

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

NOVEL PRODUCTS FROM PENTACHLOROCYCLOPROPANE: A SYNTHETIC AND STRUCTURAL INVESTIGATION

Peter William John Surman

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Chemistry University of Auckland

1996

ABSTRACT

Primary and secondary amines react with pentachlorocyclopropane to form a variety of novel products. Amidines, allyl and cyclopropenyl cations are easily reached by these reactions. The 1,1,3,3-*tetra*-aminoallyl cations of this series can be reversibly protonated at C(2) to give diamidinium ions. Action of KOH on the diamidinium species $CH_2[C(NHBu^t)_2]_2^{2*}$ produces the diamidine $CH_2[C(NBu^t)(NHBu^t)]_2$ which hydrolyses to the formamidine $CH(NBu^t)(NHBu^t)$. *Bis-* and *tris-*amino substituted cyclopropenylium ions are formed by the action of secondary amines on pentachlorocyclopropane.

The cations of this study are stabilised by electron back-donation from nitrogen atoms of substituent groups. The subject of back-bonding was probed in several ways. Crystallographically determined structures of representative salts afforded bond length data from which deductions about back-bonding were made. The measurement of barriers to bond rotation is another way that this effect was investigated. Using the technique of variable temperatue NMR, VT-NMR, spectroscopy, energies of activation about unsaturated bonds of allyl, amidinium and cyclopropenylium cations were found. UV-spectra provided additional information concerning bonding in these species.

Tautomerism of N,N'-disubstituted amidines was investigated by VT-NMR spectroscopy. Individual tautomers were identified in NMR spectra (¹³C, ¹H).

Tris-alkylaminocyclopropenylium ions were oxidised to form intensely coloured radical dications. The first Raman spectrum of a cyclopropenyl radical dication was determined. Using the technique of pulse radiolysis we were able to reduce the cyclopropenylium cation, $[C_3(NEt_2)_3]^+$, to the molecular radical. Further, pulse experiments enabled standard reduction potentials of representative $[C_3(NR_2)_3]^{2+}$ and allyl radical dications to be measured and compared.

In general, tertiary amines reacted with pentachlorocyclopropane to generate product mixtures. Reaction of *para*-dimethylaminopyridine, DMAP, on pentachlorocyclopropane was a case in exception. The novel allylide product is the same as that formed via an alternative route.

The direct reaction of ammonia on pentachlorocyclopropane produced several products including the formamidine NC-N=CH-NH₂.

A polyamide was prepared from the hydrolysis of a diamidinium ion. The mechanism of formation and the characterisation of this glossy, thermoplastic material is discussed.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Michael Taylor for his invaluable assistance throughout the course of this work. I wish him well on his retirement from teaching and look forward to future opportunities for research collaboration. Many thanks go to Assoc. Profs. George Clark and Cliff Rickard for solving the x-ray crystal structures of this project. Special thanks go to Assoc. Prof. John Packer and Dr Robert Anderson for introducing me to the technique of pulse radiolysis. Many thanks are also expressed to Drs Penny Brothers and David Ware for their assistance and helpful advice. A special thank you goes to Dr Melvyn Kilner of Durham University for advice and encouragement. Thanks also goes to my room mates, L-J Baker and Ian Laban for their friendship and support.

Thank you Christine for your support, love and commitment to me. A big thank you is also due to my family for the love, advice and support that you have given me.

I am indebted to the University of Auckland and the William Georgetti scholarship trust for providing financial assistance throughout the course of this work.

abio or contonito	T	abl	е	of	Contents
-------------------	---	-----	---	----	----------

Abstract	II
Acknowledgements	III
List of Figures	IX
List of Tables	XI
Abbreviations	
Chapter One: Introduction	1
References for Chapter One	7
Chapter Two: Species of the Investigation	
2.1 Introduction	11
2.2 Preparations	11
2.2.1 Aminocyclopropenylium Cations	11
2.2.2 Allyl Cations	12
2.2.3 Amidines	13
2.3 Characterisation	16
2.4 Free-Radical Chemistry	17
References for Chapter Two	18
Chapter Three: Experimental	
Part One: Materials and Synthesis	
3.1 Introduction	20
3.2 Reagents of Study	21
3.3 Preparations of Cyclopropenylium Cations	23
3.3.1 General Comments	23
3.3.2 Preparation of Tris-diethylaminocyclopropenylium Chloride	24
3.3.3 Preparation of Tris-piperidinocyclopropenylium Chloride	24
3.3.4 Preparation of Bis-1,2-diisopropylamino-3-chlorocyclo-	25
propenylium Chloride	
3.4 Conversion of Aminocyclopropenylium Cations into Radical	25
Dications	
3.4.1 Introduction	25
3.4.2 Preparation of [C3(NEt2)][SbCle]	25

