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DELTA METHODS IN ENVELOPING ALGEBRAS
OF LIE COLOUR ALGEBRAS

MARK C. WILSON

August 26, 1994

ABSTRACT. In recent papers J. Bergen and D. S. Passman have applied
so-called ‘Delta methods’ to enveloping algebras of Lie superalgebras. This
paper generalizes their results to the class of Lie colour algebras. The
methods and results in this paper are very similar to those of Bergen and
Passman, and many of their proofs generalize easily. However, at some
points there are serious difficulties to overcome.

The results obtained show that if L is a Lie colour algebra then the join of
all finite- dimensional ideals of L, denoted Ay, controls certain properties of
the universal enveloping algebra U(L). Specifically, we consider primeness,
semiprimeness, constants, semi-invariants, almost constants, faithfulness of
the adjoint action, the centre, almost centralizers and the central closure.

1. INTRODUCTION

This paper generalizes the results of [BP3, BP4] on enveloping algebras of Lie
superalgebras to the case of Lie colour algebras. As in those papers, we first prove
theorems reducing certain identities in U(L) to corresponding identities in certain
subalgebras.

The chief obstacles to extending the results of [BP1, BP2] on Lie algebras to Lie
superalgebras as in [BP3, BP4] were the fact that the natural degree function on
the universal enveloping algebra U(L) is no longer additive for superalgebras, and
the more complicated relationship between the adjoint action and multiplication in
U(L). The second problem proves much more troublesome in the Lie colour algebra
case. Our degree arguments are very similar to those in [BP4] but it is not possible
for us to finesse the adjoint map complications as easily as was done in that paper.

Many of the arguments of Bergen and Passman made essential use of the fact
that the grading group had only 1 or 2 elements, and consequently these arguments
require major modification. Several of their proofs using degree arguments proved
more than was stated, and we have chosen to make these details more explicit here.
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2 MARK C. WILSON

The reader is strongly advised not to attempt a detailed reading of this paper
without either being familiar with or having close by the papers [BP3, BP4], as
many proofs from those papers are cited in lieu of giving full proofs here.

All ring-theoretic applications are found in Section 5. In Section 2 the basic
definitions and elementary properties of our objects of study are discussed. In
Section 3 we reduce both derivation and linear identities in U(L) to identities in
U(A) and in Section 4 we continue the reduction to U(Ap). The brief final section
contains some comments on unsolved problems.

I would like to express my profound gratitude to my advisor D. S. Passman for
all his assistance with this paper. Thanks also to the referee for his/her suggestions.

2. PRELIMINARIES

2.1. Graded spaces. Let G be a finite group. A vector space V is said to be

G-graded if
V=v.

a€EG

with each V, a subspace of V. An element of some V, is called homogeneous of
parity a. We shall write p(v) = ¢ to mean that v has parity a.

We shall mostly be dealing with infinite-dimensional vector spaces. Call a sub-
space large if it has finite codimension.

Proposition 2.1. Let V be a G-graded vector space and let W be a subspace of V.

(i) IfW is finite-dimensional then W is contained in a finite-dimensional graded
subspace.
(ii) If W is large then W contains a large graded subspace.

Proof. (i) If {wy,...,w,} is a basis for W then the set {(w;),]a € G,1 < i< r}
spans the required subspace.
(ii) For each @ € G, |V, W nV,| = |V, + W: W| < |[V: W| < oo. Thus
>o.(W N V,)is the required subspace. O

From now on G will be assumed abelian. Let exp G be the exponent of G.
Suppose that K contains a primitive exp G-th root of 1. Then V' is G-graded if and
only if it is stable under the action of the character group Hom(G, K*) given for
homogeneous v by v = x(p(v))v (see e.g. [Berg, Section 1]). Let ¢(x) denote the
linear automorphism by which y acts.

Proposition 2.2. Suppose that K contains a primitive exp G-th root of 1. Then a
subspace of V' is graded if and only if it is stable under all ¢(x). 1
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2.2. Lie colour algebras. A general reference for this subsection is [BMPZ]; for
superalgebras, [S2] is the standard. Let GG be a finite abelian group, written mul-
tiplicatively. Let ¢ : G X G — K™ be an alternating bilinear form, i.e. a function
satisfying:

(1) e(a,b) = e(b,a)”
(2) e(a,be) = e(a,b)e(a,c)
for all a,b,c€ G.

Some obvious consequences of the above definition which we shall frequently use
are:

(3) e(ab, c)
(4) e(a,0") = e(a,b)"
(5) e(a,a)?
(6) e(la) =e(a,1)=

for all a@,b,c € G and all n € Z.

By (2) and (3) the map a — ¢(a,.) is a homomorphism from  into the character
group Hom(G, K*), and so (5) implies that a — ¢(a,a) is a homomorphism of &
into {£1}. Its kernel is denoted by G'y. Thus G is a (normal) subgroup of G of
index 1 or 2. Let G_ = {a € G |e(a,a) # 1}. Then either G_ = (} or else G_ is the
other coset of G .

For some choices of ' and K no nontrivial maps ¢ exist. By (4) and (6) each
£(a,b)is an exp G-th root of 1. Thus if char K = p > 0 and G is a p-group the only
possibility for € is ¢ = 1. If G has odd order then G = G,. If further G is cyclic
and generated by a then from (4) and ¢(a, @) = 1 we obtain ¢ = 1. Nontrivial forms
¢ can exist on noncyclic groups of odd order.

For a G-graded vector space V' and a form ¢ as above define V}, =37 ., V. and

Vo= vea Va-

Definition. A G-graded (nonassociative) algebra L is called a Lie colour algebra

if G has a map ¢ as above and L has a bilinear product [ , |: L x L — L such that
(e-antisymmetry) [z,y] = —¢(a,b)[y, z]
and

(e-Jacobi identity)
e(e,a)[z, [y, 2]l + (b, o)z, [z, y]] + €(a, b)[y, [z, 2] = O

for all a,b,¢c € G and all x € L,,y € Ly,z € L.. Also, if char K = 2, then we
require [x,2] = 0 for all homogeneous # € L_, and if char K = 3 then we require
[, [z, z]] = 0 for all homogeneous x € L_.

Note that the extra assumptions for characteristic 2 and 3 are provable from
g-antisymmetry and the e-Jacobi identity in other characteristics.
Examples of Lie colour algebras are:



4 MARK C. WILSON
i) Lie algebras: here G =1, ¢ = 1.
(ii) G-graded Lie algebras: ¢ = 1.
(iii) Lie superalgebras: G = {—1,1}, e(a,b) = (1)@= D=1/,
(iv) G-graded Lie superalgebras: (a,b) = 1 unless both @ and b belong to G_,
in which case (a,b) = —1.

We shall frequently write e(x,y) or even ¢(a,y) instead of e(a,b) if z € L, and
y € Ly. The group elements a and b are not well-defined if z or y is zero. Thus we
shall always choose a = 1 if # = 0, so that ¢(z,y) = 1 whenever z or y is zero.

Now L, is a Lie colour algebra with grading group Gy and defining form e,
and L_ is a graded L -module under the adjoint action. We shall sometimes call
elements of L, even and those of L_ odd. Note that since we use multiplicative
notation the component L, lies in L, and this differs from [BP3, BP4].

One possible cause of later difficulty is that distinct elements of G' may induce
the same characters of G, i.e. the map a — &(a,-) may not be 1-1. However if &
is the quotient of G modulo the kernel of this map then L can be naturally viewed
as a Lie colour algebra with grading group i and associated form & such that the
map a — £&(a,-) is 1-1. Note for later that if char K = p > 0 then the kernel
above contains the Sylow p-subgroup of (7, so G has the property that p{ |G| and
Proposition 2.2 applies.

The wuniversal enveloping algebra U(L) of L is defined as usual by its univer-
sal property in the appropriate class of algebras. It is the G-graded associative
K -algebra generated by L subject to the relations a2y — e(z,y)yz = [z, y] for all
homogeneous z,y € L. The analogue of the Poincare-Birkhoff-Witt theorem holds
for Lie colour algebras.

PBW Theorem. Let X' be a totally ordered homogeneous basis for L. Then a

basis for U(L) is given by the set of all monomials x7"* - -2 such that z; € X,

T < -0 < By, My are nonnegative integers and m; < 1 if x; € L_. O

If char K = p then we shall consider only restricted Lie colour algebras, i.e. Lie
colour algebras with a linear map z +~ 2"} on L, which satisfies:

(ka)! = kP2l for all k € K and homogeneous z € L,
[P, y] = (adz)"(y) for all homogeneous = € Ly and y € L,

and
p—1
(2 4y = all 4y + 3 "si(a,y) forall 2,y € Ly with p(z) = p(y)
i=1

where is;(z,y) is the coefficient of A'~! in (ad(Az + y))*~'(x). For each restricted
Lie colour algebra L, the restricted enveloping algebra (usually denoted u( L)) exists
and the analogue of Jacobson’s theorem holds — a basis for u(L) is given by the
monomials in the PBW theorem which satisfy the further property that m; < p—1
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The basis monomials described above are called straightened. The support supp «
of an element a with respect to a given homogeneous basis for L is the set of distinct
x; occurring when a is (uniquely) written in terms of straightened monomials with
nonzero coefficients.

