1 Modelling of Network in NCSs

One obvious approach in NCSs is to design a controller based on the maximum delay of

the network. Even though this kind of design is easier to implement, as only the maximum

delay needs to be known, it is unrealistic to expect optimal performance. Furthermore,

these kind of controllers are often conservative and overdesigned since the controller is

based on the maximum delay with a small likelihood of occurrence. For these reasons,

many researchers focus on modelling the network and design a controller based on the

model of the network to ensure stability, resulting in delay-dependent controllers. The

following paragraphs introduce some of the existing methodologies developed to model

the network-induced delays and packet dropouts. It is noteworthy that the majority
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of existing papers incorporate model of network-induced delays as they are the most

prominent constraint in the real world.

Bernoulli distributed white sequence has been widely used used to model the packet

dropout [37–42] where discrete-time system with time-driven components are considered.

When packet dropout occurs, the signal received in the last sampling instance can be

used by the system. Bernoulli distributed white sequence, however, not only can it be

used to model the packet dropout, it can also be used to model network-induced delays as

shown in [43–45]. In a discrete-time system, the packet dropout and delay more than one

sampling period are identical and the network-induced delays can be modelled by using

this property.

Bernoulli distributed white sequence is essentially a binary switching sequence. In

this sense, a Markov chain with two modes can essentially achieve the same outcome where

one mode represents successful transmission and another a packet dropout as shown in

[38, 46–48]. In these aforementioned papers, a homogeneous Markov chain is used to

model the packet dropouts and since a Markov chain may consist more than 2 modes, it

can be used to model successive dropouts as shown in [47, 48].

In [49], the authors focused on modelling IP network delays with generalized expo-

nential distribution where round-trip time delays are measured and modelled. The authors

overcome the difficulties of obtaining parameters of the model in real-time by treating the

IP network stochastic behaviour as a parameter variation of the system transfer function.

The authors show that the distribution is right skewed for IP network delays.

Since a network itself is a system, a system identification approach can be used

to model the network-induced delays. In [18], the network-induced packet delays are

modelled by either autoregressive moving average (ARMA) or autoregressive integrated

moving average (ARIMA) model depending on whether the delay is stationary or nonsta-

tionary. The authors suggest that ARMA model is used for stationary random delays and

ARMA for either nonstationary or weakly stationary delays. In this paper, a “black box”

approach incorporated as the model identification relies only on the data itself instead of

the prior information about the system. Autocorrelation function and partial autocorrela-

tion function are used to determine whether the delay is stationary as the autocorrelation

coefficients of stationary series decay quickly. In [50], a heuristic model based on the

deviation-lag function (DLF) is developed to model the packet queueing delays. Unlike

[18] where either ARMA or ARIMA model is used depending on the types of the delays,

whether stationary or nonstationary, the authors show that using DLF can capture the

statistical features of both types.
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As explained previously, the network-induced delays of many existing networks such

as CAN, Ethernet and Internet are stochastic in nature. This means that Markov chain,

which also exhibit stochastic nature, is ideal in modelling the network-induced delays.

For this reason, Markov chain has been widely used to model the delays [8, 11, 27, 34, 51–

60] where each mode in the Markov chain corresponds to each delay in the network.

In discrete-time NCSs, where the network-induced delays exists in integer multiples of

the sampling period, Markov chain provides an excellent way to model the delays. It is

worthwhile to note that the aforementioned papers require a completely known transi-

tion probability matrix, which describes the likelihood of transition among the modes.

However, obtaining a completely known transition probability matrix in real world is ei-

ther impossible or very costly. Due to this consideration, a methodology for designing a

controller for Markovian jump linear system with partially known transition probability

matrix in non-NCSs problem has been investigated in [61–63]. These methodologies still

have room for improvement as they completely discard the unknown probabilities. Fur-

thermore, these aforementioned papers do not consider NCSs where Markov chain is used

to model the network-induced delays. Throughout this thesis, the network-induced de-

lays are modelled by a homogenous finite state Markov chain, with the focus on partially

known transition probability matrix. Refer to Chapter 2 and 3 for more information on

how a Markov chain may be used to model the network in this thesis and how partially

known transition probability matrix is handled to design a controller, despite knowing all

transition probabilities.

A Markov chain is a random process which consists of a countable set of values

and change the state at intervals. One of the key characteristics of Markov chain is the

memorylessness in the state transitions, in that the next state depends only on the current

state and not the past states. At each time instance, a transition to a new state occurs

and its likelihood is defined by a probability called state transition probability, shown as

follows:

pij := Prob{Sk+1 = j|Sk = i}

where Sk+1 and Sk are the states at time instance k + 1 and k respectively. This value,

pij, describes the likelihood of state transition from i to j at time instance k + 1.

Figure 1.7 illustrates an example of a finite state machine with 4 states in the Markov

chain. For example, say the current state at time instance k is 1. At the next time instance,

k + 1, one of the following will occur; either the next state at time k + 1 remains at 1

or it moves to any of the other states; 2, 3, or 4. The likelihood of such occurrence is

given by a set of probabilities; p11, p12, p13 and p14 respectively. In the Markov chain that

contains a finite number of states, hence the name “finite state Markov process”, these
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Figure 1.7: State diagram of Markov chain with 4 states

probabilities can be represented by a matrix as follows;

Pτ ,



p11 p12 p13 p14 . . . p1s

p21 p22 p23 p24 . . . p2s
...

...
...

...
. . .

...
...

...
...

...
... p(s−1)s

ps1 ps2 ps3 ps4 . . . pss


(1.3.1)

where s represents the number of states in the Markov chain. Since pij are probabilities,

0 ≤ pij ≤ 1 holds. Furthermore, at each time instance either transition to a new mode

occurs or it remains in the current state, which means
∑n

j=1 pij = 1; i = 1, 2,. . ., n. This

fact that the summation of probabilities in each row must equal to 1 is used, as explained

in Chapter 3, to deal the situation where some of the probabilities in (1.3.1) are unknown.

When a Markov chain is used to model the network-induced delays, each state, or

mode, corresponds to the time-varying delay in the network. Throughout this thesis, it

is assumed that the network-induced delays are time-varying but upper bounded by a

constant. Furthermore, the current mode of the Markov chain is assumed to be accessible

by the controller. This can easily be achieved by using a time stamp as shown in [17, 57,

64]. Based on the information the time stamp contains, the controller can determine the

network- induced delay.

Another way to use Markov chain to model the network-induced delay is presented
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Figure 1.8: A basic structure of hidden Markov model

in [56]. This approach, named hidden Markov models, contains a Markov chain that is

“hidden.” It is essentially a double stochastic process with an underlying, unobservable

process, and another stochastic process, from which the hidden process is to be estimated.

Figure 1.8 illustrates the basic structure of a hidden Markov model.

Many of the papers on Markovian jump systems assume that the transition proba-

bility matrix is completely known [8, 11, 27, 34, 51–60]. However, obtaining a completely

known transition probability matrix is either practically impossible or very expensive.

This provided motivation to several researchers to consider a Markovian jump systems

where the transition probability matrix is partially known [61–63]. In these papers, more

general approach is presented where the Markovian jump system with completely known

transition probability matrix becomes a special case of this approach. However, the

methodologies presented in [61–63] still leaves room for improvement in the way the un-

known transition probabilities are handled.

In [61–63], terms containing probabilities are separated and unknown probabilities

are discarded. For example we have the following for any matrix Pj,

n∑
j=1

pijPj =
n∑

j∈Si
K

pijPj +
n∑

j∈Si
UK

pijPj (1.3.2)

where

S i
K , {j : if pij is known}, S i

UK , {j : if pij is unknown} (1.3.3)

The above is true because the summation of all probabilities in each row of the

transition probability matrix, regardless of whether they are known or not, is always one.

Therefore if
∑n

j∈Si
K
pijPj < 0 and Pj < 0, ∀j ∈ S i

UK then
∑n

j=1 pijPj < 0 holds. By

stating Pj < 0, ∀j ∈ S i
UK, the unknown transition probabilities are simply discarded,

making the result more conservative.
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Even though individual unknown probabilities cannot be obtained, the summation

of unknown probabilities are bounded because the summation of all probabilities must

equal to one. This means that

n∑
j=1

pij =
n∑

j∈Si
K

pij +
n∑

j∈Si
UK

pij =
n∑

j∈Si
K

pij +
(
1−

n∑
j∈Si

K

pij

)
= 1 (1.3.4)

In this thesis, the above information is used to create an upper bound of the unknown

probabilities so that the probability information is used in the controller design. By doing

so, unlike what is shown in [61–63], the summation of parts corresponding to the known

and unknown probabilities is considered, instead of separating them.

1.3.2 Controller Design for NCSs

The role of the controller in NCSs is to maintain the stability of the system as well as

controlling and maintaining the system performance in the presence of the constraints

imposed by the presence of the network. Several typical approaches are presented in the

previous paragraphs. The following paragraphs describe some of the controller design

methodologies in NCSs that have been published in recent years.

In [2, 30–33, 65–68], the authors use maximum allowable transfer time (MATI)

or maximum allowable equivalent delay bound (MAEDB), which are quality of service

measure for NCSs, in the stability analysis. In [33, 65], a methodology to determine

MATI of an NCS to ensure that the overall system is stable is proposed. The design

approach provided in these papers are to use standard control methodologies and choosing

the network protocol and bandwidth to ensure that the system will remain stable when a

computer network is introduced to the feedback loop. The advantage of such approach is

the wide range of existing control methodologies and this approach is particularly useful

when existing systems are converted to NCSs. However, it requires flexibility of choosing

network protocols and bandwidth, which may not be the case in the real world. In [66, 67],

the authors propose controller design based on MAEDB. In [30–32], the authors propose

new scheduling protocol and show, by using MATI, that their protocol is superior.

Similar to [33, 65], where introducing a network to existing feedback loop is investi-

gated, [49] also investigates using an existing controller to convert a non-NCS to an NCS.

This particular concept is practical when replacing an existing controller is costly, inconve-

nient and/or time consuming. By using what the authors call gain scheduler middleware,
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the output of the existing controller is modified based on a gain scheduling algorithm with

respect to the current network conditions. This allows the existing controllers to be used

when network is inserted in the feedback loop.

In [16], the authors developed the sampling time scheduling methodology for an

NCS to select a sampling period to ensure the stability of the system. This methodology

selects a sampling time that is longer than the worst-case delay bound for a discrete-time

NCS so that the delay does not affect the system performance. In this paper, a time-

driven sensor and controller and an event-driven actuator is used. This methodology is

originally applied to cyclic service networks whereby all connections of every NCS on

the network are known in advance. It has been modified in [69] to CAN, which is a

random access network. Furthermore, the methodology presented in [16] is expanded to

multi-dimensional cases in [70, 71].

It has been shown in [72, 73] that nonlinear and perturbation theory can be used

to formulate delay effects as perturbation of a continuous-time system under the assump-

tion that there is no observation noise. The networks are restricted to be priority-based

networks and priority scheduling algorithms are presented in [74]. This approach can be

applied to both linear and nonlinear systems, but it requires a very small sampling period

to ensure that the system can be approximated as a continuous-time system. This small

sampling period usually results in congestion of network and high computation burden

on components, both of which are not desirable in real world.

A problem of robust stability of NCSs with delays satisfying Bernoulli random binary

distribution is investigated in [22]. In this paper, a new type of system model with

stochastic parameter matrices is proposed. Exponential mean square stability of the

original system based on Lyapunov functional is established. However, this work only

investigates stability analysis, not the controller design methodology.

In [75], a method to formulate an NCS as a discrete-time switched system is pro-

posed. Augmented state space representation of the system according to the delays are

introduced in this paper. This means that the parameters in the system change based

on the network conditions and a dynamic controller is used to control an NCS. Similarly,

[76] presents stability and disturbance attenuation issues for NCSs under uncertain ac-

cess delay and packet dropout using switched systems framework. As shown in [75], [76]

also formulates an NCS as a discrete-time switched system so that existing methods for

discrete-time switched systems such as [77–79] may still be used. However, the controller

is required to run at a higher frequency than the sampling frequency which may lead to

practical issues.
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Queuing methodologies, which utilize deterministic [80, 81] or probabilistic informa-

tion [82] for the control algorithm formulation are developed for NCSs. An observer and

a predictor are used in [80, 81] to estimate the plant states and compensate for the delay

based on the past output measurements stored in a first-in-first-out queue. However, this

approach requires high model accuracy as the observer and the predictor are highly de-

pendent on it. This means that the dynamic model of the plant needs to be precise. In

[82], the presented methodology uses the amount of information in the queue to improve

the state prediction. However, this approach is a scheme to predict state variables, not a

control algorithm.

Optimal control methodology has been proven to be effective in traditional control

systems theory. The purpose of such method is to minimize the cost function and this

approach has yielded successful results in NCSs [17, 57, 64, 83]. The effects of the delays

are treated as a linear quadratic Gaussian problem in [17]. The authors assume that the

total delay is less than one sampling period and the information on the past time delays

are available. The authors propose using a time stamp to store this information. A similar

approach is used in [57, 64] but this approach allows network-induced delays longer than

one sampling period. As it was the case with [17], [57, 64] also use time-driven sensor and

even-driven controller and actuator. However, the approaches shown in these papers are

not practical as the controller memory needs to be large to store the past information of

delay, which is required to use the presented approach. In [83], linear quadratic regulator

output feedback gain scheduling controller is designed for mobile NCSs. In this paper, the

controller gain is dependent on the network condition, more specifically the delay at each

time instance. The state space representation of a discrete-time system is augmented

to include all the delay terms. By using this approach, the overall closed-loop system

becomes a switched system. The major drawback of this approach is that the augmented

system includes all the delay terms, that is, a system with long delays will increase the

complexity of the problem significantly.

As explained the previous section, Markov chain is ideal in modelling the network-

induced delays. By using this approach, the overall system becomes Markovian jump

systems whereby each possible delay in the network is represented as a state, or mode,

in the Markov chain [8, 54, 56]. A Markovian jump system can be seen as a collection of

subsystems with a constant delay where each subsystem consists a controller designed for

the constant delay. At each time instance, depending on the current delay of the network,

one of the controllers corresponding to the subsystem will be “switched on.” Hence, the

controller is mode dependent, resulting in different the controller gain depending on the

current delay in the network at a given time instance. In [8] a state feedback controller

design for NCSs is developed where the stability analysis is based on Lyapunov function.
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The existence of the controller is given in terms of solvability of bilinear matrix inequal-

ities. In [54], interior-point algorithm is used to design stabilizing dynamic controllers.

Refer to Chapter 2 and 3 for more information about how a Markov chain is used to

model the network in NCSs and how a partially known transition probability matrix is

considered in this thesis.

Study of nonlinear systems is important as every system contain inherent nonlinear-

ities. Takagi-Sugeno (T-S) fuzzy model has been proven to be very effective in modelling

nonlinear systems. Its success in traditional control theory has been translated to nonlin-

ear NCSs in recent years [36, 41, 58, 66, 67, 84–91]. The attraction of T-S fuzzy model

is that the global nonlinear system is modelled by local linear models. Fuzzy blend-

ing of local linear models with membership functions allow the global nonlinear plant

to be modelled by a T-S fuzzy model. In [84] a parity-equation approach and a fuzzy

observer based approach for fault detection of an NCS were presented. In contrast to

other approaches in NCSs, this approach does not require the knowledge of exact values

of network-induced delay as it addresses situations involving all possible delays. State

feedback controller design for nonlinear NCSs is presented in [36, 58, 67, 85–88]. In [85],

the authors take the probabilistic interval distribution of the communication delay into

the controller design. They also provide a general framework where network-induced

delays and packet dropout are under a unified framework. Two Markov processes are

used to model the sensor-to-controller and controller-to-actuator delays in [58]. Fuzzy

H∞ tracking controller is presented in [67] where the controller design is based on the

maximum allowable equivalent delay bound. State quantization in NCSs is considered in

[86] where a robust H∞ fuzzy state feedback controller is designed. In [87], a new type of

state feedback controllers, named switched parallel distribution compensation controllers,

are presented and it has been shown that this method provides better or at least the same

results as the existing design methodologies. A sufficient condition for the existence of

a fuzzy controller with network-induced delay and packet dropout are presented in [36].

Fuzzy rules are used to model the network-induced delays, which are then used to design

a fuzzy state feedback controller in [88].

Compared to fuzzy state feedback controller design approach, study on output feed-

back controller design for nonlinear NCSs is even more scarce [41, 66, 89–91]. In [66, 91],

the authors propose a static output feedback controller design. An observer based output

feedback control of NCSs with multiple packet dropouts is presented in [41]. In [89] a

fuzzy dynamic output feedback control of continuous-time NCS is presented where the

sufficient conditions are derived by Lyapunov-Krasovskii functional. AnH∞ output track-

ing control for nonlinear discrete-time NCSs with packet dropout modelled as a Bernoulli

sequence is presented in [90].
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It has been shown in [92–96] that the membership functions play a vital role in the

stability analysis of fuzzy model based control. However, many of the existing papers

discard the membership functions in the design analysis. This is because the membership

functions are nonlinear, hence popular linear matrix inequalities (LMIs) approach cannot

be adopted. The traditional approach discards the membership functions in the controller

design in order to formulate the conditions in LMIs. The drawback of such approach is

that the controller designed is valid for any shape of membership functions, which cause

conservatism. Several attempts have been made to overcome this drawback. In [92, 93],

boundary information of membership function are incorporated into the controller de-

sign. However in this approach, only the lower and upper bound of the membership

functions are included. In [94], the membership functions are approximated by using

staircase piecewise functions. This means that in each sub-region membership functions

are approximated by a scalar, allowing controller design to be formulated in terms of LMI

conditions. Similar to [94], [95] use piecewise linear functions to approximate the mem-

bership functions. However, since piecewise functions are used in [94, 95], the number

of sub-regions needs to be quite large in order to approximate the membership functions

with accuracy. In [96], polynomial functions are used to approximate the products of

membership functions and the bounds of the approximation error are incorporated into

the design. This approach provides an alternative to [94, 95] by using continuous polyno-

mial functions to approximate membership functions using sum-of-squares decomposition.

Unlike [94, 95], where the membership functions are essentially discretized, polynomial

function approximation provides continuous membership functions. Refer to Chapter 7

for more information about how membership functions are incorporated into the fuzzy

controller design in this thesis.

In NCSs, a network is present between the plant and the controller. Signals traveling

between the plant and the controller inevitably experience network-induced delays. In

[36, 67, 85, 87, 88], the premise variables of the plant, which are the state variables of

the plant, are assumed to be measurable and the same premise variables are used by

the fuzzy controller. However in NCSs the premise will inevitably experience network-

induced delays, that is, if the premise variables of the controller are selected to be the

same as the plant, then the fuzzy controller has be based on the delayed premise of the

plant. Therefore, the fuzzy controller based on the current premise of the plant as in

[36, 67, 85, 87, 88] may be impractical in NCSs.

Study of NCSs is by no means complete as existing literatures focus on a small

part of the issues in NCSs. Many of the existing papers make too many impractical

assumptions such as that the network-induced delays are less than the sampling period

or that network traffic cannot be overloaded. Furthermore, the majority of the studies
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in NCSs are focused on continuous-time systems and study on nonlinear NCSs is even

more scarce in both continuous-time and discrete-time domain. Even well-established

approaches such as Markov process to model the network or T-S fuzzy models for nonlinear

NCSs fails to address some practical considerations. Therefore, the study of NCSs is still

worthwhile with many areas that still need to be addressed.

1.4 Research Motivation

Study of NCSs is an area with a huge potential as it has a wide range of applications such

as unmanned vehicle, remote control systems and teleoperation. NCSs has been receiving

significant research interest with recent advance in communication systems. The fact

that the controller can now be remotely located is very attractive in many applications

as a single hardware can now be used to control several plants around the world using

NCSs. Since NCSs can use existing networks to transmit the signal, it provides low

construction cost due to lack of wires. The modularity and mobility of NCSs enable easy

maintenance, which is yet another attractive feature of NCSs. Even though there are

numerous literature on this topic, the study is not yet comprehensive. Some papers make

too many unrealistic assumptions and some neglect important practical considerations.

Since the signal is passed through a network, it is formed into packets. Hence,

the continuous signal needs to be sampled to be made into packets where these packets

are then transmitted via the network at time instances. This makes study of NCSs in

discrete-time domain very natural. However, the majority of studies in NCSs focus on

continuous-time domain with time-driven sensors and even-driven controllers and actu-

ators. Motivated by the advantages of discrete-time domain in NCSs and the lack of

extensive studies compared to the continuous-time counterpart, this research focuses on

controller design for discrete-time NCSs.

As most networks, such as CAN, Ethernet and Internet, exhibit random network-

induced delays, Markov chain makes an ideal way of modelling these random network-

induced delays. There have been several papers published on NCSs where the network

is modelled by Markov chain [8, 11, 27, 34, 51–60]. These approaches rely on the fact

that the transition probability matrix, which describes the statistical distribution of the

delay, is completely known. However, obtaining a completely known transition probability

matrix in real world is not an easy task and it is either costly or practically impossible. In

light of this, methodologies for handling a partially known transition probability matrix

for non-NCSs are presented in [61–63]. However, these methodologies are very crude
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as the unknown transition probabilities are simply discarded. Furthermore, the terms

that contain probabilities are separated into two parts and considered separately. This

research attempts to establish a methodology for designing a controller for NCSs with

completely known transition probability matrix first then extend to NCSs with partially

known transition probability matrix. It is shown that the problem with completely known

transition probability matrix can be seen as a special case of the partially known transition

probability matrix problem.

Filtering is an important research issue, particularly in signal processing applica-

tions, as it provides means to estimate the state information when the plant is disturbed.

Traditional approach of Kalman filtering approach may not provide satisfactory results

when there are uncertainties in the system model. H∞ filtering approach has been one of

the most popular approaches since it does not require exact knowledge of the statics of the

external noise [97–100]. This research presents a robust H∞ filter design for NCSs where

the network-induced delays are modelled by Markov chain whose transition probability

matrix is allowed to be partially known.

Study of robust stability is a popular area of research in control systems. When

modelling a real world plant, parametric uncertainties arise due to aging of devices or

identification errors. Parametric uncertainties play a vital role in stability and perfor-

mance and NCSs is no exception. Because of this importance, the plant model considered

in this research contain parametric uncertainties.

Every system in real world exhibits nonlinearities to a certain degree. A common

practice is to linearize the nonlinear system about the operating region and apply linear

control theory to obtain a controller, resulting a simpler analysis. However, when the

operating region is wide, it is difficult to obtain an accurate linear model. Ever since its

proposition in [101], T-S fuzzy model has been proven to be very effective in modelling

nonlinear systems. Fuzzy system theory allows qualitative, linguistic information about

the system and formulate the nonlinear system as a collection of local linear subsystems

with fuzzy blending with membership functions. It has been shown that T-S fuzzy model

can still be successfully used in nonlinear NCSs [36, 41, 58, 66, 67, 84–91]. However, the

amount of work that has been carried out on nonlinear NCSs is minuscule compared to

that of linear NCSs and even more scarce is the study of nonlinear discrete-time NCSs.

The existing literature on nonlinear NCSs modelled by T-S fuzzy model shows promising

results, making the research worthwhile.

As shown in [92–96], membership functions, which creates the fuzzy blending of

linear subsystems, play a vital role in stability analysis of fuzzy model based control.
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However, the majority of the existing literatures discard the membership functions in the

controller design since membership functions are nonlinear, therefore LMI approach can-

not be used. Several researchers investigated and presented their findings of incorporating

membership functions in [92–96] but none of them are for NCSs. On another note, the

signals transmitted via a network in NCSs inevitably experience network-induced delays.

Many of the existing literature on nonlinear NCSs described by T-S fuzzy model neglects

this fact and assume that the premise variables of the controller are not experiencing

delays, leading to unrealistic problem formulation of NCSs. Motivated by lack of existing

studies on nonlinear NCSs described by T-S fuzzy model where membership functions

are incorporated into the controller design, this research investigates and addresses this

issue. This research also acknowledges the fact that the premise variables will experi-

ence network-induced delays as they are transmitted via the network. In this research,

the premise variables of the controller is the time delayed version of the plant’s premise

variables, assuming that the plant’s premise variables are measurable, providing practical

consideration of NCSs. By presenting a fuzzy dynamic output feedback controller design,

it is ensured that the nonlinear NCSs can still be stabilized when the premise variables

are not measurable.

1.5 Objectives of the Thesis

The main focus of this thesis is to establish the foundation of study of NCSs with random

network-induced delays and parametric uncertainties in both linear and nonlinear realm.

Markov chain is used to model the network and the transition probability matrix is allowed

to be partially known. The discrete-time model of the plant is considered as it is more

natural in NCSs. Throughout this thesis, novel methodologies for H∞ controller/filter

design are presented for both linear and nonlinear NCSs. Based on Lyapunov-Krasovskii

functionals, the sufficient conditions for the existence of the controller/filter are presented.

A T-S fuzzy model is used to describe the nonlinear NCSs and a less conservative fuzzy

controller/filter design is proposed by incorporating membership functions into the con-

troller design. The premise variables of the plant is allowed to be different to the premise

variables of the controller in this thesis. In summary, the objectives of the thesis are as

follows:

• Investigate using a Markov chain with partially known transition probability matrix

in the controller/filter design of NCSs
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• Develop a novel methodology for a robust H∞ state feedback controller design for

discrete-time linear NCSs where the network is modelled by a finite state homoge-

neous Markov chain with completely known transition probability matrix

• Extend the previous methodology to state feedback controller design for discrete-

time linear NCSs with partially known transition probability matrix

• Develop a robust H∞ filter and a robust H∞ dynamic output feedback controller

design methodology for linear NCSs with partially known transition probability

matrix

• Establish a T-S fuzzy model for discrete-time nonlinear NCSs and investigate incor-

porating membership functions in the controller design

• Develop a new method of designing a robust fuzzy H∞ state feedback controller for

nonlinear NCSs where the plant is modelled by a T-S fuzzy model and membership

functions are incorporated into the fuzzy controller design

• Develop a robust fuzzy H∞ filter and a robust fuzzy H∞ dynamic output feedback

controller design methodologies for nonlinear NCSs described by T-S fuzzy model

with partially known transition probability matrix and membership functions incor-

porated into the controller/filter design

In order to demonstrate the effectiveness of the proposed methodologies, numer-

ical examples are provided. Simulation results show that the proposed methodologies

achieve stability and prescribed performance index. In nonlinear NCSs, comparisons to

methodologies without incorporating membership functions are made to illustrate that

incorporating membership functions yield larger stabilization region.

1.6 Outline of the Thesis

Following the introduction, Chapter 2 presents a robust H∞ state feedback controller

design methodology for linear NCSs. The network-induced delays are modelled by a

finite state Markov chain whose transition probability matrix is assumed to be completely

known. Based on Lyapunov-Krasovskii functional, sufficient conditions for the existence

of the controller is expressed in terms of BMIs, which are solved by the proposed iterative

algorithm. Chapter 3 presents the new network model where the transition probability

matrix is allowed to be partially known. This chapter extends the approach shown in

Chapter 2 to a robust H∞ state feedback controller design methodology for linear NCSs
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with partially known transition probability matrix. It is shown that the result shown in

Chapter 2 is a special case of the methodology in Chapter 3.

In Chapter 4, robust H∞ filter design problem is presented. H∞ filter is particularly

useful since the exact knowledge of noise is not required to design a filter. Sufficient con-

ditions for the existence of the filter is derived based on Lyapunov-Krasovskii functional.

The effectiveness of the proposed methodology is illustrated using a numerical example.

In Chapter 5, robust H∞ dynamic output feedback controller design problem is

introduced. Sufficient conditions are presented and numerical example is provided. Out-

put feedback control is more practical than state feedback control since it is not always

possible to measure all the states in the real world.

Chapter 6 provides an overview of T-S fuzzy model and sum-of-squares (SOS) de-

composition. It also presents how sum-of-squares decomposition is used in this thesis

to incorporate membership functions into the controller design. By using polynomial ap-

proximation, the membership functions, which are nonlinear, can be incorporated into the

controller design such that existing numerical tools can be used to obtain the controller.

Chapter 7 presents a robust fuzzy H∞ state feedback controller design methodology

for nonlinear NCSs described by T-S fuzzy model. The premise variables of the con-

troller is the time delayed version of the premise variables of the plant to acknowledge

the presence of the network between the plant and the controller. Sufficient conditions

for the existence of a robust H∞ state feedback controller design is presented in terms

of SOS based on Lyapunov-Krasovskii functional. Using numerical examples, it is shown

that incorporating membership functions yield larger stabilization region and the pre-

sented approach achieves stability and performance criteria. In Chapter 7, the transition

probability matrix is assumed to be completely known.

Chapter 8 presents a robust fuzzy H∞ filter design where the plant is modelled by

T-S fuzzy model and the network is modelled by a finite state Markov chain with par-

tially known transition probability matrix. This approach provides a way to estimate the

controlled output of the plant based on the measured output of the plant. As shown in

Chapter 7, the premise variables of the plant and the filter are allowed to be different

to acknowledge the time delay between the system components. The membership func-

tions of the plant and the filter are incorporated into the filter design. Similarly, robust

fuzzy H∞ dynamic output feedback controller design for nonlinear NCSs is presented in

Chapter 9. In this approach, it is assumed that the premise variables of the plant are

unmeasurable or unavailable to the controller. The premise variables and membership
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functions of the controller are allowed to be different to those of the plant. Member-

ship functions are incorporated into the controller design by approximating them using

polynomial functions. Numerical examples are provided to illustrate the effectiveness of

the proposed methodologies. It is shown in Chapter 9 that incorporating membership

functions yields larger stabilization region.

Finally, the summary of the thesis and future research direction are discussed in

Chapter 10.



2
Robust H∞ State Feedback Control of

Discrete-Time Networked Control
Systems With Completely Known

Transition Probability Matrix

Abstract

The aim of this chapter is to study stability analysis and controller design for a robust mode delay-

dependent H∞ controller design for discrete-time networked control systems. Network-induced delays

between sensors and controllers are modelled by a finite state Markov process whose transition prob-

ability matrix is assumed to be completely known. Based on Lyapunov-Krasovskii functional, a novel

methodology for designing a mode delay-dependent state feedback controller has been presented. It is

also shown that the existing delay-dependent approach is a special case of the mode delay-dependent

approach proposed in this study. The mode delay-dependent controller is obtained by solving linear

matrix inequality optimisation problems using the cone complementarity linearisation algorithm. The

effectiveness of the proposed design methodology is verified by a numerical example.

24
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2.1 Introduction

Recent advances in communication networks have introduced a new field in control sys-

tems called networked control systems (NCSs) where the spatially distributed system

components, such as sensors, actuators and controllers, are connected via network. This

new development has fulfilled many requirements that have not been able to be met with

the traditional point-to-point architecture. NCSs have achieved modularity, quick and

easy maintenance and low cost because of the absence of wire connections between the

system components [1–8].

However, as already address in Chapter 1, NCSs are challenged by numerous network

constraints, arising from limited bandwidth. The network-induced delay could potentially

deteriorate the stability and control performance of the system. Since the network-induced

delays are usually time varying and non-deterministic, the traditional control methodolo-

gies for delay systems [10, 12, 52, 102–104] may not gain satisfactory performance for

the control of NCSs. Recently, stochastic approaches are generally adopted to cope with

network packet dropout and packet delays. In [43, 105], the stability robustness of NCSs

is addressed, where the packet losses are modelled according to an independent and iden-

tically distributed Bernoulli distribution and the control input becomes zero when the

data are lost (the so-called zero-control strategy). In [43–45], the delay is considered as

white in nature with known probability distributions. Recently, Markovian jump systems

(MJSs) proposed by Krasovskii and Lidskii in [106] has been a popular approach in mod-

elling changes in the system. This class of systems is normally used to model stochastic

process where transition from one mode to another occurs based on some probabilities

called transition probabilities. Extensive work on Markovian jump linear systems has

been carried out, such as controllability, stabilization, observability and optimal control

as shown in [34, 107–111]. By incorporating Markov chain to model the network, the

controller becomes delay mode dependent, where the controller gain is dependent on the

delay in the network. At each time instance, appropriate controller will be “switched on”

based on the current delay of the network.

This chapter aims to consider a class of uncertain discrete-time linear systems with

random communication delays that exist between sensors and controllers. Markov process

is used to model the communication channel where each mode in the Markov chain cor-

responds to the possible delays in the channel. The transition probability matrix for the

Markov chain is assumed to be completely known. Based on the LyapunovKrasovskii func-

tional, a mode delay-dependent state feedback controller is proposed to stabilise a class

of systems. This mode delay-dependent controller is obtained by solving Bilinear matrix
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inequalities (BMIs) using the cone complementarity linearisation algorithm. Here, our ap-

proach depends on each mode delay, hence, as it is expected, the mode delay-dependent

approach will yield a less conservative result as compared to the delay-dependent approach

[110, 112–114].

The main contributions of this chapter is as follows.

• A mode delay-dependent state feedback controller is proposed to stabilise a class of

networked control systems

• Based on the approach presented in this chapter, robust H∞ state feedback, robust

H∞ filter and robust H∞ dynamic output feedback controller design approaches for

linear NCSs with partially known transition probability matrix in the Markov chain

is derived

The rest of the chapter is organised as follows. Section 2.2 presents the system

description, modelling of network-induced delays as well as necessary lemma and problem

formulation. In Section 2.3, stability analysis and the robust H∞ state feedback controller

design are presented in terms of BMIs. A cone complementarity algorithm to convert the

BMIs to quasi-convex LMIs is also presented. Section 2.4 provide a numerical example

to illustrate the effectiveness of the controller design. Finally, conclusions are drawn in

Section 2.5.

2.2 System Description and Definitions

Consider the NCSs setup shown in Figure 2.1. The sensor measures the states variables,

which is then sent to the controller via a network at each time instance. A class of

uncertain discrete-time linear systems under consideration is described by the following

model:

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]u(k), x(0) = 0

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]u(k)

(2.2.1)

where x(k) ∈ ℜn is the state vector, z(k) ∈ ℜp is the controlled output and w(k) ∈ ℜq is

the disturbance which belong to L2[0,∞), the space of square summable vector sequence

over [0,∞]. The matrices A, B1, B2, C1, D11 and D12 are of appropriate dimensions. The

matrix functions ∆A(k), ∆B1(k), ∆B2(k), ∆C1(k), ∆D11(k) and ∆D12(k) represent the

time-varying uncertainties in the system and satisfy the following assumption.
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Assumption 2.2.1[
∆A(k) ∆B1(k) ∆B2(k)

∆C1(k) ∆D11(k) ∆D12(k)

]
=

[
E1

E2

]
F (k)

[
H1 H2 H3

]
where Hi and Ei are known matrices which characterize the structure of the uncertainties.

Furthermore, there exists a positive constant W such that the following inequality holds:

F T (k)WF (k) ≤ W (2.2.2)

Figure 2.1: A networked control system with sensor-to-controller delay

Controller design methodologies derived based on this model can be extended to

NCSs with both sensor-to-controller delays and controller-to-actuator delays. Refer to

the works in [34, 58] for more information with respect to two separate delays in the

system.

Let {rk} be a discrete homogeneous Markov chain taking values in a finite set S =

{1, 2, · · · , s}, with the following transition probability from mode i at k to mode j at time

k + 1

pij := Prob{rk+1 = j|rk = i}

where i, j ∈ S.

