

RESEARCHSPACE@AUCKLAND

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

ASPECTS OF THE BIOLOGY AND UTILISATION OF PTEROCLADIA AND GRACILARIA

DAVID MORLEY LUXTON

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Botany, University of Auckland, June 1977.

ACKNOWLEDGEMENTS

My special thanks go to my supervisor, Professor V.J. Chapman for his assistance and guidance in all phases of this study.

A major portion of this work was carried out at the Leigh Marine Research Laboratory; the support of the Director, Dr W.J. Ballantine and Associate Director, Dr F.J. Taylor is gratefully acknowledged. I would also like to thank Dr J.R. Walsby (Research Fellow), for his personal interest and helpful advice. I am also indebted to Mr T. Wustenberg for his technical assistance.

The study was financed by a grant from Davis Gelatine (N.Z.) Limited and I wish to extend my sincere gratitude to Mr J.R. McGimpsey, General Manager. I am also extremely grateful for the use of facilities at the Davis Gelatine laboratory and access to seaweed records. In addition helpful discussions with Mr C. Hintz are also acknowledged.

Thanks are also due to fellow students, Mr K. Johnson and Mr T. Ayling for their valuable assistance in the field. I am also grateful to Mr C. Hay for providing samples of Pterocladia lucida from Kaikoura.

I would also like to express my gratitude to Mrs Raylee Johnston for typing.

ABSTRACT

Pterocladia lucida (R. Br.) J. Ag. is the prinipal raw material for agar production in New Zealand. Since collection commenced in 1943 the annual harvest has never stabilised and over recent years there has been a general decline, which has inhibited expansion of the indigenous industry.

Field and laboratory studies have been made in order to obtain information on the biology of *P. lucida*. Form variability is considered in detail and a relationship between external morphology and wave exposure of the habitat is proposed. The culture of *P. lucida* from spores in a running seawater system is described in detail. Results on carpospore and tetraspore germination, and sporeling growth under light and temperature regimes are presented. Germination of both spore types was inhibited at 10°C while at higher temperatures germination was greatest under 4 klux. Spore germination and sporeling development in culture is described. Only sterile prostrate thalli possessing rhizoidal haptera were obtained and a hypothesis relating the appearance of surface haptera to the direction of irradiation is proposed.

The development of an outdoor wave tank for culturing is described and the growth rate and development of sporelings is discussed with reference to water movement. Sporelings were maintained in culture for up to 22 months. Cultured sporelings have also been transplanted into different habitats. Creeping axes established from carpospores produced erect fronds, which produced tetraspores after seven to ten months in situ. This confirmed part of a Polysiphonia-type life history for the first time in a Gelidioid species. Axis elongation rate in situ was estimated to be less than 10cm year at Leigh. It was concluded that the collection of attached weed could not be sustained annually, but controlled harvesting in specific areas every two years is advocated.

Seasonal variation in agar yield and gel strength from wave exposed and sheltered populations of *P. lucida* was studied.

Agar levels varied throughout the year, being greatest in spring and summer, while gel strengths showed a similar trend.

The feasibility of utilising indigenous *Gracilaria secundata*Harvey forma *pseudoflagellifera* May has been studied. The
yield and gel properties of agar were determined from different alkali pretreatments. There was a marked increase in gel
strength when weed was pretreated in alkali, the maximum gel
strength being obtained from a weed treatment of 3 percent
NaOH for three hours at 80°C. The gel properties of agar
from *G. secundata* f. *pseudoflagellifera* are compared with agar
from other sources. The agar was suitable for commercial use,

but exhibited a greater resilience than that from *Pterocladia lucida*.

The vegetative regeneration of *G. secundata* f. pseudoflagellifera in the Manukau Harbour has been studied and an experimental
harvest of 0.68t is described. During spring 100 percent
regeneration from hand cleared and raked areas occurred after
eight to thirteen weeks. Based on regeneration results,
mechanical harvesting four times a year of *Gracilaria* mats in
the Manukau Harbour is advocated.

The predicted sustainable yield is $1084-1304t \text{ year}^{-1}$.