If Y is a subset of L, s a nonnegative integer, then we let Y* be the linear span of
all monomials of length at most s all of whose factors liein V. Let Y™ =], Y".
If Y is a graded subalgebra of L then the set of straightened monomials of length
at most s, with all factors coming from a fixed ordered homogeneous basis for Y, is
a basis for Y°, and Y= = U(Y).

Notation. From now on I denotes either a Lie colour algebra in characteristic
zero or a restricted Lie colour algebra in prime characteristic, with grading group
G and alternating bilinear map ¢. We assume that distinct elements of G induce
distinct characters via @ — &(a,-). By U(L) we shall mean either the universal
enveloping algebra of L in characteristic zero or the restricted enveloping algebra in
prime characteristic p. The adjective ‘graded’ shall always mean ‘G-graded’ unless
otherwise stated. Subspaces and subalgebras will not be assumed to be graded
unless explicitly stated.

The following very useful proposition is an immediate consequence of the PBW
(or Jacobson’s) theorem.

Proposition 2.3. Let H be a (restricted) graded subalgebra of L. If Y is an or-
dered homogeneous basis for a graded vector space complement of H in L, then the
straightened Y-monomials form a basis for U(L) as a left and right U(H )-module.
Ezplicitly, every a € U(L) can be uniquely written o = 3 a,n and a = 3 na;,
where the n are straightened Y-monomials and oy, a; € U(H). a

Note that if a is homogeneous then so are all o, and all a; . In the above situation
we say that the elements of U(L) are written based on H. An ordered homogeneous
basis for a complement of H will be called a complementary basis for H in L.
Complementary bases will always be homogeneous in this paper.

Now U(L) has a degree function such that the degree of any straightened mono-
mial is the sum of the exponents appearing in that monomial. The degree is inde-
pendent of the homogeneous basis chosen. The presence of odd elements (and the
p-mapping in characteristic p) means that we have only deg(af) < deg a + deg § in
general. However degree is additive in certain cases. If char K = 0 and o € U(L,)
then deg(af) = dega + degf for any § € U(L). Also it is easily seen that
deg(af) = dega + deg 8 whenever o and  are elements of U(L) with disjoint
supports. As in [BP4] we shall write a = § (n) if and only if deg(a — 3) < n. Here
of course deg 0 = —o0.

The next proposition will be used frequently in our reduction results of sections
3 and 4.

Proposition 2.4. Let D be a (restricted) graded subalgebra of L and let «;, 3; for
1 <@ <r beelements of U(L). Fxpand a; = > on i and B; = 37, Biupv with respect
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to arbitrary complementary bases for D in L. Fiz an integer m and suppose that
either

Zamﬂi =0 (m—degn) foralln
or

Zaiﬁiu =0 (m—degu) forall p.

Then if we w.rz'te a; = ) Eag; and B; = 57, B, v with respect to any complementary
bases for D in L, we have

Z a;8, =0 (m—degv) for all v,

Za’glﬂi =0 (m—degt)  forallf
and Zaglﬂl’»y =0 (m—degl—degrv) forall and allv.
Note that by subadditivity of degree, the conclusion implies that each of the two
congruences in the hypothesis holds, for any choice of complementary bases.
Proof. We prove one case as the other is completely analogous. Suppose that

Zamﬂi =0 (m—degn) for all .

Substitute the expression for 3; using the monomials v to obtain

Z(Z amﬂgy)y =0 (m—degn) for all 7.

This expression is written based on D, and so by disjointness of supports the degree
of the » summand is equal to degv 4 deg ", a,; 3, and must be at most m — deg 7.
Thus we have

Z anifi, =0 (m—degn — degv) for all n and v.

Multiply on the left by n» and sum over 5 to get

Z a;8, =0 (m—degv) for all v.

Now expand each a; with respect to the basis elements £. Repeating the argument
above on the left instead of the right yields the result. [
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The left adjoint map ad: I — FEndg(L) is given by ada(y) = [z,y] for all
homogeneous z,y € L. If ad is the zero map, that is if [L, L] = 0, then L is
abelian. If | € L is homogeneous of parity ¢ then adl extends to a linear map

d = 0(l) on U(L) satisfying
(y2)" ="z + e(a, y)y="

for all homogeneous y,z € U(L), i.e. 0 is a derivation of parity a. Thus we have

o =d =[l,a] = la—e(l,a)al

for all homogeneous [ € L and o € U(L). This action then extends to an action of
the algebra U(L) on the K-module U(L), also denoted ad, so that a straightened
monomial p = 27" --- 27 acts on U(L) as d(z1)™ o---00d(z,)™ . Thus we have

degad p(a) = dega” < dega for all a,p € U(L).

For each graded subspace H of L, and each nonnegative integer r let 0" (H ) be the
set of all multiple derivations d(zy)---0(z, ) induced by homogeneous elements of H
(equivalently, the set of all transformations induced by the action of homogeneous
H-monomials with r factors). Let 0®(H) = [J,», 0" (H).

The next proposition will be used repeatedly in §4 in order to switch derivations
from one side to the other of an expression.

Proposition 2.5. (c.f. [BP4, Lemma 2.5]) Let o, 3; be homogeneous elements of
U(L) for 1 < i <wvandlet m > —1. If H is a graded subspace of L then the
following statements are equivalent:

(i) XiafB; =0 (m) for all p € 0°(H)

(i) S ol e(p',af) =0 (m) Jorall p',p € 0%(H)
(i) 52 af 3 e(p',a) = 0 (m) Jor all p',p € 0(H)
(iv) Sy il e(p's ) =0 (m)  for all p' € 9%(H),

Proof. We prove only the implication (i) < (iii) as the others are similar. Given
(i), let h € H be homogeneous. Then applying 0(h) to the congruence in (i) yields

Za;wﬁi + Zafﬁlﬁg(h,ai)g(h,p) =0 (m) forall pe 0=(H).

Now each hp € 9°(H) so by hypothesis, since ¢(h,af) = e(h, a;)e(h, p), the first
sum above has degree at most m, and thus so does the second. The factor (h, p)
is nonzero and independent of ¢ so we may cancel it. This yields (iii) in the special
case p' = 0(h) and induction gives the general case. Clearly (iii) = (i) if we choose
p=1. 0O
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2.3. The discoloration functor. Just as the relation between the adjoint ac-
tion and the multiplication in U(L) becomes more complicated in going from Lie
algebras to Lie superalgebras, many of the arguments of [BP3, BP4] which deal
with multiplication need nontrivial changes in the Lie colour algebra case. However
many of the proofs of [BP3, BP4] do carry over to the Lie colour algebra case al-
most verbatim. They are usually those concerned with the adjoint action of L on
U(L). Rather than arguing that the proofs are “just the same” we shall at times
employ the discoloration functor discussed below, and use the appropriate results
of [BP3, BP4] rather than their proofs.

In [S1] it is shown that one can find a 2-cocycle o: G X ¢ — K* and a crossed
product S = (K, G, o) with the followmg properties. If s, is the basis element of 5
corresponding to a € (G, and we define L = L,®xK 84, then L= > L becomes a G-
graded Lie superalgebra under the multiplication defined below. For homogeneous
elements = and y of parity a and b respectively, write £ = z ® s, and § = y ® ;.

Then define

[, 9] = [2, Y] @ sasp = o(a,b)[w, y]
Here L; = (L,) and L_; = (L_)". The correspondence I — L is the object map
of a functor. If f L — M is a morphism of Lie colour algebras then defining
fiL — M by f(z) = f( ) for all homogeneous z gives us a functor from the
Lie colour algebra category (with fixed ¢ and ¢) to the category of G-graded Lie
superalgebras and maps. This functor is bijective, its inverse being given by the
analogous construction with o replaced by o~!.

This functor can be extended to the category C of G-graded nonassociative al-
gebras and maps by defining 27 = (2 @ s,)(y ® 53) = 2y @ S48, = 0(a,b)xy @ a4
and treating morphisms as above. Then A is associative if and only if A is and
the extended functor is again bijective with the analogous inverse construction on
both C and the subcategory of graded associative algebras and maps. The functor
respects graded subalgebras, graded ideals and homogeneous nilpotent elements in
each of the relevant above categories.

If we temporarily denote by Ug(L) the universal enveloping algebra of L con-
sidered as a (G-graded Lie superalgebra (defined as usual by its universal mapping
property in the appropriate category), it follows from above that UG(i) =U(L).
But now Ug(L) = U(L), the universal envelope of I as an ungraded Lie superalge-
bra, as can easily be seen by noting that U(i) is naturally G-graded and completes
the defining diagram for Ug(L). Thus we have

U(L) = U(L).

