

LIBRARY Te Tumu Herenga THE UNIVERSITY OF AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

ANALYSIS OF CLONES OF

CYTOTOXIC LYMPHOCYTES

by

Lai-Ming Ching Department of Cell Biology, University of Auckland

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy from the University of Auckland

February 1978

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABBREVIATIONS

SUMMARY

	CHAPTE	R 1 GENERAL INTRODUCTION	1
1.1	THE EX	ISTENCE OF A T CELL RECEPTOR	2
1.2	THE GE	NERATION OF CYTOTOXIC LYMPHOCYTES	6
1.3	THE SP	ECIFICITY OF CYTOTOXIC LYMPHOCYTES	8
	1.31	Allogeneic Responses	9
	1.32	Xenogeneic Responses	11
	1.33	Responses to Antigens Other Than MHC Determinants	11
1.4	THE CO	NTRIBUTION OF H2 PRODUCTS TO CELL-MEDIATED CYTOTOXICITY	22
1.5	CLONAL	ANALYSIS OF CELL-MEDIATED CYTOTOXICITY	26
	CHAPTE	R 2 MATERIALS AND METHODS	29
2.1	MATERI	ALS	29
	2.11	Chemicals	29
	2.12	Mitogens	29
	2.13	Radiochemicals	29
	2.14	Antisera	29
	2.15	Complement	29
	2.16	Mice	29
.*	2.17	Tumour Cells	30
2.2	SOLUTI	ONS AND MEDIA	30
	2.21	Phosphate Buffered Saline	30
	2.22	Culture Medium	30
	2.23	Scintillation Fluid	31
2.3	METHOD	S	31

page

			page
	2.31	Glassware	31
	2.32	Sterilization	31
	2.33	Anti-Thyl Treatment	32
	2.34	Cyclophosphamide Treatment	32
	2.35	Modification of Cells with Trinitrobenzene Sulphonic Acid	32
	2.36	Preparation of Cell Suspensions	32
	2.37	Preparation of Polyacrylamide Culture Vessels	33
	2.38	Cell Culture Systems	33
	2.39	Assay of Individual Dimples of Cells for Cytotoxicity	34
	2.40	Preparation of Target Cells for Cytotoxicity Assay	35
	2.41	51 Chromium Release Assay for Cytotoxicity	36
	2.42	Statistical Treatment of Results	36
	CHAPTH	ER 3 SPONTANEOUS CLONES OF CYTOTOXIC LYMPHOCYTES	40
3.1	INTROL	DUCTION	40
3.2	EXPERI	MENTAL RESULTS	40
	3.21	The Number of Spontaneous Clones on Different Days of	41
		Culture	
	3.22	Treatment With Anti-Thyl Antiserum	41
	3.23	Activity in Supernatants	42
	3.24	Spontaneous Clones in Cultures of Cells from Mice of	43
		Different Ages	
	3.25	Generation of Spontaneous Clones by Thymus and Lymph	43
		Node Cells	
	3.26	Generation of Spontaneous Clones at Different	43
		Concentrations of F ₁ Spleen Cells	
	3.27	Spontaneous Clones in Parental Spleen Cell Cultures	44
	3.28	The Effect of Cell Concentration on the Generation	44
		of 'Spontaneous' and 'Stimulated' Clones	
3.3	DISCUSS	SION	46

