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Abstract

In this thesis, a direct approach to improve the control of highly nonlinear, strongly cou-

pled boiler-turbine systems that are commonly found in the power generation environment

is introduced. Following the direct approach, more generalized concepts of controlling

polynomial systems, a class of nonlinear systems that is superior to linear systems in its

adaptability to real life systems in terms of system modelling or approximation of other

nonlinearities, is discussed in detail.

The motivation for this research stems from its usefulness for a variety of power gener-

ating facilities used around the world. In particular, the implementation of an online model

predictive control scheme based on evolutionary computation will be introduced, including

an extension to a switching control regime to further increase the overall performance.

The discussions on polynomial system control is based on thelack of a natural ex-

tension of linear control strategies to polynomial systems, a difficult problem that cannot

be directly addressed by standard convex optimization tools like semidefinite program-

ming. However, new methodologies will be introduced for a variety of polynomial control

problems, includingH∞ control for systems with and without polytropic or norm-bounded

uncertainties, which lead to an overall less conservative control design. The discussion will

include robustH∞ control procedures for near real-world control problems that are sub-

jects to polytropic and norm-bounded uncertainties for systems with the state and output

feedback.
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Finally, to demonstrate the effectiveness and advantages of the proposed design

methodologies in this thesis, numerical examples are givenin each chapter. The simu-

lation results show that the proposed design methodologiescan achieve the prescribed

performance requirements.
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Notations

The notations used throughout this thesis are in accordancewith the research field’s stan-

dard. R andRn×n denote the set ofn× 1 vectors andn× n matrices, respectively. The

superscript(·)T denotes the transpose of a vector or matrix, and(∗) is used to represent the

transposed symmetric entries in matrix inequalities. Further, I denotes the identy matrix

of appropriate dimensions andL2[0,∞] is the space of square summable vector sequences

over [0,∞]. The ‖ · ‖[0,∞] denotes theL2[0,∞] norm over[0,∞) defined as‖ f (x)‖2
[0,∞] =

∫ ∞
0 ‖ f (x)‖2dx. For any matrixQ, the relationshipsQ ≻ 0 (Q � 0) are used to describe

positive (semi-)definteness ofQ, respectively. For simplicity, the time variant expres-

sions for system states, system outputs and system inputs are denoted asx,y,u rather than

x(t),y(t),u(t), respectively. The term degree of a polynomial refers to thehighest integer

exponent of a polynomial inx. For example, the degrees of a linear, quadratic and cubic

equations are 1,2, and 3, respectively.

xii



 

 

 

Co-Authorship Form 
 

 

 

 

  Last	
  updated:	
  25	
  March	
  2013	
  

Graduate Centre 
ClockTower – East Wing 
22 Princes Street, Auckland 
Phone: +64 9 373 7599 ext 81321 
Fax: +64 9 373 7610 
Email: postgraduate@auckland.ac.nz 
www.postgrad.auckland.ac.nz 

This form is to accompany the submission of any PhD that contains research reported in published or 
unpublished co-authored work. Please include one copy of this form for each co-authored work. 
Completed forms should be included in all copies of your thesis submitted for examination and library 
deposit (including digital deposit), following your thesis Acknowledgements. 
 
 

 

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title 
and publication details or details of submission of the co-authored work. 

Chapter 2, based on: J. Wu and M. Krug, and S.K. Nguang and J. Shen and Y.G. Li, H_infinity fuzzy tracking control 
for boiler-turbine systems, IEEE International Conference on Control and Automation, 2009, pp. 1980-1985. 

Nature of contribution 
by PhD candidate derived theories, examples, editing 

Extent of contribution 
by PhD candidate (%) 80 

 

CO-AUTHORS 
 

Name Nature of Contribution 

Jie Wu discussions on theories, writing 

S.K. Nguang PhD supervisor, minor direct contributions 

J. Shen PhD supervisor, minor direct contributions 

Y.G. Li PhD supervisor, minor direct contributions 

     

 

     

 

 
 

Certification by Co-Authors 
 

The undersigned hereby certify that: 
! the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this 

work, and the nature of the contribution of each of the co-authors; and 
! in cases where the PhD candidate was the lead author of the work that the candidate wrote the text. 
 

Name  Signature  Date 

Jie Wu 
 

 

 
30/05/2013 

S.K. Nguang 
 

 

 
30/05/2013 

J. Shen 
 

 

 
30/05/2013 

Y.G. Li 
 

 

 
30/05/2013 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

 



 

 

 

Co-Authorship Form 
 

 

 

 

  Last	
  updated:	
  25	
  March	
  2013	
  

Graduate Centre 
ClockTower – East Wing 
22 Princes Street, Auckland 
Phone: +64 9 373 7599 ext 81321 
Fax: +64 9 373 7610 
Email: postgraduate@auckland.ac.nz 
www.postgrad.auckland.ac.nz 

This form is to accompany the submission of any PhD that contains research reported in published or 
unpublished co-authored work. Please include one copy of this form for each co-authored work. 
Completed forms should be included in all copies of your thesis submitted for examination and library 
deposit (including digital deposit), following your thesis Acknowledgements. 
 
 

 

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title 
and publication details or details of submission of the co-authored work. 

Chapter 2, based on: M. Krug and S.K. Nguang and J. Wu and J. Shen, GA-based model predictive control of boiler-
turbine systems, International Journal of Innovative Computing, Information and Control, vol. 6, no. 11, pp. 5237-
5248, 2010. 

Nature of contribution 
by PhD candidate derived theories, examples, lead-author 

Extent of contribution 
by PhD candidate (%) 90 

 

CO-AUTHORS 
 

Name Nature of Contribution 

J. Wu discussions on theories, editing 

S.K. Nguang PhD supervisor, minor direct contributions 

J. Shen PhD supervisor, minor direct contributions 

     

 

     

 

     

 

     

 

 
 

Certification by Co-Authors 
 

The undersigned hereby certify that: 
! the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this 

work, and the nature of the contribution of each of the co-authors; and 
! in cases where the PhD candidate was the lead author of the work that the candidate wrote the text. 
 

Name  Signature  Date 

J. Wu 
 

 

 
30/05/2013 

S.K. Nguang 
 

 

 
30/05/2013 

J. Shen 
 

 

 
30/05/2013 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

 



 

 

 

Co-Authorship Form 
 

 

 

 

  Last	
  updated:	
  25	
  March	
  2013	
  

Graduate Centre 
ClockTower – East Wing 
22 Princes Street, Auckland 
Phone: +64 9 373 7599 ext 81321 
Fax: +64 9 373 7610 
Email: postgraduate@auckland.ac.nz 
www.postgrad.auckland.ac.nz 

This form is to accompany the submission of any PhD that contains research reported in published or 
unpublished co-authored work. Please include one copy of this form for each co-authored work. 
Completed forms should be included in all copies of your thesis submitted for examination and library 
deposit (including digital deposit), following your thesis Acknowledgements. 
 
