

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library

Thesis Consent Form

METAL ION CATALYSIS

OF SUBSTITUTION AND REARRANGEMENT REACTIONS OF SOME COMPLEX OXALATES OF CHROMIUM(III)

A Thesis

Submitted to the University of Auckland for the Degree of Doctor of Philosophy

by

DAVID HUON BUISSON

Urey Radiochemical Laboratory,

University of Auckland

November 1971

ABSTRACT

The metal ion catalysed aquation of the trisoxalatochromium(III) ion has been studied in the presence and absence of added electrolytes with emphasis on the copper(II) ion catalysed aquation. The interpretation of the observed catalytic effects of the copper(II) ion, has been attempted in terms of ion association. The proposed scheme, for the aquation, involves metallation of the CrOX_3^{3-} species to account for the promoting effect of the copper(II) ions. The specific rates of aquation and the formation constants of the various species formed between the copper(II) ion and the CrOX_3^{3-} ion have been obtained using curve fitting techniques. Further, the dependence of the formation constants and the specific rates of aquation on temperature has been shown to yield realistic thermodynamic and activation parameters for the proposed model.

Increasing the pH was found to have an accelerating affect on the aquation of the trisoxalatochromium(III) ion at constant copper ion concentration. This has been discussed, using ion association, in terms of catalysis of the aquation reaction by hydrolysis products of the copper(II) ion, in particular the CuOH⁺ ion.

The catalysed and uncatalysed isomerisation of the bisoxalatochromium(III) ion has been investigated in the presence and absence of various electrolytes and the kinetic data has been rationalised in terms of an ion association model.

It has also been proposed, from comparisons of studies on the copper(II) ion catalysed aquation and racemisation of the trisoxalatochromium(III) ion, that a copper(II) ion associates with the CrOX_3^{3-} ion through three carboxyl oxygen atoms, one from each oxalate group to form a monometallated species. Further comparison of these studies has led us to postulate, in the aquation, that a second copper(II) ion, proposed to associate with the monometallated species, associates with two carbonyl oxygen atoms of one of the oxalate groups of the CrOX_3^{3-} ion. This, and the comparison of the specific rates of aquation of the monometallated and bimetallated species, led us to the conclusion that aquation occurs by a rapid one ended dissociation of an oxalate ligand followed by a rate determining loss of the oxalate group.

A number of other results of relevance to the substitution and rearrangement reactions of chromium(III)-oxalate complexes, have also been included.

TABLE OF CONTENTS

CHAPTER 1 : INTRODUCTION

REACTIONS OF CHROMIUM-OXALATE COMPLEXES

1.1	Reactions of the Trisoxalatochromium(III) Anion	1
1.2	Reactions of Other Chromium(III)-Oxalate Complexes	8
1.3	Aquation of the Trisoxalatochromium(III) Anion	10
1.4	Aquation of Other Chromium(III)-Oxalate Complexes	16
	and Anation Reactions by Oxalate Ions	
1.5	Isomerisation of the Bisoxalatodiaquochromium(III)	21
	Anion	

METAL ION CATALYSIS

1.6	Metal	Ion	Catalysis	of	Organic	= Re	eactions		23
1.7	Metal	Ion	Catalysis	of	Inorgan	nic	Reactions		28
1.8	Metal	Ion	Catalysed	Rea	actions	of	Chromium(III)	Oxalate	30
	Complexes								

SALT EFFECTS IN REACTION KINETICS

1.9	Ionic Theories	37
1.10	Electrolyte Effects on Reaction Kinetics	39
1.11	Ion Association	41

Page

1

SALT EFFECTS ON THE RACEMISATION OF THE TRISOXALATOCHROMIUM(III)

48 1.12 "Ionic Strength" Interpretation 1.13 Ion Association Interpretation 51 55 1.14 The Present Study 56 CHAPTER 2 : EXPERIMENTAL 2.1 Reagents 56 61 2.2 Apparatus 2.3 Spectra 65 Aquation Studies 2.4 65 2.5 Isomerisation Studies 69

CHAPTER 3 : STOICHIOMETRIC MECHANISM OF THE COPPER(II) ION 73 CATALYSED AQUATION OF THE TRISOXALATOCHROMIUM(III) ANION

3.1	Introduction	73
3.2	Stoichiometric Interpretation of Rate Studies	73
3.3	Aquation of the Trisoxalatochromium(III) Ion	75
3.4	Aquation of the Bisoxalatodiaquochromium(III) Ion	76
3.5	Aquation of the Tetraquomonoxalatochromium(III) Ion	78
3.6	Spectra Determination of the Aquation Products	82