			page	
	CHAPTE	R 4 THE SPECIFICITY OF SPONTANEOUS CLONES	52	
4.1	INTROL	DUCTION	52	
4.2	EXPERI	MENTAL RESULTS	53	
•	4.21	Division of Individual Dimples of Cells into Aliquots	53	
		of Equal Amounts of Cytotoxicity		
	4.22	Specificity of Spontaneous Clones	54	
4.3	DISCUS	SION	58	
	CHAPTE	THE SPECIFICITY OF SPONTANEOUS CYTOTOXIC LYMPHOCYTE:	5:63	
7		THE ABILITY TO DISCRIMINATE BETWEEN PAIRS OF SYNGEN	SIC	
		BLASTS INDUCED BY DIFFERENT MITOGENS		
5.1	INTROD	DUCTION	63	
5.2	EXPERI	MENTAL RESULTS	63	
	5.21	LYSIS OF LPS AND PHA BLASTS	64	
	5.22	LYSIS OF DS AND LPS BLASTS	65	
	5.23	LYSIS OF CONA AND PHA BLASTS	65	
5.3	DISCUS	SION	66	
	CHAPTE	R 6 THE SPECIFICITY OF CLONES OF CYTOTOXIC LYMPHOCYTES	70	
		IN STIMULATED CULTURES		
6.1	INTROD	UCTION	70	
6.2	EXPERI	MENTAL RESULTS	71	
	6.21	Use of Cyclophosphamide-Treated Cells as Stimulators	71	
	6.22	The Specificity of Clones of Cytotoxic Lymphocytes	73	
		Produced in Cultures Stimulated Simultaneously by		
		Two Foreign Haplotypes		
	6.23	The Inability of H2 ^d Stimulated Cytotoxic Lymphocytes	74	
		to Discriminate Between Different H2 ^d Target Cells		
6.3	DISCUS	SION	75	

			и ж	page
		CHAPTE	R 7 THE FREQUENCY AND SPECIFICITY OF CLONES OF	81
			CYTOTOXIC LYMPHOCYTES GENERATED IN RESPONSE	
			TO TNP-MODIFIED SYNGENEIC CELLS	
7	7.1	INTROD	UCTION	81
7	7.2	EXPERI	MENTAL RESULTS	82
		7.21	Development of Anti-TNP Clones on Different Days of	82
			Culture	
		7.22	Frequency of Clones Against Different Target Cells	83
	Ē		Produced in an Anti-TNP Response	
		7.23	The Specificity of the Clones Generated in Response	85
			to TNP-Modified Syngeneic Cells	
		7.24	The Response of F ₁ Cells Stimulated by TNP-Modified	86
			Parental Cells	
7	.3	DISCUS	SION	87
		CHAPTE	R 8- CONCLUDING DISCUSSION	94
8	.1	SPONTA	NEOUS CLONES OF CYTOTOXIC LYMPHOCYTES	94
8	.2	STIMUL	ATED CLONES OF ALLO-REACTIVE CYTOTOXIC LYMPHOCYTES	100
8	3.3	TNP-SP	ECIFIC CLONES OF CYTOTOXIC LYMPHOCYTES	102
8	.4	THE CLO	ONAL ANALYSIS OF THE SPECIFICITY OF CYTOTOXIC LYMPHOCYTES	106
		REFERE	NCES	110
		APPEND	IX	135

.

ACKNOWLEDGEMENTS

Dr J. Marbrook has been my supervisor through both M.Sc. and Ph.D. years. I am greatly indebted to him for all the advice, training and patient guidance from him during the entire period I was his student.

Much of the work in this thesis was carried out as part of a collaborative project with Dr Karen Z. Walker. I would expecially like to thank Karen for her assistance and the boundless enthusiasm she had for the project.

I am grateful to the Medical Research Council of New Zealand for its financial support in the form of a Postgraduate Scholarship.

Thanks also to other friends and colleagues from the Cell Biology Department for their assistance and encouragement; Mrs P. Glenn in particular for her most efficient typing of the manuscript.

ABBREVIATIONS

	DNA	deoxyribonucleic acid
•	Ci	curie
	CI	cellular interaction
	CL.P	cytotoxic lymphocyte precursors
	CLS	cytotoxic lymphocytes
	CMC	cell-mediated cytolysis
(4)	ConA	concanavalin A
	Cr	chromium
	су	cyclophosphamide
	DS	dextran sulphate
	FCS	foetal calf serum
	FITC	fluorescein isothiocyanate
SI.	g .	gram
	g	gravity
	h	hour(s)
	k	kilo, 10 ³
	1	litre
	LPS	lipopolysaccharide B
	M	molar
	m	milli, 10 ⁻³
	2-ME	2-mercaptoethanol
	МНС	major histocompatibility complex
	min	minutes
	minor H	minor histocompatibility
	MLC	mixed lymphocyte cultures
	MLTC	mixed lymphocyte-tumour cell cultures
	MSV	moloney sarcoma virus

