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Abstract

In recent years, Networked Control Systems (NCSs) are recognized as a new research

frontier in the advanced control engineering, theory and applications due to various

advantages such as higher reliability, more flexibility, design modularity, and easier de-

ployment and maintenance. An NCS refers to a system controlled remotely by a digital

controller over a wired or wireless network. Networks can be either dedicated such as

control area network (CAN), or shared such as Internet. In the NCSs, system compo-

nents such as plant, sensor, controller and actuator are spatially distributed over the

networks and each component represents a network node. Several design constraints

have also emerged due to insertion of networks and distributed system components. Re-

cently, two research approaches, 1) scheduling algorithms, and 2) control designs, are

used to cater for the constraints in the NCSs. The scheduling algorithm approach is

used to reduce the effect of network-induced constraints on the system performance,

whereas control design approach covers novel control methodologies that compensate

for the inherited constraints.

In this thesis, control design approach is investigated to improve quality of control in the

NCSs. It requires identification and modelling of the constraints before their incorpora-

tion in the system designs. Therefore, the potential constraints, induced by a network,

are identified with a detailed literature survey and by a comparison of two sampling

mechanisms: 1) time triggered (TT), and 2) event triggered (ET). Both mechanisms are

compared through qualitative analysis and simulations, and effect of these mechanisms is

analyzed on the system performance. The constraints identified in this research include:

1) time delays, 2) packet dropouts, 3) quantization error, and 4) limited bandwidth.

Time delays that cause performance degradation and system instability are mostly time

varying or random in shared networks. In this thesis, time delays are considered as

stochastic processes, which follow a finite state Markov chain. The transitions in the

Markov chain take values from a transition probability matrix obtained by performing

experiments on a cellular network. Packet dropouts that adversely affect the system

performance can be single or successive. This work presents the modelling of single

and successive packet dropouts using Bernoulli random distribution and Poisson distri-

bution, respectively. In the NCSs, networks and controllers are digital which require

quantization of data before transmission of data from sensor to controller over a net-

work. Quantization process not only adds up quantization error in the system design,

but is also useful in the NCSs designs as an information coder. In this thesis, both

characteristics of the quantizers are investigated. Firstly, a sector bound approach is

used to bound the quantization error and robust state and output feedback controllers

are proposed to mitigate its effect. In case of multiple quantizers, errors are bounded by
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the sector bound approach and are represented as poly-topic uncertainties. Secondly, an

adaptive quantizer is proposed to explore its advantages as an information coder. The

quantizer adapts its quantization densities according to network load conditions, hence

is used to adjust data rate. Since components are directly connected in classic control

systems, bandwidth is therefore infinite, whereas components are spatially distributed

in the NCSs, bandwidth is therefore limited. To cater for this issue, robust state and

output feedback controllers are proposed with a novel congestion control mechanism.

In this mechanism, data is transmitted when required which helps in the optimization

of bandwidth utilization. In addition to congestion control mechanism, this work also

investigates ET sampling mechanism to optimize the bandwidth consumption. Various

NCSs frameworks are considered which incorporate one or more constraints. For each

framework, the constraints are properly modelled before proposing stability criterion

and control design.

This thesis proposes detailed Lyapunov-Krasovskii (L-K) functionals to obtain new suf-

ficient conditions for the stability of NCSs. On the basis of stability criteria, state of

the art control laws are proposed in terms of bilinear matrix inequalities (BMIs). Fur-

thermore, an iterative cone complementarity algorithm is suggested to convert the BMIs

into quasi-convex linear matrix inequalities (LMIs). Numerical values of the proposed

controllers are obtained by solving the LMIs with the help of MATLAB based LMI and

YALMIP toolboxes.

Simulation examples, performed using Simulink and Simulink based toolbox TrueTime,

elaborate the effectiveness of the proposed designs. Simulation results are also used to

analyze the effects of the NCSs constraint on system stability, H∞ performance, and

bandwidth utilization.
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Notations

The notations used in this thesis are quite standard. Rn and Rn×m denote the set

of n × 1 vectors, and the set of all n × m matrices, respectively. The superscript T

denotes the transpose and ∗ represents the transposed symmetric entries in the matrix

inequalities. The I represents the identity matrix, and L2[0,∞), the space of square

summable vector sequence over [0,∞). The ∥.∥[0,∞) denotes the L2[0,∞) norm over

[0,∞) defined as ∥f(x)∥2[0,∞) =
∑∞

0 ∥f(x)∥2. Q > 0 and Q < 0 denote the positive

and negative definiteness of the Q, respectively. The diag(A1; ....;An) denotes a block-

diagonal matrix with the elements A1; ...;An on the diagonal.
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Chapter 1

Introduction

1.1 Networked Control Systems

Today’s large scale and complex systems integrate communication, computing and con-

trol on the different levels of their operational and informational processes [1]. The

integration of these fields results in two new research fields, 1) control of the networks

and 2) Networked Control Systems (NCSs). The former field addresses the application

of control methods to improve the quality of networks e.g., congestion control, rout-

ing control and queue management etc. The latter field talks about the insertion of a

network in the closed-loop of a control system. This thesis is a detailed study on the

NCSs.

The control systems in which components e.g., plants and controllers are spatially dis-

tributed and communicate with each other, with the help of sensors and actuators, over

a network are called NCSs. A large number of the industrial control systems such as

displacement control in a motor are discrete in nature [3]. On the other hand, the evo-

lution of the digital controllers in 1970s added new horizons in the control systems. The

focus of the research are discrete-time systems controlled by the digital controllers over

a network. In the NCSs, each system component can be recognised as a node. At least

two network nodes are required to describe a single loop of a discrete-time NCS. In a

simple NCS configuration, as shown in Figure 1.1, the plant output is sensed and trans-

mitted by the channel encoder. The encoder node includes a quantizer and a triggering

mechanism. The data is received with the help of a channel decoder by the controller

that calculates the control input and transmits it over the network. The control input

is received by the chancel decoder at the plant side which is applied to the plant by the

actuator.

1
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Figure 1.1: Networked control systems

The architecture of the NCSs is called common-bus network architecture and can be

classified into 1) direct, and 2) hierarchical structures. In the direct structure, a single

loop is closed over the network as shown in Figure 1.2(a). In this structure, sensors

and actuators communicate with the controller through a network. In the hierarchi-

cal structure, there are local loops which are connected with the main controller over

the network. The main controller provides the set-point for the local loops and local

controllers try to achieve this goal. This configuration is shown in Figure 1.2(b). Due

to their architectures, the NCSs improve the system flexibility, efficiency, modularity

and reliability. The NCSs also reduce the installation, reconfiguration, and maintenance

costs and time. The advantages of the NCSs make them highly popular in the academia

and industry [2, 3, 5–7, 10, 12–18].

The traditional point to point control systems have been used in the industry for decades.

In the traditional control systems, the system components are connected with help of

dedicated wires which do not provide the advantages of the common-bus network [1].

However, the use of the common-bus network introduces new design constraints in the

NCSs e.g., time delays due to shared bus and node priorities, quantization process due

to digital networks, limited bandwidth due to packet-switched networks, and packet

dropouts due to buffer overflows. The NCSs constraints can then be compensated for

either by improving the network scheduling algorithms or by proposing novel control
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(a) Direct structures (b) Hierarchical structures

Figure 1.2: NCSs architectures

methodologies [14]. In this thesis, the second approach is adopted and various stability

criteria and controller designs are proposed.

In the NCSs, the network-induced time delays are one of the major constraints, therefore

the NCSs are considered as a sub class of time-delayed systems (TDSs). The TDSs are

infinitely dimensional and can reduce the system performance and can even unstablize it

[4]. On the basis of the Lyapunov stability methods, the two approaches have been pro-

posed to cater for the time delays; 1) delay independent approach and 2) delay dependent

approach. The first approach calculates the control law for the system stability without

considering the time delays in the system dynamics. It also talks about maximum al-

lowable transmission interval (MATI) in which the system remains stable. The second

approach provides the stability conditions and the control law, allowing the delays in

the system dynamics. The latter approach reduces the design overhead allowed in the

former approach, hence it is better. Therefore, it is adopted here for stability analysis

and synthesis. The Lyapunov stability methods are classified in 1) Lyapunov-Krasovskii

(L-K) functional and 2) Lyapunov-Razumikhin (L-R) function. In this thesis, the first

approach is investigated to develop the stability criteria. Both approaches are discussed

in detail in Chapter 2.

The NCSs are also called digital control systems due to the presence of digital networks

and controllers. It requires the signal should be quantized before transmission. This

process induces quantization error in the system. In the beginning, the research had

been carried out to mitigate the effect of quantization error on the system performance

[69, 70, 148]. However in the inspirational work of [72], it is proved that the quantizers

are useful in the NCSs, to achieve the system stability with limited bandwidth. A lot of

research has been done to achieve the stability results while considering the quantizers as
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information coders [73, 75, 76, 78, 79]. The constraint of the limited bandwidth can also

be catered for by using an event-triggered (ET) sampling mechanism [39, 42–44]. In this

thesis, some other techniques are also proposed to cater for limited bandwidth constraint

e.g., congestion control mechanisms in Chapters 4 and 5, adaptive quantization densities

in Chapter 7, and ET sampling mechanism in Chapter 8.

It is not feasible to have the prefect information flow between the NCSs components

due to shared networks. It is possible that some of the transmitted information can be

missed or dropped due to overflow. This phenomenon is called packet dropouts. The

packet dropouts occur in forward and backward channels of the closed-loop [8]. A lot

of research has been carried out to incorporate the packet dropouts in the NCSs design

[30, 119, 120, 132]. The packet dropouts are random in nature and are modelled with the

help of Bernoulli distributions. Along with other NCSs constraints, the packet dropouts

are compensated by using exclusively-proposed Poisson distribution in Chapter 3 and

widely-used Bernoulli distribution in Chapter 7.

The H∞ is a performance index of a control system in terms of better control and

reduced cost. However, the reduced cost increases the parameter variation and makes

the system uncertain [9]. Therefore, the purpose of a control system design is to minimize

H∞ norm with uncertainties. The H∞ control is a robust design against unstructured

uncertainties. On the other hand, the system may have parametric uncertainties in

its structure. It is quite useful to evaluate H∞ performance against structured and

unstructured uncertainties. Therefore, most of the proposed designs are robust in terms

of H∞ against both types of uncertainties. In this study, the structured uncertainties

are assumed in all system matrices and are norm bounded.

1.2 Research Motivation

The development of NCSs has accelerated the technological convergence of various re-

search fields such as control, communication, signalling and computing, therefore the

NCSs inherit huge research potential and technological challenges in them. In the NCSs,

the plants are controlled over a network with the help of sensors, actuators and remote

controllers. Therefore, the NCSs have a list of real-time applications such as industrial

control [2], sensors web [5], unmanned automatic vehicles (UAVs) [10] etc. The NCSs fa-

cilitate these applications with modularity, flexibility, mobility and reduced wiring cost.

All theses advantages make the NCSs research very attractive in the industry and the

academia research groups.
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Although, a considerable amount of research has been done on the NCSs, there are a

lot of practical questions that require detailed investigation. These questions include,

but are not limited to, 1) stable operation of the interconnected system components, 2)

sampling mechanisms and 3) the effect of a network on the system performance [6]. It

motivates me to conduct a literature survey to point out the potential NCSs constraints

and research gaps. It is concluded from the literature survey that if the system compo-

nents are connected over the network then the network-induced constraints such as time

delays, limited bandwidth, packet dropout and quantization error are expected in the

control loop. This fact motivated me to develop the control strategies for the different

NCSs scenarios with realistic and practical constraints.

It is evaluated from the literature survey that most of the previous studies consider delays

as fixed [67] or time varying [52]. However, the simulation performed in the literature

survey tells that delays can be stochastic in nature. It is due to the random nature of the

networks. It inspires me to model the delays stochastically with the help of the Markov

chain. The time delays are the most important constraints of NCSs that can degrade

the system performance and can cause system instability [53]. Therefore, the delays are

compensated in all of the proposed control designs. Further motivation is to design a

control strategy to cater successive packet dropouts and Poisson noise. It arises from

the fact that packet dropouts are mostly modelled by the Bernoulli distribution [119],

which is not capable of modelling successive packet dropouts. Therefore, I introduced

Poisson distribution to cater for the issue. The phenomenon of Poisson noise can be

described as random unwanted discontinuous pulses that can affect the system stability.

It is introduced in the NCSs model that is controlled by the proposed control strategy.

Subsequent motivation comes from the introduction of shared networks in the control

loops. The shared networks can only provide limited bandwidth. It requires such mecha-

nisms that can sample the data on demand. Along with this, the novel control strategies

are required which can achieve the system stability in the presence of such mechanisms.

Another motivation arises from the fact that mostly a single quantizer is assumed to

transmit the data over the digital networks, however it is more natural to assume sepa-

rate quantizer for each system input and output. A robust H∞ dynamic output feedback

control law is proposed for the NCSs with random time delay and multiple quantizers.

In the seminal work [72], it is evident that the quantizers can be used as information

coders and are helpful to design a stabilizing feedback controller with limited communi-

cation resources. It prompts me to study a dynamic output feedback controller consisting

of a quantizer with adaptive quantization densities. It helps to regulate the bandwidth

utilization according to the network load conditions. Moreover, network-induced packet

dropouts are investigated with the help of Bernoulli distribution.
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In this thesis, most of the control strategies assume that the sampling mechanism is

time triggered (TT). The theoretical results of the stability analysis and the controller

designs with TT mechanisms are comparatively easy and more mature than that with

the ET mechanism. It motivates me to study the stability analysis of ET NCSs with

packet dropouts. In this thesis, all of the stability criteria and the controller designs are

represented as LMIs . The motivation of formulating the problems in terms of the LMIs

is the availability of MATLAB toolboxes that can efficiently solve these inequalities.

1.3 Scope and Objectives

The scope of this study comprises three main parts: identification and modelling of

the network-induced constraints in the NCSs, the stability analysis and the controller

designs to compensate the NCSs constraints, and validation of the proposed design using

simulations.

The objectives of the research are:

• Identification of potential design constraints in the NCSs, induced by networks

existing between system components

• Design of a state feedback control law to compensate Poisson noise, successive

packet dropouts and random delays

• Design of a robust H∞ state feedback control law with a congestion control mech-

anism

• Design of a robust H∞ dynamic output feedback control law with congestion con-

trol mechanisms on system input and output

• Design of a robust H∞ dynamic output feedback control law with multiple quan-

tizers

• Design of a robust H∞ dynamic output feedback based control law in the presence

of time varying delays, packet dropouts and adaptive quantizer

• Stability analysis of ET distributed NCSs with packet dropouts.

Overall, the research consists of novel stability criteria and controller designs for the

NCSs that have been verified by the simulations. The stability conditions are provided

after modelling the NCSs constraints, identified through a detailed literature survey.
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1.4 Contribution of Thesis

The focus of the thesis is to identify and compensate the NCSs constraints in the presence

of networks and different sampling mechanisms. The NCSs are always affected by vari-

ous constraints such as time delays, limited bandwidth, quantization errors and packet

dropouts. This thesis presents various novel control methodologies, developed for linear

time invariant (LTI) discrete time NCSs. The constraints are mathematically modelled

before their incorporation in the designs. The random time delays are modelled with

the help of Markov chain. The limited bandwidth is catered for by using adaptive quan-

tization densities and by transmitting less samples than actual. The packet dropouts

are modelled using Bernoulli and Poisson probability distributions. The quantization

errors are bounded by a sector bound approach. Sufficient conditions for the system

stability are achieved by using the L-K functional approach. On the basis of the stabil-

ity conditions, the control laws are proposed in terms of BMIs that are converted into

quasi-convex LMIs with the help of cone complimentarity algorithm. Furthermore, the

proposed designs are verified with the help of simulation examples. The contributions

of the thesis are :

• A literature survey to identify the potential constraints in a controller design for

the NCSs due to existence of networks between system components and due to

different sampling mechanisms

• Proposal of a novel methodology of state feedback controllers to compensate Pois-

son noise, successive packet dropouts and random delays

• Investigation of a robust H∞ state feedback control law to provide congestion

control with the help of a “sampling on demand” strategy

• Design of a robust H∞ dynamic output feedback control law for the NCSs with

congestion control mechanisms, available on both system input and output

• Design of a robust H∞ output feedback control law in the presence of network-

induced random delays and quantization errors due to multiple quantizers present

on both system inputs and outputs

• Development of a robust H∞ dynamic output feedback based control law in the

presence of time varying delays, packet dropouts modelled by the Bernoulli distri-

bution and a quantizer with adaptive quantization densities which is proved to be

helpful to adjust bandwidth utilization according to the requirement

• The stability analysis of distributed ET NCSs, with packet dropouts
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• Verification of all designs using MATLAB toolboxes such as LMI, YALMIP and

Truetime.

1.5 Thesis Outline

This thesis is a deep insight on the stability analysis and the controller designs for the

NCSs where different scenarios and related constraints are discussed. The NCSs con-

straints such as time delays, packet dropouts, quantization error, limited information

and congestion control are modelled and incorporated in the closed-loop system. After

modelling these constraints, the novel stability criteria and controller designs are pro-

posed to compensate them. The proposed designs are also validated with the help of

simulation examples. The contents of the thesis are as follows:

Chapter 2 presents a literature survey and analysis on the advanced topics in NCSs.

This chapter discusses the NCSs background, sampling mechanisms, constraints and

related research. The two NCSs classes, on the basis of sampling mechanisms i.e., TT

NCSs and ET NCSs, are discussed in detail. Moreover, various NCSs constraints, their

modelling and related researches are presented in the context of TT and ET NCSs. Both

classes are also compared through qualitative analysis and simulations.

In Chapter 3, various constraints of NCSs such as network-induced random delays,

successive packet dropouts and Poisson noise are examined. The time delays are rep-

resented as modes of a Markov chain and the successive packet dropouts are modelled

using the Poisson probability distribution. For each of the delay-mode, separate Poisson

distribution is used with the help of an indicator function. The Poisson noise is incor-

porated in the design to cater for sudden network link failures and power shutdowns.

After incorporating all the constraints, the LMI conditions for the stochastic stability

and robust H∞ state feedback controller design are derived. The effects of successive

packet dropouts and the Poisson noise on H∞ performance are also analyzed with the

help of simulations.

Chapter 4 examines the problem of robustH∞ state feedback control for the NCSs with

a congestion control scheme. This scheme is based on comparing current measurement

with the last transmitted measurement. If their difference is less than a prescribed

value of the current measurement, then no measurement will be transmitted to the

controller. Otherwise, the current measurement will be transmitted over the network.

On the controller side, the last transmitted measurement will be used as a feedback. The

effectiveness of the scheme in terms of reducing the network bandwidth is elaborated

using simulation examples.
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In Chapter 5, the congestion control technique of Chapter 4 is incorporated in the

design of a dynamic output feedback controller. The technique is applied to the controller

output as well. The proposed designs are verified with the help of a simulation example.

Chapter 6 covers the stability and stabilizability problems of the NCSs with multiple

quantizers. The resultant quantization errors are bounded by a sector bound approach

and represented as the convex poly-topic uncertainties. The network-induced delays

are modelled by a Markov chain. The L-K functional approach is used to develop

the stability criteria. A quantized robust H∞ output feedback control law is proposed

in terms of BMIs. An iterative cone complementarity algorithm is used to convert

these BMIs into a quasi-convex optimization problem that is solved by the available

mathematical tools. A simulation example is provided to demonstrate the effectiveness

of the proposed theorems.

Chapter 7 investigates the problem of designing a robust H∞ output feedback con-

troller for the discrete-time NCSs with limited information using adaptive quantization

densities. These densities are designed to be a function of the network load conditions

that are modelled by a Markov chain. A stability criterion is developed using L-K

functional approach, and sufficient conditions for the existence of a dynamic quantized

output feedback controller are given in terms of BMIs. A simulation is performed to

illustrate the effectiveness of the proposed design.

The measurement is transmitted over the network after the occurrence of an event in

the congestion control scheme proposed in Chapter 4 and 5. This phenomenon is similar

to the ET control approach. However, the measurement error is treated just as an

uncertainty. The stability analysis and synthesis is performed by considering the system

as robust TT NCSs that are well established. These TT NCSs designs do not provide

a formal stability analysis method for ET control systems. This issue is catered for in

Chapter 8.

Chapter 8 proposes a formal stability criterion for the ET NCSs. In this chapter

discrete time NCSs with ET mechanisms on system input and output are considered.

This configuration helps to represent the ET NCSs as impulsive systems with network

constraints. The stability condition and H∞ performance objective are obtained in

terms of LMIs. The simulation examples are provided to validate the design.

The concluding remarks and the future research interest are given in Chapter 9, fol-

lowed by the references. The proofs for Lemmas and Theorems are provided in the

Appendices.



Chapter 2

NCSs: A New Frontier in Control

Systems

This chapter investigates the tradeoffs between time triggered and event triggered mech-

anisms in the framework of networked control systems (NCSs) using previous studies.

Although deterministic in nature, TT mechanism based control designs result in hard

real time lines. These time lines are difficult to complete by software developers due to

network and operating system scheduling algorithms. On the other hand, ET mecha-

nism based control designs result in unknown asynchronous events but do not require

hard real time lines. Both TT and ET mechanism based control designs have their own

particular features e.g., TT mechanisms are deterministic, easier for developing formal

design theories and results in fixed jitter and latencies, whereas ET mechanisms are soft

real time, priority based, and save communication, computational and power resources.

In this chapter, the basic concepts of TT and ET mechanisms are presented. NCSs and

their constraints, such as random time delays, packet dropouts and quantization errors

are also discussed for both mechanisms. The comparison between both mechanisms is

done qualitatively that is verified by the simulations [58].

2.1 Introduction

In Networked Control Systems (NCSs), the system components i.e., sensors, actuators

and controllers are spatially distributed over a digital network [7]. A NCSs framework is

shown in Figure 2.1. The networks in the NCSs range from dedicated real time networks

(e.g., control area network (CAN), fieldbus etc) to shared networks (e.g., Internet). The

motivation to develop the NCSs technology is to reduce wiring and installation cost,

modularity, flexibility and remote control of hazardous area plants. These benefits make

10
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Figure 2.1: A NCSs framework

the NCSs technology indispensable in the various fields such as vehicle industry [10],

process control [11], unmanned aerial vehicle (UAVs) [12] and signal power control in

the communication systems [13]. Along with the advantages, the spatial distribution

of the system components brings many new constraints in stability analysis and con-

troller design of the NCSs. These network-induced imperfections include (1) limited

bandwidth, (2) time delays, (3) packet dropouts, (4) quantization error, (5) variable

sampling intervals and (6) network security etc. The modelling and the compensation

of the former four constraints is the discussion of this thesis, whereas the latter two are

beyond the scope of this thesis.

The quality of control (QoC) of the NCSs can be improved either by developing the

network scheduling algorithms or by designing the novel control strategies that can

compensate the network constraints. The main aim of the scheduling algorithms is to

improve the network performance. The scheduling algorithms can be divided into (1)

static scheduling algorithms, and (2) dynamic scheduling algorithms [14]. The static

scheduling is done by pre-allocating the communication channel but it can not guaran-

tee the system stability with the changes in the plant states or outputs. On the other
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hand, the dynamic scheduling always has resource allocation priorities on the basis of

system requirements. Various scheduling algorithms, to reduce the network constraints

and achieve the system stability, are available in the literature [15–18, 149, 165]. Along

with the improvements in the network scheduling algorithms, the necessity for the new

control paradigms to cater for the communication imperfections can be deduced from the

work of Chae [19]. He studied the behavior of classic LQR for mobile NCSs (moNCSs)

and concluded that the traditional control strategies can not guarantee the system sta-

bility above a certain threshold of the time delays. Therefore, all the communication

constraints such as limited bandwidth, time delays, packet dropouts and quantization

errors should be properly modelled before proposing the stability criteria and the con-

troller designs.

The stability of the NCSs with limited bandwidth or information can be achieved by

different ways such as sampling on demand [60], quantizers or information coders [72],

adaptive quantization densities [128]. The ‘sampling on demand’ is possible if the data

sampling, i.e., the triggering of the communication between the plant and the remote

controller, is controlled. The sampling mechanisms can either be time-scheduled, reac-

tive or proactive. The first mechanism transmits the data on the elapsed of a fixed time

interval and is uncontrolled. The second mechanism transmits the data on the occur-

rence of an event or when some conditions are violated, hence it is controlled. Similarly,

the last approach pro-actively determines the violation of the conditions and sends the

data accordingly. The basics of all three sampling mechanisms are discussed in detail

in the section 2.2. The use of the quantizers as the information coders is discussed in

the section 2.3.1.3. Chapter 7 discusses the use of the adaptive quantization densities

to achieve the system stability with the limited information.

The study of the time delays belongs to a very important and enriched research field

called time delayed systems (TDSs) [115, 141]. The time delays can vary in nature

e.g., constant, successive, time varying, and random delays and can adversely affect

the system performance [114]. The time delays are one of the main sources of the

system instability and the performance degradation in the NCSs. Research on the TDSs

stability analysis and controller synthesis can be classified into (1) time independent,

and (2) time dependent approaches. The former approach assures the system stability

and the controller gains that can stabilize the system in the presence of any arbitrary

delay. The latter approach [96–98] considers time delays as a parameter in developing

the stability criteria and the controller synthesis and is less conservative than the former

approach [99, 100].

The packet dropout is another network constraint that increases the complexity of sta-

bility analysis and controller design of the NCSs [120]. Most of the studies considered
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the packet dropout sequences as the stochastic processes and modelled them using the

Bernoulli random distribution [30, 119, 120, 132]. A stochastic variable α(k), which fol-

lows the Bernoulli distribution, can be used of modelling any packet dropout sequence.

The α(k) = 0 denotes the occurrence of a packet dropout sequence while α(k) = 1 show

no packet dropouts. However, these packet dropout sequences can vary in real world net-

works and the Bernoulli distribution is not capable to model multiple and random packet

dropout sequences. To cater for this issue, the Bernoulli distribution can be combined

with other probability distributions such as Uniform and Poisson distributions [132]. An

introduction to packet dropouts modelling using these probability distributions is given

in the section 2.3.1.2. In Chapter 3 a new technique is suggested in which the multiple

packet dropouts are modelled using the Poisson distribution with random delays and

Poisson noise.

The use of the digital networks and the computers in the control systems introduce signal

quantization because of their finite precision arithmetic and limited bandwidth. In the

twentieth century the research had been carried out to diminish the quantization errors

and their effects on the system performance [70, 71, 148]. However, modern research

shows that the quantizers are the information coders [69, 72–74]. Here, the question of

interest is: how much information is required for the system stability? The minimum

information required for the system stability depends on the quantization density and

the unstable poles of the plant. The static quantizers require an infinite number of quan-

tization levels of providing the asymptotic stability, however they can provide practical

quadratic stability. Especially the logarithmic quantizers, that is a class of static quan-

tizers, assuring the quadratic system stability with the coarsest quantization densities

[72]. For the logarithmic quantizers, Xie and Fu [75] proved that the quantization errors

can be treated as sector bounded uncertainties. By doing this, they converted many

quantized feedback problems into robust control problems. In their seminal work, the

previous results (e.g., [72]), related to the system stability and stabilization, are extended

to the MIMO case and various control objectives such as H∞ , guaranteed cost control

and robustness are achieved in a unified framework. A less conservative approach for the

quantized feedback, using poly-quadratic Lyapunov function, is proposed by [79]. On

the other hand, the dynamic quantizers are capable to provide the asymptotic stability

with a finite number of quantization levels. There are various dynamic quantization

policies available in the literature e.g., ([59, 77, 78, 92]). A detailed discussion on the

quantizers is given in the section 2.3.1.3.

This chapter investigates the differences between the TT and the ET mechanisms in

the framework of the NCSs. The formal design and implementation of the NCSs has
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multidisciplinary research aspects such as control theory, applied mathematics, embed-

ded systems and software engineering etc. The design approaches for the TT mecha-

nism based control system are comparatively easy and are well matured due to their

deterministic nature. However, these designs result in hard real time-lines for the imple-

mentation. The hard real time-lines are difficult to follow, by the software developers,

due to network and operating system scheduling algorithms. On the other hand, the

ET mechanism based designs result in unknown asynchronous events but do not require

hard real time-lines. Both types of designs have their own particular features; e.g., the

TT mechanism is deterministic, easier for developing formal designs, and results in fixed

jitters and latencies, whereas the ET mechanism is soft real time, priority based, and

saves communication, computational and power resources. In this chapter, the TT and

the ET mechanisms are assessed qualitatively and by the simulation.

The organization of the chapter can be followed from Figure 2.2. In the section 2.2, the

basic concepts of the TT and the ET mechanisms are presented in the framework of

general control systems. The section 2.3 extends this discussion to the NCSs. Various

NCSs constraints such as random time delays, packet dropouts and quantization errors

are discussed. The comparison between both approaches is done qualitatively and by

the simulations in the context of the NCSs framework in the section 2.4. The qualitative

comparison is based on the different NCSs requirements e.g., compensation for delays and

jitters. In the simulations, the impact of both mechanisms on the system performance

is analyzed in the sense of H∞ and the resource utilization. It is deduced that the TT

mechanism results in better H∞ performance while the ET mechanism helps in reducing

the resources utilization.

2.2 Sampling Mechanisms

In a control system communication between a plant and a controller can be seen as

triggering of data sampling and transmission from one node to another node. The

sampling/triggering mechanisms are of three types: 1) time triggered (TT) mechanism,

2) event triggered (ET) mechanism, and 3) self triggered (ST) mechanism. This section

is comprised of an introduction to these mechanisms in the context of general control

systems. In the next section the discussion on the triggering mechanisms is extended in

the context of NCSs and their constraints. The control systems can be classified on the

basis of the sampling mechanisms as: (1) TT control systems, 2) ET control systems,

and 3) ST control systems.
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Figure 2.2: Tree architecture of the survey

2.2.1 TT Control Systems

The control systems with equidistant or periodic sampling mechanism are called the

TT control systems. In this section the periodic discrete linear time invariant (LTI)

control systems are discussed. This type of system can be obtained by doing the exact

discretization of continuous LTI systems.

Consider state space representation of a continuous LTI plant:

d

dt
x(t) = Apx(t) +Bpu(t)

y(t) = Cpx(t) (2.1)

where x(t) ∈ Rn, u(t) ∈ Rm1 , y(t) ∈ Rm2 , t ∈ R+, are system states, control input,

system output, and time, respectively. Ap ∈ Rn×n, Bp ∈ Rn×m1 , Cp ∈ Rm2×n are

system, control and measurement matrices, respectively.

The discrete counterpart of the plant (2.1) can be obtained by applying the approxi-

mation techniques such as zero order hold, Tustin approximation and Euler method.

For the different systems, different approximation methods can be used to get an exact

discretization on a fixed sampling instance Ts. By using zero order hold the state space
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representation of discrete time version of the plant (2.1) is obtained as:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) (2.2)

where x(k) ∈ Rn, u(k) ∈ Rm1 , y(k) ∈ Rm2 , k ∈ R+, are system states, control input, sys-

tem output, and discrete time instance, respectively. A = eAp.Ts , B = (
∫∞
0 eAp.Ts dτ)Bp

and C = Cp are system, control and measurement matrices, respectively.

Consider a dynamic output feedback controller of the following form:

x̂(k + 1) = Acx̂(k) +Bcy(k)

u(k) = Ccx̂(k) (2.3)

where Ac, Bc, Cc are the controller matrices.

In this representation next sampling instance k+1 can be determined as k+1 = k+ ~,
where ~ > 0 and is fixed. Therefore, the distance between two consecutive sampling

instances always remains the same. It results in the TT control systems in which the

transmission of feedback information, y(k), and control input, u(k), between a plant and

a controller, is done on each sampling instance k. This mechanism transmits the data

as early as it is sampled. It results in the following closed-loop system representation:

ζ(k + 1) = Aclζ(k)

y(k) = Cclζ(k) (2.4)

where ζ(k) =

[
x(k)

x̂(k)

]
is closed-loop system, and Acl =

[
A BCc

BcC Ac

]
, Ccl =[

C 0
]
are closed-loop system and output matrices.

2.2.2 ET Control Systems

The ET control systems are the control systems with an ET mechanism. They are

also called reactive control systems because their triggering mechanism determines the

transmitting instance after the occurrence of an event instead of an elapsed time. The

continuous ET control systems are called aperiodic control systems and require constant

monitoring of the triggering conditions. However, in the case of discrete time, the ET

control systems are called periodic ET control systems because their event triggering

conditions are verified periodically instead of continuously [42]. The discrete ET control
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systems have the advantage over the continuous ET control systems in a sense that they

always result in a positive inter-event time and do not exhibit Zeno behavior.

Consider a class of discrete-time linear systems:

x(k + 1) = Ax(k) +Bū(k), x(0) = 0

y(k) = Cx(k) (2.5)

where x(k) ∈ ℜn, ū(k) ∈ ℜm, y(k) ∈ ℜm2 are the state, event-based control input and

measured output, respectively. The matrices A, B and C are of known dimensions. A

dynamic output feedback controller of the following form is proposed:

x̂(k + 1) = Acx̂(k) +Bcȳ(k)

u(k) = Ccx̂(k) (2.6)

where Ac, Bc, Cc are the controller matrices. x̂(k) ∈ ℜn and ȳ(k) ∈ ℜm2 are observer

state and event-based feedback, respectively.

In the TT control system, ū(k) = u(k) and ȳ(k) = y(k). However, in the ET control

systems, ū(k) and ȳ(k) are transmitted over the communication channel after the oc-

currence of an event on a particular discrete instance. The event is generated when

the measured output or the control input will leave a set C around the origin. For the

measured output this condition can be expressed mathematically as:

ȳ(k) =

y(k), if C(y(k), ȳ(k)) > 0

ȳ(k), if C(y(k), ȳ(k)) ≤ 0
(2.7)

Similar conditions for the control input can be proposed as well. The different ET

mechanisms are described as:

1. The event will be generated when the norm of the difference between the current

and the previously transmitted output, termed as error and notated as e(k), crosses

a percentage σ of the current output. Therefore the next event triggering instance,

proposed by [43], will be :

kn+1 = inf{k > kn| ||e(k)|| > σ||y(k)||} (2.8)

where kn+1 is the next event time, kn is the current event time, e(k) = ȳ(k)−y(k)

and σ > 0.

2. The event will be generated when norm of the e(k) crosses the sum of the per-

centage of the current output and a prescribed value. Therefore, the next event
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triggering instance, proposed by [44], will be:

kn+1 = inf{k > kn| ||e(k)|| > σ||y(k)||+ ϵ} (2.9)

where ϵ > 0.

3. The event will be generated when e(k) norm crosses the sum of the percentage of

current output, previously accumulated error and a prescribed value. Therefore

the next event triggering instance, proposed by the author, will be:

kn+1 = inf{k > kn| ||e(k)|| > σ||y(k)||+ ρ||e(k − 1)||+ ϵ} (2.10)

where ρ > 0.

4. The event triggering conditions can be provided on the basis of Lyapunov function.

For example: consider a quadratic Lyapunov function:

V (x) = xT (k)Px(k) with P > 0 (2.11)

The next event triggering instances, proposed by [45], will be:

kn+1 = inf{k > kn| AT
clPAcl > σP} (2.12)

where P is positive definite symmetric matrix, and σ > 0.

2.2.3 ST Control Systems

The ST control systems are called proactive control systems because their triggering

mechanism determines the transmitting instance in advance. It is useful in the cases

when the dedicated hardware is not available for continuous monitoring of the event

triggering conditions. The formal designs for ST control systems are still an open chal-

lenge. In this thesis, a brief introduction is included here only, whereas the detailed

discussion is beyond the scope of the thesis.

Consider the system (2.5) with the control law (2.6). In ST control systems, the next

triggering instance kn+1 depends upon the previous triggering instance kn and the system

state, x(kn), which is only dependent on the kn. Mathematically:

kn+1 = kn + Γ(x(kn)) (2.13)

where Γ(x(kn)) is a mapping function. Once this mapping function is developed, the

event triggering mechanism is able to determine the next triggering event in advance.
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2.3 NCSs Constraints

In this section NCSs constraints such as 1) network induced time delays, 2) packet

dropouts, and 3) quantization errors are discussed. These constraints not only degrade

system performance but can also result in system instability. This section mostly focuses

on the modelling of these constraints for the TT NCSs. After the modelling of the

constraints, the various approaches to develop stability criteria are given. For the ET

NCSs, only a brief introduction to these constraints is included here where as the detailed

discussion is beyond the scope of the thesis.

2.3.1 Constraints in the TT NCSs

2.3.1.1 Time Delays

In the NCSs, the time delays are inevitable in the measurements and the control inputs

due to the presence of network. It makes them a special class of the TDSs. In NCSs,

the measurement delays are also denoted as sensor to controller delays (τsc) and the

control input delays are called controller to actuator delays (τca). Without loss of the

generality, both τsc and τca can be lumped together as one transmission delay τ [82].

This approach is adopted here. Mathematically:

τ = τsc + τca (2.14)

Depending on the networks, the delays can be time invariant, time varying and random in

nature. In the following, the delays are modelled for the plant (2.2). Among various types

of the control laws proposed in the literature [47, 54, 55, 128], the dynamic observer-

based output feedback is chosen for further discussion. These control laws, on the basis

of formulation, can be divided into two types: 1) delay-independent, and 2) delay-

dependent control laws. In the first type the stabilizing controllers are designed as

independent of the delays. These designs assure the system stability even in the presence

of the unbounded delays. The second type considers delay-dependent designs that are

less conservative and reduce over-design. In this approach, the delays are properly

modelled and are incorporated in the controller design [65]. Therefore, only delay-

dependent controllers are discussed here.

Time invariant Delays and their Modelling: The constant or time invariant but un-

bounded delays were first considered by [67]. The networks with the time division

multiplexing result in these types of delays. An overview of the system representation

for the plant (2.2) with the constant delays is given below.
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Consider a dynamic observer-based output feedback control law with the fixed delay τ

as:

x̂(k + 1) = Acx̂(k) +Bcȳ(k − τ)

u(k) = Ccx̂(k) (2.15)

After applying the controller (2.15) on the plant, the following closed-loop system is

obtained:

ζ(k + 1) = Aclζ(k) +Bclζ(k − τ)

y(k) = Cclζ(k) (2.16)

where Acl =

[
A BCc

0 Ac

]
, Bcl =

[
0 0

Bc 0

]
and Ccl =

[
C 0

]
.

Time Varying Delays and their Modelling: The delays which change with time are

called time varying delays and are notated as τ(k). The networks with priority based

transmission strategies result in these types of delays. These delays range from no delay

to the maximum delays and can be bounded as 0 ≤ τ ≤ τ(k) ≤ τ̄ < ∞ where τ and τ̄

are lower and upper bounds, respectively.

By applying the dynamic observer-based feedback controller on the plant, with time

varying delay in the transmission link, the following closed-loop system is obtained:

ζ(k + 1) = Acl(k)ζ(k) +Bcl(k)ζ(k − τ(k))

y(k) = Ccl(k)ζ(k) (2.17)

where Acl(k) =

[
A BCc(k)

0 Ac(k)

]
, Bcl(k) =

[
0 0

Bc(k) 0

]
and Ccl(k) =

[
C 0

]
.

Random Delays and their Modelling: The random or stochastic delays are special cases

of time varying delays. The random delays are more natural in the networks with shared

transmission mediums such as Internet. The random delays can be modelled with the

help of statistical methods such as Bernoulli probability distributions and Markov chain

[56, 96]. In this discussion, the network-induced random delays are modelled with the

finite state Markov chain.

In the Markov chain method, the random delays can be treated as the stochastic pro-

cesses and modelled by a finite state Markov chain as τ(k) = τ(rk) with 0 ≤ τ(1) <

τ(2) < · · · < τ(n) ≤ ∞, where rk is the stochastic Markov process taking values from

the finite set Markov chain N = {1, 2, · · · , n}, with the transition probability of the
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form:

pij := Prob{rk+1 = j|rk = i}

where i, j ∈ N and the transition probability matrix for n processes is given as

Pτ =



p11 p12 . . . . . p1n

p21 p22 . . . . . p2n
...

...
...

...
. . .

...
...

...
...

...
... p(n−1)n

pn1 pn2 . . . . . pnn


(2.18)

with 0 ≤ pij ≤ 1 and
∑n

j=1 pij = 1.

A finite state machine (FSM) presentation of a Markov chain with three states is shown

in the Figure 2.3.