The extraction and gel properties of agar from *Melanthalia* abscissa (Turn.) Hook. et Harv. are reported for the first time, but the commercial collection of this species is not advocated.

TABLE OF CONTENTS

ACKNOWL	EDGEMENTS	11
ABSTRAC	T	iv
LIST OF	TABLES	xix
LIST OF	FIGURES	xxi
PART ONE	ASPECTS OF THE BIOLOGY OF	PTEROCLADIA LUCIDA
CHAPTER	ONE: GENERAL INTRODUCTION	
1.1	L PTEROCLADIA IN NEW ZEALAND) 1
1.2	Z TAXONOMIC BACKGROUND	2
1.2	2.1 THE GENUS PTEROCLADIA	2
1.2	2.2 SPECIES OF PTEROCLADIA	7
1.2	PTEROCLADIA PINNATA NOMENC	LATURE 12
1.2	2.4 FORMS OF PTEROCLADIA LUCID	A 13
1.3	SAMPLING	14
1.4	ERECT FROND MORPHOLOGY	16
1.4	.1 PATTERN OF DEVELOPMENT	- 16

	1.4.2	EPIBIOTA	19
	1.4.3	HABITAT INFLUENCE	20
	1.5	GEOGRAPHIC DISTRIBUTION	25
	1.6	PRELIMINARY CULTURE TRIAL	27
	1.6.1	INTRODUCTION	27
	1.6.2	METHODS AND MATERIALS	27
	1.6.2.1	Collection and treatment	27
	1.6.2.2	Media	28
	1.6.2.3	Conditions	29
	1.6.3	OBSERVATIONS	29
	1.6.4	DISCUSSION	30
CHAI	PTER TWO:	PTEROCLADIA LUCIDA IN CULTURE	33
	2.1	RUNNING SEAWATER CULTURE	33
	2.1.1	INTRODUCTION	33
	2.1.2	METHODS AND MATERIALS	35
	2.1.2.1	Filtration and ultraviolet radiation	35
	2.1.2.2	Light, temperature and flow rate	37
	2.1.2.3	Establishment of sporelings	38
-	2.1.2.4	Observation and measurement of sporelings	41
	2.1.3	OBSERVATIONS AND RESULTS	41
	2.1.3.1	Germination	41
	2.1.3.2	Post embryonic development	44

2,1.3.3	Effect of light and temperature on	
	early development	46
2.1.3.4	Thallus development	50
2.1.3.5	Thallus form and culture conditions	52
2.1.3.6	Factors affecting attachment rhizoidal	
	development	54
2.1.4	DISCUSSION	55
2.1.4.1	Germination	55
2.1.4.2	Sporeling development	56
2.1.4.3	Growth and culture conditions	59
2.1.4.4	Rhizoidal attachment structures	61
2.2	STATIC CULTURE	65
2.2.1	INTRODUCTION	65
2.2.2	METHODS AND MATERIALS	65
2.2.2.1	Light and temperature	65
2.2.2.2	Spore isolation	66
2.2.3	OBSERVATIONS AND RESULTS	67
2.2.3.1	Effect of light and temperature	67
2.2.3.2	Differential viability of spore types	70
2.2.4	DISCUSSION	71
2.2.4.1	Effect of light	71
2.2.4.2	Effect of temperature	72
2.2.4.3	Ratio of carpospore to tetraspore	
	germination	73

CHAPTER	THREE: TANK CULTURE		70
3.1	INTRODUCTION	w.	76
	r ,		
3.2	METHODS AND MAT	ERIALS	77
3.2	.1 ISOLATION AND A	TTACHMENT OF SPORELI	NGS 77
3.2	.2 OUTDOOR CULTURE	TANK	78
3.2	.3 MEASUREMENT AND	ANALYSIS OF GROWTH	79
3.3	OBSERVATIONS AND	D RESULTS	82
3.3	.1 AXIS LENGTH		82
3.3	.2 SURFACE AREA		83
3.3.	.3 GROWTH FORM	8	85
3.4	DISCUSSION		86
a			
wT		, , , , , , , , , , , , , , , , , , ,	
CHAPTER F	OUR: TRANSPLANT EXPER	RIMENTS AND GENERAL	
	DISCUSSION		88
4.1	INTRODUCTION		88
	,		
4.2	METHODS AND MATE	RIALS	- 88
4.2.	1 METHOD 1		88
4.2.	2 METHOD 2		90
4.2.	3 GROWTH MEASUREMEN	NT	91