2.4. A-sets. This section collects many basic properties we shall need later. Since
the proofs are all either routine and/or essentially contained in [BP3, BP4] they
will mostly be omitted.

Let H be a graded subspace of L. Define

Dy (H)={l€ L|dimg[H,]] < oo}.
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We shall frequently without explicit mention use the fact that if H’ is a large
subspace of H then Dy (H) =D, (H’). An element [ of L belongs to Dy (H ) if and
only if ad ! annihilates a large subspace of H. By Proposition 2.1 and the above
observation we may assume this subspace to be graded, which shows that Dy (H ) is
graded. The following proposition collects some basic properties of Dy (H ).

Proposition 2.6. Let H be a graded subspace of L and let D =Dy (H). Then
(i) D={z € L|dimgad H -z < c0}.
(ii) D is a graded subalgebra of L.
(iii) If L is restricted then so is D.
(iv) If H < L then D < L.
(v) D=D;(H). O

The delta ideal of L is defined as A(L) =Dy (L). It is a graded characteristic ideal
of L. The structure of A(L) is nicer than that of an arbitrary infinite-dimensional
algebra.

Proposition 2.7. Let X be a finite subset of A. Then

(i) [X, H] = 0 for some large subspace H of L.
(ii) X generates a finite-dimensional ideal of A. |

For each graded subalgebra H of L, define Ay to be the sum (equivalently,
the union) of all finite-dimensional ad H-stable graded ideals of A. Here are some
structural results about Ag.

Proposition 2.8. Let H be a graded subalgebra of L. Then
(i) Ay is the join of all finite-dimensional ad H -stable subspaces of A. Thus

Ay ={2 € AldimgadU(H) -2 < o0}.
(ii) Ay is a graded ideal of L.

(iii) Ayp is the join of all finite-dimensional graded ideals of L, and hence is a
graded characteristic ideal of L. 1

In general Ay is properly smaller than A. Another important point is that in
general if H' is large in H then Ag does not equal Ag. Both phenomena are
illustrated in the split extension A x K of Lie algebras, where A is abelian with
countably infinite basis {z; : ¢ > 1} and [[, z;] = 2,4, for all 4.

It will be essential to our arguments to be able to restrict our considerations to

nonzero homogeneous elements of H,\A. For each graded 1-dimensional subalgebra
V = Kl of L, write A; for Ay-.

Proposition 2.9. Let H be a graded subalgebra of L, and let B be a complementary
basis for Hy N A in Hy. Then

(i) If L is restricted then Ay = A.
(ii) If H C A then Ay = A.
(iv) Ay = {A/]l € B}.
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(v) If e € A andl € L, then x € A, if and only if adl acts algebraically on x.

Example. As an illustration of some of the above, let V' be the vector space of
smooth complex-valued functions on the real line and H the 3-dimensional Heisen-
berg Lie algebra with basis elements x,y, z, [z, H] = 0 and [y, 2] = z. Then V is an
H-module where (z.f)(t) = tf(t), y acts as the ordinary derivative and z fixes each
element of V. Let L =V x H. Then A =V, A, = A, A, consists of all functions
satisfying a linear ODE with constant coefficients and A, = 0.

3. REDUCTION TO A

3.1. Derivation identities. As in [BP3] we use a special kind of complementary
basis for the first reduction result. However it is not clear, if |G| > 2, that a basis
with all the properties described in that paper need exist. Thus a more roundabout
method is required. The next two lemmas provide a basis which is sufficient to
prove the key Lemma 3.4.

Lemma 3.1. Let V' be a finite-dimensional graded vector space and let W1, ..., W,
be graded subspaces with (\; W; = 0. Then there is a homogeneous basis Y for V
such that the following property holds:

for ally € Y, there is j with W; C K(Y \{y}).

Proof. First consider the ungraded (G' = 1) case. In the dual V* we obtain 3>, Wi =
V*. Thus there is a basis F of V* such that each f € F belongs to some VVjL. Let
Y be the dual basis in V to F. If y € Y is dual to f € F and [ € I/VjL then since
the span of Y\ {y} is precisely the annihilator f+ of f, we obtain W; C K (Y \ {y}).

In the general case, for each a € G apply the previous paragraph to the space V,
and subspaces (W;),. This yields homogeneous bases Y, for V,. Let Y = Uya. Then
if y € Y, thereis ¢ € ¢ and j with (W;), € K(Y, \ {y}). Each other component
(W), is spanned by Y, and so W; is the required subspace. 0O

In the next lemma we shall index the W’s by superscripts in order to avoid confusion
with the homogeneous components W,.

Lemma 3.2. Let H be a graded subspace of L and let V be a finite-dimensional
graded subspace of L such that V NDp(H) = 0. Let X be a finite-dimensional
subspace of L and let N be a positive integer. Then there exists a homogeneous
basis {y1,...,y,} of V such that for each ¢ with 1 < i < ¢ there exist homogeneous
elements x;y,...x;x € H, a subset S; of {1,...,q} containing i, and homogeneous
elements t;;, € L for all j € 5;,1 <k < N. These satisfy the conditions

(7) The set {t;;1|1 < ¢ < ¢} is linearly independent modulo X .

(8) [@iks Y] = tijr, if § € 55,
[k, y;] is a linear combination of t;;., with 7' € 5; \ {i}, if j & 5.
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Proof. Define W® =Dy (H,) NV, and note that each W is homogeneous and that
N, W = 0. By passing to a large subspace of H, we may assume that H, kills W*¢
forall . Let Y = {y1,...y,} be asin the previous lemma. We prove inductively that
for each m with 1 < m < ¢, there exist appropriate subsets 5; and homogeneous
elements z,, and ¢;;, for 1 <i¢<m, 1 <j <gq,1 <k <N such that properties (7)
and (8) above hold with ¢ replaced by m. Taking m = ¢ gives the desired result.

Suppose m = 1. By the last lemma, there is ¢ € GG such that W* is contained in
Vi, the linear span of {ys,...,y,}. Thus there is a subset SF of {ys, .. s Yy} such
that {y;|j € S{'} is a complementary basis for W* in V;. Let §; = Sf U {1} and
note that 1 € §;. Then {y;|j € 5} is a complementary basis for W in V. By [BP1,
Proposition 2.2] there is a subspace A of H, of dimension N such that if 1,..., 215
is a basis for A, the commutators ¢;;, = [214,y;] for 1 < k < N and j € 5, are
linearly independent modulo X. Then all the z,; and ?,;; are homogeneous, and
(7) is satisfied for these elements. Note that if j ¢ 57 then since y; is contained in
Wet < {yp|j’ € ST} > and @y, kills W® we see that [21y, y;] is a linear combination
of the [z, y;/] which gives (8).

Suppose m > 1 and let T" be the linear span of all ¢;;; so far constructed, for
1 <¢<m—1. We repeat the above argument with y,, in place of y;, except that
now the t,,;; are required to be linearly independent modulo X +7'. This produces
the ,,, and ¢,,;; and ensures that property (7) then holds for all the ¢;;; so far
constructed. Also property (8) holds as above. O

For a given V', a basis ) as above, and ordered so the even elements come first, will
be called special. Straightened monomials on a basis )Y as constructed above will
also be called special.

Lemma 3.3. (c.f. [BP3, Lemma 3.4]) Under the hypotheses of the last lemma, let
£=y"ys? -y be a special straightened monomial in U(L) of degree m = 3, m;.
Let T be the linear span of all ;;y.

Now let p = @11+ 1, @1 -+ Top, =+ Tg1 ** Ty, With l; >0 and )7, 1; = m. Then
£ =& 4 & + &, where & € YT LPYVIL Y €, is a K -linear combination of
straightened monomials of degree m on T having at least one factor t;;;, with @ # j,
and

€3 = Ol M5 - D by - o tyqa ooy - taor, -+ o tgqr - o tgq,  for some 8 € K©
if ; = my for all @, but &3 = 0 otherwise.

Proof. The existence of such a decomposition as in [BP3, Lemma 3.4] is straight-
forward. The only nontrivial assertion is that about the form of & when [; = m;
for all :. We apply the discoloration functor. The “discoloured” versions of the
the 25, the y;, and the ¢;;; are amenable to the calculation of £ in [BP3, Lemma
3.4]. Pulling back the formula obtained there via the discoloration functor yields
the desired result, since each [2;;, 9;] is a nonzero scalar multiple of [z, y;]". O

The following result will also be used in the next subsection on linear identities.
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Lemma 3.4. Let H be a graded subspace of L and let H' be a large graded subspace
of H. Set D =Dy (H), fix a complementary basis X' for D in L and suppose that all
1’s below are straightened monomials on X. For each of these finitely many distinct
n, let v, € U(L). Suppose that degn < r for each n and that deg3", 'y, < s for
all p € 0"(H'). Then for all n we have degn + degy, < s.

