RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or
 private study purposes only, and you may not make them available to any
 other person.
- Authors control the copyright of their thesis. You will recognise the author's
 right to be identified as the author of this thesis, and due acknowledgement
 will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

THE UNIVERSITY OF AUCKLAND, 1971.

THE ECOLOGY, POPULATION DYNAMICS, AND ENERGETICS
OF SOME SOFT SHORE MOLLUSCS.

by

MICHAEL FRANCIS LARCOMBE.

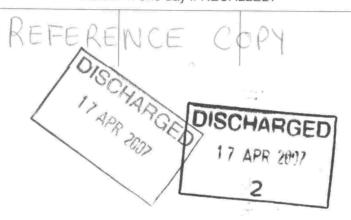
A thesis submitted toward the degree of Doctor of Philosophy in Zoology.

LIBRARY THESIS

72-27

Cob.1

Thesis 72-27 op.1

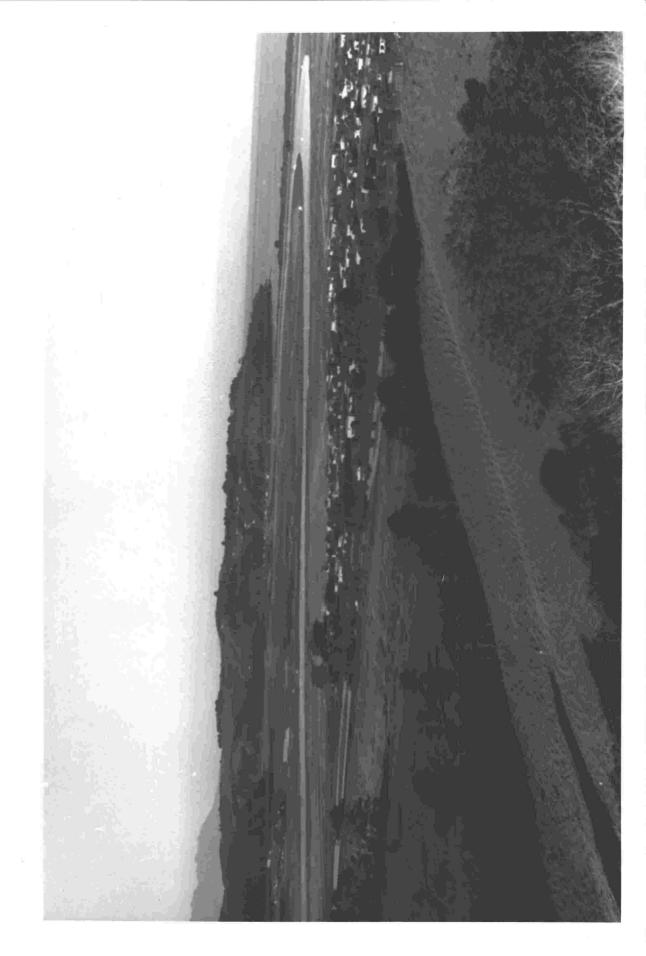

Plate 1. The Whangateau Harbour.

Taken from south-west of Point Wells. Ti Point is in the background.

UNIFERENT OF LUCKBAN!

UNIVERSITY OF AUCKLAND LIBRARY

UNIVERSITY OF AUCKLAND LIBRARY
Unless this book is returned on or before the date
stamped below, fines will be charged.
Return in one day if RECALLED.



UNIVERSITY OF AUCKLAND LIBRARY

Unless this book is returned on or before the date stamped above, fines will be charged THESIS

42 - 27

Cop. 1

CONTENTS.

1.	INTRODUCTION	1
2.	CHIONE STUTCHBURYI: POPULATION STRUCTURE	4
2.1.	Length-frequencies.	
2.2.	Age structure.	4
2.3.	Sex structure.	6
2.4.	Population density factors.	7
2.5.	Variation in shell morphology.	7
2.6.	Summary.	7
3.	COMINELLA SPECIES: POPULATION STRUCTURE.	9
3.1.	Species composition of populations.	9
3.2.	Length-frequencies.	9
3.3.	Age structure.	9
3.4.	Lattitudinal variation in population	
	structure.	10
3.5.	Sex ratios of Cominella populations.	10
3.6.	Variation in shell morphology of	
	Cominella species.	12
3.7.	Summary.	13
4.	GROWTH OF CHIONE STUTCHBURYI.	14
4.1.	Measurement of growth.	14
4.1.1.	Growth rings.	14
4.1.2.	Growth increment of marked or segregated	
	individuals.	16
4.1.3.	Analysis of growth from length-grequency	
	distributions	16
4.1.4.	Analysis of growth by following one year	
	class.	17
4.2.	External indicators of relative growth	
	rates.	17
4.2.1.	Strial spacing.	17
4 2 2	Colour of the inside of the shell.	18