The random delays τk is modeled by a finite state Markov process as τk = τ(rk)

with 0 ≤ τ(1) < τ(2) < · · · < τ(s) ≤ ∞. Throughout this thesis, it is assumed that the

proposed controller will always use the most recent data for feedback. That means that
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if there is no new information available at step k + 1, due to either packet loss or delay

longer than one sampling period, x(k − τk) will be used for feedback, that is, the delay

can only increase at most by 1 at each time instance. Therefore we have

Prob{τk+1 > τk + 1} = 0

Based on the above, the transition probability matrix for the Markov chain above

is of the following form

Pτ =



p11 p12 0 0 . . . 0

p21 p22 p23 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
... p(s−1)s

ps1 ps2 ps3 ps4 . . . pss


(2.2.3)

Note 0 ≤ pij ≤ 1 and
∑i+1

j=1 pij = 1 where ps(s+1) = 0. These transition probabilities

may be obtained by, for example, carrying out experiments to send packets and obtaining

the delay. Larger number of packets sent in the experiments would provide more accurate

delay distribution of the stochastic process.

It is noteworthy that, in this thesis, the packet loss is treated as a network-induced

delay longer than one sampling period as shown in Figure 1.6 in Chapter 1. Consequently,

it is shown that a Markov chain may be used to model packet dropout as well as the

network-induced delays with time-driven components.

The mode-dependent switching state feedback control law is

u(k) = K(rk)x(k − τk) (2.2.4)

The states measurement, x(k) is delayed due to the network between the plant and

the controller. The control law is mode-dependent as the control gain, K(rk), depends

on the delay at each time instance. The magnitude of the delay in each packet, can be

obtained by using time stamp in each message. Unlike the traditional system where no

delay between components are assumed, the data received by the receiver in NCSs contains

the past information sent by the transmitter. Since the data used to compute the control

signal are not the current information, the controller designed without considering the
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effects of the delay degrades the performance of the system.

The problem of the robust H∞ control for such system is formulated as follows.

Problem Formulation: Given a prescribed γ > 0, design a state feedback con-

troller of the form (2.2.4) such that

1. The system (2.2.1) with (2.2.4) and w(k) = 0 is stochastically stable, i.e., there

exists a constant 0 < α < ∞ such that

E

{
∞∑
ℓ=0

xT (ℓ)x(ℓ)

}
< α (2.2.5)

for all x(0), r0.

2. Under the zero-initial condition, the controlled output z(k) satisfies

E

{
∞∑
k=0

zT (k)z(k)|r0

}
< γ

∞∑
k=0

wT (k)w(k) (2.2.6)

for all nonzero w(k).

The following lemma which will play a vital role in deriving our main results in this

thesis is shown below.

Lemma 2.2.1 Let y(k) = x(k + 1)− x(k) and x̃(k) =
[
xT (k) xT (k − τk) wT (k)

xT (k)HT
1 F

T (k) xT (k− τk)K
T (rk)H

T
3 F

T (k) wT (k)HT
2 F

T (k)
]T

∈ ℜl, then for any matri-

ces R ∈ ℜn×n, M ∈ ℜn×l and Z ∈ ℜl×l satisfying[
R M

MT Z

]
≥ 0 (2.2.7)

the following inequality holds

−
k−1∑

i=k−τk

yT (i)Ry(i) ≤ x̃T (k)
{
Υ1 +ΥT

1 + τkZ
}
x̃(k) (2.2.8)

where Υ1 = MT [I − I 0 0 0 0].
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Proof: From (2.2.7), the following holds

k−1∑
i=k−τk

[
y(i)

x̃(k)

]T [
R M

MT Z

][
y(i)

x̃(k)

]
≥ 0 (2.2.9)

By expanding (2.2.9), it becomes

k−1∑
i=k−τk

yT (i)Ry(i) + x̃T (k)MTy(i) + yT (i)Mx̃(k) + x̃T (k)Zx̃(k) ≥ 0

Rearranging the above results

−
k−1∑

i=k−τk

yT (i)Ry(i) ≤
k−1∑

i=k−τk

[x̃T (k)MTy(i) + yT (i)Mx̃(k) + x̃T (k)Zx̃(i)]

Since y(k) = x(k + 1)− x(k) the right hand side of the equation becomes

k−1∑
i=k−τk

[
(x̃T (k)MT [x(i+ 1)− x(i)] + [xT (i+ 1)− xT (i)]Mx̃(k) + x̃T (k)Zx̃(k)

]

Expanding the summation results cancellation of terms. Then the equation above

becomes

x̃T (k)MT [x(k)− x(k − τk)] + [xT (k)− xT (k − τk)]Mx̃(k) + x̃T (k)τkZx̃(k)

= x̃T (k)MT [I − I 0]x̃(k) + x̃T (k)[I − I 0]TMx̃(k) + x̃T (k)τkZx̃(k)

where I ∈ ℜn×n and 0 ∈ ℜn×l−2n. ∇∇∇

2.3 Main Results

In the previous section, the problem of robust H∞ control for a class of discrete-time

NCSs with a completely known transition probability matrix is presented. This section

proposes the stability criteria and the controller design for uncertain discrete-time systems

with random communication delays with completely known transition probability matrix.

Theorem 2.3.1 For given controller gains K(i), i = 1, · · · , s and γ > 0, if there exist
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sets of positive-definite matrices P (i), R1(i), R1, R2(i), R2, W1(i), W2(i), W3(i), Q,Z(i)

and matrices M(i) for i = 1, 2, · · · , s satisfying the following inequalities

R1 > R1(i), R2 > R2(i) (2.3.1)

Λ(i) + ΓT
1 (i)P̃ (i)Γ1(i) + ΓT

2 (i) [τ̃(i)R1 + τ(s)R2] Γ2(i) + Υ1(i) + ΥT
1 (i)

+τ(i)Z(i) + ΞT (i)Ξ(i) < 0
(2.3.2)

and [
(1− pi(i+1))R1(i) +R2(i) M(i)

MT (i) Z(i)

]
≥ 0 (2.3.3)

where

P̃ (i) =
∑i+1

j=1 pijP (j)

τ̃(i) =
∑i+1

j=1 pijτ(j)

Γ1(i) =
[
A B2K(i) B1 E1 E1 E1

]
Ξ(i) =

[
C1 D12K(i) D11 E2 E2 E2

]
Γ2(i) =

[
A− I B2K(i) B1 E1 E1 E1

]
Λ(i) = diag

{(
(τ(s)− τ(1) + 1)Q+HT

1 W1(i)H1 − P (i)
)
,(

KT (i)HT
3 W2(i)H3K(i)−Q

)
,
(
HT

2 W3(i)H2 − γI
)
,−W1(i),

−W2(i),−W3(i)
}

Υ1(i) = MT (i)[I − I 0 0 0 0].

(2.3.4)

Then the closed-loop system is stochastically stable with the prescribed H∞ performance.

Proof: The system (2.2.1) with (2.2.4) can be rewritten as

xk+1 = Γ1(rk)x̃k

zk = Ξ(rk)x̃k

(2.3.5)

where xℓ = x(ℓ), zℓ = z(ℓ), x̃ℓ = x̃(ℓ), Γ1(rk) is given in (2.3.4), and x̃k is defined in

Lemma 2.2.1.

In order to study the stability criteria of NCSs, Lyapunov-Krasovskii candidate

functional is used. Consider the following Lyapunov-Krasovskii candidate functional:

V (xk, rk) = V1(xk, rk) + V2(xk, rk) + V3(xk, rk) (2.3.6)
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with

V1(xk, rk) = xT
kP (rk)xk (2.3.7)

V2(xk, rk) =
−1∑

ℓ=−τk

k−1∑
j=k+ℓ

yTj R1yj +
−1∑

ℓ=−τ(s)

k−1∑
j=k+ℓ

yTj R2yj (2.3.8)

V3(xk, rk) =
k−1∑

ℓ=k−τ(k)

xT
ℓ Qxℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

xT
j Qxj (2.3.9)

Along any trajectory of the closed-loop system, the expectation value of the first

forward difference of V (xk, rk) is given as follows:

∆V (xk, rk) = ∆V1(xk, rk) + ∆V2(xk, rk) + ∆V3(xk, rk) (2.3.10)

with

∆V1(xk, rk) = xT
k+1P̃ (rk)xk+1 − xT

kP (rk)xk

= x̃T
k Γ

T
1 (rk)P̃ (rk)Γ1(rk)x̃k − xT

kP (rk)xk (2.3.11)

∆V2(xk, rk) =
s∑

i=1

prki

−1∑
ℓ=−τ(i)

k∑
j=k+1+ℓ

yTj R1yj +
−1∑

ℓ=−τ(s)

k∑
j=k+ℓ+1

yTj R2yj

−
−1∑

ℓ=−τk

k−1∑
j=k+ℓ

yTj R1yj −
−1∑

ℓ=−τ(s)

k−1∑
j=k+ℓ

yTj R2yj

=
s∑

i=1

prki


−1∑

ℓ=−τ(i)

yTk R1yk +
−1∑

ℓ=−τ(i)

k−1∑
j=k+ℓ+1

yTj R1yj −
−1∑

ℓ=−τk

k−1∑
j=k+ℓ+1

yTj R1yj

−
−1∑

ℓ=−τk

yTk+ℓR1yk+ℓ

}
+

−1∑
ℓ=−τ(s)

{
yTk R2yk − yTk+ℓR2yk+ℓ

}

=
s∑

i=1

prki


−1∑

ℓ=−τ(i)

k−1∑
j=k+ℓ+1

yTj R1yj −
−1∑

ℓ=−τk

k−1∑
j=k+ℓ+1

yTj R1yj

−
k−1∑

j=k−τk

yTj R1yj

}
−

k−1∑
j=k−τ(s)

yTj R2yj + yTk

[
τ̃kR1 + τ(s)R2

]
yk (2.3.12)
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and

∆V3(xk, rk) =
s∑

i=1

prki

k∑
ℓ=k−τ(i)+1

xT
ℓ Qxℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k∑
j=k+ℓ

xT
j Qxj −

k−1∑
ℓ=k−τk

xT
ℓ Qxℓ

−
−τ(1)+1∑

ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

xT
j Qxj

=
s∑

i=1

prki

xT
kQxk +

k−1∑
ℓ=k−τ(i)+1

xT
ℓ Qxℓ −

k−1∑
ℓ=k−τk+1

xT
ℓ Qxℓ − xT

k−τk
Qxk−τk


+

−τ(1)+1∑
ℓ=−τ(s)+2

{
xT
kQxk − xT

k+ℓ−1Qxk+ℓ−1

}

=
s∑

i=1

prki


k−1∑

ℓ=k−τ(i)+1

xT
ℓ Qxℓ −

k−1∑
ℓ=k−τk+1

xT
ℓ Qxℓ − xT

k−τk
Qxk−τk


−

−τ(1)+1∑
ℓ=−τ(s)+2

xT
k+ℓ−1Qxk+ℓ−1 + (τ(s)− τ(1) + 1)xT

kQxk

=
s∑

i=1

prki


k−τ(1)∑

ℓ=k−τ(i)+1

xT
ℓ Qxℓ +

k−1∑
ℓ=k−τ(1)+1

xT
ℓ Qxℓ −

k−1∑
ℓ=k−τk+1

xT
ℓ Qxℓ


−

k−τ(1)∑
ℓ=k−τ(s)+1

xT
ℓ Qxℓ + (τ(s)− τ(1) + 1)xT

kQxk − xT
k−τk

Qxk−τk (2.3.13)

with P̃ (rk) =
∑rk+1

j=1 prkjP (j).

Knowing that Prob{τk+1 > τk + 1} = 0, τ(1) ≤ τk+1 ≤ τk + 1 ≤ τ(s) and τ(1) ≤
τk ≤ τ(s), the terms ∆V2(xk, rk) and ∆V3(xk, rk) above can be upper bounded as

∆V2(xk, rk) ≤ yTk

[
τ̃(i)R1 + τ(s)R2

]
yk −

k−1∑
ℓ=k−τk

yTℓ

[
(1− prk(rk+1))R1 +R2

]
yℓ (2.3.14)

and

∆V3(xk, rk) ≤ (τ(s)− τ(1) + 1)xT
kQxk − xT

k−τk
Qxk−τk . (2.3.15)

Using Lemma 2.2.1 and yk = xk+1 − xk we have

∆V2(xk, rk) ≤ x̃T
k

{
ΓT
2 (rk) [τ̃(rk)R1 + τ(s)R2] Γ2(rk) + Υ1(rk) + ΥT

1 (rk) + τkZ(rk)
}
x̃k

(2.3.16)
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where Γ2(rk) is given in (2.3.4).

Therefore,

∆V (xk, rk) ≤ −xT
k

(
P (rk)− (τ(s)− τ(1) + 1)Q

)
xk − xT

k−τk
Qxk−τk +

x̃T
k

{
ΓT
1 (rk)P̃ (rk)Γ1(rk) + ΓT

2 (rk) [τ̃(rk)R1 + τ(s)R2] Γ2(rk)

+Υ1(rk) + ΥT
1 (rk) + τkZ(rk)

}
x̃k (2.3.17)

Using Assumption 2.2.1, and adding and subtracting xT
kH

T
1 F

T
k W1(rk)FkH1xk,

wT
k H

T
2 F

T
k W3(rk)FkH2wk, z

T
k zk, x

T
(k−τk)

KT (rk)H
T
3 F

T
k W2(rk)FkH3K(rk)x(k−τk) and γwT

k wk

to and from (2.3.17), the following is obtained

∆V (xk, rk) ≤ −xT
k

(
P (rk)− (τ(s)− τ(1) + 1)Q−HT

1 W1(rk)H1

)
xk

−xT
k−τk

(
Q−KT (rk)H

T
3 W2(rk)H3K(rk)

)
xk−τk

+x̃T
k

{
ΓT
1 (rk)P̃ (rk)Γ1(rk) + ΓT

2 (rk) [τ̃(rk)R1 + τ(s)R2] Γ2(rk)

+Υ1(rk) + ΥT
1 (rk) + τkZ(rk) + ΞTΞ

}
x̃k

−zTk zk + γwT
k wk − wT

k

(
γI −HT

2 W3(rk)H2

)
wk

−xT
(k−τk)

KT (rk)H
T
3 F

T
k W2(rk)FkH3K(rk)x(k−τk)

−xT
kH

T
1 F

T
k W1(rk)FkH1xk − wT

k H
T
2 F

T
k W3(rk)FkH2wk (2.3.18)

Using (2.3.4), (2.3.18) can be rewritten as

∆V (xk, rk) ≤ x̃T
k

{
Λ(rk) + ΓT

1 (rk)P̃ (rk)Γ1(rk) + ΓT
2 (rk) [τ̃(rk)R1 + τ(s)R2] Γ2(rk)

+Υ1(rk) + ΥT
1 (rk) + τkZ(rk) + ΞT (rk)Ξ(rk)

}
x̃k − zTk zk + γwT

k wk

(2.3.19)

Using (2.3.2),

∆V (xk, rk) ≤ −zTk zk + γwT
k wk (2.3.20)
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Taking expectation and sum from 0 to ∞ on both sides of (2.3.20) yields

E{V (x∞, r∞)} − E{V (x0, r0)} ≤ −E
{ ∞∑

k=0

zTℓ zℓ

}
+ γ

∞∑
k=0

wT
ℓ wℓ (2.3.21)

Under zero initial condition, V (x0, r0) = 0,

E
{ ∞∑

k=0

zTℓ zℓ

}
≤ γ

∞∑
k=0

wT
ℓ wℓ (2.3.22)

That is, (2.2.6) holds.

In order to show that the closed-loop system is stochastically stable under w(k) =

0, ∀k ≥ 0, the following is obtained from (2.3.19) and (2.3.2).

V (x(k+1), r(k+1))− V (xk, rk) ≤ −βx̃T
k x̃k (2.3.23)

where β = inf{λmin[−M(i)], i ∈ S} with

M(i) = Λ(i) + ΓT
1 (i)P̃ (i)Γ1(i) + ΓT

2 (i) [τ̃(i)R1 + τ(s)R2] Γ2(i) + Υ1(i) + ΥT
1 (i)

+τ(i)Z(i) + ΞT (i)Ξ(i) (2.3.24)

Taking expectation and sum from 0 to ∞ on both sides of (2.3.23) yields

E{V (x∞, r∞)} − E{V (x0, r0)} ≤ −βE
{ ∞∑

k=0

x̃T
ℓ x̃ℓ

}
≤ −βE

{ ∞∑
k=0

xT
ℓ xℓ

}
(2.3.25)

Re-arranging (2.3.25), the following is obtained:

E
{ ∞∑

k=0

xT
ℓ xℓ

}
≤ 1

β
E{V (x0, r0)} −

1

β
E{V (x∞, r∞)}

≤ α (2.3.26)

where α = 1
β
E{V (x0, r0)} < ∞. Hence, it is concluded that the closed-loop system is

stochastically stable.
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Sufficient conditions for the existence of a robust H∞ state feedback controller for

the system (2.2.1) with completely known transition probabilities are provided by the

following theorem.

Theorem 2.3.2 For a given γ > 0, if there exist sets of positive-definite matrices X(i),

R̃1(i), R̃1, R̃2(i), R̃2, W1(i), W2(i), W3(i), Q̃, W̃1(i), W̃2(i), N1, N2, Z̃(i) and matrices

M̃(i) and Y (i) for i = 1, 2, · · · , s satisfying the following inequalities

R̃1 > R̃1(i), R̃2 > R̃2(i) (2.3.27)
Λ̃(i) + Υ̃1(i) + Υ̃T

1 (i) + τ(i)Z̃(i) Γ̃1
T
(i) Γ̃2

T
(i) Ξ̃T (i) HT (i)

∗ −X 0 0 0

∗ ∗ −R 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −W

 (2.3.28)

[
(1− pi(i+1))R̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0 (2.3.29)

[
S(i, j) JT (i)

∗ X(j)

]
> 0 (2.3.30)

N1R̃1 = I, N2R̃2 = I, W̃1(i)W1(i) = I and W̃2(i)W2(i) = I, (2.3.31)

where

X = −
i+1∑
j=1

pijS(i, j) + JT (i) + J(i)

R = diag
{
N1, N2

}
W = diag

{
W̃1(i), W̃2(i)

}
Γ̃1(i) =

[
AX(i) B2Y (i) B1 E1 E1 E1

]
Ξ̃(i) =

[
C1X(i) D12Y (i) D11 E2 E2 E2

]
H(i) =

[
H1X(i) 0 0 0 0 0

0 H3Y (i) 0 0 0 0

]

Γ̃2(i) =

√√√√ i+1∑
j=1

pijτ(j)
√

τ(s)

T [
AX(i)−X(i) B2Y (i) B1 E1 E1 E1

]
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Λ̃(i) = diag
{(

(τ(s)− τ(1) + 1)Q̃−X(i)
)
,
(
−XT (i)−X(i) + Q̃

)
,(

HT
2 W3(i)H2 − γI

)
,−W1(i),−W2(i),−W3(i)

}
Υ̃1(i) = M̃T (i)[I − I 0 0 0 0].

Then the closed-loop system is stochastically stable with the prescribed H∞ perfor-

mance. Furthermore, the controller gains are given as follows:

K(i) = Y (i)X−1(i) (2.3.32)

Proof: Rearranging (2.3.2) as

Λ̃(i) + Υ1(i) + ΥT
1 (i) + τ(i)Z(i) + ΓT

1 (i)P̃ (i)Γ1(i) + ΓT
2 (i) [τ̃(i)R1 + τ(s)R2] Γ2(i) +

ΞT (i)Ξ(i) + diag
{
HT

1 W1(i)H1, K
T (i)HT

3 W2(i)H3K(i), 0, 0, 0, 0
}
< 0 (2.3.33)

where

Λ(i) = Λ̃(i) + diag
{
HT

1 W1(i)H1, K
T (i)HT

3 W2(i)H3K(i), 0, 0, 0, 0
}

Apply Schur complement on (2.3.33):
Λ̃(i) + Υ1(i) + ΥT

1 (i) + τ(i)Z(i) ΓT
1 (i) ΓT

2 (i) ΞT (i) HT
1 (i)

∗ −X 0 0 0

∗ ∗ −R1 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −W1

 < 0 (2.3.34)

where

HT
1 (i) =

[
H1 0 0 0 0 0

0 H3K(i) 0 0 0 0

]
,

X1 = P̃−1(i),

R1 = diag
{
τ̃(i)R1, τ(s)R2

}−1

and

W1 = diag
{
W1(i),W2(i)

}−1
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Multiply (2.3.34) with diag
{
X(i), X(i), I, I, I, I

}
on both sides and use the identity

below yields (2.3.28) where

P−1(i) = X(i)

Note that directly applying Schur complement on (2.3.28) results −P̃−1
K (i) instead of

−
∑i+1

j=1 pijS(i, j)+JT (i)+J(i). Applying Schur complement on (2.3.30) and consequently

multiplying these inequalities by pij and summing up for all j ∈ S i
K, we obtain

i+1∑
j=1

pijS(i, j)− JT (i)− J(i) = −JT (i)− J(i) +
i+1∑
j=1

pijS(i, j)

≤ −JT (i)− J(i) + JT (i)P̃K(i)J(i)

= P̃−1
K (i)−

(
J(i)− P̃−1

K (i)
)T

P̃K(i)
(
J(i)− P̃−1

K (i)
)

≤ P̃−1
K (i), ∀j ∈ S i

K (2.3.35)

which implies that (2.3.2) remains valid even if
∑i+1

j=1 pijS(i, j)− JT (i)− J(i) is replaced

by P̃−1
K (i).

Furthermore, the multiplication of diag
{
diag

{
X(i), X(i), I, I, I

}
, I, I, I

}
and its

transpose on (2.3.34) creates two terms X(i)TQX(i) and −X(i)TQX(i) in Λ̃(i). Using

Schur complement on X(i)TQX(i) and the identity shown below, (2.3.28) is obtained.

Note that

−
(
X(i)−Q−1

)T

Q
(
X(i)−Q−1

)
< 0 (2.3.36)

⇒ −X(i)TQX(i) +XT (i) +X(i)−Q−1 < 0

⇒ −X(i)TQX(i) < −XT (i)−X(i) +Q−1

holds true since Q is a positive matrix. Therefore −X(i)TQX(i) term can be replaced

with −XT (i)−X(i) +Q−1. Then it is obvious that Q̃ = Q−1. ∇∇∇

Remark 2.3.1 The conditions given in Theorem 2.3.2 are not strictly LMI conditions

due to equality constraints in (2.3.31). However, this problem can be converted into a

nonlinear minimization problem subject to LMIs by the cone complementarity linearization

algorithm proposed in [115].

In accordance with the cone complementary algorithm, the nonconvex feasibility

problem formulated by (2.3.27)-(2.3.29) can be converted into the following nonlinear
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minimisation problem subject to LMIs:

Minimize Tr
(
N1R̃1 +N2R̃2 + W̃1(i)W1(i) + W̃2(i)W2(i)

)
Subject to (2.3.27)-(2.3.29) and[
N1 I

I R̃1

]
≥ 0,

[
N2 I

I R̃2

]
≥ 0,

[
W̃1(i) I

I W1(i)

]
≥ 0,

[
W̃2(i) I

I W2(i)

]
≥ 0

(2.3.37)

To solve this optimisation problem, the following algorithm can be used:

Algorithm :

Step 1: Set ȷ = 0 and solve (2.3.27)-(2.3.29) and (2.3.37) to obtain the initial conditions,[
X(i), R̃1(i), R̃1, R̃2(i), R̃2,W1(i),W2(i),W3(i), W̃1(i), W̃2(i), Q̃, N1, N2, Z̃(i), Y (i)

]0
Step 2: Solve the LMI problem

Minimize Tr
(
N ȷ

1R̃1 +N1R̃
ȷ
1 +N ȷ

2R̃ +N2R̃
ȷ
2 + W̃1(i)

ȷW1(i) + W̃1(i)W1(i)
ȷ

+ W̃2(i)
ȷW2(i) + W̃2(i)W2(i)

ȷ
)

Subject to (2.3.27)-(2.3.29) and (2.3.37)

The obtained solutions are denoted as[
X(i), R̃1(i), R̃1, R̃2(i), R̃2,W1(i),W2(i),W3(i), W̃1(i), W̃2(i), Q̃, N1, N2,

Z̃(i), Y (i)
]ȷ+1

Step 3: Solve Theorem 2.3.1 with K(i)ȷ+1 = Y ȷ+1(i)X−1(i)ȷ+1, if there exist solutions, then

K(i)ȷ+1 are the desired controller gains and EXIT. Otherwise, set ȷ = ȷ + 1 and

return to Step 2.

2.4 Example

In order to illustrate the effectiveness of the proposed methodology, the following nu-

merical example is used where the plant is described in (2.2.1) form with the following
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matrices

A =

[
0.2802 −0.0273

1 0

]
B1 =

[
0.02

0.05

]
B2 =

[
0

0.1

]
C1 =

[
0.8875 −0.1404

]
D11 = 0.01 D12 = 0.5

(2.4.1)

and the uncertainties are characterised by matrices below:

E1 =

[
0.001

0.002

]
E2 = 0.005

H1 =
[
0.005 0.002

]
H2 = 0.004 H3 = 0.007

(2.4.2)

The sampling period of this example is 0.01s and the delays are modelled by a

Markov chain taking values in a finite set S = {1, 2, 3}, which correspond to 0.2, 0.3, 0.4

seconds delays, respectively. The transition probability matrix is given by;

Pτ =

 0.3701 0.6298 0

0.3701 0.6157 0.0142

0.3701 0.6157 0.0142

 (2.4.3)

Using Theorem 2.3.2 and the algorithm shown, the following Ks are obtained:

K(1) =
[
−0.1227 0.0273

]
K(2) =

[
−0.1229 0.0274

]
K(3) =

[
−0.0067 0.0011

]
(2.4.4)

The state response of the plant with the proposed controller is shown in Figure 2.2

and 2.3 with w = 0. The initial states are chosen to be x(0) = [1.0 0]T . It can be

seen that the state feedback controller stabilizes the system, demonstrating the validity

of the proposed controller. Figure 2.4 shows the ratio of energy of the controlled output

to the energy of the disturbance (w(k) = e−0.1k sin(0.5k)). From Figure 2.4, the ratio is

approximately equal to 4.4× 10−4, which is less than the prescribed level γ = 0.5. Figure

2.5 shows the mode transitions in the Markov chain.
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2.5 Conclusions

In this chapter, stability criteria and mode delay dependent H∞ state feedback controller

design are developed for linear NCSs. The network modelled by Markov chain where

the transition probability matrix is assume to be completely known. Based on Lyapunov-

Krasovskii functional, the conditions for the existence of the controller is obtained in terms

of BMIs. An iterative algorithm is presented to change the nonconvex problem into quasi-

convex optimization problems, which can be solved effectively by available mathematical

tools. The validity of the methodology is verified by a numerical example.



3
Robust H∞ State Feedback Control of

Discrete-Time Networked Control
Systems With Partially Known
Transition Probability Matrix

Abstract

This chapter proposes stability analysis and a methodology for designing a partially mode delay dependent

H∞ controller design for discrete-time networked control systems. Network-induced delays between the

plant and the controller are modelled by a finite state Markov chain where the transition probability

matrix is partially known. Stability criteria are obtained based on LyapunovKrasovskii functional and

a novel methodology for designing a partially mode delay-dependent state feedback controller has been

proposed. The controller is obtained by solving linear matrix inequality optimisation problems using cone

complimentarity linearisation algorithm. A numerical example is provided to illustrate the effectiveness

of the proposed controller.

44
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3.1 Introduction

As already addressed in the Chapter 1, many existing literature use Markov chain to

model the network-induced delays, making the overall system as Markovian jump sys-

tems [8, 11, 27, 34, 51–60]. While Markovian jump systems provide adequate solution

to NCSs, the majority of literature assume that the transition probabilities are a priori.

These probabilities must be known as they are incorporated into the stability analysis and

the controller design. However, in complex systems, obtaining a completely known tran-

sition probability matrix is either impossible or costly. In light of this, several attempts

have been made to design a controller or a filter when transition probabilities are partially

known. In [61, 63], a state feedback controller is designed where the controller depends on

the upper bound of the delay and the delay range. Using a similar approach, [62] presents

a filter design for Markovian jump linear system with partially known transition proba-

bility matrix. In the aforementioned papers, the stability conditions are separated into

parts corresponding to known and unknown transition probabilities. Then the unknown

transition probabilities are simply discarded. Refer to Chapter 1 for more information

about the approach presented in the aforementioned papers. In this chapter, the un-

known probabilities are bounded using probability theory and the summation of known

and unknown parts are considered.

The aim of this chapter is to establish a novel state feedback controller design

methodology for discrete-time NCSs where the transition probability matrix is partially

known. Based on Lyapunov-Krasovskii functional, the controller design for the discrete-

time NCSs is derived. The unknown probabilities are upper bounded and included in

the stability analysis and the controller design. By doing so, the summation of known

and unknown parts is considered, instead of separating them shown in [61–63]. Sufficient

conditions for the existence of the controller is given in terms of the solvability of BMIs

and an algorithm to solve the BMIs are also presented in this chapter.

The main contributions of this chapter can be summarised as follows:

• This chapter acknowledges the difficulties in obtaining a completely known transi-

tion probability matrix in the real world. In this chapter, a state feedback controller

is obtained for a class of discrete-time NCSs with partially known transition proba-

bility matrix. It is shown that the existing results for completely known presented

in Chapter 2 and completely unknown transition probabilities [110, 112–114] can be

viewed as a special case of the presented results.

• The existing methods in [61–63] obtain the controller/filter without using the tran-
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sition probability information of unknown elements. However, we know that the

sum of unknown transition probabilities is equal to one minus the sum of known

transition probabilities. Information of the unknown transition probabilities is in-

cluded in the controller design. Furthermore, the stability criteria are formed such

that the summation of known and unknown parts is less than zero in this chapter.

The rest of the chapter is organised as follows. System descriptions and definitions

including modelling of the network-induced delays using a finite state Markov chain with

partially known transition probability matrix are presented in Section 3.2. Necessary

lemma and the mode-dependent switching state feedback control law are also presented

in this section. Section 3.3 extends the theorem in Chapter 2 to derive a theorem for

stability analysis and a robust H∞ state feedback controller with partially known tran-

sition probability matrix. An iterative algorithm to solve BMIs in order to obtain the

controller gain for systems with partially known transition probability matrix is also pre-

sented. Section 3.4 illustrates the effectiveness of the proposed design methodology using

a numerical example. Conclusions are presented in Section 3.5.

3.2 System Description and Definitions

Consider the NCSs setup shown in Figure 2.1. A class of uncertain discrete-time linear

systems under consideration is described by the following model:

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]u(k), x(0) = 0

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]u(k)

(3.2.1)

where x(k) ∈ ℜn is the state vector, z(k) ∈ ℜp is the controlled output and w(k) ∈ ℜq is

the disturbance which belong to L2[0,∞), the space of square summable vector sequence

over [0,∞]. The matrices A, B1, B2, C1, D11 and D12 are of appropriate dimensions. The

matrix functions ∆A(k), ∆B1(k), ∆B2(k), ∆C1(k), ∆D11(k) and ∆D12(k) represent the

time-varying uncertainties in the system and satisfy the following assumption.

Assumption 3.2.1[
∆A(k) ∆B1(k) ∆B2(k)

∆C1(k) ∆D11(k) ∆D12(k)

]
=

[
E1

E2

]
F (k)

[
H1 H2 H3

]
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where Hi and Ei are known matrices which characterize the structure of the uncertainties.

Furthermore, there exists a positive-definite matrix W such that the following inequality

holds:

F T (k)WF (k) ≤ W (3.2.2)

Unlike the previous chapter, the transition probability matrix of the Markov chain

is allowed to be partially known. This model is more practical as it is usually expensive

or difficult to obtain a completely known transition probability matrix in the real world.

Furthermore, as it will be shown later on, the case of either completely known or unknown

matrix is a special case of the approach presented in this chapter.

The transition probability matrix of the new network model, which allows some of

the transition probabilities to be unknown, is of the following form

Pτ =



p11 p12 0 0 . . . 0

? ? p23 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
... p(s−1)s

ps1 ? ? ps4 . . . pss


(3.2.3)

where “?” represents the unknown, but time-invariant probabilities. The transition prob-

ability matrix may be made of entirely unknown transition probabilities, resulting a com-

pletely unknown transition probability matrix. Note 0 ≤ pij ≤ 1 and
∑i+1

j=1 pij = 1 where

ps(s+1) = 0.

The mode-dependent switching state feedback control law is

u(k) = K(rk)x(k − τk) (3.2.4)

The same robust H∞ control problem is considered in this chapter, except the fact

that the transition probability matrix is partially known. The following information is

presented again for reading convenience.

As shown in Chapter 2, the closed-loop system is to achieve stochastic stability, as

shown in (2.2.5), and the H∞ performance condition, as shown in (2.2.6).

Before moving any further, the following lemma is presented, which will be used

throughout this thesis to create an upper bound for unknown probabilities in the transition

probability matrix.
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Lemma 3.2.1 For given scalars ai ≥ 0 and bi ≥ 0,i = 1, 2, . . . , N we have

N∑
i=1

aibi ≤
N∑
i=1

ai

N∑
i=1

bi (3.2.5)

Proof. We use mathematical induction to prove the above lemma. When N = 1, it

is obvious that a1b1 = a1b1, thus the above holds. When N = k + 1 where k ≥ 1 we have

k+1∑
i=1

aibi = (a1b1 + · · ·+ ak+1bk+1)

≤
k∑

i=1

ai

k∑
i=1

bi + ak+1bk+1 (3.2.6)

The right hand side of (3.2.5) is

k+1∑
i=1

ai

k+1∑
i=1

bi =
( k∑

i=1

ai + ak+1

)( k∑
i=1

bi + bk+1

)
(3.2.7)

Since ai and bi are positive, (3.2.6) and (3.2.7) implies that (3.2.5) is valid. ∇∇∇

Lemma 3.2.2 For given scalars λi ≥ 0 and matrices Pi ≥ 0, i = 1, 2, . . . , N , we have

N∑
i=1

λiPi ≤
N∑
i=1

λi

N∑
i=1

Pi (3.2.8)

Proof: We pre- and post-multiply a nonzero vector x(k) to (3.2.8) then we have

xT (k)
( N∑

i=1

λiPi

)
x(k) ≤ xT (k)

( N∑
i=1

λi

N∑
i=1

Pi

)
x(k) (3.2.9)

Since λi are scalar the above is equivalent to

N∑
i=1

λix
T (k)Pix(k) ≤

N∑
i=1

λi

N∑
i=1

xT (k)Pix(k) (3.2.10)

From Lemma 3.2.1, by letting ai = λi and bi = xT (k)Pix(k), it can be shown that

(3.2.8) holds. ∇∇∇
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Based on Lemma 3.2.2, the unknown probabilities and the matrices they are multi-

plied to are separated. Then by using the fact that the summation of all probabilities in

each row of transition probability matrix must equal to one, as presented in Chapter 1,

the upper bound for sum of unknown probabilities are created.

3.3 Main Results

In the previous section, the problem of robust H∞ control for a class of discrete-time

NCSs with a partially known transition probability matrix is introduced. This section

presents the stability criteria and the H∞ state feedback controller design for the NCSs

where the transition probability matrix is allowed to be partially known.

The following theorem proposes stability criteria for the system shown in (3.2.1)

with partially known transition probabilities.