 

 

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title 
and publication details or details of submission of the co-authored work. 

Chapter 2, based on: J. Wu and J. Shen and M. Krug and S.K. Nguang and Y.G. Li, GA-based nonlinear predicitve 
switching control for a boiler-turbine system, Journal of Control Theory and Applications, vol. 10, no. 1, pp. 100-106, 
2012.  

Nature of contribution 
by PhD candidate derived theories, examples, editing 

Extent of contribution 
by PhD candidate (%) 80 

 

CO-AUTHORS 
 

Name Nature of Contribution 

J. Wu discussions on theories, writing 

J. Shen PhD supervisor, minor direct contributions 

S.K. Nguang PhD supervisor, minor direct contributions 

Y.G. Li PhD supervisor, minor direct contributions 

     

 

     

 

 
 

Certification by Co-Authors 
 

The undersigned hereby certify that: 
! the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this 

work, and the nature of the contribution of each of the co-authors; and 
! in cases where the PhD candidate was the lead author of the work that the candidate wrote the text. 
 

Name  Signature  Date 

J. Wu 
 

 

 
30/05/2013 

J. Shen 
 

 

 
30/05/2013 

S.K. Nguang 
 

 

 
30/05/2013 

Y.G. Li 
 

 

 
30/05/2013 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

 



 

 

 

Co-Authorship Form 
 

 

 

 

  Last	
  updated:	
  25	
  March	
  2013	
  

Graduate Centre 
ClockTower – East Wing 
22 Princes Street, Auckland 
Phone: +64 9 373 7599 ext 81321 
Fax: +64 9 373 7610 
Email: postgraduate@auckland.ac.nz 
www.postgrad.auckland.ac.nz 

This form is to accompany the submission of any PhD that contains research reported in published or 
unpublished co-authored work. Please include one copy of this form for each co-authored work. 
Completed forms should be included in all copies of your thesis submitted for examination and library 
deposit (including digital deposit), following your thesis Acknowledgements. 
 
 

 

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title 
and publication details or details of submission of the co-authored work. 

Part 2 of the thesis, in particular Chapter 7: S.K. Nguang and S. Saat and M. Krug, Static output feedback controller 
design for uncertain polynomial systems: An iterative sums of squares approach, IET Control Theory and 
Applications, vol. 5, no. 9, pp. 1079-1084, 2011 

Nature of contribution 
by PhD candidate derived theories, examples, editing 

Extent of contribution 
by PhD candidate (%) 80 

 

CO-AUTHORS 
 

Name Nature of Contribution 

S.K. Nguang PhD supervisor, lead-author 

S. Saat discussion on theories, editing 

     

 

     

 

     

 

     

 

     

 

     

 

 
 

Certification by Co-Authors 
 

The undersigned hereby certify that: 
! the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this 

work, and the nature of the contribution of each of the co-authors; and 
! in cases where the PhD candidate was the lead author of the work that the candidate wrote the text. 
 

Name  Signature  Date 

S. K. Nguang 
 

 

 
30/05/2013 

S. Saat 
 

 

 
30/05/2013 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

 



 

 

 

Co-Authorship Form 
 

 

 

 

  Last	
  updated:	
  25	
  March	
  2013	
  

Graduate Centre 
ClockTower – East Wing 
22 Princes Street, Auckland 
Phone: +64 9 373 7599 ext 81321 
Fax: +64 9 373 7610 
Email: postgraduate@auckland.ac.nz 
www.postgrad.auckland.ac.nz 

This form is to accompany the submission of any PhD that contains research reported in published or 
unpublished co-authored work. Please include one copy of this form for each co-authored work. 
Completed forms should be included in all copies of your thesis submitted for examination and library 
deposit (including digital deposit), following your thesis Acknowledgements. 
 
 

 

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title 
and publication details or details of submission of the co-authored work. 

Part 2 of the thesis: S. Saat and S.K. Nguang and M.Krug, A nonlinear static output controller design for polynomial 
systems: An iterative sums of squares approach, Proceedings of International Conference on Mechatronics, 2011, 
pp. 1-6.  

Nature of contribution 
by PhD candidate derived theories, examples, editing 

Extent of contribution 
by PhD candidate (%) 80 

 

CO-AUTHORS 
 

Name Nature of Contribution 

S. Saat discussions on theory, lead author 

S.K. Nguang PhD supervisor, minor direct contributions 

     

 

     

 

     

 

     

 

     

 

     

 

 
 

Certification by Co-Authors 
 

The undersigned hereby certify that: 
! the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this 

work, and the nature of the contribution of each of the co-authors; and 
! in cases where the PhD candidate was the lead author of the work that the candidate wrote the text. 
 

Name  Signature  Date 

S. Saat 
 

 

 
30/05/2013 

S.K. Nguang 
 

 

 
30/05/2013 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

 



 

 

 

Co-Authorship Form 
 

 

 

 

  Last	
  updated:	
  25	
  March	
  2013	
  

Graduate Centre 
ClockTower – East Wing 
22 Princes Street, Auckland 
Phone: +64 9 373 7599 ext 81321 
Fax: +64 9 373 7610 
Email: postgraduate@auckland.ac.nz 
www.postgrad.auckland.ac.nz 

This form is to accompany the submission of any PhD that contains research reported in published or 
unpublished co-authored work. Please include one copy of this form for each co-authored work. 
Completed forms should be included in all copies of your thesis submitted for examination and library 
deposit (including digital deposit), following your thesis Acknowledgements. 
 
 

 

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title 
and publication details or details of submission of the co-authored work. 

Part 2 of the thesis: S. Saat and M. Krug and S.K. Nguang, Nonlinear H_infinity static output feedback controller 
design for polynomial systems: An iterative sums of squares approach, Proceedings of the IEEE Conference on 
Industrial Electronics and Applications, 2011, pp. 985 - 990.  

Nature of contribution 
by PhD candidate derived theories, examples, editing 

Extent of contribution 
by PhD candidate (%) 80 

 

CO-AUTHORS 
 

Name Nature of Contribution 

S. Saat discussions on theory, lead author 

S.K. Nguang PhD supervisor, minor direct contributions 

     

 

     

 

     

 

     

 

     

 

     

 

 
 

Certification by Co-Authors 
 

The undersigned hereby certify that: 
! the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this 

work, and the nature of the contribution of each of the co-authors; and 
! in cases where the PhD candidate was the lead author of the work that the candidate wrote the text. 
 

