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Human face can be seen as a soft tissue organ complex with a large investing network of musculature. 

Due to its complexity, most existing computational models approximate these muscular structures 

using simple geometries such as 1-D curves or primitive 3-D shapes. This paper presents a new 

approach to evaluate muscle contribution from anatomically accurate geometries while maintaining 

the computational complexity at a tractable level. In the proposed method, 3-D muscle structures are 

embedded inside a facial continuum (encompassing all superficial soft tissue structures), where 

mechanical contribution of muscles is evaluated independently and transferred to the facial 

computational domain through a finite element mapping procedure. Muscle forces are decomposed 

into an array of discrete point loads that are determined at the integration points of an appropriate 

quadrature scheme. As a result, muscle meshes can be constructed independent from the facial mesh 

giving two main advantages: (i) the muscle geometries can be refined independent of the facial 

computational domain, and (ii) it is not required for the computational domain to conform to complex 

topology of muscle structures. 

 

Keywords: Facial biomechanics; Embedded muscles; Nonlinear elasticity; Anisotropy; Cubic Hermite 

elements; Mixed finite element method 

1 Introduction 

Generating facial expressions using anatomically accurate biomechanical models have 

many applications in entertainment, security and medicine. One important advantage of 

having a muscle-driven biomechanical face model is that it can produce realistic 

expressions while interacting with the environment [1]. In facial recognition, a 

biomechanical model allows detection of an input face with a different expression than 

available in the training database [2]. Human face models are also used in speech 

production simulations [3] and to evaluate both aesthetic and functional outcomes of a 

surgery [4,5]. In all of these, it is important for the numerical predictions of the soft 

tissue deformation to be reliable and accurate, especially in speech simulations and 

surgical planning. 

Modelling the mechanics of a human face is a computationally challenging task. This is 

partly due to the fact that facial soft tissues often undergo large local rotations and 
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straining. Thus, nonlinear, finite deformation (large deformation) elasticity theory is 

required to model these deformations accurately. In addition, facial soft tissues, like 

many other biological tissues, are structurally complex [6,7], and exhibit nonlinear 

constitutive behaviour [8]. Analysing muscle contraction at the whole face level 

presents even more fascinating challenge as computer modellers must also consider the 

directional mechanical contribution of individual muscle fascicles that are part of a 

complex muscular network. Almost all early computational models of the human face 

treated muscular structures as series of line segments [9–11]. However, these linear 1-D 

models were incapable of recreating the paths of muscles with complex geometry. In 

addition, they often disregarded the heterogeneous and anisotropic mechanical 

response resulted from the embedded fibrous structures. Some of these issues have been 

addressed by more recent muscle models. For example, Gladilin et al. [12] proposed a 

virtual fibre model where muscle fibres were described as a vector field inside a 3-D 

ellipsoid. Similarly, Sifakis et al. [1] and Nazari et al. [13] used multiple 1-D spline and 

cable elements to approximate 3-D geometries. Another common approach is to model 

these muscles and other facial structures as discrete element regions. For example, 

Chabanas et al. [14] labelled certain elements inside the face mesh as muscle elements, 

where forces were applied on the nodes of these elements in direction of muscle fibres. 

Nevertheless, these techniques require extensive manipulation of the face mesh and 

often lacked anatomical accuracy. 

This paper presents a new approach for modelling complex musculature inside the 

human face based on the theory of finite elasticity. The governing equations are 

numerically solved using the finite element method. In the proposed implementation, 

we treat facial tissues as incompressible and hyperelastic material. 3-D muscle 

structures are embedded inside a single face continuum through a finite element 

coordinate mapping procedure. In order to ensure anatomical accuracy, all finite 

element volume meshes (face continuum and individual muscles) were generated using 

the data derived from the visible human cryosection images [15]. 

A brief description pertinent to the theory of finite elasticity and finite element method 

is presented in the next section. This is followed by the details of constitutive relations 

of the facial tissues and muscle fibres adapted in our model and the formulation of the 

finite element model. Creation of anatomically accurate geometries of the model 

structures is outlined next. In the subsequent section, simulation results are presented. 