Theorem 3.3.1 For given controller gains K(i), i ∈ S, and γ > 0, if there exist sets of

positive-definite matrices P (i), R1(i), R1, R2(i), R2, W1(i), W2(i), W3(i), Q, Z(i) and

matrices M(i), Ω1(i), Ω2(i), ∀i ∈ S, satisfying the following inequalities

R1 > R1(i), R2 > R2(i) (3.3.1)

Λ(i)+ΓT
2 (i)τ(s)R2Γ2(i)+Υ1(i)+ΥT

1 (i)+τ(i)Z(i)+ΞT (i)Ξ(i)+Ω1(i)+Ω2(i) < 0 (3.3.2)

ΓT
1 (i)P̃K(i)Γ1(i) + ΓT

2 (i)τ̃KR1Γ2(i)− Ω1(i) < 0, ∀j ∈ S i
K (3.3.3)

ΓT
1 (i)(1−piK)

i+1∑
j=1

P (j)Γ1(i)+ΓT
2 (i)(1−piK)

i+1∑
j=1

τ(j)R1Γ2(i)−Ω2(i) < 0, ∀j ∈ S i
UK (3.3.4)

and [
(1− pi(i+1))R1(i) +R2(i) M(i)

MT (i) Z(i)

]
≥ 0 (3.3.5)[

piKR1(i) +R2(i) M(i)

MT (i) Z(i)

]
≥ 0, ∀(i+ 1) ∈ S i

UK (3.3.6)

where
Γ1(i) =

[
A B2K(i) B1 E1 E1 E1

]
Ξ(i) =

[
C1 D12K(i) D11 E2 E2 E2

]
Γ2(i) =

[
A− I B2K(i) B1 E1 E1 E1

]
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Λ(i) = diag
{(

(τ(s)− τ(1) + 1)Q+HT
1 W1(i)H1 − P (i)

)
,
(
KT (i)HT

3 W2(i)H3K(i)

−Q
)
,
(
HT

2 W3(i)H2 − γI
)
,−W1(i),−W2(i),−W3(i)

}
Υ1(i) = MT (i)[I − I 0 0 0 0]

P̃K(i) =
∑i+1

j∈Si
K
pijP (j)

τ̃K(i) =
∑i+1

j∈Si
K
pijτ(j)

Then the closed-loop system is stochastically stable with the prescribed

H∞ performance.

Proof: The system (3.2.1) with (3.2.4) can be rewritten as

xk+1 = Γ1(rk)x̃k

zk = Ξ(rk)x̃k

(3.3.7)

where xℓ = x(ℓ), zℓ = z(ℓ), x̃ℓ = x̃(ℓ), and Γ1(rk) is given in Theorem 3.3.1, and x̃k is

defined in Lemma 2.2.1.

Let us consider the following Lyapunov-Krasovskii candidate functional:

V (xk, rk) = V1(xk, rk) + V2(xk, rk) + V3(xk, rk) (3.3.8)

with

V1(xk, rk) = xT
kP (rk)xk (3.3.9)

V2(xk, rk) =
−1∑

ℓ=−τk

k−1∑
j=k+ℓ

yTj R1yj +
−1∑

ℓ=−τ(s)

k−1∑
j=k+ℓ

yTj R2yj (3.3.10)

V3(xk, rk) =
k−1∑

ℓ=k−τk

xT
ℓ Qxℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

xT
j Qxj (3.3.11)

Using the same approach to the proof of the stability analysis in Chapter 2, the

following is obtained.

∆V (xk, rk) ≤ x̃T
k

{
Λ(rk) + ΓT

1 P̃ (rk)Γ1 + ΓT
2 [τ̃kR1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT

1 (rk)

+τkZ(rk) + ΞTΞ
}
x̃k − zTk zk + γwT

k wk (3.3.12)

The following procedure shows how the terms containing unknown transition prob-

abilities are handled. Note that using Lemma 3.2.2, ΓT
1 P̃ (rk)Γ1 + ΓT

2 (i)τ̃(i)R1Γ2(i) can
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be rewritten as

ΓT
1 (i)P̃K(i)Γ1(i) + ΓT

1 (i)
i+1∑

j∈Si
UK

pijP (j)Γ1(i) + ΓT
2 (i)τ̃K(i)R1Γ2(i)

+ΓT
2 (i)

i+1∑
j∈SUK

pijτ(j)R1Γ2(i) ≤ ΓT
1 (i)P̃K(i)Γ1(i) + ΓT

1 (i)(1− piK)
i+1∑

j∈Si
UK

P (j)Γ1(i)

+ΓT
2 (i)τ̃K(i)R1Γ2(i) + ΓT

2 (i)(1− piK)
i+1∑

j∈SUK

τ(j)R1Γ2(i) (3.3.13)

Using (3.3.3) and (3.3.4), the following holds

ΓT
1 (i)P̃K(i)Γ1(i) + ΓT

1 (i)(1− piK)
i+1∑

j∈Si
UK

P (j)Γ1(i) + ΓT
2 (i)τ̃K(i)R1Γ2(i)

+ΓT
2 (i)(1− piK)

i+1∑
j∈SUK

τ(j)R1Γ2(i) ≤ Ω1(i) + Ω2(i) (3.3.14)

where (1− piK) is one minus the summation of all known probabilities.

Using (3.3.2)-(3.3.4) and (3.3.14), (3.3.12) becomes

∆V (xk, rk) ≤ −zTk zk + γwT
k wk (3.3.15)

Taking expectation and sum from 0 to ∞ on both sides of (3.3.15) yields

E{V (x∞, r∞)} − E{V (x0, r0)} ≤ −E
{ ∞∑

ℓ=0

zTℓ zℓ

}
+ γ

∞∑
ℓ=0

wT
ℓ wℓ (3.3.16)

Under zero initial condition, V (x0, r0) = 0, we have

E
{ ∞∑

ℓ=0

zTℓ zℓ

}
≤ γ

∞∑
ℓ=0

wT
ℓ wℓ (3.3.17)

That is, the second criteria in the problem formulation, as shown in Chapter 2,

holds.

Next, under w(k) = 0, ∀k ≥ 0 we need to show that the closed-loop system is
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stochastically stable. From (3.3.12) and (3.3.2)-(3.3.4) we learn that

V (x(k+1), r(k+1))− V (xk, rk) ≤ −βx̃T
k x̃k (3.3.18)

where β = inf{λmin[−M(i)], i ∈ S} with

M(i) = Λ(i) + ΓT
1 (i)P̃ (i)Γ1(i) + ΓT

2 (i) [τ̃(i)R1 + τ(s)R2] Γ2(i) + Υ1(i) + ΥT
1 (i)

+τ(i)Z(i) + ΞT (i)Ξ(i) (3.3.19)

Taking expectation and sum from 0 to ∞ on both sides of (3.3.18) yields

E{V (x∞, r∞)} − E{V (x0, r0)} ≤ −βE
{ ∞∑

k=0

x̃T
ℓ x̃ℓ

}
≤ −βE

{ ∞∑
k=0

xT
ℓ xℓ

}
(3.3.20)

Re-arranging (3.3.20), we get

E
{ ∞∑

k=0

xT
ℓ xℓ

}
≤ 1

β
E{V (x0, r0)} −

1

β
E{V (x∞, r∞)}

≤ α (3.3.21)

where α = 1
β
E{V (x0, r0)} < ∞. ∇∇∇

Sufficient conditions for the existence of a robustH∞ state feedback controller for the

system (3.2.1) with partially known transition probabilities are provided by the following

theorem.

Theorem 3.3.2 For a given γ > 0, if there exist sets of positive-definite matrices X(i),

R̃1(i), R̃1, R̃2(i), R̃2, W1(i), W2(i), W3(i), Q̃, W̃1(i), W̃2(i), N1, N2, Z̃(i) and matrices

M̃(i), Ω̃1(i), Ω̃2(i) and Y (i) for i = 1, 2, · · · , s satisfying the following inequalities

R̃1 > R̃1(i), R̃2 > R̃2(i) (3.3.22)
Λ̂(i)

√
τ(s)Γ̃2

T
(i) Γ̃3

T
(i) Ξ̃T (i) HT (i)

∗ −N2 0 0 0

∗ ∗ −Q 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −W

 < 0 (3.3.23)
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 −Ω̃1(i) Γ̃1
T
(i)

√
τ̃K(i)Γ̃2

T
(i)

∗ −
∑i+1

j=1 pijS(i, j) + JT (i) + J(i) 0

∗ ∗ −N1

 < 0, ∀j ∈ S i
K (3.3.24)

 −Ω̃2(i) Γ̃1
T
(i)

√∑i+1
j=1 τ(j)Γ̃2

T
(i)

∗ (1− piK)
−1

∑i+1
j=1 S(i, j) + JT (i) + J(i) 0

∗ ∗ −N1

 < 0, ∀j ∈ S i
UK

(3.3.25)[
(1− pi(i+1))R̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0 (3.3.26)[

piKR̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0, ∀(i+ 1) ∈ S i

UK (3.3.27)

[
S(i, j) JT (i)

∗ X(j)

]
> 0, ∀j ∈ S i

K (3.3.28)

and

N1R̃1 = I, N2R̃2 = I, W̃1(i)W1(i) = I and W̃2(i)W2(i) = I, (3.3.29)

where

Λ̂(i) = Λ̃(i) + Υ̃1(i) + Υ̃T
1 (i) + τ(i)Z̃(i) + Ω̃1(i) + Ω̃2(i)

Γ̃1(i) =
[
AX(i) B2Y (i) B1 E1 E1 E1

]
Γ̃2(i) =

[
AX(i)−X(i) B2Y (i) B1 E1 E1 E1

]
Γ̃3(i) =

[
X(i) 0 0 0 0 0

]
X =

∑
j=Si

K

pijS(i, j)− JT (i)− J(i)

Q =
(
τ(s)− τ(1) + 1

)
Q̃

W = diag
{
W̃1(i), W̃2(i)

}
Ξ̃(i) =

[
C1X(i) D12Y (i) D11 E2 E2 E2

]
H =

[
H1X(i) 0 0 0 0 0

0 H3Y (i) 0 0 0 0

]
Λ̃(i) = diag

{
−X(i),

(
−XT (i)−X(i) + Q̃

)
,
(
HT

2 W3(i)H2 − γI
)
,

−W1(i),−W2(i),−W3(i)
}

Υ̃1(i) = M̃T (i)[I − I 0 0 0 0]
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Then the closed-loop system is stochastically stable with the prescribed H∞ perfor-

mance. Furthermore, the controller gains are given as follows:

K(i) = Y (i)X−1(i) (3.3.30)

Proof: Rearranging (3.3.2) as

Λ̃(i) + Υ1(i) + ΥT
1 (i) + τ(i)Z(i) + ΓT

2 (i)τ(s)R2Γ2(i) + ΞT (i)Ξ(i) + Ω1(i) + Ω2(i)

+diag
{
HT

1 W1(i)H1, K
T (i)HT

3 W2(i)H3K(i), 0, 0, 0, 0
}
< 0 (3.3.31)

where

Λ(i) = Λ̃(i) + diag
{
HT

1 W1(i)H1, K
T (i)HT

3 W2(i)H3K(i), 0, 0, 0, 0
}

Applying Schur complement on (3.3.31) we get
Λ̃(i) + Υ1(i) + ΥT

1 (i) + τ(i)Z(i) + Ω1(i) + Ω2(i) Γ̄T
2 (i) Ξ̄T (i) H̄T (i)

∗ −(τ(s)R2)
−1 0 0

∗ ∗ −I 0

∗ ∗ ∗ −W1

 < 0

(3.3.32)

where

Γ̄1(i) =
[
A B2K(i) B1 E1 E1 E1

]
Γ̄2(i) =

[
A− I B2K(i) B1 E1 E1 E1

]
Ξ̄(i) =

[
C1 D12K(i) D11 E2 E2 E2

]
H̄T (i) =

[
H1 0 0 0 0 0

0 H3K(i) 0 0 0 0

]
,

and

W1 = diag
{
W1(i),W2(i)

}−1

Multiplying (3.3.32) with diag
{
diag

{
X(i), X(i), I, I, I, I

}
, I, I, I

}
on the right hand

side and its transpose on the left we obtain (3.3.23).
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Applying Schur complement on (3.3.3) results the following. −Ω̄1(i) Γ̄T
1 (i) Γ̄T

2 (i)

∗ −P̃−1
K (i) 0

∗ ∗ −
(
τ̃K(i)R1

)−1

 < 0, ∀j ∈ S i
K (3.3.33)

Multiplying diag
{
diag

{
X(i), X(i), I, I, I, I

}
, I, I

}
on the right and its transpose on

the left we obtain (3.3.24) where Ω̃1(i) = X(i)TΩ1(i)X(i).

Similarly applying Schur complement on (3.3.4); −Ω̄2(i) Γ̄T
1 (i) Γ̄T

2 (i)

∗ −
(
(1− piK)

∑i+1
j=1 P (j)

)−1
0

∗ ∗ −
(
(1− piK)(

∑i+1
j=1 τ(j)R1)

)−1

 < 0, ∀j ∈ S i
UK

(3.3.34)

Multiplying the above with diag
{
diag

{
X(i), X(i), I, I, I, I

}
, I, I

}
on the right and

its transpose on the left we obtain (3.3.25) where Ω̃2(i) = X(i)TΩ2(i)X(i).

Note that directly applying Schur complement on (3.3.24) results −P̃−1
K (i) instead

of −
∑i+1

j=1 pijS(i, j) + JT (i) + J(i) and similarly
∑i+1

j=1 S(i, j) + JT (i) + J(i) in (3.3.25).

Applying Schur complement on (3.3.28) and consequently multiplying these inequalities

by pij and summing up for all j ∈ S i
K, we obtain

i+1∑
j=1

pijS(i, j)− JT (i)− J(i) = −JT (i)− J(i) +
i+1∑
j=1

pijS(i, j)

≤ −JT (i)− J(i) + JT (i)P̃K(i)J(i)

= P̃−1
K (i)−

(
J(i)− P̃−1

K (i)
)T

P̃K(i)
(
J(i)− P̃−1

K (i)
)

≤ P̃−1
K (i), ∀j ∈ S i

K (3.3.35)

which implies that (3.3.3) remains valid even if
∑i+1

j=1 pijS(i, j)− JT (i)− J(i) is replaced

by P̃−1
K (i) for all j ∈ S i

K. Similarly, by applying Schur complement on (3.3.28) and

consequently summing up for all j ∈ S i
UK, we can show that (3.3.4) is valid.

Furthermore, the multiplication of diag
{
diag

{
X(i), X(i), I, I, I

}
, I, I, I

}
and its

transpose on (3.3.32) creates two terms X(i)TQX(i) and −X(i)TQX(i) in Λ̃. Using

Schur complement on X(i)TQX(i) and the identity shown below, (3.3.23) is obtained.
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Note that

−
(
X(i)−Q−1

)T

Q
(
X(i)−Q−1

)
< 0 (3.3.36)

⇒ −X(i)TQX(i) +XT (i) +X(i)−Q−1 < 0

⇒ −X(i)TQX(i) < −XT (i)−X(i) +Q−1

holds true since Q is a positive matrix. Therefore −X(i)TQX(i) term can be replaced

with −XT (i)−X(i) +Q−1. Then it is obvious that Q̃ = Q−1. ∇∇∇

The same iterative algorithm presented in Chapter 2 can be used to convert the

nonconvex feasibility problem into the nonlinear minimization problem subject to LMIs.

Remark 3.3.1 Note that in [61–63], the unknown part does not contain any transition

probability information. However, we know that the sum of unknown transition proba-

bilities is equal to one minus the sum of known transition probabilities. Therefore, in

this chapter, this information is incorporated to yield less conservative results. In this

chapter, new slack matrices Ω1(i) and Ω2(i) and transition probabilities information are

incorporated into the design to relax the results. The stability criteria is derived based on

the summation of known and unknown parts is less than zero whereas in [61–63] known

and unknown parts have been considered separately. Hence, the proposed results are less

conservative than [61–63]. From the above derivation, it is clear that if the transition

probabilities are completely known, we can set Ω2(i) = 0 and it reduces to the results

given in Chapter 2. When the transition probabilities are completely unknown, we can

set Ω1(i) = 0 and it reduces to [110, 112–114] which are independent on delay’s modes.

Therefore the cases where the transition probability matrix is either completely known or

unknown is a special case, meaning that the presented approach is more general.

3.4 Example

In order to illustrate the effectiveness of the methodology, the same plant presented in

Chapter 2 is considered.

The delays are modelled by a Markov chain taking values in a finite set S = {1, 2},
which correspond to 0.2, 0.3 seconds delays, respectively. The transition probability

matrix is given by;

Pτ =

[
0.4 0.6

? ?

]
(3.4.1)
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Applying the results given in [61], no controller can be found. Using Theorem 3.3.2,

the following controller gains are obtained:

K(1) =
[
−10.7152 4.0472

]
(3.4.2)

K(2) =
[
−10.0302 3.6856

]

In order to show the effectiveness of the controller with partially known transition

probability matrix, the following two cases are considered.

Case 1: Let us say that the transition probability matrix is given by;

Pτ1 =

[
0.4 0.6

(0.3) (0.7)

]
(3.4.3)

Case 2: The transition probability is now given by;

Pτ2 =

[
0.4 0.6

(0.9) (0.1)

]
(3.4.4)
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Figure 3.1: Response of x1(k), Pτ1
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Figure 3.2: Response of x2(k), Pτ1
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Figure 3.3: Ratio of energy of the controlled output to the energy of the disturbance (γ = 0.5), Pτ1
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Figure 3.4: Change of modes in Markov chain, Pτ1
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Figure 3.5: Response of x1(k), Pτ2
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Figure 3.6: Response of x2(k), Pτ2
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Figure 3.7: Ratio of energy of the controlled output to the energy of the disturbance (γ = 0.5), Pτ2
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Figure 3.8: Change of modes in Markov chain, Pτ2

Figure 3.1, 3.2, 3.5 and 3.6 show the state response of Case 1 and Case 2 respectively

with w = 0. The initial states are chosen to be x(0) = [1.0 0]T . It is shown in these figures

that the state feedback controller stabilizes the system with partially known transition

probability matrix. Figure 3.3 and 3.7, show the ratio of energy of the controlled output

to the energy of the disturbance (w(k) = e−0.1k sin(0.5k)) for Case 1 and Case 2. In Figure

3.3 and 3.7, the attenuation levels are approximately equals to 2.5 × 10−6, which is less

than the prescribed level γ = 0.5. Figure 3.4 and 3.8 show the change of modes in the

Markov chain. State transition is made according to the transition probability matrices,

Pτ . The same controller gains in (3.4.2), obtained from the theorem, control systems with

two different transition probability matrix.

3.5 Conclusions

In this chapter, stability criteria and mode delay dependent H∞ state feedback controller

is developed for a class of networked control systems. Random network-induced delays

are modelled by a Markov process where the transition probability matrix is allowed to

be partially known. Conditions for stochastic stability with a given attenuation gain

is derived by using Lyapunov-Krasovskii functional. The controller design technique is
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given in terms of the solvability of bilinear matrix inequalities. An iterative algorithm

is proposed to change this non-convex problem into quasi-convex optimization problems,

which can be solved effectively by available mathematical tools. It has been pointed out

that systems with completely known or unknown transition probability matrix is a special

case of the approach presented in this paper. Finally, the effectiveness of the proposed

design methodology is illustrated by a numerical example.



4
Robust H∞ Filtering for Discrete-time

Networked Control Systems With
Partially Known Transition Probability

Matrix

Abstract

In this chapter, stability analysis and a methodology for designing a robust H∞ filter for discrete-time

networked control systems is presented. Network-induced delays between sensors and controllers are

modelled by a finite state Markov chain. The transition probability matrix of the Markov chain is allowed

to be partially known. Based on Lyapunov-Krasovskii functional, stability criteria are derived and a novel

methodology of designing a partially mode delay-dependent filter design is presented. The filter gains

are obtained by solving linear matrix inequality optimisation problems using the cone complementarity

linearisation algorithm. A DC motor servo system simulation is used to illustrate the validity of the

presented methodology.

63
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4.1 Introduction

Objective of a filtering problem is to estimate information of the plant. This type of

problem is especially important in signal processing applications as filters provide ways

to estimate information of the plant such as the states from the measurable output of the

plant. Unlike the traditional Kalman filter approach, H∞ filtering does not require the

exact knowledge of the external noise. For this reason, study of H∞ filtering approach

has been very popular in recent years and several papers presented their results in NCSs

[42, 59, 97–100, 116, 117]. In [97], H∞ filter is used for fault detection with larger transfer

delays. In this paper, multiple sampling method along with augmented state matrix

method is used to model the delays. Robust H∞ filter design for NCSs are presented in

[98, 99] where the objective of the filter is to estimate a signal from the plant. In [100],

event-based H∞ filtering for NCSs with communication delay is presented. It presents a

novel event-triggering scheme where the sensor data is transmitted only when a specified

event condition is violated.

In existing literature, Markovian jump systems have been proven to be very effective

with NCSs [8, 11, 27, 34, 51–60]. In these approaches, the network-induced delays are

modelled by a finite state Markov chain where each mode in the Markov chain corresponds

to possible delays in the network. However, most of existing literature in Markovian

jump systems require a completely known transition probability matrix. In complex

network, it is often expensive or practically impossible to obtain a completely known

transition probability matrix. Motivated by this, several papers have been published to

incorporate partially known transition probability matrix to Markovian jump systems

[61–63]. In these aforementioned papers, state feedback controller [61, 63] and filter

design [62] are considered. These approaches however leave room for improvement as the

terms corresponding to known and unknown probabilities are separated. Furthermore,

these approaches discard the unknown probabilities. These drawbacks may lead to severe

conservatism.

In this chapter, H∞ filtering problem for a discrete-time networked control systems

is investigated where the network-induced delays are modelled by a Markov chain. The

transition probability matrix of the Markov chain is allowed to be partially known. Based

on Lyapunov-Krasovskii functional, sufficient conditions for the existence of the filter is

presented in terms of solvability of BMIs. An iterative algorithm is presented to solve

these BMIs using existing mathematical toolbox.

The rest of the chapter is organised as follows. Section 4.2 presents the system
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description and definitions. The H∞ filtering problem is formulated in this section. Sta-

bility criteria and the robust H∞ filter design theorem are presented in Section 4.3. An

iterative algorithm is presented to solve BMIs to obtain the filter gain for NCSs with par-

tially known transition probability matrix is also presented. A DC motor servo example

is used in Section 4.4 to illustrate the validity of the presented methodology. Conclusions

are drawn in Section 4.5.

4.2 System Description and Definitions

The aim of this chapter is to design a robust H∞ filter for NCSs where the network is

modelled by a Markov chain with partially known transition probability matrix. In this

chapter, it is assumed that only measured output is available from the sensor. Consider

a class of uncertain discrete-time linear systems described by the following model:

x(k + 1) = [A+∆A(k)]x(k) + [B +∆B(k)]w(k)

z(k) = [C1 +∆C1(k)]x(k) + [D +∆D(k)]w(k)

y(k) = C2x(k)

(4.2.1)

where x(k) ∈ ℜn, y(k) ∈ ℜm2 , z(k) ∈ ℜm1 are the state, measured output and the objective

signal to be estimated, respectively and w(k) ∈ ℜm3 is the disturbance which belongs to

L2[0,∞), the space of square summable vector sequence over [0,∞]. The matrices A, B,

C1, D and C2 are of known dimensions. As in the previous chapter, the matrix functions

∆A(k), ∆B(k), ∆C1(k) and ∆D(k) represent the time-varying uncertainties in the system

which satisfy the following assumption.

Assumption 4.2.1[
∆A(k) ∆B(k)

∆C1(k) ∆D(k)

]
=

[
E1

E2

]
F (k)

[
H1 H2

]
where Hi and Ei are known matrices which characterize the structure of the uncertainties.

Furthermore, there exists a positive-definite matrix W such that the following inequality

holds:

F T (k)WF (k) ≤ W (4.2.2)

The network is modelled by a finite state Markov chain with partially known tran-

sition probability matrix. Refer to Chapter 3 for more information about the modelling

procedure.
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The aim of this chapter is to design a full-order filter of the following form

xf (k + 1) = Af (i)xf (k) +Bf (i)y(k − τk)

zf (k) = Cf (i)xf (k)
(4.2.3)

where xf (k) and zf (k) are the state and output of the filter respectively. Af (i), Bf (i) and

Cf (i) are the filter gains to be determined.

The augmented filtering error system of (4.2.1) with (4.2.3) is given as follows:

x̃(k + 1) = [Ã(i) + Ē1F (k)H̄1(i)]x̃(k) + B̃(i)C̄2x̃(k − τk) + [B̄ + Ē1F (k)H2]w(k)

e(k) = [C̃(i) + E2F (k)H̄1(i)]x̃(k) + [D + E2F (k)H2]w(k) (4.2.4)

where x̃(k)T =
[
x(k)T xf (k)

T
]
, e(k) = z(k)− zf (k),

Ã(i) =

[
A 0

0 Af (i)

]
, B̃(i) =

[
0

Bf (i)

]
, B̄ =

[
B1

0

]
, C̄2 =

[
C2 0

]
,

Ē1 =

[
E1

0

]
, H̄1 =

[
H1 0

]
, C̃(i) =

[
C1 −Cf (i)

]
.

As shown in Chapter 2, the closed-loop system is to achieve stochastic stability, as

shown in (2.2.5), and the H∞ performance condition, as shown in (2.2.6), except that

e(k) is used in this chapter instead of z(k) in Chapter 2.

4.3 Main Results

This section presents the stability criteria and the robust H∞ filter design, which incor-

porate partially known transition probability matrix into the theorem. Based on Lemma

3.2.2, the unknown transition probabilities are upper bounded and incorporated.

The following theorem proposes stability analysis of the filtering error system (4.2.4)

with partially known transition probabilities.

Theorem 4.3.1 For given filter gains Af (i), Bf (i), Cf (i), i ∈ S, and γ > 0, if there

exist sets of positive-definite matrices P (i), R1(i), R1, R2(i), R2, W1(i), W2(i), Q, Z(i)
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and matrices M(i), Ω1(i), Ω2(i), ∀i ∈ S, satisfying the following inequalities

R1 > R1(i), R2 > R2(i) (4.3.1)

Λ(i)+ΓT
2 (i)τ(s)R2Γ2(i)+Υ1(i)+ΥT

1 (i)+τ(i)Z(i)+ΞT (i)Ξ(i)+Ω1(i)+
(
1−piK

)
Ω2(i) < 0

(4.3.2)

ΓT
1 (i)P̃K(i)Γ1(i) + ΓT

2 (i)τ̃KR1Γ2(i)− Ω1(i) < 0, ∀j ∈ S i
K (4.3.3)(

1− piK

)[
ΓT
1 (i)

i+1∑
j=1

P (j)Γ1(i) + ΓT
2 (i)

i+1∑
j=1

τ(j)R1Γ2(i)

]
−
(
1− piK

)
Ω2(i) < 0, ∀j ∈ S i

UK

(4.3.4)

and [
(1− pi(i+1))R1(i) +R2(i) M(i)

MT (i) Z(i)

]
≥ 0 (4.3.5)[

piKR1(i) +R2(i) M(i)

MT (i) Z(i)

]
≥ 0, pi(i+1) ∈ S i

UK (4.3.6)

where

Γ1(i) =
[
Ã(i) B̃(i)C̄2 B̄ Ē1 Ē1

]
Ξ(i) =

[
C̃(i) 0 D E2 E2

]
Γ2(i) =

[
Ā 0 B̄ Ē1 Ē1

]
Λ(i) = diag

{(
(τ(s)− τ(1) + 1)Q+ H̄T

1 (i)W1(i)H̄1(i)− P (i)
)
,

−Q,
(
HT

2 W2(i)H2 − γI
)
,−W1(i),−W2(i)

}
Υ1 = MT [diag{I, 0} diag{−I, 0} 0 0 0]

P̃K(i) =
∑i+1

j∈Si
K
pijP (j)

τ̃K(i) =
∑i+1

j∈Si
UK

pijτ(j)

Ā =

[
A− I 0

0 0

]
.

(4.3.7)

Then the filtering error system (4.2.4) is stochastically stable with the prescribed

H∞ performance.

Proof: The filtering error system (4.2.4) can be rewritten as

x̃k+1 = Γ1(rk)ζk

zk = Ξ(rk)ζk
(4.3.8)
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where ζℓ = ζ(ℓ), zℓ = z(ℓ), x̃ℓ = x̃(ℓ), and Γ1(rk) =
[
Ã(i) B̃(i)C̄2 B̄ Ē1 Ē1

]
, and

ζ(k)T =
[
x̃T (k) x̃T (k − τk) wT (k) x̃T (k)H̄T

1 (i)F
T (k) wT (k)HT

2 F
T (k)

]
∈ ℜl.

The following Lyapunov-Krasovskii candidate functional is considered

V (x̃k, rk) = V1(x̃k, rk) + V2(x̃k, rk) + V3(x̃k, rk) (4.3.9)

with

V1(x̃k, rk) = x̃T
kP (rk)x̃k (4.3.10)

V2(x̃k, rk) =
−1∑

ℓ=−τk

k−1∑
j=k+ℓ

x̄T
j R1x̄j +

−1∑
ℓ=−τ(s)

k−1∑
j=k+ℓ

x̄T
j R2x̄j (4.3.11)

V3(x̃k, rk) =
k−1∑

ℓ=k−τk

x̃T
ℓ Qx̃ℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

x̃T
j Qx̃j (4.3.12)

where x̄(k) =

[
x(k + 1)− x(k)

0

]
.

Following a similar technique used in the proof of the stability analysis in Chapter

3, substituting x(k) with x̃(k) and y(k) with x̄(k), we obtain

∆V (x̃k, rk) ≤ −x̃T
k

(
P (rk)− (τ(s)− τ(1) + 1)Q

)
x̃k − x̃T

k−τk
Qx̃k−τk + ζTk

{
ΓT
1 P̃ (rk)Γ1

+ΓT
2 [τ̃kR1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT

1 (rk) + τkZ(rk)
}
ζk (4.3.13)

Using Assumption 4.2.1, and adding and subtracting x̃T
k H̄

T
1 F

T
k W1(rk)FkH̄1x̃k,

wT
k H

T
2 F

T
k W2(rk)FkH2wk, z

T
k zk and γwT

k wk to and from (4.3.13), we obtain

∆V (x̃k, rk) ≤ −x̃T
k

(
P (rk)− (τ(s)− τ(1) + 1)Q−HT

1 W1(rk)H1

)
x̃k − x̃T

k−τk
Qx̃k−τk

+ζTk

{
ΓT
1 P̃ (rk)Γ1 + ΓT

2 [τ̃kR1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT
1 (rk)

+τkZ(rk) + ΞTΞ
}
ζk − zTk zk + γwT

k wk − wT
k

(
γI −HT

2 W2(rk)H2

)
wk

−x̃T
k H̄

T
1 F

T
k W1(rk)FkH̄1x̃k − wT

k H
T
2 F

T
k W2(rk)FkH2wk (4.3.14)

Using (4.3.7), (4.3.14) can be rewritten as

∆V (x̃k, rk) ≤ x̃T
k

{
Λ(rk) + ΓT

1 P̃ (rk)Γ1 + ΓT
2 [τ̃kR1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT

1 (rk)

+τkZ(rk) + ΞT (i)Ξ(i)
}
x̃k − zTk zk + γwT

k wk (4.3.15)
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which will be referred later on. Following the similar approach of handling the unknown

transition probabilities shown in Chapter 3, we show that the filter satisfies the conditions

shown in the problem formulation. ∇∇∇

The following theorem provides sufficient conditions for the existence of a robust

H∞ filter for the system (4.2.1) with partially known transition probabilities.

Theorem 4.3.2 For a given γ > 0, if there exist sets of positive-definite matrices X(i),

Y (i), Y(i), R̃1(i), R̃1, R̃2(i), R̃2, W1(i), W2(i), Q, Q, W̃1(i), W̃2(i), N1, N2, Z̃(i), S(i, j)

and matrices M̃(i), Ω̃1(i), Ω̃2(i), A(i), B(i), C(i) and J(i) for i = 1, 2, · · · , s satisfying

the following inequalities

R̃1 > R̃1(i), R̃2 > R̃2(i) (4.3.16)
Λ̄(i)

√
τ(s)Γ̃T

2 (i) Γ̃T
3 (i) Ξ̃T (i) HT (i)

∗ −N2 0 0 0

∗ ∗ −Q 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −W̃1(i)

 < 0 (4.3.17)


−Ω1(i) piKΓ̃

T
1 (i)

√∑
j∈Si

K
pijτ(j)Γ̃

T
2 (i)

∗ −ΦK(i) 0

∗ ∗ −piKN1

 < 0, ∀j ∈ S i
K (4.3.18)


−(1− piK)Ω2(i) (1− piK)Γ̃

T
1 (i)

√
(1− piK)

∑
j∈Si

UK
τ(j)Γ̃T

2 (i)

∗ −ΦUK(i) 0

∗ ∗ −(1− piK)N1

 < 0, ∀j ∈ S i
UK

(4.3.19)[
S(i, j) JT (i)

∗ Y (j)

]
> 0 (4.3.20)

[
(1− pi(i+1))R̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0 (4.3.21)[

piKR̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0, ∀(i+ 1) ∈ S i

UK (4.3.22)

and

N1R̃1 = I, N2R̃2 = I, W̃1(i)W1(i) = I and QQ = I, (4.3.23)
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where

Λ̄(i) = Λ̃(i) + Υ̃1(i) + Υ̃T
1 (i) + τ(i)Z̃(i) + Ω̃1(i) + (1− piK)Ω̃2(i)

Λ̃(i) = diag
{
−

[
Y (i) I

I X(i)

]
,−Q,

(
HT

2 W2(i)H2 − γI
)
,−W1(i),−W2(i)

}
Γ̃1(i) =

[
Ǎ(i) B̂(i)C̄2(i) B̌(i) Ě1 Ě1

]
Γ̃2(i) =

[
Ǎ(i) 0 B̄ Ē1 Ē1

]
Γ̃3(i) =

[ √
(τ(s)− τ(1) + 1)T (i) 0 0 0 0

]
ΦK =

[
−
∑i+1

j=1 pijS(i, j)− J(i)− JT (i) piKI

piKI
∑i+1

j=1 pijX(j)

]

ΦUK =

[
−
(
1− piK

)−1(∑i+1
j=1 S(i, j)− J(i)− JT (i)

)
(1− piK)I

(1− piK)I (1− piK)
∑i+1

j=1X(j)

]
Ξ̃(i) =

[
Č(i) 0 D E2 E2

]
H =

[
Ȟ1(i) 0 0 0 0

]
Υ̃1(i) = M̃T (i)[I − I 0 0 0]

Ǎ(i) =

[
AY (i) A

A(i)
∑i+1

j=1 p̄ijX(j)A

]
, B̌(i) =

[
B∑i+1

j=1 p̄ijX(j)B

]

Ǎ(i) =

[
(A− I)Y (i) A− I

0 0

]
Č(i) =

[
C1Y (i)− C(i) C1

]
,

Ȟ1(i) =
[
H1Y (i) H1

]
, Ě1(i) =

[
E1∑i+1

j=1 p̄ijX(j)E1

]
,

B̂(i) =

[
0

B(i)

]
, T (i) =

[
Y (i) I

Y (i) 0

]

and

i+1∑
j=1

p̄ijX(i) =
i+1∑
j∈Si

K

pijX(j) + (1− piK)
i+1∑

j∈Si
UK

X(j)

i+1∑
j=1

p̄ijY
−1(j) =

i+1∑
j∈Si

K

pijY
−1(j) + (1− piK)

i+1∑
j∈Si

UK

Y −1(j).

Then the filtering error is stochastically stable with the prescribed H∞ performance.
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Furthermore, the filter gains as shown in (4.2.3) are given as follows:

Af (i) =
(∑i+1

j=1 p̄ijY
−1(j)−

∑i+1
j=1 p̄ijX(j)

)−1(
A(i)−

∑i+1
j=1 p̄ijX(j)AY (i)

)
Y −1(i)

Bf (i) =
(∑i+1

j=1 p̄ijY
−1(j)−

∑i+1
j=1 p̄ijX(j)

)−1

B(i)
Cf (i) = C(i)Y −1(i).