Name  Signature  Date 

S. Saat 
 

 

 
30/05/2013 

S.K. Nguang 
 

 

 
30/05/2013 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

 



 

 

 

Co-Authorship Form 
 

 

 

 

  Last	
  updated:	
  25	
  March	
  2013	
  

Graduate Centre 
ClockTower – East Wing 
22 Princes Street, Auckland 
Phone: +64 9 373 7599 ext 81321 
Fax: +64 9 373 7610 
Email: postgraduate@auckland.ac.nz 
www.postgrad.auckland.ac.nz 

This form is to accompany the submission of any PhD that contains research reported in published or 
unpublished co-authored work. Please include one copy of this form for each co-authored work. 
Completed forms should be included in all copies of your thesis submitted for examination and library 
deposit (including digital deposit), following your thesis Acknowledgements. 
 
 

 

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title 
and publication details or details of submission of the co-authored work. 

Part 2 of the thesis: S.K. Nguang and M. Krug and S. Saat, Nonlinear static output feedback control design for 
polynomial systems: An iterative sums of squares approach, Proceedings of the IEEE Conference on Undustrial 
Electronics and Applications, 2011, pp. 979 - 984. 

Nature of contribution 
by PhD candidate derived theories, examples, editing 

Extent of contribution 
by PhD candidate (%) 80 

 

CO-AUTHORS 
 

Name Nature of Contribution 

S.K. Nguang PhD supervisor, lead author 

S. Saat discussions on theory 

     

 

     

 

     

 

     

 

     

 

     

 

 
 

Certification by Co-Authors 
 

The undersigned hereby certify that: 
! the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this 

work, and the nature of the contribution of each of the co-authors; and 
! in cases where the PhD candidate was the lead author of the work that the candidate wrote the text. 
 

Name  Signature  Date 

S.K. Nguang 
 

 

 
30/05/2013 

S. Saat 
 

 

 
30/05/2013 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

 



 

 

 

Co-Authorship Form 
 

 

 

 

  Last	
  updated:	
  25	
  March	
  2013	
  

Graduate Centre 
ClockTower – East Wing 
22 Princes Street, Auckland 
Phone: +64 9 373 7599 ext 81321 
Fax: +64 9 373 7610 
Email: postgraduate@auckland.ac.nz 
www.postgrad.auckland.ac.nz 

This form is to accompany the submission of any PhD that contains research reported in published or 
unpublished co-authored work. Please include one copy of this form for each co-authored work. 
Completed forms should be included in all copies of your thesis submitted for examination and library 
deposit (including digital deposit), following your thesis Acknowledgements. 
 
 

 

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title 
and publication details or details of submission of the co-authored work. 

Part 2 of the thesis: M. Krug and S. Saat and S.K. Nguang, Nonlinear robust H_infinity static output feedback 
controller design for parameter dependent polynomial systems: An iterative sum of squares approach, Proceedings 
of the IEEE Conference on Decision and Control, 2011, pp. 3502 - 3507 

Nature of contribution 
by PhD candidate derived theories, examples, lead author 

Extent of contribution 
by PhD candidate (%) 90 

 

CO-AUTHORS 
 

Name Nature of Contribution 

S. Saat discussions on theory, editing 

S.K. Nguang PhD supervisor, minor direct contributions 

     

 

     

 

     

 

     

 

     

 

     

 

 
 

Certification by Co-Authors 
 

The undersigned hereby certify that: 
! the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this 

work, and the nature of the contribution of each of the co-authors; and 
! in cases where the PhD candidate was the lead author of the work that the candidate wrote the text. 
 

Name  Signature  Date 

S. Saat 
 

 

 
30/05/2013 

S.K. Nguang 
 

 

 
30/05/2013 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

 



 

 

 

Co-Authorship Form 
 

 

 

 

  Last	
  updated:	
  25	
  March	
  2013	
  

Graduate Centre 
ClockTower – East Wing 
22 Princes Street, Auckland 
Phone: +64 9 373 7599 ext 81321 
Fax: +64 9 373 7610 
Email: postgraduate@auckland.ac.nz 
www.postgrad.auckland.ac.nz 

This form is to accompany the submission of any PhD that contains research reported in published or 
unpublished co-authored work. Please include one copy of this form for each co-authored work. 
Completed forms should be included in all copies of your thesis submitted for examination and library 
deposit (including digital deposit), following your thesis Acknowledgements. 
 
 

 

Please indicate the chapter/section/pages of this thesis that are extracted from a co-authored work and give the title 
and publication details or details of submission of the co-authored work. 

Part 2 of the thesis: M. Krug and S. Saat and S.K. Nguang, Robust H_infinity static output feedback controller design 
for parameter dependent polynomial systems: An iterative sums of squares approach, Journal of the Franklin 
Institute, vol. 350, no. 2, pp. 318 - 330, 2013.   

Nature of contribution 
by PhD candidate derived theories, examples, lead author 

Extent of contribution 
by PhD candidate (%) 85 

 

CO-AUTHORS 
 

Name Nature of Contribution 

S. Saat discussions on theory, editing 

S.K. Nguang PhD supervisor, editing 

     

 

     

 

     

 

     

 

     

 

     

 

 
 

Certification by Co-Authors 
 

The undersigned hereby certify that: 
! the above statement correctly reflects the nature and extent of the PhD candidate’s contribution to this 

work, and the nature of the contribution of each of the co-authors; and 
! in cases where the PhD candidate was the lead author of the work that the candidate wrote the text. 
 

Name  Signature  Date 

S. Saat 
 

 

 
30/05/2013 

S.K. Nguang 
 

 

 
30/05/2013 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

     

 
 

 

 
Click here 

 



Chapter 1

Introduction

In this chapter, an introduction to this thesis on robust control for boiler-turbine systems

and the control synthesis for polynomial systems will be provided. After a short discussion

on general nonlinear systems, the two main parts of the thesis will be introduced: In the first

part, an introduction to the control problem of boiler-turbine systems will be provided; the

second part of the introduction discusses basic concepts oncontrolling polynomial systems.

Both parts include an overview of existing approaches in the literature dealing with the

particular difficulties of both problems. This discussion leads to the motivation for this

thesis and its contributions to the research community. TheIntroduction to this thesis is

concluded with the outline of the remainder of this thesis, highlighting the main contribu-

tions of each chapter.

1.1 Nonlinear System Control

Control engineering deals with the control of systems. A system in this context is tra-

ditionally associated with a model of a real physical environment that can be of linear or

nonlinear nature, expressed in the form of differential or difference equations that are based

on physical laws governing the dynamics or measurements. Inthe past, major research was

undertaken in the field of linear control.
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Figure 1.1: Line plot of the Lorenz Attractor

However, physical systems are inherently nonlinear [1]. Linear control techniques can

only be applied within a very limited range of operation at best, and it has not been possible

to generalize linear control theory to nonlinear systems [2]. Furthermore, extensive tests

are needed to verify the adaptability of linear controllersto nonlinear systems and often

result in tedious redesigns to meet the control objectives.