IV

Page

	Page
3.4.3 Preparation of [C ₃ (NC ₅ H ₁₀) ₃][SbCl ₆] ₂	26
3.5 Preparations of Allyl Cations, [C ₃ H(NR ₂) ₄] ⁺	26
3.5.1 Introduction	26
3.5.2 Preparation of $[C_3H(NHBu^t)_4]^+$ Salts	27
3.5.3 Preparation of $[C_3H(DEED)_2]CI$, DEED = EtN(CH ₂) ₂ NEt	28
3.5.4 Preparation of [C ₃ H(NC ₅ H ₁₀)₄]CI	28
3.6 Preparations of Diamidinium Cations, [C ₃ H ₂ (NR ₂) ₄] ²⁺	29
3.6.1 Introduction	29
3.6.2 Preparation of [C ₃ H ₂ (NHPr ⁿ) ₄]Cl ₂	29
3.6.3 Preparation of [C ₃ H ₂ (DAP) ₂] ²⁺ Salts, DAP = NH(CH ₂) ₃ NH	30
3.6.4 Preparation of [C ₃ H ₂ (NHBu ⁿ) ₄]Cl ₂	30
3.6.5 Preparation of [C ₃ H ₂ (DEED) ₂]SO ₄	31
3.6.6 Preparation of [C ₃ H ₂ (NHBu ^t)₄] ²⁺ Salts	31
3.7 Preparation of the Diamidine C ₃ H ₂ (NHBu ^t) ₂ (NBu ^t) ₂	31
3.7.1 Introduction	32
3.7.2 Procedure	32
3.8 Formation of N,N'-di-tert-butylformamidinium Chloride	33
3.8.1 Synthesis of N,N'-di-tert-butylformamidine	33
3.9 Preparation of [C ₃ (DMAP) ₅]Cl₄: Reaction of a Tertiary	34
Amine on C ₃ HCl ₅	
3.9.1 Introduction	34
3.9.2 Procedure	35
Part Two: Instrumental Techniques	
3.10 Introduction	35
3.11 UV-Visible Spectroscopy	36
3.12 Pulse Radiolysis Spectroscopy	36
3.13 Infrared Spectroscopy	37
3.14 Raman Spectroscopy	38
3.15 Nuclear Magnetic Resonance Spectroscopy	38
3.16 X-ray Crystallography	39
References for Chapter Three	39

V

	Page
Chapter Four: Characterisation	
4.1 Introduction	43
4.2 NMR Spectra of Compounds Prepared in Chapter Three	43
4.2.1 Diamidinium Cations	44
4.2.2 Allyl Cations	49
4.2.3 Interpretation of NMR Spectra of Mixtures of Allyl	52
and Diamidinium Cations	
4.2.4 The Diamidine C ₃ H ₂ (NHBu ^t) ₂ (NBu ^t) ₂	54
4.2.5 N,N'-di-tert-butylformamidine	56
4.3 Vibrational Spectra of Allyl, Amidinium and Cyclopropenylium	59
Cations and Related Species	
4.3.1 The Cyclopropenylium Radical Dication [C ₃ (NEt ₂) ₃] ^{2+.}	59
4.3.2 Diamidinium Cations	63
4.3.2.1 Vibrational Assignment of [C ₃ H ₂ (NHBu') ₄] ²⁺	63
4.3.2.2 Other Diamidinium Cations	69
4.3.3 Allyl Cations	73
4.3.4 The Diamidine C ₃ H ₂ (NHBu ^t) ₂ (NBu ^t) ₂	80
4.3.5 N,N'-di-tert-butylformamidinium Cation	83
4.4 UV-Visible Spectra [C ₃ H ₂ (NHBu ^t) ₄] ²⁺ , [C ₃ H(NHBu ^t) ₄] ⁺ ,	86
$C_3H_2(NHBu^t)_2(NBu^t)_2$ and the Related Series of	
[CH(NHBu ^t) ₂] ⁺ and CH(NHBu ^t)(NBu ^t)	
4.5 pH Titration of [C ₃ H(NHBu ^t)₄]NO ₃] with HCI: Determination	90
of the pK _a Value of [C ₃ H ₂ (NHBu ^t) ₄][NO ₃] ₂	
4.5.1 Procedure	90
4.6 Conductimetric Titration of [C ₃ H(NHBu') ₄]Cl with HCl	92
References for Chapter Four	93
Chapter Five: Crystal Structures of Representative Allyl and Amidinium	
Cations	
5.1 Introduction	94
5.2 The 1,1,3,3-tetrakis(tert-butylamino)allyl Cation	95
5.3 The Methylene-bis(N,N'-di-tert-butylformamidinium) Cation	97
5.4 The N,N'-di-tert-butylformamidinium Cation	99
References for Chapter Five	102