Suppose that the measured output y(k) is delayed by the time τ(k) which is modelled as

a stochastic process τ(rk) taking values from the finite state Markov chain. The delayed

y(k) can be represented as:

y(k − τ(k)) = y(k − τ(rk)) (2.19)

where the transition from one delay to the other is governed by the transition probability

as:

τ̃(i) =
n∑

j=1

pijτ(j) (2.20)

By applying the dynamic observer-based feedback controller on the plant, with random

delays modelled by Markov chain, the following closed-loop system is obtained:

ζ(k + 1) = Acl(rk)ζ(k) +Bcl(rk)ζ(k − τ(rk))

y(k) = Ccl(rk)ζ(k) (2.21)

where Acl(rk) =

[
A BCc(rk)

0 Ac(rk)

]
, Bcl(rk) =

[
0 0

Bc(rk) 0

]
and Ccl(rk) =

[
C 0

]
.

2.3.1.2 Packet Dropouts

The transmission of the data between the plant and the controller is in the form of

packets in the NCSs. The packets not only bear delays but sometimes are lost over the

network [63]. The packet dropouts or the missing information are common in NCSs

due to noise, fading and buffer overflows in the network nodes. They can degrade
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Figure 2.3: FSM representation of a three state Markov chain

the system performance and even result in system instability if they exceed a certain

bound. The packet dropouts can be random due to the unreliable nature of the networks,

therefore they can be molded as a stochastic process following a certain probability such

as Bernoulli, Uniform and Poisson distributions [132].

Packet Dropout Modelling using Bernoulli Distribution:

Bernoulli distribution is useful to find out the occurrence of a packet dropout sequence

as shown in Figure 2.4. However, it is not capable of telling how many packets are

dropped in that particular sequence. Therefore, it is useful to model either a single

packet dropout or a fixed sequence of packet dropouts. It can also be used with other

probability distributions to model the random and successive packet dropouts.

In the following, a single packet dropout is molded using a stochastic variable α(k)

following a Bernoulli random sequence as:

α(k) =

1, if packet dropout occurs

0, if packet dropout does not occur

Assume that α(k) has the probability:

Prob{α(k) = 1} = E{α(k)} = α, Prob{α(k) = 0} = 1− α
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Figure 2.4: Packet dropouts following Bernoulli distribution and probability mass
function

where 0 ≤ α ≤ 1 is a constant, and

E{α(k)− α} = 0, β2 ≡ E{(α(k)− α)2} = α(1− α)

where E(·) is the expectation operator and β2 is the variance.

Consider a dynamic output feedback controller with a single packet dropout compensa-

tion as:

x̂(k + 1) = Ac(k)x̂(k) + α(k)Bc(k)y(k) + (1− α(k))Bcy(k − 1)

u(k) = Cc(k)x̂(k) (2.22)

where Ac(k), Bc(k), Cc(k) are the controller matrices.

The closed-loop system of (2.2) with (2.22) is given as follows:

ζ(k + 1) = Aclζ(k) +Bclζ(k − 1)

y(k) = Cclζ(k). (2.23)

where ζ(k) = [x(k) x̂(k)]T and

Acl =

[
A BCc

α(k)BcC Ac

]
, Bcl =

[
0 0

(1− α(k))BcC 0

]
and Ccl =

[
C 0

]
.

Packet Dropout Modelling using Uniform Distribution:
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The packet dropout sequences can be periodic, therefore they can be modelled by a

stochastic variable β(k). The β(k) follows the Uniform probability distribution as shown

in Figure 2.5. In this distribution, all the packet dropout sequences, D1, D2...Dn, are

uniformly distributed with the probability:

pi = Prob(β(k) = Di) =
1

n
(2.24)

It is already mentioned that the Bernoulli distribution can be combined with other

probability distributions e.g., the Uniform or the Poisson probability distribution, to

model different packet dropout sequences. In a hybrid probability distribution, the

Bernoulli distribution tells the occurrence of a packet dropout event where the Uninform

distribution can tell how many sequences occur in a given transmission. By using this

approach, a dynamic output feedback controller is considered as:

x̂(k + 1) = Acx̂(k) + α(k)Bcy(k) + (1− α(k))
n∑

i=1

1

n
Bcy(k − i)

u(k) = Ccx̂(k) (2.25)

After applying (2.25) on (2.2), the following closed-loop representation is obtained:

ζ(k + 1) = Aclζ(k) + α(k)Bcl1ζ(k) + (1− α(k))

n∑
i=1

1

n
Bcl2ζ(k − i)

y(k) = Cclζ(k). (2.26)

where

Acl =

[
A BCc

0 Ac

]
, Bcl1 =

[
0 0

BcC 0

]
, Bcl2 =

[
0 0

BcC 0

]
,

and Ccl =
[
C 0

]
.

Packet Dropout Modelling using Poisson Distribution

There can be a single or multiple/successive packet dropout random sequences in a net-

work, existing between a plant and a controller. In the case of a single packet dropout

sequence, the Bernoulli distribution is very effective and is adopted by many researchers

[30, 119, 128]. However, the random sequences of the successive packet dropouts, occur-

ring frequently in real time networks, got much less attention from the researchers. Both

Bernoulli and Uniform distribution are not capable of modelling the random sequences

of successive packet dropouts but the Poisson distribution can do so. Consider random

sequences of multiple packet dropouts by a random variable σ(k) following a Poisson
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Figure 2.5: Packet dropouts following uniform distribution and probability mass
function

distribution. Consider σ(k) is with any n number of possible values κ1, κ2 · · ·κm. The

probability of each outcome κd will follow the Poisson distribution as:

pd = Prob{σ(k) = κd} =
λκde−λ

κd!
d = 1, 2 · · ·m

Mean = E{σ(k)} = λ

E{σ(k)−Mean} = 0, (2.27)

where m is the maximum packet dropouts.

The Bernoulli and the Uniform distributions result finite expectations while the Poisson

distribution results infinite expectation. Therefore, the interval of any random sequence

of the packet dropouts can range from 0 to ∞. The interval with ∞ value may occur

when m → ∞ and always has very low probability. Without loss of the generality, this

low probability can be considered as 0. In this case, the current data will be used as

the feedback. The probabilities of packet dropouts under the Poisson distribution and

it probability mass function is shown in Figure 2.6. As discussed earlier, the Bernoulli

distribution can be used with other distributions to model the packet dropouts. This

approach is adopted here as well and the Bernoulli distribution used to determine the

occurrence of any packet dropouts sequence whereas the Poisson distribution is used to

model the random sequence of packet dropouts .
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Figure 2.6: Packet dropouts following Poisson distribution and probability mass func-
tion

After modelling the random sequences of packet dropouts, a dynamic output feedback

controller is proposed as:

x̂(k + 1) = Acx̂(k) + α(k)Bcy(k) + (1− α(k))
{ κm∑

κd=0

pdBcy(k − κd)
}

u(k) = Ccx̂(k) (2.28)

where κd is a packet dropouts sequence, κm is sequence with maximum dropouts, and

pd is the Poisson distribution based probabilities.

After applying (2.28) on (2.2), the following closed-loop representation is obtained:

ζ(k + 1) = Aclζ(k) + α(k)Bcl1ζ(k) + (1− α(k))
{ κm∑

κd=0

pdBcl2ζ(k − κd)
}

y(k) = Cclζ(k). (2.29)

where

Acl =

[
A BCc

0 Ac

]
, Bcl1 =

[
0 0

BcC 0

]
, Bcl2 =

[
0 0

BcC 0

]
,

and Ccl =
[
C 0

]

2.3.1.3 Quantization Process and Error

The evolution of the digital controllers and the NCSs resulted in the incorporation of

the quantization in the feedback loops. The quantizer or quantization process can be

described as the mapping of a real-valued function into a piecewise constant function

i.e., R → Z taking values from a finite set e.g., U = {±ui, i = −,±1,±2....} ∪ {0}.
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The control system with quantizers are hybrid, i.e., continuous and symbolic, in nature

[92]. In the beginning, the researchers mainly focused to mitigate the effect of quanti-

zation error on the system performance e.g., [70], however now a days, the quantizers

are treated as the information coders to reduce the resource utilization such as compu-

tational and communication resources [72]. The design of quantized feedback control

is a multidisciplinary research area and requires the integrated concepts of the control

and the information theories. The research on the quantized feedback has been actively

carried out recently [69, 75, 77]. On the basis of the quantization policy, the quantizers

can be categorized as: (1) Static quantizers, (2) Dynamic quantizers.

Static Quantizers:

A static time invariant quantizer can be described as a memoryless nonlinear mapping

function from R → Z [78]. The static quantizers require infinite number of levels to

achieve asymptotic stability, therefore they only result in the practical quadratic stability

of the control system. The static quantizers can be further classified as:

1. Uniform quantizer: It is nonlinear mapping function with uniform quantization

levels as shown in the Figure 2.7. One of the quantization policy under this class

of quantizers is given as

qu(x(k)) =


M, if x(k) > (S + 0.5)∆

−M, if x(k) ≤ −(S + 0.5)∆⌊
x
∆ + 0.5

⌋
if − (S + 0.5)∆ < x(k) ≤ (S + 0.5)∆

(2.30)

where x(k), qu(x(k)), S, ∆ are an actual signal, quantized signal, saturation region

and quantization error, respectively.

A dynamic quantized output feedback of the form (2.3) is presented as:

x̂(k + 1) = Acx̂(k) +Bcqu(y(k))

u(k) = Ccx̂(k) (2.31)

where qu(y(k) is quantized feedback. By applying (2.31) on the plant (2.2):

ζ(k + 1) = Aclζ(k)

andy(k) = Cclζ(k) (2.32)

where Acl =

[
A BCc

Bc(
C
∆ + .5) Ac

]
, Ccl =

[
C 0

]
.
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Figure 2.7: Uniform level quantization

2. Logarithmic quantizer: The static quantizers with coarsest quantization densities

are logarithmic. In this type of quantizers, the time axis are linear where the signal

axis are logarithmic as shown in Figure 2.8. It should be noted that the quanti-

zation density is directly proportional to the quantization levels. The logarithmic

quantizers take values from the set U =
{
±ρi, i = 0,±1,±2, · · ·

}∪
{0}, where ρ is

the quantization density and can be described as:

ql(x(k)) =


ρi if 1

1+δρ
i < x(k) ≤ 1

1−δρ
i, x(k) > 0, i = 0,±1,±2, · · ·

0, if x(k) = 0

−q(−x(k)) if x(k) < 0

(2.33)

where δ is the sector, a bound on the quantization error ∆. The relationship

between the quantization density and sector is given as follows:

δ =
1− ρ

1 + ρ

The dynamic output feedback controller with quantized feedback is presented as:

x̂(k + 1) = Acx̂(k) +Bcql(y(k))

u(k) = Ccx̂(k) (2.34)

By applying (2.34) on the plant (2.2):

ζ(k + 1) = Aclζ(k)

y(k) = Cclζ(k) (2.35)
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Figure 2.8: Logarithmic quantizers

where Acl =

[
A BCc

BcC(1 + ∆) Ac

]
, andCcl =

[
C 0

]
, q(y(k)) = y(k) +

∆y(k).

Dynamic Quantizers:

A dynamic quantizer uses memory and is complex to design, but is suitable to achieve

the asymptotic stability with finite quantization levels or limited information. It helps

in the optimized use of the computational and communication resources. The dynamic

quantizers use both the current quantized signal and the previous quantized information

in the calculation of control input [92]. There is a lot of active research going on the

system stability and controller design with dynamic quantization policies [77, 78, 92,

138]. In the following, two types of the dynamic quantizers are discussed.

1. Static quantizers with dynamic scaling: A static for example logarithmic quantizer

can be used as a dynamic quantizer with the help of dynamic scaling or zooming.

The scaling parameter can be tuned online or dynamically for zooming in and out

according to the signal size. Consider a logarithmic quantizer with truncated but

finite 2N quantization levels:

qld(x(k)) =



ρiµ0 if 1
1+δρ

iµ0 < x(k) ≤ 1
1−δρ

iµ0, 0 < i < N − 1

ρN−1µ0, if 0 ≤ x(k) ≤ 1
1−δρ

N−1µ0

µ0, if 1
1+δµ0 < x(k)

−q(−x(k)) if x(k) < 0

(2.36)

A out of the range feedback signal y(k) can be scaled in the range of the loga-

rithmic quantizer before the quantization and scaled back after the quantization
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with the help of scaling parameter sk > 0. Mathematically, this procedure can be

expressed as s−1
k qld(sky(k)). After applying the output feedback controller (2.3) on

the system (2.2) with the ‘scaled back’ quantized signal, the following closed-loop

system is obtained:

ζ(k + 1) = Aclζ(k) +Bcls
−1
k qld(skCclx(k))

y(k) = Cclζ(k) (2.37)

where Acl =

[
A BCc

0 Ac

]
, Bcl =

[
0

Bc

]
, and Ccl =

[
C 0

]
, .

The dynamically adjustment of the parameter sk can easily be done on the basis

of the ‘scaled’ quantized signal qld(sky(k)) [78].

2. Logarithmic quantizer with dynamic input: In this type of dynamic quantizers, a

logarithmic quantizer is used that quantize the difference between the current and

the previous signal, i.e., ȳ(k) = y(k)− y(k− 1), instead of the current signal, y(k).

This quantization policy is proposed by the author in [59]. Consider a logarithmic

quantizer of the form (2.33) with the proposed policy. By applying the output

feedback controller (2.3) on the system (2.2):

ζ(k + 1) = Aclζ(k) +Bclζ(k − 1)

y(k) = Cclζ(k) (2.38)

whereAcl =

[
A BCc

C(1 + δ) Ac

]
, Bcl =

[
0 0

C(1 + δ) 0

]
, and Ccl =

[
C 0

]
.

2.3.1.4 Stability Analysis Approaches

The time delays are the most important constraint of the NCSs that affects the system

performance and the stability adversely. Moreover, the NCSs can also be considered as a

subclass of the TDSs [53]. Therefore, the approaches to develop the stability criteria for

the TDSs are also applicable to the NCSs. To obtain the quadratic stability, two state of

the art approaches (Lyapunove-Krasovskii (L-K) functional and Lyapunove-Razumkhin

(L-R) functions) are proposed in the literature. In this doctoral study, the L-K functional

approach is adopted for stochastic stability and its various forms are proposed to cater

for different NCSs constraints along with the time delays. In the following section, a

brief introduction of both approaches is given.

L-K Functional Approach:
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Consider the closed-loop system (2.17), a detailed L-K functional can be used to obtain

the stochastic stability criteria:

V (ζk, rk) = V1(ζk, rk) + V2(ζk, rk) + V3(ζk, rk) (2.39)

with

V1(ζk, rk) = ζTk P (rk)ζk (2.40)

V1(ζk, rk) is a basic Lyapunov function to obtain the stability criteria for a simple closed-

loop system without NCSs constraints.

V2(ζk, rk) =

−1∑
ℓ=−τ(rk)

k−1∑
j=k+ℓ

x̄Tj R1x̄j +

−1∑
ℓ=−τ(s)

k−1∑
j=k+ℓ

x̄Tj R2x̄j (2.41)

V3(ζk, rk) =
k−1∑

ℓ=k−τ(rk)

ζTℓ Qζℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

ζTj Qζj (2.42)

V2(ζk, rk) and V3(ζk, rk) are the detailed L-K functionals which provide the closed-loop

stability criteria while considering the each random delay, the minimum and the maxi-

mum delays and the average of the delays.

L-R Function Approach:

The L-R functions are the extension of Lyapunov quadratic function to achieve the

system stability with the time delays. In the following discussion, L-R is explained

briefly in the context of the closed-loop system 2.17. Let α1, α2 are positive numbers,

ρ ∈ R[−τ(rk),0) and π : R+ → R+ is a positive function with π(s) > s for all s ∈ R+ and

π(0) = 0. Assume that there exists a Lyapunov function V (ζ(k), τ(rk)) : R
n → R+ such

that

α1||ζ(k)||2 < V (ζ(k), τ(rk)) < α2||ζ(k)||2

where α1 = λmin(P ), α2 = λmax(P ) and for all ζ(k) ∈ Rn and τ(rk) ∈ N , if π(V (ζ+)) ≥
maxθ∈Z[−τ(rk),0]V (ζ(θ)), then

V (ζ+) ≤ ρV (ζ(0))

then the closed-loop system will be stochastically stable.

2.3.2 Current Research Trends in TT NCSs

Recently, various systematic stability analysis approaches of NCSs with networked-

induced imperfections are proposed. For example, the constraint of time delays is

discussed in [21, 22, 52], and of packet dropout effects in [23, 24, 26–28, 145], and
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of quantization in [29, 30, 69], and communication constraints in [31–34], respectively.

Although all the aforementioned constraints exist simultaneously in NCSs, however most

of the research focuses on individual imperfections. In this thesis, I will focus on the

modeling and stability of NCSs with multiple constraints.

Seminal works have been done on stability analysis and controller design for NCSs with

time-varying, uncertain, large time, or random time delay, as presented in [21, 22, 52] (for

more details, see references therein). To cater for the packet dropout, many approaches

have been developed. Stabilization problem of NCSs with arbitrary and Markovian

packet losses is considered in [23]. The H∞ control problem for NCSs with packet

dropouts is studied in [24, 27]. A new NCSs model is considered with single- and

multiple-packet transmissions in [145]. The control problem for NCSs with Bernoulli-

distributed stochastic packet losses is revisited in [28]. In real time, the time delay and

packet dropout exist simultaneously in NCSs. Few results are also available that study

both time delay and packet dropout [35, 37, 38, 118].

Recently, the problem of quantized feedback control has seen a growing research interest

due to the emerging of computer based control and NCSs. The quantization effects can

be investigated in two aspects: (1) reduction of the quantization effects to ensure the

system performance and stability, and (2) considering quantizers as information coders.

In the first approach, stability analysis and controller synthesis are done in the presence

of a quantizer by [69, 70]. The second approach talks about the required information

from a quantizer to ensure the system stability. It is proved by [72] that the minimum

quantization information required for the system stability depends on the unstable poles

of plant. The logarithmic quantizers can give minimum or coarsest quantization densities

[75]. The similar research to use optimal quantizers and coarsest quantization densities

is carried out by [76], while sustaining the system stability for Markovian jump systems

(MJSs).

Various approaches are adopted to cater for NCSs constraint of limited bandwidth. For

instance, the constraint of communication bus with limited capacity is handled with the

help of a hold device and a communication sequence in [33]. Similar work are proposed

in [31, 32, 34] to cater for limited communication bandwidth. The limited bandwidth is

compensated in this thesis by proposing various techniques such as adaptive quantization

densities, congestion control mechanism and event triggered control.

2.3.3 Constraints in ET NCSs

The incorporation of the ET mechanisms in the stability analysis and the controller

design of the NCSs is a growing research area [60]. It is because of the capability of the
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ET mechanisms to reduce the bandwidth consumption by ensuring data transmission

on demand. However, this research area is not well developed and needs a lot of further

investigation. Few researchers introduced the time-triggered mechanism for the NCSs

framework in the presence of time delays [61, 62]. In Chapter 8, author developed a

stochastic stability criteria and H∞ performance is analyzed in the presence of packet

dropouts. A detailed discussion on the ET NCSs while considering different NCSs con-

straints is beyond the scope of this doctoral study.

2.4 Comparison Between TT and ET NCSs

This section analyzes and compares the TT and the ET NCSs qualitatively and by the

simulations using the MATLAB TrueTime toolbox and Simulink.

2.4.1 Qualitative Comparison

The TT and the ET triggering mechanisms are qualitatively compared on the basis of

different requirements in the discrete time NCSs. These requirements are synchroniza-

tion, the ability to react to asynchronous events and the compensation for the latencies

and jitters in the worst case, and the regular operation of the control loops. The TT

mechanism is quite useful in the NCSs framework due to its synchronization, quasi-

deterministic nature and composability [41]. Due to these advantages the formal design

theories are easy to develop but are time restrictive for the implementation. On the

other hand, the ET mechanism is flexible for the implementation due to its quick re-

sponse to the unknown asynchronous events [46]. It is the mechanism of choice, by

implementation point of view, because of the optimized resource utilization. However,

the formal designs for the ET mechanism are quite complex and are not developed as

far. Therefore, the selection of either the TT or the ET mechanism is application depen-

dent [39], and even some researchers also explored the advantages of their combination

[47, 48]. It is intended to analyze the performance of TT and the ET mechanisms during

the worst case scenario and regular operation of the NCSs. The worst case scenario re-

quires a quick response from the system to a critical situation (an asynchronous event).

In the regular operation three assumptions are normally made for NCSs. Firstly, the

control law assumes that the transmission of the measured variable from the sensor to

the controller and the control input from the controller to the actuator are perfectly

periodic. Otherwise a time varying control law is required to achieve the stability and

performance of the system. The time varying control law also assumes that the time

information is available. Secondly, it is assumed that the controller variable is transmit-

ted from sensor to controller with no delay or a constant delay (latency). There is the



Chapter 2. NCSs: A New Frontier in Control Systems 34

same assumption for the control input transmission from controller to actuator. Oth-

erwise, again, a time varying law is required to compensate the latencies and resulted

jitter. Thirdly, the delays, either compensated or not, result in the degradation of the

performance. Before proceeding further, it is worth mentioning that each component of

a NCS can be considered as a network node.

2.4.1.1 Worst Case Scenario

The worst case scenario is defined as a critical situation which can occur at any node

as an asynchronous event. The response to this event determines the performance of

the TT and the ET mechanisms. Latency and jitter are two of the parameters that can

measure the performance of the system’s response to an asynchronous event. Latency

can be defined as the round trip delay (delay in system’s response to an event) between

the plant and the controller nodes, while jitter is the variation in latency. The concept of

latency and jitter is elaborated with the help of Figure 2.9. In this figure t0 is the time on

that a critical situation occurs at node A. In response, it transmits the message to node

B at time t1 that is received by node B at time t2. After that, node B replies at time

t3 which is received by node A at time t4. In this time framework, t0 − t1 is processing

and wait delay at node A, t1 − t2 is the communication delay from node A to node B,

t2− t3 is again processing and wait time but at node B and t3− t4 is the communication

delay from node B to node A. The time from t0 − t4 is the system response time to the

critical situation and is called latency. The right hand side of Figure 2.9 elaborates the

concept of jitter that is variation in latencies.

Figure 2.9: Latency and jitter
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For the worst case scenario, the behavior of the TT and the ET is examined and it

is found that the ET mechanism outperforms the TT mechanism in response to the

asynchronous events. In the ET mechanism node A sends data as soon as the network

is free. The performance of the ET mechanism solely depends upon network load,

message priority and data rate. The ET mechanisms results in less latency and jitter

for the reduced network load. However, higher network load reduces the efficiency of

the mechanism. In the case of the TT mechanism, node A transmits its data to node

B on its allocated time slot only, therefore its performance is totally invariant of the

network load and depends on the cycle structure and data rate only. Although the TT

mechanism is not capable to a quicker response to an asynchronous event, but it provides

an upper bound on the response time due to its quasi-deterministic nature.

2.4.1.2 Regular Operation

For regular operation, the sampled data (discrete time) system, as shown in Figure

2.1, is considered. The discrete time system consists of two nodes i.e., the plant and

the controller nodes. It is assumed that 1) the triggering mechanism, either the TT

or the ET, is embedded in the nodes, and 2) all other system components such as

sensors, actuators and quantizers (A/Ds), are part of the plant node. Both nodes are

connected over the network. The round trip delay (latency) between nodes is divided

into three main components: 1) communication delay between plant and controller, τpc,

2) processing delay at controller node, τc, and 3) communication delay between controller

and plant, τcp. All other small delays, such as processing delays of sensors, actuators

and quantizers are neglected without loss of generality. In this setup the TT and the

ET mechanisms are compared with respect to their impact on the delays.

Communication Delays τpc and τcp

Both communication delays are same in nature, therefore they are considered together

here. The effect of either the TT or the ET mechanism is the same on both delays. It is

worth mentioning that communication networks are the main source of delays and jitters.

Following are the impacts of the TT and the ET mechanisms on the communication

delays:

TT Mechanism: In this mechanism, network-induced latencies remain constant, hence

no jitter is produced. For this, it is required that all the network components should be

globally synchronized, otherwise latencies and jitter will be worse than the ET mecha-

nism.
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ET Mechanism: In this mechanism, the data is sent as soon as the network is available.

However, latencies and jitters are expected as they solely depend on the network load,

message priority and data rate.

Computational Delay τc

This delay depends on the number of control tasks and their scheduling by the con-

troller’s operating system. Even the impact of the TT and the ET mechanisms, on the

delay, depends on the number of the control tasks and their scheduling. The impact of

both mechanisms is described as

TT Mechanism: If task synchronization is achieved, then the TT mechanism results in

zero delay and jitter for the single control loop. However, if scheduling is required in the

case of multiple control loops, then constant latencies are expected

ET Mechanism: It results in zero latency and jitter if the controller is catering for only

one control loop. In the case of multiple loops, the performance of any particular loop

can be achieved at the cost of other loop’s performance.

In summary, it can be revealed that both the TT and the ET mechanisms can result in

time varying delays. To cater for these jitters, a delay-dependent controller is required.

2.4.2 Comparison by Simulations

In this section, effect of the TT and the ET sampling mechanisms on the system perfor-

mance, delays and jitters is analyzed. This analysis is performed by using the Simulink

based toolbox, TrueTime [49]. The block diagram of the TrueTime toolbox is shown in

Figure 2.10. This toolbox facilitates the simulation of real time processes such as DC

servo system by presenting them with simple Simulink blocks. It also enables simulation

of different communication networks as Simulink blocks. The toolbox is suitable for

analyzing the temporal behavior of control processes, timing parameters and multi-task

scheduling for real-time and NCSs.

2.4.2.1 Example: A DC Servo Control Over the Network

This example is taken from [50]. In this example, a DC servo motor is controlled

over a general purpose Ethernet network as shown in Figure 2.11. It is natural in the

NCSs framework that the sensor node is considered as TT, while network, controller

and actuator nodes are considered as ET. In this example, however, the sensor node

is considered as both TT and ET mechanisms, to analyze the effect of both sampling
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Figure 2.10: A Simulink based toolbox for real-time and networked control systems:
TrueTime

mechanisms. In addition to this, the control law is proposed without delay compensation

so that the impact of the sampling mechanisms on the delays and jitters can be realized

properly.

Consider the transfer function of a DC servo motor:

G(s) =
100

s(s+ 1)
(2.43)

It is discretized at the sampling rate of 1 ms, with w(k) = 0. According to the equation

(2.2), the state space representation of the system is:

x(k + 1) =

[
1.3680 −0.3679

1.0000 0

]
x(k) +

[
1

0

]
u(k)

y(k) =
[
36.79 26.42

]
x(k) (2.44)
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Figure 2.11: A servo motor control in NCSs Framework

In this example, a dynamic output feedback controller of the form (2.3) is proposed.

The controller gains are obtained using LMI toolbox:

Ac =

[
0.9424 −0.5566

0.9510 −0.0490

]
, Bc = 1.0e+ 003 ∗

[
1.1430

0.9798

]
Cc =

[
−0.9995 0.4995

]

The motor is controlled with the help of sensor and actuator over the TrueTime network.

The sensor, actuator and controller are implemented as TrueTime kernels.

It is mentioned earlier that the sensor is implemented on the basis of TT mechanism in

TrueTime toolbox. In this example, it is also implemented on the basis of ET mech-

anisms so that the performance of both mechanisms can be analyzed. This example

implements the ET mechanism, according to the condition given in equation (2.8). Ac-

cording to the equation, sensor transmits the data over the network only when the

||e(k)|| = ||ȳ(k)−y(k)|| > σ||y(k)|| is satisfied. It means that the ET mechanism follows

“sampling on the demand” approach. It is shown in Figure 2.12 that data is transmitted
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Figure 2.12: Number of transmitted samples using ET mechanism

in the start when the difference between ȳ(k) and y(k) is large. As the system gets stable

and ||e(k)|| remains in bounds, then no need to transmit further data. However, the

error ||e(k)|| is kept on accumulating and when it satisfies the condition again then the

data is transmitted again. It can be evaluated from the figure that it sends only ≃ 15%

of the actual samples (In the figure, shaded area shows the number of transmitted sam-

ples). On the other hand, the TT mechanism transmits the data periodically and sends

all the samples.

Although, the ET mechanism reduces bandwidth consumption, but there is a tradeoff

between the bandwidth consumption and the system performance. It is shown in the

Figure 2.13(a) that the system achieves asymptotic stability by using the TT mechanism.

The ET mechanism also stabilizes the system but its steady state remains around the

origin and does not achieve the asymptotic stability. It is shown in Figure 2.13(b).

In the absence of other interference nodes, the TT mechanism results in fixed delays

(latencies) and zero jitter. It is evaluated from 2.14(a) that TT mechanisms produces

the fixed delay of 2.5 msec. It means that the TT mechanism is quasi-deterministic. It is

also concluded in section 2.4. On the other hand, the ET mechanism results in variable

delays and jitter. In the Figure 2.14(b), the delays between the samples of sensor and

actuator range from 5 ms to 30 ms that result in an accumulative jitter of 25 ms. The
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(a) System state using TT mechanism
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(b) System state using ET mechanism

Figure 2.13: System states

jitter is calculated by following iterating equation:

J = J + |D(i− 1, i)| (2.45)

J is the jitter and D is the difference between delays between two samples. It is worth

mentioning that the results are according to the discussion of the section 2.4.1.2.

Note: It is evaluated from different simulations that the TT mechanism also results in

variable delays in the presence of other interference nodes.

(a) Latency and jitter in TT mechanism (b) Latency and jitter in ET mechanism

Figure 2.14: Latencies and jitters
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2.5 Conclusions

This chapter is a literature survey on the TT and ET mechanisms in the context of

the NCSs. Firstly, the basic concepts of both sampling mechanisms are discussed. For

the ET mechanism, various conditions for generating an event are provided. After this,

a detailed literature survey on the NCSs is conducted and various constraints such as

time delays, packet dropouts, limited bandwidth and quantization errors are identified.

A brief overview of the stability techniques of the NCSs is also provided. The effect

of the TT and the ET mechanisms on the NCSs constraints such as time delays and

bandwidth are analyzed qualitatively and by simulations. The simulations show that

both mechanisms stabilize the system. However, the ET mechanism transmits smaller

number of samples, hence reduces bandwidth consumption. On the other hand, TT

mechanism results in better control performance but transmits all the samples. It is

evaluated that the TT and ET mechanisms result in fixed and time varying delays,

respectively. However, it is possible that the TT mechanism may also result in time

varying and random delays. It is due to the random nature of network and other inter-

facing nodes. It is concluded that the delay-dependent control laws are indispensable for

the NCSs. It is also evaluated that the identified constraints should be properly mod-

elled and incorporated in the design before providing the stability criteria and control

designs.



Chapter 3

Robust H∞ State Feedback

Control of NCSs with Poisson

Noise and Successive Packet

Dropouts

This chapter examines various constraints of networked control systems (NCSs) such

as network-induced random delays, successive packet dropouts and Poisson noise. The

time delays are represented as the modes of a Markov chain and the successive packet

dropouts are modelled using the Poisson probability distribution. For each delay-mode,

a different Poisson distribution is used with the help of an indicator function. The

Poisson noise is incorporated in the design to cater for sudden network link failures.

After modelling the constraints, a stability criterion is proposed by using a detailed

Lyapunov-Krasovskii(L-K) functional. On the basis of the stability criterion, sufficient

conditions for the existence of a robustH∞ state feedback controller are given in terms of

bilinear matrix inequalities (BMIs). Later, BMIs are converted into quasi-convex linear

matrix inequalities (LMIs) and are solved by using a cone complementarity linearization

algorithm. The effectiveness of the proposed design is elaborated with the help of two

simulation examples. Moreover, the effects of successive packet dropouts and the Poisson

noise, on H∞ performance, are analyzed [101].

3.1 Introduction

It is a well known fact that in the NCSs the components are spatially distributed.

Therefore, the assumption of the prefect information flow between them is not realistic.

42



Chapter 3. Robust H∞ State Feedback Control of NCSs with Poisson Noise and
Successive Packet Dropouts 43

It is due to various network constraints such as: (1) time delays due to the network

congestion [120], (2) packet dropouts due to the overflow in buffers and queues at the

network nodes [30], (3) sudden network failures due to removal of any node or power

shutdown, and (4) variable sampling/transmission intervals due to the multiple nodes.

Most of the constraints are stochastic in nature and different probabilistic methods

are used to model them. In the available literature, time delays are mostly modelled

using the Markov chain [125, 128] and the packet dropouts are modelled using the

Bernoulli random distribution [30, 129]. The time delays and the packet dropouts may

occur on both sides of a control loop i.e., from sensor to controller and from controller

to actuator. In [130], the random time delays that exist on both sides are modelled

separately by using two Markov chains. Similarly in [129] the packet dropouts are

modelled by using two mutually independent random variables following the Bernoulli

distributed white sequence. However, the literature on the successive packet dropout

sequences that occur frequently in the networks is almost nonexistent. The successive

packet dropout sequences can not be modelled using a single Bernoulli distribution due to

its discrete nature. Under the Bernoulli, the probability ′0′ represents a packet dropout

event, and ′1′ denotes the packet delivery. The Bernoulli is not capable of distinguishing

between the number of successive dropout random sequences. However, the Poisson

distribution is capable of model successive packet dropout sequences precisely. Although

the Poisson distribution has infinite expectation, however the probability of an infinite

number of the packet dropouts is very small and can be considered zero without loss

of the generality. In this case, the previous information stored in the controller buffer

will be used. However, if the packets keep on dropping, then the system will become

unstable after a maximum interval [132].

In the real world dynamic systems the noise is modelled either as a Wiener or a Poisson

process. The Wiener noise adds up continuous fluctuations in the system dynamics

while the Poisson noise results in the random discontinuities. Therefore the Poisson

noise is expected in any system where there is a possibility of any sudden fluctuations

such as the link failure or the power shutdown of any network component in the NCSs.

The phenomenon of the Poisson noise can be seen in various other fields e.g., machine

breakage in the manufacturing [133], excitatory potential pulses in the neural systems

[134], and arrival of new customers in the inventory systems [135]. Therefore the Poisson

noise, due to its random pulses, behaves quite differently from the Wiener and the White

Gaussian noises. It introduces the random discontinuities in the closed-loop system

dynamics and is difficult to model.

The robust H∞ control is an efficient control design to minimize the effect of external

disturbance in the presence of the system uncertainties [87, 126, 136]. It is worth eval-

uating H∞ performance in the presence of the Poisson noise. Similarly, analyzing the
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effect of the random sequences of the successive packet dropouts on the H∞ performance

is a problem of great significance.

In this design a robust H∞ state feedback controller is proposed to compensate for

the network-induced random delays, the successive packet dropout sequences and the

Poisson noise. Each delay is represented through a mode of the Markov chain. Therefore

the system under consideration can be considered as a class of Markovian Jump Systems

(MJSs). The successive packet dropout sequences are modelled by using the Poisson

distribution. It is worth mentioning that the use of a single Poisson distribution for all

the Markov modes is quite conservative. Therefore, an indicator function is proposed to

select the separate Poisson probabilities for each mode of the Markov chain. A similar

approach is used by [131] where the missing measurement or dropouts from the multiple

sensors are compensated for by using a random matrix function for each mode of MJSs

separately. In addition to this the sudden network link failure is represented as the

Poisson noise jumps. Moreover in the simulations the H∞ performance is analyzed

under the presence of the Poisson noise and the successive packet dropouts. To the

best of authors’ knowledge, the problem of designing a state feedback controller with

the successive packet dropouts modelling, the Poisson noise and random delays has not

been fully investigated. The main contributions of the chapter are listed as follows:

• The Poisson noise is incorporated in the design of a robust H∞ state feedback

controller to cater for sudden link/node failure for the NCSs.

• The Poisson random distribution is used to model the random sequences of the

successive packet dropouts for the first time in the NCSs.

• The stability criteria and the controller design is proposed for the MJSs where

adaptive Poisson probability distributions are used for the Markov modes using

an indicator function.

• The H∞ performance is analyzed under the presence of the Poisson noise and

successive packet dropouts.

The rest of this chapter is organized as follows. Section 3.2 discusses the system de-

scription with the incorporation of the Poisson noise, modelling of the random delays

and the successive packet dropouts. The necessary lemma and problem formulation are

also given in this section. In Section 3.3, main results for the stability analysis and

the synthesis of a robust H∞ state feedback controller are presented in terms of the

BMIs. A cone complementarity algorithm is employed to convert these BMIs into the

quasi-convex LMIs. Section 3.4 consists of two simulation results to validate the effec-

tiveness of the design. Moreover the impact of the Poisson noise and the packet dropout
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sequences on the H∞ performance is analyzed. Finally, the conclusions are given in

Section 3.5.

3.2 System Description and Definitions

A class of the discrete-time NCSs, as shown in Figure 3.1, is described by the following

model:

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]u(k) x(0) = 0

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]u(k) (3.1)

where x(k) ∈ ℜn, u(k) ∈ ℜmand z(k) ∈ ℜm1 are the systems states, input and controlled

output, respectively. w(k) ∈ ℜm3 is the disturbance that belongs to L2[0,∞), the space

of square summable vector sequence over [0,∞). The matrices A, B1, B2, C1, D11 and

D12 are of the known matrices with the appropriate dimensions. The matrix functions

∆A(k), ∆B1(k), ∆B2(k), ∆C1(k), ∆D11(k) and ∆D12(k) represent the time-varying

uncertainties in the system which satisfies the following assumption:

Figure 3.1: Networked control systems
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Assumption 3.2.1.[
∆A(k) ∆B1(k) ∆B2(k)

∆C1(k) ∆D11(k) ∆D12(k)

]
=

[
E1

E2

]
F (k)

[
H1 H2 H3

]
where E1, E2, H1, H2, and H3 are the known matrices which characterize the structure

of the uncertainties. Furthermore, there exists a positive-definite matrix W such that

the following inequality holds:

F T (k)WF (k) ≤ W

In the real world dynamical systems, the noise can be either a Wiener or a Poisson

process. In the case of the NCSs, noise is mostly a Wiener process, but if the commu-

nication link fails or is rusty then it results in discontinuous random fluctuations. This

type of noise is a Poisson process in nature.

3.2.1 The Poisson Noise in LTI Discrete Systems

Consider a discontinuous random fluctuation in the states of an LTI discrete system on

a given instant k: ∑
Θ

τ(θ)x(k)N(θ, k) (3.2)

where

Θ = Poisson mark space

θ ∈ Θ = Random variable that shows the characteristics of the Poisson noise

(e.g., size shape age etc)

N(θ, k) = Poisson noise with values either 0 or 1

µ(θ, k) = E{N(θ, k)}

τ(θ) = Amplitude of the Poisson jump (3.3)

By adding (3.2) in the system (3.1):

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]u(k) +∑
Θ

τ(θ)x(k)N(θ, k) x(0) = 0

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]u(k)

(3.4)
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where
∑

Θ τ(θ)x(k)N(θ, k) is the Poisson noise. Moreover if there is only one mark in

space Θ then
∑

Θ τ(θ)x(k)N(θ, k) becomes τx(k)N(k).

Let {rk, k} be a discrete homogeneous Markov chain taking values in a finite set S =

{1, 2, · · · , s} with the following transition probability from the mode i at a time k to the

mode j at a time k + 1:

pij := Prob{rk+1 = j|rk = i}

where i, j ∈ S, 0 ≤ pij ≤ 1 and
∑s

j=1 pij = 1. In this chapter, the random delay τk is

modelled as a finite state Markov process: τk = τ(rk) with 0 ≤ τ(1) < τ(2) < · · · <
τ(s) ≤ ∞. It is assumed that the controller will always use the most recent data i.e., if

there is no new information coming at step k+1 (data could be lost or there is a longer

delay), then x(k− τk) will be used for the feedback. Thus the delay τk can only increase

at most by 1 at each step, and is constrained:

Prob{τk+1 > τk + 1} = 0

Hence, the structured transition probability matrix [84] is

Pτ =



p11 p12 0 0 . . . 0

p21 p22 p23 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
... p(s−1)s

ps1 ps2 ps3 ps4 . . . pss


(3.5)

with 0 ≤ pij ≤ 1 and
∑i+1

j=1 pij = 1.

A delay-mode dependent state feedback controller of the following form is proposed:

u(k) = K(rk)x(k − τ(rk)) (3.6)

where K(rk) are gains of delay mode-dependent state feedback controller.