Finally a discussion highlighting strengths and weaknesses of the framework is 

provided. 
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2 Modelling principles 

Finite elasticity theory with finite element implementation is a common mathematical 

approach for describing the principles of continuum mechanics applied to biological 

soft tissues. In contrast to linear elasticity, finite elasticity theory is able to accurately 

predict nonlinear kinematics of mechanically nonlinear materials that undergo large 

local rotations and large straining. For a comprehensive introduction to the nonlinear 

continuum mechanics, the reader is referred to [16]. This section provides a brief 

summary of the theory, which is fundamental to modelling the biomechanics of the 

human face.  

In order to describe the large deformations of a body, we first need to consider the 

kinematic relationship between the body in the reference (undeformed) configuration, 

described by  321 ,, XXXX  and the current (deformed) configuration, described by 

 321 ,, xxxx , in the spatial Cartesian coordinate system. Here, x  is a continuous, 

differentiable and a single-valued function of X :  XuXx  , with u  being the 

displacement from the reference to the current configuration. The deformation gradient 

tensor XxF   quantifies this spatial transformation. According to the principle of 

virtual work, the external virtual work ( extWδ ) due to an arbitrary virtual displacement 

( uδ ), is equal to the internal virtual work ( intWδ ) stored in the body: intext WW δδ  . 

For a static equilibrium, the virtual work statements can be described as 





















sv
ext

v
int

dsdvW

dvW

utuf
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u
σ

δδδ

δ
:δ

             (1) 

Here, σ  is the Cauchy stress tensor, f  and t  are the body force and boundary 

traction vectors in the current configuration, v  and s  are the current volume and 

surface area of the body respectively. 

2.1 Finite element method 

In order to solve equation 1, the finite element method (FEM) is used. In the FEM, all 

variables are approximated as piecewise polynomials controlled by a finite number of 

nodal parameters. Moreover, in the case of finite elasticity with incompressible 
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materials, mixed-FEM (displacement-pressure) implementation is required [17], Thus, 

the two dependent fields, displacement u and pressure p (a detailed description of p is 

given in section 3) are given by the following finite element interpolation scheme. 

 

 







n

n

p

n

n

n

u

n

pp ξ

uξu

)(

)(

ψ

ψ

               (2) 

Where nu  and np  are nodal parameters of displacement and pressure fields 

respectively. )(ψ u

n  and )(ψ p

n  are associated basis functions and  321 ,, ξ
 
are 

the normalised element coordinates. In order to better satisfy the physical conditions 

for realistic soft tissue deformations such as large bending and torsion, derivative 

continuous (C1-continuous) cubic Hermite basis functions are used to interpolate the 

displacement field [18]. Furthermore, to avoid ill-conditioning, basis functions for the 

pressure field are required to be at least one order of polynomial lower than that used 

for the geometric field [16]. In this study, the pressure field is interpolated using linear 

Lagrange basis functions. 

3 Modelling approach 

3.1 Constitutive relation of facial tissue 

3.1.1. Adipose and connective tissues 

The human face primarily consists of mechanically passive adipose and connective 

tissues. These materials are often approximated as isotropic and hyperelastic [4,13,19]. 

In this paper, we model facial tissues as incompressible Mooney–Rivlin solid whose 

constitutive properties can be expressed using a scalar strain energy density function as 

follows: 

     133 2211  JpIcIcw            (3) 

where 1c  and 2c  are the parameters relating to the elastic distortion of the material, 

1I  and 2I  are the isochoric strain invariants derived from the isochoric deformation 

tensor [20]. The derivatives of w  with respect to energetically conjugated strain give 

stress tensor: 
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faceσ  is the Cauchy stress tensor that is used to described the mechanical behaviour of 

the passive facial tissues. T
FFB  is the Finger deformation tensor and I  is the 

identity tensor. To enforce incompressibility during the deformation, a Lagrange 

multiplier constraint is used: 

  0δ1δ  vvol pdvJW                  (5) 

Where FdetJ  is the Jacobian of transformation, and pδ  is the variation of the 

pressure variable. Using this constraint, p  can be evaluated such that zero volume 

change ( 1J ) is imposed over the integrated domain. 

3.1.2 Constitutive relation of muscle fibres 

Muscle fibres constitute the mechanically active component inside a muscle structure. 

The process of force generation inside a muscle fibre is well documented and can be 

described by the sliding filament model [21] and cross-bridge theory [22]. During 

contraction, the overlaps between the actin and myosin filaments increase, causing an 

overall shortening and thickening of the muscle fibre. In isometric contraction, the 

muscle fibre length is held constant, but produces increasing active force as the level of 

activation increases. The term tetanic tension depicts the active tension force produced 

from a muscle tetanised under isometric conditions. 