VI

	Page
Chapter Six: Dynamic Processes of Allyl, Amidinium and Cyclopropenylium	
Cations and Amidines	
6.1 Introduction	104
6.2 Activation Parameters for Bond Rotation from NMR Data	105
6.3 Restricted Bond Rotations in the Bis-Amino-Substituted	107
Cyclopropenylium Ion [C ₃ (NPr ⁱ ₂) ₂ CI] ⁺	
6.4 Restricted Rotations in the Diamidinium Ion [C ₃ H ₂ (NHBu ¹) ₄] ²	111
6.5 A VT-NMR Study of the Allyl Cation [C ₃ H(NHBu ^t)₄] ⁺	115
6.6 Dynamic Effects in the Diamidine C ₃ H ₂ (NHBu ^t) ₂ (NBu ^t) ₂	121
References for Chapter Six	127
Chapter Seven: Pulse Radiolysis	
7.1 The Fast Reaction Technique of Pulse Radiolysis	128
7.2 Control of Species in Aqueous Solutions	130
7.3 Dosimetry	133
7.3.1 Definition of Absorbed Dose	133
7.3.2 Principles of Chemical Dosimetry	134
7.3.3 The Thiocyanate Dosimeter	136
7.4 Reaction Kinetics of Solutions	137
7.4.1 Introduction	137
7.4.2 Pseudo First Order Chemical Kinetics	138
7.4.3 Rate Constants for Reactions of Allyl and	139
Cyclopropenylium Cations with Primary Radicals	
7.5 UV Spectra of the Redox Products of Allyl and	144
Cyclopropenylium Cations	
7.5.1 Cyclopropenylium Ions	144
7.5.2 Allyl Cations	146
7.6 Determination of One Electron Reduction Potentials	148
7.6.1 Theory	148
7.6.2 Tris-alkylaminocyclopropenylium and Allyl Radical	149
Dications	
7.7 Concluding Remarks Concerning Pulse Radiolysis	153
References for Chapter Seven	154

VII

Appendix A:	The Action of	of Ammonia Vapour on C₃HCl₅ and Subsequent	
	Reaction w	vith a Ketone	
	A.1 Prep	aration of the Formamidine N-C-N=CH-NH ₂	155
	A.1.1	Procedure	155
	A.1.2	NMR Spectra of NC-N=CH-NH ₂	156
	A.1.3	Infrared Spectrum of NC-N=CH-NH ₂	157
	A.2 Prepa	aration of the Diamidinium Cation, [C ₃ H ₂ (NHCMe ₂ NH ₂) ₄] ²⁺ .	
x.	and it	s Conversion to a Polyamide Resin	159
	A.2.1	Procedure	160
	A.2.2	Discussion	160
	A.2.3	NMR Spectra of the Polymer Resin	162
	A.2.4	Infrared Spectrum of the Red Oil and	
		Polymer Resin	162
	References	s for Appendix A	163
Appendix B: C	rystallograp	hic Data Pertinent to Structures of Chapter Five	164
Appendix C: ($G\epsilon)_i$ Value	s for the Determination of One Electron Reduction	179
F	Potentials of	[C ₃ (NEt ₂) ₃] ^{2+.} and [C ₃ (NC ₅ H ₁₀) ₃] ^{2+.}	