3.2.2 Packet Dropouts

It is well known that the packet dropouts result in the performance degradation and the

system instability. Therefore they should be appropriately compensated in the NCSs de-

sign. The packet dropouts can be modelled using the various probability distributions or

their combinations such as Bernoulli, Uniform and Poisson. The Bernoulli and the Uni-

form distributions have finite expectations while the Poisson distribution has an infinite
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expectation. There can be a single or successive packet dropout sequences in a network,

existing between the plant and the controller. In the case of a single packet dropout

sequence, the Bernoulli random distribution is very effective and popular among the

researchers. On the other hand the random sequences of the successive packet dropouts

which occur commonly in the real time networks, get much less intension from the re-

searchers. The Bernoulli and the Uniform distribution are not capable of modelling the

random sequences of successive packet dropouts. In this section the random sequences

of the successive packet dropouts are modelled using the Poisson distribution.

Packet Dropouts Analysis

A series of experiments have been preformed using OPNET IT Guru to analyze the

packet dropouts in a shared medium. The simulation is run for 1000 seconds in a given

experiment and the packet dropouts are calculated for the network. The probability of

the successive packet dropout sequences, following the Poisson distribution, is obtained

as shown in Table 3.1. The number of the packet dropout sequences, for the given

Table 3.1: Successive packet dropouts probabilities

Packet Dropout Sequences κd 0 1 2 3 4

pd 0.4444 0.37037 0.137 0.037 .01054

simulation, are shown in Figure 3.2 with mean, λ = 1.8. It is worth emphasizing that

both the Bernoulli and the Poisson distribution can be combined together to model

the successive packet dropout sequences. The Bernoulli can be used to find out if any

packet dropout sequence has occurred or not. If the packets are dropped, then the

Poisson distribution can be used to find the probability of random sequences of the

packet dropouts. Moreover the Poisson distribution itself is capable of modelling the

successive packet dropout sequences and this approach is used in this chapter to model

the successive packet dropout sequences.

Packet Dropouts Modelling

As mentioned above, the Poisson distribution is used to model the successive packet

dropouts. Lets denote the number of packet dropouts by a random variable σ(k) fol-

lowing a Poisson distribution. Suppose σ(k) is with any n number of the possible values

κ0, κ1 · · ·κm. The probability of each outcome κd will follow the Poisson distribution as

follows:

pd = Prob{σ(k) = κd} =
λκde−λ

κd!
d = 0, 1 · · ·m

Mean = E{σ(k)} = λ

(3.7)
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Figure 3.2: Communication between sensor nodes and controller using OPNET IT
Guru

where m are maximum packet dropouts.

The Poisson distribution has an infinite expectation, therefore the interval of any random

sequence of the packet dropouts can range from 0 to ∞. The interval with ∞ value may

occur whenm → ∞ and always has a very low probability. Therefore this low probability

can be considered as 0 without loss of the generality. In this case the current data will

be used as the feedback.

Remark 3.2.1. As discussed earlier, the random delays are modelled using the Markov

chain. These types of systems are one of the class of the Markovian jump systems (MJSs)

in which each Markov mode represents a random delay. On the other hand, the packet

dropout sequences are probabilistic in nature and are modelled by the Poisson random

distribution. The use of the same Poisson distribution for each delay-mode results in

a conservative design. Therefore different Poisson distributions are used for each mode

using an indicator function χ(i):

χ(i) =

1, if rk = i

0, if rk ̸= i
(3.8)
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After modelling the constraints from (3.2)-(3.8), a state feedback controller is proposed

as:

u(k) = K(rk)
{ κm(rk)∑

κd(rk)=0

χ(i)pd(rk)x(k − τ(rk)− κd(rk))
}

(3.9)

where K(rk) is delay-mode dependent controller gain, κd are the packet dropout se-

quences, κm is the sequence of the maximum dropouts, χ(i) is the indicator function, pd

are the Poisson probabilities, and τ(rk) are the random delays. For the simplicity, the

pd(rk) will be notated as pdi, κd(rk) as κdi, κm(rk) as κmi, τ(rk) as τ(i) and χ(i) as χi.

By applying (3.9) on (3.4), following system is obtained:

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]K(i){ κmi∑
κdi

=0

χipdix(k − τ(i)− κdi)
}
+

∑
Θ

τ(θ)x(k)N(θ, k)

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]K(i){ κmi∑
κdi

=0

χipdix(k − τ(i)− κdi)
}

(3.10)

The problem under study is formulated as follows.

3.2.3 Problem Formulation:

Given a prescribed γ > 0, design a state feedback controller of the form (3.9) such that

1. the system (3.4) with (3.9) and w(k) = 0 is stochastically stable, i.e, there exists

a constant 0 < α < ∞ such that

E

{ ∞∑
ℓ=0

xT (ℓ)x(ℓ)

}
< α (3.11)

for all x(0), r0.

2. Under the zero-initial condition, the controlled output z(k) satisfies

E

{ ∞∑
k=0

zT (k)z(k)|r0

}
< γ

∞∑
k=0

wT (k)w(k) (3.12)

for all nonzero w(k).

Before ending this section we introduce the following lemma that will play a vital role

in deriving our main results.
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Lemma 3.2.1. Let y(k) = x(k + 1)− x(k) and x̃(k) =
[
xT (k) xT (k − τi) xT (k − τi −

κ1i) · · · xT (k−τi−κmi) wT (k) xT (k)HT
1 F

T (k) xT (k−τi)K
T (i)HT

3 F
T (k) xT (k−τi−

κ1i)K
T (i)HT

3 F
T (k) · · ·xT (k−τi−κmi)K

T (i)HT
3 F

T (k) wT (k)HT
2 F

T (k) xT (k)NT (θ, k)
]T

∈
ℜl, then for any matrices R ∈ ℜn×n, M ∈ ℜn×l and Z ∈ ℜl×l, satisfying[

R M

MT Z

]
≥ 0 (3.13)

the following inequality holds:

−
κmi∑

κdi
=0

k−1∑
i=k−τ(i)−κdi

yT (i)Ry(i) ≤ x̃T (k)
{
Υ1 +ΥT

1 + (τ(i) + κmi + 1)Z
}
x̃(k) (3.14)

where Υ1 = MT [I − I − I · · · − I 0 0 0 0 · · · 0 0 0].

Proof: The proof is given in appendix 10. ∇∇∇

3.3 Stability Analysis and Controller Synthesis of NCSs

with Poisson Noise and Successive Packet Dropouts

Stability criteria for uncertain discrete-time linear systems with successive packet dropouts

and Poisson noise is given in the following theorem.

Theorem 3.3.1. For given controller gains K(i); γ > 0, µθ > 0 and α > 0 where

i = 1, · · · , i + 1, if there exist sets of positive-definite matrices P (i), R1(i), R1, R2(i),

R2, W1(i), W2(i), W3(i),Q, Z(i) and matrices M(i) satisfying the following inequalities:

R1 > R1(i), R2 > R2(i) (3.15)[
(1− pi(i+1))R1(i) +R2(i) M(i)

∗ Z(i)

]
≥ 0 (3.16)

Λ(i) + ΓT
1 (i)P̃ (i)Γ1(i) + ΓT

2 [(τ̃(i) + κ̃di)R1 + (τ(s) + κm)R2]Γ2(i) +

Υ1(i) + ΥT
1 (i) + (τ(i) + κmi + 1)Z(i) + ΞT (i)Ξ(i) < 0 (3.17)
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where

P̃ (i) =
∑i+1

j=1 pijP (j)

τ̃(i) =
∑i+1

j=1 pijτ(j)

κ̃di =
∑κmi

κdi
=0 χipdiκdi

Λ(i) = diag
{(

− P (i) + (τ(s)− τ(1) + κm + 1)Q+HT
1 (i)F

T
k W1(i)FkH1(i)+

µT
θ µθ

)
,
(
χip0iK

T (i)HT
3 W2(i)H3K(i)−Q

)
, · · ·

(
χipmiK

T (i)HT
3 W2(i)

H3K(i)−Q
)
,
(
HT

2 W3(i)H2 − γI
)
,−W1(i),−W2(i), · · · ,−W2(i),−W3(i),−I

}
Γ1(i) =

[
A χip0iB2Ki · · · χipmiB2Ki B1 E1 χip0iE1 · · ·χipmiE1 E1

∑
Θ τθ

]
Ξ(i) =

[
C1 χip0iD12Ki · · · χipmiD12Ki D11 E2 χip0iE2 · · ·χipmiE2 E2 0

]
Γ2(i) =

[
A− I χip0iB2Ki · · · χipmiB2Ki B1 E1 χip0iE1 · · ·χipmiE1 E1

∑
Θ τθ

]
Then the closed-loop system is stochastically stable with the prescribed H∞ performance.

Proof:

Proof is given in Appendix 10.

Theorem 3.3.2. For a given γ > 0, µθ > 0 and α > 0 and for i = 1, 2, · · · , s, if there
exist sets of positive-definite matrices X(i), R̃1(i), R̃1, R̃2(i), R̃2, W1(i), W2(i), W3(i),

Q, Q̃, W̃1(i), W̃2(i), N1, N2, S̃(i, j), J(i) Z̃(i) and matrices M̃(i) and Y (i) satisfying

the inequalities

R̃1 > R̃1(i), R̃2 > R̃2(i) (3.18)[
(1− pi(i+1))R̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0 (3.19)



Π(i) Γ̃T
1 (i) Γ̃T

2 (i) Ξ̃T (i) Γ̃T
3 (i) H̃T

1 (i) µ̃T (i)

∗ S̃(i)− JT (i)− J(i) 0 0 0 0 0

∗ ∗ −R 0 0 0 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −Q̃ 0 0

∗ ∗ ∗ ∗ ∗ −W(i) 0

∗ ∗ ∗ ∗ ∗ ∗ −I


< 0 (3.20)

[
S(i, j) JT (i)

∗ X(j)

]
> 0 (3.21)

N1R̃1 = I, N2R̃2 = I, W̃1(i)W1(i) = I, W̃2(i)W2(i) = Iand Q̃Q = I (3.22)
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where

S̃(i) =
i+1∑
j=1

pijS(i, j), R = diag
{
N1, N2

}
W(i) = diag

{
W̃1(i), W̃2(i), · · · , W̃2

}

Π(i) = Λ̃(i) + Υ̃1(i) + Υ̃T
1 (i) + (τi + κmi+1)Z̃(i)

Γ̃1(i) =
[
AXi χip0iB2Yi · · · χipmiB2Yi B1 E1 χip0iE1 · · ·χipmiE1 E1

∑
Θ

τθ

]
Ξ̃(i) =

[
C1Xi χip0iD12Yi · · · χipmiD12Yi D11 E2 χip0iE2 · · ·χipmiE2 E2 0

]

H̃1(i) =


H1X(i) 0 · · · 0 0 0 0 · · · 0 0 0

0 χip0iH3Y (i) · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · χipmiH3Y (i) 0 0 0 · · · 0 0 0


µ̃(i) =

[
µθX(i) 0 · · · 0 0 0 0 · · · 0 0 0

]
Γ̃2(i) =

[ √
τ̃(i) + κ̃di√
(τ(s) + κm)

] [
(A− I)X(i) χip0iB2Y (i) · · · χipmiB2Y (i) B1

E1 χip0iE1 · · ·χipmiE1 E1

∑
Θ

τθ

]
Γ̃3(i) =

(√
τs − τ1 + κm + 1

)[
X(i) 0 · · · 0 0 0 0 · · · 0 0 0

]
Λ̃(i) = diag

{
−X(i),

(
−XT (i)−X(i) + Q̃

)
, · · · ,

(
−XT (i)−X(i) + Q̃

)
,(

HT
2 W3(i)H2 − γI

)
,−W1(i),−W2(i), · · · ,−W2(i),−W3(i),−I

}
Υ̃1(i) = M̃T (i)[I − I − I · · · − I 0 0 0 0 · · · 0 0 0]. (3.23)

Then the closed-loop system is stochastically stable with the prescribed H∞ performance.

Furthermore, the controller gains are given as follows:

K(i) = Y (i)X−1(i) (3.24)

Proof: Proof is given in Appendix 10.

It can be seen from Equation 3.22 that obtained sufficient conditions for the existence

of the above given controller are BMIs. These BMIs are converted into quasi convex

LMIs on the same lines as given in Chapter 6. Using the cone complementary algorithm

[127], the feasibility problem formulated by (3.18)-(3.22) that is not a convex problem

and can be converted into the following nonlinear minimization problem:
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Minimize Tr
(
N1R̃1 +N2R̃2 + W̃1(i)W1(i) + W̃2(i)W2(i) + Q̃Q

)
subject to (3.18)-(3.21) and

[
N1 I

I R̃1

]
≥ 0,

[
N2 I

I R̃2

]
≥ 0,

[
W̃1(i) I

I W1(i)

]
≥ 0,

[
W̃2(i) I

I W2(i)

]
≥ 0

[
Q̃ I

I Q

]
≥ 0 (3.25)

To solve this optimization problem, the following algorithm can be used:

Algorithm :

Step 1: Set ȷ = 0 and solve (3.18)-(3.19) and (3.25) to obtain the initial conditions:

[ X(i), S̃(i), J(i), R̃1(i), R̃1, R̃2(i), R̃2,W1(i),W2(i),W3(i),

W̃1(i), W̃2(i), Q̃,N1, N2, Z̃(i), Y (i)

]0
Step 2: Solve the LMI problem

Minimize Tr
(
N ȷ

1R̃1+N1R̃
ȷ
1+N ȷ

2R̃+N2R̃
ȷ
2+W̃1(i)

ȷW1(i)+W̃1(i)W1(i)
ȷ+W̃2(i)

ȷW2(i)+

W̃2(i)W2(i)
ȷ
)

subject to (3.18)-(3.21) and (3.22)

The obtained solutions are denoted as:

[ X(i), S̃(i), J(i), R̃1(i), R̃1, R̃2(i), R̃2,W1(i),W2(i),W3(i),

W̃1(i), W̃2(i), Q̃, N1, N2, Z̃(i), Y (i)

]ȷ+1

Step 3: Solve Theorem 3.1 with K(i)ȷ+1 = Y ȷ+1(i)X−1(i)ȷ+1, if there exist solutions, then

K(i)ȷ+1 are the desired controller gains and EXIT. Otherwise, if

Tr
(
N ȷ

1R̃1 +N1R̃
ȷ
1 +N ȷ

2R̃ +N2R̃
ȷ
2 + W̃1(i)

ȷW1(i) + W̃1(i)W1(i)
ȷ + W̃2(i)

ȷW2(i) +

W̃2(i)W2(i)
ȷ
)
> ϵ, set ȷ = ȷ+1 and return to Step 2 where ϵ is tolerant else EXIT

and no solution will be possible.
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3.4 Simulation Examples

3.4.1 Example 1

Consider the following continuous-time plant [137]:

T (s) =
e−.34s

s+ 1

This plant is discretized using zero order hold with a sampling rate of 1 second with the

following state space representation:

x(k + 1) = 1.0152x(k) + 0.1w(k) + 0.1052u(k − τ(i)) + τ(θ)x(k)N(θ = 0.5, k), x(0) = 0

z(k) = 0.2x(k) + 0.15w(k) + 0.04u(k − τ(i))

It is assumed that the system uncertainties are norm bounded and are characterized by

the following matrices:

E1 = 0.01, E2 = 0.005,

H1 = .05, H2 = 0.12, H3 = 0.07.

In this simulation example, the following configurations are used. It is assumed that

the network-induced delays are characterized by a Markov chain taking values in a

finite set S = {1, 2, 3}, which corresponds to delays of 2, 3 and 4 second, respectively.

The transitions of the Markov modes follow a probability matrix that is obtained by

performing the experiments on a cellular network:

Pτ =


0.4136 0.5864 0

0.3702 0.6157 0.0141

0.3702 0.6157 0.0141


The Poisson noise N(θ = 0.5, k), with the Poisson jump rate µ = E{τ(θ)} = 0.5 jump-

s/sec, is considered to cater for the sudden communication link failure or breakage. θ

is a random variable that shows the characteristics of the Poisson noise as described

in (3.3). Furthermore the successive packet dropout sequences are catered for by using

the Poisson distribution with the probabilities given in Table 3.1. Without loss of the

generality, it is assumed that the previous data will be used if the successive dropouts

are more than 2. The prescribed H∞ performance index is γ = 0.5. Using Theorem

3.3.2, the following set of K values are obtained.

K(1) = −3.4158; K(2) = −3.4230; K(3) = −3.4321.
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The stabilized system state, in the presence of random delays, is shown in Figure 3.3(a)

and Figure 3.3(b) shows the random network-induced delays used in the simulations.
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Figure 3.3: Stabilized system state and random delays

It can be seen in Figure 3.4(a) that the Poisson noise has random pulses and results in

the discontinuities in the state dynamics. It is different from the other noises such as

the Gaussian and the Wiener that have continuous diffusion and are comparatively easy

to handle. Figure 3.4(b) shows how different θ values effect the H∞ performance. As

mentioned before, θ is the random variable that shows the characteristics of the Poisson

noise such as the amplitude, the shape and the age. The packet dropout sequences are

shown in Figure 3.4(c). Furthermore it is observed that the increase in the successive

packet dropouts results in the degradation of the system performance. It is worth

to comment that if the random sequences have more than four successive dropouts,

then the system becomes unstable. The effect of the packet dropout sequences on the

H∞ performance can be seen in Figure 3.4(d). If the dropouts are more than two, then

the prescribed H∞ performance index (γ = 0.5) can not be achieved. The minimized γ

for different number of the packet dropouts is achieved by the simulations and is given

in Table 3.2.

Table 3.2: Minimized gamma for sequences of different dropouts

Packet Dropouts Minimized γ

2 0.4337

1 0.4048

no dropout 0.3910
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(a) Poisson noise discontinuous pulses
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(c) Successive packet dropouts
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(d) Effect of packet dropouts on H∞ performance

Figure 3.4: NCSs constraints and their effects on H∞ performance

3.4.2 Example 2

Consider the system (3.1) with the following state space matrices:

A =

[
0 1

0.8 −0.3

]
, B1 =

[
0.51

0

]
, B2 =

[
0.05

0.01

]
, C1 =

[
0 0.1

]
,

E1 =

[
0.01

0.05

]
, E2 = 0.06, H1 =

[
0.13 0

]
, H2 = 0.02, H3 = 0.3. (3.26)

In this example, the random delays are 2, 3, 4 seconds and are modelled by a Markov

chain with the transition probabilities given in Example 1. The packet dropout sequences

are two in this example, while the Poisson noise parameter θ = 0.15 is used. Using

Theorem 3.3.2 with given γ = 0.7, the following set of the controller gains are obtained:

K(1) =
[
2.2323 −3.4724

]
, K(2) =

[
2.2683 −3.4997

]
,

K(3) =
[
1.8487 −2.9704

]
. (3.27)



Chapter 3. Robust H∞ State Feedback Control of NCSs with Poisson Noise and
Successive Packet Dropouts 58

The stabilized system states are shown in Figure 3.5. It is worth repeating that the

closed-loop system bears the multiple NCSs constraints such as the random delays, the

successive packet dropouts and the Poisson noise together and the controller is still

capable of stabilizing the unstable plan given in Equation 3.26. The minimized γ under

different packet dropouts are given in Table 3.3.
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Figure 3.5: Stabilized system state

Table 3.3: Minimized gamma for different dropouts

Packet Dropouts Minimized γ

2 0.0691

1 0.0672

no dropout 0.0612

Figure 3.6(a) shows the Poisson noise N(θ = 0.15, k) with the Poisson jump rate

µ = E{τ(θ)} = 0.5 jumps/sec. The effect of the Poisson noise with different values

of θ = {0.15, 0.25, 0.30} on the H∞ performance is elaborated with Figure 3.6(b). The

sequences with successive packet dropouts are shown in Figure 3.6(c). Similar to the
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previous example, it is assumed that the previous data will be used if the successive

dropouts are more than two in a sequence. It can be observed from Figure 3.6(d) that

increase in dropouts degrades the system performance.
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Figure 3.6: NCSs constraints and their effects on H∞ performance

3.5 Conclusions

In the proposed control design, the various constraints of the NCSs are catered and their

effects on the system performance are studied. The network-induced delays are modelled

as the modes of the Markov chain that takes the values from a transition probability

matrix. The successive packet dropout sequences are modelled using the Poisson distri-

bution. A new indictor function is introduced that helps to select the separate Poisson

distributions for each mode of the delays. In addition to this, the Poisson noise is incor-

porated in the design to represent the network node failure phenomenon. The stability

criterion is developed using a L-K functional approach. On the basis of the stability cri-

teria, a delay-mode dependent state feedback controller is obtained. The controller LMIs

are implemented using the MATLAB LMI toolbox. The resultant controller gains are
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applied on the two different plants and the impact of the NCSs constraints is observed.

The simulation examples validated the proposed design and stabilized system states are

obtained. The impact of successive packet dropouts are observed on the system stability

and the H∞ performance. It is observed that the system becomes unstable if packet

dropouts are equal to or more than four. Similarly the H∞ performance is degraded

with the increase in the packet dropouts. It is also detected that the Poisson pulses also

degrades the system performance in the sense of H∞ and system stability.



Chapter 4

Robust H∞ State Feedback

Control of NCSs with Congestion

Control

This chapter examines the problem of robust H∞ state feedback control of Networked

Control Systems (NCSs) with a simple congestion control scheme. This simple conges-

tion control scheme is based on comparing current measurements with the last transmit-

ted measurements. If their difference is less than a prescribed percentage of the current

measurements then no measurement is transmitted to the controller. The controller

always uses the last transmitted measurements to control the system. With this simple

congestion control scheme, a robust H∞ state feedback controller design methodology

is developed based on the Lyapunov-Krasovskii functional approach. Sufficient condi-

tions for the existence of delay mode dependent controllers are given in terms of bilinear

matrix inequalities (BMIs). These BMIs are converted into quasi-convex linear matrix

inequalities (LMIs) and are solved by using the cone complementarity linearization al-

gorithm. The effectiveness of the simple congestion control scheme, in terms of reducing

network bandwidth consumption, is elaborated using simulation examples [103].

4.1 Introduction

The recent advancements in communication networks have resulted in NCSs in which

components are connected over the network. The remote supervision and control, the

automatic control in hazard environment, the power control in the wireless networks, the

medical treatments from a distance and the laboratories for the remote area students

are some of the applications of the NCSs. Similarly, Internet-based NCSs result in

61



Chapter 4. Robust H∞ State Feedback Control of NCSs with Congestion Control 62

the cost minimization due to the already available network infrastructure. However,

the insertion of the networks in the control loops introduces various design constraints

such as the time delays due to network congestion [120], the packet dropouts due to

overflow in buffers and queues in network nodes [30], the quantization error due to

limited bandwidth channels [138], the variable sampling/transmission intervals due to

multiple nodes; and network security due to the shared communication medium [51, 52].

All these constraints not only degrade the system performance but can also cause system

instability.

A lot of the research has been done on the stability analysis and the controller designs

of the NCSs over the last decade (see [139] and references therein). In general, the NCSs

can be divided into continuous-time and discrete-time systems. In [140] and [141], a

descriptor system approach is adopted to model the continuous NCSs with the constant

and the time-varying sampling intervals, respectively. Furthermore, the stability criteria

of the time-delayed continuous-time NCSs are developed on the basis of L-K functional

approach. However, the above techniques are inefficient for the stability analysis of the

digital NCSs due to a zero order hold problem (see [142] for details). Same papers

propose a less conservative stability criterion with the robust parametric modelling of

the time delays. It is worth mentioning that most of the research in the NCSs is done

in the discrete-time domain where the continuous-time plants are discretized exactly on

a given sampling interval (see [143] and reference therein).

In the discrete-time domain substantial literature is available in which different authors

assumed different constraints together in their analysis and designs [86, 144]. The NCSs

constraints such as the time delays, the packet dropouts and the variable transmission

intervals can be catered for either (1) by considering their upper bounds or (2) by

modelling them stochastically using different probability distribution methods. The first

technique is adopted by [51, 139, 147] to analyze the effects of the variable transmission

intervals, the time delays and the packet dropouts on NCSs performance. In the second

approach, the time delays and the packet dropouts are treated as the stochastic processes

and are modelled by the Bernoulli random distribution and the Markov chain [96, 145,

146]. In this chapter the latter approach is adopted and the network-induced random

delays are modelled by using a Markov chain that follows a transition probability matrix.

The quantization error is another control design constraint that can degrade the system

performance and can cause instability. In the earlier days research was done to mitigate

the effect of the quantization error [70, 148]. However, modern research shows that

the quantizers are beneficial in the NCSs because they can be used as the information

coders in the digital networks and can provide the rate control in the bandwidth limited

channels [72, 138, 144].
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The network congestion is another network-induced constraint that can cause delays and

packet dropouts and adversely affect the system performance. The transmission control

protocol (TCP) provides the congestion control mechanism, however it is not suitable for

the real time data transfer due to connection establishment and packet retransmission.

Therefore it is suggested by [17] and [149] that the user data-gram protocol (UDP)

is a practical solution when the general purpose and the shared networks are used in

NCSs implementation. On the other hand, UDP doesn’t provide any congestion control.

However, this issue can be resolved by providing the congestion control mechanism on the

upper (Application) layer. In other words, the congestion control can be incorporated in

the control design. In this chapter a simple congestion control mechanism is implemented

by analyzing the difference between the current signal and the previously transmitted

signal. This approach suggests that there is no need to send the updated information

until the difference between the two signals is greater than a prescribed percentage of

the current signal. Hence, the signal transmission is controlled to reduce the bandwidth

consumption. The main contributions of the chapter are summarized as follows:

• A congestion control technique has been proposed for NCSs

• A state feedback controller design is proposed to ensure stability of the networked

control system with random delays and congestion control.

The rest of the chapter is organized as follows. Section 4.2 provides system description,

modelling of delays, congestion control technique and problem formulation. In Section

4.3, main results for stability analysis and synthesis of a robust H∞ state feedback

controller design are formulated in terms of BMIs. A cone complementarity algorithm is

employed to convert these BMIs into quasi-convex LMIs. Section 4.4 comprises of two

examples to demonstrate the effectiveness of the simple congestion control in terms of

reducing network bandwidth. Finally, conclusions are drawn in Section 4.5.

4.2 System Description and Definitions

A NCS framework, with congestion control mechanism, is shown in Figure 4.1.

The class of uncertain discrete-time linear networked systems under consideration is

described by the following model:

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]u(k), x(0) = 0

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]u(k)

(4.1)
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Figure 4.1: Layout of the networked control systems

where x(k) ∈ ℜn, u(k) ∈ ℜm, z(k) ∈ ℜm1 are the state, input and controlled output,

respectively. w(k) ∈ ℜm3 is the disturbance that belongs to L2[0,∞), the space of square

summable vector sequence over [0,∞). The matrices A, B1, B2, C1, D11 and D12 are

known matrices with appropriate dimensions. The matrix functions ∆A(k), ∆B1(k),

∆B2(k), ∆C1(k), ∆D11(k) and ∆D12(k) represent the time-varying uncertainties in the

system that are norm bounded and satisfy conditions given in the assumption 3.2.1.

Let {rk, k} be a discrete homogeneous Markov chain taking values in a finite set S =

{1, 2, · · · , s}, with the following transition probability from mode i at time k to mode j

at time k + 1:

pij := Prob{rk+1 = j|rk = i}

where i, j ∈ S, 0 ≤ pij ≤ 1 and
∑s

j=1 pij = 1. In this chapter, the random delay τk is

modelled as a finite state Markov process as discussed in Chapter 3.

Congestion Control Scheme:

To reduce network congestion a simple congestion control scheme using difference be-

tween the signals is proposed. If the difference between the current measurement and

the last transmitted measurement is less than a prescribed percentage of the current

measurement, then the current measurement will not be transmitted. Mathematically,
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if the following condition is valid:

|x(ι)− x(k)| ≤ δ|x(k)|

|x(ι)| ≤ |x(k)|+ δ|x(k)| (4.2)

then the current measurement will not be transmitted and the previously transmitted

information, available in the controller buffer, will be used as feedback. Here x(k) is the

current measurement, x(ι) is the last measurement which is transmitted on time ι and δ

is the congestion control parameter. It can be seen from Figure 4.1, when the condition

4.2 will be violated, then data will be transmitted over the network and previously

transmitted information will be updated. Otherwise previous information will be used

for the controller. Based on this configuration the following state feedback controller is

proposed:

u(k) = K(rk)x(ι− τrι) (4.3)

where K(rk) is the controller gain and τrι is the network-induced delay tolerated by the

last transmitted information x(ι). This ‘control on demand’ can be used in the control

systems environment especially when an unstable system is already stabilized and is in

steady state or we have a stable system with no disturbance acting on it. In this paper,

this privilege is used for the NCSs to control network congestion.

Substituting (4.3) into (4.1), the following closed-loop system is obtained:

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]K(rk)x(ι− τrι)

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]K(rk)

x(ι− τrι) (4.4)

The problem under study can be formulated as follows.

Problem Formulation:

Given a prescribed γ > 0 , design a state feedback controller of the form (4.3) such that

1. The system (4.1) with (4.3) and w(k) = 0 is stochastically stable.

2. Under the zero-initial condition, the controlled output z(k) satisfiesH∞ performance

as described in Chapter 3.

Before ending this section we introduce the following lemma that will play a vital role

in deriving our main results.
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Lemma 4.2.1. Let y(k) = x(k+1)−x(k) and x̃(k) =
[
xT (k) xT (k−τrk) wT (k) xT (k)

HT
1 F

T (k)xT (k − τrk)K
T (rk)H

T
3 F

T (k) (x(ι− τrι)− x(k − τrk))
TKT (rk) (x(ι− τrι)−

x(k − τrk))
TKT (rk)H

T
3 F

T
k wT (k)HT

2 F
T (k)

]T
∈ ℜl, then for any matrices R ∈ ℜn×n,

M ∈ ℜn×l and Z ∈ ℜl×l, satisfying[
R M

MT Z

]
≥ 0 (4.5)

the following inequality holds:

−
k−1∑

i=k−τ(rk)

yT (i)Ry(i) ≤ x̃T (k)
{
Υ1 +ΥT

1 + τ(rk)Z
}
x̃(k) (4.6)

where Υ1 = MT [I − I 0 0 0 0 0 0].

Proof: The lemma can be proven along the same lines as given in Chapter 3 and is

omitted here.

4.3 Stability Analysis and Controller Synthesis of NCSs

with Congestion Control

The following theorem proposes stability criteria for uncertain discrete-time systems

(4.1) with random communication delays and the simple congestion control mechanism.

Theorem 4.3.1. For given controller gains K(i), δ > 0 and γ > 0, i = 1, 2, · · · , s, if
there exist positive-definite matrices P (i), R1(i), R1, R2(i), R2, W1(i), W2(i), W3(i),

W4(i), W5(i), Q, Z(i) and matrices M(i) satisfying the following inequalities

R1 > R1(i), R2 > R2(i) (4.7)

Λ(i)+ΓT
1 (i)P̃ (i)Γ1(i)+ΓT

2 (i) [τ̃(i)R1 + τ(s)R2] Γ2(i)+Υ1(i)+ΥT
1 (i)+τiZ(i)+ΞT (i)Ξ(i) < 0

(4.8)

and [
(1− pis)R1(i) +R2(i) M(i)

MT (i) Z(i)

]
≥ 0 (4.9)
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where
P̃ (i) =

∑s
j=1 pijP (j)

τ̃(i) =
∑s

j=1 pijτ(j)

Γ1(i) =
[
A B2K(i) B1 E1 E1 B2 E1 E1

]
Ξ(i) =

[
C1 D12K(i) D11 E2 E2 D12 E2 E2

]
Γ2(i) =

[
A− I B2K(i) B1 E1 E1 B2 E1 E1

]

Λ(i) = diag
{(

(τ(s)− τ(1) + 1)Q+HT
1 W1(i)H1 − P (i)

)
,
(
KT (i)HT

3 W2(i)H3K(i)

+δ2KT (i)W4K(i) + δ2KT (i)HT
3 W5(i)H3K(i)−Q

)
,
(
HT

2 W3(i)H2 − γI
)
,

−W1(i),−W2(i),−W4(i),−W5(i),−W3(i)
}

Υ1(i) = MT (i)[I − I 0 0 0 0 0 0]. (4.10)

Then the system (4.1) with (4.3) is stochastically stable with the prescribed H∞ performance.

Proof:

The proof is provided in Appendix 11.

Remark 4.3.1. The slack variables R1 and R2 are added to LMIs given in Theorem 4.3.1

because of the special structure of the transition probability matrix (3.5).These new slack

variables R1 and R2 relax the stability criterions. When R1 = 0, R2 = 0 and there is no

congestion control, the LMIs are no longer a function of τ̃(i) and our result will reduce

to the results given by [153]-[156] which are independent on delay’s modes. Also notice

that the negative terms −
∑k−1

ℓ=k−τ(rk)
yTℓ

[
(1−prk(rk+1))R1+R2

]
yℓ obtained from (11.4)

are kept whereas in [153]-[156] these negative terms are neglected. Using Lemma 4.2.1

on these negative terms, we introduce more new slack matrices R1, R1(i), R2, R2(i),M(i)

and Z(i) into LMIs. These slack matrices provide additional degrees of freedom that are

very important for deriving LMIs solutions in general. Therefore the result given here

is much less conservative than the results given by [153]-[156].

The following theorem provides sufficient conditions for the existence of delay mode

dependent robust H∞ controllers.

Theorem 4.3.2. For a given γ > 0 and δ > 0 and i = 1, 2, · · · , s, if there exist

positive-definite matrices X(i), R̃1, R̃2, R̃1(i), R̃2(i), R1 R2(i), W1(i), W2(i), W3(i),

W4(i), W5(i), Q, Q̃, W̃1(i), W̃2(i), W̃4(i), W̃5(i), N(i), S(i, j), Z̃(i) and matrices M̃(i),

J(i)and Y (i) satisfying:

R̃1 > R̃1(i), R̃2 > R̃2(i) (4.11)[
(1− pis)R̃1(i) + R̃2(i) M̃(i)

∗ Z̃(i)

]
≥ 0 (4.12)
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

Π(i) Γ̃T
1 (i) Γ̃T

2 (i) Ξ̃T (i) Γ̃T
3 (i) HT

1 (i) HT
2 (i)

∗ S̃(i)− JT (i)− J(i) 0 0 0 0 0

∗ ∗ −R 0 0 0 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −Q̃ 0 0

∗ ∗ ∗ ∗ ∗ −W1 0

∗ ∗ ∗ ∗ ∗ ∗ −W2


< 0 (4.13)

[
S(i, j) JT (i)

∗ X(j)

]
> 0 (4.14)

R1R̃1 = I, R2R̃2 = I, W̃1(i)W1(i) = I, W̃2(i)W2(i) = I, W̃4(i)W4(i) = I

W̃5(i)W5(i) = I, Q̃Q = I (4.15)

where

S̃(i) =

s∑
j=1

pijS(i, j),R = diag
{
R1,R2

}
, W1 = diag

{
W̃1(i), W̃2(i)

}
,

W2 = diag
{
W̃4(i), W̃5(i)

}
(4.16)

and

Π(i) = Λ̃(i) + Υ̃1(i) + Υ̃T
1 (i) + τ(i)Z̃(i)

Γ̃1(i) =
[
AX(i) B2Y (i) B1 E1 E1 B2 E1 E1

]
Ξ̃(i) =

[
C1X(i) D12Y (i) D11 E2 E2 D12 E2 E2

]
H1(i) =

[
H1X(i) 0 0 0 0 0 0 0

0 H3Y (i) 0 0 0 0 0 0

]

H2(i) =

[
0 δY (i) 0 0 0 0 0 0

0 δH3Y (i) 0 0 0 0 0 0

]
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Γ̃2(i) =

 √∑s
j=1 pijτ(j)√
τ(s)

[
AX(i)−X(i) B2Y (i) B1 E1 E1 B2 E1 E1

]
Γ̃3(i) =

(√
τs − τ1 + 1

)[
X(i) 0 0 0 0 0 0 0

]
Λ̃(i) = diag

{
−X(i),−XT (i)−X(i) + Q̃,

(
HT

2 W3(i)H2 − γI
)
,

−W1(i),−W2(i),−W4(i),−W5(i),−W3(i)
}

Υ̃1(i) = M̃T (i)[I − I 0 0 0 0 0 0]. (4.17)

Then the system (4.1) with (4.3) is stochastically stable with the prescribed H∞ perfor-

mance. Furthermore the controller gains are given as follows:

K(i) = Y (i)X−1(i) (4.18)

Proof: Proof is given in Appendix 11.

4.4 Simulation Examples

4.4.1 Example 1:

Consider the following unstable continuous-time plant given in [137]:

T (s) =
e−0.34s

s+ 1
(4.19)

This plant is discretized with a sampling rate of 0.1 second and its state space represen-

tation is

x(k + 1) = 1.0152x(k) + 0.1w(k) + 0.1052u(k), x(0) = 0

z(k) = 0.2x(k) + 0.15w(k) + 0.04u(k)
(4.20)

Assume that the system uncertainties are norm bounded and are characterized by the

following matrices:

E1 = 0.01, E2 = 0.005,

H1 = .05, H2 = 0.004, H3 = 0.007.
(4.21)

The congestion control parameter δ in the example is set as 0.3. It is assumed that the

network-induced delays are characterized by a Markov chain taking values in a finite

set S = {1, 2, 3}, which corresponds to 2, 3 and 4 second delays, respectively. The
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transitions in Markov chain modes follow the probability matrix given as

Pτ =


0.3575 0.5864 0.0561

0.3702 0.6157 0.0141

0.3702 0.6157 0.0141

 (4.22)

To obtain the transition probability matrix, a series of experiments are performed on a

cellular network. The plant data are sent across the cellular channel, using a modem

manufactured by MultiTech Systems. This special modem uses AT commands to com-

municate and capable of the transmission time logging. The data are sent to a remote

logging device using Microsoft Visual Studio 2008 and a third party toolkit. The data

are periodically sent for a specific time and several experiments are carried out to obtain

the multiple distributions of the delays. At the end of the experiment phase a set of

data that contains one week’s worth of measurements is used to obtain the probabilities.

Figure 4.2 shows the random network-induced delays used in the simulation. Using

Theorem 4.3.2, the following set of K(i) values are obtained:

K(1) = −1.8321; K(2) = −2.1224; K(3) = −1.6992. (4.23)

The bandwidth utilization depends upon unstable poles of the plant and can be calcu-

lated as

B ≥ 2

n∑
i=1

log2 |λi(A)| (4.24)

where B is bandwidth, λi are unstable poles of the plant with system matrix A. In the

following discussion, it is assumed that the bandwidth utilized using (4.24)is 100% and

its utilization changes with the change in congestion control parameter δ. By using the

proposed technique of the congestion control, the reduced data transmission can be seen

in Figure 4.3. The transmitted data samples are represented as 1 and the samples that

are not sent are represented as 2. It can be seen that the data samples are transmitted

frequently in the transient state. However, when the system approaches the steady state

then there is a significant reduction in the transmission. The figure shows that as the

error increases from the prescribed percentage δx(k), then the feedback information is

sent to stabilize the system. In Figure 4.4, the system 4.20 is run uncontrolled for the

first 50 seconds and has gone unstable. After 50 seconds, the proposed controller is

applied which stabilized the system efficiently.

The effect of δ on the channel bandwidth and the system performance is analyzed

through a series of simulations. The impact of different values of δ on the bandwidth

consumption is summarized in the Table 4.1. It can been seen that the bandwidth
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Figure 4.2: Random delays

utilization is reduced as δ is increased. However with δ > 0.95, the system becomes

unstable. It shows that there is always a trade off between the system performance and

the bandwidth utilization. This can be verified by analyzing the H∞ performance with

different values of the δ. It is shown in Figure 4.5 that by increasing δ, the magnitude

of Tzw(k) is increasing, which stands for the degradation in the H∞ performance.