Proof. We may clearly assume that H = H’ and that not all 7, are zero. Define
the integer m by m 4+ 1 = max,(degn + deg~,). Assume by way of contradiction
that m > s. Then we have

S 0’y =0 (m) forall ped"(H).
n

We first reduce to considering monomials on a special basis Y. By choice of m
we may assume that for all » we have degn + deg~y, = m + 1. Let V be the linear
span of all the elements which belong to the support of some 5. Then V is finite-
dimensional and graded and V N D = 0, so by Lemma 3.2 there is a homogeneous
basis Y for V with the properties specified in that lemma.

For each ¢ with 0 < ¢ < r and each straightened monomial £ of degree ¢ on X there
is an expression { = 3 ceup (degé — 1) where the y are straightened monomials
on Y and the ¢;, belong to K. It is important to note that the ¢, may be chosen
so that for a given ¢, if deg pt # deg& then ¢,, = 0. Now for each t with 0 <t < r,
the images of the straightened monomials £ of degree t on X' and the images of the
straightened monomials p of degree ¢ on Y each form a basis for V*/V'~'. Thus
the matrix (¢¢,) represents an invertible map of @;_, V*/V'~'.

For each p with degp < r define 6, = -, ¢,,7,. Now by hypothesis and the last
paragraph we have that

Z,u"éu = Z,u" (Z Cmﬁn) = Z(Z cw,u) p’yn =0 (m) forall ped"(H).

Also deg it < r for all p, and so the hypotheses of this lemma apply to the “special”
monomials p. The proof of [BP3, Lemma 3.5] now adapts easily to prove that
degpu 4 degé, < m for all u. Note that the crucial property of the ;;; used in
that proof of that lemma was that the “diagonal” elements [, y;] are all linearly
independent modulo the linear span of all the “off-diagonal” [, y;], and that this
property holds in our situation by Lemma 3.2.

Now if 7 is one of our original monomials and degn = ¢ then since the matrix
(ceu) is invertible we may express 1 in terms of the p. However as above degpu = ¢
for all ¢ occurring with nonzero coefficient and we have that degd, < m —t for such
p. But then v, is a linear combination of these ¢,. This yields degy, + degn < m
and this contradiction proves the lemma. [J

This last result can also be interpreted in the following way. Clearly the expression
>, 177y can have degree no more than max, (degn+ deg<,). The conclusion of the
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proposition is that equality is attained for some p € 9"(H’), i.e. only r differenti-
ations are required. An analogous statement is not true for Ay as will be seen in
Section 4.

Here is the main theorem on reduction of derivation identities to U(A).

Theorem 3.5. Let H be a graded subspace of L, let a;,3; € U(L) for 1 < i <r
and suppose that

dafpi=0 (m)  forallped=(H')

where H' is a large graded subspace of H. Choose two arbitrary complementary
bases for D = Dy (H) in L, and use them to write each o; = Zn na,; and each
Bi =3, Biupt based on D. Then for all p € 0°(H') and all n and p,

Za Li=0 (m—degn),

ZO[ ﬁzuE m_deglu)v

and

Y apiBiu =0 (m—degn— degp).

Proof. Without loss of generality all «; are homogeneous. We first prove that the
conclusion holds with p = 1, as in [BP3, Theorem 3.6]. By passing to a large
graded subspace of H' we may assume that [H,a,;] = 0 for all  and ¢. Then
(nay,;)” = nay,,; for all , p and 7. Letting v, = >°, a,;#; we obtain from the given
congruence

Sty =0 (m)  forall p€ d™(H).
n

By Lemma 3.4 with 7 = max, degn and s = m we obtain deg~, 4+ degn < m for all
7, so that

Zamﬂi =0 (m—degn) for all .

Now Proposition 2.4 concludes the proof of the p = 1 case.
We now prove the general result. From our hypothesis and Proposition 2.5 we
obtain

Zafﬂ{/e(p’,ai) =0 (m) forall p',pe d®(H).

Thus if we fix p’ and define j3; = ﬁflg(p’, a;), then B; satisfies the hypotheses on 3;.
Thus by the p = 1 case above we have, on writing out f; in full,

Zamﬁ e(p,an)e(p',n) =0 (m—degn) for all p' € 0°(H ) and for all n

where we have used the fact that e(p’, ;) = e(p’, ay;)e(p’, 7). Cancelling the nonzero
common factor £(p’,n) and applying Proposition 2.5 again yields 3=, ay,3; = 0
(m — degn) for all  and all p € 9°(H ), proving the first conclusion above. A
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similar procedure (define @; = ! ) proves the second. The third conclusion follows
from the second by the same argument (with a,; in place of ;) used to prove the
first. O

From the p = 1 case of the theorem we obtain the following corollary.

Corollary. Suppose Y, af3; = 0 for all p € 0°(H). If some «; (respectively some
B:) is nonzero then the distinct 3; (resp. distinct a;) are left (resp. right) linearly
dependent over U(D). O

We note that Lemma 3.4 is a special case of this theorem. Also we see that the
conclusion of Theorem 3.5 implies the congruence in the hypothesis of the theorem.
For the congruence

Za;’lﬂi =0 (m—degn) for all n and all p € 9°(H)

implies that 3, af 8; = 3=, n°ay: B + 32, ; ne(p, m)ay;B; is the sum of two subsums
of degree at most m. Qur subsequent reduction theorems will share this property
of conclusion implying hypothesis. They will also have corollaries similar to the one
above. We shall not explicitly point these out.

3.2. Linear identities. Linear identities are of course more interesting in a ring-
theoretic context than derivation identities. If L is just a Lie algebra then a linear
identity immediately yields a corresponding derivation identity. However the rela-
tion between the adjoint action and the multiplication in U(L) is more complicated
in the general case. The following somewhat unpleasant lemma follows the idea of
[BP4, Theorem 5.1] and uses Lemma 3.4 rather than Theorem 3.5. It is the major
step in the proof of, and is implied by, the theorem following it. Note that if all
the a; below are homogeneous of the same parity or if H; is large in H, then the
argument of [BP3, Theorem 4.1] carries over almost verbatim.

Lemma 3.6. Let H be a graded subspace of L and let o;,3; € U(L) for 1 <i <r
with each a; homogeneous. Suppose that

daBi=0  forallxe (H')>

Jor some large subspace H' of H. If each a; is written o; = 37, nay; based on
D =D (H), then

Zamﬂi =0 for all 7.

Proof. If H is finite-dimensional then D = L and the result follows by taking = 1.
Thus we shall suppose that H is infinite-dimensional. Let H;,;; be the sum of all
infinite-dimensional components of H. Then H;, is large in H. By passing to
a large graded subspace of H' N H,;;y we can assume that H = H’' = H,; and
[H,a,;] = 0 for all 7 and ¢. By taking homogeneous components we can further
assume that each 3; is homogeneous and that there is ¢ € G such that the parities

satisfy p(a;)p(5;) = p(n)p(a,:)p(B;) = ¢ for all 5 and 7.



DELTA METHODS FOR COLOUR ALGEBRAS 15

Since each [a,;, z] = 0, the given identity is equivalent to

an Z a,2)Ype =0 for all homogeneous z € H™

a€EG

where 7,, is the sum of all a,,;5; such that p(a,;) = a. Note that each 7v,, is
homogeneous and that in fact p(v,.) = ¢(p(n))~! depends only on 7 and not on a.
Our desired conclusion is that >°,v,, = 0 for all . We will in fact show that
each v,, = 0.
Suppose on the contrary that 7., is nonzero, and define

N = I%%X{deg Ynar degn}.
Let M denote the set of monomials n we are considering. Define S C M x G by
S =A(n,a)|ela,h)e(h,v,q) = (b, h)e(h,vg) for all homogeneous h € H .}
Note that (£,b) € S. Let T' be the complement M x G'\ S and let n = max{1, |7T|}.
Claim. For all integers j > 0 there are elements ’y?%) belonging to U(L) such that

(9) ang a,x 7723) =0 for all homogeneous z € H™
(10) degy®) > jn il (n,a)€ S
(11) deg*y(])<N—|—j(n—1) if (n,a)eT

(12) 5(@,%)5(&75{1)) = ¢e(b, 0)e(X, ’y(])) for all homogeneous ( € H
if and only if (5,a) € S.

(13) p(mp(v§)) = p(E)p(7))

If j = 0 the five conditions hold with ’y(]) = V4. Suppose the claim is true for
some j > 0. We consider the cases (i) T = (Z) and (ii) T # () separately.

Suppose T = (). By our assumptions above every component of H is infinite-
dimensional. Thus we can choose a nonzero homogeneous h € H so that h lies
outside the finite-dimensional subspace of L spanned by the supports of all v,, with
(n,a) € S. Let 6 be any element of K not equal to (b, h)e(h, ). We note that
for this case 8 = 0 suffices; we shall use the hypothesis on # more strongly in case
(ii) below. We claim that the elements

Yty = e(a, h)hy) — 0750k

meet our requirements. To see this, replace  with zh in (9) and multiply (9) on
the right by —#h. Adding the two resulting equations yields

ang a,z){e(a, h)h’y(]) — H’yn])h} =0

n,a



16 MARK C. WILSON

so that (9) holds with y{}) replaced by y{i*". Also since p(v{F) = p(v{))p(h),
(12) and (13) remain true under this replacement. By (12), for each (n,a) € S we
have

(ha) # e(h 7).
Now deg(~y (J)) < deg ’y(]) and since h is not in the support of ’y?%) we have

a ?

deg ’yéa h=1+deg ’y(]) Thus

Yt = ela, WL ()" + (e(hy yya) = e(h, a)0) 750 R}

has degree 1 more than that of (/). Since n = 1 here, (10) and (11) are clearly
satisfied, (11) vacuously.