It is well-known that the tetanic tension is a function of muscle fibre stretch ( 0LL

), where 0L  and L  are the reference and current fibre lengths respectively; for 

skeletal muscles, tetanic tension curve has a local maximum at the experimentally 

determined optimal fibre stretch ofl . In addition, it is also observed that muscle fibres 

developed passive restorative forces when elongated beyond the optimal fibre length 

[23]. The following piecewise functions given by Blemker et al. [24] reproduce the 

classical force-stretch relationship observed in human skeletal muscles: 
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In equation 6, fibre

activef  and fibre

passivef  are the fibre force normalised to the tetanic 

(maximum active) tension at the optimal fibre stretch, 
*  represents the fibre stretch 

at which fibre

passivef  becomes linear, 3P  and 4P  are defined such that fibre

passivef  is C
0
- and 

C
1
-continuous at 

*  . 

To model the anisotropic response resulting from the preferential direction of muscle 

fibres, it is more convenient to introduce a structure-based mutually-orthogonal, 

curvilinear coordinate system  321 ,, υ . Here 1  axis is defined to align with 

the muscle fibre direction while 2  and 3  axes (which are orthogonal to each 

other) are in a plane normal to the 1  direction. Hence, the total stress due to active 

fibre contraction and passive stretch in the fibre direction is given by. 
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Where fibre

activeσ  and fibre

paasiveσ  are the active and passive muscle fibre stress defined along 

the fibre direction. These stresses can be evaluated from equation 6 for a given tetanic 

stress ( maxσ ): 
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             (8) 

In equation 8, ]1,0[a  is the level of activation of the muscle fibre, it is assumed 

that the active fibre stress scales linearly with muscle activation. The ratio ofl  
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reflects the change in the tetanic stress due to the change of the sarcomere density from 

the deformation [24]. 

3.2 Formulation of finite element model from virtual work statement 

In order to accurately model the mechanical contribution of muscle fibres inside the 

face continuum, fibre stresses need to be evaluated separately over their respective 

volume space. Hence the internal virtual work statement becomes: 
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Using FEM, we can describe the muscle volume as a system of finite element 

coordinates  )(

3

)(

2

)(

1

)( ,, mmmm ηηηη . Since the space occupied by muscle fibres are 

contained inside the face continuum: facemuscle vv  , a unique mapping between the 

face continuum and each muscle structure can be determined, such that 

 )(

3

)(

2

)(

1

)( ,, mmmm ξ  corresponds to )(m
η  but defined in the finite element 

coordinate system of the face mesh. Accordingly, we can map each and every 

material point in the muscle volume to the face continuum and vice versa. This 

enables transferring muscle fibre induced stresses to the facial computational domain: 
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Equation 10 presents the finite element formulation of the internal virtual work 

statement used in this study. In the equation )(g  and )(g  are the Jacobian of 

coordinate transformations from the finite element coordinate systems to the spatial 

Cartesian coordinate system: 
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Notice that in the internal virtual work statement, muscle stresses are evaluated over 

the muscle domain, independent to the face continuum. This allows an accurate 

depiction of the muscle mechanics irrespective to the face mesh discretisation. The 

integrations can be evaluated using Gaussian quadrature or other appropriate 

numerical integration method. Essentially, the integration points from the muscle 

meshes are mapped to the face mesh as discrete point loads, hence the extra 

computation lies in evaluating mechanics at these additional integration points for 

muscle contributions, but there are no additional degrees of freedom to the problem. 

3.3 Muscle fibres architecture 

The fibres in some skeletal muscles are arranged at an oblique angle to the muscle 

length, such as the in the case of convergent and pennate muscles [25]. In order to 

address this issue, we use three Eulerian angles to perform three sequential rotations 

on the original reference material coordinate system (see section 3.1.1). Furthermore, 

the Euler angles are prescribed at nodes and treated as a continuous finite element 

field which is interpolated using linear Lagrange basis functions. See [26] for details. 