4.3	RESULTS	92
4.3.1	SITE 1: OMAHA COVE	92
4.3.2	SITE 2: EAST OF GOAT ISLAND CHANNEL	93
4.3.2.1	Survival and growth	93
4.3.2.2	Natural settlement	95
4.3.3	SITE 3: GOAT ISLAND BAY	96
4.4	DISCUSSION	97
4.4.1	MORPHOGENSIS	97
4.4.2	GROWTH OF ERECT FRONDS	100
4.4.3	THALLUS FORM	102
4.4.4	LIFE HISTORY	104
4.4.5	LIFE HISTORY AND THE RATIO OF ISOMORPHIC	
7 6.9	PHASES IN NATURE	110
4.4.6	WILD CROP HARVESTING	114
PART TWO:	ASPECTS OF THE UTILISATION OF	
	PTEROCLADIA AND GRACILARIA	
CHAPTER FIVE:	GENERAL INTRODUCTION	116
5.1	AGAR	116
5.1.1	DEFINITION	116
5.1.2	SOURCES	118
5.1.3	WORLD PRODUCTION	121
5.1.4	HARVESTING WILD CROPS	121

5.1.5	MARICULTURE	122
5.1.6	STRUCTURE	124
5.1.7	POLYMER SHAPE AND GEL FORMATION	127
5.1.8	BIOSYNTHESIS	129
5.1.9	APPLICATION	132
5.1.9.1	Industrial processing	132
5.1.9.2	Fractionation	132
5.1.9.3	Chemical and enzymic modification	133
5.1.9.4	Mariculture	134
5.1.10	USES	135
5.2	THE AGAR INDUSTRY IN NEW ZEALAND	136
5.2.1	HISTORY	136
5.2.2	ANNUAL HARVESTS	137
5.2.3	COLLECTION	139
5.2.4	PROCESSING AND PRODUCTION	141
5.3	OTHER ECONOMIC RHODOPHYCEAE OF NEW	
	ZEALAND	144
5.3.1	AGAR SOURCES	144
5.3.2	CARRAGEENAN SOURCES	145

VARIATIONS IN AGAR LEVELS AND GEL STRENGTH	
IN PTEROCLADIA LUCIDA	148
*	
INTRODUCTION	148
METHODS AND MATERIALS	149
SAMPLING AND TREATMENT	149
EXTRACTION OF AGAR	150
GEL STRENGTH	151
RESULTS	153
YIELD	153
GEL STRENGTH	154
DISCUSSION	155
YIELD VARIATIONS	155
GEL PROPERTIES	157
THE UTILISATION OF GRACILARIA SECUNDATA	
HARVEY FORMA PSEUDOFLAGELLIFERA MAY (1948)	160
INTRODUCTION	160
TAXONOMY	161
	IN PTEROCLADIA LUCIDA INTRODUCTION METHODS AND MATERIALS SAMPLING AND TREATMENT EXTRACTION OF AGAR GEL STRENGTH RESULTS YIELD GEL STRENGTH DISCUSSION YIELD VARIATIONS GEL PROPERTIES THE UTILISATION OF GRACILARIA SECUNDATA

7.3	THE ALKALINE-TREATMENT OF GRACILARIA	
	SECUNDATA	163
7.3.1	INTRODUCTION	163
7.3.2	METHODS AND MATERIALS	164
7.3.2.1	Collection and treatment	164
7.3.2.2	Alkaline-treatment and extraction	164
7.3.2.3	Gel properties	166
7.3.3	RESULTS	166
7.3.3.1	Gel properties	166
7.3.3.2	Yield	168
7.3.4	DISCUSSION	169
7.4	REGENERATION OF GRACILARIA SECUNDATA IN	
£1	THE MANUKAU HARBOUR	172
7.4.1	INTRODUCTION	172
7.4.2	METHOD	174
7.4.3	RESULTS AND DISCUSSION	175
7.5	EXPERIMENTAL HARVESTING OF GRACILARIA	
y =	FROM THE MANUKAU HARBOUR	179
7.5.1	INTRODUCTION	179
7.5.2	METHOD	180
7.5.3	RESULTS	181
7.5.4	DISCUSSION	183
7.6	DEVELOPMENT OF A PROTOTYPE GRACILARIA	
	HARVESTER	185