Now suppose that T is nonempty. List the elements of T in some order and let
(11, a;) be the first. Choose h € H so that h is homogeneous and ¢(ay, h)e(h,vY) ) #

niay
(b, h)e(h, ’y(])) which is possible by definition of 5 and T and by (12). Since every
component of H is infinite-dimensional, we can further restrict & so that & misses
the supports of all 7)) with (,a) € 5. Define § = ¢(ay, h)e(h,7{),). Proceed as in
case (i), letting
’y = ¢(a, h)h’y(]) 07(])h

Note that (9) is satisfied with y{/) replaced by ’ym, and since p(’ym) = p(y5)p(h),
(12) and (13) are also satisfied. Again if (n,a) € S we have increased the degree
of y{#) by 1. If (n,a) = (1, a;) then by choice of 6 we have ’y;a = ¢(a, h)y}, so the
degree has not increased. For the other pairs (1, a) in 7" the degree has increased at
most by 1. Now repeat this procedure for each other element of 7', running through
them all exactly once. After n iterations let ’y?%"'l) be the ’y;a obtained in the last
iteration. Since the degree has always increased for pairs (n,a) €5, (10) holds.
Since for each element (7,a) € T' the degree of the corresponding ’y mcreased by
at most 1 at each step and at one step its degree did not increase, we obtain (11).
This completes the inductive step and establishes the claim.
Now take any j > 3N, and write §,, for 4%/). Then by (9) and (11) we have

Z nee(a, )0, =0 (2N 4+ j(n— 1)+ degz)
(n,a)es
for all 2 € H*°. Recall that degn < N for all 7.

Every element of 0°°(H ) is a linear combination of linear transformations of the
form p = ad u where v = hy ---h, € H* is a homogeneous monomial. Call such a
p a monomial. Define the length of p by letting len p be the minimum value of ¢
taken over all such u. We now claim by induction on len p that if p € 0°°(H ), then

(14)
Z nfxe(a,2)0,, =0 (2N + j(n— 1)+ degz + len p) forall z € H™.
(n,a)es
We already know that this holds iflen p = 0. Let p’ = 0(h)p belong to 9°°(H ), where
h € H is homogeneous. Replacing = by —e(h,b)e(h, £ )ha in (14) and multiplying
(14) on the left by h (each of which increases the degree by at most 1) yields, on
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using the inductive hypothesis and adding the two resulting congruences, the new
congruence

Z (A —e(h,£")e(a, h)e(h,b)n"hlee(a, )b, =0 (2N+j(n—1)+degz+1+len p).
(n,a)es

If (n,a) € S then it is clear from (13) that p(n”)p(6,.) = p(§”)p(é¢). Combining
this with (12) shows that

e(h,%)e(a, h)e(h,b) = e(h, & )e(h,be)e(byayh)
= e(h’)

Thus each term in square brackets in the left side of the last congruence equals 1*',
and this establishes our claim, since len p’ < 1 + len p.
In particular (14) holds with @ = 1 for all p € ¥ (H ). We obtain

Z N6, =0 (BN +j(n—1)) for all p € OV (H).
(n,a)€S
We now apply Lemma 3.4 with r = N, to obtain deg{ + deg ég, < 3N 4 j(n —1).
But since j > 3N, degdgy > jn > 3N + j(n — 1), yielding a contradiction to our
original assumption that ¢ # 0. Thus v,, = 0 for all pairs (n,a), proving the
result. [

Here is the main theorem on the reduction of linear identities to U(A).

Theorem 3.7. Let H be a graded subspace of I and let o, 3; € U(L) for 1 < i <r.
Suppose that

d B =0 forallw e (H)”

for some large subspace H' of H. Choose two arbitrary complementary bases for
D =D (H) in L and use them to write a; = 3_, nay; and 3; = 37, Biup based on
D. Then for all z € (H')* and all n and p,

Z%Zﬁm =0, Zamzﬁi =0 and Zamzﬁw =0.

Proof. By passing to a large graded subspace of H', we may assume that H = H’
is a graded subspace. Write each a; as a sum of homogeneous components, write
each component based on D and apply the previous result to each component. This
yields >, a,;3; = 0 and now Proposition 2.4 gives us the result for » = 1.

Now let y € H*®. Then for all x € H*, we have zy € H* and so the identity
> a;2(yf;) = 0 is satisfied. By the z = 1 case above we have ), a,;y8; = 0. This
is true for all y € H*, so for each z € H*, replacing y by zy and applying the
above procedure on the other side yields

Zamzﬁw =0 for all z € H™ and all n and p

as required. [J



18 MARK C. WILSON

4. REDUCTION TO Aj

In view of Proposition 2.9(i) the results of this section yield nothing new in
positive characteristic and so we shall assume that char K = 0 throughout.

4.1. Derivation identities. Throughout most of this subsection the following
hypothesis will be in force.

Hypothesis. Suppose that H is a graded subalgebra of L, let H be a graded com-
plement for HL N A in H, and let o, 3; € U(A) and v;; € U(Ag) be homogeneous
elements for 1 <1< wu and 1 < j <w. For a fizxed integer n > —1, assume that

> (a94)’8: =0 (n) forall p € 9°(H) and that

I
deg a; + max{degZ’yﬁﬂﬂp €cO”(H)}<n+1 forall j.

Furthermore, suppose that for all i and j the product p(o;)p(v;:)p(53;) is equal to a
fized group element c.

The reason that this hypothesis looks different from that in [BP4] is because
we use the left adjoint but act on the left rather than on the right factor. This
is apparently forced by the key Proposition 2.5 which seems to fail if we consider
identities of the form 3, ;8 = 0 as in [BP4].

The proofs of the following lemmas are almost exactly the same as those in [BP4].
The only difficulties lie in the repeated applications of Proposition 2.5. We shall
only go into detail in the cases where these applications are required. As in [BP4]
we call a K-multiple of a straightened monomial a K-straightened monomial.

Lemma 4.1. (c.f. [BP4, Lemma 3.2]) Let | € H be homogeneous and let D =
WUXUYUZ be a homogeneous basis for A with W < X <Y < Z. Assume
that K'Y is ad [-stable and X = {x_1,x_o,...} with x, > x,_y = [l 2] for allt > 1.
Suppose that each o is a K -straightened monomial in X UY and that for a fizved
integer k, each a; is given by

Oé]' =T_ "'$_1Oé]'

with a; a K -straightened monomial in Y. For convenience, write a; = x°%} o If
a = max{a;;|1 < j < v} then

S (S )0 o

where >_' denotes the sum over all j with a;, = a. In particular

Y o (; i) =0 (0)
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Proof. The proof of [BP4, Lemma 3.2] generalizes in a straightforward manner.
However we shall outline the argument.
We may clearly suppose that a > 1. It follows from the definitions that the set

{Z%@ﬁﬂ/’ €O”(H),1<5< v}

is contained in a finite-dimensional subspace of U(A). Thus we may choose an
integer ¢ such that k4t > s where {z_,,...,2_;} are all the elements of X" required
when we express the elements of the displayed set above in terms of D. Letting
q = at and p = 9(1)? we proceed for each j to consider the straightened D-monomials
of degree n + 1 which occur in 37,(e;7;;)?B; and contain a factor of z? .. Note
that since h € H, the z; are either all even or all odd and thus have the same
restriction on their exponents. Hence if 2%, occurs in a straightened monomial, so
too can x2, ) occur in one.
Now
Z(%’%’i)pﬁi = Z 9(,017/02704]')0451 Z’Vﬁﬁi
12 P1,P2 7

where 0(p1, p2, ;) is a product of values of ¢ (and is therefore nonzero) and py, p»
partition p. It is clear from the Hypothesis that the degree of the displayed sum is no
more than n+4 1. Thus the supports of any degree n+ 1 monomials occurring are not
augmented by the straightening process. Now it follows (as in [BP4]) from our choice
of ¢ and the fact that K'Y is ad [-stable that the monomials we require can arise only
from the sum 3=, afv;;3; and then only when a;; = a and deg )=, a}7y;;3; = n+1—a.
Applying the discoloration functor to the “left” version of the relevant formula of
[BP4, Lemma 3.2] shows that we have

Z(aﬂji)pﬂi = (0m)x‘i<k+t>x‘i’€(7€1_1) ceat oy Z Vil

+ terms not divisible by xi(k_l_t) (n)

where § € K* and m = ¢!/(#!)*. The proof concludes from this key formula as in
[BP4, Lemma 3.2] with the obvious minor notational changes. O

Lemma 4.2. (c.f. [BP4, Lemma 3.3]) Let | € H be homogeneous and let D =
AU BUC be a homogeneous basis for A with A < B < C. Suppose KB is an
ad [-stable subspace of A; and that A = A_,, U---UA_, is a finite union of adl-
stable subsets. Assume that A_, > --- > A_,, and that adl acts on each A, as a
shift, decreasing by 1 the order of each element. Further suppose that each a; is a
K -straightened monomial in AU B. Now choose a complementary basis for /\; in

A and write 3; = Y, Biupt based on A;. Then for all p,

Y (@7)Bi =0 (n — deg p).