In general, the system description of a nonlinear system canbe described as

ẋ(t) = f (x(t),u(t)),

y(t) =g(x(t),u(t)),





(1.1)

where f (·) andg(·) are nonlinear function of the statex(t) and the inputu(t) andy(t) is the

measured output. For example, the system equation for a simplified mathematical model

2



Chapter 1: Introduction

for atmospheric convection derived by Edward Lorenz in 1963in the form of

ẋ=σ(y−x),

ẏ=xρ −xz−y,

ż=xy−βz,





(1.2)

whereσ is the Prandtl number,ρ is the Rayleigh number, andβ is a geometric factor [3].

The system is nonlinear due to the product of its states in thetermsxzandxy and cannot

be controlled directly using linear control theory. Further, the system exhibits chaotic be-

haviour for a range of parameters and is often referred to as the Lorenz Attractor. A 3D

line plot depicts this behaviour in Figure 1.1 forσ = 10,ρ = 28,β = 8
3.

A common approach to deal with these difficulties and to find a controller for a wider

range of operation is the application of advanced approximation techniques such as fuzzy

control or neural networks [2], as well as the implementation of online model predictive

control procedures. The complexity of controllers based onsuch techniques increases

rapidly with an increase in nonlinearity or an increase in the range of operation, and often

results in very complex controller designs. Furthermore, these controllers aim at control-

ling an approximation of the system rather than a system itself, and it is thus not possible

to guarantee performance requirements such as stability for the nonlinear system.

Due to the complexity and wide variety of nonlinear systems,it is customary for re-

search to aim at solving a specific control problem rather than taking a more general ap-

proach.

1.2 Boiler-Turbine Systems

Boiler-turbine systems are commonly used energy conversiondevices that consist of a

steam boiler and a turbine [4]. It’s purpose is to transform chemical energy to thermal

energy, which in turn can be used to generate electricity [5]. Their popularity in the power

3



Chapter 1: Introduction

generation field is due to their capability to meet varying power demands much faster than

traditional header systems [6].

Traditionally, the following requirements are posed on a typical boiler-turbine control

system [7, 8]:

1. The electric power output must meet the load demand

2. The drum pressure must be maintained within some system tolerances despite the

load variations

3. The water level in the steam drum of the boiler must be maintained at a desired level

to prevent overheating or flooding

4. The steam temperature must be maintained at a desired level to prevent overheating

or leakage of wet steam to the turbines

5. Input and system constraints have to be met at all times

Boiler-turbine systems can be modeled as a strongly coupled multiple-input multiple-

output (MIMO) nonlinear system. To capture the system performance better, various con-

straints on inputs, slew rates of the inputs and the system outputs have to be considered.

This strong coupling and the constraints on the system inputs lead to an overall moder-

ately slow system response compared to many other control systems. Therefore, classical

control schemes can only be applied in a very limited manner with a very high degree of

customization as precautions have to be undertaken to ensure the overall system stability

within the given operating parameters.

1.2.1 Boiler-Turbine Model

Throughout the discussions on the control of boiler-turbine systems, the model of a 160MW

oil-fired electrical power plant model of a drum type boiler and a turbine will be considered.

The model is based on the P16/G16 at the Sydvenska Kraft AB plant in Malmö, Sweden [9].

4
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The boiler dynamic model as in (1.3) is the result of both physical and empirical methods

based on data acquired from a series of experiments and identifications which capture all

the relevant characteristics of the process.

ẋ1(t) =−0.0018u2(t)x
9/8
1 (t)+0.9u1(t)−0.15u3(t)+0.01w1(t),

ẋ2(t) = (0.073u2(t)−0.016)x9/8
1 (t)−0.1x2(t)+0.01w2(t),

ẋ3(t) = [141u3(t)− (1.1u2(t)−0.19)x1(t)]/85+0.01w3(t),

y1(t) = x1(t),

y2(t) = x2(t),

y3(t) = 0.05(0.1307x3(t)+100acs+qe/9−67.975).

(1.3)

Here, the inputsu1(t), u2(t) andu3(t) are the valve positions for fuel flow, steam control

and feedwater flow, respectively. The state variablesx1(t),x2(t) andx3(t) are the drum

pressure (kg/cm2), electric output (MW) and fluid density (kg/cm3), respectively.w1,w2

andw3 are used to capture process disturbances and uncertainties. The outputy3(t) is the

drum water level deviation (m). acs andqe are steam quantity and evaporation rate (kg/s),

respectively, and are given as follows:

acs=
(1−0.001538x3(t))(0.8x1(t)−25.6)

x3(t)(1.0394−0.0012304x1(t))
,

qe = (0.854u2(t)−0.147)x1(t)+45.59u1(t)−2.514u3(t)−2.096.

(1.4)

The control inputs are subject to magnitude and rate saturations as follows:

0≤ u1(t),u2(t),u3(t)≤ 1,

−0.007≤ u̇1(t)≤ 0.007,

−2≤ u̇2(t)≤ 0.02,

−0.05≤ u̇3(t)≤ 0.05.

(1.5)
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Table 1.1: Typical operating points of a boiler-turbine system[10]

#1 #2 #3 #4 #5 #6 #7
x0

1 75.60 86.40 97.20 108 118.8 129.6 140.4
x0

2 15.27 36.65 50.52 66.65 85.06 105.8 128.9
x0

3 299.6 342.4 385.2 428 470.8 513.6 556.4
u0

1 0.156 0.209 0.271 0.34 0.418 0.505 0.6
u0

2 0.483 0.552 0.621 0.69 0.759 0.828 0.897
u0

3 0.183 0.256 0.340 0.433 0.543 0.663 0.793
y0

3 -0.97 -0.65 -0.32 0 0.32 0.64 0.98

Some typical operating points of the boiler-turbine model (1.3) are tabulated in Table 1.1.

1.2.2 Recent Work on Boiler-Turbine Systems

This thesis presents work on the implementation of refined traditional as well as modern

and alternative control techniques for boiler-turbine systems. The novel approach and its

subsequent extension are presented in Chapter 2 and are basedon online model predictive

control (MPC) that use Genetic Algorithms (GAs) to optimize the complex control problem

subject to a variety of nonlinear constraints.