Figures

Fig. 4.1 NMR Spectra (¹³ C, ¹ H) of the Diamidinium Ion [C ₂ H ₂ (NHBu ¹),] ²⁺	44
Fig. 4.2 ¹³ C NMR Spectrum of $[C_3H_2(NHBu^t)_2]^{2+}$ in 6 mol L ⁻¹ DCI. Four	48
But Environments are Revealed	
Fig. 4.3 NMR Spectra (¹³ C, ¹ H) of the Allyl Cation [C ₃ H(NHBu ^t)₄] ⁺	49
Fig. 4.4 NMR Spectra (¹³ C, ¹ H) of the Diamidine C ₃ H ₂ (NHBu ¹) ₂ (NBu ¹) ₂	54
Fig. 4.5 NMR Spectra (¹³ C, ¹ H) of N,N'-di-tert-butylformamidine	56
Fig. 4.6 FT-Raman Spectrum of Crystalline [C3(NEt2)][SbCl3]	60
Fig. 4.7 Raman Spectrum of [C ₃ (NEt ₂) ₃] ⁺ in CHCl ₃	61
Fig. 4.8 Infrared Spectrum of [C ₃ H ₂ (NHBu ^t) ₄][GaCl ₄] ₂	66
Fig. 4.9a Raman Spectrum of Crystalline [C3H2(NHBub)][GaCl]2 (60-3100 cm ⁻¹)	67
Fig. 4.9b Raman Spectrum of Crystalline [C3H2(NHBu ¹)][GaCl]2 (3000-3600 cm ⁻¹)	68
Fig. 4.10 Infrared Spectrum of [C ₃ H ₂ (NHPr ⁿ) ₄][SbCl ₆] ₂	70
Fig. 4.11 Infrared Spectrum of [C ₃ H ₂ (NHBu ⁿ) ₄][SbCl _g] ₂	70
Fig. 4.12 Infrared Spectrum of [C ₃ H ₂ (NC ₅ H ₁₀) ₄]SO ₄	71
Fig. 4.13 Infrared Spectrum of [C ₃ H ₂ (DEED) ₂]SO ₄ , DEED = EtN(CH ₂) ₂ NEt	71
Fig. 4.14 Infrared Spectrum of [C ₃ H ₂ (NHCH ₂ CH ₂ CH ₂ NH) ₂][SbCl ₆] ₂	72
Fig. 4.15 Infrared Spectrum of [C ₃ H(NHBu ^t) ₄]Cl	77
Fig. 4.16 Infrared Spectrum of [C ₃ H(NC ₅ H ₁₀)₄]CI	78
Fig. 4.17 Infrared Spectrum of [C ₃ H(DEED) ₂]CI	78
Fig. 4.18 Raman Spectrum of Crystalline [C ₃ H(NHBu ^t) ₄]NO ₃	79
Fig. 4.19 Infrared Spectrum of C ₃ H ₂ (NHBu ^t) ₂ (NBu ^t) ₂	82
Fig. 4.20 Raman Spectrum of C ₃ H ₂ (NHBu ¹) ₂ (NBu ¹) ₂ in CCl ₄	82
Fig. 4.21 Infrared Spectrum of [CH(NHBu') ₂]Cl	85
Fig. 4.22 UV-Visible Spectra of Related Amidines, Allyl and	89
Amidinium Cations	
Fig. 4.23 Titration of Aqueous [C ₃ H(NHBu ^t) ₄]NO ₃ with HCI Followed by	91
Solution pH Value	
Fig. 4.24 Conductimetric Titration of Aqueous [C₃H(NHBu¹)₄]CI with HCI	92
Fig. 5.1 ORTEP Plot of the Allyl Cation [C₃H(NHBu¹)₄]*	95
Fig. 5.2 ORTEP Plot of the Diamidinium Cation [C ₃ H ₂ (NHBu ^t) ₄] ²⁺	97

IX

Page

	Page
Fig. 5.3 ORTEP Plot of the Formamidinium Cation [CH(NHBu ^t) ₂] ⁺	99
Fig. 6.1 ¹³ C and ¹ H NMR Spectra of the Cyclopropenylium Ion	107
$[C_3(NPr_2)_2Cl]^+$ at 298 K Showing the Influence of Restricted	
Bond Rotation	
Fig. 6.2 ¹ H NMR Spectra Showing Coalescence of the Methine	108
Resonances of [C ₃ (NPr ⁱ ₂) ₂ Cl] ⁺	
Fig. 6.3 NMR Spectra (¹³ C, ¹ H) of [C ₃ H ₂ (NHBu ^t) ₄] ²⁺ Showing the Influence	111
of Restricted Bond Rotation	
Fig. 6.4 ¹ H NMR Spectra of [C ₃ H ₂ (NHBu ¹) ₄] ²⁺ Showing Coalescence	112
of the Methyl Hydrogens	
Fig. 6.5 NMR Spectra (¹³ C, ¹ H) of the Allyl Cation [C₃H(NHBu¹)₄] ⁺ . A	115
Single But Environment is Observed	
Fig. 6.6a ¹ H NMR Spectra of the Methyl Hydrogens of [C ₃ H(NHBu ^t) ₄] ⁺	116
at 173 and 273 K	
Fig. 6.6b ¹ H NMR Spectra of the NH Hydrogens of [C ₃ H(NHBu ^t) ₄] ⁺	117
at 183 and 193 K	
Fig. 6.7 Expected ¹ H NMR Spectrum of [C ₃ H(NHBu ^t)₄] ⁺ at Slow	119
Exchange Showing the Resonances of the Methyl Hydrogens	
Fig. 6.8 ¹³ C NMR Spectrum of C ₃ H ₂ (NHBu ^t) ₂ (NBu ^t) ₂ at 253 K	122
Fig. 6.9 ¹ H NMR Spectra of C ₃ H ₂ (NHBu') ₂ (NBu') ₂ at 253 and 298 K	123
Fig. 6.10 ¹ H NMR Spectrum of C ₃ H ₂ (NHBu ¹) ₂ (NBu ¹) ₂ at 253 K	124
Showing Three Methyl Environments	
Fig. 7.1 Reaction Scheme of One Electron Transfer Processes of	139
Radiolytically Generated Radicals on Allyl and	
Cyclopropenylium Cations	