]
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Proof. We proceed as in [BP4, Lemma 3.3]. Just as in that lemma, if all a; are
K -straightened monomials on B the result follows easily. Thus we assume that some
3; requires an element of A in its representation, and define W, X', A’, Y andZ in
the analogous way to [BP4, Lemma 3.3]. Then for each j,
Oé]' = $ij]: .. $(1]1107]
where a; is a K-straightened monomial on Y and some a;; # 0. Define a by
a = max; a;; > 0.
By the Hypothesis and Proposition 2.5 we have
S (i) Bl e(pag) =0 (n)  forall o', p € 0%(H).
ji
Note that it follows from the Hypothesis that the factors e(p’, a;v;;) depend only
on p’ and i. It follows from Proposition 2.5 and the Hypothesis that if we fix p’ and

define §3; = ﬁflg(p’,aj’yﬂ) that we have
deg oy + degZ’yfﬁi <n+1 for all j and all p € 0°(H).

Apply the last lemma with §; in place of §; and write out 3; in full to obtain
5 ol (S vt elotsa el ) ) =0 (=)

This holds for all p’ € 9°(H) so we obtain, using Proposition 2.5 and cancelling
the common factor e(p’, 2%,),

S8 =0 (n—a)  forall p e o=(H).

The proof concludes as in [BP4, Lemma 3.3], with the obvious notational changes. [

Lemma 4.3. (c.f. [BP4, Lemma 3.4]) Let | € H be homogeneous, choose a com-
plementary basis for Ay in A and write each 3; = >, Biup based on Ay Then for
all i,

Z(aj’yﬂ)pﬁw =0 (n—degp) forallped™(H).

i
Proof. Asin [BP4, Lemma 3.4], first prove the result for the special case p = 1. The
first 3 paragraphs of that proof carry over with only the required notational changes.
In particular we have a; = 3", ay; (dega; — 1), where the ay; are K -straightened
monomials. Note that for all £ we have p(a;) = p(ay;). Now the Hypothesis and
Proposition 2.5 imply that

Zaj’yﬂﬁfe(p,aﬂﬂ) =0 (n) forall pco~(H).
J

Also for each j we have

degay +deg ) 7iBle(p,a9;i) <n+ 1 forall p€ 07(H).
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To verify this last formula, cancel the common factor ¢(p, a;). Now the remainder
of the proof of this case follows as in [BP4, Lemma 3.4].
For the general case, fix 7 € 9°(H). Note that as in Lemma 4.1 we have

(a;5i)" E ( Tk,Tk,Oé] a ’yﬂ
k

where 7, 7; partition 7. Define v;;, = H(Tk,r,g,aj)’y;f and ap; = aj*. We observe
that the Hypothesis is satisfied with a;; and 74;; in place of a; and v;; and the
double index kj in place of the index 7. To check the last part of the Hypothesis,
recall that 7 is fixed and thus we have

plaw)p(vesi)p(8i) = plag )p(mo)p(m)p(v5:p(8;) = ¢ - p(7),
a constant. The proof now concludes as in [BP4, Lemma 3.4]. O

Lemma 4.4. (c.f. [BP4, Lemma 3.5]) Let I be a finite-dimensional graded ideal of
A. Then there exists a complementary basis X for I N Ay in I with the following
property. Suppose 3; € U(I) for all i and using X' and working in U(I), write each
Bi = 32, Bippt based on I N Ag. Then for all monomials p,

Z(aj’yﬂ)pﬁw =0 (n—degu) forallped>(H).

i,J
Proof. The argument of [BP4, Lemma 3.5] goes over with only the obvious nota-
tional changes. [

We now drop the Hypothesis unless explicitly invoked. The next proposition is
the penultimate step in our reduction of derivation identities.

Proposition 4.5. (c.f. [BP4, Prop 4.1]) Let H be a graded subalgebra of L, let
a;, B € U(A) for 1 <i<r, let m be an integer and suppose that

iafﬁi =0 (m) foralped™(H)

where H is a graded complement for H, N A in H,.. Choose a complementary basis
for Ax in A and use it to write each a; = Zu poy,; based on Agy. Then

Zamﬂi =0 (m—degp) for all u.

Proof. We may assume that all the a; and f; are homogeneous, and that p(a;) +
p(B;) = ¢ for a fixed ¢ € G. Let S denote the (finite) set of monomials used
above to write the various a;. Suppose that for some p € 9*°(H) and p, we have
deg pu + deg 3~ al;3; > m. Define the integer n by

n+ 1 = max{deg u + degZazlﬂAp €0°(H),ue S}
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Now n > m so Y ;(pa,)?B3; = 0 (n) for all p € 9°(H). Thus the Hypothesis is
satisfied with p corresponding to a;, a,; to 7;; and 3; to 3;. If we choose a finite-
dimensional graded ideal I of A and use the complementary basis X for I N Ay in
I as in Lemma 4.4, and expand §; = >, n/3,; with respect to X’ we obtain

Zafﬁm =0 (n—degn) forall pe d°(H) and all 7.

Thus by Proposition 2.5 we have

Zalﬁ e(p'a;) =0 (n—degn) forall p' € 9°(H) and all 7.
Substituting the expression for a; based on Ag into the last identity we obtain

Zuamﬁﬁ;g(p',am)g(p',u) =0 (n—degn) forall p € 9°(H) and all 7.

This last expression is written based on Ay, and the factor e(p’, 1) is nonzero and
independent of ¢, so cancelling it and using freeness we obtain

Zamﬁﬁ;e(p',am) =0 (n—degn—degpu) forall p’ € d°(H) and all 5, p.

Again by Proposition 2.5 this yields

Zazzﬂin =0 (n—degn—degu) forall pc d(H) and all 5, p.

Multiplying this last identity on the right by n and summing over n gives

Za Bi=0 (n—degu) forall pc d™(H) and all p.

Thus
max{deg pu + deg Y~ af;B;lp € 0°(H),pp € 5} < n,

contradicting the definition of n above.
We conclude that 3=, a,;3; = 0 for all p € 9°°(H). In particular this holds for
the choice p =1. O

Here is the main theorem on reduction of derivation identities to U(Ar). We use
our previous results to reduce first to A and then to Aj.

Theorem 4.6. Let H be a large graded subalgebra of L and let a;,5; € U(L) for
1 <¢<r. Let m be an integer and suppose that

iafﬂizo (m) forallp e 0™ (H).
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Choose two arbitrary complementary bases for Ag in L, and use them to write
a; = 3, nay; and B; = 37, Biup based on Ag. Then for all p € 0%°(H ) and all
and p,

Y onfi =0 (m—degn),

S0l =0 (m— degp)
and

Za Bin =0 (m—degn — deg p).

Proof. Again we may clearly assume all a; and f; to be homogeneous. We first
prove the result holds with p = 1.

Since H is large in L we have Dy (H) =D (L) = A. Let Y} be a complementary
basis for A in L and let ), be a complementary basis for Ay in A. Then Y = ), U,
is a complementary basis for Ag in L. Order Y so that YV, < Y.

Using Y, write each 3; = 3°, 3;,v and a; = 3~ g based on A. Let 7 € 0(H ).
Then for each p € 9°(H ), we also have 7p € 0°°(H ) and hence

d(af)yp;=0 (m) forall7,pe d(H).

i=1
Then by Lemma 3.4
Zafﬁw =0 (m—degr) forall pe d*(H)and all v.

By Proposition 2.5 we have
Zaiﬁf’;e(p',ai) =0 (m—degr) forall p€ 9®(H) and all v.
Substituting the expression for a; based on A into this identity yields

Zfagiﬁf,je(p',f)e(p',agi) =0 (m—degr) forall p€ 9®(H) and all v.