As boiler-turbine units are popular modules in modern powergeneration, considerable

research has been undertaken, see for example [10] [7, 8, 11,12, 13, 14, 15, 16, 17, 18, 19]

and references therein. The main approaches and techniquesused can be summarized as

follows

1. Approaches Based on Linear Control Theory: Linear control approaches show

an overall good system response for the boiler-turbine units as long as the change

of operation mode is sufficiently small [10, 15, 16]. The authors assume that only

limited changes in the operation of the boiler-turbine unitare to be expected in nor-

mal operations and approximate the nonlinear system aroundappropriate operating

points. Unfortunately, these restrictions are very limiting and violations result in a
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slow and oscillatory system response. Also, the direct implementation of the system

constraints (1.5) is generally not possible.

2. Gain Scheduling: In [11], the authors propose a gain schedulingℓ1 optimal con-

troller. The design approach relies on a transformation of the nonlinear plant dynam-

ics to a linear parameter varying form. The resulting control structure is augmented

to address the common problems encountered with large changes in the reference

signals. In [19], a design for a fuzzy gain-scheduling modelpredictive controller is

presented. To address the nonlinearities of the system, a global fuzzy model for the

boiler-turbine unit is derived that is consequently used tocontrol the overall system.

3. Autoregressive Moving Average Control: The implementation of self-organizing

fuzzy logic controllers has been presented in [13, 17]. The autoregressive moving

average control approach is based on an online implementation without the use of a

mathematical system model. The approach is based on an online generation of the

plant rules that are stored and updated on a regular basis. Therefore and in contrast to

traditional fuzzy control schemes, no expert knowledge is required to derive a suit-

able fuzzy rule set. Unfortunately, this approach also suffers from similar problems

when the changes in the reference signal are too severe.

4. Other Artificial Intelligence Approaches: As the control problem of boiler-turbine

systems is highly nonlinear and a hard problem for traditional control approaches,

recent research suggests the use of artificial intelligenceapproaches. For example,

[14] suggests to use Genetic Algorithms to design a more suitable PI controller com-

pared to previous results. In [18], an approach using neuralnetwork inverse control

to realize a decoupling of the nonlinear system. A single neuron PID controller is de-

signed for the decoupled system that performs well as long asthe change in reference

signals is limited.

7
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By far the most common underlying approach is to use linearizations of the nonlin-

ear system and the assumption that the change of reference signal is always performed

gradually. However, this assumption cannot be guaranteed in practice and thus is a major

drawback.

1.3 Polynomial Systems

1.3.1 Polynomial Systems

A variety of nonlinear systems can be exactly represented bypolynomial systems, a super-

set to linear systems. One such example is the Lorenz Attractor [3]. Compared to linear

systems, polynomial systems offer superior approximations characteristics of other non-

linear system behaviour. It is therefore understandable that this class of nonlinearity has

attracted considerable attention from researchers aroundthe world, in particular in the ar-

eas of stability analysis and controller synthesis [20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34].

In a polynomial system, the functionsf (x,u) and g(x,u) in (1.1) are of polynomial

nature inx andu. More precisely, the systems under consideration in this thesis can be

described in terms of a state-depended linear-like form as

ẋ=A(x)x+B(x)u,

y=C(x)x,





(1.6)

with x∈ R
n is the state vector,u∈ R

m is the input vector andy is the vector of measured

output.A(x),B(x) andC(x) are the polynomial system matrices of appropriate dimensions.

It should be noted that a nonlinear system in the form of (1.1)may have more than one

representation in the state-depended linear-like form (1.6). For example, the Lorenz System

8
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Figure 1.2: Tunnel diode [35]

(1.2) with an input in ˙x1 can be represented as




ẋ1

ẋ2

ẋ3



=




−σ σ 0

ρ −1 −x1

x2 0 −β







x1

x2

x3



+




1

0

0




u, (1.7)

as well as 


ẋ1

ẋ2

ẋ3



=




−σ σ 0

ρ −x3 −1 0

0 x1 −β







x1

x2

x3



+




1

0

0




u. (1.8)

Another example of a polynomial system is the differential equation of a tunnel diode

circuit in Figure 1.2 with polynomial differential equation




Cẋ1

Lẋ2


=



−0.002−0.01x2

1 1

−1 R







x1

x2


 , (1.9)

whereC is the value for the capacitor,L is the value for the inductance, andR is the resistor

value.
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1.3.2 Recent Work on Polynomial Systems

This thesis presents work on the controller synthesis of polynomial systems. The work is

build on Linear Matrix Inequalities (LMIs) and Sum of Squares (SOS) decompositions. As

the field of approaches to nonlinear control is almost as broad as the research topic itself,

the overview presented here will focuses on related research. A brief description on some

of the underlying techniques used for the control of polynomial systems will be presented

in a later part of this chapter.

There has been considerable research on controller synthesis and stabilization of poly-

nomial systems in the past, for example see [20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 36, 33] and references therein. The main approaches and techniques used can be

summarized as follows

1. Moments and Sum of Squares (SOS):The moment problem is the dual to the prob-

lem of non-negative polynomials and Hilbert’s 17th problemon the representation of

non-negative polynomials [37]. This approach has been usedin [33] to find a less

conservative solution to the global primal/dual problem toshow non-negativity us-

ing semi-definite programming (SDP). For an in depth introduction to SDP, see [38].

To obtain a convex problem, this algorithm is based on the Hermite stability crite-

rion rather than the Lyapunov stability theorem. This allows the decoupling of the

controller and Lyapunov function to obtain convex solvability conditions through a

hierarchy of convex LMI relaxations. The authors have pointed out that this ap-

proach is prone to numerical errors from the large number of imposed constraints in

the resulting formulation.

2. Dissipation inequalities and SOS:Control theories for nonlinear systems based

on the theory of dissipative energy are known to be one of the successful methods

of analysing nonlinear systems [39]. It is based on the mathematical formulation of

dissipation inequalities, an approach that reduces the possibly large number of differ-

10
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ential equations that describe the system to a reasonably small number of algebraic

inequalities, resulting in a less complex problem. This approach has been used in

combination with SOS programming in [32]. The system of interests is represented

as a descriptor that is based on polynomial equations. Affinedissipation inequalities

are obtained that are in turn solved by SOS. Unfortunately, there is no unique pro-

cess to obtain the necessary affine dissipation inequalities, which ultimately limits

this approach to a subset of problems.

3. Semi-tensor products: This approach allows the consideration of general polyno-

mial systems without any homogeneous assumption. It is based on the theory of

semi-tensors, which represent an extension of the conventional matrix product that

has a matching rows/columns requirement. A brief overview can be obtained in [31]

and the references therein. The presented algorithm is based on a positive definite

Lyapunov function and it’s negative definite derivative along the system trajectories.

These conditions are presented as linear algebraic equations and are suitable to verify

a candidate solution. Unfortunately, it seems that the sufficient condition is a very

loose condition and is not clear how a candidate solution is to be obtained.