(4.3.24)

Proof: We obtain the filter design by applying Schur complement on the terms

within the curly bracket of (4.3.15). We then have

Λ̂(i) Γ̄T
1 (i) Γ̄T

2 Γ̄T
3 Ξ̄T (i) H̄T

∗ −P̃−1(i) 0 0 0 0

∗ ∗ −(τ̃kR1 + τ(s)R2)
−1 0 0 0

∗ ∗ ∗ −Q−1 0 0

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −W−1
1


< 0 (4.3.25)

where

Λ̂(i) = diag
{
− P (i),−Q, (HT

2 W3(i)H2 − γI),−W1(i),−W2(i)
}

+Υ1(i) + ΥT
1 (i) + τ(i)Z(i)

Γ̄1(i) =
[
Ã(i) B̃(i)C̄2 B̄ Ē1 Ē1

]
Γ̄2 =

[
Ā 0 B̄ Ē1 Ē1

]
Γ̄3 =

[ √
(τ(s)− τ(1) + 1) 0 0 0 0

]
Ξ̄(i) =

[
C̃(i) 0 D E2 E2

]
H̄T =

[
H̄1 0 0 0 0

]

Following from [118], with loss of generality, P (i) and P̃ (i) are, respectively, parti-

tioned as

P (i) =

[
X(i) Y −1(i)−X(i)

Y −1(i)−X(i) X(i)− Y −1(i)

]
(4.3.26)

and

P̃ (i) =

[ ∑i+1
j=1 pijX(j)

∑i+1
j=1 pijY

−1(j)−
∑i+1

j=1 pijX(j)∑i+1
j=1 pijY

−1(j)−
∑i+1

j=1 pijX(j)
∑i+1

j=1 pijX(j)−
∑i+1

j=1 pijY
−1(j)

]
. (4.3.27)
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Note that each summation
∑i+1

j=1 pijX(j) and
∑i+1

j=1 pijY
−1(j) can be divided into

known and unknown terms,
∑

j∈Si
K
pijX(j) +

∑
j∈Si

UK
pijX(j) and

∑
j∈Si

K
pijY

−1(j) +∑
j∈Si

UK
pijY

−1(j) respectively. Now using Lemma 3.2.2 and introducing new terms,∑i+1
j=1 p̄ijX(i) and

∑i+1
j=1 p̄ijY

−1(j), the above can be expressed as

P̃ (i) =

[ ∑i+1
j=1 p̄ijX(j)

∑i+1
j=1 p̄ijY

−1(j)−
∑i+1

j=1 p̄ijX(j)∑i+1
j=1 p̄ijY

−1(j)−
∑i+1

j=1 p̄ijX(j)
∑i+1

j=1 p̄ijX(j)−
∑i+1

j=1 p̄ijY
−1(j)

]
(4.3.28)

Note that
∑i+1

j=1 p̄ij ̸= 1.

Now define the following

T2(i) =

[
I

∑i+1
j=1 p̄ijX(j)

0
∑i+1

j=1 p̄ijY
−1(j)−

∑i+1
j=1 p̄ijX(j)

]
(4.3.29)

Multiplying (4.3.25) to the right by the matrix diag
{
diag

{
T (i), I, I, I, I

}
, T2(i),

I, I, I, I
}
and the left by its transpose, we obtain



Λ̄(i) Γ̃T
1 (i) Γ̃T

2 (i) Γ̃T
3 Ξ̃T (i) H̃T (i)

∗ −Φ 0 0 0 0

∗ ∗ −(τ̃kR1 + τ(s)R2)
−1 0 0 0

∗ ∗ ∗ −Q−1 0 0

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −W̃1(i)


< 0 (4.3.30)

where

Φ =

 (∑i+1
j=1 p̄ijY

−1(j)
)−1

I

I
∑i+1

j=1 p̄ijX(j)

 (4.3.31)

Using Schur complement on (4.3.30), we obtain

Λ̃(i) + Υ1(i) + ΥT
1 (i) + τ(i)Z(i) + Γ̃T

1 (i)Φ
−1Γ̃1(i) + Γ̃T

2 (i)
[
(τ̃kR1 + τ(s)R2)

]
Γ̃2(i)

+Γ̃T
3 (i)QΓ̃3(i) + Ξ̃T (i)Ξ̃(i) + H̃T (i)W̃1(i)H̃(i) < 0 (4.3.32)

Rearranging the above equation and adding and subtracting Ω1(i),
∑i+1

j∈Si
UK

pijΩ2(i)
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results

Λ̃(i) + Υ1(i) + ΥT
1 (i) + τ(i)Z(i) + Γ̃T

1 (i)Φ
−1Γ̃1(i) + Γ̃T

2 (i)τ̃kR1Γ̃2(i)

+Γ̃T
2 (i)τ(s)R2Γ̃2(i) + Γ̃T

3 (i)QΓ̃3(i) + Ξ̃T (i)Ξ̃(i) + H̃T (i)W̃1(i)H̃(i)

+Ω1(i) +
i+1∑

j∈Si
UK

pijΩ2(i)− Ω1(i)−
i+1∑

j∈Si
UK

pijΩ2(i) < 0 (4.3.33)

The above terms can be re-expressed as

Λ̃(i) + Υ1(i) + ΥT
1 (i) + τ(i)Z(i) + Γ̃T

2 (i)τ(s)R2Γ̃2(i) + Γ̃T
3 (i)QΓ̃3(i) + Ξ̃T (i)Ξ̃(i)

+H̃T (i)W̃1(i)H̃(i) + Ω1(i) + (1− piK)Ω2(i) < 0 (4.3.34)

and

Γ̃T
1 (i)Φ

−1Γ̃1(i) + Γ̃T
2 (i)τ̃kR1Γ̃2(i)− Ω1(i)− (1− piK)Ω2(i) < 0. (4.3.35)

Applying Schur complement on (4.3.34) results (4.3.17).

Now we apply Schur complement to (4.3.35). Then the following is obtained. −Ω1(i)− (1− piK)Ω2(i) Γ̃T
1 (i)

√
τ̃ Γ̃T

2 (i)

∗ −Φ 0

∗ ∗ −R−1
1

 < 0 (4.3.36)

The above can also be separated into terms related to known and unknown transition

probabilities, with the help of Lemma 3.2.2, as shown below. −Ω1(i) piKΓ̃
T
1 (i)

√∑i+1
j=1 pijτ(j)Γ̃

T
2 (i)

∗ −ΦK 0

∗ ∗ −piKR
−1
1

 < 0 ∀j ∈ S i
K (4.3.37)

and  −(1− piK)Ω2(i) (1− piK)Γ̃
T
1 (i)

√
(1− piK)

∑i+1
j=1 τ(j)Γ̃

T
2 (i)

∗ −ΦUK 0

∗ ∗ −(1− piK)R
−1
1

 < 0 ∀j ∈ S i
UK

(4.3.38)
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where

ΦK =

 (∑i+1
j=1 pijY

−1(j)
)−1

pikI

pikI
∑i+1

j=1 pijX(j)

 ∀j ∈ S i
K (4.3.39)

and

ΦUK =

 (
(1− piK)

∑i+1
j=1 Y

−1(j)
)−1

(1− piK)I

(1− pik)I (1− piK)
∑i+1

j=1X(j)

 ∀j ∈ S i
UK (4.3.40)

Using the similar approach shown in (3.3.35) in the previous chapter, we can show

that that (4.3.18) remains valid even if
∑i+1

j=1 pijS(i, j)− J(i)− JT (i) replaces(∑i+1
j=1 pijY

−1(j)
)−1

for all j ∈ S i
K and similarly even if

∑i+1
j=1 S(i, j)−J(i)−JT (i) replaces(∑i+1

j=1 Y
−1(j)

)−1

for all j ∈ S i
UK. ∇∇∇

The nonconvex feasibility problem formulated by (4.3.16)-(4.3.21) can be converted

into the following nonlinear minimisation problem subject to LMIs:

Minimize Tr
(
N1R̃1 +N2R̃2 + W̃1(i)W1(i) +QQ

)
Subject to (4.3.16)-(4.3.21) and

[
N1 I

I R̃1

]
≥ 0,

[
N2 I

I R̃2

]
≥ 0,

[
W̃1(i) I

I W1(i)

]
≥ 0,

[
Q I

I Q

]
≥ 0 (4.3.41)

To solve this optimisation problem, the following algorithm can be used:

Algorithm :

Step 1: Set ȷ = 0 and solve (4.3.16)-(4.3.21) and (4.3.41) to obtain the initial conditions,[
A(i), C(i), Bc(i), X(i), Y (i), R̃1(i), R̃1, R̃2(i), R̃2,W1(i),W2(i), W̃1(i),

W̃2(i), Q,Q, N1, N2, Z̃(i), Y (i)
]0

Step 2: Solve the LMI problem

Minimize Tr
(
N ȷ

1R̃1 +N1R̃
ȷ
1 +N ȷ

2R̃ +N2R̃
ȷ
2 + W̃1(i)

ȷW1(i) + W̃1(i)W1(i)
ȷ

+QȷQ+QQȷ
)



4.4 Example 75

Subject to (4.3.16)-(4.3.21) and (4.3.41)

The obtained solutions are denoted as[
A(i), C(i), Bc(i), X(i), Y (i), R̃1(i), R̃1, R̃2(i), R̃2,W1(i),W2(i), W̃1(i),

Q,Q, N1, N2, Z̃(i), Y (i)
]ȷ+1

Step 3: Solve Theorem 4.3.1 with Af (i)
ȷ+1, Bf (i)

ȷ+1, Cf (i)
ȷ+1, if there exist solutions, then

Af (i)
ȷ+1, Bf (i)

ȷ+1, Cf (i)
ȷ+1 are the desired filter gains and EXIT. Otherwise, set

ȷ = ȷ+ 1 and return to Step 2.

4.4 Example

A DC motor servo system simulation is used to illustrate the effectiveness of the proposed

filter. A discrete state space representation of the DC motor sampled at 0.01s is given as

follows:

x(k + 1) = [A+∆A(k)]x(k) + [B +∆B(k)]w(k)

z(k) = [C1 +∆C1(k)]x(k) + [D +∆D(k)]w(k)

y(k) = C2x(k)

(4.4.1)

where

x(k) =

[
x1(k)

x2(k)

]
A =

[
0.9532 0.1924

−0.02477 −0.0005

]
B =

[
0

1

]
C1 =

[
1 0

]
C2 =

[
1 0

]
D = 0.01

(4.4.2)

and x1(k) and x2(k) are the motor angular velocity and the armature current, respectively.

The uncertainties in this example are assumed to be characterized by matrices below:

E1 =

[
0.02

0.01

]
E2 = 0.01

H1 =
[
0.05 0.02

]
H2 = 0.01 H3 = 0.01

(4.4.3)

We use a Markov chain taking values in a finite set S = {1, 2, 3, 4}, which correspond

to 0.1, 0.2, 0.3, 0.4 seconds delays, respectively. In this particular example, it is assumed
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that only the transition probabilities to itself are determined through example to reduce

the cost. The transition probability matrix is shown as follows:

Pτ =


0.5 0.5 0 0

(0.5) 0.3 (0.2) 0

(0.5) (0.3) 0.1 (0.1)

(0.5) (0.3) (0.1) 0.1

 (4.4.4)

where probabilities inside bracket are the unknown transition probabilities.

The attenuation level, γ, is selected as 1.0. Applying Theorem 4.3.2 and the iterative

algorithm, the following filter gains are obtained:

Ac(1) =

[
0.9532 0.1924

−0.0251 −0.0057

]
Bc(1) =

[
−8.0982× 10−6

−0.0123

]
Cc(1) =

[
1.0000 −2.4604× 10−5

]
Ac(2) =

[
0.9532 0.1924

−0.0252 −0.0051

]
Bc(2) =

[
−9.2835× 10−6

−0.0018

]
Cc(2) =

[
1.0000 −2.1569× 10−5

]
Ac(3) =

[
0.9532 0.1924

−0.0251 −0.0037

]
Bc(3) =

[
−8.6253× 10−6

−7.3684× 10−4

]
Cc(3) =

[
1.0000 −1.6136× 10−5

]
Ac(4) =

[
0.9532 0.1924

−0.0251 −0.0039

]
Bc(4) =

[
−9.8149× 10−6

−9.1035× 10−4

]
Cc(4) =

[
1.0000 −1.4970× 10−5

]

Figure 4.1 shows the response of filtering error system. The initial condition is

x(0) = [1 0]T . The external disturbance, w(k), is given as e−0.1k sin(0.5k). Figure

4.3 shows the mode transitions for this example. The ratio of the energy of the error

to the energy of the disturbance is shown in Figure 4.2. It is shown that the ratio is

approximately 0.68, which is less than the prescribed γ = 1.0, illustrating the validity of

the filter.
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Figure 4.1: Response of filtering error
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Figure 4.2: Ratio of energy of the filtering error to the energy of the disturbance (γ = 1.0)



4.5 Conclusions 78

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

Time (s)

M
od

es

Figure 4.3: Transitions of the modes in Markov chain

4.5 Conclusions

In this chapter, H∞ filter design approach is presented for a discrete-time networked

control systems. The network-induced delays are modelled by a finite state Markov chain

whose transition probability matrix is allowed to be partially known. The existence of

the filter is given in terms of solvability of BMIs and an algorithm is presented to solve

these BMIs. A DC servo example is used to illustrate the efficiency of the proposed

methodology.



5
Robust H∞ Dynamic Output Feedback

Control of Discrete-time Networked
Control Systems With Partially Known

Transition Probability Matrix

Abstract

In this chapter, a methodology for designing an H∞ dynamic output feedback controller for discrete-

time networked control systems has been considered. Markov chain is used to model the communication

delays between the sensor and the controller and it is assumed that the transition probability matrix is

partially known. Based on Lyapunov-Krasovskii functional the stability criteria has been developed. By

considering a dynamic output feedback controller, this chapter provides a way to control NCSs when not

all state variables are measurable or available. In conjunction with partially known transition probability

matrix, this approach provides more practical controller design in the real world. The proposed design

methodology is verified by using a DC servo motor example.

79
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5.1 Introduction

This chapter investigates designing a robust H∞ dynamic feedback controller for a class

of uncertain NCSs with random network-induced delays. As in the previous chapter, the

network-induced delays are modelled by a finite state Markov chain with partially known

transition probability matrix. The plant is modelled by a discrete-time linear model where

the output of the plant is measured and transmitted via a network. State feedback control

requires that all the state variables of the plant are measurable. However, in real world,

not all state variables may be measurable. In the previous chapter, H∞ filter design is

presented where the controlled output of the plant is estimated based on the measured

output. In control systems, the main interest is to stabilize and maintain the performance

of the overall system. By utilizing an output feedback control, the system can still be

stabilized based on the measured output of the system, providing more practical approach

to controlling a system than a state feedback control.

Discrete linear Markovian jump systems with partially known transition probabili-

ties have been studied in [61–63] as it is either impossible or costly to obtain a completely

known transition probability matrix for complex systems. In the aforementioned papers,

the unknown transition probabilities are separated from known transition probabilities

and then discarded. Note that the aforementioned literatures [61–63], do not consider

NCSs where the Markov chain is used to model the network-induced delays.

In handling the unknown transition probability matrix, instead of using a similar

approach to [61–63], where the unknown part is handled without using any probability

information, the fact that the summation of all probabilities in each row of transition

probability matrix is used throughout the thesis. Furthermore, instead of considering

the known and the unknown parts separately, we consider the summation of both parts,

yielding less conservative results and decreasing computational burden.

The organisation of this chapter is as follows. Description of the system, definitions

and problem formulation are presented in Section 5.2. Stability analysis and H∞ dynamic

output feedback controller design for a class of discrete-time NCSs with partially known

transition probability matrix are presented in Section 5.3. Section 5.4 uses a DC mo-

tor servo example to illustrate the effectiveness of the presented methodology. Finally,

conclusions of this chapter are presented in Section 5.5.
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5.2 System Description and Definitions

Once again, the NCSs setup shown in Figure 2.1 shown in Chapter 2 is considered. In

this chapter, it is assumed that not all state variables are measurable and available to the

controller; and the measured output, y(k), is transmitted via the network. The measured

output, y(k), is measured by the sensor and passed to the controller via the network where

the signal will experience network-induced delays. A class of uncertain discrete-time linear

systems under consideration is described by the following model:

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]u(k), x(0) = 0

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]u(k)

y(k) = C2x(k)

(5.2.1)

where x(k) ∈ ℜn, u(k) ∈ ℜm, z(k) ∈ ℜm1 , y(k) ∈ ℜm2 are the state, input, controlled out-

put and measured output, respectively and w(k) ∈ ℜm3 is the disturbance which belongs

to L2[0,∞), the space of square summable vector sequence over [0,∞]. The matrices A,

B1, B2, C1, D11, D12 and C2 are of known dimensions. As in the previous chapter, the

matrix functions ∆A(k), ∆B1(k), ∆B2(k), ∆C1(k), ∆D11(k) and ∆D12(k) represent the

time-varying uncertainties in the system which satisfy the following assumption.

Assumption 5.2.1[
∆A(k) ∆B1(k) ∆B2(k)

∆C1(k) ∆D11(k) ∆D12(k)

]
=

[
E1

E2

]
F (k)

[
H1 H2 H3

]
where Hi and Ei are known matrices which characterize the structure of the uncertainties.

Furthermore, there exists a positive-definite matrix W such that the following inequality

holds:

F T (k)WF (k) ≤ W (5.2.2)

The network is modelled by a finite state Markov chain with partially known tran-

sition probability matrix. Refer to the previous chapter for more information about the

modelling procedure.

The aim of this chapter is to design a dynamic output feedback controller of the

following form

x̂(k + 1) = Ac(i)x̂(k) +Bc(i)y(k − τk)

u(k) = Cc(i)x̂(k)
(5.2.3)
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where x̂(k) is the controller’s state, Ac(i), Bc(i) and Cc(i) are the controller matrices to

be determined.

The closed loop system of (5.2.1) with (5.2.3) is given as follows:

ζ(k + 1) = [Acl(i) + Ē1F (k)H̄1(i)]ζ(k) +Bcl(i)C̄2ζ(k − τk) + [B̄1 + Ē1F (k)H2]w(k)

z(k) = [Ccl(i) + E2F (k)H̄1(i)]ζ(k) + [D11 + E2F (k)H2]w(k).

(5.2.4)

where ζ(k)T =
[
x(k)T x̂(k)T

]
,

Acl(i) =

[
A B2Cc(i)

0 Ac(i)

]
, Bcl(i) =

[
0

Bc(i)

]
, B̄1 =

[
B1

0

]
, C̄2 =

[
C2 0

]
,

Ē1 =

[
E1

0

]
, H̄1(i) =

[
H1 H3Cc(i)

]
, Ccl(i) =

[
C1 D12Cc(i)

]
.

The H∞ dynamic output feedback control problem of the NCSs is formulated as

follows.

As shown in Chapter 2, the closed-loop system is to achieve stochastic stability, as

shown in (2.2.5), and the H∞ performance condition, as shown in (2.2.6).

5.3 Main Results

This section presents the stability criteria and the robust H∞ dynamic output feedback

controller design for a class of linear NCSs. The network is modelled by a finite state

Markov chain whose transition probability matrix is allowed to be partially known. The

controller computes the control signal based on the measured output of the plant, which

experience delays and is subject to packet dropout as it is transmitted via the network.

The following theorem proposes stability criteria for the system shown in (5.2.1)

with the controller in the form of (5.2.3) with partially known transition probabilities in

the Markov chain.

Theorem 5.3.1 For given controller gains Ac(i), Bc(i), Cc(i), i ∈ S, and γ > 0, if there

exist sets of positive-definite matrices P (i), R1(i), R1, R2(i), R2, W1(i), W2(i), Q, Z(i)
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and matrices M(i), Ω1(i), Ω2(i), ∀i ∈ S, satisfying the following inequalities

R1 > R1(i), R2 > R2(i) (5.3.1)

Λ(i)+ΓT
2 (i)τ(s)R2Γ2(i)+Υ1(i)+ΥT

1 (i)+τ(i)Z(i)+ΞT (i)Ξ(i)+Ω1(i)+
(
1−piK

)
Ω2(i) < 0

(5.3.2)

ΓT
1 (i)P̃K(i)Γ1(i) + ΓT

2 (i)τ̃KR1Γ2(i)− Ω1(i) < 0, ∀j ∈ S i
K (5.3.3)(

1− piK

)[
ΓT
1 (i)

i+1∑
j=1

P (j)Γ1(i) + ΓT
2 (i)

i+1∑
j=1

τ(j)R1Γ2(i)

]
−
(
1− piK

)
Ω2(i) < 0, ∀j ∈ S i

UK

(5.3.4)

and [
(1− pi(i+1))R1(i) +R2(i) M(i)

MT (i) Z(i)

]
≥ 0 (5.3.5)[

piKR1(i) +R2(i) M(i)

MT (i) Z(i)

]
≥ 0, pi(i+1) ∈ S i

UK (5.3.6)

where
Γ1(i) =

[
Acl(i) Bcl(i)C̄2 B̄1 Ē1 Ē1

]
Ξ(i) =

[
Ccl 0 D11 E2 E2

]
Γ2(i) =

[
Ā 0 B̄1 Ē1 Ē1

]
Λ(i) = diag

{(
(τ(s)− τ(1) + 1)Q+ H̄T

1 (i)W1(i)H̄1(i)− P (i)
)
,

−Q,
(
HT

2 W2(i)H2 − γI
)
,−W1(i),−W2(i)

}
Υ1 = MT [diag{I, 0} diag{−I, 0} 0 0 0]

P̃K(i) =
∑i+1

j∈Si
K
pijP (j)

τ̃K(i) =
∑i+1

j∈Si
UK

pijτ(j)

Ā =

[
A− I B2Cc(i)

0 0

]
.

Then the closed-loop system is stochastically stable with the prescribed H∞ performance.

Proof: The system (5.2.4) can be rewritten as

ζk+1 = Γ1(rk)ζ̃k

zk = Ξ(rk)ζ̃k
(5.3.7)

where ζℓ = ζ(ℓ), zℓ = z(ℓ), ζ̃ℓ = ζ̃(ℓ), and Γ1(rk) =
[
Acl(i) Bcl(i)C̄2 B̄1 Ē1 Ē1

]
, and

ζ̃(k)T =
[
ζT (k) ζT (k − τ(rk)) wT (k) ζT (k)H̄T

1 (i)F
T (k) wT (k)HT

2 F
T (k)

]
∈ ℜl.
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The following Lyapunov-Krasovskii candidate functional is considered

V (ζk, rk) = V1(ζk, rk) + V2(ζk, rk) + V3(ζk, rk) (5.3.8)

with

V1(ζk, rk) = ζTk P (rk)ζk (5.3.9)

V2(ζk, rk) =
−1∑

ℓ=−τk

k−1∑
j=k+ℓ

x̄T
j R1x̄j +

−1∑
ℓ=−τ(s)

k−1∑
j=k+ℓ

x̄T
j R2x̄j (5.3.10)

V3(ζk, rk) =
k−1∑

ℓ=k−τk

ζTℓ Qζℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

ζTj Qζj (5.3.11)

where x̄(k) =

[
x(k + 1)− x(k)

0

]
.

Following a similar technique used in the proof of the stability analysis in Chapter

3 and 4, we obtain

∆V (xk, rk) ≤ ζ̃Tk

{
Λ(rk) + ΓT

1 P̃ (rk)Γ1 + ΓT
2 [τ̃kR1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT

1 (rk)

+τkZ(rk) + ΞT (i)Ξ(i)
}
ζ̃k − zTk zk + γwT

k wk (5.3.12)

which will be referred later on. Following the similar approach of handling the unknown

transition probabilities shown in Chapter 3, we show that the controller satisfies the

conditions shown in the problem formulation. ∇∇∇

The following theorem provides sufficient conditions for the existence of a robust

partially mode delay-dependent H∞ output feedback controller for the system (5.2.1)

with partially known transition probabilities.

Theorem 5.3.2 For a given γ > 0, if there exist sets of positive-definite matrices X(i),

Y (i), Y(i), R̃1(i), R̃1, R̃2(i), R̃2, W1(i), W2(i), Q, Q, W̃1(i), W̃2(i), N1, N2, Z̃(i), S(i, j)

and matrices M̃(i), Ω̃1(i), Ω̃2(i), A(i), B(i), C(i) and J(i) for i = 1, 2, · · · , s satisfying

the following inequalities

R̃1 > R̃1(i), R̃2 > R̃2(i) (5.3.13)
Λ̄(i)

√
τ(s)Γ̃T

2 (i) Γ̃T
3 (i) Ξ̃T (i) HT (i)

∗ −N2 0 0 0

∗ ∗ −Q 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −W̃1(i)

 < 0 (5.3.14)
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
−Ω1(i) piKΓ̃

T
1 (i)

√∑
j∈Si

K
pijτ(j)Γ̃

T
2 (i)

∗ −ΦK(i) 0

∗ ∗ −piKN1

 < 0, ∀j ∈ S i
K (5.3.15)


−(1− piK)Ω2(i) (1− piK)Γ̃

T
1 (i)

√
(1− piK)

∑
j∈Si

UK
τ(j)Γ̃T

2 (i)

∗ −ΦUK(i) 0

∗ ∗ −(1− piK)N1

 < 0, ∀j ∈ S i
UK

(5.3.16)[
S(i, j) JT (i)

∗ Y (j)

]
> 0 (5.3.17)

[
(1− pi(i+1))R̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0 (5.3.18)[

piKR̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0, ∀(i+ 1) ∈ S i

UK (5.3.19)

and

N1R̃1 = I, N2R̃2 = I, W̃1(i)W1(i) = I and QQ = I, (5.3.20)

where

Λ̄(i) = Λ̃(i) + Υ̃1(i) + Υ̃T
1 (i) + τ(i)Z̃(i) + Ω̃1(i) + (1− piK)Ω̃2(i)

Λ̃(i) = diag
{
−

[
Y (i) I

I X(i)

]
,−Q,

(
HT

2 W2(i)H2 − γI
)
,−W1(i),−W2(i)

}
Γ̃1(i) =

[
Ǎcl(i) B̌cl(i)C̄2(i) B̌1 Ě1 Ě1

]
Γ̃2(i) =

[
Ǎ(i) 0 B̄1 Ē1 Ē1

]
Γ̃3(i) =

[ √
(τ(s)− τ(1) + 1)T (i) 0 0 0 0

]
ΦK =

[
−
∑i+1

j=1 pijS(i, j)− J(i)− JT (i) piKI

piKI
∑i+1

j=1 pijX(j)

]

ΦUK =

[
−
(
1− piK

)−1(∑i+1
j=1 S(i, j)− J(i)− JT (i)

)
(1− piK)I

(1− piK)I (1− piK)
∑i+1

j=1X(j)

]
Ξ̃(i) =

[
Čcl(i) 0 D11 E2 E2

]
H =

[
Ȟ1(i) 0 0 0 0

]
Υ̃1(i) = M̃T (i)[I − I 0 0 0]
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Ǎcl(i) =

[
AY (i) +B2C(i) A

A(i)
∑i+1

j=1 p̄ijX(j)A

]
, B̌1(i) =

[
B1∑i+1

j=1 p̄ijX(j)B1

]

Ǎ(i) =

[
(A− I)Y (i) +B2C(i) A− I

0 0

]
Čcl(i) =

[
C1Y (i) +D12C(i) C1

]
,

Ȟ1(i) =
[
H1Y (i) +H3C(i) H1

]
, Ě1(i) =

[
E1∑i+1

j=1 p̄ijX(j)E1

]
,

B̌cl(i) =

[
0

B(i)

]
, T (i) =

[
Y (i) I

Y (i) 0

]

and

i+1∑
j=1

p̄ijX(i) =
i+1∑
j∈Si

K

pijX(j) + (1− piK)
i+1∑

j∈Si
UK

X(j)

i+1∑
j=1

p̄ijY
−1(j) =

i+1∑
j∈Si

K

pijY
−1(j) + (1− piK)

i+1∑
j∈Si

UK

Y −1(j).

Then the closed-loop system is stochastically stable with the prescribed H∞ perfor-

mance. Furthermore, the controller is given as follows:

Ac(i) =
(∑i+1

j=1 p̄ijY
−1(j)−

∑i+1
j=1 p̄ijX(j)

)−1(
A(i)−

∑i+1
j=1 p̄ijX(j)

(AY (i) +B2C(i))
)
Y −1(i)

Bc(i) =
(∑i+1

j=1 p̄ijY
−1(j)−

∑i+1
j=1 p̄ijX(j)

)−1

B(i)
Cc(i) = C(i)Y −1(i).

(5.3.21)

Proof: We obtain the controller design by applying Schur complement on the terms

within the curly bracket of (5.3.12). We then have

Λ̂(i) Γ̄T
1 (i) Γ̄T

2 (i) Γ̄T
3 Ξ̄T (i) H̄T (i)

∗ −P̃−1(i) 0 0 0 0

∗ ∗ −(τ̃kR1 + τ(s)R2)
−1 0 0 0

∗ ∗ ∗ −Q−1 0 0

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −W−1
1


< 0 (5.3.22)



5.4 Example 87

where

Λ̂(i) = diag
{
− P (i),−Q, (HT

2 W3(i)H2 − γI),−W1(i),−W2(i)
}

+Υ1(i) + ΥT
1 (i) + τ(i)Z(i)

Γ̄1(i) =
[
Acl(i) Bcl(i)C̄2 B̄1 Ē1 Ē1

]
Γ̄2(i) =

[
Ā 0 B̄1 Ē1 Ē1

]
Γ̄3 =

[ √
(τ(s)− τ(1) + 1) 0 0 0 0

]
Ξ̄(i) =

[
Ccl(i) 0 D11 E2 E2

]
H̄T (i) =

[
H̄1(i) 0 0 0 0

]

Similar approach shown in the proof section of Chapter 4, can be used to prove the

rest of the theorem. ∇∇∇

A similar iterative algorithm to what is shown in Chapter 4 can be used to obtain

the dynamic output feedback controller.

5.4 Example

The DC motor servo system presented in Chapter 4 is used to illustrate the effectiveness

of the proposed methodology.

The attenuation level, γ, is selected as 1.0. Applying Theorem 5.3.2 and the algo-

rithm in the previous section, we obtain the controller matrices as follows:

Ac(1) =

[
−0.7614 0.0633

−0.1202 −0.1269

]
Bc(1) =

[
0.0074

−0.0216

]
Cc(1) =

[
−0.8794 −0.0663

]
Ac(2) =

[
−0.2395 0.0614

−0.1057 −0.1985

]
Bc(2) =

[
0.0052

−0.0333

]
Cc(2) =

[
−0.6123 −0.0672

]
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Ac(3) =

[
0.0788 0.0587

−0.0941 −0.1545

]
Bc(3) =

[
0.0052

−0.0121

]
Cc(3) =

[
−0.4491 −0.0687

]
Ac(4) =

[
0.0769 0.0584

−0.0913 −0.1802

]
Bc(4) =

[
0.0055

−0.0127

]
Cc(4) =

[
−0.4503 −0.0688

]
State response of this example is shown in Figure 5.1 with w = 0. The initial

states are chosen to be x(0) = [1.0 0]T . It is shown in Figure 5.1 that the controller

obtained above stabilize the system, thus demonstrating the validity of the proposed

methodology. Figure 5.2 shows the ratio of energy of the controlled output to the energy

of the disturbance (w(k) = e−0.1k sin(0.5k)). The ratio is approximately equal to 0.65,

which is less than the prescribed level γ = 1.0. The change of modes in this example is

shown in Figure 5.3
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Figure 5.1: State Response
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Figure 5.2: Ratio of energy of the controlled output to the energy of the disturbance (γ = 1.0)
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Figure 5.3: Mode transitions



5.5 Conclusions 90

5.5 Conclusions

In this chapter, stability criteria and partially mode delay dependent H∞ dynamic output

feedback controller are developed for a class of networked control systems. Random

network-induced delays are modelled by Markov processes with partially known transition

probability matrix. Conditions for stochastic stability with a given attenuation gain

are derived by using Lyapunov-Krasovskii functional. By using a DC servo simulation

example, it is shown that the proposed methodology meets the performance conditions.



6
Takagi-Sugeno Fuzzy Model and
Sum-of-squares Decomposition

Abstract

This chapter provides an overview of Takagi-Sugeno fuzzy model, which will be used in the remainder

of this thesis to model nonlinear networked control systems. Modelling procedure of a single-link rigid

robot using a T-S fuzzy model is presented, which will be used as a numerical example in the subsequent

chapters of this thesis. A brief overview of sum-of-squares decomposition is also presented in this section,

which will be adopted to incorporate membership functions into the fuzzy controller/filter design.

6.1 Introduction

Study of nonlinear system is crucial as systems in the real world contain nonlinearities

to a certain degree. However, due to its mathematical complexities, studies on nonlinear

systems is not as comprehensive to its linear counterpart. The traditional approach to

91
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designing a controller for nonlinear systems is to linearize the plant around its point

of operation and design a controller based on the linear plant from numerous design

methodologies. While this approach has been proven to be useful in ideal condition due

to its mathematical simplicity, the accuracy of the model degrades as the system moves

further from the point of operation. Therefore, the system may become unstable as the

system deviates from the region of operation. Furthermore, this approach is not possible if

the system model is not linearizable. These drawbacks motivate researchers to investigate

designing a controller for nonlinear systems where one no longer is restricted to the point

of operation.

Takagi-Sugeno (T-S) fuzzy model has been widely used to model nonlinear plants

in control systems ever since its proposition in [101]. The strength of this approach lies

in the fact that the local dynamics of each fuzzy implication (rule) is expressed by a

linear system model. The overall fuzzy model of the nonlinear system is obtained by

fuzzy “blending” of the linear system models. By doing so, one may take an advantage

of abundance of linear control theory and apply them to nonlinear control systems. Even

though the nonlinear plant is modelled by local linear system models, it has been proven

that T-S fuzzy model provides universal approximators of any smooth nonlinear system

[119, 120].

Section 6.2 describes how a nonlinear plant is modelled using T-S fuzzy model. A

T-S fuzzy model of a single-link rigid robot is also presented in this section. An overview

of T-S fuzzy controller is given in Section 6.3. Sum-of-squares decomposition is briefly

explained in Section 6.4 to provide the fundamental knowledge to understand how it is

used to incorporate membership functions into the controller/filter design methodology

in later chapters.

6.2 Takagi-Sugeno Fuzzy Model Construction

A fuzzy model uses fuzzy rules, which are linguistic IF-THEN statements involving fuzzy

sets, fuzzy logic and fuzzy inference. This plays the key role in linking the input variables

of the models to the output variables using linguistic information between these two. The

gth rule of the T-S fuzzy models are of the following form:

Plant Rule g:

IF θ1(x(k)) is J
g
1 AND · · · AND θp(x(k)) is J

g
p ,
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THEN
x(k + 1) = Agx(k) + Bgu(k)

y(k) = Cgx(k) +Dgu(k)
(6.2.1)

where g denotes the gth fuzzy inference rule; g = 1, . . . , r; r is the number of inference

rules; θ1(x(k)), . . . , θp(x(k)) are the premise variables; p is the number of premise variables

and Jg
1 , . . . , J

g
p are the fuzzy terms. Furthermore x(k) ∈ ℜn, u(k) ∈ ℜm1 , y(k) ∈ ℜm2

are the state, input and output respectively. The matrices Ag, Bg, Cg, and Dg are of

appropriate dimensions.

These local linear system models are then integrated into a global nonlinear model

by using a center-average defuzzifier, product inference and singleton fuzzifier:

x(k + 1) =
r∑

g=1

µg(θ(x(k)))
{
Agx(k) +Bgu(k)

}
y(k) =

r∑
g=1

µg(θ(x(k)))
{
Cgx(k) +Dgu(k)

}
(6.2.2)

where

θ(x(k)) = [θ1(x(k)), . . . , θp(x(k))],

χg(θ(x(k))) =

p∏
t=1

Jg
t (θt(x(k))),

µg(θ(x(k)) =
χg(θ(x(k)))∑r
ℓ=1 χℓ(θ(x(k)))

∈ [0, 1],

r∑
g=1

µg(θ(x(k))) = 1

Figure 6.1 shows illustrates the T-S fuzzy model using an illustration. It is shown

that the global input-output nonlinear relationship is expressed in terms of weighted

summation of linear system model.

