

RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

CYTOKININS AND THE GROWTH OF SPIRODELA OLIGORRHIZA

A thesis submitted for the degree of Doctor of Philosophy

by

P.J.A. McCOMBS

Department of Cell Biology,

University of Auckland.

December 1971

SUMMARY

- Spirodela oligorrhiza on sterile glucose-mineral medium ceased to grow three days after transfer into darkness.
- 2 Cytokinins, supplied in the medium, allowed continuous growth of Spirodela after transfer to darkness. Other plant growth substances, or adenine analogues, were ineffective.
- Kinetin stimulated production of new fronds after a 24 hour lag period when added to dormant cultures although it was rapidly taken up.

 Kinetin reached a constant concentration in the plantlets within 30 to 60 minutes of addition to the medium.
- In the absence of cytokinin, dormancy continued for three or four weeks after which growth spontaneously resumed in darkness. The growth rate then reached almost half that achieved with optimum kinetin concentrations in darkness. Growth continued in darkness for at least eight weeks without cytokinin.
- Pretreatment in the light with either metabolic inhibitors, kinetin, abscisic acid, or high or low temperature, essentially eliminated the period of dormancy of Spirodela transferred to darkness in the absence of cytokinin. Growth was reduced 50% to 90% during the pretreatments.
- The pretreatments designed to affect plastid RNA, protein or ATP production were the most effective. The fastest growth rate achieved in darkness without cytokinin after pretreatment was 10% less than that promoted by optimum kinetin.

- Dormant Spirodela in darkness continued to incorporate precursors into RNA, DNA and protein at a rate 50% that in growing (plus kinetin) cultures. Net rates of macromolecule accumulation were extremely slow, indicating extensive degradation.
- Addition of kinetin to non-growing Spirodela in darkness stimulated the synthesis of RNA, DNA and protein simultaneously after a lag of approximately one hour. The rates of precursor incorporation increased to equal those in continuously growing cultures.
- 9 Non-growing Spirodela in darkness rapidly accumulated starch. Kinetin had little or no effect on accumulation and mobilization of starch.
- 10 land 14 C-glucose was taken up by growing (plus kinetin) and non-growing (minus kinetin) Spirodela in darkness, and was metabolized equally in each. Three times as much C-glucose entered starch in the non-growing cultures.
- A model scheme for the control of dormancy in Spirodela is proposed based on an inhibitory mediator. The mediator may be similar to the hypothetical mediator of the pleiotypic response shown by animal cells.

CYTOKININS AND THE GROWTH OF SPIRODELA OLIGORRHIZA

TABLE OF CONTENTS

Page				
i	Summary			
iii	Table of Conte	ents		
iv	Index			
xii	Acknowledgments			
xiii	Abbreviations	and trivial names		
1	Chapter 1	General Introduction		
26	Chapter 2	Materials		
SECTION	I			
29	Chapter 3	Introduction: Growth of Lemnaceae		
34	Chapter 4	Methods I		
39	Chapter 5	Growth of Spirodela in darkness		
62	Chapter 6	Discussion: Growth of Spirodela		
SECTION	II			
70	Chapter 7	Introduction: Plant hormones and metabolism		
76	Chapter 8	Methods II		
102	Chapter 9	Protein Metabolism in Spirodela in darkness		
115	Chapter 10	Nucleic acid metabolism in Spirodela in darkness		
144	Chapter 11	Uptake and metabolism of kinetin by Spirodela in darkness		
149	Chapter 12	Carbohydrate Metabolism in Spirodela in darkness		
161	Chapter 13	Discussion: Metabolism of Spirodela		
SECTION	III			
165	Chapter 14	Concluding Discussion		
xiv	Appendix I	Media		
xv	Appendix II	Method for determination of sulphate		
xix	Bibliography			