CHAPTER ETCHT	COMPARATIVE ANALYSIS OF AGARS FROM	
OMITTEN ELGIT	CONTARATIVE ANALISIS OF AGARS FROM	
	DIFFERENT SOURCES	186
8.1	AGAR FROM MELANTHALIA ABSCISSA (TURN.)	
	HOOK ET HARV. (GRACILARIACEAE)	186
8.1.1	INTRODUCTION	186
8.1.2	METHODS AND MATERIALS	187
		107
8.2	ACAD FROM GRAGET LEVEL CR	
0.2	AGAR FROM GRACILARIA SP.	188
8.3	GEL PROPERTIES: RESULTS AND DISCUSSION	188
CHAPTER NINE:	SUMMARY AND RECOMMENDATIONS	192
		152
9.1	WILD COOR HARVESTING OF THERESE AREA	
	WILD CROP HARVESTING OF PTEROCLADIA	
	LUCIDA	192
9.2	CULTIVATION AND MASS CULTURE OF	
	PTEROCLADIA	194
9.3	WILD CROP HARVESTING OF GRACILARIA	
	SECUNDATA	105
	BEOUNDAIA	195
9.4	EXTRACTION OF AGAR FROM GRACILARIA	
	SECUNDATA	106

9.5		UTILISATION OF MELANTHALIA	197
9.6		THE UTILISATION OF FOREIGN RHODOPHYCEAE	198
		APPENDICES	
APPENDIX	I:	TABLE OF HERBARIUM RECORDS	200
APPENDIX	II:	ENRICHED SEAWATER MEDIA	201
APPENDIX	III:	SEAWATER TEMPERATURES	202
APPENDIX :	IV:	SPORELING GROWTH IN RUNNING SEAWATER	
		CULTURE SYSTEM	203
APPENDIX T	V:	1: LENGTH OF MAJOR AXIS IN THE OUTDOOR	
		CULTURE TANK	205
	•	2: SURFACE AREA OF SPORELINGS IN THE	
		OUTDOOR CULTURE TANK	207
APPENDIX V	*	1: GROWTH OF SPORELINGS IN OUTDOOR	
		CULTURE TANK: MEAN RELATIVE GROWTH RATES	209
		2: COMPARISON OF MEAN RELATIVE GROWTH	
		RATES	209

APPENDIX	VII:	ISOMORPHIC LIFE HISTORY PHASES IN NATURE	
		(PTEROCLADIA LUCIDA)	212
		I =	
APPENDIX	VIII:	SEASONAL VARIATIONS IN AGAR YIELD	
		(PTEROCLADIA LUCIDA)	213
		<i>3</i>	
APPENDIX	IX:	THE RELATIONSHIP BETWEEN GEL STRENGTH AND	
		CONCENTRATION FOR AGAR FROM PTEROCLADIA	
	, V	LUCIDA	214
APPENDIX	X:	SEASONAL VARIATIONS IN AGAR GEL PROPERTIES	<u>:</u>
		PTEROCLADIA LUCIDA	215
		1: PIHA: EXPOSED WEST COAST	215
		2	
		2: PAPANUI POINT: MODERATE SHELTER,	
		HAURAKI GULF	216
APPENDIX	XI:	GEL PROPERTIES OF AGAR FROM ALKALINE	
	ч ,	TREATED GRACILARIA SECUNDATA	217
	,		
APPENDIX	XII:	REGENERATION OF GRACILARIA SECUNDATA AT	
		LAINGHOLM	219
		1: NATURAL DENSITY CHANGES: CONTROL AREA	219
	- B		
K /	- 54	2: REGENERATION FROM CLEARED AREAS	220