The fuzzy “blending” of linear system models are achieved by µg(θ(x(k))) terms

or the “weighted” blocks in Figure 6.1. These terms are called membership functions

and they play a vital role in the overall nonlinear model. Even though the local linear

system models are the same, different membership functions result different input-output

relationship of the global nonlinear model. However, many of the existing literature



6.2 Takagi-Sugeno Fuzzy Model Construction 94

Figure 6.1: Illustration of a T-S fuzzy model

on nonlinear control systems based on T-S fuzzy model, such as [36, 41, 58, 66, 67,

84–91], do not consider membership functions in the controller design. This is because

membership functions are nonlinear functions in x(k) therefore linear matrix inequalities

(LMIs) approach cannot be used. This results in the controller being valid for any shape

of membership functions, thus leading to conservatism.

There are two approaches of constructing T-S fuzzy models:

1. Fuzzy modelling (identification) using input-output data

2. Derivation from given nonlinear system equations.

The latter uses the idea of sector nonlinearity and this allows to obtain T-S fuzzy

model easily when nonlinear dynamical models for the systems can be obtained. In this

section, the second approach is used to obtain a T-S fuzzy model of a single-link rigid

robot. The following is the modelling procedure where the T-S model will be used as a

numerical example in the following chapters of this thesis.

The motion equation of the single-link rigid robot system is shown as

Jθ̈ = −(0.5mgl +Mgl)sin(θ) + u (6.2.3)

where θ denote the joint rotation angle in radians, m is the mass of the load, M is

the mass of the rigid link, g = 9.8m/s2 is the gravity constant, l is the length of the

robot link, J = Ml2 + (1/3)ml2 is the moment of inertia, and u is the control torque



6.2 Takagi-Sugeno Fuzzy Model Construction 95

applied at the joint in Nm. θ = 0 denotes the lowest vertical equilibrium position under

zero control torque. The control task is to move the robot arm from any initial state

θ ∈ [−(π/2), (π/2)] to the equilibrium position defined by θ = 0, θ̇ = 0, and θ̈ = 0

despite of perturbations of plant parameters.

In order to obtain a T-S fuzzy model, new state variables are defined as x1 = θ,

x2 = θ̇.

When x1 is near zero, the nonlinear equation above can be simplified with the new

state variables as

ẋ1 = x2 (6.2.4)

ẋ2 = −(0.5mgl +Mgl)

J
+

1

J
u (6.2.5)

When x1 is near ±π/2, the nonlinear equations are simplified as

ẋ1 = x2 (6.2.6)

ẋ2 = −2(0.5mgl +Mgl)

πJ
+

1

J
u (6.2.7)

Note that (6.2.4)-(6.2.7) are now linear system models. Based on the above, the

following T-S fuzzy model is obtained.

Model Rule 1:

IF x1 is about 0, THEN ẋ = A1x+B1u

Model Rule 2:

IF x1 is about ±π/2, THEN ẋ = A2x+B2u

where

A1 =

[
0 1

− (0.5mgl+Mgl)
J

0

]
, A2 =

[
0 1

−2(0.5mgl+Mgl)
πJ

0

]

B1 = B2 =

[
0
1
J

]
(6.2.8)

The membership functions for Rule 1 and Rule 2 are shown in Figure 6.2.

Discrete-time T-S fuzzy model of the above with m = 1.5kg, M = 3kg, l = 0.5m,
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Figure 6.2: Membership functions of single-link rigid robot example

and J = 0.875kgm2 with Ts = 0.01s is obtained as follows

A1 =

[
0.0990 0.0100

−0.2099 0.9990

]
, A2 =

[
0.0993 0.0100

−0.1337 0.9993

]

B1 = B2 =

[
5.7133× 10−5

0.0114

]
(6.2.9)

where the state variables are xT (k) = [xT
1 (k) xT

2 (k)] and other variables are also in

discrete-time domain.

6.3 Takagi-Sugeno Fuzzy Controller Construction

The concept of T-S fuzzy controller is very similar to T-S fuzzy model as shown in Figure

6.3. Figure 6.3 illustrates a T-S fuzzy state feedback controller where the state variables

of the plant is multiplied by controller gains. A nonlinear controller is created through

fuzzy blending of local linear controllers.
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Figure 6.3: Illustration of a T-S fuzzy controller

In NCSs, information within a system is transmitted via a network and inevitably

experience network-induced delays as shown in Figure 6.4. This means that when the

state variables are measured by the sensor and transmitted to the controller, the signal

will experience network-induced delays, τk. Hence the input of the fuzzy controller is the

time delayed version of the premise variables, which often are the state variables, of the

plant. Most of existing literature on nonlinear NCSs based on T-S fuzzy model neglects

this and formulate the problem incorrectly [36, 67, 85, 87, 88]. Based on this information,

the fuzzy state feedback controller of NCSs is shown as follows:

Control Rule h:

IF σ1(x(k − τk)) is N
h
1 AND · · · AND σq(x(k − τk)) is N

h
q ,

THEN

u(k) = Fix(k − τk) (6.3.1)

where h denotes the hth fuzzy inference rule; h = 1, . . . , c; c is the number of inference

rules; σ1(x(k−τk)), . . . , σq(x(k−τk)), are the premise variables; q is the number of premise

variables and Nh
1 , . . . , N

h
q are the fuzzy terms.

Similar to the plant, the fuzzy controller is inferred as shown below.

u(k) =
c∑

h=1

λh(σ(x(k − τk)))Fix(k − τk) (6.3.2)

where

σ(x(k − τk)) = [σ1(x(k − τk)), . . . , σq(x(k − τk))],
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Figure 6.4: Illustration of premise variables of T-S fuzzy model in NCSs

ϕh(σ(x(k − τk))) =

q∏
t=1

Nh
t (σt(x(k − τk))),

λh(σ(x(k − τk)) =
ϕh(σ(x(k − τk)))∑c
ℓ=1 ϕℓ(σ(x(k − τk)))

∈ [0, 1],

c∑
h=1

λh(σ(x(k − τk))) = 1

Note that the control action is based on the past information of the plant, in this

case x(k − τk). Through the fuzzy blending, the overall controller is nonlinear.

6.4 Overview of Sum-of-squares Decomposition

As explained earlier, many existing literature on nonlinear control based on T-S fuzzy

model discards membership functions when designing a controller [36, 67, 85, 87, 88].

This is because the membership functions are nonlinear functions in x therefore LMI

approach cannot be used. In order to circumvent this limitation, sum-of-square decom-

position approach is exploited in this thesis. This section provides a brief overview of

sum-of-squares decomposition and explains how this approach can be used to incorporate
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membership functions into the controller design.

Sum-of-squares decomposition of multivariate polynomials using semidefinite pro-

gramming has been attracting interest due to the fact that it provides convex relaxations

for many hard problems [121–125]. Due to this recent interest and the advantages of

the approach, several toolbox such as YALMIP [126] and SOSTOOLS [127] have been

developed. In this section, a brief overview of sum-of-squares problem is presented.

As the name suggests, a multivariate polynomial p(x1, . . . , xn) , p(x) is a sum-of-

squares (SOS), if there exist polynomials f1(x), . . . , fm(x) such that

p(x) =
m∑
i=1

f 2
i (x) (6.4.1)

The above implies that f(x) ≥ 0 for all x ∈ ℜn. Above is equivalent to the existence

of a positive semidefinite matrix Q such that

p(x) = vT (x)Qv(x) (6.4.2)

Therefore if one can find a vector of monomials v(x) and a positive semidefinite

matrix Q, nonnegativity is ensured. This turns the sum-of-squares programme into a

semidefinite programme. By using this, SOS approach has been widely used for checking

nonnegativity condition. The above process shown in (6.4.2) is known as sum-of-squares

decomposition. This approach has been widely used as sum-of-squares decomposition of

a multivariate polynomial has less computational burden than guarantying nonnegativity

of polynomials.

It is noteworthy to point out that sum-of-squares provides sufficient conditions for

nonnegativity. This is because sum-of-squares decomposable polynomial is a subset of

nonnegative polynomial. What this means is that all sum-of-squares decomposable poly-

nomials are nonnegative but not all nonnegative polynomials are sum-of-squares

decomposable. However, as already explained, proving that a polynomial is sum-of-

squares is easier than proving a polynomial is nonnegative.

Since SOS deals with polynomial functions, membership functions can be incor-

porated into the theorem by approximating membership functions with sum-of-squares

decomposable polynomial functions so that toolbox such as YALMIP can handle the poly-

nomial functions. Refer to the next chapter for more information of how SOS approach is
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used to incorporate membership functions into the controller design. Previous approach

where membership functions are discarded results a controller based on any shape of

membership functions. By incorporating the membership functions, it is ensured that

the controller is specific for the membership function given. As it is shown in the next

chapters, the incorporation of membership functions results larger stability region than

the approaches where membership functions are discarded.



7
Robust Fuzzy H∞ State Feedback
Control of Nonlinear Networked

Control Systems With Completely
Known Transition Probability Matrix

Abstract

The chapter presents a methodology for designing a robust fuzzy H∞ state feedback controller for non-

linear discrete-time networked control systems (NCSs). The nonlinear systems are modelled by a Takagi-

Sugeno fuzzy model, and network induced delays between sensors and controllers are modelled by a finite

state Markov process. The fuzzy controller’s membership functions are allowed to be different from the

plant’s membership functions to accommodate the fact that the plant’s premise variables are transmitted

via the network. The membership functions of the plant and the fuzzy controller are then approximated

by polynomial functions and incorporated into the controller design. Based on Lyapunov-Krasovskii

functional, sufficient conditions for the existence of the controller are provided. Numerical examples

are used to illustrate the effectiveness of the presented methodology and to confirm that incorporating

101
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membership functions yield larger stabilization region.

7.1 Introduction

In a traditional point-to-point architecture, the system components such as the plant and

the controllers are connected via physical wires. In this architecture, it is assumed that

the signals experience no delay within the system, which simplified stability analysis and

controller design methodology. Because the controller is designed with an assumption that

the sensor measurements are received as soon as it becomes available, the physical distance

between the controller and the plant has to be small. Furthermore the overall system

cannot be modularized, which results high installation and maintenance cost. With recent

advance in communication systems, hybrid systems whereby the system components are

connected via a network, named networked control systems, have been receiving significant

attention in the last decade [1–8]. However, the majority of existing literature are based

on linear NCSs with a small portion of studies dedicated to nonlinear NCSs. Ever since its

proposition in [101] Takagi-Sugeno (T-S) fuzzy model has been proven to be very effective

in modelling nonlinear systems. It has been proven that modelling nonlinear NCS with

T-S fuzzy model is just as effective [36, 58, 85, 86, 128–130].

In [36],the effects of network induced delay and packet dropout on a class of nonlinear

NCSs are investigated. In [58], two separate network induced delays, from the sensor

to the controller can from the controller to the actuator, are considered. These delays

are modelled by two Markov chains and sufficient conditions for a state feedback fuzzy

controller are presented. In [85], the authors propose a general framework of networked

control where the zero-order hold can choose the latest control signal when packet is

received out of order and consider both network induced delays and packet dropout. [86]

considers H∞ control of uncertain nonlinear NCSs modelled by T-S fuzzy model where

the plant states are quantized. Sufficient conditions for the solvability of the robust

H∞ control problems without quantizers are also presented. [128] develops a robust

control scheme based on a fuzzy estimator, which estimates the plant states. The network

is modelled as a sampler between the plant and the controller in their control scheme. In

[129, 130] time-driven sensors and event-driven actuators are considered when designing

an H∞ controller. However the authors assume that the network induced delays are

less than one sampling period and disregard the effect of the network induced delays.

The major drawback of the aforementioned papers [36, 58, 85, 86, 128–130]. is that

the controller’s premise variables are assumed to be the same as the plant’s premise

variables without delays, i.e. the premise variables experience no delay when transmitted
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through the network. However in NCSs, where there is a network between the system

components, such assumption is very impractical. Hence, the existing controller designs

in NCSs [36, 58, 85, 86, 128–130], where the controller’s premise variables do not contain

delays, are not practical.

It is important to point out that none of the aforementioned NCS papers [36, 58,

85, 86, 128–130]. include membership functions in the controller design. The major dis-

advantage of disregarding membership functions is that the obtained controller is valid

for any membership functions, leading to severe conservatism. The importance of mem-

bership functions in the controller design has been illustrated in [93–95]. The difficulties

of incorporating membership functions into the controller design arises from the fact that

membership functions are nonlinear so controller design can no longer be expressed in

linear matrix inequality (LMI) conditions.

Motivated by the aforementioned drawbacks, this chapter aims to design a state

feedback controller for nonlinear NCSs modelled by T-S fuzzy model, where membership

functions and delays in premise variables are incorporated in the controller design. Since

membership functions are incorporated into the controller design, formulating the prob-

lem with proper premise variables becomes very important. Unlike existing approaches

in [36, 58, 85, 86, 128–130]. where impractical assumption of same premise variables in

NCSs is made, we acknowledge the issue and formulate the problem where the premise

variable of the controller is the delayed version of the premise variable of the plant. To

the best of authors’ knowledge this is the first attempt in nonlinear NCSs to incorporate

membership functions and delayed premise variables into the controller design. The mem-

bership functions of the plant and controller are approximated by polynomial functions

and incorporated into the controller design. A numerical example is used to compare the

proposed methodology with [86], where the controller design is derived without incorpo-

rating membership functions and without delays in the controller’s premise variables. We

show that the proposed methodology has a wider stabilization region than [86].

The network-induced delays between sensors and controllers are modelled by a finite

state Markov chain. The current mode of the Markov chain determines the individual

local controller, resulting mode dependent controllers. The transition probability matrix

of the Markov chain in this chapter is assumed to be fully known. This chapter is the

counterpart of Chapter 2 and will be used as the basis for the robust fuzzy H∞ filter and

the robust fuzzy H∞ dynamic output feedback controller design, which will be presented

in the next chapter.

The main contributions of this chapter are:
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• Membership functions are incorporated into the controller design to reduce the

conservatism of the controller design for nonlinear NCSs

• The controller’s membership functions are allowed to be different from the plant’s

membership functions and its premise variables are allowed to have delays

The rest of the chapter is organised as follows. Section 7.2 presents the T-S fuzzy

model of the plant and the controller. The H∞ control problem is formulated in this

section. The approach to approximate the membership functions to incorporate them into

the controller design is presented in Section 7.3. Sufficient conditions for the existence

of the robust fuzzy H∞ state feedback controller are presented in this section as well.

Numerical examples are provided in Section 7.4 to show that incorporating membership

functions yield larger stabilization region and that the overall system performance meets

the requirement. Section 7.5 present the conclusions of this chapter.

7.2 System Description and Definitions

The NCSs setup shown in Figure 2.1 is considered in this chapter. The class of nonlinear

discrete systems under consideration is described by the following fuzzy system model:

Plant Rule g:

IF θ1(x(k)) is J
g
1 AND · · · AND θp(x(k)) is J

g
p ,

THEN

x(k + 1) = [Ag +∆Ag(k)]x(k) + [B1g +∆B1g(k)]w(k) + [B2g +∆B2g(k)]u(k)

z(k) = [Cg +∆Cg(k)]x(k) + [D1g +∆D1g(k)]w(k) + [D2g +∆D2g(k)]u(k)

(7.2.1)

where g denotes the gth fuzzy inference rule; g = 1, . . . , r; r is the number of inference rules;

θ1(x(k)), . . . , θp(x(k)) are the premise variables; p is the number of premise variables and

Jg
1 , . . . , J

g
p are the fuzzy terms. Furthermore x(k) ∈ ℜn, u(k) ∈ ℜm1 , z(k) ∈ ℜm2 are the

state, input and output respectively and w(k) ∈ ℜm3 is the disturbance which belongs

to L2[0,∞), the space of square summable vector sequence over [0,∞]. The matrices

Ag, B1g, B2g, Cg, D1g and D2g are of appropriate dimensions. The matrix functions

∆Ag(k), ∆B1g(k), ∆B2g(k), ∆Cg(k), ∆D1g(k) and ∆D2g(k) represent the time-varying

uncertainties in the system.

By using a center-average defuzzifier, product inference and singleton fuzzifier, the
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following global nonlinear model is obtained.

x(k + 1) =
r∑

g=1

µg(θ(x(k)))
{
[Ag +∆Ag(k)]x(k) + [B1g +∆B1g(k)]w(k)

+ [B2g +∆B2g(k)]u(k)
}

= [A(µ) + ∆A(µ, k)]x(k) + [B1(µ) + ∆B1(µ, k)]w(k) + [B2(µ) + ∆B2(µ, k)]u(k)

z(k) =
r∑

g=1

µg(θ(x(k)))
{
[Cg +∆Cg(k)]x(k) + [D1g +∆D1g(k)]w(k) + [D2g

+∆D2g(k)]u(k)
}

= [C(µ) + ∆C(µ, k)]x(k) + [D1(µ) + ∆D1(µ, k)]w(k)

+ [D2(µ) + ∆D2(µ, k)]u(k) (7.2.2)

where

θ(x(k)) = [θ1(x(k)), . . . , θp(x(k))],

χg(θ(x(k))) =

p∏
t=1

Jg
t (θt(x(k))),

µg(θ(x(k)) =
χg(θ(x(k)))∑r
ℓ=1 χℓ(θ(x(k)))

∈ [0, 1],

r∑
g=1

µg(θ(x(k))) = 1

A(µ) =
∑r

g=1 µg(θ(x(k)))Ag C(µ) =
∑r

g=1 µg(θ(x(k)))Cg

B1(µ) =
∑r

g=1 µg(θ(x(k)))B1g B2g(µ) =
∑r

g=1 µg(θ(x(k)))B2g

D1(µ) =
∑r

g=1 µg(θ(x(k)))D1g D2g(µ) =
∑r

g=1 µg(θ(x(k)))D2g

∆A(µ, k) =
∑r

g=1 µg(θ(x(k)))∆Ag(k) ∆C(µ, k) =
∑r

g=1 µg(θ(x(k)))∆Cg(k)

∆B1(µ, k) =
∑r

g=1 µg(θ(x(k)))∆B1g(k) ∆B2(µ, k) =
∑r

g=1 µg(θ(x(k)))∆B2g(k)

∆D1(µ, k) =
∑r

g=1 µg(θ(x(k)))∆D1g(k) ∆D2(µ, k) =
∑r

g=1 µg(θ(x(k)))∆D2g(k)

We assume that the uncertainty functions in µ and k are norm-bounded by the

following:

Assumption 7.2.1[
∆Ag(µ, k) ∆B1(µ, k) ∆B2(µ, k)

∆Cg(µ, k) ∆D1(µ, k) ∆D2(µ, k)

]
=

[
E1(µ)

E2(µ)

]
F (k)

[
H1 H2 H3

]
where g = 1, . . . , r; r is the number of fuzzy inference rules; E1(µ) =

∑r
g=1 µg(θ(x(k)))E1g,
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E2(µ) =
∑r

g=1 µg(θ(x(k)))E2g; H1, H2, H3, E1g and E2g are known matrices which char-

acterize the structure of the uncertainties; F (k) is an unknown matrix function that satisfy

F T (k)WF (k) ≤ W where W is a positive-definite matrix.

The model of the network in this chapter is identical to what is shown in Chapter

3 except the fact that the transition probability matrix is completely known.

In this chapter, we consider the following fuzzy state feedback:

Control Rule h:

IF σ1(x(k − τk)) is N
h
1 AND · · · AND σq(x(k − τk)) is N

h
q ,

THEN

u(k) = Kh(rk)x(k − τk) (7.2.3)

where h denotes the hth fuzzy inference rule; h = 1, . . . , c; c is the number of inference

rules; σ1(x(k − τk)), . . . , σq(x(k − τk)), are the premise variables; q is the number of

premise variables and Nh
1 , . . . , N

h
q are the fuzzy terms, rk represents the mode in the

Markov chain. Kh(rk) in each control rule is a local mode delay dependent state feedback

controller gain.

Similar to the plant, the fuzzy state feedback controller is inferred as shown below.

u(k) =
c∑

h=1

λh(σ(x(k − τk)))Kh(rk)x(k − τk) (7.2.4)

= K(λ, rk)x(k − τk) (7.2.5)

where

σ(x(k − τk)) = [σ1(x(k − τk)), . . . , σq(x(k − τk))],

ϕh(σ(x(k − τk))) =

q∏
t=1

Nh
t (σt(x(k − τk))),

λh(σ(x(k − τk)) =
ϕh(σ(x(k − τk)))∑c
ℓ=1 ϕℓ(σ(x(k − τk)))

∈ [0, 1],

c∑
h=1

λh(σ(x(k − τk))) = 1

K(λ, rk) =
c∑

h=1

λh(σ(x(k − τk)))Kh(rk)

Remark 7.2.1 Note that, in (7.2.4), the fuzzy controller’s membership functions and



7.3 Main Result 107

premise variables are allowed to be different from the plant’s membership functions, and

also delays are allowed in the fuzzy controller’s premise variables. The fuzzy controller

(7.2.4) is more realistic in NCSs. Furthermore, since the premise variables of the plant

and the controller are allowed to be different, resulting in the number of fuzzy rules of the

controller no longer restricted by the number of fuzzy rules of the plant. Hence a small

number of fuzzy rules may be implemented even though the number of fuzzy rules of the

plant is large.

As shown in Chapter 2, the closed-loop system is to achieve stochastic stability, as

shown in (2.2.5), and the H∞ performance condition, as shown in (2.2.6).

7.3 Main Result

Considering the fuzzy model (7.2.2) and the fuzzy controller (7.2.4), the closed loop system

is obtained as follows:

x(k + 1) = [A(µ) + ∆A(µ, k)]x(k) + [B1(µ) + ∆B1(µ, k)]w(k)

+ [B2(µ) + ∆B2(µ, k)]K(λ, rk)x(k − τk)

= A(µ)x(k) + E1(µ)F (k)H1x(k) +B1(µ)w(k) + E1(µ)F (k)H2w(k)

+B2(µ)K(λ, rk)x(k − τk) + E1(µ)F (k)H3K(λ, rk)x(k − τk) (7.3.1)

z(k) = [C(µ) + ∆C(µ, k)]x(k) + [D1(µ) + ∆D1(µ, k)]w(k)

+ [D2(µ) + ∆D2(µ, k)]K(λ, rk)x(k − τk)

= C(µ)x(k) + E2(µ)F (k)H1x(k) +D1(µ)w(k) + E2(µ)F (k)H2w(k)

+D2(µ)K(λ, rk)x(k − τk) + E2(µ)F (k)H3K(λ, rk)x(k − τk) (7.3.2)

For brevity, x(k), x(k − τk), µg(θ(x(k))), λh(σ(x(k − τk))) are denoted as x, xτ ,

µg(x), λh(xτ ), respectively, throughout this chapter.

MATLAB LMI toolbox is not able to handle nonlinear membership functions, how-

ever, third-party MATLAB toolbox such as YALMIP and SOSTOOLS can handle mul-

tivariate polynomial functions. For this reason each product term µg(x)λh(xτ ) is ap-

proximated by polynomial functions. In order to approximate the membership product

terms as accurate as possible, they are divided into sub-regions and a polynomial function
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approximation is found for each sub-region as shown below

µg(x)λh(xτ ) =
D∑

κ=1

ζκ(x, xτ ){ηgh,sκ(x, xτ ) + ∆ηgh,sκ(x, xτ )} (7.3.3)

where ηgh,sκ(x, xτ ) are the polynomial function approximations and ∆ηgh,sκ(x, xτ ) are the

error terms in each sub-region [96]. ζκ(x, xτ ) is a scalar function which takes 1 if x and

xτ are inside the sub-region, sκ, and 0 otherwise.

We define lower and upper bounds of the error terms as

αgh,sκ ≤ ∆ηgh,sκ(x, xτ ) ≤ βgh,sκ (7.3.4)

where αgh,sκ and βgh,sκ are known constants [96].

The following theorem provides sufficient conditions for the existence of a mode delay

dependent state feedback controller. The theorem incorporates the polynomial function

approximations of the product of membership functions into the controller design in order

to reduce conservatism.

Theorem 7.3.1 Given a prescribed H∞ performance, γ > 0, the closed-loop system is

stochastically stable with the prescribed H∞ performance, if there exist sets of positive-

definite matrices X(i), R̃1(i), R̃1, R̃2(i), R̃2, W1(i), W2(i), W3(i), Q̃, W̃1(i), W̃2(i),

N1, N2, Z̃(i), S(i, j), Ψ̃
gh
1 (i), Ψ̃gh

2 (i) and matrices M̃(i), J(i), Yh(i) for i = 1, 2, · · · , s,
g = 1, 2, · · · , r, h = 1, 2, · · · , c satisfying the following

R̃1 > R̃1(i) (7.3.5)

R̃2 > R̃2(i) (7.3.6)

−vT
[ r∑

g=1

c∑
h=1

{
(ηgh,sκ(x, xτ ) +

1

2
αgh,sκ +

1

2
βgh,sκ)T̃

gh(i) + Ṽ gh,sκ(i)
}
− ϵ̃sκI

]
v is SOS

∀sκ = 1, . . . , D (7.3.7)

1

2
T̃ gh(i)− Ψ̃gh

1 (i) < 0 (7.3.8)

−1

2
T̃ gh(i)− Ψ̃gh

2 (i) < 0 (7.3.9)
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[
(1− pi(i+1))R̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0 (7.3.10)

[
S(i, j) JT (i)

∗ X(j)

]
> 0 (7.3.11)

and

N1R̃1 = I, N2R̃2 = I, W̃1(i)W1(i) = I and W̃2(i)W2(i) = I, (7.3.12)

where v is a real vector of appropriate dimension and independent of x; ϵ̃sκ are predefined

scalars; ηgh,sκ(x, xτ ) are defined in (7.3.3);

T̃ gh(i) =



Λ̃(i)
(
Γ̃gh
1 (i)

)T (
Γ̃gh
2 (i)

)T (
Γ̃3(i)

)T (
Ξ̃gh(i)

)T (
H̃h(i)

)T
∗ −X 0 0 0 0

∗ ∗ −R 0 0 0

∗ ∗ ∗ −Q 0 0

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −W


Ṽ gh,sκ(i) = (βgh,sκ − αgh,sκ)

{
Ψ̃gh

1 (i) + Ψ̃gh
2 (i)

}
Λ̃(i) = diag

{
−X(i),

(
−XT (i)−X(i) + Q̃

)
,
(
HT

2 W3(i)H2 − γI
)
,

−W1(i),−W2(i),−W3(i)
}
+ Υ̃T

1 (i) + Υ̃1(i) + τ(i)Z̃(i)

Γ̃gh
1 (i) =

[
AgX(i) B2gYh(i) B1g E1g E1g E1g

]
Γ̃gh
2 (i) =

√∑i+1
j=1 pijτ(j)√
τ(s)

[
AgX(i)−X(i) B2gYh(i) B1g E1g E1g E1g

]
Γ̃3(i) =

[
X(i) 0 0 0 0 0

]
X = −

∑i+1
j=1 pijS(i, j) + JT (i) + J(i)

R = diag
{
N1, N2

}
Q =

(
τ(s)− τ(1) + 1

)
Q̃

W = diag
{
W̃1(i), W̃2(i)

}
Ξ̃gh(i) =

[
CgX(i) D2gYh(i) D1g E2g E2g E2g

]
H̃h(i) =

[
H1X(i) 0 0 0 0 0

0 H3Yh(i) 0 0 0 0

]
Υ̃1(i) = M̃T (i)[I − I 0 0 0 0]



7.3 Main Result 110

and the mode delay dependent fuzzy controller is

u(k) =
c∑

h=1

λh(σ(x(k − τk)))Kh(i)x(k − τk) (7.3.13)

where

Kh(i) = Yh(i)X
−1(i) (7.3.14)

Proof: We introduce the following augmented closed loop system as shown below

xk+1 = Γ1(µ, λ, rk)x̃k (7.3.15)

zk = Ξ(µ, λ, rk)x̃k (7.3.16)

where xℓ = x(ℓ), zℓ = z(ℓ), x̃ℓ = x̃(ℓ), and

Γ1(µ, λ, rk) =
[
A(µ) B2(µ)K(λ, rk) B1(µ) E1(µ) E1(µ) E1(µ)

]
(7.3.17)

Ξ(µ, λ, rk) =
[
C(µ) D2(µ)K(λ, rk) D1(µ) E2(µ) E2(µ) E2(µ)

]
(7.3.18)

x̃(k) =
[
xT (k) xT (k − τk) wT (k) xT (k)HT

1 F
T (k)

xT (k − τk)K
T (λ, rk)H

T
3 F

T (k) wT (k)HT
2 F

T (k)
]T

∈ ℜl (7.3.19)

Consider the following Lyapunov-Krasovskii candidate functional:

V (xk, rk) = V1(xk, rk) + V2(xk, rk) + V3(xk, rk) (7.3.20)

with

V1(xk, rk) = xT
kP (rk)xk (7.3.21)

V2(xk, rk) =
−1∑

ℓ=−τk

k−1∑
j=k+ℓ

yTj R1yj +
−1∑

ℓ=−τ(s)

k−1∑
j=k+ℓ

yTj R2yj (7.3.22)

V3(xk, rk) =
k−1∑

ℓ=k−τk

xT
ℓ Qxℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

xT
j Qxj (7.3.23)

Taking the forward difference of V (xk, rk), we have

∆V (xk, rk) = ∆V1(xk, rk) + ∆V2(xk, rk) + ∆V3(xk, rk) (7.3.24)
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where

∆V1(xk, rk) = xT
k+1P̃ (rk)xk+1 − xT

kP (rk)xk

= x̃T
k Γ

T
1 (µ, λ, rk)P̃ (rk)Γ1(µ, λ, rk)x̃k − xT

kP (rk)xk (7.3.25)

∆V2(xk, rk) =
s∑

i=1

prki

−1∑
ℓ=−τ(i)

k∑
j=k+1+ℓ

yTj R1yj +
−1∑

ℓ=−τ(s)

k∑
j=k+ℓ+1

yTj R2yj

−
−1∑

ℓ=−τk

k−1∑
j=k+ℓ

yTj R1yj −
−1∑

ℓ=−τ(s)

k−1∑
j=k+ℓ

yTj R2yj

=
s∑

i=1

prki


−1∑

ℓ=−τ(i)

yTk R1yk +
−1∑

ℓ=−τ(i)

k−1∑
j=k+ℓ+1

yTj R1yj

−
−1∑

ℓ=−τk

k−1∑
j=k+ℓ+1

yTj R1yj −
−1∑

ℓ=−τk

yTk+ℓR1yk+ℓ

}
+

−1∑
ℓ=−τ(s)

{
yTk R2yk − yTk+ℓR2yk+ℓ

}

=
s∑

i=1

prki


−1∑

ℓ=−τ(i)

k−1∑
j=k+ℓ+1

yTj R1yj −
−1∑

ℓ=−τk

k−1∑
j=k+ℓ+1

yTj R1yj

−
k−1∑

j=k−τk

yTj R1yj

}
−

k−1∑
j=k−τ(s)

yTj R2yj + yTk

[
τ̃kR1 + τ(s)R2

]
yk

(7.3.26)

and

∆V3(xk, rk) =
s∑

i=1

prki

k∑
ℓ=k−τ(i)+1

xT
ℓ Qxℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k∑
j=k+ℓ

xT
j Qxj −

k−1∑
ℓ=k−τk

xT
ℓ Qxℓ

−
−τ(1)+1∑

ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

xT
j Qxj

=
s∑

i=1

prki

xT
kQxk +

k−1∑
ℓ=k−τ(i)+1

xT
ℓ Qxℓ −

k−1∑
ℓ=k−τk+1

xT
ℓ Qxℓ − xT

k−τk
Qxk−τk


+

−τ(1)+1∑
ℓ=−τ(s)+2

{
xT
kQxk − xT

k+ℓ−1Qxk+ℓ−1

}



7.3 Main Result 112

=
s∑

i=1

prki


k−1∑

ℓ=k−τ(i)+1

xT
ℓ Qxℓ −

k−1∑
ℓ=k−τk+1

xT
ℓ Qxℓ − xT

k−τk
Qxk−τk


−

−τ(1)+1∑
ℓ=−τ(s)+2

xT
k+ℓ−1Qxk+ℓ−1 + (τ(s)− τ(1) + 1)xT

kQxk

=
s∑

i=1

prki


k−τ(1)∑

ℓ=k−τ(i)+1

xT
ℓ Qxℓ +

k−1∑
ℓ=k−τ(1)+1

xT
ℓ Qxℓ −

k−1∑
ℓ=k−τk+1

xT
ℓ Qxℓ


−

k−τ(1)∑
ℓ=k−τ(s)+1

xT
ℓ Qxℓ + (τ(s)− τ(1) + 1)xT

kQxk − xT
k−τk

Qxk−τk (7.3.27)

with P̃ (rk) =
∑rk+1

j=1 prkjP (j).

Knowing that Prob{τk+1 > τk + 1} = 0, τ(1) ≤ τk+1 ≤ τk + 1 ≤ τ(s) and τ(1) ≤
τk ≤ τ(s), the terms ∆V2(xk, rk) and ∆V3(xk, rk) can be upper bounded as

∆V2(xk, rk) ≤ yTk

[
τ̃kR1 + τ(s)R2

]
yk −

k−1∑
ℓ=k−τk

yTℓ

[
(1− prk(rk+1))R1 +R2

]
yℓ (7.3.28)

and

∆V3(xk, rk) ≤ (τ(s)− τ(1) + 1)xT
kQxk − xT

k−τk
Qxk−τk . (7.3.29)

From (7.3.10), we know that

k−1∑
rk=k−τk

[
y(rk)

x̃(k)

]T [
(1− prk(rk+1))R̃1(rk) + R̃2(rk) M̃(rk)

∗ Z̃(rk)

][
y(rk)

x̃(k)

]
≥ 0 (7.3.30)

Expand and rearranging the above results

−
∑k−1

rk=k−τk
yT (rk)[(1− prk(rk+1))R̃1(rk) + R̃2(rk)]y(rk) ≤ x̃T (k)

{
Υ̃1(rk) + Υ̃T

1 (rk)

+τkZ̃(rk)
}
x̃(k) (7.3.31)

where y(k) = x(k + 1)− x(k) and Υ̃1(rk) = M̃T (rk)[I − I 0 0 0 0].

Multiplying the above with diag
{
diag

{
X−1(rk), X

−1(rk), I, I, I, I
}
, I, I, I, I

}
on

the right hand side and its transpose on its left hand side of each term with conditions
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(7.3.5) and (7.3.6) we have

−
k−1∑

rk=k−τk

yT (rk)[(1− prk(rk+1))R1 +R2]y(rk) ≤ x̃T (k)
{
Υ1(rk) + ΥT

1 (rk) + τkZ(rk)
}
x̃(k)

(7.3.32)

where Υ1(rk) = MT (rk)[I − I 0 0 0 0].