INDEX

CHAPTER	1: GENE	ERAL INTRODUCTION	
1.1	Research	n described in this thesis	1
1.2	Experime	ental organism	1
	2.1	Advantages of S.oligorrhiza	2
	2.2	Previous studies using the Lemnaceae	1,
1.3	Cytokin	ins	5
	3.1	Historical	5
	3.2	Occurrence	6
	3.3	Structural requirements for cytokinin activity	6
	3.4	Biological effects	7
1.4	Control and ani	of metabolism in micro-organisms mals	9
	4.1	Control of transcription	9
	4.2	Control of translation	11
	4.3	mRNA stability	12
	14.14	Enzyme activity and turnover	12
	4.5	Hormonal control in animals	13
*	4.6	Pleiotypic control	17
1.5	Control	of growth and metabolism in plants	16
	5.1	Developmental and environmental control	16
	5.2	Effects of light	1
	5.3	Dormancy	20
	5.4	Plant growth substances	21
CHAPTER	2: MAD	TERIALS	
2.1	General	L chemicals	26
2.2	Specifi	ic chemicals	26
2.3	Radioch	nemicals	2
2.4	Drugs		2
2.5	Enzymes	5	2
2.6	Chroma	tographic materials	2

37	
V	

CHAPTER	3: INTE	RODUCTION: GROWTH OF LEMNACEAE	
3.1	Ontogene	esis of fronds in S.oligorrhiza	29
3.2	Growth c	of Lemnaceae in darkness	31
3.3	Effect o	of growth substances on Lemnaceae	32
	3.1	Auxins	32
	3.2	Gibberellins	33
	3.3	Abscisic Acid	33
CHAPTER	4: METH	HODS I	
4.1	Experime	ental organism	34
	1.1	Sterilization of Spirodela	34
4.2	Culture	conditions	35
	2.1	Medium	35
	2,2	Stock cultures	35
	2.3	Experimental cultures	36
	2.4	Transfers and additions to flasks	36
4.3	Assessme	ent of growth	37
	3.1	Frond number	37
	3.2	Weight	37
4.4	Photogra	aphy	38
CHAPTER	5: GROV	WIH OF SPIRODELA IN DARKNESS	
5.1	Growth :	in darkness with and without kinetin	39
5.2	Growth :	in darkness on different kinetin concent-	40
5.3	Ability darknes:	of other compounds to allow growth in	42
	3.1	Plant growth substances	43
	3.2	Acetycholine	43
	3.3	9-substituted-6-benzyladenine	45
	3.4	CyclicAMP	46
5.4	Competi	tion of 6-benzyladenine and 3-benzyladenine	47
5.5	Initiat:	ion of growth in darkness by kinetin	48
5.6	Effects	of metabolic inhibitors on growth	48
	6.1	Chloramphenicol	49
	6.2	Methotrexate	50

			VI
	6.3	5-Fluorodeoxyuridine	51
	6.4	Effects of abscisic acid, actidione and 5-methyl-tryptophan	51
5.7		with or without kinetin after extended in darkness	53
5.8		in darkness without kinetin following tment with chloramphenicol	54
	8.1	Growth after seven days CAP treatment	54
	8.2	Effect of length of CAP pretreatment on subsequent dark growth without kinetin	56
	8.3	Effect of light on CAP pretreatment	56
8.9		in darkness without kinetin following ion of growth by other agents	57
5.10	Growth : kinetin	in darkness after pretreatment with	60
CHAPTER	6: DIS	CUSSION: SECTION I: GROWTH OF SPIRODELA	
6.1	Effect	of cytokinins on growth in darkness	62
6.2		eous resumption of growth in darkness cytokinin	66
CHAPTER	7: INT	RODUCTION: PLANT HORMONES AND METABOLISM	
7.1	Effects metabol:	of plant hormones on protein ism	70
7.2	Effects synthes:	of plant hormones on nucleic acid is	71
7.3	Metaboli	ism of cytokinins	73
	F 400		
CHAPTER	8: METH	HODS II	
I	GENERAL	METHODS	
8.1	General	preparative and analytical procedures	76
	1.1	Centrifugation	76
	1.2	Spectroscopy	76
	1.3	Measurement of radioactivity	77
	1.4	Chromatography	77
		(a) Paper chromatography	77
		(b) Thin-layer chromatography	78