Table 4.1: Effect of δ on bandwidth utilization

δ Bandwidth utilization

0 100%

0.3 35.6%

0.5 33.66 %

0.8 31.68%

> 0.95 Unstable
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Figure 4.5: Energy ratio of output to disturbance

4.4.2 Example 2:

Consider the system (4.1) with the following matrices:

A =


0.8 −0.25 0 1

1 0 0 0

−.8 0.5 0.2 −1.03

0 0 .5792 0

 , B1 =


0

0.1000

0

0.0500

 , B2 =


0.1000

0.0300

0.0400

0.1000



C1 =
[
0 0.1000 0 0

]
, E1 =


0.01

0.09

0.02

0.04

 , E2 = 0.01,

H1 =
[
0.05 0.02 .03 .04

]
, H2 =

[
0.07 0.04

]
, H3 = 0.04

Assume that the same Markov chain is used to model the random delays. Each value

of the Markov chain corresponds to 1, 1.5 and 2 second delays, respectively. The same

transition probability matrix is assumed as in Example 1. The congestion control pa-

rameter δ in this example is set as 0.1. Using Theorem 4.3.2, the following set of gain

values are obtained.
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Figure 4.6: Energy ratio of output to disturbance

K(1) =
[
−0.0245 −0.0091 −0.5614 −0.2580

]
K(2) =

[
−0.0166 −0.0036 −0.5675 −0.2489

]
K(3) =

[
−0.0423 0.0081 −0.4889 −0.2452

]
(4.25)

Table 4.2: Effect of δ on bandwidth utilization

δ Bandwidth Consumption

0 100%

0.10 81.95%

0.40 69.26%

0.70 55.26%

> 0.90 Unstable

Figure 4.7 shows the closed-loop system response. It can be seen that the proposed

design stabilized the system efficiently. Similar to Example 1, the effect of different

values of the δ on the bandwidth utilization is analyzed . It can be seen from Table 4.2

that increasing δ results in decreasing the bandwidth utilization. However, the system

becomes unstable as δ > 0.90. Furthermore, the effect of δ on the H∞ performance is

also analyzed and plotted in Figure 4.6.
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Figure 4.7: System states

4.5 Conclusions

A congestion control technique is proposed for the NCSs that compares current and

last transmitted measurements before sending them over the network. With this simple

congestion control scheme the stability criteria for the NCSs are obtained. By applying

the Schur’s complement and the congruence transformation on the stability criteria,

the sufficient conditions for the existence of a delay mode-dependent robust H∞ state

feedback controller are obtained. The obtained conditions are in BMIs, therefore a

cone complementarity algorithm is proposed to convert this non-convex problem into

a quasi-convex optimization problem. The controller matrices are obtained effectively

by the available mathematical tools e.g., the YALMIP toolbox of the MATLAB. The

effectiveness of the proposed technique in terms of the bandwidth utilization and the

H∞ performance is demonstrated using the simulation examples. It is observed that

the bandwidth utilization can be reduced to half without much effect on the system

performance. However, the system becomes unstable when congestion control parameter

δ = 0.90. It is also noted that the congestion control conditions are violated when the
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system is unstable and data is always transmitted. However, as the system moves

towards the stability regions then the number of data transmissions reduces gradually.



Chapter 5

Robust H∞ Dynamic Output

Feedback Control of NCSs with

Congestion Control

This chapter investigates a robust H∞ dynamic output feedback controller for networked

control systems (NCSs) with a simple congestion control scheme. This scheme enables

the NCSs design to enjoy the advantages of both time-triggered and event-triggered

systems. The proposed scheme compares the current measurement with the last trans-

mitted measurement. If the difference between them is less than a prescribed percentage

of the current measurements then no measurement is transmitted to the controller and

the controller always uses the last transmitted measurements to calculate the feedback

gains. Moreover this technique is applied to the controller output as well. The stability

criteria for the closed-loop system is formulated using the Lyapunov-Krasovskii (L-K)

functional approach. The sufficient conditions for the controller are given in terms of

solvability of bilinear matrix inequalities (BMIs). These BMIs are converted into quasi-

convex linear matrix inequalities (LMIs) that are solved using the cone complementarity

linearization algorithm. A simulation example is used to evaluate how effective the sim-

ple congestion control scheme is in reducing network bandwidth [105].

5.1 Introduction

In the NCSs the control loops are closed over the networks and the control components

are distributed over a wide geographical area. The purpose of the network in the NCSs

is not only to act as a communication medium for the signal transmission but each

system component should also be an active network participant [157]. In the NCSs, it

77
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is no longer feasible to assume the perfect information flow between the plant and the

controller [158]. The various network constraints such as packet dropouts and disordering

due to different routing paths, time delays due to buffering and queuing in the routers,

variable transmission rates due to the bus contention, and quantization errors due to the

limited channel capacity make the NCS analysis, design and real time implementation

very challenging [51, 138, 150]. On the other hand, the NCSs have wide application

in the fields such as power distribution through the smart grids, power control in the

communication systems, queue management in the routers, unmanned aerial vehicle

(drones) control, and in the manufacturing industry. Therefor researches in the NCSs

are very popular in the control systems research community.

In the NCSs literature two techniques have been investigated for the signal sampling

between the distributed system components: 1) The time-triggered or periodic sampling

2) The event-triggered sampling. In the first approach the data is sampled and trans-

mitted at the regular time intervals (TDMA, time division multiple access) [30, 86, 96].

This assumption reduces the analysis and the design complexity due to the fact that it is

synchronous and quasi-deterministic. These features make the time-triggered technique

more fault tolerant and modular [39] than the event-triggered technique. However, it is

less efficient for the real-time implementation due to sampling jitter, strict scheduling

requirements and the network-induced time delays which can cause performance degra-

dation and the instability. Furthermore, it does not consider the efficient usage of the

limited communication resources such as channel bandwidth or capacity. In the event

triggered technique, sampling is done on the occurrence of an event, for example the level

crossing-based sampling, the Lebesgue sampling [159], or the dead band sampling [165].

The event-triggered technique is more suitable for the real-time NCS implementation

due to its ability to react quickly to asynchronous external events, lower CPU usage and

efficient network resource utilization [157, 158]. In general, whether a time-triggered

or an event-triggered technique is selected, it depends entirely on the application. Re-

cently, some researchers adopted a hybrid approach that benefited both time-triggered

and event-triggered sampling [166].

In the NCSs the main issue with the time-triggered sampling approach is that it only

considers the plant dynamics and completely ignores the communication constraints such

as finite bandwidth and the network congestion. In this chapter this issue is resolved by

using a simple technique that considers the difference between current and the previously

transmitted signals. In this technique sensor will only transmit the next measurement to

the controller when the difference between the two signals exceeds a given value. On the

other side, the controller continues to use the previous information until the signal value

is updated. This technique results in more efficient utilization of bandwidth and in the

congestion control. Hence, this approach has the advantages of both time-triggered and
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the event-triggered techniques. Furthermore this congestion control technique is also

applied on the controller output. The main contributions of the chapter are summarized

as follows:

• A simple congestion control, both on the system input and output, has been pro-

posed for the NCSs.

• An observer-based, dynamic output feedback controller is proposed to ensure the

stability of the NCSs with therandom delays.

• The effect of the congestion control on the system is observed in sense of the

H∞ performance.

The rest of the chapter is organized as follows. Section 5.2 provides the system de-

scription, the modelling of the delays, the congestion control technique and the problem

formulation. In Section 5.3, the main results for the stability analysis and the synthesis

of a robust H∞ output feedback controller are given in terms of the BMIs. A cone com-

plementarity algorithm is employed to convert the BMIs into the quasi-convex LMIs.

Section 5.4 comprises of an example to demonstrate the effectiveness of the simple con-

gestion control in terms of reducing the network’s bandwidth. Finally, the conclusions

are drawn in Section 5.5.

5.2 System Description and Definitions

Consider the system framework shown in Figure 5.1. A class of the uncertain discrete-

time linear systems under consideration is described by the following model:

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]u(k), x(0) = 0

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]u(k)

y(k) = C2x(k)

(5.1)

where x(k) ∈ ℜn, u(k) ∈ ℜm, z(k) ∈ ℜm1 , y(k) ∈ ℜm2 are the state, input, controlled

output and measured output, respectively. w(k) ∈ ℜm3 is the disturbance that belongs to

L2[0,∞), the space of square summable vector sequence over [0,∞). The matrices A, B1,

B2, C1, D11, D12 and C2 are of the known matrices with appropriate dimensions. The

matrix functions ∆A(k), ∆B1(k), ∆B2(k), ∆C1(k), ∆D11(k) and ∆D12(k) represent

the norm bounded time-varying uncertainties in the system which satisfy the conditions

given in the assumption 3.2.1.
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Figure 5.1: NCSs with sensor-to-controller delay

Let {rk, k} be a discrete homogeneous Markov chain taking values in a finite set S =

{1, 2, · · · , s}, with the following transition probability from the mode i at a time k to

the mode j at a time k + 1:

pij := Prob{rk+1 = j|rk = i}

where i, j ∈ S, 0 ≤ pij ≤ 1 and
∑s

j=1 pij = 1. In this chapter, the random delay τk is

modelled by a finite state Markov process as τk = τ(rk).

5.2.1 Congestion Control Scheme

To reduce the network congestion, a new technique using the difference between the

signals is proposed. If the difference between the current measurement and the pre-

viously transmitted measurement is less than a prescribed percentage of the current

measurement, then the current measurement will not be transmitted. i.e., if:

|y(υ)− y(k)| ≤ δ1|y(k)| (5.2)
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then y(k) is not transmitted. Otherwise, y(k) will be transmitted and value stored

in the controller buffer will be updated i.e., y(υ) = y(k), where y(k) is the current

measurement, y(υ) is the last transmitted measurement and is stored in in buffer, δ1 is

the congestion control parameter on the plant output.

On the controller side, the transmitted signal y(υ), after the network-induced delay

τrυ , will be used as the feedback information. It will be either currently updated i.e.,

y(υ − τrυ) = y(k − τrk) or previously stored information i.e., y(υ − τrυ). A dynamic

observer based output feedback controller is proposed:

x̂(k + 1) = Ac(rk)x̂(k) +Bc(rk)y(υ − τrυ)

u(k) = Cc(rk)x̂(k) (5.3)

where x̂(k) is the controller state, Ac(i), Bc(i) and Cc(i) are the controller matrices. The

similar congestion control technique is applied to controller output:

|u(ϑ)− u(k)| ≤ δ2|u(k)| (5.4)

where u(ϑ) is the previously transmitted controller output, u(k) is the currently cal-

culated controller output and δ2 is the congestion control parameter for the controller

output.

By using (5.1), (5.2), (5.3) and (5.4), the following closed-loop system is obtained:

ζ(k + 1) = [Acl(rk) + Ē1F (k)H̄1(rk)]ζ(k) + [B̄2 + Ē1F (k)H3]Ccl(rk){ζ(ϑ)− ζ(k)}+

Bcl(rk)C̄2ζ(υ − τrυ) + [B̄1 + Ē1F (k)H2]w(k)

z(k) = [C̄1(rk) + E2F (k)H̄1(rk)]ζ(k) + [D12 + E2F (k)H3]Ccl(rk){ζ(ϑ)− ζ(k)}

+[D11 + E2F (k)H2]w(k). (5.5)

where ζ(k) = [x(k) x̂(k)]T ,

Acl(rk) =

[
A B2Cc(rk)

0 Ac(rk)

]
, Bcl(rk) =

[
0

Bc(rk)

]
, B̄1 =

[
B1

0

]

B̄2 =

[
B2

0

]
, C̄2 =

[
C2 0

]
, Ē1 =

[
E1

0

]
, H̄1(rk) =

[
H1 H3Cc(rk)

]
Ccl(rk) =

[
0 Cc(rk)

]
, C̄1(rk) =

[
C1 D12Cc(rk)

]
.

The problem under our study is formulated as follows.

Problem Formulation:
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Given a prescribed γ > 0, design a dynamic output feedback controller of the form (5.3)

such that

1. The system (5.1) with (5.5) and w(k) = 0 is stochastically stable, i.e, there exists

a constant 0 < α < ∞ such that

E

{ ∞∑
ℓ=0

ζT (ℓ)ζ(ℓ)

}
< α (5.6)

for all ζ(0), r0.

2. Under the zero-initial condition, the controlled output z(k) satisfies

E

{ ∞∑
k=0

zT (k)z(k)|r0

}
< γ2

∞∑
k=0

wT (k)w(k) (5.7)

for all nonzero w(k).

Before ending this section, we introduce the following lemma, which will play a vital

role in deriving our main results.

Lemma 5.2.1. Let x̄(k) = x(k + 1)− x(k) and ζ̃(k) =
[
ζT (k) ζT (k − τ(k)) wT (k)

ζT (k)H̄T
1 (rk)F

T (k)wT (k)HT
2 F

T (k) (ζT (υ − τrυ)− ζT (k− τrk)) (ζT (ϑ)− ζT (k))CT
cl(rk)

(ζT (ϑ) − ζT (k))CT
cl(rk)H

T
3 F

T (k)
]T

∈ ℜl, then for any matrices R ∈ ℜn×n, M ∈ ℜn×l

and Z ∈ ℜl×l, satisfying [
R M

MT Z

]
≥ 0 (5.8)

the following inequality holds:

k−1∑
i=k−τ(rk)

x̄T (i)Rx̄(i) ≤ ζ̃T (k)
{
Υ1 +ΥT

1 + τ(rk)Z
}
ζ̃(k) (5.9)

where Υ1 = MT [diag{I, 0} diag{−I, 0} 0 0 0 0 0 0].

Proof:

The lemma can be proved along the same lines as given in 3.2.1.
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5.3 Stability Analysis and Controller Synthesis of NCSs

with Congestion Control

The following theorem proposes stability criteria for uncertain discrete-time systems

(5.1) with random communication delays and congestion control on both system input

and output.

Theorem 5.3.1. For given controller matrices Ac(i), Bc(i) and Cc(i) where i = 1, · · · , s,
δ1 > 0, δ2 > 0 and γ > 0, if there exist sets of positive-definite matrices P (i), R1(i),

R1, R2(i), R2, W1(i), W2(i),W3(i), Q, Z(i), and matrices M(i) satisfying the following

inequalities:

R1 > R1(i), R2 > R2(i) (5.10)[
(1− pi(i+1))R1(i) +R2(i) M(i)

∗ Z(i)

]
≥ 0 (5.11)

Λ(i)+ΓT
1 (i)P̃ (i)Γ1(i)+ΓT

2 (i) [τ̃iR1 + τsR2] Γ2(i)+Υ1(i)+ΥT
1 (i)+τ(i)Zi+ΓT

3 (i)Γ3(i) < 0

(5.12)

where

Γ1(i) =
[
Acl(i) Bcl(i)C̄2 B̄1 Ē1 Ē1 Bcl(i)C̄2 B̄2 Ē1

]
Γ2(i) =

[
Ā(i) 0 B̄1 Ē1 Ē1 0 B̄2 Ē1

]
Γ3(i) =

[
C1(i) 0 D11 E2 E2 0 D12 E2

]
Λ(i) = diag

{(
(τ(s)− τ(1) + 1)Q+ δ22C

T
cl(i)Ccl(i) + δ22C

T
cl(i)H3(i)

TW3(i)H3Ccl(i)

+H̄T
1 (i)W1(i)H̄1(i)− P (i)

)
, (δ21I −Q),

(
HT

2 W2(i)H2 − γ2I
)
,−W1(i),

−W2(i),−I,−I,−W3(i)
}

P̃ (i) =
i+1∑
j=1

pijP (j)

τ̃(i) =

i+1∑
j=1

pijτ(j)

Υ1(i) = MT (i)[diag{I, 0} diag{−I, 0} 0 0 0 0 0 0]

Ā(i) =

[
A− I B2Cc(i)

0 0

]
. (5.13)

Then the system (5.5) with (5.3) is stochastically stable with the prescribed H∞ performance.

Proof: Theorem is proved in Appendix 12
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The following theorem provides sufficient conditions for the existence of delay mode

dependent robust H∞ controller.

Theorem 5.3.2. For given γ > 0, δ1 > 0 and δ2 > 0, if there exist positive symmetric

matrices X(i) > 0, Y (i) > 0, Y(i) > 0, W1(i), W1(i), W2(i), W3(i), W3(i), Q, Q, N(i),

N (i), R1, R1, R1(i), R2, R2, R2(i), S(i, j), Z̄(i), and matrices A(i), B(i), C(i), J(i),
M̄(i) satisfying the following inequalities for all i, j ∈ S:

R1 > R1(i), R2 > R2(i) (5.14)[
N(i) M̄(i)

∗ Z̄(i)

]
≥ 0 (5.15)



Π(i) Γ̄T
1 (i) Γ̄T

2 (i) Γ̄T
3 (i) Γ̄T

4 (i) Γ̄T
5 (i) Γ̄T

6 (i)

∗ −Ξ̃(i) 0 0 0 0 0

∗ ∗ −R 0 0 0 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −Q 0 0

∗ ∗ ∗ ∗ ∗ −W1(i) 0

∗ ∗ ∗ ∗ ∗ ∗ −W(i)


< 0 (5.16)

[
S(i, j) JT (i)

Y (j)

]
> 0 (5.17)

[
(1− pi(i+1))R1(i) +R2(i) T T (i)

∗ N (i)

]
> 0 (5.18)

N (i)N(i) = I, R1R1 = I, R2R2 = I, QQ = I, (5.19)

Y(i)Y (i) = I, W1(i)W1(i) = I, W3(i)W3(i) = I, (5.20)
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where

Pi(i) = Λ̄(i) + Ῡ1(i) + ῩT
1 (i) + τ(i)Z̄(i)

Λ̄(i) = diag
{
−

[
Y (i) I

I X(i)

]
,−Q,

(
HT

2 W2(i)H2 − γ2I
)
,−W1(i),−W2(i),

−I,−I,−W3(i)
}

Ῡ(i) = M̄T (i)[diag{I, 0} diag{−I, 0} 0 0 0 0 0 0]

Γ̄1(i) =
[
Ǎcl(i) B̌cl(i)C̄2 B̌1 Ě1 Ě1 B̌cl(i)C̄2 B̌2 Ě1

]
Γ̄2(i) =

[√
τ̃(i)I

√
τ(s)I

]T [
Ǎ(i) 0 B̄1 Ē1 Ē1 0 B̄2 Ē1

]
Γ̄3(i) =

[
Č1(i) 0 D11 E2 E2 0 D12 E2

]
Γ̄4(i) =

[ √
(τ(s)− τ(1) + 1)T (i) 0 0 0 0 0 0 0

]
Γ̄5(i) =

[
Ȟ1(i) 0 0 0 0 0 0 0

]

Γ̄6(i) =


0 δ1I 0 0 0 0 0 0

δ2Čcl 0 0 0 0 0 0 0

δ2H3Čcl 0 0 0 0 0 0 0



W(i) = diag {I, I,W3(i)} , R = diag
{
R1,R2

}
Ξ̃(i) =

[
−(S̃(i)− J(i)− JT (i)) I

I X̃(i)

]
, X̃(i) =

i+1∑
j=1

pijX(j), S̃(i) =

i+1∑
j=1

pijS(i, j),

Ǎcl(i) =

[
AY (i) +B2C(i) A

A(i) X̃(i)A

]
, B̌cl(i) =

[
0

B(i)

]
, B̌1(i) =

[
B1

X̃(i)B1

]
,

Ě1(i) =

[
E1

X̃(i)E1

]
, Ǎ(i) =

[
(A− I)Y (i) B2C
0 0

]
, Čcl(i) = [C(i) 0] ,

Č1(i) = [C1Y (i) +D12C(i) C1] , B̌2(i) =

[
B2

X̃(i)B2

]
, Ȟ1(i) = [H1Y (i) +H3C H1] ,

T (i) =

[
Y (i) I

Y (i) 0

]
and T (i) =

[
0 Y(i)

I −I

]
.

Then the closed-loop system is stochastically stable with the prescribed H∞ performance.

Furthermore, a suitable controller is given as follows

Ac(i) =
(∑i+1

j=1 pijY
−1(j)− X̃(i)

)−1(
A(i)− X̃(i)(AY (i) +B2C(i))

)
Y −1(i)

Bc(i) =
(∑i+1

j=1 pijY
−1(j)− X̃(i)

)−1
B(i)

Cc(i) = C(i)Y −1(i).

(5.21)
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Proof: Theorem is proved in Appendix 12.

5.4 Simulation Example

Consider the uncertain discrete system with the following parameters:

A =


0.8 −0.25 0 1

1 0 0 0

−.8 0.5 0.2 −1.03

0 0 0.5793 0

 , B1 =


0

0.1000

0

0.0500

 , B2 =


0.1000

0.0300

0.0400

0.1000



C1 =
[
0 0.1000 0 0

]
, E1 =


0.01

0.09

0.02

0.04

 , E2 = 0.01,

H1 =
[
0.05 0.02 .03 .04

]
, H2 =

[
0.07 0.04

]
, H3 = 0.04

In the following simulation it is assumed that the F (k) = sin(k), and it can be seen that

F T (k)WF (k) ≤ W. It is also assumed that the network-induced delays are characterized

by a Markov chain taking values in a finite set S = {1, 2, 3}, that corresponds to the

delays of 2, 3 and 4 seconds, respectively. The transitions in the Markov chain modes are

under the following probability matrix which is obtained by performing the experiments

on Vodafone cellular network:

Pτ =


0.4175 0.5825 0

0.3702 0.6157 0.0141

0.3702 0.6157 0.0141

 (5.22)

Figure 5.2 shows the random network-induced delays used in the example. The conges-

tion control parameters δ1 and δ2 are set as 0.5 for the simulation. Using Theorem 5.3.2,

the following set of the controller matrices are obtained.
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Figure 5.2: Random delays

Ac(1) =


−0.3522 −0.0693 0.2142 −0.1467

1.0003 −0.0003 −0.0001 0.0003

−0.8006 0.5005 0.2001 −1.0304

−0.0002 0.0002 0.5792 −0.0002

 , Bc(1) =


−0.0027

−0.0020

0.0035

0.0015


Cc(1) =

[
−1.1527 0.1811 0.2144 −1.1470

]
.

Ac(2) =


−0.3828 −0.0659 0.2318 −0.1380

1.0003 −0.0003 −0.0001 0.0003

−0.8005 0.5005 0.2001 −1.0304

−0.0002 0.0002 0.5792 −0.0002

 , Bc(2) =


−0.0027

−0.0020

0.0035

0.0015


Cc(2) =

[
−1.1833 0.1844 0.2319 −1.1383

]
.

Ac(3) =


−0.1994 0.0855 0.0716 7− 0.3468

1.0004 −0.0005 −0.0001 0.0004

−0.8008 0.5006 0.2002 −1.0306

−0.0003 0.0003 0.5792 −0.0003

 , Bc(3) =


−0.0028

−0.0021

0.0036

0.0015


Cc(3) =

[
−1.0000 0.3360 0.0718 −1.3472

]
.

The stabilized system states, in the presence of the time delays and the congestion

control mechanism, are shown in the Figure 5.3.

The effect of δ1 and δ2 on the channel bandwidth consumption and the system perfor-

mance is analyzed through a series of the simulations. It is summarized in the Table

5.1, where it can been seen that the bandwidth consumption is reduced as δ1 and δ2
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Figure 5.3: System states

Table 5.1: Effect of δ1 and δ2 on bandwidth consumption

δ1 δ2 Aggregated Bandwidth Consumption Minimized γ

0.1 0.1 75.00% 0.6302

0.5 0.5 73.00 % 0.6380

0.9 0.8 70.00 % 0.6576

> 1 > 1 undesired response ∞

are increased. However, the bandwidth consumption can not be reduced to less than

70%, because with either δ1 > 1 or δ2 > 1, the system becomes oscillatory. It shows

that there is always a trade off between the system performance and the bandwidth

consumption. The minimized γ, the H∞ performance parameter, for different values of

δ1 or δ2 is obtained and is plotted in the Figure 5.4. It is observed that the lower bound

on the γ is increased with the increase in the congestion control parameters. It supports

the argument that there is a trade off between the system performance and the reduced

bandwidth.

Finally, for the prescribed value of the γ = 0.5 the effect of changing δ1 and δ2 on the

H∞ performance is analyzed. It is elaborated in the Figure 5.5 that by increasing the
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Figure 5.4: Minimized γ for different values of δ1 and δ2

Figure 5.5: Effect of δ1 and δ2 on H∞ performance

δ1 and δ2, the magnitude of Tzw(k) i.e., the transfer function between the disturbance

and the output is increasing which shows the degradation in the H∞ performance.

Remark 5.4.1. The proposed design enjoys the advantages of both time triggered and

event triggered systems.The proposed theory uses comparatively mature and well devel-

oped methods to present the stability criteria and controller synthesize as it considers

the closed -loop system as time triggered system. On the other hand it uses the reduced

communication resources such as channel bandwidth and the transmission power (Wire-

less LANs),that is the key feature of the event triggered systems. However, the design

does not help in the computational efficiency at the controller side and requires same

computational cycles as the time triggered systems.
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5.5 Conclusions

A simple but the efficient network resource utilization and the congestion control scheme

has been provided in Chapter 4 for the NCSs. This technique compares the current and

the last transmitted measurements before sending them over the network. In this chap-

ter, the proposed scheme is applied both on the system inputs and outputs. The scheme

takes the advantage of both time triggered and event triggered sampling mechanisms.

With this congestion control scheme the stability conditions and a robust delay mode-

dependent output feedback controller are proposed. The closed-loop system stability

is obtained by using a L-K functional approach. On the basis of the stability condi-

tions sufficient conditions for the controller matrices have been obtained in terms of

the BMIs. Since BMIs are non-convex in nature, a cone complimentarity algorithm is

used to convert the non-convex problem into a quasi-convex optimization problem that

are easily solved by the available mathematical tools, for example, the YALMIP and the

LMI toolboxes of the MATLAB. The effectiveness of the developed technique in terms of

the bandwidth utilization and the H∞ performance is demonstrated using a simulation

example. It is observed that there is always tradeoff between the bandwidth utilization

and the H∞ performance.



Chapter 6

Robust H∞ Dynamic Output

Feedback Control of NCSs with

Multiple Quantizers

This chapter talks about stability and stabilizability problems of networked control sys-

tems(NCSs) with multiple quantizers. More precisely, the system and controller outputs

are quantized at different quantization levels and experiencing different network-induced

delays. This configuration is more natural in NCSs. Network-induced delays are mod-

elled by a Markov chain. Quantization errors are bounded by a sector bound approach

and represented as convex poly-topic uncertainties. Lyapunove-Krasovskii(L-K) func-

tional approach is used to develop stability criteria for NCSs with multiple quantizers.

On the basis of the stability criteria, a quantized robust H∞ output feedback control

law is proposed in terms of bilinear matrix inequalities (BMIs). Furthermore an itera-

tive cone complementarity algorithm is used to convert these BOIS into a quasi-convex

optimization problem which can be solved easily. A simulation example is provided to

demonstrate the effectiveness of proposed theorems [107].

6.1 Introduction

The distributed control system in which control loops are closed over real time networks

are called NCSs. The rapid development in the communication systems and advance-

ment in the control designs greatly enhanced the system modularity, flexibility and

reduced processing cost in the NCSs making them highly popular in the industry. How-

ever incorporation of the network in the control loops results in the various constraints

such as (1) time delays and packet dropouts due to limited bandwidth; (2) quantization

91
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errors caused by hybrid nature of NCSs; (3) variable sampling/transmission intervals

due to multiple nodes; and (4) network security due to shared communication networks

[51, 52, 86]. The quality of control (QOC) in the NCSs can be improved either by de-

veloping network scheduling algorithms or by designing modified control strategies that

can cater for network constraints.

The time delays are inevitable in the NCSs due to remote location of the controllers

and the network congestion. Therefore, the NCSs are considered as a sub class of time-

delayed systems (TDSs) [53]. In NCSs, most of the research has been carried out on time

varying delays because the network-induced delays are always time varying in nature.

The time varying delays are treated with two approaches (1) deterministic methods and

(2) stochastic methods [57]. In the first method the delays are bounded while in the

second method delays follow certain probability distributions such as Markov chains

and Bernoulli random sequences [64–66, 68]. In this chapter the time varying delays are

modelled as random modes of a Markov chain.

In the recent years the problem of quantized feedback control has seen a growing research

interest due to the evolution of computer based control and NCSs. The quantization

effects can be investigated in two aspects: (1) mitigation of the quantization effects to

achieve the system performance and stability and (2) considering quantizers as informa-

tion coders. In the first approach, stability analysis and controller synthesis are done

in the presence of a quantizer by [69, 70]. The second approach investigates how much

information from a quantizer is enough to achieve the system stability and certain per-

formance level. It is proved by [72] that the minimum quantization information required

for the system stability depends on the unstable poles of plant. The logarithmic quan-

tizers can give minimum or coarsest quantization densities [75]. The similar research to

use optimal quantizers and coarsest quantization densities is carried out by [76], while

sustaining the system stability for Markovian jump systems (MJSs).

The quantized feedback control problem can be classified as: (1) the quantized feedback

with static quantizers and (2) the quantized feedback with dynamic quantizers. The

former approach assumes that the quantization value at any time instant k does not

depend on the previous quantization values [72, 75]. The latter approach considers

dynamic quantizers with an internal state. It helps to enlarge the region of attraction

and reduces limit cycles [69, 77]. A static quantizer can be used as a dynamic quantizer

with help of dynamic scaling. In this case the input signal for the quantization is pre-

scaled and this scaling can be done online [78].

A lot of research has been done on the NCSs with a single quantizer on one side of com-

munication network such as from sensor to controller end [80]. However, the quantizers

are required on both controller input and output in real time NCSs. This scenario is
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discussed by [81] in which a quantized state feedback is proposed with a single quan-

tizer each on system inputs and outputs. On the other hand, the data on different

sensor nodes is available on different times that requires a separate quantizer for each

node. This consideration results in a less conservative design due to different timing

parameters of the sensor nodes. It is more natural in the NCSs because a single quan-

tizer for the multiple sensors requires a centralized decoder. This fact motivated the

author to propose a robust H∞ output feedback controller for the NCSs with multiple

quantizers. As each node with a separate quantizer acquires communication channels

at different times, therefore each quantized-signal experiences different network-induced

delays. The random delays are modelled by a Markov chain. The logarithmic quantizers

are deployed both on the sensors and the controller outputs. The quantization errors,

bounded by sectors, are represented as the convex poly-topic uncertainties. L-K func-

tional approach is used to develop the stability criterion for the NCSs. On the basis of

the stability criterion sufficient conditions for the existence of a quantized H∞ robust

output feedback controller are given in terms of bilinear matrix inequalities (BMIs). An

iterative algorithm is suggested to convert the BMIs into quasi-convex LMIs that can

be solved easily by MATLAB LMI ToolBox. An example is presented to illustrate the

effectiveness of the proposed design. Following are the main contributions of Chapter 3:

• The system and controller outputs are quantized at different quantization levels

and experience different network-induced delays. To the best of authors’ knowl-

edge, this has not been formally investigated before

• The quantization errors are bounded by a sector bound approach and are repre-

sented as poly-topic parametric uncertainties. The multiple quantizers are assumed

on both sensors and controller outputs.

This chapter is organized into five sections. In Section 6.2, system description, time

delay and quantization error modelling, the problem formulation and necessary lemmas

are given. Main results are provided in Section 6.3. Section 6.4 comprises a simulation

example to demonstrate the validity of proposed design. The conclusions are given in

Section 6.5.

6.2 System Description and Definitions

A networked control system, with input and output quantization, is shown in Figure

6.1.
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Figure 6.1: Layout of a networked control system with multiple quantizers

The class of uncertain discrete-time linear plants is described by the following model:

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]u(k), x(0) = 0

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]u(k)

y(k) = C2x(k) (6.1)

where x(k) ∈ ℜn, u(k) ∈ ℜm, z(k) ∈ ℜp, y(k) ∈ ℜr are the state, input, controlled

output and measured output, respectively. w(k) ∈ ℜm1 is the disturbance that belongs

to L2[0,∞), the space of square summable vector sequence over [0,∞]. The matrices A,

B1, B2, C1, D11, D12 and C2 are of known dimensions. The matrix functions ∆A(k),

∆B1(k), ∆B2(k), ∆C1(k), ∆D11(k) and ∆D12(k) represent time-varying uncertainties

and satisfy conditions given in the assumption 3.2.1.

In NCSs, there exist various type of delays such as sensor to controller delay τsc(k);

controller to actuator delay τca(k); and processing delay τc(k). However, all the delays

can be lumped together as [83]:

τ(k) = τsc(k) + τca(k) + τc(k)

Remark 6.2.1. Despite of the fact that if there is a same communication network between

sensor to controller and controller to actuator, it is true that τsc(k), τc(k) and τca(k)

can be different in size and nature and in other properties. Therefore all the delays

should be treated separately and the use of a separate Markov chains to model these
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delays is better. However in this work, one Markov chain is used to model closed-

loop lumped delays for the sack of simplicity. Separate Markov chains for different

delays can be considered in the future to reduce the conservatism of the design. It is

worth mentioning that transition probability matrix for the Markov chain is obtained

by performing a series of experiments on a wireless network for closed-loop delays.

All measured outputs will be quantized separately as shown in Figure 6.1. That’s why

each output yr(k) will bear different network-induced delay τ r(k) :

y(k − τ(k)) =


C1
2x(k − τ1(k))

C2
2x(k − τ2(k))

· · ·
Cr
2x(k − τ r(k))

 =
r∑

l=1

Glx(k − τ l(k)) (6.2)

where lth line of Gl ∈ ℜr×n is C l
2 and all other lines will be zeros. Consider a quantized

dynamic output feedback controller:

x̂(k + 1) = Ac(i)x̂(k) +Bc(i)q1(y(k − τ(k)))

v(k) = Cc(i)x̂(k)

u(k) = q2(v(k))

(6.3)

where x̂(k) is controller state; Ac(i), Bc(i) and Cc(i) are controller matrices and

q1(.) =
[
q11(.) q12(.) · · · q1r(.)

]T
q2(.) =

[
q21(.) q22(.) · · · q1m(.)

]T
Quantizer Description:

Quantization process can be accomplished using uniform and logarithmic quantizers.

Here, it is worth mentioning that in logarithmic quantizers the number of quantization

levels, although infinite, grow logarithmically in radial direction, rather than linearly. It

means that logarithmic quantizers result in coarser quantization densities than uniform

quantizers. In fact they result in coarsest quantization densities [72]. This fact motivated

the author to use logarithmic quantizers, described as follows:

qij(ν) =


ρnij if 1

1+δij
ρnij < ν ≤ 1

1−δij
ρnij , ν > 0 n = 0,±1,±2, · · ·

0, if ν = 0

−qij(−ν) if ν < 0

(6.4)
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where 0 < ρij < 1 is the quantization density of qij(·), and δij is related to ρij by:

δij =
1− ρij
1 + ρij

(6.5)

The associated quantized set U is given by:

U =
{
±ρnij , n = 0,±1,±2, · · ·

}∪
{0}. (6.6)

Now define the quantization error as:

eij(k) = qij(v(k))− v(k) = ∆qij(k)v(k), (6.7)

It has been shown by [75] that quantization error can be bounded by sector bound

approach and ∆qij(k) ∈ [−δij , δij ].

Time delay Modelling:

Let {rk, k} be a discrete homogeneous Markov chain taking values in a finite set S =

{1, 2, · · · , s}, transition probability from mode i at k to mode j at time k+1 is given as

pij := Prob{rk+1 = j|rk = i}

where i, j ∈ S.

The random delay τ(rk) is modelled by a finite state Markov process as τ r(i) = τ r(rk)

with 0 ≤ τ r(1) < τ r(2) < · · · < τ r(s) ≤ ∞. We assume that the controller will always

use the most recent data, i.e., if there is no new information coming at step k + 1, to

compensate longer delays, then q(y(k−τ(rk))) will be used for feedback. Thus the delay

τ(rk) can only increase at most by 1 at each step, and we constrain:

Prob{τ r(rk+1) > τ r(rk) + 1} = 0

With this assumption, we define the transition probability matrix as:

Pτ =



p11 p12 0 0 . . . 0

p21 p22 p23 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
... p(s−1)s

ps1 ps2 ps3 ps4 . . . pss


(6.8)
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with 0 ≤ pij ≤ 1 and
∑i+1

j=1 pij = 1.

Using (6.3), (6.4) and (6.7) , a quantized output feedback controller is proposed:

x̂(k + 1) = Ac(i)x̂(k) +Bc(i)(I +∆1(k))
∑r

l=1G
lx(k − τ l(i))

v(k) = Cc(i)x̂(k)

u(k) = q2(v(k)) = (I +∆2(k))Cc(i)x̂(k)

(6.9)

where ∆1(k), ∆2(k) are quantization errors:

∆1(k) = diag
{
∆11(k),∆12(k), · · ·∆1r(k)

}
∆2(k) = diag

{
∆21(k),∆22(k), · · ·∆2m(k)

}
∆1(k) and ∆2(k) can be represented as [79]:

∆1(k) =

2r∑
g=1

λ1g(k)δ
g
1 ,

2r∑
g=1

λ1g(k) = 1, λ1g(k) ≥ 0

∆2(k) =
2m∑
h=1

λ2h(k)δ
h
2 ,

2m∑
h=1

λ2h(k) = 1, λ2h(k) ≥ 0 (6.10)

where r and m are number of sensors and actuators respectively and δ
(g)
1 , δ

(h)
2 are

diagonal matrices of appropriate dimensions. Each matrix comprises of values either −δ

or δ, that is the sector bound for quantization error.

Using (6.10), the closed-loop system of (6.1) with (6.9) is given as follows:

ζ(k + 1) =

2r∑
g=1

λ1g(k)

2m∑
h=1

λ2h(k)
(
[Ah

cl(i) + Ē1F (k)H̄h
1 (i)]ζ(k) +Bcl(i)(I + δg1)

r∑
l=1

Ḡl

ζ(k − τ l(i)) + [B̄1 + Ē1F (k)H2]w(k)
)

z(k) =
2r∑
g=1

λ1g(k)
2m∑
h=1

λ2h(k)
(
[Ch

cl(i) + E2F (k)H̄h
1 (i)]ζ(k) + [D11 + E2F (k)H2]w(k)

)
(6.11)
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where ζ(k) = [x(k) x̂(k)]T ,

Ah
cl(i) =

[
A B2(I + δh2 )Cc(i)

0 Ac(i)

]
, Bcl(i) =

[
0

Bc(i)

]

B̄1 =

[
B1

0

]
, Ḡl =

[
Gl 0

]
, Ē1 =

[
E1

0

]
H̄h

1 (i) =
[
H1 H3(I + δh2 )Cc(i)

]
Ch
cl(i) =

[
C1 D12(I + δh2 )Cc(i)

]
.

The problem under our study is formulated as follows.

Problem Formulation:

Given a prescribed γ > 0, design a dynamic output feedback controller such that

1. the closed-loop system with w(k) = 0 is stochastically stable, i.e, there exists a

constant 0 < α < ∞ such that

E

{ ∞∑
ℓ=0

ζT (ℓ)ζ(ℓ)

}
< α (6.12)

for all ζ(0), r0.

2. Under the zero-initial condition, the controlled output z(k) satisfies

E

{ ∞∑
k=0

zT (k)z(k)|r0

}
< γ2

∞∑
k=0

wT (k)w(k) (6.13)

for all nonzero w(k).

The following lemmas play important roles in the derivation of the main results.

Lemma 6.2.1. Let x̄(k) = x(k+1)−x(k) and ζ̃(k) =
[
ζT (k) ζT (k−τ1(rk)) · · · ζT (k−

τ r(rk)) wT (k) ζT (k)(H̄h
1 )

T (i)F T (k) wT (k)HT
2 F

T (k)
]T

∈ ℜl , then for any matrices

R ∈ ℜn×n, M ∈ ℜn×t and Z ∈ ℜt×t satisfying[
R M

MT Z

]
≥ 0 (6.14)

the following inequality holds:

−
r∑

l=1

k−1∑
i=k−τ l(rk)

x̄T (i)Rx̄(i) ≤ ζ̃T (k)
{
Υ1 +ΥT

1 +

r∑
l=1

τ l(rk)Z
}
ζ̃(k)
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where Υ1 = MT [diag{I, 0} diag1{−I, 0} · · · diagr{−I, 0} 0 0 0].

Proof: Proof follows the same line of Lemma 3.2.1. ∇∇∇

Lemma 6.2.2. [87]:

If P > 0 then

AT
i PAj +AT

j PAi ≤ AT
i PAi +AT

j PAj

6.3 Stability Analysis and Controller Synthesis of NCSs

with Multiple Quantizers

Stability criterion for uncertain discrete-time systems with random communication de-

lays and multiple quantizers are given in the following theorem.