Employing (7.3.32) in (7.3.28), we obtain

∆V2(xk, rk) ≤ x̃T
k

{
ΓT
2 (µ, λ, rk) [τ̃kR1 + τ(s)R2] Γ2(µ, λ, rk) + Υ1(rk) + ΥT

1 (rk)

+τkZ(rk)
}
x̃k (7.3.33)

where

Γ2(µ, λ, rk) =
[
A(µ)− I B2(µ)K(λ, rk) B1(µ) E1(µ) E1(µ) E1(µ)

]
(7.3.34)

Using (7.3.25), (7.3.33) and (7.3.29), the overall forward difference of the Lyapunov-

Krasovskii functional is obtained as

∆V (xk, rk) ≤ −xT
k

(
P (rk)− (τ(s)− τ(1) + 1)Q

)
xk − xT

k−τk
Qxk−τk

+x̃T
k

{
ΓT
1 (µ, λ, rk)P̃ (rk)Γ1(µ, λ, rk)

+ΓT
2 (µ, λ, rk) [τ̃kR1 + τ(s)R2] Γ2(µ, λ, rk)

+Υ1(rk) + ΥT
1 (rk) + τkZ(rk)

}
x̃k (7.3.35)

Using Assumption 7.2.1, and adding and subtracting xT
kH

T
1 F

T (k)W1(rk)F (k)H1xk,

wT
k H

T
2 F

T (k)W3(rk)F (k)H2wk, x
T
(k−τk)

KT (λ, rk)H
T
3 F

T (k)W2(rk)F (k)H3K(λ, rk)x(k−τk),

zTk zk, and γwT
k wk to and from (7.3.35), we obtain

∆V (xk, rk) ≤

−xT
k

(
P (rk)− (τ(s)− τ(1) + 1)Q−HT

1 W1(rk)H1

)
xk

−xT
k−τk

(
Q−KT (λ, rk)H

T
3 W2(rk)H3K(λ, rk)

)
xk−τk

+x̃T
k

{
ΓT
1 (µ, λ, rk)P̃ (rk)Γ1(µ, λ, rk)

+ΓT
2 (µ, λ, rk) [τ̃kR1 + τ(s)R2] Γ2(µ, λ, rk)

+Υ1(rk) + ΥT
1 (rk) + τkZ(rk) + ΞT (µ, λ, rk)Ξ(µ, λ, rk)

}
x̃k − zTk zk

+γwT
k wk − wT

k

(
γI −HT

2 W3(rk)H2

)
wk − xT

kH
T
1 F

T (k)W1(rk)F (k)H1xk
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−xT
(k−τk)

KT (λ, rk)H
T
3 F

T (rk)W2(rk)F (rk)H3K(λ, rk)x(k−τk)

−wT
k H

T
2 F

T (k)W3(rk)F (k)H2wk (7.3.36)

Re-express (7.3.36) as

∆V (xk, rk) ≤ x̃T
k

{
Λ(λ, rk) + ΓT

1 (µ, λ, rk)P̃ (rk)Γ1(µ, λ, rk)

+ΓT
2 (µ, λ, rk) [τ̃kR1 + τ(s)R2] Γ2(µ, λ, rk)

+ΞT (µ, λ, rk)Ξ(µ, λ, rk) + Υ1(rk) + ΥT
1 (rk) + τkZ(rk)

}
x̃k

−zTk zk + γwT
k wk (7.3.37)

where

Λ(λ, rk) =diag
{(

(τ(s)− τ(1) + 1)Q+HT
1 W1(rk)H1 − P (rk)

)
,(

KT (λ, rk)H
T
3 W2(rk)H3K(λ, rk)−Q

)
,(

HT
2 W3(rk)H2 − γI

)
,−W1(rk),−W2(rk),−W3(rk)

}

Following from (7.3.7), we learn that for all sκ = 1, . . . , D

∑r
g=1

∑c
h=1

[
(ηgh,sκ(x, xτ ) +

1
2
αgh,sκ +

1
2
βgh,sκ)T̃

gh(rk) + (βgh,sκ − αgh,sκ)

{Ψ̃gh
1 (rk) + Ψ̃gh

2 (rk)}
]
< 0 (7.3.38)

Since Ψ̃gh
1 (rk) and Ψ̃gh

2 (rk) are positive definite matrices, along with (7.3.3), we know

that for all sκ = 1, . . . , D

(∆ηgh,sκ(x, xτ )− αgh,sκ)Ψ̃
gh
1 (rk) ≤ (βgh,sκ − αgh,sκ)Ψ̃

gh
1 (rk) (7.3.39)

(βgh,sκ −∆ηgh,sκ(x, xτ ))Ψ̃
gh
2 (rk) ≤ (βgh,sκ − αgh,sκ)Ψ̃

gh
2 (rk) (7.3.40)

Therefore, for all sκ = 1, . . . , D

r∑
g=1

c∑
h=1

[
(ηgh,sκ(x, xτ ) +

1

2
αgh,sκ +

1

2
βgh,sκ)T̃

gh(rk)

+(∆ηgh,sκ(x, xτ )− αgh,sκ)Ψ̃
gh
1 (rk) + (βgh,sκ −∆ηgh,sκ(x, xτ ))Ψ̃

gh
2 (rk)

]
< 0

(7.3.41)
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Using (7.3.8) and (7.3.9), we have

∑r
g=1

∑c
h=1

[
(ηgh,sκ(x, xτ ) +

1
2
αgh,sκ +

1
2
βgh,sκ)T̃

gh(rk)

+(∆ηgh,sκ(x, xτ )− αgh,sκ)
1
2
T̃ gh(rk)− (βgh,sκ −∆ηgh,sκ(x, xτ ))

1
2
T̃ gh(rk)

]
< 0

(7.3.42)

for all sκ = 1, . . . , D.

Simplifying (7.3.42) as

r∑
g=1

c∑
h=1

[
ηgh,sκ(x, xτ )T̃

gh(rk) +
1

2
(∆ηgh,sκ(x, xτ ) + βgh,sκ − βgh,sκ)T̃

gh(rk)

+
1

2
(∆ηgh,sκ(x, xτ ) + αgh,sκ − αgh,sκ)T̃

gh(rk)

=
r∑

g=1

c∑
h=1

[
{ηgh,sκ(x, xτ ) + ∆ηgh,sκ(x, xτ )}T̃ gh(rk)

]
< 0 (7.3.43)

for all sκ = 1, . . . , D.

Employing (7.3.3) and the notation for T̃ gh(rk), (7.3.43) can be expressed as

r∑
g=1

c∑
h=1

µg(x)λh(xτ )


Λ̃(rk)

(
Γ̃gh
1 (rk)

)T (
Γ̃gh
2 (rk)

)T (
Γ̃3(rk)

)T (
Ξ̃gh(rk)

)T (
H̃h(rk)

)T

∗ −X 0 0 0 0
∗ ∗ −R 0 0 0
∗ ∗ ∗ −Q 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −W

 < 0

(7.3.44)

for all sκ = 1, . . . , D.

Applying Schur complement on (7.3.11) and consequently multiplying these inequal-

ities by pij and summing up for all j we obtain

−
i+1∑
j=1

pijS(i, j) + JT (i) + J(i) = JT (i) + J(i)−
i+1∑
j=1

pijS(i, j)

< JT (i) + J(i)− JT (i)P̃ (i)J(i)

= P̃−1(i)−
(
J(i)− P̃−1(i)

)T

P̃ (i)
(
J(i)− P̃−1(i)

)
< P̃−1(i) (7.3.45)
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The following holds true since Q̃ is a positive matrix(
P (i)− Q̃−1

)T

Q̃
(
P (i)− Q̃−1

)
> 0 (7.3.46)

⇒ P (i)T Q̃P (i)− P T (i)− P (i) + Q̃−1 > 0

⇒ −P T (i)− P (i) +Q > −P (i)T Q̃P (i)

where Q = Q̃−1 and P (i) = X(i)−1. Multiplying X(i) to the right hand side and its

transpose to the left we have −XT (i)−X(i) + Q̃ > −X(i)TQX(i).

Therefore −X and −XT (i)−X(i) + Q̃ can be replaced with −P̃−1(i) and

−XT (i)QX(i) respectively and the condition (7.3.44) still satisfies.

Multiplying with diag
{
diag

{
X−1(i), X−1(i), I, I, I, I

}
, I, I, I, I

}
on the right hand

side and its transpose on the left and applying Schur complement to (7.3.44) with −P̃−1(i)

and −X(i)TQX(i) yields

Λ(λ, rk) + ΓT
1 (µ, λ, rk)P̃ (rk)Γ1(µ, λ, rk) + ΓT

2 (µ, λ, rk) [τ̃kR1 + τ(s)R2] Γ2(µ, λ, rk)

+ ΞT (µ, λ, rk)Ξ(µ, λ, rk) + Υ1(rk) + ΥT
1 (rk) + τkZ(rk) < 0 (7.3.47)

Therefore if (7.3.7)-(7.3.9) are satisfied we have

∆V (xk, rk) ≤ −zTk zk + γwT
k wk (7.3.48)

Taking expectation and sum from 0 to ∞ on both sides of (7.3.48) we obtain

E{V (x∞, r∞)} − E{V (x0, r0)} ≤ −E
{ ∞∑

ℓ=0

zTℓ zℓ

}
+ γ

∞∑
ℓ=0

wT
ℓ wℓ (7.3.49)

It is clear that under zero initial condition, V (x0, r0) = 0, the H∞ criteria holds.

Next, under w(k) = 0, ∀k ≥ 0 we need to show that the closed-loop system is

stochastically stable. From (7.3.37) and (7.3.7)-(7.3.9), we learn that

V (x(k+1), r(k+1))− V (xk, rk) ≤ −βx̃T
k x̃k (7.3.50)



7.3 Main Result 117

where β = inf{λmin[−M(i)], i ∈ S} with

M(i) = Λ(λ, rk) + ΓT
1 (µ, λ, rk)P̃ (rk)Γ1(µ, λ, rk) + ΓT

2 (µ, λ, rk) [τ̃kR1 + τ(s)R2] Γ2(µ, λ, rk)

+ ΞT (µ, λ, rk)Ξ(µ, λ, rk) + Υ1(rk) + ΥT
1 (rk) + τkZ(rk) < 0 (7.3.51)

Similar to the above, taking expectation and sum from 0 to ∞ on both sides of (7.3.50),

we have

E{V (x∞, r∞)} − E{V (x0, r0)} ≤ −βE
{ ∞∑

ℓ=0

x̃T
ℓ x̃ℓ

}
≤ −βE

{ ∞∑
ℓ=0

xT
ℓ xℓ

}
(7.3.52)

By re-arranging (7.3.52), we can show that the system is stochastically stable, where

ϱ = 1
β
E{V (x0, r0)} < ∞. ∇∇∇

Remark 7.3.1 When membership functions are not incorporated into the controller de-

sign, (7.3.7)-(7.3.9) reduce to T̃gh(i) < 0 which are given in [86]. This is a very conser-

vative approach since such controller is valid for any membership functions. By incorpo-

rating the product of membership functions into the design we design a specific controller

for the specific membership functions, making the controller less conservative. Note that

the premise variables of the controller, xτ are the delayed version of the plant’s premise

variables x, since premise variables are transmitted via communication networks. The

polynomial approximations of the product of membership functions consist of both x and

xτ . Also note that only (7.3.7) is formulated in SOS conditions, since it is the only con-

dition with polynomial functions, ηgh,sκ(x, xτ ). By formulating other conditions in LMIs,

the computation burden of the solver such as YALMIP is reduced.

In accordance with the cone complementarity algorithm [115], the nonconvex feasi-

bility problem formulated by (7.3.5)-(7.3.11) can be converted into the following nonlinear

minimisation problem subject to SOS:

Minimize Tr
(
N1R̃1 +N2R̃2 + W̃1(i)W1(i) + W̃2(i)W2(i)

)
Subject to (7.3.5)-(7.3.11) and[
N1 I

I R̃1

]
> 0,

[
N2 I

I R̃2

]
> 0,

[
W̃1(i) I

I W1(i)

]
> 0,

[
W̃2(i) I

I W2(i)

]
> 0

(7.3.53)
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To solve this optimisation problem, the following algorithm can be used:

Algorithm :

Step 1: Set ȷ = 0 and solve (7.3.5)-(7.3.11) and (7.3.53) to obtain the initial conditions,[
X(i), R̃1(i), R̃1, R̃2(i), R̃2,W1(i),W2(i),W3(i), W̃1(i), W̃2(i), Q̃, N1, N2, Z̃(i), Y (i)

]0
Step 2: Solve the problem

Minimize Tr
(
N ȷ

1R̃1 +N1R̃
ȷ
1 +N ȷ

2R̃ +N2R̃
ȷ
2 + W̃1(i)

ȷW1(i) + W̃1(i)W1(i)
ȷ

+ W̃2(i)
ȷW2(i) + W̃2(i)W2(i)

ȷ
)

Subject to (7.3.5)-(7.3.11) and (7.3.53)

The obtained solutions are denoted as[
X(i), R̃1(i), R̃1, R̃2(i), R̃2,W1(i),W2(i),W3(i), W̃1(i), W̃2(i), Q̃,

N1, N2, Z̃(i), Y (i)
]ȷ+1

(7.3.54)

Step 3: Check the system stability with K(i)ȷ+1 = Y ȷ+1(i)X−1(i)ȷ+1, if there exist a stabi-

lizing controller, then K(i)ȷ+1 are the desired controller gains and EXIT. Otherwise,

set ȷ = ȷ+ 1 and return to Step 2.

7.4 Examples

In this section, two simulation examples are presented to show that 1. the incorporation

of membership functions result a wider stability region and 2. the controller can stabilize

a practical system.

Example 1 Consider a T-S fuzzy system with two plant rules (r = 2) and two controller

rules (c = 2). The sub-systems are described as follows

A1 =

[
−a −0.1

1 0

]
A2 =

[
−1 0.1

1 0

]
B11 = B12 =

[
0.02

0.03

]

C1 =
[
1 0

]
C2 =

[
−1 0

]
B21 =

[
b

1

]
B22 =

[
1.9

1

]
D11 = 0.01 D12 = 0.01 D21 = D22 = 0.1

(7.4.1)
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and the uncertainties are characterised by matrices below:

E11 = E12 =

[
0.02

0.01

]
E21 = E22 = 0.01

H1 =
[
0.01 0.02

]
H2 = 0.01

H3 = 0.01

(7.4.2)

The membership functions for the plant, µg are as follows

µ1(x1(k)) =


0 x1(k) < −0.5

x1(k) + 0.5 −0.5 ≤ x1(k) < 0.5

1 0.5 ≤ x1(k)

,

µ2(x1(k)) = 1− µ1(x1(k))

(7.4.3)

The membership functions for the controller, λh are shown below

λ1(x1(k − τk)) =


1 x1(k − τk) < −0.5

−x1(k − τk) + 0.5 −0.5 ≤ x1(k − τk) < 0.5

0 0.5 ≤ x1(k − τk)

,

λ2(x1(k − τk)) = 1− λ1(x1(k − τk))

(7.4.4)

Figure 7.1 shows µg(x1(k)) and λh(x1(k− τk)) with sub-regions in each membership

function, x1 ∈ [−∞,−0.5], x1 ∈ [−0.5, 0], x1 ∈ [0, 0.5] and x1 ∈ [0.5,∞], and similarly for

the membership function of the controller. This means that we divide µg(x)λh(xτ ) into 16

sub-regions. For every sub-region we use ηgh,sκ(x, xτ ) to obtain polynomial approximation

as shown in Table 7.1. The upper and lower bounds of the error terms, αgh,sκ and βgh,sκ , are

obtained numerically and shown in Table 7.2 and 7.3 respectively. Note that µ1(x1(k)) =

λ2(x1(k − τk)) and µ2(x1(k)) = λ1(x1(k − τk)) in this particular example are the same.

The delays are characterized by a Markov chain taking values in a finite set S =

{1, 2}, which correspond to 0.1, 0.2 seconds delays, respectively. The transition probability

matrix is given by;

Pτ =

[
0.6 0.4

0.7 0.3

]
(7.4.5)

The sampling time in this example is 0.01s and the prescribed γ is 1.0.

In this thesis, YALMIP [126] is used to obtain the controller. In this example stabi-
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κ ηgh,sκ(x, xτ )
i = 1, j = 1 1,. . . ,4,8,12,13,16 0

5 1.4(x1(k) + 0.63)2

6 1.96(x1(k) + 0.63)2{(x1(k − τk)− 0.13)2 + 0.5}
7 1.96(x1(k) + 0.63)2(x1(k − τk)− 0.63)2

9 1.4(x1(k) + 0.13)2 + 0.5
10 1.96{(x1(k) + 0.13)2 + 0.5}{(x1(k − τk)− 0.13)2 + 0.5}
11 1.96{(x1(k) + 0.13)2 + 0.5}(x1(k − τk)− 0.63)2

14 1.4(x1(k − τk)− 0.13)2 + 0.5
15 1.4(x1(k − τk)− 0.63)2

i = 1, j = 2 1,. . . ,5,9,13,16 0
6 1.96(x1(k) + 0.63)2(x1(k − τk) + 0.63)2

7 1.96(x1(k) + 0.63)2{(x1(k − τk) + 0.13)2 + 0.5}
8 1.4(x1(k) + 0.63)2

10 1.96{(x1(k) + 0.13)2 + 0.5}(x1(k − τk) + 0.63)2

11 1.96{(x1(k) + 0.13)2 + 0.5}{(x1(k − τk) + 0.13)2 + 0.5}
12 1.4(x1(k) + 0.13)2 + 0.5
14 1.4(x1(k − τk) + 0.63)2

15 1.4(x1(k − τk) + 0.13)2 + 0.5
i = 2, j = 1 1,4,8,12,. . . ,16 0

2 1.4(x1(k − τk)− 0.13)2 + 0.5
3 1.4(x1(k − τk)− 0.63)2

5 1.4(x1(k)− 0.13)2 + 0.5
6 1.96{(x1(k)− 0.13)2 + 0.5}{(x1(k − τk)− 0.13)2 + 0.5}
7 1.96{(x1(k)− 0.13)2 + 0.5}(x1(k − τk)− 0.63)2

9 1.4(x1(k)− 0.63)2

10 1.96(x1(k)− 0.63)2{(x1(k − τk)− 0.13)2 + 0.5}
11 1.96(x1(k)− 0.63)2(x1(k − τk)− 0.63)2

i = 2, j = 2 1,4,5,9,13,. . . ,16 0
2 1.4(x1(k − τk) + 0.63)2

3 1.4(x1(k − τk) + 0.13)2 + 0.5
6 1.96{(x1(k)− 0.13)2 + 0.5}(x1(k − τk) + 0.63)2

7 1.96{(x1(k)− 0.13)2 + 0.5}{(x1(k − τk) + 0.13)2 + 0.5}
8 1.4(x1(k)− 0.13)2 + 0.5
10 1.4(x1(k)− 0.63)2(x1(k − τk) + 0.63)2

11 1.4(x1(k)− 0.63)2{(x1(k − τk) + 0.13)2 + 0.5}
12 1.4(x1(k)− 0.63)2

Table 7.1: Polynomial approximation of membership functions for Example 1
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Figure 7.1: Membership functions of the plant and the controller in Example 1

κ βgh,sκ

i = 1, j = 1 1,. . . ,4,8,12,13,16 0
5,9,14,15 0.049
6,11 0.047
7 0.023
10 0.070

i = 1, j = 2 1,. . . ,5,9,13,16 0
6 0.023
7,10 0.047
8,12,14,15 0.049
11 0.070

i = 2, j = 1 1,4,8,12,. . . ,16 0
2,3,5,9 0.049
6 0.070
7,10 0.047
11 0.023

i = 2, j = 2 1,4,5,9,13,. . . ,16 0
2,3,8,12 0.049
6,11 0.047
7 0.070
10 0.023

Table 7.2: Upper bounds of the error terms for Example 1, βgh,sκ
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κ αgh,sκ

i = 1, j = 1 1,. . . ,4,8,12,13,16 0
5,9,14,15 -0.056
6,11 -0.087
7 -0.059
10 -0.114

i = 1, j = 2 1,. . . ,5,9,13,16 0
6 -0.059
7,10 -0.087
8,12,14,15 -0.056
11 -0.114

i = 2, j = 1 1,4,8,12,. . . ,16 0
2,3,5,9 -0.056
6 -0.114
7,10 -0.087
11 -0.059

i = 2, j = 2 1,4,5,9,13,. . . ,16 0
2,3,8,12 -0.056
6,11 -0.087
7 -0.114
10 -0.059

Table 7.3: Lower bounds of the error terms for Example 1, αgh,sκ

lization regions are obtained for Theorem 7.3.1 and the approach without incorporating

membership functions as shown in [86]. Figure 7.2 shows the comparison of stabilization

regions where 0.6 ≤ a ≤ 1.2 and 0 ≤ b ≤ 3.

Remark 7.4.1 It is shown in Figure 7.2 that the existing approach in [86] where mem-

bership functions are not considered has smaller stabilization region. For example, when

a = 0.6 the largest value of b without considering membership functions is 0.8 whereas The-

orem 7.3.1 provides significantly larger values, 2.8. It is noteworthy that when a = 1.1

only Theorem 7.3.1 provides a feasible controller.

Example 2 Consider the single-link rigid robot connected through a joint to the basement

and whose plane of motion is vertical. The motion equation of this mechanical system is

given by [131]

Jθ̈ = −(0.5mgl +Mgl)sin(θ) + u (7.4.6)

where θ denote the joint rotation angle in radians, m = 1.5kg is the mass of the load,

M = 3kg is the mass of the rigid link, g = 9.8m/s2 is the gravity constant, l = 0.5m

is the length of the robot link, J = Ml2 + (1/3)ml2 = 0.875 is the moment of inertia,

and u is the control torque applied at the joint in Nm. θ = 0 denotes the lowest vertical
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Figure 7.2: Stability region from Theorem 7.3.1 (o) and without considering membership functions (x)

equilibrium position under zero control torque. The control task is to move the robot arm

from any initial state θ ∈ [−(π/2), (π/2)] to the equilibrium position defined by θ = 0,

θ̇ = 0, and θ̈ = 0 despite of perturbations of plant parameters.

As shown in Chapter 6, the discrete-time T-S fuzzy model of the plant above is

obtained with two plant rules (r = 2) and two controller rules (c = 2). The sub-systems

are described as follows

A1 =

[
0.0990 0.0100

−0.2099 0.9990

]
A2 =

[
0.0993 0.0100

−0.1337 0.9993

]

B11 =

[
0

0.01

]
B12 =

[
0

0.01

]
C1 =

[
1 0

]
C2 =

[
1 0

]
B21 =

[
5.7133× 10−5

0.0114

]
B22 =

[
5.7133× 10−5

0.0114

]
D11 = D12 = 0.01 D21 = D22 = 0.1

(7.4.7)

The membership functions for Rule 1 and Rule 2 are shown in Figure 6.2 in the

previous Chapter. The transition probability matrix for the network is identical as

the previous example. The sub-regions in each membership function are defined as

x1 ∈ [−π/2, 0] and x1 ∈ [0, π/2], and similarly for the membership function of the
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κ ηgh,sκ(x, xτ )
i = 1, j = 1 1 0.04{(x1(k) +

1.45π
2

)2}{(x1(k − τk) +
1.45π

2
)2}

2 0.04{(x1(k) +
1.45π

2
)2}{(x1(k − τk)− 1.45π

2
)2}

3 0.04{(x1(k)− 1.45π
2

)2}{(x1(k − τk) +
1.45π

2
)2}

4 0.04{(x1(k)− 1.45π
2

)2}{(x1(k − τk)− 1.45π
2

)2}
i = 1, j = 2 1 0.04{(x1(k) +

1.45π
2

)2}{(x1(k − τk)− 0.45π
2

)2}
2 0.04{(x1(k) +

1.45π
2

)2}{(x1(k − τk) +
0.45π

2
)2}

3 0.04{(x1(k)− 1.45π
2

)2}{(x1(k − τk)− 0.45π
2

)2}
4 0.04{(x1(k)− 1.45π

2
)2}{(x1(k − τk) +

0.45π
2

)2}
i = 2, j = 1 1 0.04{(x1(k)− 1.45π

2
)2}{(x1(k − τk) +

1.45π
2

)2}
2 0.04{(x1(k)− 1.45π

2
)2}{(x1(k − τk)− 1.45π

2
)2}

3 0.04{(x1(k) +
1.45π

2
)2}{(x1(k − τk) +

1.45π
2

)2}
4 0.04{(x1(k) +

1.45π
2

)2}{(x1(k − τk)− 1.45π
2

)2}
i = 2, j = 2 1 0.04{(x1(k)− 1.45π

2
)2}{(x1(k − τk)− 0.45π

2
)2}

2 0.04{(x1(k)− 1.45π
2

)2}{(x1(k − τk) +
0.45π

2
)2}

3 0.04{(x1(k) +
1.45π

2
)2}{(x1(k − τk)− 0.45π

2
)2}

4 0.04{(x1(k) +
1.45π

2
)2}{(x1(k − τk) +

0.45π
2

)2}

Table 7.4: Polynomial approximation of membership functions for Example 2

κ βgh,sκ αgh,sκ

i = 1, j = 1 1,. . . ,4 0.660 -0.1037
i = 1, j = 2 1,. . . ,4 0.660 -0.1037
i = 2, j = 1 1,. . . ,4 0.660 -0.1037
i = 2, j = 2 1,. . . ,4 0.660 -0.1037

Table 7.5: Upper and lower bounds of the error terms, βgh,sκ and αgh,sκ , of Example 2

controller. This means that we divide µg(x)λh(xτ ) into 4 sub-regions. For every sub-

region polynomial approximation, ηgh,sκ(x, xτ ) is obtained. For example, in the sub-

region when x1 ∈ [−π/2, 0] and x1τ = x1(k − τ) ∈ [−π/2, 0], µ1(x1) = (π/2− |x1|)/(π/2)
and λ1(x1τ ) = 1 −

(
(π/2 − |xτ |)/(π/2)

)
can be approximated as 0.2(x1 + 1.45π/2)2 and

0.2(x1τ − 1.45π/2 + π/2)2, respectively. Hence, µ1(x1)λ1(x1τ ) can be approximated as

(0.2(x1 + 1.45π/2)2)(0.2(x1τ − 1.45π/2 + π/2)2) in that sub-region. Table 7.4 shows the

polynomial approximations of the membership functions for other sub-regions.

The upper and lower bounds of the error terms, αgh,sκ and βgh,sκ , are obtained by

finding the maximum and minimum values of the difference between the actual mem-

bership functions and the polynomial approximations. For example, in the sub-region

when x1 ∈ [−π/2, 0] and x1τ ∈ [−π/2, 0], the upper and lower bounds of the error are

obtained, respectively, by searching for the maximum and minimum value of
{(

(π/2 −
|x1|)/(π/2)

)
{1 −

(
(π/2 − |x1τ |)/(π/2)

)
}
}
−

{
(0.2(x1 + 1.45π/2)2)(0.2(x1τ − 1.45π/2 +

π/2)2)
}
. Table 7.5 shows the upper and lower bounds for the sub-regions.
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Figure 7.3: State response of the robot
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Figure 7.4: Control input of the system
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Figure 7.5: Ratio of the energy of the controlled output to the energy of the disturbance (γ = 1.0)

The network-induced delays, the transition probability matrix and the prescribed γ

are the same as Example 1.

Using Theorem 7.3.1 and the algorithm, a controller of the form (7.2.4) with the

following gains are obtained.

K1(1) =
[
−6.1974 4.3743

]
, K1(2) =

[
−6.0786 3.7676

]
K2(1) =

[
−6.1974 4.3743

]
, K2(2) =

[
−6.0786 3.7676

]

Remark 7.4.2 The state response of the closed-loop system is shown in Figure 7.3 and

the control input is shown in Figure 7.4. The initial states are chosen to be x(0) =

[0.5 0]T . It can be seen that the system is stochastically stable. Figure 7.5 shows the

ratio of the energy of the output to the energy of the disturbance (w(k) = e−0.1k sin(0.5k)).

From Figure 7.5, one can see that the ratio tends to roughly 1.27 × 10−4, which is less

than the prescribed γ = 1. It is shown that the ratio is well under the prescribed value of

1.0, illustrating the validity of the controller.
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7.5 Conclusions

This chapter presents a mode delay dependent fuzzy state feedback controller design for a

class of nonlinear discrete-time networked control systems, where the plant is modelled by

Takagi-Sugeno fuzzy model, and random network induced delays by finite state Markov

chain. The fuzzy controller’s premise variables are allowed to have delays, to cater for

network induced delays in the premise variables of the plant while transmitting through

communication networks. Membership functions of the plant and controller are then

approximated by polynomial functions and incorporated in the design. Through numerical

examples, we show that the proposed methodology yields a much wider stabilization region

and demonstrate the validity of the proposed methodology.



8
Robust Fuzzy H∞ Filtering of Nonlinear

Networked Control Systems With
Partially Known Transition Probability

Matrix

Abstract

In this chapter, a robust fuzzy H∞ filtering problem for nonlinear NCSs is discussed where the plant is

modelled by T-S fuzzy model and the network is modelled by a Markov chain whose transition probability

matrix is allowed to be partially known. As shown in the previous chapter, the membership functions

of the plant and the filter are incorporated into the filter design using SOS approach. Furthermore, the

fact that the premise variables of the plant, which is the measured output in this case, experience delays

as they are transmitted to the filter is acknowledged. Sufficient conditions for the existence of a robust

fuzzy H∞ filter is obtained based on Lyapunov-Krasovskii functional. A numerical example is provided

to illustrate the effectiveness of the proposed methodology.
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8.1 Introduction

As already discussed in Chapter 4, filtering problem is an important area of study, par-

ticularly in signal processing, as it provides a way to estimate information of the plant

based on the measured output. The major advantage of an H∞ filter over the traditional

Kalman filter is that the former does not require the exact information of the external

disturbance. For this reason there has been several literatures in recent years on study

of H∞ filtering and this trend progressed to NCSs where the objective of the filter is to

estimate information of the plant based on the signal transmitted over a network [42, 97–

100, 116, 117]. In [42], more specific approach to modelling the constraints is presented

where the pack loss is modelled by Bernoulli distributed white sequence. However, this

paper assumes that the network-induced delays are constant. In [116, 117] H∞ filter

design is considered for nonlinear NCSs described by T-S fuzzy model. In this paper, the

network-induced delays and packet loss which are induced by the limited bandwidth of

communication networks, are considered.

In NCSs, where the system components are connected via a network, any signal

between the system components will experience network-induced delays and be subject

to packet loss. In filtering problems, the signal passed to the filter will inevitably expe-

rience these constraints. This means that the signal the filter receives will be the time

delayed version of the signal produced at the plant. Since the signal received by the filter

will become the premise variable of the fuzzy filter, it is very important to acknowledge

this issue. However, none of the aforementioned literature on fuzzy filtering problem of

nonlinear NCSs described by T-S fuzzy model [42, 97–100, 116, 117] acknowledge this.

The traditional approach to fuzzy filter design is to discard the membership functions

of the plant and the filter in order to derive the conditions for the filter in terms of LMIs.

Since the membership functions are nonlinear functions in x, LMI solvers cannot handle

the membership functions. Discarding the membership functions in the filter design means

that the filer is valid for any shape of membership functions and this may lead to severe

conservatism.

Motivated the the aforementioned drawbacks, membership functions are incorpo-

rated in the design methodology of a robust fuzzy H∞ filter for nonlinear NCSs using

SOS approach. The plant is modelled by T-S fuzzy model and the network is modelled

by a Markov chain whose transition probability matrix is allowed to be partially known.

The premise variables of the filter is allowed to be different to the premise variables of

the plant to acknowledge the network-induced delays between the plant and the filter.
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Sufficient conditions for the existence of a robust fuzzy H∞ filter is obtained based on

Lyapunov-Krasovskii functional, which can be solved by existing tools such as YALMIP

and SOSTOOLS.

The rest of the chapter is organised as follows. Section 8.2 provides the description

of the system and the filter. The H∞ filtering problem is formulated and presented in

this this section. Sufficient conditions for the existence of the fuzzy filter is presented

in Section 8.3. An algorithm to obtain the filter gains is also presented. A numerical

example of single-link rigid robot is shown in Section 8.4 to illustrate the validity of the

presented approach. Finally, conclusions are presented in Section 8.5.

8.2 System Description and Definitions

The nonlinear plant is described by the following T-S fuzzy model:

Plant Rule g:

IF θ1(x(k)) is J
g
1 AND · · · AND θp(x(k)) is J

g
p ,

THEN
x(k + 1) = [Ag +∆Ag(k)]x(k) + [B1g +∆B1g(k)]w(k)

z(k) = [C1g +∆Cg(k)]x(k) + [D1g +∆D1g(k)]w(k)

y(k) = C2gx(k)

(8.2.1)

where g denotes the gth fuzzy inference rule; g = 1, . . . , r; r is the number of inference

rules; θ1(x(k)), . . . , θp(x(k)) are the premise variables; p is the number of premise variables

and Jg
1 , . . . , J

g
p are the fuzzy terms. Furthermore x(k) ∈ ℜn, u(k) ∈ ℜm1 , z(k) ∈ ℜm2 ,

y(k) ∈ ℜm3 are the state, control input, objective signal to be estimated and measurable

output respectively and w(k) ∈ ℜm3 is the disturbance which belongs to L2[0,∞), the

space of square summable vector sequence over [0,∞]. The matrices Ag, B1g, B2g, C1g,

C2g, D1g and D2g are of appropriate dimensions. The matrix functions ∆Ag(k), ∆B1g(k),

∆B2g(k), ∆C1g(k), ∆D1g(k) and ∆D2g(k) represent the time-varying uncertainties in the

system.

By using a center-average defuzzifier, product inference and singleton fuzzifier, the
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following global nonlinear model is obtained.

x(k + 1) =
r∑

g=1

µg(θ(x(k)))
{
[Ag +∆Ag(k)]x(k) + [Bg +∆Bg(k)]w(k)

}
= [A(µ) + ∆A(µ, k)]x(k) + [B(µ) + ∆B(µ, k)]w(k)

z(k) =
r∑

g=1

µg(θ(x(k)))
{
[C1g +∆Cg(k)]x(k) + [Dg +∆Dg(k)]w(k)

}
= [C1(µ) + ∆C(µ, k)]x(k) + [D(µ) + ∆D(µ, k)]w(k)

y(k) =
r∑

g=1

µg(θ(x(k)))C2gx(k) = C2(µ)x(k) (8.2.2)

where

θ(x(k)) = [θ1(x(k)), . . . , θp(x(k))],

χg(θ(x(k))) =

p∏
t=1

Jg
t (θt(x(k))),

µg(θ(x(k)) =
χg(θ(x(k)))∑r
ℓ=1 χℓ(θ(x(k)))

∈ [0, 1],

r∑
g=1

µg(θ(x(k))) = 1

A(µ) =
∑r

g=1 µg(θ(x(k)))Ag C1(µ) =
∑r

g=1 µg(θ(x(k)))C1g

B(µ) =
∑r

g=1 µg(θ(x(k)))Bg D(µ) =
∑r

g=1 µg(θ(x(k)))Dg

C2(µ) =
∑r

g=1 µg(θ(x(k)))C2g

∆A(µ, k) =
∑r

g=1 µg(θ(x(k)))∆Ag(k) ∆C1(µ, k) =
∑r

g=1 µg(θ(x(k)))∆C1g(k)

∆B(µ, k) =
∑r

g=1 µg(θ(x(k)))∆Bg(k) ∆D(µ, k) =
∑r

g=1 µg(θ(x(k)))∆Dg(k)

We assume that the uncertainty functions in k are norm-bounded by the following:

Assumption 8.2.1[
∆Ag(k) ∆B(k)

∆C1g(k) ∆D(k)

]
=

[
E1g

E2g

]
F (k)

[
H1 H2

]
where g = 1, . . . , r; r is the number of fuzzy inference rules; H1, H2, E1g and E2g are

known matrices which characterize the structure of the uncertainties; F (k) is an unknown

matrix function that satisfy F T (k)WF (k) ≤ W where W is a positive-definite matrix.
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The network is modelled by a finite state homogeneous Markov process as shown in

Chapter 3. The transition probability matrix is allowed to be partially known.

In this chapter, we consider the following fuzzy full-order filter:

Filter Rule h:

IF σ1(xf (k)) is N
h
1 AND · · · AND σq(xf (k)) is N

h
q ,

THEN

xf (k + 1) = Âh(i)xf (k) + B̂h(i)y(k − τk)

zf (k) = Ĉh(i)xf (k) (8.2.3)

where xf (k) is the filter’s state; Âh(i), B̂h(i), Ĉh(i) are the filter gain matrices; h denotes

the hth fuzzy inference rule; h = 1, . . . , c; c is the number of inference rules; σ1(xf (k)),

. . . , σq(xf (k)), are the premise variables; q is the number of premise variables and Nh
1 ,

. . . , Nh
q are the fuzzy terms.