			VI:
		(c) Column chromatography	78
		(d) Solvents	78
	1.5	Electrophoresis	78
		(a) Paper electrophoresis	78
		(b) Thin-layer electrophoresis	79
	1.6	Radioautography	79
8.2	Experi cultur	mental procedures involving Spirodela res	79
	2.1	Experimental conditions	79
	2.2	Sampling and additions	79
	2.3	Treatment of samples	79
II	EXTRAC	CTION AND ESTIMATION OF MACROMOLECULES	
8.3	Extrac	ction and estimation of protein	81
	3.1	Estimation of soluble protein	81
	3.2	Determination of protein-associated radioactivity	81
8.4	Extrac	ction of nucleic acid	82
	4.1	Estimation of RNA	82
		(a) Orcinol reaction	82
		(b) Total RNA extraction	82
	4.2	Estimation of DNA	83
	4.3	MAK column chromatography	84
	14.14	Determination of nucleic acid-associated radioactivity	84
		(a) Determination of conditions for alkaline hydrolysis of RNA	85
		(b) Confirmation of the nature of alkali-labile material	85
8.5	Extra	ction of starch	86
	5.1	Extraction and estimation of starch	86
	5.2	Determination of starch-associated radioactivity	86
III	MACROI	MOLECULES IN SPIRODELA CULTURES IN DARKNESS	5
8.6	Change	es in macromolecule content	87
	6.1	Nucleic acids and soluble protein	87
	6.2	Starch	88

	(a)	Starch accumulation in growing and non-growing cultures	88
	(b)	Mobilization of starch in the absence of glucose	89
IA	UPTAKE AND I	NCORPORATION OF PRECURSORS INTO	
8.7	Uptake and is protein	ncorporation of 35S-sulphate into	89
	7.1 Rate 35s-	s of uptake and incorporation of sulphate	89
	7.2 Time prote	required for the stimulation of sin synthesis by kinetin	90
8.8	Uptake and in	ncorporation of ³ H-uridine into RNA	91
	8.1 Rates	s of uptake and incorporation of ridine	91
	8.2 Chron	natography of ³ H-uridine labelled RNA	92
	8.3 Time	required for the stimulation NA synthesis by kinetin	92
8.9	Uptake and in	acorporation of 3H-thymidine into DNA	93
	9.1 Rates	s of uptake and incorporation of nymidine	93
		required for the stimulation of DNA nesis by kinetin	93
8.10	Column chrome following add Spirodela	atography of nucleic acid dition of kinetin to non-growing	94
8.11	Specific acti	vity of ³ H-uridine labelled ribosomes	
8.12		turnover of RNA in growing and	95
8.13	Estimation of	RNA base composition	96
8.14		ratio of free to membrane-bound	97
8.15	Estimation of	precursor pool specific activities	98
		fic activities of sulphate pools	98
		fic activities of phosphate pools	99
8.16		tabolism of 14 C-glucose	99
		e and incorporation of 14C-glucose	99
	16.2 Metab	olism of 14 C-glucose	100

CHAPTER	9: PROTEIN METABOLISM IN SPIRODELA IN DARKNESS	
A	INTRODUCTION	102
В	EXPERIMENTAL RESULTS	103
9.1	Growth of Spirodela on low-sulphate medium	103
9.2	Changes in the soluble protein content of Spirodela on basal medium in darkness	103
9.3	Uptake and incorporation of ³⁵ S-sulphate into protein	104
9.4	Effects of inhibitors of protein synthesis on 35S-sulphate incorporation into protein by non-growing Spirodela	104
9.5	Specific activities of sulphate pools	106
9.6	Time required for the stimulation of protein synthesis by kinetin	107
C	DISCUSSION	109
CHAPTER	10: NUCLEIC ACIDS METABOLISM IN SPIRODELA IN DARKNESS	
A	INTRODUCTION	115
В	EXPERIMENTAL RESULTS	116
10.1	Extraction and hydrolysis of nucleic acids	116
	1.1 Methods for extraction of nucleic acids	116
	1.2 Estimation of total nucleic acids	117
	1.3 Alkaline hydrolysis of RNA	118
10.2	Base composition of RNA	118
10.3	Changes in nucleic acid content of Spirodela on basal medium in darkness	120
10.4	Uptake and incorporation of ³ H-uridine	121
	4.1 Rates of uptake and incorporation	121
	4.2 Column chromatography of ³ H-uridine- labelled nucleic acid	122
10.5	Time required for the stimulation of RNA synthesis by kinetin	124
10.6	Uptake and incorporation of ³ H-thymidine	125
10.7	Stimulation of DNA synthesis by kinetin	126
	7.1 Time required for the stimulation of DNA synthesis	126
	7.2 Sites of 14 C-thymidine incorporation	127