Theorem 6.3.1. For given γ > 0 and controller matrices Ac(i), Bc(i) and Cc(i) where

i = 1, · · · , s, if there exist sets of positive-definite matrices P (i), R1(i), R1, R2(i), R2,

W1(i), W2(i), Q
1,· · · ,Qr, Z(i), and matrices M(i) satisfying the following inequalities

and (6.17):

R1 > R1(i), R2 > R2(i) (6.15)[
(1− pi(i+1))R1(i) +R2(i) M(i)

∗ Z(i)

]
≥ 0 (6.16)


Λg,h(i) +

(
Γg,h
1 (i) + Γh,g

1 (i)
)T

P̃ (i)
(
Γg,h
1 (i) + Γh,g

1 (i)
)
+(

Γg
2(i) + Γh

2(i)
)T ∑r

l=1

[
τ̃ l(i)R1 + τ l(s)R2

] (
Γg
2(i) + Γh

2(i)
)

+
(
Γg
3(i) + Γh

3(i)
)T(

Γg
3(i) + Γh

3(i)
)
+ 4Υ1(i) + 4ΥT

1 (i) + 4
∑r

l=1 τ
l(i)Z(i)

 < 0

(6.17)

for all g = 1 · · · 2r and h = 1 · · · 2m
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where

Γg,h
1 (i) =

[
Ah

cl(i) Bcl(i)(I + δg1)Ḡ
1 · · ·Bcl(i)(I + δg1)Ḡ

r B̄1 Ē1 Ē1

]
Γh
2(i) =

[
Āh(i) 0 B̄1 Ē1 Ē1

]
Γh
3(i) =

[
Ch
cl(i) 0 D11 E2 E2

]
Λg,h(i) = diag

{(
4

r∑
l=1

(τ l(s)− τ l(1) + 1)Ql +
(
H̄g

1 (i) + H̄h
1 (i)

)T
W1(i)

(
H̄g

1 (i) + H̄h
1 (i)

)
−4P (i)

)
,−4Q1, · · · ,−4Qr, 4

(
HT

2 W2(i)H2 − γ2I
)
,−4W1(i),−4W2(i)

}
P̃ (i) =

i+1∑
j=1

pijP (j)

τ̃1(i) =

i+1∑
j=1

pijτ
1(j)

...

τ̃ r(i) =
i+1∑
j=1

pijτ
r(j)

Υ1(i) = MT (i)
[
diag{I, 0} diag1{−I, 0} · · · diagr{−I, 0} 0 0 0

]
Āh(i) =

[
A− I B2(I + δh2 )Cc(i)

0 0

]
δg1 = diag

{
δg11, δ

g
12, · · · δ

g
1r

}
δh2 = diag

{
δh21, δ

h
22, · · · δh2m

}
(6.18)

Then the closed-loop system is stochastically stable with the prescribed H∞ performance.

Proof: See Appendix 13. ∇∇∇

The following theorem provides procedure for designing an H∞ quantized output feed-

back controller.

Theorem 6.3.2. For a given γ > 0, if there exist positive symmetric matrices X(i) > 0,

Y (i) > 0, Y(i) > 0, W1(i), W1(i), W2(i), Q1 · · · Qr, Q1 · · ·Qr, , Dl,N(i), N (i), R1, R1,

R1(i), R2, R2, R2(i), S(i, j), Z̄(i) and matrices A(i), B(i), C(i), J(i), J̃ , M̄(i) satisfying

the following inequalities, and (6.21) for all i, j ∈ S:

R1 > R1(i), R2 > R2(i) (6.19)[
N(i) M̄(i)

∗ Z̄(i)

]
≥ 0 (6.20)
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

Λ̃(i)
(
Γ̄g,h
1 (i) + Γ̄h,g

1 (i)
)T (

Γ̄g
2(i) + Γ̄h

2 (i)
)T (

Γ̄g
3(i) + Γ̄h

3 (i)
)T

Γ̄T
4 (i)

(
Γ̄g,h
5 (i)

)T

∗ Ξ̃(i) 0 0 0 0

∗ ∗ −R 0 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ 4(D̃ − J̃T − J̃) 0

∗ ∗ ∗ ∗ ∗ −W1(i)


< 0

(6.21)

for all g = 1 · · · 2r and h = 1 · · · 2m[
S(i, j) JT (i)

∗ Y (j)

]
> 0 (6.22)

[
Dl J̃T

∗ Ql

]
> 0 (6.23)

[
(1− pi(i+1))R1(i) +R2(i) T T

∗ N (i)

]
> 0 (6.24)

N (i)N(i) = I, R1R1 = I, QlQl = I,R2R2 = I, Y(i)Y (i) = I, W1(i)W1(i) = I

(6.25)
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where

Λ̃(i) = 4
(
Λ̄(i) + Ῡ1(i) + ῩT

1 (i) +

r∑
l=1

τ l(i)Z̄(i)
)

Λ̄(i) = diag
{
−

[
Y (i) I

I X(i)

]
,−Q1, · · · ,−Qr,

(
HT

2 W2(i)H2 − γ2I
)
,

−W1(i),−W2(i)
}

Ῡ(i) = M̄T (i)[diag{I, 0} diag1{−I, 0} · · · diagr{−I, 0} 0 0 0]

Γ̄g,h
1 (i) =

[
Ǎh

cl(i) B̌cl(i)(I + δg)Ḡ1 · · · B̌cl(i)(I + δg)Ḡr B̌1 Ě1 Ě1

]
Γ̄h
2(i) =

√√√√ r∑
l=1

τ̃ l(i)I

√√√√ r∑
l=1

τ l(s)I

T [
Ǎh(i) 0 B̄1 Ē1 Ē1

]
R = diag

{
R1,R2

}
Γ̄h
3(i) =

[
Čh
cl(i) 0 D̄11 Ē2 Ē2

]
Γ̄4(i) =

[
T (i) 0 0 0 0

]
Γ̄g,h
5 (i) =

[
Ȟg

1 (i) + Ȟh
1 (i) 0 0 0 0

]
D̃ =

r∑
l=1

(τ l(s)− τ l(1) + 1)Dl

Ξ̃(i) =

[
S̃(i)− J(i)− JT (i) I

I −X̃(i)

]

X̃(i) =

i+1∑
j=1

pijX(j), S̃(i) =

i+1∑
j=1

pijS(i, j)

Ǎh
cl(i) =

[
AY (i) +B2(I + δ

(h)
2 )C(i) A

A(i) X̃(i)A

]

B̌1(i) =

[
B1

X̃(i)B1

]

Ě1(i) =

[
E1

X̃(i)E1

]
Čh
cl(i) =

[
C1Y (i) +D12(I + δ

(h)
2 )C(i) C1

]
Ȟh

1 (i) =
[
H1Y (i) +H3(I + δ

(h)
2 )C(i) H1

]
T (i) =

[
Y (i) I

Y (i) 0

]
and T (i) =

[
0 Y(i)

I −I

]
(6.26)
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Then the closed-loop system is stochastically stable with the prescribed H∞ performance.

Furthermore, a suitable controller is given as follows

Ac(i) =
(∑i+1

j=1 pijY
−1(j)− X̃(i)

)−1(
A(i)− X̃(i)(AY (i) +B2(I + δ

(h)
2 )C(i))

)
Y −1(i)

Bc(i) =
(∑i+1

j=1 pijY
−1(j)− X̃(i)

)−1
B(i)

Cc(i) = C(i)Y −1(i).

(6.27)

Proof: The proof is given in the appendix 13. ∇∇∇

6.4 Simulation Example

This example is demonstrated using MATLAB and Simulink-based TrueTime Simulator.

This toolbox is developed to simulate real time and networked control systems and

facilitates co-simulation of controller task execution in the real-time kernels and network

transmissions. The plant and controller communicate with each other over CSMA/AMP

(control area network) using the TrueTime functional blocks. The plant sends data using

ttSendMsg and ttGetMsg blocks. The controller is implemented using TrueTime Kernel

that is not only capable to transceive the analog data but can also communicate with

other nodes over the network. The TrueTime kernel supports the multi-task execution

and their scheduling on the basis of priorities and deadlines.

The following state space representation of a discrete time LTI system with the para-

metric uncertainties is considered:

A =


0.8 −0.25 0 1

1 0 0 0

−.8 0.5 0.2 −1.03

0 0 1 0

 , B1 =


0.5

0

0

0

 , B2 =


0.1 0.1

0.5 0

0.6 0.7

0 0.3


C1 =

[
0.8875 −0.1404

]
, C2 =

[
4.5 −4.5 0 2

4.5 −4.5 0 2

]
, D11 = 0.4

D12 =
[
0.4 0.5

]
, E1 =


0.01

0.09

0.02

0.04

 , E2 = 0.01, H1 =
[
0.05 0.02 .03 .04

]

H2 =
[
0.07 0.04

]
, H3 = 0.04.
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Figure 6.2: Random modes

The TrueTime simulator only supports local area networked control systems (LANCSs)

and ignores time delays, therefore the time delay block is introduced separately. A

Markov chain, that takes values from a finite set S = {1, 2, 3}, is used to model the

random delays. Each value of the Markov chain corresponds to 1, 2 and 3 second delays,

respectively. It is shown in Figure 6.2. The transition probability matrix governing the

modes of Markov chain is obtained through various experiments performed on a wireless

network:

Pτ =


0.4206 0.5794 0

0.4206 0.5705 0.0089

0.4206 0.5705 0.0089


In this example, individual quantizers are used to quantize each control input and system

output. The quantization densities are set using equations (6.5) and (6.10) as:

ρ1 =

[
0.9019 0

0 0.8981

]
, ρ2 =

[
0.8705 0

0 0.8508

]

where ρ1 and ρ2 are the quantization densities at the system outputs and the control

inputs, respectively. The H∞ performance objective γ, against non-parametric uncer-

tainties, is set 0.5. For the closed-loop system, controller matrices are obtained using

MATLAB LMI Control Toolbox and the cone complementary algorithm, outlined in the
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previous section:

Ac(1) =


0.0384 0.4677 −0.0631 0.7252

0.2325 0.2524 0.5041 0.3259

0.1614 −0.6649 −0.3427 −0.2896

0.3370 −0.1594 0.5081 −0.0591

 , Bc(1) =


−47.1536 47.314

7.1768 −7.0820

−4.8139 4.6236

−20.3464 20.3152


Cc(1) =

[
−0.6050 −0.3737 0.9579 0.9986

0.5994 −0.0367 −1.5576 −0.3952

]

Ac(2) =


0.0384 0.4675 −0.0638 0.7154

0.2416 0.2223 0.7115 0.2277

0.2601 −0.6241 −0.3428 −0.2906

0.3391 −0.1504 0.5077 −0.0501

 , Bc(2) =


−43.1521 47.0001

11.0768 −5.0210

−7.0149 5.1246

−19.1422 19.0111


Cc(2) =

[
−0.6051 −0.3123 0.9435 0.9666

0.5004 −0.0361 −1.1271 −0.3763

]

Ac(3) =


0.0380 0.4670 −0.0638 0.7258

0.2322 0.2523 0.5045 0.3257

0.1613 −0.6549 −0.5627 −0.2566

0.3670 −0.1584 0.5061 −0.0891

 , Bc(3) =


−47.1536 47.314

7.1568 −7.0824

−4.8339 6.6216

−20.3454 22.3152


Cc(3) =

[
−0.6095 −0.3734 0.9999 0.9965

0.5966 −0.0364 −1.5506 −0.3987

]

The proposed control design efficiently stabilizes the system states, as shown in Figure

6.3. The disturbance matrix B1 introduces uncertainty in the state x1 that acquires

stochastic stability. It is shown in Figure 6.3(a). All other system states are not affected

by the disturbance and achieve asymptotic stability. The obtained H∞ performance is

0.008, as shown in Figure 6.4 that is much less than prescribed value of γ.

Remark 6.4.1. Single quantizer is a special case of multiple quantizers that combines

multiple outputs together in a packet, and then quantizes. However, it is not feasible in

the NCSs environment, because each sensor/actuator is considered as a separate node,

hence requires a separate quantizer. Secondly, it is already proven that the infimum

quantization density for the multiple quantizers is the same as for the single quantizer

[88]. Similarly, NCSs are meant for the scenarios where it is infeasible to deploy a

controller near the plant location and the same is the case for a centralized decoder.

Therefore the essence of the NCSs lies in the fact that every output should be quan-

tized and transmitted separately without a centralized decoder. Moreover, the multiple
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Figure 6.3: System states
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Figure 6.4: H∞ performance of output feedback controller with multiple quantizers

quantizers give leverage to use different quantization densities for different outputs with

respect to network congestion.
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6.5 Conclusions

In this chapter, the stability analysis and the controller design for the NCSs with the

multiple quantizers, deployed on both plant and controller outputs, are proposed. The

quantizers access the network at different times, consequently each quantized signal

experiences a different network-induced delay. A finite state Markov chain is used to

model these delays. The quantization errors are bounded by a sector bound approach

and are characterized by the convex poly-topic uncertainties. A new L-K functional

approach is proposed to develop the stability condition. After applying the Schur’s

complement and the congruence transformation on the stability conditions, a dynamic

output feedback controller is achieved in terms of the BMIs. The BMIs are converted

into the quasi-convex optimization problem by an iterative algorithm that is solved by

the MATLAB LMI toolbox. An example is provided to illustrate the effectiveness of the

proposed method by using the SIMULINK based TrueTime toolbox of the MATLAB.

It is observed that the proposed design effectively stabilizes the system with multiple

quantizers. It is remarked that the essence of the NCSs design lies in the use of a

separate quantizer for each signal. By doing this, the quantization densities can be

varied according to network load conditions and performance requirements.



Chapter 7

Robust H∞ Dynamic Output

Feedback Control of NCSs with

Limited Information

Quantization effects are inevitable in networked control systems (NCSs). These quanti-

zation effects can be reduced by increasing the number of quantization levels. However,

increasing the number of quantization levels may lead to network congestion, (i.e., the

network needs to transfer more information). In this chapter I investigate the problem of

designing a robust H∞ output feedback controller for discrete-time networked systems

with an adaptive quantization density or limited information. More precisely, the quanti-

zation density is designed to be a function of the network load condition that is modelled

by a Markov process. A stability criterion is developed by using Lyapunov-Krasovskii(L-

K) functional and sufficient conditions for the existence of a dynamic quantized output

feedback controller are given in terms of Bilinear Matrix Inequalities(BMIs). An iter-

ative algorithm is suggested to obtain quasi-convex Linear Matrix Inequalities (LMIs)

from BMIs. An example is presented to illustrate the effectiveness of the proposed design

[109].

7.1 Introduction

With emerging technologies such as shared digital wired and wireless networks, new re-

search areas are opened in the field of NCSs. The NCSs are distributed systems in which

the plant, sensors, controller and actuators are spatially distributed and interconnected

through the communication networks. This development has greatly improved the mod-

ularity, the system flexibility and reduced the processing cost. However, the NCSs also

108
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bring many new challenges for the control system design such as network-induced delays,

packet dropouts, quantization errors, variable transmission intervals, network security

and other communication constraints.

The issues of network induced time delays and packet dropouts have been considered by

many researchers [1, 86, 94, 96, 117–119, 124]. Most of them used the Markov processes

to model the randomness of the network-induced delays [1, 96, 118, 119, 124]. The

Markov chain takes values in a finite set based on the known transition probabilities.

However, the main drawback of the aforementioned papers is that the real communica-

tion networks are not able to send the data with infinite precision. In the communication

networks the length of each data packet is finite, therefore in order to improve the per-

formance of the NCSs the effect of data quantization must be incorporated into any

controller design. In most studies the quantization error is treated as an uncertainty

in the stability analysis and robust controllers are designed [121–123]. The size of the

uncertainty depends on the quantization density. For a logarithm quantizer, the size of

uncertainty can be bounded by a sector bound approach [75].

In [72] it is mentioned that the quantization process is useful in the NCSs . The quan-

tizers with the coarser quantization densities help in reducing the network congestion.

Consequently the network-induced delays can be reduced because less information is

transmitted. However, the coarser the quantization density the larger the quantization

error. Hence, this is a tradeoff between the quantization error and the network conges-

tion or the network-induced delay. In this chapter the quantization density is designed

to be a function of the network load condition that is modelled by a Markov process.

More precisely, when the network load is heavy a coarser quantization density is used

so that less information should be transmitted. While in the lighter network load case

a finer quantization density is selected. In doing so the network load condition can be

maintained. Based on the Lyapunov-Krasovskii functional approach stability criterion

and the design procedures for an output feedback with an adaptive quantization density

are given in terms of the BMIs which are then converted into the quasi-convex LMIs to

be solved by using an iterative cone complementarity algorithm [127]. The simulation

example is provided to verify the proposed design.

The main contributions of the chapter can be summarized as follows:

• To ease the network congestion, the quantization density is designed to be a func-

tion of the network load which is modelled by a Markov process. To the best of

the authors’ knowledge, this issue has never been investigated previously

• The controllers are parameterized by the BMIs. Its dimensions depend upon the

dimension of the state variable of the open loop system and it is independent of
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the number of the modes on the Markov chain. This decreases the computational

burden and it has not been formally investigated in the NCSs.

This chapter is organized into five sections. In Section 7.2, system description, quanti-

zation error modelling, packet dropouts and problem formulation are presented. Main

results for the stability criterion and the controller synthesis are given in Section 7.3.

Section 7.4 contains simulation results to prove the validity of the proposed theorems.

Conclusions are given in Section 7.5.

7.2 System Description and Definitions

A simple networked control system is shown in Figure 7.1. The class of uncertain

Figure 7.1: Layout of networked control systems with an adaptive quantizer

discrete-time linear systems under consideration is described by the following model:

x(k + 1) = [A+∆A(k)]x(k) + [B1 +∆B1(k)]w(k) + [B2 +∆B2(k)]u(k), x(0) = 0

z(k) = [C1 +∆C1(k)]x(k) + [D11 +∆D11(k)]w(k) + [D12 +∆D12(k)]u(k)

y(k) = C2x(k) (7.1)

where x(k) ∈ ℜn, u(k) ∈ ℜm, z(k) ∈ ℜm1 , y(k) ∈ ℜm2 are the state, input, controlled

output and measured output, respectively. w(k) ∈ ℜm3 is the disturbance that belongs

to L2[0,∞), the space of square summable vector sequence over [0,∞). The matrices A,

B1, B2, C1, D11, D12 and C2 are known matrices with the appropriate dimensions. The
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matrix functions ∆A(k), ∆B1(k), ∆B2(k), ∆C1(k), ∆D11(k) and ∆D12(k) represent

the time-varying uncertainties and satisfy conditions given in the assumption 3.2.1.

Quantizer Modelling and Description:

The quantization process is useful in NCSs design. Network congestion and network-

induced time delay can be reduced by using a coarser quantizer. Hence, by adjusting

the quantization density, the network load capacity can be sustained. In this chapter,

the quantization density is designed to be a function of the network load condition.

Let {rk, k} be a discrete homogeneous Markov chain taking values in a finite set S =

{1, 2, · · · , s}, with the following transition probability from mode i at k to mode j at

time k + 1

pij := Prob{rk+1 = j|rk = i}

where i, j ∈ S.

The quantization density, δ, is described as a finite state Markov process as δ = δ(rk).

On the basis of this technique, a network load dependent quantizer is proposed as follows:

q(ν, i) =


ρh(i) if 1

1+δ(i)ρ
h(i) < ν ≤ 1

1−δ(i)ρ
h(i), ν > 0, h = 0,±1,±2, · · ·

0, if ν = 0

−q(−ν, i) if ν < 0

(7.2)

where 0 < ρ(i) < 1 is the quantization density of q(·, ·), and δ(i) is related to ρ(i) by

δ(i) =
1− ρ(i)

1 + ρ(i)
(7.3)

The associated quantized set U is given by

U =
{
±ρh(i), h = 0,±1,±2, · · ·

}∪
{0}. (7.4)

Now defines the quantization error as

e(k, i) = q(v(k), i)− v(k) = ∆q(k, i)v(k), (7.5)

where v(k) is signal to be quantized, q(v(k), i) is the quantized signal. It has been shown

by [75] that ∆q(k, i) ∈ [−δ(i), δ(i)].
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Packet Dropouts Modelling:

The measured output y(k), that is used as feedback information for the controller, may

not be available all the time due to packet dropouts. To compensate these packet

dropouts a stochastic variable following Bernoulli sequence is used. We are interested

in the following mode dependent dynamic output feedback control law:

x̂(k + 1) = α(k){Ac(i)x̂(k) +Bc(i)q(y(k − τ(k)), i)}+ (1− α(k))Acf (i)x̂(k)

u(k) = Cc(i)x̂(k) (7.6)

where Ac(i), Acf (i), Bc(i), Cc(i) are controller matrices. α(k) ∈ ℜ is random variable

following Bernoulli random distribution:

α(k) =

1, if feedback information is available

0, Without feedback signal

Assume that α(k) has probability:

Prob{α(k) = 1} = E{α(k)} = α, Prob{α(k) = 0} = 1− α

where 0 ≤ α ≤ 1 is a constant and

E{α(k)− α} = 0, β2 ≡ E{(α(k)− α)2} = α(1− α)

where E(·) is the expectation operator and β2 is the variance. τ(k) is the time varying

delay satisfying:

0 < τ ≤ τ(k) ≤ τ̄

where τ and τ̄ are known constants. It is worth mentioning that in NCSs there exist

various types of delays such as sensor to controller delays τsc(k); controller to actuator

delays τca(k) and processing delays τc(k). However, these delays can all be lumped

together [83]:

τ(k) = τsc(k) + τca(k) + τc(k)

Using (7.5), the closed-loop system of (7.1) with (7.6) is given as follows:

ζ(k + 1) = [Acl1(i) + α(k)Acl2(i) + (1− α(k))Acl3(i) + Ē1F (k)H̄1(i)]ζ(k) + [B̄1 +

Ē1F (k)H2]w(k) + α(k)Bcl(i)(1 + ∆q(k, i))C̄2ζ(k − τ(k))

z(k) = [Ccl(i) + E2F (k)H̄1(i)]ζ(k) + [D11 + E2F (k)H2]w(k). (7.7)
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where ζ(k) = [x(k) x̂(k)]T and

Acl1(i) =

[
A B2Cc(i)

0 0

]
, Acl2(i) =

[
0 0

0 Ac(i)

]

Acl3(i) =

[
0 0

0 Acf (i)

]
, Bcl(i) =

[
0

Bc(i)

]

B̄1 =

[
B1

0

]
, C̄2 =

[
C2 0

]
, Ē1 =

[
E1

0

]
H̄1(i) =

[
H1 H3Cc(i)

]
, Ccl(i) =

[
C1 D12Cc(i)

]

Equation (7.7) can be simplified as:

ζ(k + 1) = [Acl(i) + Ē1F (k)H̄1(i)]ζ(k) + [B̄1 + Ē1F (k)H2]w(k) + αBcl(i)(1 + ∆q(k, i))

C̄2ζ(k − τ(k)) + (α(k)− α){(Acl2(i)ζ(k)−Acl3(i)ζ(k) +

Bcl(i)(1 + ∆q(k, i))ζ(k − τ(k))}

z(k) = [Ccl(i) + E2F (k)H̄1(i)]ζ(k) + [D11 + E2F (k)H2]w(k). (7.8)

where

Acl(i) = Acl1(i) + αAcl2(i) + (1− α)Acl3(i)

The problem under study is formulated as follows:

Problem Formulation:

Given a prescribed γ > 0 and quantization densities ρ(i), design a dynamic output

feedback controller of the form (7.6) such that:

1. The system , given in (7.7) with (7.6) and w(k) = 0 is stochastically stable , i.e,

there exists a constant 0 < α < ∞ such that

E

{ ∞∑
ℓ=0

ζT (ℓ)ζ(ℓ)

}
< α1 (7.9)

for all ζ(0) and r0.

2. Under the zero-initial condition, the controlled output z(k) satisfiesH∞ performance.

E

{ ∞∑
k=0

zT (k)z(k)|r0

}
< γ2

∞∑
k=0

wT (k)w(k) (7.10)

for all nonzero w(k).
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The following lemma plays an important role in the derivation of the main results.

Lemma 7.2.1. Let x̄(k) = x(k + 1)− x(k) and ζ̃(k) =
[
ζT (k) ζT (k − τ(k)) wT (k)

ζT (k)H̄T
1 (i)F

T (k)ζT (k−τ(k))C̄T
2 ∆qT (k) wT (k)HT

2 F
T (k)

]T
∈ ℜl, then for any matrices

R ∈ ℜn×n, M ∈ ℜn×l and Z ∈ ℜl×l, satisfying[
R M

MT Z

]
≥ 0 (7.11)

the following inequality holds:

k−1∑
i=k−τ̄

x̄T (i)Rx̄(i) ≤ ζ̃T (k)
{
Υ1 +ΥT

1 + τ̄Z
}
ζ̃(k) (7.12)

where Υ1 = MT [diag{I, 0} diag{−I, 0} 0 0 0 0].

Proof follows the same line of Lemma 3.2.1. ∇∇∇

7.3 Stability Analysis and Controller Synthesis of NCSs

with Limited Information

Stability criterion for uncertain discrete-time systems with adaptive quantization densi-

ties are given in the following theorem.

Theorem 7.3.1. For given controller matrices Ac(i), Acf (i), Bc(i) and Cc(i) and quan-

tization densities ρ(i) where i = 1, · · · , s, γ > 0, if there exist sets of positive-definite

matrices P (i), R1(i), R1, W1(i), W2(i),W3(i),Q, Z(i), and matrices M(i) satisfying the

following inequalities:

R1 > R1(i) (7.13)[
R1(i) M(i)

∗ Z(i)

]
≥ 0 (7.14)

Λ(i)+ΓT
1 (i)P̃ (i)Γ1(i)+ΓT

2 (i)τ̄R1Γ2(i)+Υ1(i)+ΥT
1 (i)+ τ̄Z(i)+ΞT (i)Ξ(i) < 0 (7.15)
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where

Γ1(i) =
[
Ācl(i) B̄cl(i)C̄2 B̄1 Ē1 B̄cl(i) Ē1

]
Γ2(i) =

[
Ā 0 B̄1 Ē1 0 Ē1

]
Ξ(i) =

[
Ccl(i) 0 D11 E2 0 E2

]
Λ(i) = diag

{(
(τ̄ − τ + 1)Q+ H̄T

1 (i)W1(i)H̄1(i)− P (i)
)
, (δ2(i)C̄T

2 W2(i)C̄2 −Q),(
HT

2 W3(i)H2 − γ2I
)
,−W1(i),−W2(i),−W3(i)

}
P̃ (i) =

∑s
j=1 pijP (j)

Υ1(i) = MT (i)[diag{I, 0} diag{−I, 0} 0 0 0 0]

Ā =

[
A− I B2Cc(i)

0 0

]
Ācl(i) = Acl(i) + β{Acl2(i)−Acl3(i)},
B̄cl(i) = (α+ β)Bcl(i).

(7.16)

Then the closed-loop system is stochastically stable with the prescribed H∞ performance.

Proof: See Appendix 14.

The following theorem provides procedures for designing a quantized output feedback

controller.

Theorem 7.3.2. For given γ > 0 and quantization densities ρ(i), if there exist positive

symmetric matrices X(i) > 0, Y (i) > 0, Y(i) > 0, W1(i), W1(i), W2(i), W2(i), W3(i),

Q, Q, N(i), N (i), R1, R1, R1(i), S(i, j), Z̄(i), and matrices A(i), Af (i), B(i), C(i),
J(i), M̄(i) satisfying the following inequalities for all i, j ∈ S:

R1 > R1(i) (7.17)[
N(i) M̄(i)

∗ Z̄(i)

]
≥ 0 (7.18)



Λ̄(i) + Ῡ1(i) + ῩT
1 (i) + τ̄ Z̄(i) Γ̄T

1 (i) Γ̄T
2 (i) Γ̄T

3 (i) Γ̄T
4 (i) Γ̄T

5 (i) Γ̄T
6 (i)

∗ −Ξ̃(i) 0 0 0 0 0

∗ ∗ −R1 0 0 0 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −Q 0 0

∗ ∗ ∗ ∗ ∗ −W̃1(i) 0

∗ ∗ ∗ ∗ ∗ ∗ −W̃2(i)


< 0

(7.19)[
S(i, j) JT (i)

∗ Y (j)

]
> 0 (7.20)
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R1(i) T T (i)

∗ N (i)

]
> 0 (7.21)

Y(i)Y (i) = I, QQ = I, N (i)N(i) = I, R1R1 = I. (7.22)

W̃1(i)W1(i) = I, W̃2(i)W2(i) = I, (7.23)

where

Λ̄(i) = diag

[
−

[
Y (i) I

I X(i)

]
,−Q,

(
HT

2 W3(i)H2 − γ2I
)
,−W1(i),−W2(i),−W3(i)

]
Ῡ(i) = M̄T (i)[diag{I, 0} diag{−I, 0} 0 0 0 0]

Γ̄1(i) =
[
Ǎcl(i) B̌cl(i)C̄2 B̌1 Ě1 B̌cl(i) Ě1

]
Γ̄2(i) =

√
τ̄
[
Ǎ(i) 0 B̄1 Ē1 0 Ē1

]
,

Γ̄3(i) =
[
Čcl(i) 0 D11 Ē2 0 Ē2

]
Γ̄4(i) =

[
(
√
τ̄ − τ + 1)T (i) 0 0 0 0 0

]
Γ̄5(i) =

[
Ȟ1(i) 0 0 0 0 0

]
Γ̄6(i) =

[
0 δ(i)C̄2 0 0 0 0

]

Ξ̃(i) =

[
−(S̃(i)− J(i)− JT (i)) I

I X̃(i)

]
, X̃(i) =

s∑
j=1

pijX(j), S̃(i) =

s∑
j=1

pijS(i, j),

Ǎcl =

[
AY (i) +B2C(i) A

(α+ β)A(i) + (1− α− β)Af (i) X̃(i)A

]
, B̌cl =

[
0

(α+ β)B(i)

]
,

B̌1 =

[
B1

X̃(i)B1

]
, Ě1 =

[
E1

X̃(i)E1

]
, Ǎ =

[
(A− I)Y (i) +B2C A− I

0 0

]
,

Čcl(i) = [C1Y (i) +D12C(i) C1] Ȟ1(i) = [H1Y (i) +H3C H1] ,

T (i) =

[
Y (i) I

Y (i) 0

]
and T (i) =

[
0 Y(i)

I −I

]
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Then the closed-loop system is stochastically stable with the prescribed H∞ performance.

Furthermore, a suitable controller is given as follows

Ac(i) =
(∑s

j=1 pijY
−1(j)− X̃(i)

)−1(
A(i)− X̃(i)(AY (i) +B2C(i))

)
Y −1(i)

Acf (i) =
(∑s

j=1 pijY
−1(j)− X̃(i)

)−1
Af (i)Y

−1(i)

Bc(i) =
(∑s

j=1 pijY
−1(j)− X̃(i)

)−1
B(i)

Cc(i) = C(i)Y −1(i).

(7.24)

Proof: See Appendix 14.

7.4 Simulation Example

Consider the following state space representation of a discrete time LTI system with the

parametric uncertainties:

A =


0.8 −.25 0 1

1 0 0 0

−.8 0.5 0.2 −1.03

0 0 0.5792 0

 , B1 =


0

0.1

0

0.05

 , B2 =


1

0

0

0


C1 =

[
0 0.1 0 0

]
, C2 =

[
4.5 −4.5 0 2

]
,

D11 = 0.03, D12 = 0.05, E1 =


0.01

0.05

0

0

 , E2 = 0.06,

H1 =
[
0.013 0.027 0 0

]
, H2 = 0.02, H3 = 0.03.

The network load is assumed to be modelled by a Markov chain that takes values from

a finite set S = {1, 2, 3} and the transition probability matrix is taken as:

Pδ =


0.4205 0.5791 0.0004

0.4206 0.5705 0.0089

0.4206 0.5705 0.0089


The modes 1, 2 and 3 correspond to the light load (1 ≤ τ(k) ≤ 2), medium load

(2 < τ(k) ≤ 3) and heavy load (3 < τ(k) ≤ 4), respectively. The quantization density

for each mode is assumed as δ(1) = 0.2, δ(2) = 0.3 and δ(3) = 0.4. The disturbance
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attenuation level γ = 0.9 is chosen for the design. The Bernoulli stochastic variable α is

set as 0.95. By using the MATLAB LMI Control toolbox and the cone complementary

algorithm outlined in the previous section, the controller matrices are obtained as follows:

Ac(1) =


0.6800 −0.0256 −0.1380 0.0738

1.0000 −0.00001 −0.00003 0.00002

−0.8000 0.5000 0.2000 −1.0300

−0.00001 0.00003 0.5792 −0.00009



Acf (1) =


0.2300 −0.0231 −0.0382 0.0136

1.0003 −0.00001 −0.00003 0.00122

−0.7800 0.3001 0.2000 −1.0300

−0.00011 0.00013 0.5792 −0.00004



Bc(1) = 1.0e− 004×


0.3073

0.166

−0.3960

−0.1275


Cc(1) =

[
−0.1200 0.2244 −0.1380 −0.9262

]
.

Ac(2) =


0.7375 −0.0232 −0.1104 0.0560

1.00001 −0.00004 −0.00003 0.0000

−0.80002 0.50003 0.20002 −1.0300

−0.00003 0.00002 0.5792 −0.0000



Acf (2) =


0.735 −0.0212 −0.1104 0.050

1.002 −0.0000 −0.00001 0.0100

−0.1800 0.5000 0.20001 −1.1300

−0.0210 0.0400 0.7902 −0.10000



Bc(2) = 1.0e− 004×


−0.1572

−0.1295

0.1927

0.0463


Cc(2) =

[
−0.0625 0.2268 −0.1104 −0.9440

]
.
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Figure 7.2: Energy ratio of regulated output to disturbance

Ac(3) =


0.8699 −0.0231 −0.0763 0.0488

1.0001 −0.0021 −0.0000 0.00009

−0.8001 0.5000 0.2000 −1.03007

−0.0001 0.0007 0.5792 −0.00080



Acf (3) =


0.8691 −0.0211 −0.0703 0.0488

1.0002 −0.0003 −0.0000 0.0000

−0.8004 0.5002 0.2000 −1.0300

−0.0005 0.0001 0.212 −0.0000



Bc(3) = 1.0e− 004×


−0.1794

−0.1105

0.2231

0.0433


Cc(3) =

[
0.0699 0.2269 −0.0763 −0.9512

]
.

Remark 7.4.1. The controller matrices are obtained after five iterations. Figure 7.2

shows the ratio of the regulated output energy to the disturbance input noise energy.

It can be seen that the ratio of the regulated output energy to the disturbance input

noise energy is about 1.25 × 10−3 that is less than the prescribed level 0.9. Figure 7.3

shows the change of modes in the Markov chain. The mode transition is governed by the
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Figure 7.3: Random modes

transition probability matrix Pδ. The system states are shown in Figure 7.4. If a design

for a fixed quantization density is intended, then the quantization density should be

δ = 0.4 that corresponds to the quantization density used in the heavy load conditions.

It means that if the quantization density is fixed and the network loads are ignored then

the design will be for the worst network load conditions. Moreover, no solution can be

found using Theorem 7.3.2 with a fixed quantization density. This concludes that the

proposed design is less conservative.

7.5 Conclusions

A novel method for designing a robust H∞ output feedback control for the discrete-time

NCSs with an adaptive quantization density or the limited information is developed. The

quantization density is designed to be a function of the network load condition which is

modelled by a Markov chain. The Bernoulli random distribution is used to model the

packet dropouts in the network. After incorporating all the constraints appropriately, the

robust stability criterion and the controller design are provided. The resultant controller

gains were adaptive due to the adaptive quantization densities. The design procedures

for a robust H∞ quantized observer based output feedback controller are given in terms
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Figure 7.4: System states

of the BMIs. A cone complementarity algorithm is suggested for achieving the quasi-

convex LMIs from the BMIs. The simulation example to stabilize a discrete LTI system

with the help of the proposed design, is presented at the end. The simulation results

show that by changing the quantization densities, an upper bound on the network load

or the time delays is achieved.



Chapter 8

Stability Analysis of Distributed

Event Triggered NCSs with

Packet Dropouts

This chapter provides the stability criteria, with H∞ performance, for discrete-time

networked control systems with decentralized event-triggered mechanism on both system

inputs and outputs. The conditions for minimum inter-event time are also provided. A

novel event generation criterion is provided which states that an event will be generated

when the difference between the current value and previously transmitted value increased

from weighted current value, accumulated error and an additional positive threshold.

Impulsive system description is used to represent discrete LTI systems as event triggered

systems. Furthermore the system incorporates modeling of random packet dropouts.

The proposed design is verified by a simulation example that considers various cases

such as validation of stability criteria, effects of disturbance, ET parameters and packet

dropouts on system stability and H∞ performance.

8.1 Introduction

Stability analysis and controller synthesis of the control systems with equidistant or

time-triggered (TT) sampling is comparatively easy due to well developed techniques,

available in the literature [3]-[12]. However, this approach is a waste of communication

resources when the system is stable around its equilibrium point and is not affected by

any disturbance. To cater for this issue, a state of the art sampling technique called

event-triggered (ET) sampling, can be deployed to execute a task on need basis instead

of elapse of a given time. Therefore this technique is called ‘sampling on demand’.

122



Chapter 8. Stability Analysis of Distributed Event Triggered NCSs with Packet
Dropouts 123

Although advantages of the ET sampling mechanism are obvious, however few formal

design methods are proposed so far. One of the approaches is an impulsive control

action performed on the first order stochastic systems to reset state when it exceeds a

minimum threshold [159, 160]. Another approach is used in an open-loop system with

prediction of states. Control input is applied to the system if states deviate from a

given threshold [161, 161, 162]. An emulation based approach is proposed in [164] where

controller and ET mechanisms are designed separately. Few ET mechanisms used to

generate events are: 1) when plant state is larger than a given threshold, 2) when the

difference between plant current state and previously transmitted state crosses a pre-

scribed threshold, and 3) absolute difference between plant current state and previously

transmitted state crosses a threshold.

Two types of the ET mechanisms are: 1) centralized, and 2) distributed. In the first

type, conditions to generate events require information from all the systems inputs and

outputs on the same time. It is not a feasible approach in NCSs framework, where inputs

and outputs are considered network nodes and are spatially apart from each other. In

the distributed ET mechanism events are generated on the basis of local information

only, and are suitable for NCSs. Stability analysis of an output feedback case is pro-

posed for continuous system with L∞ gain and distributed ET mechanism in [44]. A

lower bound on minimum inter-event time and upper bound on the number of events

are also provided. The results of [44] are extended to discrete-time NCSs in this design.

A distributed ET mechanism is proposed for discrete-time NCSs with packet dropouts.

Novel and more flexible ET conditions are proposed for the first time. In the proposed

mechanism the next event is generated when the norm of error (difference between cur-

rent and previously transmitted data) violates a particular value. This value depends on

norm of current states, a prescribed constant and previously accumulative error. Packet

dropouts are incorporated in forward and backward links. Two mutually independent

Bernoulli distributions are used to model the dropouts. Stability analysis is performed

for ET distributed NCSs, represented as impulsive systems. Main contributions of the

chapter are summarised as follows:

• A distributed ET based control is proposed for discrete-time systems withH∞ performance

• A new and more flexible event generation mechanism is proposed for the first time

• An impulsive system representation is proposed for ET based distributed NCSs

• Packet Dropouts are modelled and compensated in the proposed design

• Stability analysis is performed and presented in terms of LMIs

• A lower bound on minimum inter-event instance is calculated
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• Effect of the packet dropouts is analyzed in terms of H∞ performance.

8.2 System Description and Definitions

A class of discrete-time linear systems is described by the following model:

x(k + 1) = Ax(k) +B1w(k) +B2ū(k), x(0) = 0

z(k) = C1x(k) +D11w(k)

y(k) = C2x(k) (8.1)

where x(k) ∈ ℜn, ū(k) ∈ ℜm, z(k) ∈ ℜm1 , y(k) ∈ ℜm2 are the state, event-based input,

controlled output and measured output, respectively. w(k) ∈ ℜm3 is disturbance that

belongs to L2[0,∞), the space of square summable vector sequence over [0,∞]. The

matrices A, B1, B2,C1, D11, D12 and C2 are of known dimensions.