ķ	V	1

DT	(3-nitro-	1-burdrow	17-5-indon	honulage	+++1)_R-
11	13-11LL0-	1-IIYUL OA	A-2-TO005	nenytace	LVT -D-

alanylglycylglycylglycyl

pascal

Pa

. PBS

PHA

POPOP

POP

μ

TNBS

TNP

phosphate buffered saline
phytohaemagglutinin
1,4-bis-(4-methyl-5 phenyloxazolyl)-benzene
2,5-diphenyloxazole
micro, 10⁻⁶

2,4,6-trinitrobenzene sulphonic acid

2,4,6-trinitrophenyl

SUMMARY

'Spontaneously' generated cytotoxic clones were detected when normal spleen cells from CBA, DBA/2 or (CEA x DEA/2) F_1 mice were cultured in polyacrylamide cultures vessels without stimulator cells. Cytotoxicity was mediated by T cells and the highest number of clones occurred after 4 days in culture. The spontaneous cytotoxic T cell clones were detected mainly in adult spleen cell cultures. Few spontaneous clones were generated by lymph node, thymus or neonatal spleen cells.

2. The production of spontaneous clones does not increase linearly with the number of cells cultured which is in contrast with the production of 'stimulated' clones of cytotoxic lymphocytes in the polyacrylamide vessels. At the optimal cell concentration, 1.3×10^7 cells per culture, 20 spontaneous clones of CLs lysing P815 mastocytoma cell targets were detected in cultures of (CBA x DBA/2)F₁ spleen cells and 14 clones were detected in cultures of CBA or DBA/2 spleen cells.

3. The specificity of the spontaneous clones was examined by dividing each clone into two halves and assaying the half clones against a pair of different target cells. A range of spontaneous CLs of different specificities was produced. Spontaneous clones lysing syngeneic and allogeneic tumour or normal spleen cell blasts, as well as hapten-modified target cells were detected.

1.

Individual spontaneous clones of CLs exhibited a high degree of discrimination and were able to differentiate between many pairs of target cells which were syngeneic with respect to each other.

- 5. When blast cells which had been induced by various mitogens were used as the target cells, the results indicated that spontaneous CL clones could discriminate between subsets of syngeneic lymphocytes which respond to different mitogens.
- 6. One-way stimulated CL responses were generated using cells from mice which had been treated with cyclophosphamide. Treatment of mice with 200 mg/kg cyclophosphamide abolished the ability of the cells to generate spontaneous clones in culture without impairing their ability to stimulate the production of CLs in responder cell populations.
- 7. In contrast with spontaneous clones which could discriminate between different H2^d target cells, CLs produced by CBA spleen cells stimulated with H2^d alloantigens were observed not to differentiate between various H2^d target cells. The results indicated that spontaneous clones of CLs were not a representative sample of the stimulated clones of CLs.

When CBA spleen cells were stimulated simultaneously with H2^b and H2^d alloantigens, separate populations of CLs against the two sets of antigens were produced. Very few cross-reactive clones were detected.

4.

8.

9. When $(\text{CBA} \times \text{C}_{57}\text{Bl})\text{F}_1$ spleen cells were stimulated with syngeneic F_1 cells modified with TNP, clones of CLs lysing TNP modified cells of the F_1 and the two parental strains were produced. The frequency of clones produced by F_1 spleen cells against F_1 -TNP, CBA-TNP and C_{57}Bl -TNP target cells was 1 per 3.3×10^4 , 1 per 6.7×10^4 , and 1 per 10^5 spleen cells respectively.

10.

When (CBA x $C_{57}Bl)F_1$ cells were cultured with TNP-modified CBA cells, clones of CLs against TNP-modified cells of both the parental strains were produced. CLs which lyse CBA-TNP and CLs which lyse $C_{57}Bl$ -TNP targets segregated as two distinct populations with no cross-reactivity.