4. Kronecker products and LMIs: A sufficient condition for the existence of a con-

troller is given in the form of LMIs based on a Kronecker product decomposition

of the system equations, see for example [36, 27]. The proposed algorithm can be

applied to higher order polynomial systems, which is the main advantage of this ap-

proach and makes it stand out from the other common approaches that are limited in

their usability for higher order system.

5. Fuzzy control methods and SOS:Linear TS fuzzy control approaches have been

shown to be an effective tool to control nonlinear systems within a predefined space.

In [28], a SOS based approach that allows for higher order Lyapunov functions has

been presented, hence representing a less restrictive and generally less conserva-

11
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tive approach than previously available TS fuzzy methods that were solely based on

quadratic Lyapunov functions. Sufficient conditions for the existence of the Lya-

punov function as well as the controller are given in the formof polynomial matrix

inequalities that can be implemented using SOS. In [22], a polynomial fuzzy model

has been paired with a polynomial fuzzy controller. The authors investigate how

(im)prefect premise matching, i.e. fuzzy model and fuzzy controller (do not) share

the same premise variable membership function, influence the Lyapunov stability test

as well as the control synthesis, respectively. Yet anotherextension is presented in

[24], where polynomial fuzzy control is investigated for static output feedback. The

application of polynomial fuzzy control for a two-link robot arm has been outlined

in [23].

6. Localized control: Similarly, to the research in global control, improvementshave

been made in the field of localized control. Generally speaking, local controllers of-

ten provide better solutions than global controllers for the same system. For example,

[29] proposes a rational Lyapunov function approach that shows that it is possible to

embed the domain of attraction into the region outlined by the nonlinear vector field

as long as the variation in the states is bounded, resulting in polynomial matrix in-

equalities. Even though an extension to rational Lyapunov functions has been intro-

duced, the results still have to be considered rather conservatively due to the coupling

between the system and Lyapunov matrices. To reduce this effect, a slack variable

matrix that decouples the Lyapunov and system matrices has been introduced in [25],

resulting in the parametrization of the resulting controller. They show that the results

can be readily extended to robust control of uncertain polynomial system.

By far the most common underlying principal for the control ofpolynomial systems is a

stability criterion based on Lyapunov’s second method for stability. This will be discussed

in detail in the next section.

12
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Controller synthesis for polynomial systems based on Lyapunov’s second stability cri-

terion using SOS decompositions

The stability theorems developed by the Russian mathematician Lyapunov are widely re-

garded as some of the most fundamental in modern control theory. An English translation

of his original publication, as well as his biography and bibliography can be found in [40].

Some of the reasons these more than 100 year old theories remain popular in modern con-

trol system theory is their general adaptability and simplicity. His famous theorems were

originally intended to be used for stability analysis, havehowever, become equally im-

portant for modern controller design synthesis [41]. For a dynamic system ˙x= f (x) with

an equilibrium atx = 0, the theorem can be summarized as follows. Consider a function

V(x) : Rn → R such thatV(x) is positive definite forx 6= 0 andV(x)|x=0 = 0. If the time

derivative ofV(x) along the system trajectories off (x) is negative semidefinite, thenf (x)

is asymptotically stable:

V(x)> 0 for ∀x 6= 0, V(x= 0) = 0,

V̇(x) =
dV(x)

dt
=

dV(x)
dx

dx
dt

≤ 0.
(1.10)

To check stability for a linear system of the form ˙x = Ax amounts to finding a symmetric

positive definite matrixP such thatATP+PA� 0, where the Lyapunov function isV(x) =

xTPx [42].

The problem of finding a Lyapunov function candidate and solving (1.10) is in essence

a polynomial nonnegativity problem. The idea to to use SOS decomposition of polyno-

mials on control problems like this has been introduced about a decade ago in [43]. It

has been shown that this approach allows a more efficient system analysis, and has since

been widely adapted in a variety of control applications. The benefits of applying the

SOS decomposition algorithm to linear systems with quadratic Lyapunov functions is only

marginal, and in many cases experienced researchers can construct a suitable Lyapunov
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function candidate manually or use traditional methods based on linear matrix inequalities

(LMIs). This changes dramatically for polynomial vector fields f (x) or higher order poly-

nomial Lyapunov function candidatesV(x). Feasibility of such problems can be NP hard to

test[44]. Using a SOS decomposition as a relaxation of (1.10), however, allows for efficient

computation using the SOS and SDP framework [43].

Since it’s first application to control problems, several natural extension of SOS decom-

position have been been presented. In [45, 46], a linear-like form is used for a polynomial

system and the construction of a Lyapunov function candidate is proposed in the form of

sufficient nonnegativity conditions of polynomial vector fields that can be solved using

SOS decompositions and SDPs. To avoid nonconvex terms, someconditions on the way

the matrixP is constructed are imposed, in particular that only states which dynamics aren’t

directly affected by the control input may appear in the Lyapunov matrix, i.e. that the input

matrixB(x) has some zero rows. These conditions impose some conservatism in the design

process.

To overcome these conditions, the authors of [30] introducean additional matrix vari-

able that allows the decoupling of the system and Lyapunov matrices. In theory, this allows

for a closer approximation of the nonnegativity problem. However, to pose a tractable

problem, an upper bound has to be imposed on the matrix variable, which in turn leads to

another source of conservatism.

Besides classical state feedback control for polynomial system, a lot of attention has

been given to the problem of static output feedback control.In [30], the authors use a state-

depended linear-like system description, and, similarly to the state feedback case, assume

that the Lyapunov function only depends on the states that are not directly effected by the

feedback controller, thus introducing conservatism to thedesign approach.

14



Chapter 1: Introduction

Sum of Squares Decomposition

In this section, a brief outline of the concepts of SOS decompositions will be given. For a

more elaborate discussion see [43].

Due to the importance of the stability theorem introduced byLyapunov for a wide

variety of control problems, nonnegative multivariate polynomials are of central concern.

To show that a multivariate polynomialF(x) is always positive, it is obvious that it needs

to be a polynomial of even degree. Formally, one is interested to show that

F(x1, · · · ,xn)≥ 0, x1, · · · ,xn ∈ R (1.11)

holds for any choice ofx.

A simple, yet effective way to show that a polynomial of form (1.11) is always nonneg-

ative is the existence of a SOS decomposition ofF(x) as

F(x) = ∑
i

f 2
i (x). (1.12)

If such a decomposition exists, it is clear that each squaredpolynomial term is nonnegative

everywhere, thus their sum must also be nonnegative. The setof SOS polynomials inn

variables is a convex cone, and it can be shown that this convex cone is proper [47]. If a

decomposition ofF(x) in the form above can be obtained, it is clear thatF(x)≥ 0,∀x∈R
n.