	4.2.3.	Morphological variation in the shell.	19
	4.2.4.	Variation in shell thickness.	19
	4.3.	Factors determining variation in growth	
		rates of Chione stutchburyi populations.	20
	4.3.1.	The period of submergence.	20
	4.3.2.	Position within a harbour or estuary.	22
	4.3.2.(i)	Variation in available food.	23
) Dilution of food by fresh water influx.	23
/		i) The amount of food in the water.	24
		Substrate influence.	26
		Population density.	27
		Chione growth in the Whangateau Harbour:	
		Seasonal growth.	28
	4.4.1.	Determination of seasonal growth pattern	
		for natural populations.	28
	4.5.	Chione growth at Snell's Beach.	30
	4.6.	Chione growth at Cheltenham.	31
	4.7.	Chione growth in the Wellington area.	33
	4.7.1.	Pauatahanui Harbour.	33
	4.7.2.	Wellington Harbour.	33
	4.8.	Chione growth in the Heathcote-Avon Estuary.	34
	4.9.	Chione growth in the Otago Harbour.	35
	4.10.	Discussion.	38
	4.10.1.	Methods of determining growth.	38
	4.10.2.	Expression of growth.	39
		Factors influencing growth rate.	39
		Period of submergence.	39
		Variation in feeding rate.	40
		Available food.	41
ب	4 40 % D	Effect of substrate type on growth rate.	41
ب		Salinity effects on growth.	42
		Temperature effects on growth: Seasonal	
		growth/	42

4.10.3.G	. Temperature effects on growth: Lattitudinal	
	variation.	43
4.10.3.H	. Influence of crowding on growth.	44
4.10.4.	Variation in growth rate within populations.	44
4.10.4.A	. Variation in growth rate with age.	45
4.10.4.B	. Variation in growth rate with size.	46
4.10.5.	Maximum age attained by Chione stutchburyi.	47
4.11.	Summary.	48
5.	GROWTH OF COMINELLA SPECIES.	49
5.1.	Methods of studying growth in gastropods.	49
5.1.1.	Analysis of length-frequency curves.	50
5.1.2.	Following one year class.	50
5.1.3.	Analysis of growth, using increments of	
3.1.3.	individuals of different sizes.	51
5 1 3 A	Marking selected sizes only.	51
	Marking of all sizes.	51
5.2.	Marking techniques.	51
5,3.	The populations studied.	53
5.4.	Recapture of marked animals.	53
5.4.1.	Recovery on foot.	53
5.4.2.	Recovery by snorkelling.	54
5.5.	Recording of data.	55
5.6.	Calculation of growth of Cominella species.	55
5.7.	Growth of Cominella species under artificial	
	conditions.	61
5.8.	The nature of the growth curve.	64
5.9.	Variation in growth rate of populations	
	from different areas.	65
5.9.1.	Range of variation.	65
5.9.2.	Sublittoral growth.	67
5.9.3.	Lattitudinal variation.	67
5.10.	Variation in growth rate within a	-71
	nonulation.	68

5.10.1.	Factors determining variation: Availability	
	of food.	68
5.10.2.	Variation in growth rates of the two sexes.	68
5.10.3.	The seasonal nature of growth.	69
5.10.4.	Maximum size and age attained by Cominella	
	species.	70
5.11.	Summary.	71
6.	CHIONE REPRODUCTION.	=-
6.1.	The cycle of gonad development.	72
6.1.1.	Determination of the quantity of gonad	
	produced.	72
6.1.2.	Gonad maturation cycle.	73
6.2.	Discussion.	73
_	CHICANA CARREL BARREL	
7.	CHIONE SETTLEMENT.	_
7.1.	Introduction.	76
7.2.1.	Recruitment to established adult beds.	77
7.2.2.	Recruitment to areas with low Chione density	
7.2.3.	Recruitment at Snell's Beach.	78
7.2.4.	Recruitment at Cheltenham.	78
7.3.	Period of recruitment.	80
7.4.	Summary.	81
8.	COMINELLA REPRODUCTION.	12
8.1.	Introduction.	82
8.2.	Reproduction of Cominella maculosa.	83
8.3.	Reproduction of Cominella adspersa.	86
8.4.	Reproduction of Cominella glandiformis	88
8.5.	Reproduction of Cominella virgata.	89
8.6.	Discussion.	90
8.6.1.	Copulation.	90
8.6.2.	Spawning potential.	90
8.6.3.	Gregarious spawning.	90