Х

Tables

Page

Table 4.1 NMR (¹³ C, ¹ H) Chemical Shift Values for Diamidinium	46
Cations	
Table 4.2 NMR (¹³ C, ¹ H) Chemical Shift Values for Allyl Cations	51
Table 4.3 NMR (¹³ C, ¹ H) Chemical Shift Values for the Diamidine	55
$C_{3}H_{2}(NHBu')_{2}(NBu')_{2}$	
Table 4.4 NMR (¹³ C, ¹ H) Chemical Shift Values for CH(NHBu ^t)(NBu ^t)	58
Table 4.5 Vibrational Bands from the FT-Raman Spectrum of	62
$[C_3(NEt_2)_3][SbCl_6]_2$	
Table 4.6 Vibrational Spectra and Assignment of [C ₃ H ₂ (NHBu ¹) ₄] ²⁺	64
Table 4.7 Prominent Infrared Bands of Diamidinium Cations	69
Table 4.8 Vibrational Bands and Assignment of [C ₃ H(NHBu ^t)₄] ⁺	74
Table 4.9 Infrared Bands of Allyl Cations	76
Table 4.10 Characteristic Infrared Bands of C ₃ H ₂ (NHBu ^t) ₂ (NBu ^t) ₂	80
and Related Amidines	
Table 4.11 Prominent Bands in the Infrared Spectrum of the	83
Diamidine C ₃ H ₂ (NHBu ^t) ₂ (NBu ^t) ₂	
Table 4.12 Infrared Spectrum and Assignment of [CH(NHBu')2]	84
Table 4.13 UV-Visible Bands of $[C_{3}H_{2}(NHBu^{t})_{4}]^{2+}$, $[C_{3}H(NHBu^{t})_{4}]^{+}$	86
$C_{3}H_{2}(NHBu^{t})_{2}(NBu^{t})_{2}$, [CH(NHBu^{t})_{2}] ⁺ and CH(NHBu^{t})(NBu^{t})	
Table 6.1 Activation Energies and Associated Enthalpy and Entropy	109
Values for Hindered C ₃ -N Bond Rotation in [C ₃ (NPr ¹ ₂) ₂ CI] ⁺	
Table 7.1 Rate Constants for the Reactions of Br ₂ ⁻ with	142
Allyl and Cyclopropenylium Cations	
Table 7.2 UV Maxima of Redox Products from Allyl and Cyclopropenylium	145
Cations	

XI

		Page
Table A.1	NMR (¹³ C, ¹ H) Chemical Shift Values for	156
	N-nitriloformamidine, NC-N=CH-NH ₂	
Table A.2	Comparison of Vibrational Bands from the Amidine Group of	157
	N-monosubstituted Amidines	
Table A.3	Vibrational Assignment of NC-N=CH-NH ₂	159
Table A.4	NMR (13C, 1H) Chemical Shift Values of the Polyamide	162
	Resin in D ₂ O	
Table A.5	Prominent Bands in the Infrared Spectrum of the	163
	Polymer Resin	
Table C.1	Solute Concentrations and $(G\varepsilon)_i$ Values for the	179
	[C ₃ (NEt ₂) ₃] ⁺ /N ₃ ⁻ System	
Table C.2	Solute Concentrations and $(G\varepsilon)_i$ Values for the	181
	[C ₃ (NC ₅ H ₁₀) ₃] ⁺ / N ₃ ⁻ System	

XII