A dynamic output feedback controller of the following form is proposed:

x̂(k + 1) = Acx̂(k) +Bcȳ(k)

u(k) = Ccx̂(k) (8.2)

where x̂(k) ∈ ℜn are the controller states, ȳ(k) ∈ ℜm2 is event-based feedback, and

Ac, Bc, Cc are the controller matrices.

In the equidistant sampling, ū(k) = u(k) and ȳ(k) = y(k). In the ET mechanism, ū(k),

ȳ(k) are the system input and output, sent over the communication channel after the

occurrence of an event. In a distributed control system, inputs and outputs can be

gathered as a bunch of nodes N . Each node, i ∈ {1, 2, · · · , N}, transmits its respective

information on event-generation instance, kiti , with ti ∈ N to update their corresponding

values i.e., ū(k) and ȳ(k). This way of data communication can be expressed as:

d̄(kiti+1) = Ωid(k
i
ti) + (I − Ωi)d̄(k

i
ti) (8.3)

where d̄(kiti) = [ȳ(kiti) ū(kiti)], d(k
i
ti) = [y(kiti) u(kiti)], and Ωi = diag{δ1i , · · · , δ

m+m2
i }.

For i = 1, · · · , N , and j = 1, · · · ,m2, if the system output yj(k) is not shared among

different nodes, then δji = 1 at node i and 0 elsewhere in the distributed ET based

control. In other words, if an event is generated at node i, then its corresponding value

d̄(kiti) will be updated only, and all other values will remain as they are. In addition

to this, 1 ≥
∑N

i=1 δ
j
i > 0, which means that each sensor and actuator should be at

least in one node. Without loss of generality, it is assumed that d̄(0) = d(0), and
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data can be transmitted among multiple nodes simultaneously. It is also assumed that

previous information will be used and rate of change will be zero in between events.

Mathematically:

∆d̄(kiti) = 0 for all k ∈ ℜ+ r
[ n∪
i=1

{kiti |ti ∈ N}
]

(8.4)

On the other hand, sampled data mechanism send data at equidistant instances i.e.,

kiti+1 = kiti + ~, with ~ > 0 and is fixed.

The transmitted signal, d̄(kiti), may be missed due to packet dropouts. To compen-

sate the packet dropouts on both system inputs and outputs, stochastic and mutually

independent variables α1(k) and α2(k) are proposed. Both variables follow separate

Bernoulli random distribution. Consider α(k) = diag{α2(k), α1(k)} with following sta-

tistical properties:

α(k) =

1, if data is transmitted over the network

0, if data is dropped over the network
(8.5)

Assume that α(k) has probability:

Prob{α(k) = 1} = E{α(k)} = α, Prob{α(k) = 0} = 1− α

where 0 ≤ α ≤ 1 is a constant and

E{α(k)− α} = 0, β2 ≡ E{(α(k)− α)2} = α(1− α)

where E(·) is the expectation operator and β2 is the variance.

By applying (8.5) on the (8.2), following dynamic output feedback controller is obtained:

x̂(k + 1) = Acx̂(k) + α1(k)Bcȳ(k) + (1− α1(k))Bcȳ(k − 1)

u(k) = Ccx̂(k) (8.6)

In the case of packet dropout, previous value of ȳ(k), stored in the controller buffer, will

be used.

On the controller to actuator transmission link, the stochastic variable α2(k) is used to

model packet dropouts. After incorporating packet dropout compensation, (8.1) can be
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rewritten as:

x(k + 1) = Ax(k) +B1w(k) + α2(k)B2ū(k) + (1− α2(k))B2ū(k − 1), x(0) = 0

z(k) = C1x(k) +D11w(k)

y(k) = C2x(k) (8.7)

In [44], ET conditions are depended on the norm of the current value and a constant.

However, in our design more flexible conditions are provided. The proposed conditions

not only depend on the current value and constant but previously accumulated error as

well. Mathematically, proposed ET mechanism is represented as follows:

kiti+1 = inf{k > kti | ||eȷi(k)||2 = σi||dȷi(k)||2 + ρi||eȷi(k − 1)||2 + ϵi} (8.8)

where ki0 = 0, σi > 0, ρi > 0 and ϵi > 0. eȷi(k) and dȷi(k) represent vectors, consist of

the elements from e(k) and d(k) that are in set ȷ = {j ∈ {1, · · · ,m+m2}|δji = 1}. e(k)
is the error induced by ET mechanism:

e(k) = d̄(k)− d(k) (8.9)

It can be seen from (8.3) and (8.8) that when ||eȷi(k)||2 ≥ σi||dȷi(k)||2+ρi||eȷi(k−1)||2+ϵi,

then data will be transmitted and the corresponding values will be updated. It results

in eȷi(kti+1) = 0 and e(kti+1) = (I − Ωi)e(k
i
ti). The main objective of this work is to

find appropriate σi, ρi and ϵi to stabilized system.

In the following we are going to represent discrete-time NCSs as impulsive systems.

Impulsive systems can be seen as the combination of discrete-time systems with ET

mechanism.

8.2.1 An Impulsive System Representation

An impulsive closed-loop system, with packet dropouts, is described as follows:

xcl(k + 1) = Aclxcl(k) +Bclxcl(k − 1) + B̃ww(k)

z(k) = Cclxcl(k) +Dclw(k) when x̃ ∈ D (8.10)

xcl(k
i
ti+1) = Gcli x̃(k

i
ti) when xcl(k) ∈ Ii, i ∈ {1, ...., N} (8.11)

where xcl(k) ∈ X ⊆ ℜnx represents impulsive system states, w(k) ∈ ℜm3 is the distur-

bance. The flow and jump dynamics of the system are represented as set D ⊆ ℜnx , set

Ii,⊆ ℜnx, where i ∈ {1, ...., N}, X = D(∪N
i=1Ii), and kiti is jump time of the impulsive

system. In the following, problem is formulated:
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• Flow dynamics of the impulsive system is:

xcl(k + 1) = Aclxcl(k) +Bclxcl(k − 1) + B̃ww(k)

z(k) = Cclxcl(k) +Dclw(k) (8.12)

where

xcl(k) ∈ ℜnx

nx = n+ n+m2 +m

xcl(k) = [x̃T (k) eT (k)]T

x̃(k) = [xT (k) x̂T (k)]T

e(k) = [{ȳT (kti)− yT (kti)} {ūT (kti)− uT (kti)}]T

Acl =

[
Ã+ B̃αC̃ B̃α

−C̃Ã− C̃B̃αC̃ −C̃B̃α

]
, Bcl =

[
B̃1−αC̃ B̃1−α

−C̃B̃1−αC̃ −C̃B̃1−α

]
,

B̃w =

[
Ẽ

−C̃Ẽ

]
, Ccl =

[
C1 0

]
, Dcl = D11

and

Ã =

[
A 0

0 Ac

]
, B̃α =

[
0 α2(k)B2

α1(k)Bc 0

]
,

B̃1−α =

[
0 (1− α2(k))B2

(1− α1(k))Bc 0

]
, C̃ =

[
C2 0

0 Cc

]
, Ẽ =

[
B1

0

]
.

• System flow will continue until the following conditions are true:

||ei(k)||2 ≤ σi||di(k)||2 + ρi||ei(k − 1)||2 + ϵi (8.13)

In other words:

D = {xcl(k) ∈ ℜnx |{xTcl(k)Qixcl(k) + xTcl(k − 1)Rixcl(k − 1)} < ϵi ∀i ∈ 1, · · · , N}

(8.14)
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where

Qi =

[
−σiC̃

TΩiC̃ 0

0 Ωi

]

Ri =

[
0 0

0 −ρiΩi

]

• In the case of an event node i transmits data and error becomes reset. In ET

based distributed control any input or output can be in multiple nodes. Therefore

error will be reset according to (8.3) as e(kti+1) = (I − Ωi)e(k
i
ti), and:

Ii = {xcl(kiti) ∈ ℜnx |{xTcl(kiti)Qixcl(k
i
ti) + xTcl(k

i
ti − 1)Rixcl(k

i
ti − 1)} ≥ ϵi} (8.15)

It is equivalent to

xcl(k
i
ti+1) = Gclixcl(k

i
ti) (8.16)

where

Gcli =

[
I 0

0 I − Ωi

]

It can be revealed from (8.16), that system states remains the same while system

inputs and outputs will be reset.

In this chapter ET based NCS is modelled as an impulsive system. Therefore review

of some basic stability and H∞ results for the impulsive systems are mandatory for the

derivation of main results.

Definition 8.2.1. [167] For the impulsive system (8.10) with w(k) = 0, suppose there

is a compact set E ⊂ X :

• E is stable for the impulsive system, if for each ∞ > ϵ > 0 there is ∞ > ε > 0,

such that minx∗∈E
{
||xcl(0)− x∗||

}
< ε infers that

min x∗∈E
{
||xcl(k)− x∗||

}
< ϵ (8.17)

for w(k) = 0
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• With w(k) = 0, E is stochastically stable, i.e., there exists a constant 0 < Π < ∞,

such that:

min x∗∈EE

{ ∞∑
ℓ=0

xT (ℓ)x(ℓ)

}
− ||x∗|| < Π (8.18)

for all x(0)

Definition 8.2.2. [23] For the given impulsive system with no disturbance and the

compact set E , a function F : X → ℜ is Lyapunov candidate function:

• If function F is positive definite on (D(∪N
i=1Ii)\E ⊂ X )

• If function F is locally Lipschitz on an open set O with (D\E ⊂ O ⊂ X )

• limxcl→E,xcl∈X F(xcl) = 0

• Subsets of F are compact on X . By definition, {xcl ∈ X |F(xcl) ≤ cF} for all cF >

0

To prove the stochastic stability of the set E of system given in (8.10) following lemma

is used.

Lemma 8.2.1. Consider the system (8.10) with w(k) = 0 and the compact set E ⊂ X
satisfying Gixcl(k

i
ti) ∈ E ∀xcl(kiti) ∈ Ii ∩ E ∀i = {1, 2, · · · , N}. Lets assume that

minimum inter-event time is one discrete sample time, i.e., kiti+1 = kiti + 1 − kiti, and

the Lyapunov function F with w(k) = 0 exist, such that:

F(xk+1, k + 1)−F(xk, k) < 0 for almost all xcl ∈ D \ E

F(Gixcl(k
i
ti))−F(xcl(k

i
ti)) ≤ 0 for all xcl ∈ Ii \ E for all i = {1, 2, · · · , N}

(8.19)

Then E will be stochastically stable.

Proof:

The proof is similar to Theorem 20 of [167] that is for hybrid systems. As xcl(k
i
ti+1) =

Gclixcl(k
i
ti) for all the xcl(k

i
ti) ∈ Ii, i ∈ {1, ...., N}, therefore the second condition, i.e.,

F(g)−F(xcl(k
i
ti)) < 0 for all xcl(k

i
ti) ∈ Ii \ E and g ∈ {Gclixcl(k

i
ti)|xcl(k

i
ti) ∈ Ii} can be

inferred if the following holds:

F(Gixcl(k
i
ti))−F(xcl(k

i
ti)) < 0 for all xcl ∈ Ii \ E for all i = {1, 2, · · · , N} (8.20)
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As the system is discrete in nature, the positive minimum inter-event time exists, and the

system does not show ‘zeno behavior’. It renders the equation (8.20) to (8.19) because

Lyapunov function F is decreasing until the equilibrium set E is reached.

Definition 8.2.3. Under non-zero disturbance and zero initial conditions i.e, w(k) ̸=
0, xcl(0) = 0, H∞ performance parameter can be defined as:

γ = inf
{
γ2 ∈ ℜ+ such that E

{ ∞∑
k=0

||z(k)||
}
≤ γ2

∞∑
k=0

||w(k)||
}

(8.21)

8.3 Stability Analysis of an Impulsive Control System

In this section stochastic stability criterion is given for the compact set E of the impulsive

system (8.10). In the case of disturbance w(k), H∞ performance is obtained with zero

initial conditions.

Theorem 8.3.1. Consider the ET based NCSs given in (8.1) with its representation as

an impulsive system (8.10). It is assumed that with all x̃(0) ∈ X and w(k) ∈ L2[0,∞),

if there exists a minimum inter-event time equal to one discrete sample. Consider

there exist positive definite matrices P, S ∈ ℜ(n+n)×(n+n), positive semi-definite matrices

U1 and U2 ∈ ℜ(nx)×(nx) and scalers µi,Π, η, γ > 0 satisfying:

ΓT
1 (k)Pcl(k)Γ1(k) + Λ(k) + ΓT

2 (k)Γ2(k) ≤ 0 for xcl ∈ D (8.22)

G̃T
cli
PclG̃cli + diag{Scl − Pcl + µiQi,−Scl + µiRi, 0} ≤ 0 for xcl ∈ I (8.23)

where

Γ1(k) = [Acl(k) Bcl(k) B̃w(k)]

Γ2(k) = [Ccl(k) 0 Dcl(k)]

Λ(k) = diag
{
Scl + (η − 1)Pcl −

N∑
i=1

µiQi, (η − 1)Scl −
N∑
i=1

µiRi,−γ
}

G̃cli = [Gcli 0 0]

Pcl = diag{P, 0}+ U1, Scl = diag{S, 0}+ U2 (8.24)

Then

E =
{
xcl ∈ D ∪

(
∪N
i=1 Ii

)
|xTclPclxcl + xTcl(k − 1)Sclxcl(k − 1) ≤

N∑
i=1

µiϵi
η

}
(8.25)

is stochastically stable set for the system given as (8.10) with no disturbance. H∞ performance,

described in Definition (8.2.3), will be obtained in the case of non-zero disturbance w(k).



Chapter 8. Stability Analysis of Distributed Event Triggered NCSs with Packet
Dropouts 131

Proof:

For xcl ∈ D:

The system (8.10) can be written as:

xcl(k + 1) = Γ1x̃cl(k)

zcl(k) = Γ2x̃cl(k) (8.26)

where

x̃cl(k) = [xTcl(k) xTcl(k − 1) wT (k)]T

Let us consider the following Lyapunov function:

V (xcl(k)) = xTcl(k)Pclxcl(k) + xTcl(k − 1)Sclxcl(k − 1) (8.27)

First forward difference of V (xcl(k)) is given as follows:

V (xcl(k + 1))− V (xcl(k)) ≤ xTcl(k + 1)Pclxcl(k + 1) + xTcl(k)Sclxcl(k)−

xTcl(k)Pclxcl(k)− xTcl(k − 1)Sclxcl(k − 1)

∆V (xcl(k)) ≤ x̃Tcl(k)Γ
T
1 Pcl(rk)Γ1x̃cl(k) + xTcl(k)Sclxcl(k)−

xTcl(k)Pcl(rk)xcl(k)− xTcl(k − 1)Sclxcl(k − 1) (8.28)

By adding ηV (xcl(k)) − xTcl(k)
∑N

i=1 µiQixcl(k) − xTcl(k − 1)
∑N

i=1 µiRixcl(k − 1) on the

R.H.S of the equation (8.28), we get:

∆V (xcl(k)) ≤ x̃Tcl(k){ΓT
1 (k)Pcl(k)Γ1(k) + Λ̃(k)}x̃cl(k) (8.29)

where Γ1(k) is given in (8.24) and

Λ̃(k) = diag
{
Scl + (η − 1)P −

N∑
i=1

µiQi, (η − 1)S −
N∑
i=1

µiRi, 0
}

By adding and subtracting zTk zk, γ
2wT

k wk in the equation (8.29):

∆V (xcl(k)) ≤ ΓT
1 (k)Pcl(k)Γ1(k) + Λ(k) + ΓT

2 (k)Γ2(k)− zTk zk + γ2wT
k wk (8.30)

where Γ2(k) and Λ(k) are given in (8.24).
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Using (8.22), we have

∆V (xcl(k)) ≤ −zTk zk + γ2wT
k wk (8.31)

Taking expectation and sum from 0 to ∞ on both sides of (8.31) yields

E{V (xcl(∞))} − E{V (xcl(0))} ≤ −E
{ ∞∑

k=0

zTk zk

}
+ γ2

∞∑
k=0

wT
k wk (8.32)

Under zero initial condition, V (xcl(0)) = 0, we have

E
{ ∞∑

k=0

zTk zk

}
≤ γ2

∞∑
k=0

wT
k wk (8.33)

That is, Definition (8.2.3) satisfies.

Next, under no disturbance, we need to show that the closed-loop system is stochastically

stable. Using condition w(k) = 0,∀k ≥ 0 in (8.22), we learn that

V (xcl(k + 1))− V (xcl(k)) ≤ −βx̃Tcl(k)x̃cl(k) (8.34)

where β = inf{λmin[−M]} with

M = ΓT
1 (k)Pcl(k)Γ1(k) + Λ(k) + ΓT

2 (k)Γ2(k) (8.35)

Taking expectation and sum from 0 to ∞ on both sides of (8.34) yields

E{V (xcl(∞))} − E{V (xcl(0))} ≤ −βE
{ ∞∑

k=0

x̃Tk x̃cl(k)
}

≤ −βE
{ ∞∑

k=0

xcl(k)
Txcl(k)

}
(8.36)

Rearranging (8.36), we get

E
{ ∞∑

k=0

xTcl(k)xcl(k)
}

≤ 1

β
E{V (xcl(0))} −

1

β
E{V (xcl(∞))}

E
{ ∞∑

k=0

xTcl(k)xcl(k)
}

≤ 1

β
E{V (xcl(0))}

E
{ ∞∑

k=0

xTcl(k)xcl(k)
}
− ||x∗|| ≤ 1

β
E{V (xcl(0))}

≤ Π (8.37)
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where Π = 1
βE{V (xcl(0))} < ∞ and x∗ ∈ E . Hence, we can conclude that the closed-

loop system is stochastically stable.

For xcl ∈ I:

xcl(k + 1) = Gclixcl(k) (8.38)

By using Lyapunov function given in (8.27), we obtain

∆V (xcl(k)) = G̃T
cli
PclG̃cli + diag{Scl − Pcl,−S, 0} (8.39)

By adding µix
T
cl(k)iQixcl(k) + µix

T
cl(k − 1)Rixcl(k − 1) on the R.H.S of the equation

(8.39), we get (8.23).

Remark 8.3.1. Our proof of Theorem (8.3.1) based on the assumption that, with w(k) =

0, the sufficient conditions (8.22) and (8.23) should reduce to a particular Lyapunov

candidate function that satisfies Definition (8.2.2). It is proved as follows:

The condition given in (8.22) reduces to:

V (xcl(k + 1))− V (xcl(k)) ≤ −ηV (xcl(k)) + xTcl(k)

N∑
i=1

µiQixcl(k)

+xTcl(k − 1)

N∑
i=1

µiRixcl(k − 1) + γ||w(k)||

∆V (xcl(k)) ≤ −ηV (xcl(k)) + µi

N∑
i=1

{
xTcl(k)Qixcl(k)

+xTcl(k − 1)Rixcl(k − 1)− ϵi

}
+

N∑
i=1

µiϵi + γ||w(k)||

(8.40)

Form (8.14), it can be seen
{
xTcl(k)Qixcl(k) + xTcl(k − 1)Rixcl(k − 1)− ϵi

}
< 0, hence:

∆V (xcl(k)) ≤ −ηV (xcl(k)) +
N∑
i=1

µiϵi + γ||w(k)||

∆V (xcl(k)) ≤ −V (xcl(k)) +

N∑
i=1

µiϵi
η

+
γ||w(k)||

η
(8.41)
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With w(k) = 0, (8.41) reduces to

∆V (xcl(k)) ≤ −V (xcl(k)) +

N∑
i=1

µiϵi
η

Similarly, (8.23) reduces to

V (Gclixcl(k))− V (xcl) ≤ −vi{Qixcl(k) + xTcl(k − 1)Rixcl(k − 1)− ϵ} − viϵ

(8.42)

By using (8.15):

V (Gclixcl(k))− V (xcl) ≤ −viϵi

V (Gclixcl(k))− V (xcl) ≤ 0

(8.43)

It can be seen that the equations (8.41) and (8.43) results in a Lyapunov function of the

following form:

F(xcl) = max
{
V (xcl)−

N∑
i=1

µiϵi
η

, 0
}

(8.44)

F(xcl) is a proper Lyapunov candidate because it satisfies (8.2.2) as:

1. F(xcl) = max
{
V (xcl)−

∑N
i=1

µiϵi
η , 0

}
is positive semi definite on xcl ∈ (D(∪N

i=1Ii)\E ,
due to (8.22) and (8.23). Hence, F(xcl) is continuous and non-negative (D(∪N

i=1Ii)\E .

2. F(xcl) is locally Lipschitz, for all open sets O with (D\E ⊂ O ⊂ X ).

3. F(xcl) is zero for all xcl ∈ E .

4. If all subsets of F(xcl) are compact then all the conditions of Definition (8.2.2)

will be fulfilled. To prove the last condition, consider F(xcl) ≤ CF for CF ≥ 0. In

other words:

F(xcl) ≤ CF

xTk Pclxk + xTk−1Sclxk−1 ≤ CF

xTk Pxk + xTclU1xcl + xTk−1Sxk−1 + xcl(k − 1)TU2xcl(k − 1) ≤ CF +

N∑
i=1

µiϵi
η

xTk Pxk ≤ CF +
N∑
i=1

µiϵi
η

(8.45)
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It implies that

||x||2 ≤ Cx (8.46)

where Cx = (1/λmin(P ))(CF +
∑N

i=1
µiϵi
η ).

Considering (8.8), it can be revealed that

||eȷi(k)||2 ≤ σi||dȷi(k)||2 + ϵi

||eȷi(k)||2 ≤ σi||C||2Cx + ϵi (8.47)

Similarly:

||xcl||2 = ||x||2 + ||e||2

||xcl||2 ≤ ||x||2 +
N∑
i=1

||eȷi(k)||2

||xcl||2 ≤ Cxcl
(8.48)

where Cxcl
= Cx +

∑N
i=1 σi||C||2Cx + ϵi. Equations (8.46-8.48) show that all the

subsets of F(xcl) are compact in X .

Since all the conditions are proved, therefore F(xcl) is Lyapunov candidate function

and stochastic stability of E can be guaranteed by satisfying the conditions of Lemma

(8.2.1). For all xcl ∈ (D(∪N
i=1Ii)\E , it holds that xcl >

∑N
i=1

µiϵi
η , hence F(xcl) =

V (xcl)−
∑N

i=1
µiϵi
η . Therefore, it can be seen that both conditions of (8.19) are implied

by (8.29) and (8.22), respectively. Similarly, Gclxcl ∈ E holds for all xcl ∈ Ii ∩ E by

(8.19).

Remark 8.3.2. It is worth mentioning that feasibility of LMIs (8.22-8.23) depends upon

on α, β σi and µi. On the other hand, ϵi has no impact on the feasibility of LMIs,

however it determines the size of set E along with other variables. It can be revealed

from the equation (8.13) that ϵi controls the size of E , hence controls the number of

events. By increasing ϵi, set E expands and results in a lower number of events and vice

versa. In our configuration, if ϵi reduces to zero then it will result in E = {0}, hence
asymptotic stability can be achieved in the absence of w(k) and packet dropouts.

8.3.1 Lower Bound on the Inter-event Time

In discrete-time systems, sampling interval ~ is always a lower bound on inter-event time

and no need for mathematical computation, as performed in [44] for continuous case.

Therefore, discrete-time systems have advantages over continuous-time systems in ET
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based control, however the actual lower bound can be larger than ~. In the following

exact lower bound is calculated for discrete-time ET based NCSs. Consider the impulsive

system (8.10), with current state x̃ = x̃(kiti), where kiti is the time on which the event

occurs and state updates. Next state will be updated on kiti+1 = kiti + ~k(x̃), where

k(x̃) := inf
{
s ∈ N\{0}|x̃T (k)(As−1

cl Gcli)
TQ(As−1

cl Gcli)x̃(k) + x̃T (k − 1)(Bs−1
cl Gcli)

TR

(Bs−1
cl Gcli)x̃(k − 1) ≥ ϵ

}
(8.49)

It states that signal will be updated as x̃T (kiti+1)Qx̃(kiti+1) + x̃T (kiti+1 − 1)Rx̃(kiti+1 −
1) ≥ ϵ. However, error will keep on accumulating as x̃T (kiti + 1) = As−1

cl Gcli x̃
T (kiti) +

Bs−1
cl Gcli x̃

T (kiti) provided that control signal is not updated. Consider a minimum inter-

event time kimin,h = ~k∗min,h ≥ ~, where

k∗min,h := inf{k(x̃)|x̃ ∈ Rnx̃} (8.50)

It can be calculated as

k∗min,h = inf{s ∈ N\{0}|λmax[(A
s−1
cl Gcli)

TQ(As−1
cl Gcli) +

(Bs−1
cl Gcli)

TR(Bs−1
cl Gcli)] > 0} (8.51)

8.4 Simulation Example

In this section, a well known example of batch reactor control [51] is considered to

validate the proposed design. A discrete-time version of the linearised continuous batch

reactor is obtained by using a zero-order-hold discretization method, with a sampling

interval ~ = 1 second. State space representation of the discrete-time plant:

A =


7.2060 1.5290 5.1940 −2.4050

−0.7112 0.0058 −0.4827 0.3574

0.2188 0.8881 0.3241 0.6066

−0.5146 0.7423 −0.2028 0.8597

 , B2 =


3.7150 −6.6490

1.5780 0.5289

4.9800 −1.1450

4.6490 −0.1119

 ,

B1 =
[
0.15000.020000

]
, C2 =

[
1 0 1 −1

0 1 0 0

]
,

C1 =
[
0.15000.052000

]
, D11 = .0023.

The eigen values of the open-loop unstable system are: [7.3237 1.0654 0.0002 0.0064].

In this example, an emulation based approach is used and a stabilising discrete-time
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controller of the form (8.2) is obtained using YALMIP toolbox:

Ac =


−6.8964 −1.2357 −6.9149 6.9413

0.8628 −0.1807 0.7651 −0.9108

−0.5079 −0.8906 −0.4473 0.3452

0.6170 −0.7329 0.5518 −0.5300

 , B2 =


6.9703 1.2278

−0.6788 0.0301

0.2580 0.8682

−0.4489 0.7670


Cc =

[
0.1750 −0.1488 0.0856 −0.2139

1.1703 0.1481 0.8208 −0.4766

]

Each system input and output are considered in sperate nodes i.e., δ11 = δ22 = δ33 = δ44 =

1, and is zero everywhere else. In this example, we perform simulations for different

cases, to analyse the effect of different parameters on system stability and performance:

Case 1: System Stability with ET mechanism

In this case, effect of ET mechanism on the system stability is analyzed in the absence

of disturbance i.e., w(k) = 0. Parameters of the decentralized ET mechanism (8.8)

are considered as: σ1 = σ3 = σ3 = σ4 ≤ 1e−3, ρ1 = ρ2 = ρ3 = ρ4 ≤ 1e−3, and

ϵ1 = ϵ2 = ϵ3 = ϵ4 ≤ 1e−4. The controller gains are applied on (8.22) and (8.23) to

validate the system stability conditions. The obtained system states, for the initial

conditions: xcl(0) = [10 10 − 10 − 10 10 10 − 10 − 10 0 0 0 0]T , are

shown in Figure 8.1.

Table 8.1: Effect of packet dropouts on number of events

α1&α2 Number of packet dropouts Number of events

0.99 5 219

0.98 6 227

0.97 8 234

0.96 9 242

By implementing the ET mechanisms on both system inputs and outputs, resource

compensation is reduced significantly. It is shown in Figure 8.2 that at one of the system

outputs (y1), 167 events are generated to sent over the communication link for feedback.

In the absence of ET mechanism, number of transmissions would be 250. It shows that

33% resource are saved by using the proposed mechanism. It is also concluded from the

figure that minimum inter-event time is 1 second, that is equal to one sample time. This

value is also equal to exact minimum inter-event time (k∗min,h = 1), calculated by using

equation (8.51).
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Figure 8.1: System states

Effect of packet dropouts are also analyzed on number of events. It can be determined

from Table (8.1) that number of packet dropouts results in the increase of number of

the events that must be transmitted, as a feedback, for the system stability.

Case 2: Effect of ϵ on stability region (set E)

By equation (8.13), it can be determined that ϵ determines the size of the set E . In

this case, effect of the ϵ on the stability region is determined by using simulations. It is

shown in Figure 8.3 that size of the set E increases with increase in the ϵ.

Case 3: Effect of noise on number of events

Response of the system is simulated with zero initial conditions, no packet dropouts

and a disturbance w(k) acting on the system. It can be observed from Figure 8.4 that

number of events will be almost equal to zero when the system is stable and no noise is

acting on the system (see time steps k ∈ {0, 150}, no events are generated). Outputs of

the plant and controller only have to be transmitted when disturbances are acting on
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Figure 8.2: Number of events with minimum inter-event time
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Figure 8.3: Effect of ϵ on stability region (set E)

the system (see time steps k ∈ {150, 250}, number of events are generated). It can be

said that ET control only acts when it is required for stability or performance. It can

also be called ‘control on demand’, and a useful feature that makes the ET mechanism

based control of high interest. Control systems with periodic transmissions do not have

this property.
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Figure 8.4: Effect of Noise on number of events

8.5 Conclusions

This chapter presentes stability analysis of distributed ET mechanism based NCSs with

packet dropouts. The proposed design obtainsH∞ control performance objective as well.

In this design, discrete-time ET mechanism based NCSs are represented as impulsive

systems. For these hybrid systems, the satiability conditions are given in terms of

LMIs and an upper bound on the stability set is provided. After this, a lower bound

on minimum inter-event time is also presented. Stability conditions are satisfied with

the help of simulation examples. The simulation results show that system stability is

achieved with less number of transmission. A plot for transmitted events with minimum

inter-event time is presented. It is observed that number of the packet dropouts increases

number of the required events for the system stability. By analyzing the simulation

result, it is presented that ϵ controls the width of stability set E . Effect of noise w(k)

on number of the events is also presented. It is evaluated that the ET mechanism

based control can be called ‘control on demand’ that reduces the use of communication,

computational and power resources.
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Conclusions and Future Work

9.1 Conclusions

This thesis comprises novel design techniques for Networked Control Systems (NCSs),

a dynamic research area with wide applications. These control techniques talk about

stability analysis and controller synthesis for various NCSs frameworks. The NCSs are

the control systems in which loops are closed over networks. Insertion of networks

provides many advantages such as flexibility, modularity and reduced wiring cost etc.

However, networks also introduce challenging constraints in the NCSs design. In this

work the network-induced constraints have been identified through a literature survey

presented in Chapter 2. Time delay, packet dropout, quantization error and limited

bandwidth have been recognized as potential NCSs constraints. Furthermore, time-

triggered (TT) and event-triggered (ET) sampling mechanisms have been compared

through qualitative analysis and simulations. The effect of the mechanisms has been

analyzed on the network-induced constraints as well.

Since time delay is a major NCSs constraint, the NCSs have been considered as a special

class of time-delayed systems (TDSs). The delays occur due to bandwidth sharing in

networks and remote locations of system components. It is commonly known that net-

works are random in nature, therefore the time delays have been considered as stochastic

processes and have been modelled by the Markov chain in Chapters 3-7. In TDSs, the

stability criteria are defined with the help of Lyapunov-Krasovskii (L-K) functional and

Lyapunov-Razumikhin (L-R) function. New and sufficient conditions for the NCS sta-

bility have been proposed on the basis of L-K functional approach. By applying the

Schur’s complement and congruence transformation on the stability conditions, novel

feedback controllers have been achieved in terms of bilinear matrix inequalities (BMIs).

The BMIs have been converted into quasi-convex linear matrix inequalities (LMIs) by

141
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an iterative algorithm. Controller gains have been obtained by solving the LMIs using

LMI and YALMIP toolboxes of MATLAB. The obtained gains have been applied on

different discrete-time plants in the presence of prescribed constraints. By performing

simulations, all the proposed designs have been verified in terms of system stability,

robustness and H∞ performance. Simulation results, presented in Chapters 3-7, showed

that the network-induced delays can cause instability in an already stable system if they

are not properly incorporated in the system design.

Packet dropout between system components is another NCSs constraint. It occurs due to

overflows in buffers and queues of network nodes. Successive and single packet dropouts

have been modelled using Poisson distributions in Chapter 3, and Bernoulli in Chapter

7. Chapter 3 discussed that the Bernoulli distribution is capable of modelling the single

packet dropout, however the successive packet dropouts require either Poisson or its

combination with the Bernoulli distribution. In Chapter 3, solely Poisson distribution

is used to model the successive packet dropouts. It is worth mentioning that multi-

ple Bernoulli distributions can be used in the modelling of successive packet dropouts,

however the detailed investigation is beyond the scope of this thesis. Simulation results

presented in Chapter 3, showed that an increase in the successive packet dropouts results

in the degradation of the system performance. The system can even become unstable if

the successive packet dropouts are increased up to 4.

The quantization process is required in the NCSs due to the digital nature of networks

and controllers. The quantization process helps in the adjustment of bandwidth utiliza-

tion. However, it also results in the quantization error. Both aspects of the quantization

process have been explored in Chapter 6 and 7. The quantization errors have been

bounded by a sector bound approach in Chapter 6. Multiple quantizers have been con-

sidered and their errors have been characterized by the convex poly-topic uncertainties.

On the other hand, the use of quantizers as information coders have been explored in

Chapter 7. In this chapter, adaptive quantization densities have been considered and

modelled with the help of Markov chain. By doing that, data rate has been adjusted

according to the network load conditions. This technique helped me to propose a design

of NCSs with limited bandwidth.

The last constraint considered in this thesis is limited bandwidth. It is indispensable

in networks due to bandwidth sharing and scheduling. To cater for this constraint,

various mechanisms such as congestion control and ET sampling have been investigated

in Chapters 4, 5 and 8. Simulation results showed that the system stability can be

achieved with less samples. It is also concluded that there is always a tradeoff between

the system performance and limited bandwidth.
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9.2 Future Work

Energy efficient and novel control designs enhance the usage of the NCSs in real-time

applications. In future, different NCSs constraints will be identified and new horizons

in the NCSs will be explored. My future research plans include:

• Stability Analysis and Controller Design of NCSs using Event Triggered

and Self Triggered Mechanisms

The event-triggered (ET) and Self Triggered (ST) controls reduce the use of com-

munication and computational resources. Literature on the ET and ST control

systems have seen a considerable growth in the last decade. However, this field is

still in its early stages. The system theories for the ET and ST control are not as

mature as time-triggered(TT) control system theories, thus require further inves-

tigation. By developing the novel co-design theories, the use of ET and ST control

can be enhanced in practical applications. Recent simulation and experimental re-

sults show that the ET and ST control systems outperform the TT control systems

in terms of the number of samples with satisfactory control performance [39, 42–

44]. However, detailed qualitative, quantitative theories and simulation analysis

are still required. Along with this the real-time implementations of ET and ST

controls can result in further research issues.

The ET and ST based control paradigms with networks in system loop are new

research trends in the NCSs and will be the focus of my future research. Stability

analysis of ET based distributed control systems,with packet dropouts, are dis-

cussed in the current work. Another potential research gap includes time delays,

that will be considered in the future research.

• Numerical Computing Techniques for Stability and Stabilization of the

NCSs:

It is a well known fact that the NCSs are new frontiers in control systems. The

research in the NCSs includes the concepts of applied mathematics, engineering

and computer science. The use of numerical computing techniques in the linear

control theory is an interesting topic that not only solves several control prob-

lems such as pole placement, stabilization and H∞ control but can also be used

to develop control toolboxes. The use of the numerical techniques in the control

theory should take a number of considerations into account. Firstly, a problem

formulation should reflect the physical properties of the system in a maximal way.

Secondly, the control problems should be formulated mathematically in such a way

that ‘sensitivity to perturbations’ should be less. Thirdly, a well formulated control
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problem should not result in the drastic solution due to intermediate ill-conditioned

numerical steps. Lastly, novel and improved numerical techniques should be de-

veloped for the large scale control problems such as control systems with time

delays. As a future research interest, novel problem formulations and stabilization

methods for the NCSs will be investigated using numerical techniques. It is also

intended to formulate the NCSs problem as a well conditioned mathematical prob-

lem. Furthermore, numerical solutions to minimize the condition numbers and to

avoid unnecessary errors will be investigated .

• Design for the Polynomial NCSs using Sums of Squares Approach:

Stability analysis and design of nonlinear systems is a challenging task. Most of the

past research works utilized the conventional control approaches such as fuzzy sys-

tems, Lyapunov, control Lyapunov and storage functions [55, 168–170]. However,

these techniques are computationally expensive and complex. The computational

complexities are relaxed with the help of a newly emerged technique of the sum

of squares (SOS) [171], and its solution using semi-definite programming (SDP)

[172]. It is worth mentioning that the SOS approach can only be used for a specific

class of nonlinear systems, called polynomial systems. A considerable research has

been done on the stability analysis and controller design of polynomial systems

using the SOS approach (see [173, 174] and references therein).

According to the authors’ knowledge, the SOS approach is not deeply investigated

for the nonlinear NCSs. Therefore the stability analysis and controller design of

nonlinear NCSs with the SOS approach is a potential research field for the future

work.

• Design and Implementation of Direct and Hierarchical Structure NCSs:

In direct structure NCSs, the system components are connected over either wire-

line or wireless network. For wireless NCSs, multiple communication standard have

been proposed such as WirelessHART (2007) and ISA100.11a(2009). However,

the design and implementation of test bed for wireless NCSs is quite expensive and

difficult to implement. Therefore, co-simulation frameworks have been proposed

in the literature. For example, a framework based on TrueTime toolbox and

OMNET++ based wireless network simulator is proposed in [175]. This type

of frameworks are quite useful to demonstrate the accurate features of network

and devices. Various NCSs designs can be verified with this framework. This

type of framework are also useful to analyze the control performance of dedicated

communication standards e.g. WirelessHART .

For a physical NCSs test bed, a suitable integration of control systems, real-time

operating system, and network communication systems is important. A basic
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DC motor based NCSs test-bed consist of following parts: 1) a DC motor and

associated sensor; 2) communication network; 3) remote controller; and 4) actuator

as shown in Figure 9.1. In real time setup, difficulties exist on each of these four

levels: 1) transmission of suitable data from sensors to controller over the network,

2) generation of real time network traffic and different constraint phenomena to

analyze the controller performance and network security issues, 3) selection of real-

time environment to impalement controllers, and 4) transmission of suitable data

from controller to actuator over the network. The proposed designs will be verified

after the implementation of NCSs test bed in the future.

Figure 9.1: A direct structured NCS testbed: Dc motor setup

In the hierarchical NCSs, local controllers perform the control tasks according to

the settings provided by the remote controller. One of the classic examples of

this type of the NCSs is remote lab. A remote lab helps in distant engineering

education. I have already developed and tested a prototype, however the real

time design requires further investigation. The block diagram of the remote lab

prototype is shown in the Figure 9.2. In this design a plant is controlled with the

help of XPC target machine. The machine acts as a controller in a local closed-

loop. It is further connected with a remote controller over the Internet, with the

help XPC host. The host also acts as a web and monitoring server. The remote

controllers can be distant learners who provide set-values for the control tasks. A

web camera is also attached with the host so that the remote controllers can check

the performance of the local close-loop.

—————————————————————-
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Figure 9.2: A hierarchical structured NCS: The remote lab
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Appendix

Proof of Lemma 3.2.1:

From (3.13), we learn that

κmi∑
κdi

=0

k−1∑
i=k−τ(i)−κdi

[
y(i)

x̃(k)

]T [
R M

MT Z

][
y(i)

x̃(k)

]
≥ 0 (10.1)

κmi∑
κdi

=0

k−1∑
i=k−τ(i)−κdi

[
yT (i)Ry(i) + x̃T (k)MT y(i) + yT (i)Mx̃(k) + x̃T (k)Zx̃(k)

]
≥ 0

∑κmi
κdi

=0

∑k−1
i=k−τ(i)−κdi

yT (i)Ry(i) +
∑κmi

κdi
=0

∑k−1
i=k−τ(i)−κdi

x̃T (k)MT y(i)+∑κmi
κdi

=0

∑k−1
i=k−τ(i)−κdi

yT (i)Mx̃(k) +
∑κmi

κdi
=0

∑k−1
i=k−τ(i)−κdi

x̃T (k)Zx̃(k) ≥ 0∑κmi
κdi

=0

∑k−1
i=k−τ(i)−κdi

x̃T (k)MT y(i) +
∑κmi

κdi
=0

∑k−1
i=k−τ(i)−κdi

yT (i)Mx̃(k)+∑κmi
κdi

=0

∑k−1
i=k−τ(i)−κdi

x̃T (k)Zx̃(k) ≥ −
∑κmi

κdi
=0

∑k−1
i=k−τ(i)−κdi

yT (i)Ry(i)∑κmi
κdi

=0 x̃
T (k)MT {x(k)− x(k − τ(i)− κdi)}+

∑κmi
κdi

=0{x(k)− x(k − τ(i)− κdi)}TMx̃(k)+

(τ(i) + κmi + 1)x̃T (k)Zx̃(k) ≥ −
∑κmi

κdi
=0

∑k−1
i=k−τ(i)−κdi

yT (i)Ry(i)

as

κmi∑
κdi

=0

x(k)−x(k−τ(i)−κdi) =
[
I −I −I · · · −I 0 0 0 0 · · · 0 0 0

]
x̃(k)

147



Appendix A. 148

so 

x̃T (k)MT
[
I −I −I · · · −I 0 0 0 0 · · · 0 0 0

]
x̃(k)

+

x̃(k)T
[
I −I −I · · · −I 0 0 0 0 · · · 0 0 0

]T
Mx̃(k)

+

(τ(i) + κmi + 1)x̃T (k)Zx̃(k)


≥ −

∑κmi
κdi

=0

∑k−1
i=k−τ(i)−κdi

yT (i)Ry(i)

putting Υ1 = MT [I − I − I · · · − I 0 0 0 0 · · · 0 0 0] in above equation gives

(3.14).