Figure 1 shows the dependence of varying muscle fibre orientation on the deformation 

of a rectangular beam of soft tissue. Due to the orientation of the fibres, the 

deformation varies from bending to torsional distortion. Notice that the mesh element 

density of the muscle mesh is independent to that of the beam mesh, this is made 

possible due to the fact that we handle the numerical integration on the muscle and 

beam domains separately. 

 

Figure 1 Deformation of a rectangular beam as a result of activation of a muscle 

slab embedded inside the beam. Showing muscle fibre angles of (a) 0
°
, (b) 36

°
 and 

(c) 60
°
 from 1η , which is the finite element axis of the muscle mesh along the 

length of the muscle. 
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4 Geometric models 

The main mesh representing the facial continuum is a FE discretisation of the 

superficial fascia (SF) of the face [27], located between the external skin surface and 

the deep fascia. The superficial fascial layer is extracted from the Visible Human (VH) 

cryosection images [15]. Anatomically, the SF can be considered as superimposition 

of three distinct layers of structures [7], namely (from the external to internal layer), 

the dermis, subcutaneous tissues and the superficial musculoaponeurotic system 

(SMAS). An ultrasound study by Wu et al. [28] have revealed that these structures are 

kinematically coupled, hence a single continuous mesh is sufficient to model the 

deformation of the SF. The mesh is discretised into 560 hexahedral elements 

containing 1180 nodes (28320 geometric degrees of freedom with cubic Hermite 

interpolation). In order to reduce the number of degrees of freedom in our simulations, 

it is assumed the anatomy and the deformation is planar symmetric in the mid-sagittal 

plane (Figure 2). 

 

Figure 2 cubic-Hermite volume mesh of the Visible Human face created from the 

cryosection images 
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4.1 Facial muscles 

15 pairs of facial muscles (Table 1) were considered in this study. Their respective 

mesh geometries were generated using the procedures documented in [29]. Platysma 

muscles were not included as their origins are at the clavicles, outside the coverage of 

the SF volume mesh. In addition, several other smaller muscles were also neglected. 

Figure 3 shows the position, geometry and the fibre orientation of all muscles that 

were included in the computational model. Close-up views of the zygomaticus major 

(parallel), orbicularis oris (circular) and buccinators (convergent) muscles are 

illustrated in Figure 4. 

Table 1 Facial muscle names and abbreviation used in the simulation 

Muscle name  Abbreviation 

Buccinator BUC 

Corrugator supercilii COR 

Depressor anguli oris DAO 

Depressor labii inferioris DLI 

Frontalis FRO 

Levator anguli oris LAO 

Levator labii superioris LLS 

Levator labii superioris alaeque nasi LLSAN 

Mentalis MEN 

Orbicularis oris OOR 

Orbital orbicularis oculi OOC 

Palpebral orbicularis oculi POC 

Risorius RIS 

Zygomaticus major ZMA 

Zygomaticus minor ZMI 
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Figure 3 Location and geometry of the 15 facial muscles created from the 

cryosection images 

 

Figure 4 Muscle fibre orientations of (a) zygomaticus major, (b) orbicularis oris 

and (c) buccinators muscles. 

4.2 Simulation conditions 

Underneath the SF is the deep fascia (DF) consisting of deep masticatory muscles, 

salivary glands and fat pads. In some regions of the face, the SF is in direct contact 

with the mandible and maxilla. Consequently, a surface corresponding to the deep 

contact plane is required to simulate the physical contact conditions. Since soft tissues 

underneath the SF have less contribution to the formation of facial gestures, they are 

regarded as non-mobile rigid bodies in our current implementation. Two types of 
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contact are considered here. At the perioral region, collision detections are 

implemented between the SF and bones, as well as between the upper and lower lips. 

At the SF and DF interface, sliding interaction prevents the SF from detaching from 

the deep soft tissues. Both of these contact conditions assume zero friction. 

Facial retaining ligaments [30] and muscles attachment points are included in our 

mechanical model as nodal boundary conditions. These constraints prevent excessive 

movement of the SF and provide integrity to the overall structure. Table 2 shows the 

material parameters (as described in section 3.1) used in the simulation. The effect of 

gravity is not considered. 