iii

Page

CHAPT	ER 4 : PRELIMINARY EXPERIMENTS ON SALT EFFECTS IN	86
	THE AQUATION OF THE TRISOXALATOCHROMIUM(III)	
	ION	
4.1	Aquation of the Trisoxalatochromium(III) Ion in	86
	Aqueous Solution	,
4.2	Photochemical Decomposition of the Trisoxalato-	88
	chromium(III) Ion	
4.3	Dependence of the Rate of Aquation of the Tris-	89
	oxalatochromium(III) Ion on pH	
4.4	Dependence of the Observed Rate of Aquation of the	90
	Trisoxalatochromium(III) Ion on pH in the Presence	
	of Copper Perchlorate	
4.5	Dependence of the Rate of Aquation on the Anion of	92
	the Copper Salt	
4.6	Dependence of the Rate of Aquation of M_3 CrOX on the	93
	Cation, M ⁺ , in the Presence of Copper Perchlorate	
CHAPT	ER 5 : COPPER(II) ION CATALYSED AQUATION AND RACEMISATION	96
	OF THE TRISOXALATOCHROMIUM(III) ION	
5.1	Experimental	96
	(i) Kinetic studies	96

(ii) Stability of pH 97

CHAPTER 5 : (cont'd.)

5.2	(i)	Dependence of the Observed Rate of Aquation on	9 8
		Copper Perchlorate Concentration	
	(ii)	Dependence of the Observed Rate of Aquation	99
		of the Trisoxalatochromium(III) Ion on Copper	
		Perchlorate Concentration at Constant Ionic	
		Strength	ng.
	(iii)	Effect of Temperature on the Rate and Formation	133
		Constants of the Aquation of the Trisoxalato-	
		chromium(III) Ion in the Presence of Copper	
		Perchlorate	
5.3	The Co	opper Sulphate Catalysed Aquation of the Tris-	142
	oxalat	ochromium(III) Anion	
5.4	Depend	ence of the Rate of Racemisation of the Tris-	156
	oxalat	ochromium(III) Ion on Copper Salt Concentration	
	at 0.1	°C. A re-analysis of Shooter's ⁷⁴ Data	
5.5	Predic	tion of the Dependence of the Observed Rate of	163
	Aquati	on on Trisoxalatochromium(III) Ion Concentration	
5.6	Summar	у	164

iv

Page

CHAPTER 6 : THE COPPER (II) ION CATALYSED AQUATION OF THE				
		TRISOXALATOCHROMIUM(III) ANION.EFFECT OF pH		
		ON THE OBSERVED RATE OF AQUATION		
6.1	Intro	duction	169	
6.2	Hydro:	lysis of the Copper(II) Ion	170	
6.3	The De	ependence of the Observed Rate of Aquation of	175	
	the T	risoxalatochromium(III) Ion on pH in the Presence		
	of 0.0	01M Copper Perchlorate		
6.4	The Do	etection of Copper-Hydroxy Polymer Formation	195	
CHAPT	TER 7 :	ISOMERISATION OF THE BISOXALATODIAQUOCHROMIUM(III)	197	
		ION		
7.1	The Ra	ate of Isomerisation of the Bisoxalatodiaquo-	197	
	chromi	ium(III) Ion in Aqueous Solution		
7.2	The Dependence of the Observed Rate of Isomerisation			
	of the Bisoxalatodiaquochromium(III) Ion on Sodium			
	Perch	lorate Concentration		
7.3	Coppei	r(II) Ion Catalysed Isomerisation of the Bisoxalato-	201	
	diaquo	ochromium(III) Ion		
	(i)	Experimental	201	
	(ii)	The Dependence of the Rate of Isomerisation on	203	
		Copper Perchlorate Concentration		

V

CHAPTER 7 : (cont'd.)

	(iii)	The Dependence of the Rate of Isomerisation on	210		
		Copper Sulphate Concentration			
7.4	Summar	Y	214		
CHAPT	ER 8 :	SUMMARY AND CONCLUSIONS OF THE COPPER(II) ION	218		
		CATALYSED REACTIONS OF SOME CHROMIUM-OXALATO			
		COMPLEXES			
CHAPT	ER 9 :	THE DETECTION OF ION PAIR FORMATION BETWEEN METAL	230		
		IONS AND THE TRISOXALATOCHROMIUM(III) ION USING			
		USING CIRCULAR DICHROISM STUDIES			
0.1	Tutuo	luction	230		
9.1	Introduction				
9.2	Previo	ous Attempts of Detection	231		
9.3	Circular Dichroism Studies of the Trisoxalatochromium(III) 2				
	Ion				
	(i)	Experimental	234		
	(ii)	Circular Dichroism Spectrum of (+) CrOX ₃ ³⁻	234		
	(iii)	Circular Dichroism Spectrum of $(+)$ CrOX $_3^{3-}$	235		
		in the Presence of Metal Salts			

APPENDIX : KINETIC DATA

vi

APPENDIX : COMPUTER PROGRAMS

BIBLIOGRAPHY :

ACKNOWLEDGEMENTS :