Proof of Theorem 3.3.1: The system (3.10) can be written as:

xk+1 = Γ1(i)x̃k

zk = Ξ(i)x̃k
(10.2)

where x(k + 1) = xk+1, z(k) = zk, Γ1(i) and Ξ(i) are given in (3.18) and x̃k is defined

in Lemma 3.2.1.

An improved L-K candidate functional for the closed loop system with time delays and

multiple packet dropouts is selected as:

V (xk, i) = V1(xk, i) + V2(xk, i) + V3(xk, i) (10.3)

with

V1(xk, i) = xTk P (i)xk (10.4)

V2(xk, i) =

κmi∑
κdi

=0

[ −1∑
ℓ=−τ(i)−κdi

k−1∑
j=k+ℓ

yTj R1yj +
−1∑

ℓ=−τ(s)−κm

k−1∑
j=k+ℓ

yTj R2yj

]
(10.5)

V3(xk, i) =

κmi∑
κdi

=0

[ k−1∑
ℓ=k−τ(i)−κdi

xTℓ Qxℓ +

−τ(1)+1∑
ℓ=−τ(s)−κm+2

k−1∑
j=k+ℓ−1

xTj Qxj

]
(10.6)

where κm are maximum number of packet dropouts of all Markov modes. In other

words, κmi ≤ κm.

First forward difference of V (xk, i) is given as follows:

∆V (xk, i) = ∆V1(xk, i) + ∆V2(xk, i) + ∆V3(xk, i) (10.7)
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where

∆V1(xk, i) = xTk+1P̃ (i)xk+1 − xTk P (i)xk

= x̃Tk Γ
T
1 P̃ (i)Γ1x̃k − xTk P (i)xk (10.8)

∆V2(xk, i) ≤ yTk

[
(τ̃(i) + κ̃di)R1 + (τ(s) + κm)R2

]
yk −

κmi∑
κdi

=0

k−1∑
ℓ=k−τ(i)−κdi

yTℓ

[
(1− pi(i+1))R1 +R2

]
yℓ

(10.9)

Using Lemma 3.2.1 and yk = xk+1 − xk = Γ2(i)x̃k, we have

∆V2(xk, i) ≤ x̃Tk

{
ΓT
2 [(τ̃(i) + κ̃di)R1 + (τ(s) + κm)R2] Γ2 +Υ1(i) + ΥT

1 (i) + (τ(i) + κmi

+1)Z(i)
}
x̃k

(10.10)

where Γ2(i) is given in (3.18). and

∆V3(xk, i) ≤ (τ(s)− τ(1) + κm + 1)xTkQxk −
κmi∑

κdi
=0

xTk−τ(i)−κdi
Qxk−τ(i)−κdi

. (10.11)

∆V3(xk, i) ≤ (τ(s)− τ(1) + κm + 1)xTkQxk − xTk−τ(i)−κ0i
Qxk−τ(i)−κ0i

− · · · −

xTk−τ(i)−κmi
Qxk−τ(i)−κmi

. (10.12)

By combining (10.8-10.12):

∆V (xk, i) ≤ −xTk

(
P (i)− (τ(s)− τ(1) + κm + 1)Q

)
xk − xTk−τ(i)−κ0i

Qxk−τ(i)−κ0i
−

xTk−τ(i)−κmi
Qxk−τ(i)−κmi

− x̃Tk

{
ΓT
1 P̃ (i)Γ1 + ΓT

2

[
(τ̃(i) + κ̃di)R1 + (τ(s) +

κm)R2

]
Γ2 +Υ1(i) + ΥT

1 (i) + (τ(i) + κmi + 1)Z(i)
}
x̃k

(10.13)

Using Assumption 3.2.1, and adding and subtracting xTkH
T
1 F

T
k W1(i)FkH1xk,

wT
k H

T
2 F

T
k W3(i)FkH2wk, z

T
k zk, γw

T
k wk and xT(k−τi−κ0i)

χip0iK
T (i)HT

3 F
T
k W2(i)FkH3K(i)

x(k−τi−κ0i) · · ·xT(k−τi−κmi)
χipmiK

T (i)HT
3 F

T
k W2(i)FkH3K(i)x(k−τi−κmi) to and from (10.13),
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we obtain:

∆V (xk, i) ≤ −xTk

(
P (i)− (τ(s)− τ(1) + κm + 1)Q−HT

1 (i)F
T
k W1(i)FkH1(i)−

µT
θ µθ

)
xk − xTk−τi−κ0i

(
Q− χip0iK

T (i)HT
3 W2(i)H3K(i)

)
xk−τi−κ0i

− · · · − xTk−τi−κmi

(
Q− χipmiKT (i)HT

3 W2(i)H3K(i)
)
xk−τi−κmi

+

x̃k

{
ΓT
1 P̃ (i)Γ1 + ΓT

2 [(τ̃(i) + κ̃di)R1 + (τ(s) + κm)R2]Γ2 +Υ1(i) + ΥT
1 (i)

+(τ(i) + κmi + 1)Z(i) + ΞT (i)Ξ(i)
}
x̃k − zTk zk + γ2wT

k wk − wT
k

(
γ2I −

HT
2 W3(i)H2

)
wk − xTkH

T
1 (i)F

T
k W1(i)FkH1(i)xk − xT(k−τi−κ0i)

χip0i

KT (i)HT
3 F

T
k W2(i)FkH3K(i)x(k−τi−κ0i) − · · ·xT(k−τi−κmi )

χipmiK
T (i)

−HT
3 F

T
k W2(i)FkH3K(i)x(k−τi−κmi) − wT

k H
T
2 F

T
k W3(i)FkH2wk

−xT (k)µT
θ µθx(k) (10.14)

Using (3.18), (10.14) can be rewritten as

∆V (xk, i) ≤ x̃Tk

{
Λ(i) + ΓT

1 P̃ (i)Γ1 + ΓT
2 [(τ̃(i) + κ̃di)R1 + (τ(s) + κm)R2]Γ2 +Υ1(i)

+ΥT
1 (i) + (τ(i) + κmi + 1)Z(i) + ΞT (i)Ξ(i)

}
x̃k − zTk zk + γ2wT

k wk

(10.15)

Using (3.17), we have

∆V (xk, i) ≤ −zTk zk + γ2wT
k wk (10.16)

Taking expectation and sum from 0 to ∞ on both sides of (10.16) yields:

E{V (x∞, i∞)} − E{V (x0, i0)} ≤ −E
{ ∞∑

ℓ=0

zTℓ zℓ

}
+ γ2

∞∑
ℓ=0

wT
ℓ wℓ. (10.17)

where i0 = r0 and i∞ = r∞.

As initial conditions, which are given in problem formulation, are considered to be zero,

i.e, V (x0, i0) = 0, we get:

E
{ ∞∑

ℓ=0

zTℓ zℓ

}
≤ γ2

∞∑
ℓ=0

wT
ℓ wℓ. (10.18)

If w(k) = 0, ∀k ≥ 0 closed-loop system should be stochastically stable. From (10.15)

and (3.17), we learn that
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V (x(k+1), j)− V (xk, i) ≤ −βx̃Tk x̃k (10.19)

where β = inf{Λ(i)min[−M(i)], i ∈ S} with

M = Λ(i) + ΓT
1 (i)P̃ (i)Γ1(i) + ΓT

2 [(τ̃(i) + κ̃di)R1 + (τ(s) + κm)R2]Γ2 +

Υ1(i) + ΥT
1 (i) + (τ(i) + κmi + 1)Z(i) + ΞT (i)Ξ(i) (10.20)

Summing from 0 to ∞ and by taking expectation on both sides of (10.19) gives

E{V (x∞, i∞)} − E{V (x0, i0)} ≤ −βE
{ ∞∑

k=0

x̃Tℓ x̃ℓ

}
≤ −βE

{ ∞∑
k=0

xTℓ xℓ

}
(10.21)

Re-arranging (10.21), we have

E
{ ∞∑

k=0

xTℓ xℓ

}
≤ 1

β
E{V (x0, i0)} −

1

β
E{V (x∞, i∞)}

≤ α (10.22)

where α = 1
βE{V (x0, i0)} < ∞. This shows that the closed loop system is stable and

(3.12) holds. ∇∇∇

Proof of Theorem 3.3.2:

Rearranging (3.17) as

Λ̃1(i) + Υ1(i) + ΥT
1 (i) + (τ(i) + κmi + 1)Z(i) + ΓT

1 (i)P̃ (i)Γ1(i) + ΞT (i)Ξ(i) + ΓT
2 (i)

[(τ̃(i) + κ̃di)R1 + (τ(s) + κm)R2] Γ2(i) + diag
{
µT
θ µθ, 0, · · · , 0, 0, 0, 0, · · · , 0, 0, 0

}
+diag

{
HT

1 W1(i)H1, χip0iK
T (i)HT

3 W2(i)H3K(i), · · · , χipmiK
T (i)HT

3 W2(i)H3K(i)

, 0, 0, 0, · · · , 0, 0, 0
}
< 0 (10.23)

where

Λ(i) = Λ̃1(i) + diag
{
µT
θ µθ, 0, · · · , 0, 0, 0, 0, · · · , 0, 0, 0

}
+

diag
{
HT

1 W1(i)H1, χip0iK
T (i)HT

3 W2(i)H3K(i), · · · ,

χipmiK
T (i)HT

3 W2(i)H3K(i), 0, 0, 0, · · · , 0, 0, 0
}
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and

Λ̃1(i) = diag
{
(τ(s)− τ(1) + κm + 1)Q− P (i),−Q, · · · ,−Q,HT

2 W3(i)H2 − γI,−W1(i),

−W2(i), · · · ,−W2(i),−W3(i),−I
}

Applying Schur complement on (10.23) we get

Π̃(i) ΓT
1 (i) ΓT

2 (i) ΞT (i) HT
1 (i) µ̄T

θ

∗ −P̃−1(i) 0 0 0 0

∗ ∗ −R1 0 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −W̃1 0

∗ ∗ ∗ ∗ ∗ −I


< 0 (10.24)

where

Π̃(i) = Λ̃1(i) + Υ1(i) + ΥT
1 (i) + (τ(i) + κmi + 1)Z(i)

H1(i) =


H1 0 · · · 0 0 0 0 · · · 0 0 0

0 χip0iH3K(i) · · · 0 0 0 0 · · · 0 0 0
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 · · · χipmiH3K(i) 0 0 0 · · · 0 0 0

 ,

µ̄θ =
[
µθ 0 · · · 0 0 0 0 · · · 0 0 0

]
,

R1 = diag
{
(τ̃(i)+κ̃di)R

−1
1 , (τ(s)+κm)R−1

2

}
, W̃1 = diag

{
W−1

1 (i),W−1
2 (i), · · · ,W−1

2 (i)
}
.

Multiplying (10.24) to the right by the matrix diag
{
X(i), X(i), · · · , X(i), I, I, I, · · · , I, I, I

}
and the left by its transpose, we obtain (3.3.2) with P̃−1(i) at the place of S̃(i)−JT (i)−
J(i).

Applying Schur complement on (3.21) and consequently multiplying these inequalities

by pij and summing up for all j = S, we obtain

S̃(i)− JT (i)− J(i) = −JT (i)− J(i) +
i+1∑
j=1

pijS(i, j)

≥ −JT (i)− J(i) + JT (i)P̃ (i)J(i)

= −P̃−1(i) +
(
J(i)− P̃−1(i)

)T
P̃ (i)

(
J(i)− P̃−1(i)

)
≥ −P̃−1(i) (10.25)

which implies that (3.3.2) remains valid if S̃(i)− JT (i)− J(i) is replaced by −P̃−1(i).

Furthermore, the multiplication of diag
{
X(i), X(i), · · · , X(i), I, I, I, · · · , I, I, I

}
and its



Appendix A. 153

transpose on (10.24) creates two terms X(i)TQX(i) and −X(i)TQX(i) in Λ̃. Using

Schur complement on X(i)TQX(i) and the identity shown below, (3.3.2) is obtained.

Note that:

−
(
X(i)−Q−1

)T
Q
(
X(i)−Q−1

)
< 0 (10.26)

⇒ −X(i)TQX(i) +XT (i) +X(i)−Q−1 < 0

⇒ −X(i)TQX(i) < −XT (i)−X(i) +Q−1

holds true sinceQ is a positive matrix. Therefore the−X(i)TQX(i) term can be replaced

with −XT (i)−X(i) +Q−1. where Q̃ = Q−1.

This concludes the proof that the closed-loop system is stochastically stable with the

prescribed H∞ performance. ∇∇∇
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Appendix

Proof of Theorem 4.3.1: Using (4.10), the closed loop system given in (4.4) can be

rewritten as:
xk+1 = Γ1(rk)x̃k

zk = Ξ(rk)x̃k
(11.1)

where xk = x(k), zk = z(k), x̃k = x̃(k). Γ1(rk) and Ξ(rk) are given in (4.10), and x̃k is

defined in Lemma 4.2.1.

Let us consider the following Lyapunov-Krasovskii functional:

V (xk, rk) = V1(xk, rk) + V2(xk, rk) + V3(xk, rk) (11.2)

with

V1(xk, rk) = xTk P (rk)xk (11.3)

V2(xk, rk) =

−1∑
ℓ=−τ(rk)

k−1∑
j=k+ℓ

yTj R1yj +

−1∑
ℓ=−τ(s)

k−1∑
j=k+ℓ

yTj R2yj (11.4)

V3(xk, rk) =

k−1∑
ℓ=k−τ(rk)

xTℓ Qxℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

xTℓ Qxℓ (11.5)

Along any trajectory of the closed-loop system, the expectation value of the first forward

difference of V (xk, rk) is given as follows:

∆V (xk, rk) = ∆V1(xk, rk) + ∆V2(xk, rk) + ∆V3(xk, rk) (11.6)
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Employing the same technique as [151], (11.6) can be reduced to

∆V (xk, rk) ≤ −xTk

(
P (rk)− (τ(s)− τ(1) + 1)Q

)
xk − xTk−τ(rk)

Qxk−τ(rk) + x̃Tk

{
ΓT
1 P̃ (rk)

Γ1 + ΓT
2 [τ̃(rk)R1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT

1 (rk) + τ(rk)Z(rk)
}
x̃k

(11.7)

Using Assumption 3.2.1, and adding and subtracting xTkH
T
1 F

T
k W1(rk)FkH1xk,

wT
k H

T
2 F

T
k W3(rk)FkH2wk, z

T
k zk, xT(k−τrk )

KT (rk)H
T
3 F

T
k W2(rk)FkH3K(rk)x(k−τrk )

,

{x(ι− τι)− x(k − τrk)}TKT (rk)W4(rk)K(rk){x(ι− τι)− x(k − τrk)},
{x(ι− τι)− x(k − τrk)}TKT (rk)H

T
3 F

T
k W5(rk)FkH3{x(ι− τι)− x(k − τrk)} and γwT

k wk

to and from (11.7) and using (4.2), we obtain

∆V (xk, rk) ≤ −xTk

(
P (rk)− (τ(s)− τ(1) + 1)Q−HT

1 W1(rk)H1

)
xk − xTk−τrk

(
Q

−KT (rk)H
T
3 W2(rk)H3K(rk)− δ2KT (rk)W4K(rk)− δ2KT (rk)H

T
3

W5(rk)H3K(rk)
)
xk−τrk

+ x̃Tk

{
ΓT
1 P̃ (rk)Γ1 + ΓT

2

[
τ̃kR1 + τ(s)R2

]
Γ2 +

Υ1(rk) + ΥT
1 (rk) + τrkZ(rk) + ΞTΞ

}
x̃k − zTk zk + γwT

k wk − wT
k

(
γI −

HT
2 W3(rk)H2

)
wk − xTkH

T
1 F

T
k W1(rk)FkH1xk − xT(k−τrk )

KT (rk)H
T
3

F T
k W2(rk)FkH3K(rk)x(k−τrk )

− {x(ι− τι)− x(k − τrk)}
TKT (rk)W4(rk)

K(rk){x(ι− τι)− x(k − τrk)} − {x(ι− τι)− x(k − τrk)}
TKT (rk)H

T
3

F T
k W5(rk)FkH3K(rk){x(ι− τι)− x(k − τrk)} −

wT
k H

T
2 F

T
k W3(rk)FkH2wk (11.8)

∆V (xk, rk) ≤ x̃Tk

{
Λ(rk) + ΓT

1 P̃ (rk)Γ1 + ΓT
2 [τ̃(rk)R1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT

1 (rk)

+τ(rk)Z(rk) + ΞTΞ
}
x̃k − zTk zk + γwT

k wk (11.9)

Using (4.8), we have

∆V (xk, rk) ≤ −zTk zk + γwT
k wk (11.10)

Taking expectation and sum from 0 to ∞ on both sides of (11.10) yields

E{V (x∞, r∞)} − E{V (x0, r0)} ≤ −E
{ ∞∑

ℓ=0

zTℓ zℓ

}
+ γ

∞∑
ℓ=0

wT
ℓ wℓ (11.11)

Under zero initial condition, V (x0, r0) = 0, we have

E
{ ∞∑

ℓ=0

zTℓ zℓ

}
≤ γ

∞∑
ℓ=0

wT
ℓ wℓ (11.12)
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That is, H∞ performance criteria, given in Chapter 6 as (6.13), is satisfied.

Next, under w(k) = 0, ∀k ≥ 0 we need to show that the closed-loop system is stochasti-

cally stable. From (11.9) and (4.8), we learn that

V (xk+1, rk+1)− V (xk, rk) ≤ −βx̃Tk x̃k (11.13)

where β = inf{λmin[−M(i)], i ∈ S} with

M(i) = Λ(i) + ΓT
1 (i)P̃ (i)Γ1(i) + ΓT

2 (i) [τ̃(i)R1 + τ(s)R2] Γ2(i) + Υ1(i) + ΥT
1 (i)

+τ(i)Z(i) + ΞT (i)Ξ(i) (11.14)

Taking expectation and sum from 0 to ∞ on both sides of (11.13) yields

E{V (x∞, r∞)} − E{V (x0, r0)} ≤ −βE
{ ∞∑

k=0

x̃Tℓ x̃ℓ

}
≤ −βE

{ ∞∑
k=0

xTℓ xℓ

}
(11.15)

Re-arranging (11.15), we get

E
{ ∞∑

k=0

xTℓ xℓ

}
≤ 1

β
E{V (x0, r0)} −

1

β
E{V (x∞, r∞)}

≤ α (11.16)

where α = 1
βE{V (x0, r0)} < ∞. Hence, we can conclude that the closed-loop system is

stochastically stable. ∇∇∇

Proof of Theorem 4.3.2:

Rearranging (4.8) as

Λ̃1(i) + Υ1(i) + ΥT
1 (i) + τ(i)Z(i) + ΓT

1 (i)P̃ (i)Γ1(i) + ΓT
2 (i) [τ̃(i)R1 + τ(s)R2] Γ2(i) +

ΞT (i)Ξ(i) + diag
{
HT

1 W1(i)H1,K
T (i)HT

3 W2(i)H3K(i), 0, 0, 0, 0, 0, 0
}

+diag
{
0, δ2K(i)TW4(i)K(i) + δ2KT (i)HT

3 W2(i)H3K(i), 0, 0, 0, 0, 0
}
< 0

(11.17)
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where

Λ(i) = Λ̃1(i) + diag
{
HT

1 W1(i)H1,K
T (i)HT

3 W2(i)H3K(i), 0, 0, 0, 0, 0, 0
}

+diag
{
0, δ2K(i)TW4(i)K(i) + δ2KT (i)HT

3 W2(i)H3K(i), 0, 0, 0, 0, 0
}
(11.18)

and

Λ̃1(i) = diag
{(

(τ(s)− τ(1) + 1)Q− P (i)
)
,−Q,

(
HT

2 W3(i)H2 − γI
)
,−W1(i),−W2(i),

−W4(i),−W5(i),−W3(i)
}

(11.19)

Applying Schur complement on (11.17) we get

Λ̃1(i) + Υ1(i) + ΥT
1 (i) + τ(i)Z(i) ΓT

1 (i) ΓT
2 (i) ΞT (i) H̃T

1 (i) H̃T
2 (i)

∗ −P̃−1(i) 0 0 0 0

∗ ∗ −R1 0 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −W̃1 0

∗ ∗ ∗ ∗ ∗ −W̃2


< 0

(11.20)

where

H̃T
1 (i) =

[
H1 0 0 0 0 0 0 0

0 H3K(i) 0 0 0 0 0 0

]

H̃T
2 (i) =

[
0 δK(i) 0 0 0 0 0 0

0 δH3K(i) 0 0 0 0 0 0

]
(11.21)

R1 = diag
{
τ̃(i)R−1

1 , τ(s)R−1
2

}
, W̃1 = diag

{
W−1

1 (i),W−1
2 (i)

}
, W̃2 = diag

{
W−1

4 (i),W−1
5 (i)

}
Multiplying (11.20) to the right by the matrix diag

{
X(i), X(i), I, I, I, I, I, I, I, I, I, I, I

}
and the left by its transpose, we obtain (4.3.2) with P̃−1(i) at the place of S̃(i)−JT (i)−
J(i).

Applying Schur complement on (4.14) and consequently multiplying these inequalities
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by pij and summing up for all j = S, we obtain

S̃(i)− JT (i)− J(i) = −JT (i)− J(i) +

i+1∑
j=1

pijS(i, j)

≥ −JT (i)− J(i) + JT (i)P̃ (i)J(i)

= −P̃−1(i) +
(
J(i)− P̃−1(i)

)T
P̃ (i)

(
J(i)− P̃−1(i)

)
≥ −P̃−1(i) (11.22)

which implies that (4.3.2) remains valid if S̃(i)− JT (i)− J(i) is replaced by −P̃−1(i).

Furthermore, the multiplication of diag
{
X(i), X(i), I, I, I, I, I, I

}
and its transpose on

(11.20) creates two termsX(i)TQX(i) and −X(i)TQX(i) in Λ̃. Using Schur complement

on X(i)TQX(i) and the identity shown below, (4.3.2) is obtained.

Note that

−
(
X(i)−Q−1

)T
Q
(
X(i)−Q−1

)
< 0 (11.23)

⇒ −X(i)TQX(i) +XT (i) +X(i)−Q−1 < 0

⇒ −X(i)TQX(i) < −XT (i)−X(i) +Q−1

holds true sinceQ is a positive matrix. Therefore the−X(i)TQX(i) term can be replaced

with −XT (i)−X(i)+Q−1. Then it is obvious that Q̃ = Q−1. This concludes the proof

that the closed-loop system is stochastically stable with the prescribed H∞ performance.

∇∇∇

Using cone complementary algorithm, the feasibility problem formulated by (4.11)-(4.12)

which is not a convex problem can be converted into the following nonlinear minimization

problem subject to LMIs:

Minimize Tr
(
R1R̃1+R2R̃2+W̃1(i)W1(i)+W̃2(i)W2(i)+W̃4(i)W4(i)+W̃5(i)W5(i)+Q̃Q

)
subject to (4.11)-(4.12) and

[
R1 I

I R̃1

]
≥ 0,

[
R2 I

I R̃2

]
≥ 0,

[
W̃1(i) I

I W1(i)

]
≥ 0,

[
W̃2(i) I

I W2(i)

]
≥ 0

[
W̃4(i) I

I W4(i)

]
≥ 0,

[
W̃5(i) I

I W5(i)

]
≥ 0

[
Q̃ I

I Q

]
≥ 0 (11.24)

To solve this optimization problem, algorithm introduced in 6, is used:
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Algorithm :

Step 1: Set ȷ = 0 and solve (4.11)-(4.12) and (11.24) to obtain the initial conditions,

[ X(i), S̃(i), J(i), R̃1(i), R̃1, R̃2(i), R̃2,W1(i),W2(i),W3(i),

W4(i),W5(i), W̃1(i), W̃2(i), W̃4(i), W̃5(i), Q̃,R1,R2, Z̃(i), Y (i)

]0
Step 2: Solve the LMI problem

Minimize Tr
(
Rȷ

1R̃1+R1R̃
ȷ
1+Rȷ

2R̃+R2R̃
ȷ
2+W̃1(i)

ȷW1(i)+W̃1(i)W1(i)
ȷ+W̃2(i)

ȷW2(i)+

W̃2(i)W2(i)
ȷ + W̃4(i)

ȷW4(i) + W̃4(i)W4(i)
ȷ + W̃5(i)

ȷW5(i) + W̃5(i)W5(i)
ȷ +QȷQ̃+

QQ̃ȷ
)

subject to (4.11)-(4.12) and (11.24)

The obtained solutions are denoted as:

[ X(i), S̃(i), J(i), R̃1(i), R̃1, R̃2(i), R̃2,W1(i),W2(i),W3(i),W4(i),

W5(i), W̃1(i), W̃2(i), W̃4(i), W̃5(i), Q̃,R1,R2, Z̃(i), Y (i)

]ȷ+1

Step 3: Solve Theorem 3.1 with K(i)ȷ+1 = Y ȷ+1(i)X−1(i)ȷ+1, if there exist solutions, then

K(i)ȷ+1 are the desired controller gains and EXIT. Otherwise, if

Tr
(
Rȷ

1R̃1 +R1R̃
ȷ
1 +Rȷ

2R̃+R2R̃
ȷ
2 + W̃1(i)

ȷW1(i) + W̃1(i)W1(i)
ȷ + W̃2(i)

ȷW2(i) +

W̃2(i)W2(i)
ȷ + W̃4(i)

ȷW4(i) + W̃4(i)W4(i)
ȷ + W̃5(i)

ȷW5(i) + W̃5(i)W5(i)
ȷ +QȷQ̃+

QQ̃ȷ
)
> ϵ, set ȷ = ȷ+1 and return to Step 2 where ϵ is tolerant else EXIT and no

solution will be possible.
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Proof of Theorem 5.3.1:

The system (5.5) can be written as

ζk+1 = Γ1(rk)ζ̃k

zk = Γ3(rk)ζ̃k

where ζ(k + 1) = ζk+1, Γ1(rk) and Γ3 are given in (5.13) and ζ̃k is defined in Lemma

5.2.1.

Select the L-K candidate functional for the closed loop system as:

V (ζk, rk) = V1(ζk, rk) + V2(ζk, rk) + V3(ζk, rk) (12.1)

with

V1(ζk, rk) = ζTk P (rk)ζk (12.2)

V2(ζk, rk) =

−1∑
ℓ=−τ(rk)

k−1∑
j=k+ℓ

x̄Tj R1x̄j +

−1∑
ℓ=−τ(s)

k−1∑
j=k+ℓ

x̄Tj R2x̄j (12.3)

V3(ζk, rk) =

k−1∑
ℓ=k−τ(rk)

ζTℓ Qζℓ +

−τ(1)+1∑
ℓ=−τ(s)+2

k−1∑
j=k+ℓ−1

ζTj Qζj (12.4)

Along any trajectory of the closed-loop system, the expectation value of the first forward

difference of V (xk, rk) is given as follows:

∆V (ζk, rk) = ∆V1(ζk, rk) + ∆V2(ζk, rk) + ∆V3(ζk, rk) (12.5)

160
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After mathematical manipulation :

∆V1(ζk, rk) = ζTk+1P̃ (rk)ζk+1 − ζTk P (rk)ζk

= ζ̃Tk Γ
T
1 P̃ (rk)Γ1ζ̃k − ζTk P (rk)ζk (12.6)

∆V2(ζk, rk) ≤ x̄Tk

[
τ̃(rk)R1 + τ(s)R2

]
x̄k −

k−1∑
ℓ=k−τ(rk)

x̄Tℓ

[
(1− prk(rk+1))R1 +R2

]
x̄ℓ

(12.7)

and

∆V3(ζk, rk) ≤ (τ(s)− τ(1) + 1)ζTk Qζk − ζTk−τ(rk)
Qζk−τ(rk). (12.8)

Using Lemma 5.2.1 and x̄k = xk+1 − xk = Γ2(rk), we have

∆V2(ζk, rk) ≤ ζ̃Tk

{
ΓT
2 [τ̃(rk)R1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT

1 (rk) + τ(rk)Z(rk)
}
ζ̃k

(12.9)

where Γ2(rk) is given in (5.13).

Putting (12.6-12.8) in (12.5), we obtain

∆V (ζk, rk) ≤ −ζTk

(
P (rk)− (τ(s)− τ(1) + 1)Q

)
ζk − ζTk−τ(rk)

Qζk−τ(rk) + ζ̃Tk

{
ΓT
1 P̃ (rk)

Γ1 + ΓT
2 [τ̃(rk)R1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT

1 (rk) + τ(rk)Z(rk)
}
ζ̃k

(12.10)

Using Assumption 3.2.1 given in Chapter 4, and adding and subtracting

ζTk H̄
T
1 (rk)F

T
k W1(rk)FkH̄1(rk)ζk,

(
ζυ−τ(rυ) − ζk−τ(rk)

)T(
ζυ−τ(rυ) − ζk−τ(rk)

)
,
(
ζT (ϑ) −

ζT (k)
)
CT
cl(rk)Ccl(rk)

(
ζ(ϑ)− ζ(k)

)
,

wT
k H

T
2 F

T
k W2(rk)FkH2wk,

(
ζT (ϑ)−ζT (k)

)
CT
cl(rk)H

T
3 F

T (k)W3(rk)F (k)H3Ccl(rk)
(
ζ(ϑ)−
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ζ(k)
)
, zTk zk and γ2wT

k wk to and from (12.10), we obtain

∆V (ζk, rk) ≤ −ζTk

(
P (rk)− (τ(s)− τ(1) + 1)Q− δ22C

T
cl(rk)Ccl(rk)− H̄T

1 (rk)F
T
k W1(rk)

FkH̄1(rk)− δ22C
T
cl(rk)H

T
3 W3(rk)H3Ccl(rk)

)
ζk − ζTk−τ(rk)

δ21ζk−τ(rk) + ζ̃Tk{
ΓT
1 P̃ (rk)Γ1 + ΓT

2 [τ̃(rk)R1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT
1 (rk) + τ(rk)Z(rk)

+ΓT
3 Γ3

}
ζ̃k − zTk zk + γ2wT

k wk − wT
k

(
γ2I −HT

2 W2(rk)H2

)
wk −

(
ζυ−τ(rυ) −

ζk−τ(rk)

)T(
ζυ−τ(rυ) − ζk−τ(rk)

)
− ζTk H̄

T
1 (rk)F

T
k W1(rk)FkH̄1(rk)ζk − wT

k

HT
2 F

T
k W2(rk)FkH2wk −

(
ζT (ϑ)− ζT (k)

)
CT
cl(rk)Ccl(rk)

(
ζ(ϑ)− ζ(k)

)
−(

ζT (ϑ)− ζT (k)
)
CT
cl(rk)H

T
3 F

T (k)W3(rk)F (k)H3Ccl(rk)
(
ζ(ϑ)− ζ(k)

)
(12.11)

Using (5.13), (12.11) can be rewritten as

∆V (xk, rk) ≤ ζ̃Tk

{
Λ(rk) + ΓT

1 P̃ (rk)Γ1 + ΓT
2 [τ̃(rk)R1 + τ(s)R2] Γ2 +Υ1(rk) + ΥT

1 (rk)

+τ(rk)Z(rk) + ΓT
3 Γ3

}
ζ̃k − zTk zk + γ2wT

k wk (12.12)

Using (5.12), we have

∆V (ζk, rk) ≤ −zTk zk + γ2wT
k wk (12.13)

Taking expectation and sum from 0 to ∞ on both sides of (12.13) yields

E{V (ζ∞, r∞)} − E{V (ζ0, r0)} ≤ −E
{ ∞∑

ℓ=0

zTℓ zℓ

}
+ γ2

∞∑
ℓ=0

wT
ℓ wℓ (12.14)

As initial condition are considered zero i.e, V (ζ0, r0) = 0, so

E
{ ∞∑

ℓ=0

zTℓ zℓ

}
≤ γ2

∞∑
ℓ=0

wT
ℓ wℓ (12.15)

If w(k) = 0, ∀k ≥ 0 closed-loop system should be stochastically stable. From (12.12)

and (5.12), we learn that

V (ζ(k+1), r(k+1))− V (ζk, rk) ≤ −βζ̃Tk ζ̃k (12.16)
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where β = inf{Λ(rk)min[−M(rk)], rk ∈ S} with

M = Λ(rk) + ΓT
1 (rk)P̃ (rk)Γ1(rk) + ΓT

2 (rk) [τ̃(rk)R1 + τ(s)R2] Γ2(rk)

+ Υ1(rk) + ΥT
1 (rk) + τ(rk)Z(rk) + ΓT

3 (rk)Γ3(rk) (12.17)

Summing from 0 to ∞ and by taking expectation on both sides of (12.16) gives

E{V (ζ∞, r∞)} − E{V (ζ0, r0)} ≤ −βE
{ ∞∑

k=0

ζ̃Tℓ ζ̃ℓ

}
≤ −βE

{ ∞∑
k=0

ζTℓ ζℓ

}
(12.18)

Re-arranging (12.18), we have

E
{ ∞∑

k=0

ζTℓ ζℓ

}
≤ 1

β
E{V (ζ0, r0)} −

1

β
E{V (ζ∞, r∞)}

≤ α (12.19)

where α = 1
βE{V (ζ0, r0)} < ∞. This shows that the closed loop system is stable and

(5.7) holds. ∇∇∇

Proof of Theorem 5.3.2:

Applying Schur complement on (5.12), we have

Π(i) ΓT
1 (i) ΓT

2 (i) ΓT
3 (i) ΓT

4 (i) ΓT
5 (i) ΓT

6 (i)

∗ −P̃−1(i) 0 0 0 0 0

∗ ∗ −R−1 0 0 0 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −Q−1 0 0

∗ ∗ ∗ ∗ ∗ −W̃1(i) 0

∗ ∗ ∗ ∗ ∗ ∗ W(i)


< 0 (12.20)
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where

Π(i) = Λ̃(i) + Υ1(i) + ΥT
1 (i) + τ(i)Z(i)

Λ̃(i) = diag
{
−P̃ (i),−Q,

(
HT

2 W2(i)H2 − γ2I
)
,−W1(i),−W2(i),−I,−I,−W3(i)

}
Γ4(i) =

[ √
(τ(s)− τ(1) + 1)I 0 0 0 0 0 0 0

]
,

Γ5(i) =
[
H̄1(i) 0 0 0 0 0 0 0

]
,

Γ6(i) =


0 δ1I 0 0 0 0 0 0

δ2C̄2 0 0 0 0 0 0 0

δ2H3C̄2 0 0 0 0 0 0 0



Following from [136], with loss of generality, P (i) and P̃ (i) are, respectively, partitioned

as

P (i) =

[
X(i) Y −1(i)−X(i)

Y −1(i)−X(i) X(i)− Y −1(i)

]
(12.21)

and

P̃ (i) =

[
X̃(i)

∑i+1
j=1 pijY

−1(j)− X̃(i)∑i+1
j=1 pijY

−1(j)− X̃(i) X̃(i)−
∑i+1

j=1 pijY
−1(j)

]
. (12.22)

Now define

T2(i) =

[
I X̃(i)

0
∑i+1

j=1 pijY
−1(j)− X̃(i)

]
(12.23)

Multiplying (12.20) to the right by the matrix diag
{
diag

{
T (i), I, I, I, I

}
, T2(i), I, I, I, I, I

}
and the left by its transpose, we obtain (5.16) with

(∑i+1
j=1 pijY

−1(j)
)−1

at the place

of S̃(i) − J(i) − JT (i) in Ξ̃(i), Z̄(i) = T T (i)Z(i)T (i), M̄T (i) = T T (i)MT (i)T (i), R =

diag{R−1
1 , R−1

2 }, Q = Q−1, W1(i) = W−1
1 (i), W2(i) = W−1

2 (i), and A(i),B(i) and C(i)
are given in Theorem 5.3.2.
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Applying the Schur complement on (5.17) and consequently multiplying these inequali-

ties by pij and summing up for all j = S, we obtain

S̃(i)− JT (i)− J(i) = −JT (i)− J(i) +
i+1∑
j=1

pijS(i, j)

≤ −JT (i)− J(i) + JT (i)Ỹ −1(i)J(i)

=
( i+1∑

j=1

pijY
−1(j)

)−1
−

(
J(i)−

( i+1∑
j=1

pijY
−1(j)

)−1)T

( i+1∑
j=1

pijY
−1(j)

)(
J(i)−

( i+1∑
j=1

pijY
−1(j)

)−1)

≤ −
( i+1∑

j=1

pijY
−1(j)

)−1
(12.24)

which implies that (5.16) remains valid if S̃(i)−JT (i)−J(i) is replaced by
(∑i+1

j=1 pijY
−1(j)

)−1
.

Multiplying (5.11) to the right by the matrix diag
{
T (i), T (i)

}
and the left by its trans-

pose, we obtain (5.15) with T T (i)
(
(1 − pi(i+1))R1(i) + R2(i)

)
T (i) at the place of N(i)

where Z̄(i) = T T (i)Z(i)T (i) and M̄T (i) = T T (i)MT (i)T (i).

Applying the Schur complement on (5.18) and consequently multiplying these inequali-

ties by T1(i) to the right and its transpose to the left , we obtain

T T (i)
(
(1− pi(i+1))R1(i) +R2(i)

)
T (i) > N−1(i) (12.25)

which implies that (5.15) remains valid if N(i) is replaced by T T (i)
(
(1− pi(i+1))R1(i)+

R2(i)
)
T (i) where Y(i) = Y −1(i), N−1(i) = N(i). This concludes the proof that the

closed-loop system is stochastically stable with the prescribed H∞ performance. ∇∇∇

Remark 12.0.1. Theorem 3.2 LMI is not strict LMI due to equality constraints in (5.20).

However, the cone complementarity linearization algorithm that suggested in [127] can

be used to convert it into nonlinear minimization problem subject to specific LMIs.