LIST OF TABLES

Following page

1.1	Species of Pterocladia from the Pacific	
	and Caribbean	12
1.2	Lateral branch number in first 25mm	
	behind apices	23
2.1	Sporeling length after eight days at 15°C	69
2.2	Ratio of carpopsore to tetraspore germination	70
4.1	Increase in axis length of transplanted spore-	
-	lings	91
5.1	Rhodophyceae known to synthesise agar	118
4	The state of the s	
5.2	Commercially significant agarophytes	120
5.3	Some annual agarophyte harvests	121
5.4	Exportation of agar and estimate of agarophyte	
	used	122

5.5	The importation of agarophytes in New Zealand	142
6.1	Mean monthly yields of agar	152
7.1	Agar yield from alkaline treated Gracilaria	167
7.2	Growth of <i>Gracilaria</i> from cleared areas at Laingholm	176
7.3	Gracilaria regeneration at Blockhouse Bay	180
8.1	Gel properties of agars (FIRA gel tester)	188

LIST OF FIGURES

Following page

1	Location map of Auckland and Northland	14
2	Specimens of Pterocladia lucida	15
3	Distribution of Pterocladia lucida in New Zealand	25
4	Basic line filter	35
5	Ultraviolet steriliser	37
6	Culture dishes with continuous water supply	37
7	Germination	43
8,9	,10 Germinating spores	45
11	24 day old sporelings	45
12	39 day old sporelings	45
13	55 day old sporelings	46
14	64 day old sporelings	46
15	71 day old sporelings	46
16	86 day old sporelings	46
17	Six months old sporelings	46
18a	Growth of six day old sporelings at 15°C	47
18b	Growth of six day old sporelings	48
19a	Growth of thirty day old sporelings at 15°C	48
19b	Growth of thirty day old sporelings	48
20	Growth of thirty day old sporelings at 15°C	48

21	Seventy day old sporelings after 40 days under	
	different conditions	49
22	A sporophyte sporeling	51
23	A gametophyte sporeling	51
24	Five months old sporophyte sporeling	51
25,	Three months old sporelings	51
27	Five months old sporophyte sporelings	51
28	Fragments of gametophyte sporelings	51
29	Five months old gametophyte sporelings	51
30	A single sporophyte sporeling	51
31	Apical growth in culture	53
32	A terminal portion of an erect frond	53
33	A basal lateral branch	53
34	The lower region of an erect axis	53
35	Two excised apices from cultured sporelings	53
36	A terminal erect frond segment	53
37	A sporeling apex	53
38	Small culture cabinet	65
39	Effect of light and temperature on spore germination	68
40	Culture tank	78
41	Axes growth of 24 week old sporelings	82
42	Growth of 24 week old sporelings	83
13	Relative growth rate of 24 week old sporelings	84
14	Anchored sporeling	87
15	16 month old sporeling	87
16	Sporeling attached to terylene rope	87

47	Transplant apparatus	89
48	Location map of transplant sites	90
49	A transplant plate	95
50	A sporeling seven weeks after transplanting	95
51	Erect fronds 50 weeks after transplanting	95
52	A naturally settled sporeling(s).	95
53	A fertile erect frond	95
54	A sterile erect frond	95
55	Agar structure	125
56	Carrageenan structure	127
57	Schematic representation of the gelling mechanism	
	for carrageenan and agarose	128
58	Schematic pathway for carrageenan synthesis	129
59	Schematic representation of chemical and enzymic	
	dekinking in carrageenan and agar	134
60	Annual harvests of Pterocladia lucida	138
61	Regional annual harvests of Pterocladia lucida	138
62	Annual production of agar	143
63	FIRA gel tester	152
54	Seasonal variation in the agar yield from	
	Pterocladia lucida	153
55	Seasonal variation in the gel strength of agar from	
-	Pterocladia lucida	154
66	The increase in gel strength after treatment with	
	NaOH	167
57	The increase in gel breaking load after treatment	
	with NaOH	160

68 The Manukau Harbour	172
69-74 Gracilaria secundata at Laingholm	174
75 Regeneration of <i>Gracilaria</i> at Laingholm 1973-74	175
76-78 Experimental harvest, Blockhouse Bay	181
79 Sketch of prototype <i>Gracilaria</i> harvester	185