0 6 1		
0.0.4.	Aggregation by spawning females of	0.4
0.04.4	Cominella species.	91
	Attraction to a suitable area.	92
8.6.4.2.	Formation of the aggregation by laying	
	females.	93
8.6.5.	Advantages of mass spawning.	94
8.7.	Summary.	96
9.	CHIONE MORTALITY.	97
9.1.1.	Predation by Cominella species.	97
9.1.2.	Effect of migration by Cominella species.	98
9.1.3.	Differential mortality of Chione due to	
	size selection by Cominella species.	99
9.2.	Predation by other gastropods.	99
9.3.	Predation by birds.	101
9.4.	Predation by fish.	103
9.5.	Exploitation of Chione by man.	103
9.6.	Population density and mortality.	104
9.7.	Mortality of Chione by environmental	
	disruption.	104
9.8.	Effects of other organisms on Chione	
	mortality.	105
9.8.1.	Organisms attached to the outside of the	
	shell.	105
9.8.2.	Animals boring in the shell.	106
9.8.3.	Parasitism.	106
9.9.	The Heathcote-Avon Estuary: Pollution and	
	Chione stutchburyi.	106
9.9.1.	The effect of green algae on Chione	
	mortality.	108
9.9.2.	Sediment alteration and Chione mortality.	110
9.10.	Summary.	112.
10.	MORTALITY OF COMINELLA SPECIES.	113
10.1.	Juvenile mortality.	113

	10.2.	Adult mortality.	113
	11.	BEHAVIOUR OF CHIONE STUTCHBURYI.	
	11.1.	Normal position in the substrate.	117
ji.	11.2.	Maintenance of position in the substrate.	117
	11.3.	Movement of Chione.	118
	11.4.	Chione feeding.	119
	12.	COMINELLA BEHAVIOUR.	120
	12.1.	Behaviour with the tidal cycle.	120
	12.2.	Diurnal behaviour.	121
	12.3.	Movements of Cominella species.	121
	12.3.1.	Rate of movement.	122
	12.3.2.	Movement rate and temperature.	123
	12.3.3.	Movement rate and salinity variation.	123
	12.3.4.	Migrations by Cominella species.	123
	12.3.4.A	. Migration to an area with attractive food.	124
	12.3.4.B	. Migration from an area with reduced food	
	A 4	supply.	124
	12.3.4.C	. Migration from areas with good recruitment.	.125
	12.3.4.D	. Migrations associated with egg laying.	125
	12.4.	Behaviour under reduced salinity conditions	. 125
	13.	FEEDING OF COMINELLA SPECIES.	128
	13.1.	Scavenging.	129
	13.1.1.	The resting phase.	129
	13.1.2.	The searching phase.	130
	13.1.3.	Oriented approach.	131
	13.1.3.4	. From the resting phase.	131
	13.1.3.B	. From the searching phase.	132
	13.1.4.	Feeding, and formation of the feeding pack.	133
	13.2.	Predation.	133
	13.2.1.	Attack by chipping the shells of bivalve	
		prey.	133
	13.2.2.	Drilling the shells of bivalve prey.	134