The above expression is written based on A. Using freeness and cancelling the
nonzero common factor £(p’, £) we obtain

aeiBle(p ae) =0 (m—degv — de for all p' € 9°(H) and all v and &.
Y aeBle(p, ae) ( g g¢) p ¢

Another application of Proposition 2.5 gives

Zag’lﬁw =0 (m—degrv—degf) forall pe 9™(H) and all v and &.
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The last congruence above holds in particular for all p € 9°°(H). We are now
in the situation of Proposition 4.5, with ag; in place of a; and 3;, in place of ;.
Specifically, use Y, to write
Qgj = Z /\04,\@'
A

based on Ag. Note that each £Ais a straightened monomial on Y, and that therefore
the equation a; = Z,\,g EXagy; describes a; based on Ag. Furthermore deg(éA) =
deg A + degé. Now Proposition 4.5 yields the congruence

Z agrifiy =0 (m — degv — deg(£A))

and Proposition 2.4 concludes the proof of the p = 1 case.
For general p, use the same argument as that used in the proof of Theorem 3.5. O

Here we note that the obvious analogue of Lemma 3.4 fails for Ay. If char K # 2
and I = A x Kl is a split extension as in the example preceding Proposition 2.9,
except that A is odd and [ even, then Ay = 0, yet z{as23 + 252,25 = 0 for all

p € 0*(L) (and for p = 1).

4.2. Linear identities. In [BP4] the reduction results for derivation identities
immediately led to reductions for linear identities, since in the superalgebra case
the elements of I{, act as ordinary derivations. In the Lie colour algebra case more
is needed — the next lemma supplies the missing link.

Lemma 4.7. Let H be a graded subalgebra of L and let o, 3; € U(A) for 1 < i <r.
Suppose that

Zaixﬁi =0 forall z € U(H,).
Let Z be a complementary basis for (Hy NA) in Hy and let H = KZ. Then
dafBi=0  forallpe o (H).

Proof. 1t suffices to prove the result for those p which come from monomials on
Z. We use induction on the length of p, as defined in Lemma 3.6, to prove that
S afzB =0forall pe d°(H) and all @ € U(Hy). Putting = 1 yields the result
of the lemma.

The result clearly holds for p = 1, so suppose p # 1 and write p = 9(h)p’
where h € Z and len p’ < len p. Inductively suppose the result holds for p’ and for
convenience write v; for of ;

The inductive hypothesis yields

Z’yixﬁi =0 forall z € U(Hy).

We wish to prove that >, v!a3; = 0 for all € U(H,). It suffices to do this for
those & which are straightened monomials on the ordered basis Y for H, defined
below. Let 2" = Z \ {h}, let ' be a homogeneous basis for (H; N A) and let
Y =2ZU)Y. Order Y sothat h < Z' < )"
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Fix a straightened monomial 2 on Y and write = h*z’ where 2’ is a straightened
monomial on Z’ U )’ whose support does not contain h. We may assume that all
the «; are distinct and homogeneous by changing r if necessary. Divide the -, into
equivalence classes with respect to h, where 4, ~ ~; if and only if e(~;, h) = e(y;, ).
Let C4,...,C; be the equivalence classes. For each class C; define ¢; = ¢(C;,h) =
(7, h) where 7 is any element of C;.

Let n > 1 be an integer. Since A"z’ € U(H, ) we have the equation

Z Z (%’hn)f/ﬁi =0.

J i€y

Note that since h is even &(v/',h) = (74, h)e(h,h) = (7, h) for each i. Thus an
easy induction shows that if we rewrite the last equation by using the straightening
relation h7y; — e(h,7;)7:h = 7/ we obtain

(e (32

Now note that since A is an ideal of L, the coefficient of each power of h on the
left side of this last equation can be written based on A as }, £ag, where the ¢ are
straightened submonomials on Z’. Since char K = 0 all the elements (—1)*(})R" are
linearly independent modulo the span of the coefficients by the PBW theorem. It
follows that all the coefficients in the last equation are zero. Since n was arbitrary
this yields for each n and each k with 0 < k < n the equation

Zc;l Z ’yihkx'ﬁi =0.
J

v EC;

n

Z %’hn_kwlﬁi) =0.

k= Vi€C

Thus for each & > 0 we obtain the system of ¢ equations

S (L es) == N (X ) o

J=1 Vi €C; j=1 vi€C;

The (Vandermonde type) determinant of this system is nonzero, since all the ¢; are
nonzero and distinct by definition. Thus we obtain for each j and for each k& > 0,

E(k): > Va8 = 0.
vi€C;
We now restore the h factors to these equations. Multiplying E(k) on the left by A

and subtracting E(k41) gives, on cancelling the common factor e(h, ¥*") = (h, 7:),
the equation

S° M ha'si=0  forall k> 0.

v €C;
Iterating this procedure gives in particular at the s-th stage

Y htaBi= Y Alefi = 0.

vi€C; Yi€C;
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This equation holds for all # € U(H,) and all j, so summing over j gives

Z’ylhxﬁl =0 forall 2z € U(Hy)

which in view of our notational convention is the desired result. []
Here is the main theorem on reduction of linear identities to U(Ap).

Theorem 4.8. Let H be a large graded subalgebra of L and let a;,5; € U(L) for
1 <% < r. Suppose that

=0 forallx € U(H).

Choose two arbitrary complementary bases for Ay in L, and use them to write each

a; = >, Ny and B = 3, Biup based on Ay. Then for all z € U(H ) and all n and

2
Z%Zﬁm =0, Zamzﬁi =0, and Zamzﬁw =0

Proof. 1t remains only to put together our previous results in a (by now) routine
way. Choose a complementary basis for A in I and one for Ay in A. Since H
is large in L we have Dy (H) = A. Applying Theorem 3.7 we reduce to a linear
identity over U(A). The last lemma yields a corresponding derivation identity. Now
order bases consistently as in the proof of Theorem 4.6 and apply Theorem 4.6 with
m = —1. This along with Proposition 2.4 yields the result in the z = 1 case on
specializing p = 1. For general z the same argument as in the proof of Theorem 3.7
concludes the proof. [

5. APPLICATIONS

Having proved the reduction theorems above we can proceed directly to some
ring-theoretic applications as in [BP4]. They are mostly rather routine applications
of the above results and nearly all the arguments are to be found in [BP3] and
[BP4], so we omit most of the proofs. We indicate briefly the connection between our
previous work and these results. A ring is not prime if and only if it contains nonzero
elements o and 8 such that the identity azf = 0 holds. Similarly semiprimeness,
centrality and the other properties considered here have characterizations in terms
of existence or nonexistence of linear identities.

If H is a graded subalgebra of L, the almost constants for the action of H on
U(L) are those elements a € U(L) for which

dimgad H - o < 0.

Similarly, the almost constants for the action of U(H ) on U(L) are those o € U(L)
for which dimg ad U(H ) - a < 00. In each case the almost constants form a graded
subalgebra of U(L).

Part (i) of the next theorem follows easily from the results of Section 3.1 as in
[BP3, Corollary 5.1]. Part (ii) requires a nontrivial additional argument by these
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means. However a close examination of the proof of [BP4, Theorem 6.2] shows that
the result of (i) below holds for Lie colour algebras. Part (iii) follows from [BP4,
Theorem 6.8] via discoloration, since an element belongs to the kernel of ad if and
only if all its homogeneous components do.

Theorem 5.1. Let H be a graded subalgebra of L, and set D =Dy (H). Then

(i) The subalgebra of almost constants for the action of H on U(L) equals U(D).

(ii) If H is large in L, then the subalgebra of almost constants for the action of
U(H) on U(L) equals U(Ag).

(iii) If Ap = 0 then the adjoint action of U(L) on U(L) is faithful. O

In particular the constants and semi-invariants for the action of L on U(L) lie in
U(Ap).

Suppose that U(L) is semiprime. Then it has a symmetric Martindale ring of
quotients ¢). We assume that K contains a primitive exp G-th root of unity. Then
the linear automorphisms ¢(y) of U(L) as in Proposition 2.2 are in fact algebra
automorphisms and extend uniquely to ¢). Thus @ is graded. The argument of
[BP4, Theorem 6.3] goes over directly and so all constants for the action of L on @
are even. In particular all constants for the action of L on U(L) are even. This last
observation is obvious, since an odd constant generates a nilpotent ideal in U(L).

However even with our hypothesis on ¢, it is not necessarily the case that the
constants lie in the component of the identity. For example, suppose that char K # 2
and let ¢ =< a > X < b > be the noncyclic group of order 4 with ¢ = G, and
e(a,b) = —1. Let L = Kz be one-dimensional with z having parity a. Then
U(L) = KJ[z] has constants of parity a # 1.

Moving to linear identities, we can define the almost centralizer of H in U(L) as
the set of all & € U(L) such that za — az = 0 for all 2 in some large subspace of H,
and similarly the almost centralizer of U(H ) in U(L). Each is a graded subalgebra
of U(L). Part (i) of the next result follows as in [BP3, Corollary 5.2]. Part (ii) is
proved just as in [BP4, Theorem 6.1].

Theorem 5.2. Let H be a graded subalgebra of L, and set D =Dy (H). Then

(i) The almost centralizer of H in U(L) is contained in U(D).
(ii) If H is large in L, then the centralizer of U(H) in U(L) is contained in
U(Apg). In particular the centre of U(L) lies in U(Ap). O

The centre of U(L) need not lie in the component of the identity, as the above
example shows.

We now move on to consider annihilator ideals and primeness. The next theo-
rem follows from our reduction theorems as in [BP4, Theorem 6.1]. It deals with
ungraded ideals and seems to require the full machinery of the A-methods.