Similar to the plant, the fuzzy filter is inferred as shown below.

xf (k + 1) =
c∑

h=1

λh(σ(xf (k))
{
Âh(rk)xf (k) + B̂h(rk)y(k − τk)

}
= Â(λ, rk)xf (k) + B̂(λ, rk)y(k − τk)

zf (k) =
c∑

h=1

λh(σ(xf (k))Ĉh(rk)xf (k)

= Ĉ(λ, rk)xf (k) (8.2.4)

where

σ(xf (k)) = [σ1(xf (k)), . . . , σq(xf (k))],

ϕh(σ(xf (k)) =

q∏
t=1

Nh
t (σt(xf (k))),

λh(σ(xf (k)) =
ϕh(σ(xf (k)))∑c
ℓ=1 ϕℓ(σ(xf (k)))

∈ [0, 1],

c∑
h=1

λh(σ(xf (k))) = 1

The augmented filtering error system with the fuzzy model (8.2.2) and the fuzzy
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filter (8.2.4) is

x̃(k + 1) = [Ã(µ, λ, rk) + Ē1(µ)F (k)H̄1]x̃(k) + B̃(λ, rk)C̄2(µ)x̃(k − τk)

+[B̄(µ) + Ē1(µ)F (k)H2]w(k)

e(k) = [C̃(µ, λ, rk) + E2(µ)F (k)H̄1]x̃(k) + [D(µ)

+E2(µ)F (k)H2]w(k) (8.2.5)

where x̃T (k) =
[
xT (k) xT

f (k),
]
, e(k) = z(k)− zf (k) and

Ã(µ, λ, rk) =

[
A(µ) 0

0 Â(λ, rk)

]
, B̃(λ, rk) =

[
0

B̂(λ, rk)

]
,

B̄(µ) =

[
B1(µ)

0

]
, C̄2(µ) =

[
C2(µ) 0

]
,

Ē1(µ) =

[
E1(µ)

0

]
, H̄1 =

[
H1 0

]
,

Ccl(µ, λ, rk) =
[
C1(µ) −Ĉ(λ, rk)

]
.

For brevity, x(k), xf (k), µg(θ(x(k))), λh(σ(xf (k))) are denoted as x, xf , µg(x),

λh(xf ), respectively, throughout this chapter.

As shown in Chapter 2, the closed-loop system is to achieve stochastic stability, as

shown in (2.2.5), and the H∞ performance condition, as shown in (2.2.6), except that

e(k) is used in this chapter as opposed to z(k) in Chapter 2.

In order to incorporate the unknown transition probabilities, Lemma 3.2.2 intro-

duced in Chapter 3 is used.

Similar to Chapter 7, the products of membership functions are approximated by

polynomial functions shown as below

µg(x)λh(xf ) =
D∑

κ=1

ζκ(x, xf ){ηgh,sκ(x, xf ) + ∆ηgh,sκ(x, xf )} (8.2.6)

where ηgh,sκ(x, xf ) are the polynomial function approximations and ∆ηgh,sκ(x, xf ) are the

error terms in each sub-region. ζκ(x, xf ) is a scalar function which takes 1 if x and xf are

inside the sub-region, sκ, and 0 otherwise.
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The upper and lower bounds of the error terms are introduced as follows

αgh,sκ ≤ ∆ηgh,sκ(x, xf ) ≤ βgh,sκ (8.2.7)

where αgh,sκ and βgh,sκ are known constants.

8.3 Main Result

In this section, sufficient conditions for the existence of a robust fuzzy H∞ filter for a

class of discrete-time nonlinear NCSs where the network is modelled by a Markov chain

with partially known transition probability matrix.

Theorem 8.3.1 Given a prescribed H∞ performance, γ > 0, the closed-loop system is

stochastically stable with the prescribed H∞ performance, if there exist sets of positive-

definite matrices P (i), X(i), R̃1(i), R̃1, R̃2(i), R̃2, W1(i), W2(i), W̃1(i), Q, Q̃, N1, N2,

Z̃(i), S(i, j), Ψ̃gh
1 (i), Ψ̃gh

2 (i) and matrices Kh(i), Ĉh(i), M̃(i), J(i) for i = 1, 2, · · · , s,
g = 1, 2, · · · , r, h = 1, 2, · · · , c satisfying the following

R̃1 > R̃1(i) (8.3.1)

R̃2 > R̃2(i) (8.3.2)

−vT
[ r∑

g=1

c∑
h=1

{
(ηgh,sκ(x, xf ) +

1

2
αgh,sκ +

1

2
βgh,sκ)T̃

gh(i) + Ṽ gh,sκ(i)
}
− ϵ̃sκI

]
v is SOS

∀sκ = 1, . . . , D (8.3.3)

1

2
T̃ gh(i)− Ψ̃gh

1 (i) < 0 (8.3.4)

−1

2
T̃ gh(i)− Ψ̃gh

2 (i) < 0 (8.3.5)

[
(1− pi(i+1))R̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0 (8.3.6)

[
piknownR̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0, ∀(i+ 1) ∈ S i

unknown (8.3.7)
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[
S(i, j) JT (i)

∗ X(j)

]
> 0 (8.3.8)

and

N1R̃1 = I, N2R̃2 = I, W̃1(i)W1(i) = I,QQ̃ = I and P (i)X(i) = I, (8.3.9)

where v is a real vector of appropriate dimension and independent of x; ϵ̃sκ are predefined

scalars; ηgh,sκ(x, xf ) are defined in (9.2.6);

T̃ gh(i) =



Λ̃(i)
(
Γ̃gh
1 (i)

)T (
Γ̃gh
2 (i)

)T (
Γ̃3

)T (
Ξ̃gh(i)

)T (
H̃
)T

∗ −X 0 0 0 0

∗ ∗ −R 0 0 0

∗ ∗ ∗ −Q̃ 0 0

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −W̃1(i)


Ṽ gh,sκ(i) = (βgh,sκ − αgh,sκ)

{
Ψ̃gh

1 (i) + Ψ̃gh
2 (i)

}
Λ̃(i) = diag

{
− P (i),−Q,

(
HT

2 W2(i)H2 − γI
)
,−W1(i),−W2(i)

}
+Υ̃T

1 (i) + Υ̃1(i) + τ(i)Z̃(i)

Γ̃gh
1 (i) =

[(
Ãg + ĒKh(i)R̄

)
ĒKh(i)ÊC̄2g B̄1g Ē1g Ē1g

]
Γ̃gh
2 (i) =

[√
τ̃(i)

√
τ(s)

]T [(
Ãg − diag{I, 0}

)
0 B̄1g Ē1g Ē1g

]
Γ̃3 =

[√
τ(s)− τ(1) + 1 0 0 0 0

]
τ̃(i) =

∑i+1
j∈Si

known
pijτ(j) + (1− piknown)

∑i+1
j∈Si

unknown
τ(j)

X = −{
∑i+1

j∈Si
known

pijS(i, j) + (1− piknown)
∑i+1

j∈Si
unknown

S(i, j)}+ JT (i) + J(i)

R = diag
{
N1, N2

}
Ξ̃gh(i) =

[
C̄gh

1 (i) 0 D1g E2g E2g

]
H̃ =

[
H̄1 0 0 0 0

]
Υ̃1(i) = M̃T (i)[diag{I, 0} diag{−I, 0} 0 0 0]

Ãg =

[
Ag 0

0 0

]
, Ē =

[
0

I

]
, R̄ =

[
0 I

0 0

]
, Ê =

[
0

I

]
,

B̄2g =

[
B2g

0

]
, C̄gh

1 (i) =
[
C1g −Ĉh(i)

]
, C̄2g =

[
C2g 0

]

Note that Ē and Ê have different dimension. Moreover, the robust fuzzy H∞ filter
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is given as

xf (k + 1) =
c∑

h=1

λh(σ(xf (k))
{
Âh(i)xf (k) + B̂h(i)y(k − τk)

}
zf (k) =

c∑
h=1

λh(σ(xf (k))Ĉh(i)xf (k) (8.3.10)

where the filter gain matrices, Âh(i) and B̂h(i) are given by[
Âh(i) B̂h(i)

]
= Kh(i)

and Ĉh(i) directly from the theorem.

Proof: We introduce the following augmented closed system from (8.2.5)

x̃k+1 = Γ1(rk)ζk

ek = Ξ(rk)ζk
(8.3.11)

where x̃ℓ = x̃(ℓ), zℓ = z(ℓ), ζℓ = ζ(ℓ), and

ζ(k)T =
[
x̃T (k) x̃T (k − τ(rk)) wT (k) x̃T (k)H̄T

1 F
T (k) wT (k)HT

2 F
T (k)

]
∈ ℜl

Γ1(rk) =
[
Ã(µ, λ, rk) B̃(λ, rk)C̄2(µ) B̄(µ) Ē1(µ) Ē1(µ)

]
Ξ(rk) =

[
C̃(µ, λ, rk) 0 D(µ) E2(µ) E2(µ)

]

Introducing the following Lyapunov-Krasovskii functional

V (x̃k, rk) = V1(x̃k, rk) + V2(x̃k, rk) + V3(x̃k, rk) (8.3.12)

where

V1(x̃k, rk) = x̃T
kP (rk)x̃k (8.3.13)

V2(x̃k, rk) =
−1∑

ℓ=−τk

k−1∑
j=k+ℓ

x̄T
j R1x̄j +

−1∑
ℓ=−τ(s)

k−1∑
j=k+ℓ

x̄T
j R2x̄j (8.3.14)

V3(x̃k, rk) =
k−1∑

ℓ=k−τk

x̃T
ℓ Qx̃ℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

x̃T
j Qx̃j (8.3.15)

where x̄(k) =

[
x(k + 1)− x(k)

0

]
.
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Following a similar approach shown in the proof section of Chapter 7, we have

∆V (x̃k, rk) ≤ −x̃T
k

(
P (rk)− (τ(s)− τ(1) + 1)Q

)
x̃k − x̃T

k−τk
Qx̃k−τk +

ζTk

{
ΓT
1 (µ, λ, rk)P̃ (rk)Γ1(µ, λ, rk)

+ΓT
2 (µ, λ, rk) [τ̃kR1 + τ(s)R2] Γ2(µ, λ, rk)

+Υ̃1(rk) + Υ̃T
1 (rk) + τkZ̃(rk)

}
ζk (8.3.16)

Using Assumption 8.2.1, and adding and subtracting x̃T
k H̄

T
1 F

T
k W1(rk)FkH̄1x̃k,

wT
k H

T
2 F

T
k W2(rk)FkH2wk, z

T
k zk and γwT

k wk to and from (8.3.16), we obtain the following

∆V (x̃k, rk) ≤ −x̃T
k

(
P (rk)− (τ(s)− τ(1) + 1)Q− H̄T

1 F
T
k W1(rk)FkH̄1

)
x̃k

−x̃T
k−τk

Qx̃k−τk + ζTk

{
ΓT
1 (µ, λ, rk)P̃ (rk)Γ1(µ, λ, rk)

+ΓT
2 (µ, λ, rk) [τ̃kR1 + τ(s)R2] Γ2(µ, λ, rk)

+Υ̃1(rk) + Υ̃T
1 (rk) + τkZ̃(rk) + ΞT (µ, λ, rk)Ξ(µ, λ, rk)

}
ζk

−wT
k

(
γI −HT

2 W3(rk)H2

)
wk − x̃T

k H̄
T
1 F

T
k W1(rk)FkH̄1x̃k

−wT
k H

T
2 F

T
k W3(rk)FkH2wk − zTk zk + γwT

k wk (8.3.17)

The above now becomes

∆V (x̃k, rk) ≤ ζTk

{
Λ(λ, rk) + ΓT

1 (µ, λ, rk)P̃ (rk)Γ1(µ, λ, rk)

+ΓT
2 (µ, λ, rk) [τ̃kR1 + τ(s)R2] Γ2(µ, λ, rk) + ΞT (µ, λ, rk)Ξ(µ, λ, rk)

+Υ̃1(rk) + Υ̃T
1 (rk) + τkZ̃(rk)

}
ζk − zTk zk + γwT

k wk (8.3.18)

where

Λ(λ, rk) =diag
{(

(τ(s)− τ(1) + 1)Q+ H̄T
1 W1(rk)H̄1 − P (rk)

)
,−Q,(

HT
2 W3(rk)H2 − γI

)
,−W1(rk),−W2(rk)

}

The SOS condition in (8.3.3) implies

r∑
g=1

c∑
h=1

[
(ηgh,sκ(x, xf ) +

1

2
αgh,sκ +

1

2
βgh,sκ)T̃

gh(rk)

+(βgh,sκ − αgh,sκ){Ψ̃
gh
1 (rk) + Ψ̃gh

2 (rk)}
]
< 0 (8.3.19)
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Since Ψ̃gh
1 (rk) and Ψ̃gh

2 (rk) are positive definite matrices, along with (8.2.6), we have

(∆ηgh,sκ(x, xf )− αgh,sκ)Ψ̃
gh
1 (rk) ≤ (βgh,sκ − αgh,sκ)Ψ̃

gh
1 (rk) (8.3.20)

(βgh,sκ −∆ηgh,sκ(x, xf ))Ψ̃
gh
2 (rk) ≤ (βgh,sκ − αgh,sκ)Ψ̃

gh
2 (rk) (8.3.21)

Using the above, (8.3.19) becomes

r∑
g=1

c∑
h=1

[
(ηgh,sκ(x, xf ) +

1

2
αgh,sκ +

1

2
βgh,sκ)T̃

gh(rk) + (∆ηgh,sκ(x, xf )− αgh,sκ)Ψ̃
gh
1 (rk)

+(βgh,sκ −∆ηgh,sκ(x, xf ))Ψ̃
gh
2 (rk)

]
< 0 (8.3.22)

Combining the above with conditions (8.3.4) and (8.3.5) we have

r∑
g=1

c∑
h=1

[
(ηgh,sκ(x, xf ) +

1

2
αgh,sκ +

1

2
βgh,sκ)T̃

gh(rk) + (∆ηgh,sκ(x, xf )− αgh,sκ)
1

2
T̃ gh(rk)

−(βgh,sκ −∆ηgh,sκ(x, xf ))
1

2
T̃ gh(rk)

]
< 0 (8.3.23)

By rearranging the above we have

r∑
g=1

c∑
h=1

[
ηgh,sκ(x, xf )T̃

gh(rk) +
1

2
(∆ηgh,sκ(x, xf ) + βgh,sκ − βgh,sκ)T̃

gh(rk)

+
1

2
(∆ηgh,sκ(x, xf ) + αgh,sκ − αgh,sκ)T̃

gh(rk)
]

=
r∑

g=1

c∑
h=1

{ηgh,sκ(x, xf ) + ∆ηgh,sκ(x, xf )}T̃ gh(rk) < 0 (8.3.24)

Using (8.2.6), we now have

r∑
g=1

c∑
h=1

µg(x)λh(xf )


Λ̃(rk)

(
Γ̃gh
1 (rk)

)T (
Γ̃gh
2 (rk)

)T (
Γ̃3

)T (
Ξ̃gh(rk)

)T (
H̃
)T

∗ −X 0 0 0 0
∗ ∗ −R 0 0 0
∗ ∗ ∗ −Q̃ 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −W̃1(rk)

 < 0 (8.3.25)

Note that X and Γ̃gh
2 (rk) terms contain transition probabilities. We know that the

summation of all probabilities in each row of transition probability matrix is one. This

means that (1−piknown) =
∑i+1

j∈unknown pij. By using Lemma 3.2.2, we can replace τ̃(i) and

X with
∑i+1

j=1 pijτ(j) and −
∑i+1

j=1 pijS(i, j) + JT (i) + J(i) while still satisfying the above
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condition.

Applying Schur complement on (8.3.8) and consequently multiplying these inequal-

ities by pij and summing up for all j we obtain

−
i+1∑
j=1

pijS(i, j) + JT (i) + J(i) = JT (i) + J(i)−
i+1∑
j=1

pijS(i, j)

< JT (i) + J(i)− JT (i)P̃ (i)J(i)

= P̃−1(i)−
(
J(i)− P̃−1(i)

)T

P̃ (i)
(
J(i)− P̃−1(i)

)
< P̃−1(i) (8.3.26)

where P (i) = X−1(i) and P̃ (i) =
∑i+1

j=1 pijP (j). This means that (8.3.25) still satisfies

even if −
∑i+1

j=1 pijS(i, j) + JT (i) + J(i) is replaced with P̃−1(i).

Taking summations and membership functions inside the matrix, along with the

above, (8.3.25) becomes
Λ̄(rk)+Υ̃1(rk)+Υ̃T

1 (rk)+τ(rk)Z̃(rk) Γ̌T
1 (µ,λ,rk) ΓT

2 (µ,λ,rk)
(
Γ3

)T

ΞT (µ,λ,rk)
(
H̃
)T

∗ −P̃−1(rk) 0 0 0 0

∗ ∗ −(τkR1+τ(s)R2)−1 0 0 0

∗ ∗ ∗ −Q−1 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −W−1

1 (rk)

 < 0

(8.3.27)

Note that expanding
(
Ãg + ĒKh(i)R̄

)
,
(
ĒKh(i)ÊC̄2g

)
and

(
Ãg − diag{I, 0}

)
and tak-

ing summations and membership function inside, we obtain Ã(µ, λ, rk), B̃(λ, rk) and

Ā(µ, λ, rk) respectively in the above.

By following from the proof section in Chapter 7 we can show that the filter satisfies

the conditions in the problem formulation, thus completing the proof. ∇∇∇

A similar algorithm to the one in Chapter 7 is applied to this chapter to solve

Theorem 8.3.1.

8.4 Example

The same single-link rigid robot shown in the previous chapter is considered. The transi-

tion probability matrix for this example is identical as Example 1 in the previous chapter

with the probabilities in the second row being the unknown probabilities. The member-
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ship functions for Rule 1 and Rule 2 are shown in Figure 6.2 in Chapter 6. The polynomial

approximations and corresponding bounds are presented in Table 7.4 and 7.5 in Chapter

7 respectively. Note that the premise variables of this example are x and xf , instead of

x and xτ . Refer to Example 2 of Chapter 7 for more information on the membership

function approximation procedure.

From Theorem 8.3.1 and the algorithm, a robust fuzzy H∞ filter of the form (8.2.4)

with the following gains are obtained.

Â1(1) = 1× 10−3 ×

[
5.6836 7.2156

−0.0064 0.9556

]
, Â1(2) = 1× 10−3 ×

[
7.7136 6.9134

11.5303 −12.1558

]
,

Â2(1) = 1× 10−3 ×

[
5.6568 −7.1665

0.0274 0.8845

]
, Â2(2) = 1× 10−3 ×

[
1.8988 8.6864

14.6451 −14.4914

]
,

B̂1(1) = 1× 10−3 ×

[
10.2731

0.4252

]
, B̂1(2) = 1× 10−3 ×

[
−0.8381

0.1223

]

B̂2(1) = 1× 10−3 ×

[
10.2071

0.3872

]
, B̂2(2) = 1× 10−3 ×

[
0.0262

0.5207

]
Ĉ1(1) = 1× 10−3 ×

[
0.9445 −0.6180

]
, Ĉ1(2) = 1× 10−3 ×

[
−0.1522 0.1675

]
Ĉ2(1) = 1× 10−3 ×

[
0.9452 −0.6223

]
, Ĉ2(2) = 1× 10−3 ×

[
0.2858 −0.0448

]

Figure 8.1 shows the response of filtering error system with the prescribed γ = 1.0. It

is shown that the filtering error converges to zero. The initial condition is x(0) = [0.5 0]T

and the external disturbance, w(k), is given as e−0.01ksin(0.5k). Figure 8.2 shows the

ratio of the energy of the error to the energy of the disturbance, which needs to be less

than γ = 1.0. As shown in the figure, the actual ratio is approximately 5.5× 10−3, which

is well under the prescribed attenuation level.

8.5 Conclusions

A methodology to design a robust fuzzy H∞ filter for a class of discrete-time nonlinear

NCSs is presented in this chapter. The plant is modelled by T-S fuzzy model and the

network is modelled by a finite state Markov chain whose transition probability matrix

is allowed to be partially known. The premise variables of the filter is the time delayed

version of the measured output to incorporate the network-induced delays between the

plant and the filter. The membership functions of the plant and the filter are approximated
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Figure 8.1: Response of filtering error
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Figure 8.2: Ratio of the energy of the filtering error to the energy of the disturbance (γ = 1.0)
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by polynomial functions and incorporated into the filter design. Sufficient conditions for

the existence of the filter is given in terms of sum-of-squares inequalities, which can be

solved using YALMIP. A numerical example is provided to demonstrate the validity of

the proposed methodology.



9
Robust Fuzzy H∞ Dynamic Output

Feedback Control of Nonlinear
Networked Control Systems With

Partially Known Transition Probability
Matrix

Abstract

In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time

nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-

Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition

probability matrix for the Markov process is allowed to be partially known, providing a more practical

consideration of the real world. Furthermore, the fuzzy controller’s membership functions and premise

variables are not assumed to be the same as the plant’s membership functions and premise variables,

that is, the proposed approach can handle the case, when the premise of the plant are not measurable

143
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or delayed. The membership functions of the plant and the controller are approximated as polynomial

functions, then incorporated into the controller design. Sufficient conditions for the existence of the

controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally,

a numerical example is used to demonstrate the validity of the proposed methodology.

9.1 Introduction

Most of the existing studies on NCSs are based on linear NCSs and the study of nonlinear

NCSs is very limited due to mathematical complexities. However, it is a fact that existing

real world systems are nonlinear, making it important to study nonlinear systems. Ever

since its proposition almost three decades ago [101], Takagi-Sugeno (T-S) fuzzy model

has been very effective in modelling nonlinear NCSs as shown in [36, 58, 85, 86, 128–130].

Many of the existing literatures in NCSs consider state feedback control. In many T-S

fuzzy models, the premise variables often are the plant state variables and these are not

always completely measurable. Due to this reason, designing a dynamic output feedback

controller is more attractive in practice as not all plant state variables are needed to

be measurable. However, dynamic output feedback control of nonlinear NCSs has not

been explored extensively yet [89], [132]. In [89] a dynamic output feedback controller is

designed for a continuous-time nonlinear NCSs. This paper considers distributed delays

and disturbance in the system. In [132], Bernoulli distribution is used to describe multiple

probabilistic communication delays and packet dropouts. A dynamic output feedback

controller is obtained for a discrete-time nonlinear NCSs. However, these aforementioned

approaches in [36, 58, 85, 86, 89, 128–130, 132], for both state and output feedback

control, assume that the controller’s premise variables are the same as that of the plant’s.

In NCSs, signals are transmitted via network therefore will inevitably experience delays.

In [36, 58, 85, 86, 89, 128–130, 132], the premise variables of the plant, which are the

state variables of the plant, are assumed to be measurable and the same premise variables

are used by the fuzzy controller. However in NCSs the premise will inevitably experience

network-induced delays, that is, if the premise variables of the controller are selected to

be the same as the plant, then the fuzzy controller has be based on the delayed premise

of the plant. Therefore, the fuzzy controller based on the current premise of the plant as

in [36, 58, 85, 86, 89, 128–130, 132], may be impractical in NCSs.

As already explained in Chapter 7, many existing literature on T-S fuzzy model

neglects the membership functions in the controller design. Due to the fact, in [36, 58, 85,

86, 89, 128–130, 132], the membership functions are discarded in the controller design,

hence the obtained controller is valid for any membership functions and it may lead to



9.2 System Description and Definitions 145

severe conservatism. It has been shown in Chapter 7 that incorporating membership

functions yield larger stabilization region in robust fuzzy H∞ state feedback controller

design.

Aforementioned practical drawbacks and lack of existing studies in dynamic output

feedback control of nonlinear NCSs motivated to investigate a methodology for designing

a fuzzy dynamic output feedback controller for nonlinear NCSs modelled by T-S fuzzy

model, where the network-induced delays are modelled by a finite state Markov process

with a partially known transition probability matrix. Furthermore, membership func-

tions into the controller design are incorporated by approximating them using polynomial

functions, ensuring that the controller obtained is valid for the particular membership

functions. It is shown that, by using a numerical example, that this approach results

wider stabilization region. In this chapter, unlike many existing literatures in nonlinear

NCSs [36, 58, 85, 86, 89, 128–130, 132], the premise variables of the plant are allowed to

be unmeasurable or unavailable. The premise variables and membership functions of the

controller are allowed to be different to those of the plant. Hence, the number of fuzzy

rules of the controller is no longer restricted by the number of fuzzy rules of the plant.

This allows simple fuzzy controller even when the fuzzy model of the plant is complicated.

This design flexibility, and subsequent low implementation cost, is an advantage of the

proposal approach over traditional parallel distributed compensation (PDC) approach.

This consideration, along with the partially known transition probability matrix, is more

practical in the real NCSs, that is, the proposal approach can handle the case, when not all

the premise variables are measurable and also when the premise experiencing networked-

induced delays. By using numerical examples it is shown that this incorporation yields

larger stability region in fuzzy dynamic output feedback control as well as demonstrating

the effectiveness of the controller.

The organisation of this chapter is as follows. In Section 9.2, system description and

problem formulation are provided. The controller design methodology for the nonlinear

NCSs is presented in Section 9.3. A numerical example is provided in Section 9.4 where

two approaches, one that incorporates membership functions in the controller design and

one that does not, are compared and their stability regions are presented. Conclusions

are drawn in Section 9.5.

9.2 System Description and Definitions

The nonlinear plant is described by the following T-S fuzzy model:
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Plant Rule g:

IF θ1(x(k)) is J
g
1 AND · · · AND θp(x(k)) is J

g
p ,

THEN

x(k + 1) = [Ag +∆Ag(k)]x(k) + [B1g +∆B1g(k)]w(k) + [B2g +∆B2g(k)]u(k)

z(k) = [C1g +∆Cg(k)]x(k) + [D1g +∆D1g(k)]w(k) + [D2g +∆D2g(k)]u(k)

y(k) = C2gx(k)

(9.2.1)

where g denotes the gth fuzzy inference rule; g = 1, . . . , r; r is the number of inference rules;

θ1(x(k)), . . . , θp(x(k)) are the premise variables; p is the number of premise variables and

Jg
1 , . . . , J

g
p are the fuzzy terms. Furthermore x(k) ∈ ℜn, u(k) ∈ ℜm1 , z(k) ∈ ℜm2 , y(k) ∈

ℜm3 are the state, control input, controlled output and measurable output respectively and

w(k) ∈ ℜm3 is the disturbance which belongs to L2[0,∞), the space of square summable

vector sequence over [0,∞]. The matrices Ag, B1g, B2g, C1g, C2g, D1g and D2g are

of appropriate dimensions. The matrix functions ∆Ag(k), ∆B1g(k), ∆B2g(k), ∆C1g(k),

∆D1g(k) and ∆D2g(k) represent the time-varying uncertainties in the system.

By using a center-average defuzzifier, product inference and singleton fuzzifier, the

following global nonlinear model is obtained.

x(k + 1) =
r∑

g=1

µg(θ(x(k)))
{
[Ag +∆Ag(k)]x(k) + [B1g +∆B1g(k)]w(k)

+ [B2g +∆B2g(k)]u(k)
}

= [A(µ) + ∆A(µ, k)]x(k) + [B1(µ) + ∆B1(µ, k)]w(k) + [B2(µ) + ∆B2(µ, k)]u(k)

z(k) =
r∑

g=1

µg(θ(x(k)))
{
[C1g +∆Cg(k)]x(k) + [D1g +∆D1g(k)]w(k)

+ [D2g +∆D2g(k)]u(k)
}

= [C1(µ) + ∆C(µ, k)]x(k) + [D1(µ) + ∆D1(µ, k)]w(k)

+ [D2(µ) + ∆D2(µ, k)]u(k)

y(k) =
r∑

g=1

µg(θ(x(k)))C2gx(k) = C2(µ)x(k) (9.2.2)

where

θ(x(k)) = [θ1(x(k)), . . . , θp(x(k))],

χg(θ(x(k))) =

p∏
t=1

Jg
t (θt(x(k))),

µg(θ(x(k)) =
χg(θ(x(k)))∑r
ℓ=1 χℓ(θ(x(k)))

∈ [0, 1],



9.2 System Description and Definitions 147

r∑
g=1

µg(θ(x(k))) = 1

A(µ) =
∑r

g=1 µg(θ(x(k)))Ag C1(µ) =
∑r

g=1 µg(θ(x(k)))C1g

B1(µ) =
∑r

g=1 µg(θ(x(k)))B1g B2(µ) =
∑r

g=1 µg(θ(x(k)))B2g

D1(µ) =
∑r

g=1 µg(θ(x(k)))D1g D2(µ) =
∑r

g=1 µg(θ(x(k)))D2g

C2(µ) =
∑r

g=1 µg(θ(x(k)))C2g

∆A(µ, k) =
∑r

g=1 µg(θ(x(k)))∆Ag(k) ∆C1(µ, k) =
∑r

g=1 µg(θ(x(k)))∆C1g(k)

∆B1(µ, k) =
∑r

g=1 µg(θ(x(k)))∆B1g(k) ∆B2(µ, k) =
∑r

g=1 µg(θ(x(k)))∆B2g(k)

∆D1(µ, k) =
∑r

g=1 µg(θ(x(k)))∆D1g(k) ∆D2(µ, k) =
∑r

g=1 µg(θ(x(k)))∆D2g(k)

We assume that the uncertainty functions in k are norm-bounded by the following:

Assumption 9.2.1[
∆Ag(k) ∆B1(k) ∆B2(k)

∆C1g(k) ∆D1(k) ∆D2(k)

]
=

[
E1g

E2g

]
F (k)

[
H1 H2 H3

]
where g = 1, . . . , r; r is the number of fuzzy inference rules; H1, H2, H3, E1g and E2g are

known matrices which characterize the structure of the uncertainties; F (k) is an unknown

matrix function that satisfy F T (k)WF (k) ≤ W where W is a positive-definite matrix.

The network is modelled by a finite state homogeneous Markov process as shown in

Chapter 3. The transition probability matrix is allowed to be partially known.

In this chapter, we consider the following fuzzy dynamic output feedback controller:

Control Rule h:

IF σ1(x̂(k)) is N
h
1 AND · · · AND σq(x̂(k)) is N

h
q ,

THEN

x̂(k + 1) = Âh(i)x̂(k) + B̂h(i)y(k − τk)

u(k) = Ĉh(i)x̂(k) (9.2.3)

where x̂(k) is the controller’s state; Âh(i), B̂h(i), Ĉh(i) are the controller matrices; h

denotes the hth fuzzy inference rule; h = 1, . . . , c; c is the number of inference rules;

σ1(x̂(k)), . . . , σq(x̂(k)), are the premise variables; q is the number of premise variables

and Nh
1 , . . . , N

h
q are the fuzzy terms.
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Similar to the plant, the fuzzy output feedback controller is inferred as shown below.

x̂(k + 1) =
c∑

h=1

λh(σ(x̂(k))
{
Âh(rk)x̂(k) + B̂h(rk)y(k − τk)

}
= Â(λ, rk)x̂(k) + B̂(λ, rk)y(k − τk)

u(k) =
c∑

h=1

λh(σ(x̂(k))Ĉh(rk)x̂(k)

= Ĉ(λ, rk)x̂(k) (9.2.4)

where

σ(x̂(k)) = [σ1(x̂(k)), . . . , σq(x̂(k))],

ϕh(σ(x̂(k)) =

q∏
t=1

Nh
t (σt(x̂(k))),

λh(σ(x̂(k)) =
ϕh(σ(x̂(k)))∑c
ℓ=1 ϕℓ(σ(x̂(k)))

∈ [0, 1],

c∑
h=1

λh(σ(x̂(k))) = 1

Remark 9.2.1 Note that in the premise variables of the controller (9.2.4) are different

to that of the plant. By considering different premise variables and membership functions,

the controller design is more flexible compared to existing approaches shown in [36, 58,

85, 86, 89, 128–130, 132]. Therefore, the number of fuzzy rules of the controller is no

longer restricted by the number of fuzzy rules of the plant, hence, a small number of fuzzy

rules may be implemented even though the number of fuzzy rules of the plant is large.

The overall closed loop system with the fuzzy model (9.2.2) and the fuzzy controller

(9.2.4) is

ζ(k + 1) = [Acl(µ, λ, rk) + Ē1(µ)F (k)H̄1(λ, rk)]ζ(k) +Bcl(λ, rk)C̄2(µ)ζ(k − τk)

+[B̄1(µ) + Ē1(µ)F (k)H2]w(k)

z(k) = [Ccl(µ, λ, rk) + E2(µ)F (k)H̄1(λ, rk)]ζ(k) + [D1(µ)

+E2(µ)F (k)H2]w(k) (9.2.5)
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where ζT (k) =
[
xT (k) x̂T (k)

]
and

Acl(µ, λ, rk) =

[
A(µ) B2(µ)Ĉ(λ, rk)

0 Â(λ, rk)

]
, Bcl(λ, rk) =

[
0

B̂(λ, rk)

]
,

B̄1(µ) =

[
B1(µ)

0

]
, C̄2(µ) =

[
C2(µ) 0

]
,

Ē1(µ) =

[
E1(µ)

0

]
, H̄1(λ, rk) =

[
H1 H3Ĉ(λ, rk)

]
,

Ccl(µ, λ, rk) =
[
C1(µ) D2(µ)Ĉ(λ, rk)

]
.

For brevity, x(k), x̂(k), µg(θ(x(k))), λh(σ(x̂(k))) are denoted as x, x̂, µg(x), λh(x̂),

respectively, throughout this chapter.

As shown in Chapter 2, the closed-loop system is to achieve stochastic stability, as

shown in (2.2.5), and the H∞ performance condition, as shown in (2.2.6).

Lemma 3.2.2 introduced in Chapter 3 is used in this chapter to handle unknown

transition probabilities.

Similar to Chapter 7, the products of membership functions are approximated by

polynomial functions shown as below

µg(x)λh(x̂) =
D∑

κ=1

ζκ(x, x̂){ηgh,sκ(x, x̂) + ∆ηgh,sκ(x, x̂)} (9.2.6)

where ηgh,sκ(x, x̂) are the polynomial function approximations and ∆ηgh,sκ(x, x̂) are the

error terms in each sub-region. ζκ(x, x̂) is a scalar function which takes 1 if x and x̂ are

inside the sub-region, sκ, and 0 otherwise.

The following lower and upper bounds of the error terms are introduced similar to

the previous chapter, which will help deriving the theorem later.

αgh,sκ ≤ ∆ηgh,sκ(x, x̂) ≤ βgh,sκ (9.2.7)

where αgh,sκ and βgh,sκ are known constants.
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9.3 Main Result

The following theorem provides sufficient conditions for the existence of a partially mode

delay-dependent output feedback controller.