13.2.3.	Attacking live gastropods.	136
13.3.	Feeding of Cominella species in the	
	laboratory.	136
13.4.	Feeding rate of Cominella species.	137
13.5.	The relationship between predator size and	
· ·	prey size.	137
13.6.	Summary.	141
14.	COMPETITION BETWEEN COMINELLA SPECIES.	142
14.2.	Possible advantages of pack feeding.	144
14.2.1.	Full utilization of food.	144
14.2.2.	Aiding the young.	144
14.2.3.	Advantages to other species.	144
14.3.	Possible disadvantages of mixed-species	
	pack feeding.	145
14.4.	Summary.	145
15.	INTRODUCTION TO ENERGETICS.	146
16.	STOCKS OF CHIONE STUTCHBURYI.	149
16.2.	Discussion.	150
16.2.2.	Variation in stock.	151
17.	STOCKS OF COMINELLA SPECIES.	157
17.2.	Discussion.	158
18.	PRODUCTION OF CHIONE STUTCHBURYI.	162
18.1.	General introduction.	162
18.2.	The production of Chione populations.	162
18.3.	Production of flesh in Chione populations.	164
18.3.2.	Discussion.	166
18.4.	Production of gonad in Chione populations.	171
18.4.1.	Introduction	171
	Calculation.	171
18.4.3.	Gonad production with height on the shore.	175
18.4.4.	Gonad production in energy units.	175

18.4.5.	Calculation of gonad production for all	
	populations.	177
18.4.6.	Discussion.	179
18.5.	A method for comparing the production of	
	Chione in different areas.	181
18.5.1.	Introduction.	181
18.5.2.	Calculation of the production of a	
	'standard' population.	181
18.5.3.	Discussion.	184
19.	PRODUCTION OF COMINELLA POPULATIONS.	186
19.1.	Flesh weight increment.	186
19.1.2.	Discussion.	189
19.2.	Reproductive production of Cominella	
F.	species.	189
19.2.2.	Reproductive production of field	
	populations.	190
19.2.3.	Discussion.	191
20.	TOTAL ENERGY REQUIREMENTS OF COMINELLA	106
	POPULATIONS.	193
20.1.	Introduction.	193
20.2.	Efficiency.	195
20.3.1.	The ecological growth efficiency of	
	Cominella populations: Introduction.	197
20.3.2.	Proceedure.	198
20.3.3.	Discussion.	201
20.4.	Variation in B.G.E. with rate of feeding.	201
20.4.1.	The experiment.	201
20.4.2.	Results.	202
20.5.	Variation in E.G.E. with sex and age.	206
20.5.2.	Experimental proceedure.	206
20.5.3.	Results.	207
20.5.4.	Relative efficiency of 'young' and 'old'	
	individuals.	20

20.6.	General discussion of the ecological growth	
	efficiency of Cominella species.	209
21.	MAINTENANCE ENERGY FOR COMINELLA POPULATIONS.	213
21.2.	Maintenance energy for C. glandiformis,	
	Experiment 1.	214
21.3.	Experiment 2.	215
21.4.	Experiment 3.	215
21.5.	Results.	216
21.6.	Discussion.	218
22.	ASSIMILATION EFFICIENCY OF COMINELLA SPECIES.	220
23.	THE ENERGY BUDGET FOR COMINELLA POPULATIONS.	223
24.	INTERACTION OF CHIONE STUTCHBURYI AND	
	COMINELLA SPECIES.	231
25.	GENERAL DISCUSSION.	233
Appendix	6.1.	235
Appendix	18.1.	236
Appendix	18.2.	236
Appendix	18.3.	238
Appendix	20.	239
BIBLIOGRA	APHY.	240

ACKNOWLEDGEMENTS.

I wish firstly to thank my supervisor, Professor J.E. Morton, for his continued interest and help throughout this study.

My thanks also to Dr. W.J. Ballantine, Director, and Dr. F.J. Taylor, Associate Director, of the Marine Laboratory at Leigh, for their interest and practical aid. I am especially grateful to Mr. S.L. Smith, technician at the Marine Laboratory, for his help in constructing apparatus, and looking after experimental populations. My thanks also to Mr. J. Crossley, technician at Leigh, for his help in feeding laboratory populations of Cominella species.

I also wish to thank Dr. E.J. Batham, Director of the Portobello Marine Biological Station, for the use of laboratory facilities, and Professor G.A. Knox, for the use of facilities at the University of Canterbury. My special thanks are due also to Dr. J.B. Jillett at Otago, and Mr. R. Voller at Christchurch, who sent regular samples of Chione stutchburyi to Leigh, enabling me to undertake seasonal studies that would otherwise have been impossible.

I would finally thank Dr. R.B. Pike, Director of the Island Bay Marine Laboratory, and Dr. J.C. Yaldwyn of the Dominion Museum, for providing data and samples of Chione stutchburyi from the Wellington Harbour.