The converse, however, is generally not true. This problem has been studied by Hilbert

more than a century ago.

Proposition 1.3.1 [43] Let F(x) be a polynomial in x∈ R
n of degree2d. Let Z(x) be a

column vector which entries are all monomials in x with degree≤ d. Then, F(x) is said to

be SOS if and only if there exists a positive semidefinite matrix Q such that

F(x) = Z(x)TQZ(x), Q� 0, (1.13)
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SinceQ is positive semidefinite, we can apply Cholesky decomposition to (1.13) that

yields

F(x) = Z(x)TQZ(x) = Z(x)T(LTL)Z(x) = ‖LZ(x)‖2 = ∑
i
(LZ(x))2

i , (1.14)

thus certifying nonnegativity. However, since the variables inZ(x) are not independent,

(1.14) generally does not yield a unique solution.

In general, determining nonnegativity forF(x) for deg(F) ≥ 4 is a NP hard problem

[48, 44]. Proposition 1.3.1 provides a relaxation to formulate the nonnegativity conditions

on polynomials that is computationally tractable. A more general formulation of this trans-

formation for symmetric polynomial matrices is given in thefollowing proposition.

Proposition 1.3.2 [45] Let F(x) be an N×N symmetric polynomial matrix of degree2d

in x∈ R
n. Furthermore, let Z(x) be a column vector whose entries are all monomials in x

with a degree no greater than d, and consider the following conditions

(1) F(x)� 0 for all x ∈ R
n;

(2) vTF(x)v is a SOS, where v∈ R
N;

(3) There exists a positive semidefinite matrix Q such that vTF(x)v=(v⊗Z(x))T Q(v⊗Z(x)),

with ⊗ denoting the Kronecker product.

It is clear that from this if follows that F(x) being a SOS implies that F(x) ≥ 0. The

converse, however, is generally not true. Furthermore, statement (2) and (3) are equivalent.

Consider the following example from [43]
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Example 1.3.1 Consider the quartic form in two variables described below, and define

z1 := x2
1,z2 := x2

2,z3 = x1x2:

F(x1,x2) = 2x4
12x3

1x2−x1x2+5x4
2

=




x2
1

x2
2

x1x2




T 


2 0 1

0 5 0

1 0 −1







x2
1

x2
2

x1x2




=




x2
1

x2
2

x1x2




T 


2 −λ 1

−λ 5 0

1 0 −1+2λ







x2
1

x2
2

x1x2




Take for instanceλ = 3. In this case,

Q= LTL, L =
1√
2




2 −3 1

0 1 3


 ,

and therefore we have the sum of squares decomposition

F(x1,x2) =
1
2

(
(2x2

1−3x2
2+x1x2)

2+(x2
2+3x1x2)

2) .

The problem of finding a suitableQ can be cast as a SDP and solved efficiently [43].

It should be noted that it is not always possible to find a SOS decomposition and thus

a certificate for nonnegativity for nonnegative polynomials. For instance, a simple counter

example is the Motzkin form (here, forn= 3)

M(x,y,z) = x4y2+x2y4+z6−3x2y2z2. (1.15)

Nonnegativity can be easily shown using the arithmetic-geometric inequality, however

there does not exist a SOS decomposition. This can be shown using standard algebraic
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manipulations and is showcased in [49]. The gap between polynomial nonnegativity and

showing that a polynomial has a SOS decomposition cannot be clearly defined, however

recent research suggests that the gap is small [34].

Using SOS decomposition relaxes the NP-hard problem of showing nonnegativity of

a polynomialF(x) into a computationally tractable problem that can be solvedefficiently

using SDPs in at worst polynomial time. The term NP-hard is frequently used in com-

putational complexity theory and refers to a class of problems that are non-deterministic

polynomial-time hard, i.e. problems that are at least as hard as the hardest problems in NP.

This does, however imply that SOS decompositions are inherently limited to reasonably

small systems with reasonably small maximum degrees.

There are a variety of toolboxes available that readily transform a SOS problem to a

SDP, solve the SDP, and return the results in a form suitable to the original problem. Most

available solvers have been developed by research teams around the world and are available

free of charge on the Internet. Some of the more common solvers are SOSTOOLS[50],

YALMIP [51], CVX [52, 53], and GLoptPoly [54]. It is noteworthy that of the above

mentioned software packages only SOSTOOLS is specifically designed for and limited

to SOS decompositions, whereas the other packages allow to address a wider variety of

optimization problems.

1.4 Research Motivation

The study of highly nonlinear and strongly coupled boiler-turbine systems poses an inter-

esting problem of immediate and direct concern to power facilities around the world. It

is of utmost importance to these facilities to guarantee that their systems run within given

operating parameters at all times and that they quickly adapt to changes in load demand.

Therefore, an improvement over existing control schemes and algorithms is always a con-

cern.
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The study of polynomial systems is a natural extension to thestudy of linear systems. In

its most basic form with polynomials of a maximum degree of 1 polynomial systems sim-

plify to linear systems. System control is, generally speaking, concerned with the control

of real life dynamic systems. Most of these systems are inherently nonlinear and it has been

customary to approximate these nonlinearities with systemdynamics that can be easier ad-

dressed mathematically. Polynomial approximations of complex system dynamics can be

designed to represent the real dynamics closer than standards linear approximations. Fur-

ther, there is a variety of systems that come naturally in polynomial forms like biological

systems, mechatronics or laser physics [55, 56]. Other examples of polynomial systems are

Lorenz systems, Brockett integrators, Van der Pol oscillators, Artstein Circle, or MY con-

jecture, see [32] for further discussion. Even though a lot of research has been undertaken

in the field of polynomial control, no general solution has been obtained to date.

Results using higher order Lyapunov function candidates to control polynomial systems

has been shown to produce better results than was previouslypossible with the restriction

to quadratic Lyapunov functions, see for example [46, 45, 57, 30]. Unfortunately, it is not

possible to directly apply the theory of Lyapunov stabilityto polynomial systems, as this

leads to a nonconvex problem that cannot be solved with SDPs.Therefore, most research

relies on restrictions on the design parameters, in particular it is assumed that Lyapunov

matrix only depends on the states which rows in the input matrix are zero. This does,

however, add some conservatism to the design and opens the door to improve the design

process in this respect as will be outlined in the following chapters. In particular, an iterative

algorithm will be introduced that allows for general Lyapunov functions.

As polynomial system control is aimed at real life systems orclose polynomial approx-

imation of these systems, it is therefore important to investigate how to ensure that the

obtained results are robust.
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1.5 Contribution of the thesis

The focus of this thesis is to establish new methodologies for boiler-turbine system control

as well as polynomial systems control.