Using cone complementary algorithm, the feasibility problem formulated by (5.14)-(5.18)

which is not a convex problem can be converted into the following nonlinear minimization

problem subject to LMIs:

Minimize Tr
(
R1R1 +R2R2 +W1(i)W1(i) +W3(i)W3(i) +N (i)N(i) +Y(i)Y (i) +QQ

)
subject to (5.14)-(5.18) and
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[
R1 I

I R1

]
≥ 0,

[
R2 I

I R2

]
≥ 0,

[
W1(i) I

I W1(i)

]
≥ 0,

[
W3(i) I

I W3(i)

]
≥ 0

[
N (i) I

I N(i)

]
≥ 0,

[
Y(i) I

I Y (i)

]
≥ 0

[
Q I

I Q

]
≥ 0 (12.26)

To solve this optimization problem, the following algorithm can be used:

Algorithm :

Step 1: Set ȷ = 0 and solve (5.14)-(5.18) and (12.26) to obtain the initial conditions,

[ X(i), S̃(i), J(i), R1(i), R1, R2(i), R2,W1(i),W2(i),W3(i),

W1(i),W3(i), Q, Q̃,R1,R2, Z̃(i), Y (i),Y(i), N(i),N (i)

]0
Step 2: Solve the LMI problem

Minimize Tr
(
Rȷ

1R1 + R1R
ȷ
1 + Rȷ

2R2 + R2R
ȷ
2 + W1(i)

ȷW1(i) + W1(i)W1(i)
ȷ +

W3(i)
ȷW3(i) +W3(i)W3(i)

ȷ +QȷQ+QQȷ +N ȷ(i)N (i) +N(i)N ȷ(i) + Y ȷ(i)Y(i) +

Y (i)Yȷ(i)
)

subject to (5.14)-(5.18) and (12.26)

The obtained solutions are denoted as:

[ X(i), S̃(i), J(i), R1(i), R1, R2(i), R2,W1(i),W2(i),W3(i),

W1(i),W3(i), Q, Q̃,R1,R2, Z̃(i), Y (i),Y(i), N(i),N (i)

]ȷ+1

Step 3: Solve Theorem 3.1 with K(i)ȷ+1 = Y ȷ+1(i)X−1(i)ȷ+1, if there exist solutions, then

K(i)ȷ+1 are the desired controller gains and EXIT. Otherwise, if

Tr
(
Rȷ

1R1 +R1R
ȷ
1 +Rȷ

2R2 +R2R
ȷ
2 +W1(i)

ȷW1(i) +W1(i)W1(i)
ȷ +W3(i)

ȷW3(i) +

W3(i)W3(i)
ȷ+QȷQ+QQȷ+N ȷ(i)N (i)+N(i)N ȷ(i)+Y ȷ(i)Y(i)+Y (i)Yȷ(i)

)
> ϵ,

set ȷ = ȷ + 1 and return to Step 2 where ϵ is tolerant else EXIT and no solution

will be possible.
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Proof of Theorem 3.1:

The system (6.11) can be written as

ζk+1 =
∑2r

g=1

∑2m

h=1 λ1g(k)λ2h(k)
(
Γg,h
1 (rk)ζ̃k

)
zk =

∑2r

g=1

∑2m

h=1 λ1g(k)λ2h(k)
(
Γh
3(rk)ζ̃k

) (13.1)

where ζ(k+1) = ζk+1, Γ
g,h
1 (rk) and Γh

3(rk) are given in (6.18) and ζ̃k is defined in Lemma

6.2.1.

Select the L-K candidate functional for the closed loop system as:

V (ζk, rk) = V1(ζk, rk) + V2(ζk, rk) + V3(ζk, rk) (13.2)

V1(ζk, rk) = ζTk P (rk)ζk (13.3)

V2(ζk, rk) =
r∑

l=1

( −1∑
ℓ=−τ l(rk)

k−1∑
j=k+ℓ

x̄Tj R1x̄j +
−1∑

ℓ=−τ l(s)

k−1∑
j=k+ℓ

x̄Tj R2x̄j

)
(13.4)

V3(ζk, rk) =

r∑
l=1

( k−1∑
ℓ=k−τ l(rk)

ζTℓ Q
lζℓ +

−τ l(1)+1∑
ℓ=−τ l(s)+2

k−1∑
j=k+ℓ−1

ζTj Q
lζj

)
(13.5)

First forward difference of V (ζk, rk) is given as follows:

∆V (ζk, rk) = ∆V1(ζk, rk) + ∆V2(ζk, rk) + ∆V3(ζk, rk) (13.6)
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∆V1(ζk, rk) = ζTk+1P̃ (rk)ζk+1 − ζTk P (rk)ζk

=

2r∑
g=1

2m∑
h=1

2r∑
u=1

2m∑
v=1

λ1g(k)λ2h(k)λ1u(k)λ2v(k)ζ̃
T
k

(
Γg,h
1 (rk)

)T
P̃ (rk)Γ

u,v
1 (rk)ζ̃k

−ζTk P (rk)ζk

=
1

4

2r∑
g=1

2m∑
h=1

2r∑
u=1

2m∑
v=1

λ1g(k)λ2h(k)λ1u(k)λ2v(k)ζ̃
T
k

(
Γg,h
1 (rk) + Γh,g

1 (rk)
)T

P̃ (rk)(
Γu,v
1 (rk) + Γv,u

1 (rk)
)
ζ̃k − ζTk P (rk)ζk (13.7)

Using Lemma(6.2.2) and noting (6.10):

2r∑
g=1

2m∑
h=1

2r∑
u=1

2m∑
v=1

λ1g(k)λ2h(k)λ1u(k)λ2v(k)ζ̃
T
k

(
Γg,h
1 (rk) + Γh,g

1 (rk)
)T

P̃ (rk)

(
Γu,v
1 (rk) + Γv,u

1 (rk)
)
ζ̃k ≤

2r∑
g=1

2m∑
h=1

λ1g(k)λ2h(k)ζ̃
T
k

(
Γg,h
1 (rk)

+Γh,g
1 (rk)

)T
P̃ (rk)

(
Γg,h
1 (rk) + Γh,g

1 (rk)
)
ζ̃k

It implies that

∆V1(ζk, rk) ≤ 1

4

2r∑
g=1

2m∑
h=1

λ1g(k)λ2h(k)ζ̃
T
k

(
Γg,h
1 (rk) + Γh,g

1 (rk)
)T

P̃ (rk)(
Γg,h
1 (rk) + Γh,g

1 (rk)
)
ζ̃k − ζTk P (rk)ζk (13.8)
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∆V2(ζk, rk) = V2(ζk+1, rk+1)− V2(ζk, rk)

=

r∑
l=1

( s∑
i=1

prki

−1∑
ℓ=−τ l(i)

k∑
j=k+1+ℓ

x̄Tj R1x̄j −
−1∑

ℓ=−τ lk

k−1∑
j=k+ℓ

x̄Tj R1x̄j

+
−1∑

ℓ=−τ l(s)

k∑
j=k+1+ℓ

x̄Tj R2x̄j −
−1∑

ℓ=−τ l(s)

k−1∑
j=k+ℓ

x̄Tj R2x̄j

)

=
r∑

l=1

s∑
i=1

prki


−1∑

ℓ=−τ l(i)

x̄TkR1x̄k +
−1∑

ℓ=−τ l(i)

k−1∑
j=k+1+ℓ

x̄Tj R1x̄j

−
−1∑

ℓ=−τ lk

k−1∑
j=k+ℓ+1

x̄Tj R1x̄j −
−1∑

ℓ=−τ lk

x̄Tk+ℓR1x̄k+ℓ

+

r∑
l=1

−1∑
ℓ=−τ l(s)

{
x̄TkR2x̄k − x̄Tk+ℓR2x̄k+ℓ

}

=

r∑
l=1

s∑
i=1

prki


−1∑

ℓ=−τ l(i)

k−1∑
j=k+1+ℓ

x̄Tj R1x̄j −
−1∑

ℓ=−τ lk

k−1∑
j=k+ℓ+1

x̄Tj R1x̄j−

k−1∑
j=k−τ lk

x̄Tj R1x̄j

−
r∑

l=1

k−1∑
j=k−τ l(s)

x̄Tj R2x̄j +
r∑

l=1

(
x̄Tk

[
τ̃ lkR1 + τ l(s)R2

]
x̄k

)

=

r∑
l=1

s∑
i=1

prki


−(τ lk+1)∑
ℓ=−τ l(i)

k−1∑
j=k+1+ℓ

x̄Tj R1x̄j −
k−1∑

j=k−τ lk

x̄Tj R1x̄j


−

r∑
l=1

k−1∑
j=k−τ l(s)

x̄Tj R2x̄j +
r∑

l=1

(
x̄Tk

[
τ̃ lkR1 + τ l(s)R2

]
x̄k

)
(13.9)

Using the transition probability matrix and the fact τ l(1) ≤ τ lk+1 ≤ τ lk + 1 ≤ τ l(s) and

τ l(1) ≤ τ lk ≤ τ l(s):

∆V2(ζk, rk) ≤
r∑

l=1

(
x̄Tk

[
τ̃ l(rk)R1 + τ l(s)R2

]
x̄k

)
−

r∑
l=1

( k−1∑
ℓ=k−τ l(rk)

x̄Tℓ

[
(1− prk(rk+1))R1 +R2

]
x̄ℓ

)
(13.10)

Using Lemma 6.2.1 and x̄k = xk+1 − xk =
∑2r

g=1

∑2m

h=1 λ1g(k)λ2h(k)Γ
h
2(rk)ζ̃k, we have:

∆V2(ζk, rk) ≤ ζ̃Tk

{ 2r∑
g=1

2m∑
h=1

2r∑
u=1

2m∑
v=1

λ1g(k)λ2h(k)λ1u(k)λ2v(k)(Γ
h
2)

T
r∑

l=1

[
τ̃ l(rk)R1

+τ l(s)R2

]
Γv
2 +Υ1(rk) + ΥT

1 (rk) +

r∑
l=1

τ l(rk)Z(rk)
}
ζ̃k (13.11)
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where Γh
2(rk) is given in (6.18).

and

∆V3(ζk, rk) ≤
r∑

l=1

(
(τ l(s)− τ l(1) + 1)ζTk Q

lζk − ζTk−τ l(rk)
Qlζk−τ l(rk)

)
. (13.12)

Therefore, by putting (13.7) to (13.12) in (13.6):

∆V (ζk, rk) ≤ −ζTk

(
P (rk)−

r∑
l=1

(τ l(s)− τ l(1) + 1)Ql
)
ζk −

r∑
l=1

ζTk−τ l(rk)
Qlζk−τ l(rk)

+

ζ̃Tk

{1

4

2r∑
g=1

2m∑
h=1

2r∑
u=1

2m∑
v=1

λ1g(k)λ2h(k)λ1u(k)λ2v(k)
[(

Γg,h
1 (rk) + Γh,g

1 (rk)
)T

P̃ (rk)
(
Γu,v
1 (rk) + Γv,u

1 (rk)
)
+

(
Γg
2 + Γh

2

)T
r∑

l=1

(τ̃ l(rk)R1 + τ l(s)R2)

(
Γu
2 + Γv

2

)]
+Υ1(rk) + ΥT

1 (rk) +
r∑

l=1

τ l(rk)Z(rk)
}
ζ̃k (13.13)

Using Assumption 3.2.1 and adding and subtracting wT
k H

T
2 F

T
k W2(rk)FkH2wk, zTk zk

γ2wT
k wk and

∑2r

g=1

∑2m

h=1

∑2r

u=1

∑2m

v=1 λ1g(k)λ2h(k)λ1u(k)λ2v(k)ζ
T
k (H̄

h
1 )

T (rk)F
T
k W1(rk)

FkH̄
v
1 (rk)ζk, to and from (13.13), we obtain:

∆V (ζk, rk) ≤ −ζTk

[
P (rk)−

r∑
l=1

(τ l(s)− τ l(1) + 1)Ql −
2r∑
g=1

2m∑
h=1

2r∑
u=1

2m∑
v=1

λ1g(k)λ2h(k)

λ1u(k)λ2v(k)
(
H̄h

1 (rk)
)T

F T
k W1(rk)FkH̄

v
1 (rk)

]
ζk − ζTk−τ1(rk)

Q1ζk−τ1(rk)

· · · ζTk−τr(rk)
Qrζk−τr(rk) +

1

4
ζ̃Tk

{ 2r∑
g=1

2m∑
h=1

2r∑
u=1

2m∑
v=1

λ1g(k)λ2h(k)λ1u(k)λ2v(k)

(
Γg,h
1 (rk) + Γh,g

1 (rk)
)T

P̃ (rk)
(
Γu,v
1 (rk) + Γv,u

1 (rk)
)
+

(
Γg
2 + Γh

2

)T
r∑

l=1

(τ̃ l(rk)R1 + τ l(s)R2)
(
Γu
2 + Γv

2

)
+

(
Γg
3 + Γh

3

)T(
Γu
3 + Γv

3

)
+ 4Υ1(rk)

+4ΥT
1 (rk) + 4

r∑
l=1

τ l(rk)Z(rk)
}
ζ̃k − zTk zk + γ2wT

k wk − wT
k

(
γ2I −HT

2

W2(rk)H2

)
wk −

1

4

2r∑
g=1

2m∑
h=1

2r∑
u=1

2m∑
v=1

λ1g(k)λ2h(k)λ1u(k)λ2v(k)ζ
T
k

(
H̄g

1 (rk) +

H̄h
1 (rk)

)T
F T
k W1(rk)Fk

(
H̄u

1 (rk) + H̄v
1 (rk)

)
ζk − wT

k H
T
2 F

T
k W2(rk)FkH2wk

(13.14)
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Using Lemma(6.2.2) and noting (6.10):

1

4

2r∑
g=1

2m∑
h=1

2r∑
u=1

2m∑
v=1

λ1g(k)λ2h(k)λ1u(k)λ2v(k)
{
ζTk

[(
H̄g

1 (rk) + H̄h
1 (rk)

)T
F T
k W1(rk)Fk

(
H̄u

1 (rk) + H̄v
1 (rk)

)]
ζk + ζ̃Tk

[(
Γg,h
1 (rk) + Γh,g

1 (rk)
)T

P̃ (rk)
(
Γu,v
1 (rk) + Γv,u

1 (rk)
)
+(

Γg
2 + Γh

2

)T
r∑

l=1

(τ̃ l(rk)R1 + τ l(s)R2)
(
Γu
2 + Γv

2

)
+

(
Γg
3 + Γh

3

)T(
Γu
3 + Γv

3

)
+4Υ1(rk) + 4ΥT

1 (rk) + 4

r∑
l=1

τ l(rk)Z(rk)
]
ζ̃k

}
≤ 1

4

2r∑
g=1

2m∑
h=1

λ1g(k)λ2h(k)
{
ζTk

[(
H̄g

1 (rk) + H̄h
1 (rk)

)T
F T
k W1(rk)Fk

(
H̄g

1 (rk) + H̄h
1 (rk)

)]
ζk

+ζ̃Tk

[(
Γg,h
1 (rk) + Γh,g

1 (rk)
)T

P̃ (rk)
(
Γg,h
1 (rk) + Γh,g

1 (rk)
)
+

(
Γg
2 + Γh

2

)T

r∑
l=1

(τ̃ l(rk)R1 + τ l(s)R2)
(
Γg
2 + Γh

2

)
+

(
Γg
3 + Γh

3

)T(
Γg
3 + Γh

3

)
+ 4Υ1(rk) + 4ΥT

1 (rk) +

4
r∑

l=1

τ l(rk)Z(rk)
]
ζ̃k

}
(13.15)

Using (6.18) and(13.15), (13.14) can be rewritten as:

∆V (xk, rk) ≤ 1

4

2r∑
g=1

2m∑
h=1

λ1g(k)λ2h(k)ζ̃
T
k

{
Λg,h(rk) +

(
Γg,h
1 (rk) + Γh,g

1 (rk)
)T

P̃ (rk)
(
Γg,h
1 (rk) + Γh,g

1 (rk)
)
+

(
Γg
2 + Γh

2

)T
r∑

l=1

(τ̃ l(rk)R1 + τ l(s)R2)(
Γg
2 + Γh

2

)
+

(
Γg
3 + Γh

3

)T(
Γg
3 + Γh

3

)]
+ 4Υ1(rk) + 4ΥT

1 (rk)

+4
r∑

l=1

τ l(rk)Z(rk)
}
ζ̃k − zTk zk + γ2wT

k wk (13.16)

Using (6.17), we have:

∆V (ζk, rk) ≤ −zTk zk + γ2wT
k wk (13.17)

Taking expectation and sum from 0 to ∞ on both sides of (13.17) yields:

E{V (ζ∞, r∞)} − E{V (ζ0, r0)} ≤ −E
{ ∞∑

ℓ=0

zTℓ zℓ

}
+ γ2

∞∑
ℓ=0

wT
ℓ wℓ (13.18)
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As initial conditions are considered zero i.e, V (ζ0, r0) = 0, so

E
{ ∞∑

ℓ=0

zTℓ zℓ

}
≤ γ2

∞∑
ℓ=0

wT
ℓ wℓ (13.19)

If w(k) = 0, ∀k ≥ 0 closed-loop system should be stochastically stable. From (13.16)

and (6.17), we learn that

V (ζ(k+1), r(k+1))− V (ζk, rk) ≤ −βζ̃Tk ζ̃k (13.20)

where β = inf{Λg,h(rk)min[−M(rk)], i ∈ S} with

M =
1

4

2r∑
g=1

2m∑
h=1

λ1g(k)λ2h(k)ζ̃
T
k

{
Λg,h(rk) +

(
Γg,h
1 (rk) + Γh,g

1 (rk)
)T

P̃ (rk)
(
Γg,h
1 (rk) + Γh,g

1 (rk)
)
+
(
Γg
2 + Γh

2

)T
r∑

l=1

(τ̃ l(rk)R1 + τ l(s)R2)
(
Γg
2 + Γh

2

)
+

(
Γg
3 + Γh

3

)T(
Γg
3 + Γh

3

)]
+ 4Υ1(rk) + 4ΥT

1 (rk) + 4
r∑

l=1

τ l(rk)Z(rk)
}
ζ̃k − zTk zk +

γ2wT
k wk (13.21)

Summing from 0 to ∞ and by taking expectation on both sides of (13.20) gives

E{V (ζ∞, r∞)} − E{V (ζ0, r0)} ≤ −βE
{ ∞∑

k=0

ζ̃Tℓ ζ̃ℓ

}
≤ −βE

{ ∞∑
k=0

ζTℓ ζℓ

}
(13.22)

Re-arranging (13.22), we have

E
{ ∞∑

k=0

ζTℓ ζℓ

}
≤ 1

β
E{V (ζ0, r0)} −

1

β
E{V (ζ∞, r∞)}

≤ α (13.23)

where α = 1
βE{V (ζ0, r0)} < ∞. This shows that the closed loop system is stable and

(6.13) holds. ∇∇∇

Proof of Theorem 3.2:
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Applying Schur complement on (6.17), we have

Π
(
Γg,h
1 (i) + Γh,g

1 (i)
)T (

Γg
2(i) + Γh

2 (i)
)T (

Γg
3(i) + Γh

3 (i)
)T

ΓT
4 (i) (Γg,h

5 )T (i)

∗ −P̃−1(i) 0 0 0 0

∗ ∗ −R−1 0 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −4Q̃−1 0

∗ ∗ ∗ ∗ ∗ −W1(i)


< 0

(13.24)

where

Π = 4Λ̃(i) + 4Υ1(i) + 4ΥT
1 (i) + 4

r∑
l=1

τ l(i)Z(i)

Λ̃(i) = diag
{
−P (i),−Q1, · · · ,−Qr,

(
HT

2 W2(i)H2 − γ2I
)
,−W1(i),−W2(i)

}
Γ4(i) =

[
I 0 0 0 0

]
Γg,h
5 (i) =

[
H̄g

1 (i) + H̄h
1 (i) 0 0 0 0

]
Q̃ =

r∑
l=1

(τ l(s)− τ l(1) + 1)Ql (13.25)

Following from [85], with loss of generality, P (i) and P̃ (i) are, respectively, partitioned

as

P (i) =

[
X(i) Y −1(i)−X(i)

Y −1(i)−X(i) X(i)− Y −1(i)

]
(13.26)

and

P̃ (i) =

[
X̃(i)

∑i+1
j=1 pijY

−1(j)− X̃(i)∑i+1
j=1 pijY

−1(j)− X̃(i) X̃(i)−
∑i+1

j=1 pijY
−1(j)

]
. (13.27)

Now define

T2(i) =

[
I X̃(i)

0
∑i+1

j=1 pijY
−1(j)− X̃(i)

]
(13.28)

Multiplying (13.24) to the right by the matrix diag
{
diag

{
T (i), I, I, I, I

}
, T2(i), I, I, I, I

}
and the left by its transpose, we obtain (6.21) with −

(∑i+1
j=1 pijY

−1(j)
)−1

at the place

of S̃(i) − J(i) − JT (i) in Ξ̃(i), −Q̃−1 in place of D̃ − j̃ − j̃T , Z̄(i) = T T (i)Z(i)T (i),

M̄T (i) = T T (i)MT (i)T (i), R = diag{R−1
1 , R−1

2 }, W1(i) = W−1
1 (i) and A(i),B(i) and

C(i) are given in Theorem 3.2.
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Applying Schur complement on (6.22) and consequently multiplying these inequalities

by pij and summing up for all j = S, we obtain

S̃(i)− JT (i)− J(i) = −JT (i)− J(i) +
i+1∑
j=1

pijS(i, j) (13.29)

≥ −JT (i)− J(i) + JT (i)Ỹ −1(i)J(i)

= −
( i+1∑

j=1

pijY
−1(j)

)−1
+

(
J(i)−

( i+1∑
j=1

pijY
−1(j)

)−1)T

( i+1∑
j=1

pijY
−1(j)

)(
J(i)−

( i+1∑
j=1

pijY
−1(j)

)−1)

≥ −
( i+1∑

j=1

pijY
−1(j)

)−1
(13.30)

It implies that (6.21) remains valid if S̃(i)−JT (i)−J(i) is replaced by
(∑i+1

j=1 pijY
−1(j)

)−1
.

Applying the Schur complement on (6.23) and consequently multiplying these inequali-

ties by (τ l(s)− τ l(1) + 1) and summing up for all l to r, we obtain

D̃ − J̃T − J̃ = −J̃T − J̃ +

r∑
l=1

(τ l(s)− τ l(1) + 1)Dl (13.31)

≥ −J̃T − J̃ + J̃T Q̃J̃

= −Q̃−1 +
(
J̃ − Q̃−1

)T
Q̃
(
J̃ − Q̃−1

)
≥ −Q̃−1 (13.32)

So, (6.21) remains valid if we replace D̃ − J̃T − J̃ by −Q̃−1.

Multiplying (6.16) to the right by the matrix diag
{
T (i), T (i)

}
and the left by its trans-

pose, we obtain (6.20) with T T (i)
(
(1 − pi(i+1))R1(i) + R2(i)

)
T (i) at the place of N(i)

where Z̄(i) = T T (i)Z(i)T (i) and M̄T (i) = T T (i)MT (i)T (i).

Applying Schur complement on (6.24) and consequently multiplying these inequalities

by T1(i) to the right and its transpose to the left , we obtain

T T (i)
(
(1− pi(i+1))R1(i) +R2(i)

)
T (i) > N−1(i) (13.33)

which implies that (6.20) remains valid if N(i) is replaced by T T (i)
(
(1− pi(i+1))R1(i)+

R2(i)
)
T (i) where Y(i) = Y −1(i), N−1(i) = N(i). This concludes the proof that the

closed-loop system is stochastically stable with the prescribed H∞ performance. ∇∇∇
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Using a cone complementary algorithm [86], the feasibility problem formulated by (6.19-

6.25), which is not a convex problem, can be converted into following nonlinear mini-

mization problem subject to LMIs:

Minimize Tr
(
N(i)N (i) + Y (i)Y(i) + QlQl + R1R1 + R2R2 + W1(i)W1(i)

)
subject to

(6.19)-(6.24) and[
N(i) I

I N (i)

]
≥ 0,

[
Y (i) I

I Y(i)

]
≥ 0,

[
R1 I

I R1

]
≥ 0,

[
Ql I

I Ql

]
≥ 0,

[
R2 I

I R2

]
≥ 0,

[
W1(i) I

I W1(i)

]
≥ 0 (13.34)

To solve this optimization problem, the following algorithm is proposed:

Algorithm :

• Set ȷ = 0 and solve (6.19)-(6.24) and (13.34) to obtain the initial conditions:[
A(i),B(i), C(i), X(i), Y (i),Y(i),W1(i),W1(i),W2(i), Q

1 · · ·Qr, N(i),N (i)

, R1(i), R1,R1(i), R2,R2(i), S(i, j), J(i),Q1, · · · ,Qr, j̃, M̄(i), Z̄(i)
]0

• Solve the LMI problem:

Minimize Tr
(
N(i)ȷN (i) + Y (i)ȷY(i) + (Ql)ȷQl + Rȷ

1R1 + Rȷ
2R2 +W1(i)

ȷW1(i) +

N(i)N (i)ȷ + Y (i)Y(i)ȷ +Ql(Ql)ȷ +R1Rȷ
1 +R2Rȷ

2 +W1(i)W1(i)
ȷ
)

subject to (6.19)-(6.24) and (13.34).

The obtained solutions are denoted as:[
A(i), C(i),B(i), X(i), Y (i),Y(i),W1(i),W1(i),W2(i), Q

1 · · ·Qr, N(i),N (i),

R1(i), R1,R1(i), R2(i), R2,R2(i), S(i, j), J(i),Q1, · · · ,Qr, j̃, M̄(i), Z̄(i)
]ȷ+1

• Solve Theorem 3.1 with Ac(i)
ȷ+1, Bc(i)

ȷ+1 and Cc(i)
ȷ+1 obtained in Step 2, if there

exist solutions, then Ac(i)
ȷ+1, Bc(i)

ȷ+1 and Cc(i)
ȷ+1 are the suitable controller

matrices and EXIT. Otherwise, if

Tr
(
N(i)ȷN (i)+Y (i)ȷY(i)+(Ql)ȷQl+Rȷ

1R1+Rȷ
2R2+W1(i)

ȷW1(i)+N(i)N (i)ȷ+

Y (i)Y(i)ȷ +Ql(Ql)ȷ +R1Rȷ
1 +R2Rȷ

2 +W1(i)W1(i)
ȷ
)
> ϵ, set ȷ = ȷ+1 and return

to Step 2 where ϵ is tolerant else EXIT and no solution will be possible.
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Appendix

Proof of Lemma 2.1: From (7.11), we learn that

k−1∑
i=k−τ̄

[
x̄(i)

ζ̃(k)

]T [
R M

MT Z

][
x̄(i)

ζ̃(k)

]
≥ 0 (14.1)

It follows follows from (14.1) that:

k−1∑
i=k−τ̄

[
x̄T (i)Rx̄(i) + ζ̃T (k)MT x̄(i) + x̄T (i)Mζ̃(k) + ζ̃T (k)Zζ̃(k)

]
≥ 0

∑k−1
i=k−τ̄ x̄

T (i)Rx̄(i) +
∑k−1

i=k−τ̄ ζ̃
T (k)MT x̄(i) +

∑k−1
i=k−τ̄ x̄

T (i)Mζ̃(k)

+
∑k−1

i=k−τ̄ ζ̃
T (k)Zζ̃(k)

≥ 0

∑k−1
i=k−τ̄ ζ̃

T (k)MT x̄(i) +
∑k−1

i=k−τ̄ x̄
T (i)Mζ̃(k)+∑k−1

i=k−τ̄ ζ̃
T (k)Zζ̃(k)

≥ − ∑k−1
i=k−τ̄ x̄

T (i)Rx̄(i)

ζ̃T (k)MT {x(k)− x(k − τ̄)}+ {x(k)− x(k − τ̄)}TMζ̃(k)+

τ̄ ζ̃T (k)Zζ̃(k)
≥ − ∑k−1

i=k−τ̄ x̄
T (i)Rx̄(i)

As

x(k)− x(k − τ̄) =
[
diag{I, 0} diag{−I, 0} 0 0 0 0 0 0

]
ζ̃(k),

we can have:
ζ̃T (k)MT

[
diag{I, 0} diag{−I, 0} 0 0 0 0 0 0

]
ζ̃(k)

+τ̄ ζ̃T (k)Zζ̃(k)+

ζ̃(k)T
[
diag{I, 0} diag{−I, 0} 0 0 0 0 0 0

]T
Mζ̃(k)

 ≥ − ∑k−1
i=k−τ̄ x̄

T (i)Rx̄(i).
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Putting Υ1 = MT [diag{I, 0} diag{−I, 0} 0 0 0 0 0 0] in the above inequality gives

(7.12). ∇∇∇

Proof of Theorem 3.1: The system (7.7) can be written as:

ζk+1 = Γ1(rk)ζ̃k

zk = Ξ(rk)ζ̃k
(14.2)

where ζ(k+1) = ζk+1, Γ1(rk) and Ξ(rk) are given in (7.16) and ζ̃k is defined in Lemma

7.2.1.

Select the L-K candidate functional for the closed loop system as:

V (ζk, rk) = V1(ζk, rk) + V2(ζk, rk) + V3(ζk, rk) (14.3)

with

V1(ζk, rk) = ζTk P (rk)ζk (14.4)

V2(ζk, rk) =

−1∑
ℓ=−τ̄

k−1∑
j=k+ℓ

x̄Tj R1x̄j (14.5)

V3(ζk, rk) =

k−1∑
ℓ=k−τ(k)

ζTℓ Qζℓ +

−τ+1∑
ℓ=−τ̄+2

k−1∑
j=k+ℓ−1

ζTj Qζj (14.6)

First forward difference of V (ζk, rk) is given as follows:

∆V (ζk, rk) = ∆V1(ζk, rk) + ∆V2(ζk, rk) + ∆V3(ζk, rk) (14.7)

with

∆V1(ζk, rk) = ζTk+1P̃ (rk)ζk+1 − ζTk P (rk)ζk

= ζ̃Tk Γ
T
1 P̃ (rk)Γ1ζ̃k − ζTk P (rk)ζk (14.8)

∆V2(ζk, rk) ≤ x̄Tk τ̄R1x̄k −
k−1∑

ℓ=k−τ̄

x̄Tℓ R1x̄ℓ (14.9)

and

∆V3(ζk, rk) ≤ (τ̄ − τ + 1)ζTk Qζk − ζTk−τ(k)Qζk−τ(k). (14.10)
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Using Lemma 7.2.1 and x̄k = xk+1 − xk = Γ2(rk)ζ̃k, we have

∆V2(ζk, rk) ≤ ζ̃Tk

{
ΓT
2 τ̄R1Γ2 +Υ1(rk) + ΥT

1 (rk) + τ̄Z(rk)
}
ζ̃k (14.11)

where Γ2(rk) is given in (7.16).

Therefore,

∆V (ζk, rk) ≤ −ζTk

(
P (rk)− (τ̄ − τ + 1)Q

)
ζk − ζTk−τ(k)Qζk−τ(k) + ζ̃Tk{

ΓT
1 P̃ (rk)Γ1 + ΓT

2 τ̄R1Γ2 +Υ1(rk) + ΥT
1 (rk) + τ̄Z(rk)

}
ζ̃k(14.12)

Using Assumption 3.2.1, and adding and subtracting ζTk H̄
T
1 (rk)F

T
k W1(rk)FkH̄1(rk)ζk,

ζTk−τ(k)C̄2
T
∆T

q (k)W2(rk)∆q(k)C̄2ζk−τ(k), w
T
k H

T
2 F

T
k W3(rk)FkH2wk, z

T
k zk and γ2wT

k wk to

and from (14.12), we obtain:

∆V (ζk, rk) ≤ −ζTk

(
P (rk)− (τ̄ − τ + 1)Q− H̄T

1 (rk)F
T
k W1(rk)FkH̄1(rk)

)
ζk

−ζTk−τ(k)

(
Q− δ2(i)C̄2

T
W2(rk)C̄2

)
ζk−τ(k) + ζ̃Tk

{
ΓT
1 (rk)P̃ (rk)Γ1(rk)

+ΓT
2 (rk)τ̄R1Γ2(rk) + Υ1(rk) + ΥT

1 (rk) + τ̄Z(rk)

+ΞT (rk)Ξ(rk)
}
ζ̃k − zTk zk + γ2wT

k wk − wT
k

(
γ2I −HT

2 W3(rk)H2

)
wk −

ζTk−τ(k)δ
2(i)C̄2

T
W2(rk)C̄2ζk−τ(k) − ζTk H̄

T
1 (rk)F

T
k W1(rk)FkH̄1(rk)ζk

−wT
k H

T
2 F

T
k W3(rk)FkH2wk (14.13)

Using (7.16), (14.13) can be rewritten as

∆V (xk, rk) ≤ ζ̃Tk

{
Λ(rk) + ΓT

1 (rk)P̃ (rk)Γ1(rk) + ΓT
2 (rk)τ̄R1Γ2(rk) + Υ1(rk) + ΥT

1 (rk)

+τ̄Z(rk) + ΞT (rk)Ξ(rk)
}
ζ̃k − zTk zk + γ2wT

k wk (14.14)

Using (7.15), we have

∆V (ζk, rk) ≤ −zTk zk + γ2wT
k wk (14.15)

Taking expectation and sum from 0 to ∞ on both sides of (14.15) yields:

E{V (ζ∞, r∞)} − E{V (ζ0, r0)} ≤ −E
{ ∞∑

ℓ=0

zTℓ zℓ

}
+ γ2

∞∑
ℓ=0

wT
ℓ wℓ. (14.16)

As initial conditions, which are given in problem formulation, are considered to be zero,

i.e, V (ζ0, r0) = 0, we get:

E
{ ∞∑

ℓ=0

zTℓ zℓ

}
≤ γ2

∞∑
ℓ=0

wT
ℓ wℓ. (14.17)
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If w(k) = 0, ∀k ≥ 0 closed-loop system should be stochastically stable. From (14.14)

and (7.15), we learn that

V (ζ(k+1), r(k+1))− V (ζk, rk) ≤ −βζ̃Tk ζ̃k (14.18)

where β = inf{Λ(rk)min[−M(rk)], i ∈ S} with

M = Λ(rk) + ΓT
1 (rk)P̃ (rk)Γ1(rk) + ΓT

2 (rk)τ̄R1Γ2(rk)

+ Υ1(rk) + ΥT
1 (rk) + τ̄Z(rk) + ΞT (rk)Ξ(rk). (14.19)

Summing from 0 to ∞ and by taking expectation on both sides of (14.18) gives

E{V (ζ∞, r∞)} − E{V (ζ0, r0)} ≤ −βE
{ ∞∑

k=0

ζ̃Tℓ ζ̃ℓ

}
≤ −βE

{ ∞∑
k=0

ζTℓ ζℓ

}
(14.20)

Re-arranging (14.20), we have

E
{ ∞∑

k=0

ζTℓ ζℓ

}
≤ 1

β
E{V (ζ0, r0)} −

1

β
E{V (ζ∞, r∞)}

≤ α (14.21)

where α = 1
βE{V (ζ0, r0)} < ∞. This shows that the closed loop system is stable. ∇∇∇

Proof of Theorem 3.2:

Applying Schur complement on (7.15), we have

Π(i) ΓT
1 (i) ΓT

2 (i) ΓT
3 (i) ΓT

4 (i) ΓT
5 (i) ΓT

6 (i)

∗ −P̃−1(i) 0 0 0 0 0

∗ ∗ −R−1
1 0 0 0 0

∗ ∗ ∗ −I 0 0 0

∗ ∗ ∗ ∗ −Q−1 0 0

∗ ∗ ∗ ∗ ∗ −W̃1(i) 0

∗ ∗ ∗ ∗ ∗ ∗ −W̃2(i)


< 0 (14.22)



Appendix E. 180

where

Π(i) = Λ̃(i) + Υ1(i) + ΥT
1 (i) + τ(k)Z(i)

Λ̃(i) = diag
{
−P̃ (i),−Q,

(
HT

2 W3(i)H2 − γ2I
)
,−W1(i),−W2(i),−W3(i)

}
,

Γ4(i) =
[
(
√
τ̄ − τ + 1)I 0 0 0 0 0

]
, (14.23)

Γ5(i) =
[
H̄1(i) 0 0 0 0 0

]
,

Γ6(i) =
[
0 δ(i)C̄2 0 0 0 0

]
.

Following from [85], without loss of generality, P (i) and P̃ (i) are, respectively, parti-

tioned as

P (i) =

[
X(i) Y −1(i)−X(i)

Y −1(i)−X(i) X(i)− Y −1(i)

]
(14.24)

and

P̃ (i) =

[
X̃(i)

∑s
j=1 pijY

−1(j)− X̃(i)∑s
j=1 pijY

−1(j)− X̃(i) X̃(i)−
∑s

j=1 pijY
−1(j)

]
. (14.25)

Now define

T2(i) =

[
I X̃(i)

0
∑s

j=1 pijY
−1(j)− X̃(i)

]
(14.26)

Multiplying (14.22) to the right by the matrix diag
{
diag

{
T (i), I, I, I, I, I

}
, T2(i), I, I, I, I, I

}
and the left by its transpose, we obtain (7.19) with

(∑s
j=1 pijY

−1(j)
)−1

at the place of

S̃(i)−J(i)−JT (i) in Ξ̃(i), Z̄(i) = T T (i)Z(i)T (i), M̄T (i) = T T (i)MT (i)T (i), R1 = R−1
1 ,

Q = Q−1, W1(i) = W−1
1 (i), W2(i) = W−1

2 (i), and A(i),Af (i),B(i) and C(i) are given

in Theorem 3.2.

Applying the Schur complement on (7.20) and consequently multiplying these inequali-

ties by pij and summing up for all j = S, we obtain

S̃(i)− JT (i)− J(i) = −JT (i)− J(i) +

s∑
j=1

pijS(i, j) (14.27)

≤ −JT (i)− J(i) + JT (i)Ỹ −1(i)J(i)

=
( s∑

j=1

pijY
−1(j)

)−1
−

(
J(i)−

( s∑
j=1

pijY
−1(j)

)−1)T

( s∑
j=1

pijY
−1(j)

)(
J(i)−

( s∑
j=1

pijY
−1(j)

)−1)
≤ −

( s∑
j=1

pijY
−1(j)

)−1
(14.28)
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which implies that (7.19) remains valid if S̃(i)−JT (i)−J(i) is replaced by
(∑s

j=1 pijY
−1(j)

)−1
.

Multiplying (7.14) to the right by the matrix diag
{
T (i), T (i)

}
and the left by its

transpose, we obtain (7.18) with T T (i)R1(i)T (i) at the place of N(i) where Z̄(i) =

T T (i)Z(i)T (i) and M̄T (i) = T T (i)MT (i)T (i).

Applying the Schur complement on (7.21) and consequently multiplying these inequali-

ties by T (i) to the right and its transpose to the left, we obtain

T T (i)R1(i)T (i) > N−1(i) (14.29)

which implies that (7.18) remains valid if N(i) is replaced by T T (i)R1(i)T (i) where

Y(i) = Y −1(i), N−1(i) = N(i). This concludes the proof that the closed-loop system is

stochastically stable with the prescribed H∞ performance. ∇∇∇

Using the cone complementary algorithm [127], the feasibility problem formulated by

(7.17)-(7.23) which is not a convex problem can be converted into the following nonlinear

minimization problem:

Minimize Tr
(
Y (i)Y(i) +Q(i)Q(i) +N(i)N (i) +R1R1 +W1(i)W1(i) +W2(i)W2(i)

)
subject to (7.17)-(7.21) and[

Y (i) I

I Y(i)

]
≥ 0,

[
Q I

I Q

]
≥ 0,

[
N(i) I

I N (i)

]
≥ 0,

[
R1 I

I R1

]
≥ 0,

[
W1(i) I

I W1(i)

]
≥ 0

[
W2(i) I

I W2(i)

]
≥ 0. (14.30)

To solve this optimization problem, an algorithm is proposed as follows:

Algorithm:

Step 1: Set ȷ = 0 and solve (7.17)-(7.21) and (14.30) to obtain the initial conditions[
A(i),Acf , C(i),B(i), X(i), Y (i),Y(i),W1(i),W1(i),

W2(i),W2(i),W3(i), Q,Q, N(i),N (i),R1(i), R1,R1(i), S(i, j), J(i), M̄(i), Z̄(i)
]0

Step 2: Solve the LMI problem

Minimize Tr
(
N(i)ȷN (i)+Y (i)ȷY(i)+Rȷ

1R1+W1(i)
ȷW1(i)+W2(i)

ȷW2(i)+Q(i)ȷQ(i)+

N(i)N (i)ȷ + Y (i)Y(i)ȷ +R1Rȷ
1 +W1(i)W1(i)

ȷ +W2(i)W2(i)
ȷ +Q(i)Q(i)ȷ

)
subject to (7.17)-(7.21) and (14.30).
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The obtained solutions are denoted as[
A(i),Acf , C(i),B(i), X(i), Y (i),Y(i),W1(i),W1(i),W2(i),W2(i),W3(i), Q,Q,

N(i),N (i), R1(i), R1,R1(i), S(i, j), J(i), M̄(i), Z̄(i)
]ȷ+1

Step 3: Solve Theorem 3.1 with Ac(i)
ȷ+1, Bc(i)

ȷ+1 and Cc(i)
ȷ+1 obtained in Step 2. If

there exist solutions, then Ac(i)
ȷ+1, Acf (i)

ȷ+1, Bc(i)
ȷ+1 and Cc(i)

ȷ+1 are the suit-

able controller matrices and EXIT. Otherwise, set ȷ = ȷ + 1 and return to Step

2.
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