10.8	Column nucleic	chromatography of 32P-phosphate labelled acid	128
	8.1.	Effect of kinetin on the specific activity of phosphate pools	129
	8.2	Column chromatography of ³² P-labelled nucleic acid following stimulation by kinetin	130
10.9	Specifi ribosom	c activity of ³ H-uridine-labelled es	132
10.10	Turnove Spirode	r of RNA in growing and non-growing la	134
10.11		f free to membrane-bound ribosomes in and non-growing Spirodela	136
C	DISCUSS	ION	138
	(i)	Nucleic acids in Spirodela	138
	(ii)	Nucleic acid metabolism in growing and non-growing cultures	139
	(iii)	Stimulation of nucleic acid by kinetin	141
CHAPTER		TAKE AND METABOLISM OF KINETIN BY TRODELA IN DARKNESS	
A	INTRODU	CTION	144
В	METHODS	AND RESULTS	144
11.1	7).		144
11.2	Rates o	f uptake and metabolism of 14C-kinetin	146
C	DISCUSS		147
CHAPTER		RBOHYDRATE METABOLISM IN SPIRODELA DARKNESS	
A	INTRODU	CTION	149
В	EXPERIMENTAL RESULTS		150
12.1	accumul	of kinetin and FUDR on starch ation in darkness	150
12.2	Uptake	and incorporation of 14C-glucose	153
	2.1	Rates of uptake and loss of 14C-radioact- ivity following transfer to C-glucose	150
	2.2	medium Distribution of 14C-radioactivity follow-	153
	2.2	ing uptake of 14C-glucose by growing and non-growing cultures	154
C	DISCUSS	ION	155

CHAPTER	13: DISCUSSION: SECTION II: METABOLISM OF S	SPIRODELA
13.1	Effects of kinetin on the metabolism of Spirodela	161
13.2	Similarities between conirol of metabolism in Spirodela in darkness and other step-down cultures	162
CHAPTER	14: CONCLUDING DISCUSSION	
14.1	The control of dormancy in Spirodela	165
14.2	Effects of cytokinin on the metabolism of Spirodela in darkness	167
14.3	A model for the control of dormancy in Spirodela.	169
14.4	Suggestions for further work arising from this investigation	173

ACKNOWLEDGMENTS

In accomplishing this work I wish to thank the following persons:

Professor R.K. Ralph for supervision, advice and guidance throughout the work, and for editing the thesis.

Dr D.S. Letham, and other staff of the Fruit Research Division, DSIR, for supplying Spirodela inocula, and for helpful advice.

Dr R.L. Bieleski and Mr J.R. Bedbrook for assisting in the identification of chromatographed compounds in Chapter 12.

Professor S. Bullivant for preparing material for electron microscope examinations.

The staff and students of the Department of Cell Biology for assistance and discussions throughout the course of this work, especially Dr M.V. Berridge, who also assisted with Chapter 1.

ABBREVIATIONS AND TRIVIAL NAMES

ABA abscisic acid

Ach acetylcholine

3BA 3-benzyladenine

6BA 6-benzylaminopurine

BSA bovine serium albumen

CAP chloramphenicol

C Curie

DEAE diethylaminoethyl

DNA deoxyribonueleic acid

EDTA ethylenediaminetetraacetic acid

f.w. fresh weight

FUDR 5-fluorodeoxyuridine

g acceleration due to gravity

GA gibberellic acid

gm gram

TAA indoleacetic acid

kinetin 6-furfurylaminopurine

m, u, n milli (10^{-3}) , micro (10^{-6}) , nano (10^{-9}) respectively

M molar

MAK methylated albumen bound to celite ml, ul millilitre, microlitre respectively

NDS naphthalene disulphonate

nm nanometres

OD optical density

PVP polyvinylpyrollidone

rRNA, tRNA, mRNA ribosomal, transfer and messenger RNA respectively

RNA ribonucleic acid

SDS sodium dodecyl sulphate

Spec. act. specific activity

TCA trichloroacetic acid

Tris tris(hydroxymethyl)aminomethane

uv ultraviolet