Theorem 5.3. Let A, B < U(L).
(i) If A = L.ann B, then A = U(L) (AN U(AL)) = U(L)YANU(A)), and if
B=r.ann A, then B =(BNU(Ap)U(L)=(BNU(A)U(L).
(ii) If U(A) is prime or U(Ayp) is prime then so is U(L). O
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Note that U(L) can be prime even if U(A) or U(A) is not, as the examples
below show. Note however that in those examples these subalgebras are L-prime,
that is they do not contain nonzero ideals I,.J stable under the action of I such
that /J = 0. In the first example below U(Ap) is prime while U(A) is not. I do
not know whether U(A) can be prime without U(Ap) being prime.

Let D denote either A or Ap. As in [BP4], for any subset A of U(L) and
complementary basis for D in L we can consider the K-subspace w(A) spanned by
all the leading coefficientsin D (i.e. those a, corresponding to p of maximal degree)
of elements @ = > pa, of A. Then 7(A) is independent of the complementary
basis chosen for D in L, is graded and right-left symmetric if A is graded, and is an
L-stable ideal of U(D) if A is an ideal of U(L).

Our next result is the analogue of [BP4, Theorem 6.5], and the proof is just as in
that theorem. Part (iii) could also be obtained directly from [BP4, Theorem 6.5(iii)]
by using the discoloration functor, once we note that semiprimeness is automatically
a graded property. By our conventions char K t |G|, so some extension F' of K
contains a primitive exp G-th root of 1. If I is a nonzero nilpotent ideal of U(L),
then I = I @ F is a nonzero nilpotent ideal of U(L)® F. Letting J = ZTX, where
the sum runs over all characters x of &G, it follows from Proposition 2.2 that J is a
nonzero nilpotent graded ideal, and intersecting with U(L) gives a nilpotent graded
ideal of U(L) containing I. Thus U(L) is semiprime if and only if it is graded
semiprime.

Theorem 5.4. Let L be a Lie colour algebra. Then

(i) Let I and J be graded ideals of U(L). Then IJ = 0 implies that =(I)x(J) =
0.
(ii) U(L) is graded prime if and only if U(A) is graded L-prime, if and only if
U(Ap) is graded L-prime.
(iii) U(L) is semiprime if and only if U(A) is L-semiprime, if and only if U(Ap)
18 L-semiprime. O

It is the lack of an ungraded version of (i) above which leaves us with an incom-
plete answer to the question of when U(L) is prime.

The examples below show that being L-semiprime (respectively graded L-prime)
is weaker than being semiprime (respectively graded prime) for U(A) and U(Ap),
so we cannot drop the ‘L-’s in the above theorem.

Example. Let L be the Lie superalgebra in the example following Theorem 4.6.
In terms of generators and relations, L is the Lie superalgebra generated by [ and
the z; subject to the relations [z;,2;] = 0 and [/, z;] = 2;4; and the requirement
that [ be even and the z; odd. Then A = A, Ay =0 and U(A) is L-prime, but not
semiprime since it is an exterior algebra.

Example. Suppose char K # 2 and let S = Ku + Kv be a 2-dimensional abelian
Lie superalgebra with « even and » odd. Then S admits an odd outer derivation
d sending u to 0 and v to u. Note that [d,0] = 20? = 0 and we have an action of
the one-dimensional Lie superalgebra K@ on 5. Now let T be any Lie superalgebra
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which has a homomorphism onto K@ and has no nonzero finite-dimensional ideals.
Form the semidirect product L = 5 x T with T acting on 5 via the action of
K 0. Then it is easily seen that Ay = 5. The ring R = U(5) is isomorphic to the
truncated polynomial ring K'[u, v[v? = 0]. Its nilradical is N = vR, and NNN? = 0.
In fact any two nonzero ideals I, J of R with IJ = 0 are contained in N, so that R
is L-prime but not semiprime.

An example of such a superalgebra T is the superalgebra L of the previous ex-
ample. The map from L to S given by [ — 0, z; — @ and z; — 0 for all : > 2 is
well-defined since the relators defining I all have an obvious factor mapping to zero
except for [z, 2,] which maps to [0,0] = 0.

It is necessary to use odd outer derivations in order to construct such an example,
at least in characteristic zero. If char K = 0 and L is a finite-dimensional Lie
superalgebra then U(L) is noetherian and its nilradical is a nilpotent graded ideal.
It is easily seen that even derivations preserve the nilradical (apply the discoloration
functor along with [R, Proposition 2.6.28]).

In the remaining theorems, the hypotheses imply that U(L) is prime and that @,
the Martindale symmetric ring of quotients, exists and is graded. Let C' = Co(U(L))
be the extended centroid of U(L). The next theorem follows as in the analogous
results [BP3, Corollary 5.8] and [BP4, Theorem 6.6].

Theorem 5.5. Suppose that K contains a primitive exp G-th root of unity, and let
D denote either A or Aj.

(i) Suppose U(D) is prime. Then the extended centroid of U(L) embeds natu-
rally into the extended centroid of U(D). Thus if D = 0 then C = K, and
U(L) is centrally closed.

(ii) If D =0, then the almost centralizer of L in Q) is equal to K. a

If S'is a subset of G and L, = 0 when a ¢ S we say L is concentratedin 5. Recall
Proposition 2.2 and let ¢(x) be the automorphism of @ induced by the action of
the character y.

Theorem 5.6. (c.f.[BP4, Theorem 6.7]) Suppose that K contains a primitive exp G-
th root of 1, and that Ay, = 0. If ¢(x) is X-inner, then L is concentrated in ker y.
Thus if L is not a Lie algebra, then some p(x) is X-outer.

Proof. Suppose that ¢(x) is X-inner. Then there is a nonzero ¢ € @ with zq = ga*
for all # € U(L). We may assume ¢ to be homogeneous (consider homogeneous
components). Also, there exists a nonzero ideal I of U(L) with 0 # Iq C U(L).
Replacing I by the nonzero finite intersection () 1%, where 1 runs over Hom (G, K*),
we can assume that I is graded. Thus there is a homogeneous nonzero o € I with
aq = f3, a nonzero homogeneous element of U(L).

The identity zg = qzX yields, on multiplying each side on the left and right by «
and rearranging, the identity

(*) X Hp(a))azf = BaXa for all z € U(L).
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Recall we are assuming that distinct elements of GG give rise to distinct characters
via @ — £(a,-). Thus since G is finite this map is onto the character group and we
can choose a € G with £(a,-) = y~'. We can form the larger Lie colour algebra
L'=L&T where T' = Kt is 1-dimensional, [t,¢] = 0 and p(¢) = a. We then have
xt = taX for all 2 € U(L), and if = is homogeneous then 2X = ¢(z,¢)z. Furthermore,
note that Ay, =T

Now working in the larger ring U(L’), multiply equation (*) on the left by ¢ and
use the above relations to obtain

e(t,)’e(B, atz 8 = Brta for all € U(L).
Write @ = 3~ per, and § =3, 3, based on Ay = 0. Then

e(t,a)’e(f,t)at = Zu %e(B, t)ayt)

describes e(t,a)’¢(3,t)at based on A = T and since a, € K, ta = Y, a,tp
likewise describes ta. Now since L is large in L', Theorem 4.8 gives the reduction

e(t,)e( B, hatzf = B ata for all 2 € U(L) and all p.

If we choose 1 so that 3, # 0 then it follows from above that also o, # 0. Then
Theorem 4.8 also gives

e(t,a)’e(3, )atap, = B,ata, for all € U(L).

Cancelling the nonzero field elements «, and 3, gives (¢, a)’c(8,t)ta = «t for all
@ € U(L) and setting @ = 1 implies that £(¢,a)%(3,t) = 1. Thus in particular
tx = xt for all x € L. Since also tx = 2Xt¢ this implies that L is concentrated in

kery. O

This result fails if we remove the hypothesis Ay = 0 and only require U(L) to be
prime, as was shown in [BP4].

6. COMMENTS

The original group ring delta methods (see [P]) yielded similar results, for example
K[G] is prime if and only if K[A*]is prime. However the finite situation for group
rings is much easier since if GG is finite and nontrivial then K G is never prime. By
contrast, it is not even known for which finite-dimensional Lie superalgebras I the
algebra U(L) is prime. The best available positive result seems to be that of [B].

There is also the problem of obtaining a better characterization of primeness in
the characteristic p case. We know that this property is controlled by A but an
answer in terms of finite-dimensional restricted ideals is apparently ruled out by an
example of [BP1]. We close with a list of questions which (some not for the first
time) came up in the course of this work.

(i) Is ‘graded prime’ equivalent to ‘prime’ for algebras U(L)?
(i) Is ‘semiprime’ equivalent to ‘prime’ for U(L)?
(iii) Is U(L) prime if and only if U(Ay) is prime?
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(iv) If U(A) is semiprime, is U(A[) necessarily semiprime?
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