Theorem 9.3.1 Given a prescribed H∞ performance, γ > 0, the closed-loop system is

stochastically stable with the prescribed H∞ performance, if there exist sets of positive-

definite matrices P (i), X(i), R̃1(i), R̃1, R̃2(i), R̃2, W1(i), W2(i), W̃1(i), Q, Q̃, N1, N2,

Z̃(i), S(i, j), Ψ̃gh
1 (i), Ψ̃gh

2 (i) and matrices Kh(i), Ĉh(i), M̃(i), J(i) for i = 1, 2, · · · , s,
g = 1, 2, · · · , r, h = 1, 2, · · · , c satisfying the following

R̃1 > R̃1(i) (9.3.1)

R̃2 > R̃2(i) (9.3.2)

−vT
[ r∑

g=1

c∑
h=1

{
(ηgh,sκ(x, x̂) +

1

2
αgh,sκ +

1

2
βgh,sκ)T̃

gh(i) + Ṽ gh,sκ(i)
}
− ϵ̃sκI

]
v is SOS

∀sκ = 1, . . . , D (9.3.3)

1

2
T̃ gh(i)− Ψ̃gh

1 (i) < 0 (9.3.4)

−1

2
T̃ gh(i)− Ψ̃gh

2 (i) < 0 (9.3.5)

[
(1− pi(i+1))R̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0 (9.3.6)

[
piknownR̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0, ∀(i+ 1) ∈ S i

unknown (9.3.7)

[
S(i, j) JT (i)

∗ X(j)

]
> 0 (9.3.8)

and

N1R̃1 = I, N2R̃2 = I, W̃1(i)W1(i) = I,QQ̃ = I and P (i)X(i) = I, (9.3.9)

where v is a real vector of appropriate dimension and independent of x; ϵ̃sκ are predefined
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scalars; ηgh,sκ(x, x̂) are defined in (9.2.6);

T̃ gh(i) =



Λ̃(i)
(
Γ̃gh
1 (i)

)T (
Γ̃gh
2 (i)

)T (
Γ̃3

)T (
Ξ̃gh(i)

)T (
H̃h(i)

)T
∗ −X 0 0 0 0

∗ ∗ −R 0 0 0

∗ ∗ ∗ −Q̃ 0 0

∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ −W̃1(i)


Ṽ gh,sκ(i) = (βgh,sκ − αgh,sκ)

{
Ψ̃gh

1 (i) + Ψ̃gh
2 (i)

}
Λ̃(i) = diag

{
− P (i),−Q,

(
HT

2 W2(i)H2 − γI
)
,−W1(i),−W2(i)

}
+Υ̃T

1 (i) + Υ̃1(i) + τ(i)Z̃(i)

Γ̃gh
1 (i) =

[(
Ãg + ĒKh(i)R̄ + B̄2gC̃h(i)

)
ĒKh(i)ÊC̄2g B̄1g Ē1g Ē1g

]
Γ̃gh
2 (i) =

[√
τ̃(i)

√
τ(s)

]T [(
Ãg − diag{I, 0}+ B̄2gC̃h(i)

)
0 B̄1g Ē1g Ē1g

]
Γ̃3 =

[√
τ(s)− τ(1) + 1 0 0 0 0

]
τ̃(i) =

∑i+1
j∈Si

known
pijτ(j) + (1− piknown)

∑i+1
j∈Si

unknown
τ(j)

X = −{
∑i+1

j∈Si
known

pijS(i, j) + (1− piknown)
∑i+1

j∈Si
unknown

S(i, j)}+ JT (i) + J(i)

R = diag
{
N1, N2

}
Ξ̃gh(i) =

[
C̄1g +D2gC̃h(i) 0 D1g E2g E2g

]
H̃h(i) =

[
H̃1 +H3C̃h(i) 0 0 0 0

]
Υ̃1(i) = M̃T (i)[diag{I, 0} diag{−I, 0} 0 0 0]

Ãg =

[
Ag 0

0 0

]
, Ē =

[
0

I

]
, R̄ =

[
0 I

0 0

]
, Ê =

[
0

I

]
,

B̄2g =

[
B2g

0

]
, C̄1g =

[
C1g 0

]
, C̄2g =

[
C2g 0

]
,

H̃1 =
[
H1 0

]
, C̃h(i) =

[
0 Ĉh(i)

]
Note that Ē and Ê have different dimension. Moreover, the mode delay dependent

fuzzy output feedback controller is given as

x̂(k + 1) =
c∑

h=1

λh(σ(x̂(k))
{
Âh(i)x̂(k) + B̂h(i)y(k − τk)

}
u(k) =

c∑
h=1

λh(σ(x̂(k))Ĉh(i)x̂(k) (9.3.10)
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where the controller matrices, Âh(i) and B̂h(i) are given by[
Âh(i) B̂h(i)

]
= Kh(i)

Proof: We introduce the following augmented closed system from (9.2.5)

ζk+1 = Γ1(rk)ζ̃k

zk = Ξ(rk)ζ̃k
(9.3.11)

where ζℓ = ζ(ℓ), zℓ = z(ℓ), ζ̃ℓ = ζ̃(ℓ), and

ζ̃(k)T =
[
ζT (k) ζT (k − τ(rk)) wT (k) ζT (k)H̄T

1 (λ, rk)F
T (k) wT (k)HT

2 F
T (k)

]
∈ ℜl

Γ1(rk) =
[
Acl(µ, λ, rk) Bcl(λ, rk)C̄2(µ) B̄1(µ) Ē1(µ) Ē1(µ)

]
Ξ(rk) =

[
Ccl(µ, λ, rk) 0 D1(µ) E2(µ) E2(µ)

]

Introducing the following Lyapunov-Krasovskii functional

V (ζk, rk) = V1(ζk, rk) + V2(ζk, rk) + V3(ζk, rk) (9.3.12)

where

V1(ζk, rk) = ζTk P (rk)ζk (9.3.13)

V2(ζk, rk) =
−1∑

ℓ=−τk

k−1∑
j=k+ℓ

x̄T
j R1x̄j +

−1∑
ℓ=−τ(s)

k−1∑
j=k+ℓ

x̄T
j R2x̄j (9.3.14)

V3(ζk, rk) =
k−1∑

ℓ=k−τk

ζTℓ Qζℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

ζTj Qζj (9.3.15)

where x̄(k) =

[
x(k + 1)− x(k)

0

]
.

Following a similar approach shown in the proof section of Chapter 8, we have

r∑
g=1

c∑
h=1

µg(x)λh(xτ )


Λ̃(rk)

(
Γ̃gh
1 (rk)

)T (
Γ̃gh
2 (rk)

)T (
Γ̃3

)T (
Ξ̃gh(rk)

)T (
H̃h(rk)

)T

∗ −X 0 0 0 0
∗ ∗ −R 0 0 0
∗ ∗ ∗ −Q̃ 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −W̃1(rk)

 < 0 (9.3.16)
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Note that X and Γ̃gh
2 (rk) terms contain transition probabilities. We know that the

summation of all probabilities in each row of transition probability matrix is one. This

means that (1−piknown) =
∑i+1

j∈unknown pij. By using Lemma 3.2.2, we can replace τ̃(i) and

X with
∑i+1

j=1 pijτ(j) and −
∑i+1

j=1 pijS(i, j) + JT (i) + J(i) while still satisfying the above

condition.

Applying Schur complement on (9.3.8) and consequently multiplying these inequal-

ities by pij and summing up for all j we obtain

−
i+1∑
j=1

pijS(i, j) + JT (i) + J(i) = JT (i) + J(i)−
i+1∑
j=1

pijS(i, j)

< JT (i) + J(i)− JT (i)P̃ (i)J(i)

= P̃−1(i)−
(
J(i)− P̃−1(i)

)T

P̃ (i)
(
J(i)− P̃−1(i)

)
< P̃−1(i) (9.3.17)

where P (i) = X−1(i) and P̃ (i) =
∑i+1

j=1 pijP (j). This means that (9.3.16) still satisfies

even if −
∑i+1

j=1 pijS(i, j) + JT (i) + J(i) is replaced with P̃−1(i).

Taking summations and membership functions inside the matrix, along with the

above, (9.3.16) becomes
Λ̄(rk)+Υ̃1(rk)+Υ̃T

1 (rk)+τ(rk)Z̃(rk) Γ̌T
1 (µ,λ,rk) ΓT

2 (µ,λ,rk)
(
Γ3

)T

ΞT (µ,λ,rk)
(
Ȟh(λ,rk)

)T

∗ −P̃−1(rk) 0 0 0 0

∗ ∗ −(τkR1+τ(s)R2)−1 0 0 0

∗ ∗ ∗ −Q−1 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −W−1

1 (rk)

 < 0

(9.3.18)

Note that expanding
(
Ãg + ĒKh(i)R̄+ B̄2gC̃h(i)

)
,
(
ĒKh(i)ÊC̄2g

)
and

(
Ãg − diag{I, 0}+

B̄2gC̃h(i)
)
and taking summations and membership function inside, we obtain Acl(µ, λ, rk),

Bcl(λ, rk) and Ā(µ, λ, rk) respectively in the above.

By following from the proof section in Chapter 7 we can show that the controller

satisfies the conditions in the problem formulation, thus completing the proof. ∇∇∇

Remark 9.3.1 By disregarding the summations and membership functions in (9.3.16),

we obtain an approach that does not consider membership functions in the design. There-

fore by stating T̃ gh(i) < 0, we have a methodology that has been widely used in fuzzy

systems where membership functions are disregarded when designing a controller. This

approach can now be expressed in term of LMI conditions as the membership functions,
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which are nonlinear in x are discarded. By including the summations we state that the

sum of T̃ gh(i), along with the membership functions, is less than zero, instead of them

individually being zero. Furthermore incorporating membership functions ensure that the

controller is valid for the particular membership functions. These ensure that our ap-

proach is less conservative than discarding membership functions. In the next section, we

compare our result with the approach where T̃ gh(i) < 0, and hence discarding membership

functions, to show that our method results wider stability region.

A similar algorithm to the one in Chapter 7 is applied to this chapter to solve

Theorem 9.3.1.

9.4 Examples

In this section, two simulation examples are presented to show that 1. the incorporation

of membership functions result a wider stability region and 2. the controller can stabilize

a practical system.

Example 1 Consider a T-S fuzzy system with two plant rules (r = 2) and two controller

rules (c = 2). The sub-systems are described as follows

A1 =

[
−a −0.1

1 0

]
A2 =

[
−1 0.1

1 0

]
B11 =

[
−b

0

]
B12 =

[
0.5

0

]

C11 =
[
1 0

]
C12 =

[
−1 0

]
B21 =

[
1.0

0.5

]
B22 =

[
1.0

0.5

]
D11 = 0.01 D12 = 0.01 D21 = 0.1 D22 = 0.1

C2 =
[
0.6 0

]
(9.4.1)

and the uncertainties are characterised by matrices below:

E11 = E12 =

[
0.05

0.1

]
E21 = E22 = 0.1

H1 =
[
0.2 0

]
H2 = 0.1

H3 = 0.1

(9.4.2)
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The membership functions for the plant, µg are as follows

µ1(x1(k)) =


1 x1(k) < −0.5

x1(k)− 0.5 −0.5 ≤ x1(k) < 0.5

0 0.5 ≤ x1(k)

,

µ2(x1(k)) = 1− µ1(x1(k))

(9.4.3)

The membership functions for the controller, λh are shown below

λ1(x̂1(k)) =


0 x̂1(k) < −0.5

x̂1(k) + 0.5 −0.5 ≤ x̂1(k) < 0.5

1 0.5 ≤ x̂1(k)

,

λ2(x̂1(k)) = 1− λ1(x1(k − τk))

(9.4.4)

Figure 9.1 shows µg(x1(k)) and λh(x̂1(k)) with sub-regions in each membership func-

tion, x1 ∈ [−∞,−0.5], x1 ∈ [−0.5, 0], x1 ∈ [0, 0.5] and x1 ∈ [0.5,∞], and similarly for

the membership function of the controller. This means that we divide µg(x)λh(x̂) into

16 sub-regions. For every sub-region we use ηgh,sκ(x, x̂) to obtain polynomial approxi-

mation. The upper and lower bounds of the error terms, αgh,sκ and βgh,sκ , are obtained

numerically. Note that the shape of membership functions for µ1(x1(k)), λ2(x̂1(k)) and

µ2(x1(k)) λ1(x̂1(k)) in this particular example are the same. Refer to Table 7.1, 7.2 and

7.3 in Chapter 7 for ηgh,sκ(x, x̂), βgh,sκ and αgh,sκ used in this example. Note that the

premise variables of the controller in this example is x̂ compared to xτ in Chapter 7. The

approximation procedure is described in Example 2 of Chapter 7.

A Markov chain with two modes are used to model the network-induced delays of

0.1s and 0.2s respectively. The underlying transition probability matrix for the Markov

chain is as shown below

Pτ =

[
0.6 0.4

(0.7) (0.3)

]
(9.4.5)

with sampling time of 0.01s and (0.7) and (0.3) are unknown to the controller design.

By using YALMIP [126], with prescribed γ = 1.0, we obtain stability region for

Theorem 9.3.1 and the approach without incorporating membership functions as men-

tioned in Remark 9.3.1. Figure 9.2 shows the stability region of the system above where

0.5 ≤ a ≤ 0.9 and 0 ≤ b ≤ 1.0. It shows that Theorem 9.3.1 results wider stability region.

Remark 9.4.1 The stability region of approach without membership functions is obtained
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Figure 9.1: Membership functions of the plant and the controller
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by solving LMI conditions, T̃ gh(i) < 0. It is clear that incorporating membership functions

into the design yields larger stability region. By incorporating membership functions, we

ensure that the controller designed is specific for the membership functions of both the

plant and the controller.

Example 2 The same plant used in Example 2 of Chapter 7, single-link rigid robot,

is considered. The network-induced delays, the transition probability matrix and the

prescribed γ are the same as Example 1. The membership functions for Rule 1 and

Rule 2 are shown in Figure 6.2 in Chapter 6. The polynomial approximations and the

corresponding bounds are presented in Table 7.4 and 7.5 in Chapter 7. Note that the

premise variable of the controller in this example is x̂, as opposed to xτ in Chapter 7.

Refer to Example 2 of Chapter 7 for more information on the approximation procedure.

Using Theorem 9.3.1 and the algorithm, a controller of the form (9.2.4) with the

following gains are obtained.

Â1(1) = 1× 10−7 ×

[
3.8061 −0.5374

7.2679 −2.4919

]
, Â1(2) = 1× 10−7 ×

[
2.2516 1.7894

−0.6884 9.5003

]
,

Â2(1) = 1× 10−7 ×

[
3.8027 −0.5609

7.2920 −2.5131

]
, Â2(2) = 1× 10−7 ×

[
2.2462 1.7872

−0.6807 9.5003

]
,

B̂1(1) = 1× 10−7 ×

[
0.3034

−1.6402

]
, B̂1(2) = 1× 10−7 ×

[
5.4335

3.0203

]

B̂2(1) = 1× 10−7 ×

[
0.3042

−1.6641

]
, B̂2(2) = 1× 10−7 ×

[
5.4145

3.0199

]
Ĉ1(1) = 1× 10−8 ×

[
−7.9402 3.4307

]
, Ĉ1(2) = 1× 10−7 ×

[
−0.2759 −1.0254

]
Ĉ2(1) = 1× 10−8 ×

[
−7.9145 3.4457

]
, Ĉ2(2) = 1× 10−7 ×

[
−0.2773 −1.0239

]

Remark 9.4.2 The state response of the plant with the proposed controller is shown in

Figure 9.3 with w = 0. The initial states are chosen to be x(0) = [0.5 0]T . It can be seen

that the dynamic fuzzy output controller stabilizes the system, demonstrating the validity

of the proposed controller. Figure 9.5 shows the ratio of the energy of the output to the

energy of the disturbance (w(k) = e−0.1k sin(0.5k)). From Figure 9.5, one can see that the

ratio tends to roughly 0.135, which is less than the prescribed γ = 1. Note that no feasible

solution exists for this particular example when the theorem is reduced to T̃ gh(i) < 0.
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9.5 Conclusions

This chapter presents a design methodology for partially mode delay-dependent fuzzy dy-

namic output feedback controller for a class of nonlinear discrete-time networked control

system. The nonlinear plant is modelled by Takagi-Sugeno fuzzy model and the random

network-induced delays are modelled by a finite state Markov chain with partially known

transition probability matrix. The controller’s premise variables and its membership func-

tions are allowed to be different from the plant’s premise variables and its membership

functions. The membership functions of both the plant and the controller are approx-

imated by polynomial functions and incorporated into the design. Sufficient conditions

for the existence of the controller are derived in terms of the sum-of -squares inequalities

which are then solved by the YALMIP. Numerical examples are used to show that incor-

porating membership functions into the controller design yields a larger stability region

and the effectiveness of the proposed methodology.



10
Conclusions

10.1 Summary of Thesis

In this thesis, novel methodologies for designing a robust H∞ state feedback controller,

robust H∞ filter and robust H∞ dynamic output feedback controller for a class of linear

and nonlinear uncertain NCSs are proposed where the network is modelled by a finite

state Markov chain. The main interest of the Markov chain in this thesis is that the tran-

sition probability matrix is allowed to be partially known. This provides more practical

consideration as it is often costly or even impossible to obtain a completely known transi-

tion probability matrix in the real world. The fact that the summation of all probabilities

equal to one has been used to create an upper bound for unknown transition probabili-

ties. Based on Lyapunov-Krasovskii functional, sufficient conditions for the existence of

the controller is given in terms of BMIs for linear systems or SOS for nonlinear systems.

T-S fuzzy model has been used to model nonlinear NCSs and corresponding fuzzy con-

troller design methodologies are presented where membership functions are incorporated

into the controller design. By using numerical examples, it is shown that this incorpo-

ration results wider stabilization region. Furthermore, the proper fuzzy formulation of

NCSs has been presented where the controller’s premise variables are the time delayed

160
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version of the plant’s premise variable. The majority of existing literature on NCSs ne-

glect this fact, resulting in unrealistic formation of nonlinear NCSs. It is noteworthy that

the methodologies with partially known transition probability matrix is more general as

the case of either completely known or completely unknown transition probability matrix

can be seen as a special case of the proposed approach.

The controller in NCSs is to stabilize the system despite the presence of the network.

In recent years, the researchers have been trying to achieve this goal by modelling the net-

work constraints such as the network-induced delays and/or packet dropouts. Following

the introductory review in Chapter 1, Chapter 2 presents a methodology to designing a

robust H∞ state feedback controller for a class of discrete-time linear NCSs is presented.

Chapter 3 introduces the problem of partially known transition probability matrix and a

lemma that plays a vital role in creating an upper bound of the unknown probabilities

is presented. It has been shown that unlike previous attempts where unknown transi-

tion probabilities are discarded, upper bound of the unknown probabilities can be used.

This is demonstrated by presenting a robust H∞ state feedback controller design where

the network is modelled by a Markov chain with partially known transition probability

matrix. In Chapter 4 and 5, methodologies to design a robust H∞ filter and a robust

H∞ dynamic output feedback controller for linear NCSs are presented. In these afore-

mentioned methodologies, the summation of known and unknown parts are considered

whereas known and unknown parts are separated and the unknown transition probabili-

ties are discarded in existing methodologies. It has been shown that considering partially

known transition probability matrix provides more general solution as these methodolo-

gies can be reduced to those of either completely known or completely unknown transition

probabilities. By considering a dynamic output feedback controller design in Chapter 5,

more practical solution of controller design is presented where not all state variables of

the plant needs to be measurable.

In Chapter 6, brief overview of Takagi-Sugeno fuzzy model is presented. It illustrates

how a fuzzy plant model and controller is constructed to model nonlinear NCSs. A brief

overview of sum-of-squares decomposition is presented to provide preliminary knowledge,

which will be helpful to understand how membership functions are incorporated in the

controller design.

In the nonlinear NCSs part of this thesis, presented in Chapter 7, 8 and 9, a ro-

bust fuzzy H∞ state feedback controller, a robust fuzzy H∞ filter and a robust fuzzy

H∞ dynamic output feedback controller design are presented respectively. Unlike previ-

ous approaches to discard membership functions so that LMI approaches can be used,

polynomial functions are used to approximate the products of membership functions so
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that existing tools such as YALMIP or SOSTOOLS can be used to evaluate the solution.

In Chapter 7, the first attempt to incorporate membership functions in the controller

design of nonlinear NCSs has been made where the transition probability matrix is as-

sumed to be completely known. By using a numerical example, it has been shown that

incorporating membership functions yields larger stabilization region, emphasizing the

importance of membership functions in the controller design. In Chapter 8 and 9, a ro-

bust fuzzy H∞ filter and a robust fuzzy H∞ dynamic output feedback controller design

are presented where the transition probability matrix is assumed to be partially known.

In Chapter 7, the premise variables of the controller are different to the plant’s premise

variables; the controller uses the delayed version of the signal of the plant. In Chapter

9, premise variables of the plant are allowed to be unmeasurable. In this chapter, the

states of the dynamic output feedback controller are used as the premise variables of the

controller. Most of the existing literature on nonlinear NCSs modelled by T-S fuzzy model

assume no delay between the plant and the controller, creating an unrealistic T-S fuzzy

model of the nonlinear NCSs.

The main contributions of the systems are as follows:

• Network-induced delays are modelled by a finite state Markov chain with partially

known transition probability matrix. This provides more practical consideration as

it is often costly or impossible to obtain a completely known transition probability

matrix in the real world. Furthermore it has been shown that existing methodologies

with either completely known or completely unknown transition probability matrix

is a special case of the presented methodology.

• H∞ state feedback, H∞ filter and H∞ dynamic output feedback controller design

methodologies are developed in linear NCSs with partially known transition proba-

bility matrix. The unknown probabilities are not discarded in these methodologies;

they are upper bounded instead and summation of known and unknown parts are

considered as opposed to considering them separately.

• T-S fuzzy model is used to model the nonlinear NCSs. Based on this T-S fuzzy

model, robust H∞ fuzzy state feedback, robust H∞ filter and robust H∞ fuzzy dy-

namic output feedback controller design methodologies are developed where mem-

bership functions are incorporated into the controller design. It has been shown,

by using numerical examples, that incorporating membership functions yield larger

stabilization region. Furthermore, the controller’s premise variables are different to

the plant’s premise variables to provide more realistic consideration of NCSs.
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10.2 Future Work

Networked control systems still provide a wide range of research that are worth carrying

out. While the results of this research provides study of controller design in both linear

and nonlinear NCSs, it is nevertheless complete. Further research work may be carried

out in the following areas:

• A new model of network to incorporate network constraints may be carried out. It

has been shown that Markov chain, while it has been the most researched model, is

not the only way the network may be modelled.

• A network-induced delay between the controller and the actuator as well as sensor

and controller may be considered. In this thesis, only sensor-to-controller delays

are considered. Some researchers have studied both sensor-to-controller delays and

controller-to-actuator delays but fail to acknowledge that when the controller gain

is to be chosen, no information of the controller-to-actuator delays are available.

The controller may be selected based on the current sensor-to-controller delay and

the controller-to-actuator delay of the previous time instance.

• A different model of nonlinear NCSs and its respective controller design may be

studied. T-S fuzzy model has been proven to be very effective in nonlinear NCSs

but other nonlinear models may provide satisfactory result in nonlinear NCSs.

• Controller/filter design methodologies presented in this thesis may be implemented

on real systems where the plant and the controller are connected via a communi-

cation network. Experiments are carried out to obtain the transition probability

matrix of the communication network where some of the elements in the transition

probability matrix may be unknown.
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[82] H. Chan and U. Özgüner, “Closed-loopcontrol of systems over a communications

network with queues,” International Journal of Control, vol. 62, no. 3, pp. 493–510,

1995.

[83] A. Tzes and G. Nikolakopoulos, “Lqr-output feedback gain scheduling of mobile

networked controlled systems,” in American Control Conference, 2004. Proceedings

of the 2004, vol. 5, 2004, pp. 4325–4329 vol.5.

[84] Y. Zheng, H. Fang, and H. Wang, “Takagi-sugeno fuzzy-model-based fault detection

for networked control systems with markov delays,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, vol. 36, no. 4, pp. 924–929, 2006.

[85] C. Peng and T. C. Yang, “Communication-delay-distribution-dependent networked

control for a class of t-s fuzzy systems,” IEEE Transactions on Fuzzy Systems,

vol. 18, no. 2, pp. 326–335, 2010.

[86] M. S. Mahmoud, “H∞ control of uncertain fuzzy networked control systems with

state quantization,” Intelligent Control and Automation, vol. 3, pp. 59–70, 2012.

[87] J. Dong and G.-H. Yang, “H∞ controller synthesis via switched pdc scheme for

discrete-time t-s fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 17,

no. 3, pp. 544–555, 2009.

[88] W. Deng, M. Fei, and K. Li, “T-s fuzzy control of uncertain nonlinear networked

control systems,” in International Conference on Advanced Computer Control, 2009,

pp. 36–40.

[89] W. Rui, H. Jiang, and L. Liu, “Continuously dynamic output feedback control for t-s

fuzzy nonlinear networked control systems,” in International Conference on System

Science and Engineering, 2012, pp. 454–458.



REFERENCES 172

[90] X. Chi, X. Jia, L. Li, and B. Liu, “H∞ output tracking control for nonlinear discrete-

time systems in random network environment,” in 8th World Congress on Intelligent

Control and Automation, 2010, pp. 4413–4418.

[91] D. Zhang, Q.-L. Han, and X. Jia, “Network-based static output feedback tracking

control for fuzzy-model-based nonlinear systems,” in IEEE International Conference

on Fuzzy Systems, 2012, pp. 1–8.

[92] H. K. Lam and F. H. F. Leung, “Stability analysis of fuzzy control systems subject

to uncertain grades of membership,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 35, no. 6, pp. 1322–1325, 2005.

[93] C. Ario and A. Sala, “Extensions to “stability analysis of fuzzy control systems

subject to uncertain grades of membership”,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol. 38, no. 2, pp. 558–563, Apr 2008.

[94] H. Lam and M. Narimani, “Quadratic-stability analysis of fuzzy-model-based con-

trol systems using staircase membership functions,” IEEE Transactions on Fuzzy

Systems, vol. 18, no. 1, pp. 125–137, 2010.

[95] H. Lam, M. Narimani, and F. Leung, “Stability analysis and stabilization of poly-

nomial fuzzy-model-based control systems using piecewise linear membership func-

tions,” in IEEE International Conference on Fuzzy Systems, 2010, pp. 1–8.

[96] M. Narimani and H. K. Lam, “Sos-based stability analysis of takagi-sugeno fuzzy

control systems via polynomial membership functions,” in IEEE International Con-

ference on Fuzzy Systems, 2009, pp. 203–208.

[97] Z. Mao, B. Jiang, and P. Shi, “H∞ fault detection filter design for networked control

systems modelled by discrete markovian jump systems,” IET Control Theory &

Applications, vol. 1, no. 5, pp. 1336–1343, 2007.

[98] Z. Huo and H. Fang, “Robust H∞ filter design for networked control system with

random time delays,” in Proceedings of the 10th IEEE International Conference on

Engineering of Complex Computer Systems, 2005, pp. 333–340.

[99] C. Jiang, D. Zou, and Q. Zhang, “H∞ filtering for networked control systems with

quantized signals,” in Proceedings of the 8th IEEE International Conference on

Control and Automation, 2010, pp. 634–639.

[100] S. Hu and D. Yue, “Event-based H∞ filtering for networked system with communi-

cation delay,” Signal Processing, vol. 92, no. 9, pp. 2029–2039, Sep 2012.



REFERENCES 173

[101] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications

to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics,

vol. 15, no. 1, pp. 116–132, 1985.

[102] Y.-Y. Cao, J. Lam, and L. Hu, “Delay-dependent stochastic stability and H∞ anal-

ysis for time-delay systems with markovian jumping parameters,” Journal of the

Franklin Institute, vol. 340, no. 6, pp. 423–434, Sep 2003.

[103] Z. Wang, J. Lam, and X. Liu, “Exponential filtering for uncertain markovian jump

time-delay systems with nonlinear disturbances,” IEEE Transactions on Circuits

and Systems II: Express Briefs, vol. 51, no. 5, pp. 262–268, 2004.

[104] S. Xu, J. Lam, and X. Mao, “Delay-dependentH∞ control and filtering for uncertain

markovian jump systems with time-varying delays,” IEEE Transactions on Circuits

and Systems I: Regular Papers, vol. 54, no. 9, pp. 2070–2077, 2007.

[105] S. Hu and W.-Y. Yan, “Stability robustness of networked control systems with

respect to packet loss,” Automatica, vol. 43, no. 7, pp. 1243–1248, Jul 2007.

[106] N. N. Krasovskii and E. A. Lidskii, “Analytical design of controllers in systems

with random attributes i, ii, iii,” Automatic Remote Control, vol. 22, pp. 1021–

1025, 1141–1146, 1289–1294, 1961.

[107] Y. Ji and H. J. Chizeck, “Controllability, stabilizability, and continuous-time marko-

vian jump linear quadratic control,” IEEE Transactions on Automatic Control,

vol. 35, no. 7, pp. 777–788, July 1990.

[108] S. K. Nguang, W. Assawinchaichote, P. Shi, and Y. Shi, “Robust H∞ control design

for uncertain fuzzy systems with markovian jumps: an lmi approach,” in Proceedings

of the American Control Conference, June 2005, pp. 1805–1810.

[109] S. Xu, T. Chen, and J. Lam, “Robust H∞ filtering for uncertain markovian jump

systems with mode-dependent time delays,” IEEE Transactions on Automatic Con-

trol, vol. 48, pp. 900–907, May 2003.

[110] E. K. Boukas and Z. K. Liu, “Robust stability and stabilizability of markov jump

linear uncertain systems with mode-dependent time delays,” Journal of Optimal

Theory and Application, vol. 109, no. 3, pp. 587–600, 2001.

[111] Y. Y. Cao and L. J., “Robust H∞ control of uncertain markov jump systems with

time-delay,” IEEE Transactions on Automatic Control, vol. 45, pp. 77–83, January

2000.



REFERENCES 174

[112] E. K. Boukas, P. Shi, M. Karan, and C. Y. Kaya, “Linear discrete-time systems with

markovian jumps and mode dependent time-delay: Stability and stabilizability,”

Mathematical Problems in Engineering, vol. 8, no. 2, pp. 123–133, 2002.

[113] Z. H. Guan, W. H. Chen, and J. X. Xu, “Delay-dependent stability and stabilizabil-

ity of uncertain jump bilinear stochastic systems with mode-dependent time-delays,”

International Journal of Systems Science, vol. 36, no. 5, pp. 275–285, 2005.

[114] W.-H. Chen and W. X. Zheng, “Robust stabilization of delayed markovian jump

systems subject to parametric uncertainties,” in Proceedings of the 46th IEEE Con-

ference on Decision and Control, 2007, pp. 3054–3059.

[115] L. El Ghaoui, F. Oustry, and M. AitRami, “A cone complementarity linearization

algorithm for static output-feedback and related problems,” Automatic Control,

IEEE Transactions on, vol. 42, no. 8, pp. 1171–1176, 1997.

[116] Z. Mao, B. Jiang, and Y. Xu, “H∞ filter design for a class of networked control

systems via t-s fuzzy model approach,” in Proceedings of the IEEE International

Conference on Fuzzy Systems, 2010, pp. 1–8.

[117] B. Jiang, Z. Mao, and P. Shi, “H∞ filter design for a class of networked control sys-

tems via t-s fuzzy-model approach,” Fuzzy Systems, IEEE Transactions on, vol. 18,

no. 1, pp. 201–208, 2010.

[118] A. Goncalves, A. Fioravanti, and J. Geromel, “Dynamic output feedbackH∞ control

of discrete-time markov jump linear systems through linear matrix inequalities,” in

Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, 2008, pp. 4787–

4792.

[119] C. Fantuzzi and R. Rovatti, “On the approximation capabilities of the homogeneous

takagi-sugeno model,” in Proceedings of the Fifth IEEE International Conference

on Fuzzy Systems, vol. 2, 1996, pp. 1067–1072.

[120] J. Buckley, “Universal fuzzy controllers,” Automatica, vol. 28, no. 6, pp. 1245–1248,

1992.

[121] S. Prajna, A. Papachristodoulou, P. Seiler, and P. Parrilo, “Sostools: control ap-

plications and new developments,” in IEEE International Symposium on Computer

Aided Control Systems Design, 2004, pp. 315–320.

[122] S. Prajna, A. Papachristodoulou, and F. Wu, “Nonlinear control synthesis by sum

of squares optimization: a lyapunov-based approach,” in 5th Asian Control Confer-

ence, vol. 1, 2004, pp. 157–165 Vol.1.



REFERENCES 175

[123] X. Chen, C. Li, and N. Li, “A new development of sum of squares optimization in

control application,” in International Conference on Intelligent Computation Tech-

nology and Automation (ICICTA), vol. 1, 2008, pp. 1200–1204.

[124] K. Tanaka, H. Yoshida, H. Ohtake, and H. Wang, “A sum-of-squares approach

to modeling and control of nonlinear dynamical systems with polynomial fuzzy

systems,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 911–922, 2009.

[125] ——, “A sum of squares approach to stability analysis of polynomial fuzzy systems,”

in Proceedings of the American Control Conference, 2007, pp. 4071–4076.

[126] J. Löfberg, “Pre- and post-processing sum-of-squares programs in practice,” IEEE

Transactions on Automatic Control, vol. 54, no. 5, pp. 1007–1011, 2009.

[127] S. Prajna, A. Papachristodoulou, and P. Parrilo, “Introducing sostools: a general

purpose sum of squares programming solver,” in Decision and Control, 2002, Pro-

ceedings of the 41st IEEE Conference on, vol. 1, 2002, pp. 741–746 vol.1.

[128] H. Zhang, M. Li, J. Yang, and D. Yang, “Fuzzy model-based robust networked

control for a class of nonlinear systems,” IEEE Transactions on Systems, Man and

Cybernetics, Part A: Systems and Humans, vol. 39, no. 2, pp. 437–447, 2009.

[129] Y. Wang, W. Hu, and W. Fan, “Fuzzy model and control of nonlinear networked

control systems,” in Proceedings of the 2005 International Conference on Wireless

Communications, Networking and Mobile Computing, vol. 2, 2005, pp. 1106–1109.

[130] ——, “Fuzzy robust H∞ control for networked control systems,” in Intelligent Con-

trol and Automation, 2006. WCICA 2006. The Sixth World Congress on, vol. 1,

2006, pp. 4448–4452.

[131] Y.-J. Pan, H. Marquez, and T. Chen, “Sampled-data iterative learning control for

a class of nonlinear networked control systems,” in Proceedings of the American

Control Conference, Jun 2006, pp. 3494–3499.

[132] H. Dong, Z. Wang, D. Ho, and H. Gao, “Robust H∞ fuzzy output-feedback con-

trol with multiple probabilistic delays and multiple missing measurements,” IEEE

Transactions on Fuzzy Systems, vol. 18, no. 4, pp. 712–725, 2010.



List of Author’s Publications

Journals

1. S. Chae, D. Huang and S. K. Nguang, Robust partially mode delay dependent

H∞ control of discrete-time networked control systems, in International Journal of

Systems Science, vol. 43, no. 9, pp. 1764-1773, 2012

2. S. Chae, F. Rasool, S. K Nguang and A. Swain, “Robust mode delay-dependent

H∞ control of discrete-time systems with random communication delays,” in IET

Control Theory & Applications, vol. 4, no. 6, pp. 936-944, June 2010

3. S. Chae, D. Huang and S. K. Nguang, Robust partially mode delay-dependent

H∞ output feedback control of discrete-time networked control system, in Asian

Journal of Control, In review

4. S. Chae, S. K. Nguang and W. Wang, Robust H∞ fuzzy control of discrete nonlinear

networked control systems: a SOS approach, in Journal of Franklin Institutue, In

review

5. S. Chae and S. K. Nguang, SOS based robust H∞ fuzzy dynamic output feedback

control of nonlinear networked control systems, in IEEE Transactions on Systems,

Man and Cybernetics Part B: Cybernetics, Accepted

Conferences

1. S. Chae and S. K. Nguang, ”Robust Partially Mode Delay Dependent H∞ Control

of Discrete-Time Networked Control Systems,” in Proceedings of the Conference on

Decision and Control, Atlanta, GA, USA, pp. 1798-1803, 2010

176



REFERENCES 177

2. S. Chae, D. Huang and S. K Nguang, Robust partially mode delay-dependent

H∞ output feedback control of discrete-time networked control systems, in Pro-

ceedings of the 2011 American Control Conference, San Francisco, CA, USA, pp.

1680-1685, 2011


	coversheet.pdf
	http://researchspace.auckland.ac.nz
	ResearchSpace@Auckland
	Copyright Statement
	General copyright and disclaimer