Table 2 Constitutive model constants 

Passive facial tissues constants Muscle fibre constants 

1c  = 0.5kPa maxσ  = 300kPa 

2c  = 0.2kPa *  = 1.4 (dimensionless) 

 
ofl  = 1 (dimensionless) 

 
1P  = 0.005 (dimensionless) 

 
2P  = 6.6 (dimensionless) 

5 Facial expression simulations 

This section demonstrates the numerical simulations of various facial expressions by 

activating relevant facial muscles using the proposed method. The results are 

consistent with other numerically studies [1, 4, 13] as well as descriptions reported in 

anatomical literature [25]. 

Orbicular oris muscle is a sphincter muscle that encircles the mouth. When activated, 

the muscle closes the mouth and puckers the lips (figure 5a). A smiling expression, 

can be generated by the coordinated contraction of four facial muscles (zyogmaticus 

major, zygomaticus minor, risorius and levator labii superioris muscles), which draws 

the angles of the mouth superiorly and posteriorly (Figure 5b). On the other hand, 

frowning expression is modelled by activating risorius, depressor labii inferioris, 

mentalis and corrugator muscles (Figure 5c). 
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Figure 5 Simulations of (a) lips puckering, (b) smiling and (c) frowning by 

activating appropriate muscles. 

6 Discussion and conclusion 

The main objective of this work is to introduce a finite element framework for 

embedding complex, 3-D musculature for simulating and analysing mechanical 

deformation of the facial tissues due to muscle activation. 

In comparison to models with 1-D muscles, 3-D muscle geometries have the ability to 

represent the curved path and shape of muscles with complex topology more 

accurately. In addition, the moment arms of each individual fascicles can also be more 

accurately reproduced, resulting in a better depiction of the muscle forces acting on 
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the bone [31]. Moreover, the use of realistic muscle geometry eliminates the need to 

assign heuristic parameters such as the number of virtual fibre bundles per muscle or 

the estimated physiological cross sectional area (PCSA) of the muscle geometry. 

Another advantage of our proposed framework is the independency between the 

muscle mesh and the discretisation of the face mesh elements. The face mesh 

therefore can be modified without changing the geometry of the muscle structure. 

Similarly, the muscle anatomy or other embedded structures can be manipulated 

without affecting the face geometry. This can be especially useful when adding new 

structures to the face model, such as missing muscles or aponeurosis and tendon 

complexes. 

Previous studies into numerical modelling of muscle contractions have also 

demonstrated the importance of 3-D geometry in generating non-uniform strain 

distribution observed in experiments [24]. Since the force generated by a muscle fibre 

varies as a function of its stretch, the non-uniform strain of muscle fibres must be 

accommodated when evaluating their active and passive stresses at various activation 

levels. In addition to obtaining non-uniform strain along fascicles, a 3-D model is also 

able to predict the change of the PCSA of fascicles during deformation, thus 

improving the predictability when tissues undergo large straining.  

In formulating the muscle models, a continuous locally varying finite element field of 

Euler angles is used to describe fibre pennations in pennate and convergent muscles. 

Although not included in this paper, a further advantage of using piecewise 

polynomial representation is that parameters that define these angles (at element 

nodes) can be efficiently fitted to anatomical measurements using linear least square 

methods. The challenge is to obtain anatomical fibre orientations in vivo, one 

possibility is to use diffusion tensor magnetic resonance imaging (DT-MRI) and 

studies on reconstructing myocardial fibres using DT-MRI have already shown some 

promising results [32]. In addition to fibre angles, activations levels can also be 

interpolated using piecewise polynomials. This allows us to investigate spatially 

varying activation patterns and make effective use of measurements such as facial 

surface electromyography [33]. 

In summary, representation of 3-D muscle geometry is vital when an accurate and 

reliable mechanical simulation of the facial expression is desired. Despite this, there 

have not been many face models with 3-D muscle structures. This is primarily due to 

the complexity of facial musculatures, which can significantly increase the 

computational cost of an already expensive problem. We have solved this problem by 
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evaluating 3-D muscle structures as an array of discrete point loads that are defined at 

the integration points of an appropriate quadrature scheme. The method introduced 

here offers the potential to enhance the accuracy of models of the face without adding 

too much computational cost. One limitation of our method is that since the whole 

model is assumed to be in a single continuum, the interaction between muscles and 

surrounding tissues, and between separate muscle structures cannot be studied. One of 

our future works is to extend this method, to allow sliding and contact interactions 

between internal structures, by using the extended finite-element method to decouple 

the stresses and strains across the muscle boundary. 
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