The main contributions with respect to the problem of controlling the highly nonlinear

and strongly coupled boiler-turbine system is the application of a novelH∞ fuzzy reference

tracking controller that is superior to previous results interms of tracking a desired system

trajectory. Furthermore, the integration of a novel onlinemodel predictive control scheme

for boiler-turbine systems is presented. By incorporating an evolutionary computation ap-

proach like genetic algorithms, it is possible to overcome the inherent difficulties that more

traditional control approaches have with respect to highlynonlinear systems. This stochas-

tic artificial intelligence approach does not rely on gradient methods to find an optimal

solution to a control problem, nor does it require that the search space is in any way con-

vex. Furthermore, it is also capable to deal with unusual system behaviour and operating

points without requiring a complete redesign of the controlstructure.

The main contributions with respect to the polynomial system control problem is the

implementation of a novel iterative sum of squares approachto a variety of control prob-

lems. It derivation of convex stability criteria for polynomial systems is a hard problem,

an in general requires that certain assumptions on the form of the Lyapunov function, the

form of the controller, or the system matrices are met. Theserestrictions can be overcome

with the proposed relaxation of the control problems and thus has to be considered an

improvement over previous results.

Within the framework of an iterative sum of squares approach, novel methodologies

for designing robust nonlinear controllers in the presenceof polytropic or norm-bounded

uncertainties are presented.

To demonstrate the effectiveness and problem solving capabilities, some numerical ex-

amples are given. Where applicable, the simulation results also outline how the presented

methodologies can achieve the prescribed performance indices.
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1.6 Thesis outline

The remainder of this thesis is organized as follows.

Part I is concerned with the control design for boiler-turbine systems. In particular,

Chapter 2 describes how online model predictive control can be used toachieve su-

perior tracking performance for the highly nonlinear and strongly coupled boiler-turbine

system. In particular, the focus of Chapter 2 is on the design process of a genetic algorithm

to solve the optimization problem arising from the model predictive control approach. Fur-

thermore, the extension of the proposed algorithm to a adaptive switching control law to

take advantage of the strengths of Receding Horizon Control aswell as the fast settling

capabilities ofH∞ fuzzy tracking control in the presence of small deviations from the ref-

erence signal is presented. Simulation results are provided to showcase the overall perfor-

mance.

Part II is concerned with the control design for polynomial systems. In particular,

Chapter 3 describes a nonlinear feedback controller for polynomial systems. In this

chapter, a problem relaxation in terms of solvability conditions of polynomial matrix in-

equality is introduced and solved by an interactive sum of squares decomposition algo-

rithm. The direct extension of the results to systems with polytropic uncertainty is outlined

before the chapter concludes with a numerical example.

Chapter 4outlines how the control problem of polynomial systems withnorm-bounded

uncertainties can be addressed using a iterative sum of squares approach. This is achieved

by using an upper bound technique for on the uncertainties. Anumerical example is given

to illustrate the approach.

Chapter 5 presents the design of a robustH∞ state feedback control for polynomial

systems. The requirements for this control problem are twofold: The stability of the sys-

tem has to be insured while also having to guarantee that theH∞ performance criterion is

guaranteed. The implementation of the iterative sum of squares approach is first outlined

21



Chapter 1: Introduction

for a single system and then subsequently extended to polynomial systems with polytropic

uncertainties. A numerical example is provided to showcasethe validity of the approach.

Chapter 6 deals with the problem of robust nonlinearH∞ state feedback control for

polynomial systems in the presence of norm-bounded uncertainties. This can be seen as the

superposition of the design requirements of the nonlinearH∞ control problem described in

Chapter 5 and the robust control problem from Chapter 4. The effectiveness of the approach

is showcased in a numerical example

The previous chapters have assumed that all system states are available for a state feed-

back law. This assumption is, however, not true in many cases. Therefore,Chapter 7

discusses the extension of the robust control problem to thegeneralized output feedback

case. The results are immediately extended to the application to output feedback cases with

polytropic uncertainties. A numerical example is providedto show the effectiveness of the

presented methodology.

Chapter 7 is the extension of the results from Chapter 6 to the output feedback case,

and the iterative sum of squares approach is applied to the problem of robustH∞ output

feedback control in the presence of norm-bounded uncertainties. A numerical examples

showcases the effectiveness of the approach.

In Chapter 8, the problem of robust nonlinearH∞ output feedback control for polyno-

mial systems in the presence of norm-bounded uncertaintiesis presented. This approach

represents the superposition of the design requirements ofthe nonlinearH∞ output feed-

back problem described in Chapter 7 and the robust output feedback control problem out-

lined in Chapter 7. To show the validity of the presented approach, a numerical example is

discussed.

Concluding remarks on the presented work as well as on outlookon suggested future

work is given inChapter 9.

Lastly, some background information on Schur Complements that is used throughout

this research is presented inAppendix A.
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Robust Control for Boiler-Turbine

Systems
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Chapter 2

Genetic Algorithms in Model Predictive

Control for Boiler-Turbine Systems

2.1 Introduction

The control of boiler-turbine systems is a hard problem, seefor example [7, 10, 15, 58, 12].

In this chapter, an online model predictive control approach is introduced. In particular, a

receding horizon control (RHC) scheme that relies on artificial intelligence to optimize the

highly nonlinear and coupled boiler-turbine system control problem is used. Genetic algo-

rithms have been shown to be effective in handling a variety of nonlinear control problems,

see for example [59, 58, 60, 61, 62, 63] and references therein.

The proposed online RHC approach uses a discretized version of the nonlinear boiler-

turbine characteristics and directly implements all nonlinear characteristics of the system,

including all input and input slew rate constraints.

The remainder of this chapter is organized as follows. In section 2.2 the online RHC

approach with GAs for the boiler-turbine system (1.3) is introduced. Simulation results for

the boiler-turbine system are presented in section 2.3, before the chapter concludes with

some final remarks in section 2.4.
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2.2 Main Results

The RHC approach discussed in this section is based on the input-output information of

(1.3) with system constraints (1.5) only and does not imply explicit knowledge of all sys-

tem states. To evaluate the quality of the solution candidates, Genetic Algorithms (GAs)

are used. They are a form of artificial intelligence (AI) algorithm that is based on evolu-

tionary search techniques that mimic the phenomenon of natural selection and the idea of

survival of the fittest, the phenomenon that drives biological evolution [64] [65] [66, 67]. It

is based on stochastic methods and is inherently driven by randomness and is thus strictly

non-deterministic [68]. GAs are a natural fit for computational problems that require a

search of a huge number of possibilities to find the best solution [69]. Artificial intelli-

gence approaches made their first appearance in modern computational methods for control

problems as early as the 1960s and marked the beginning of a new era of control [70], [71].

The terminology used to describe GAs in computational optimization is adopted from

their biological role model. The following is a brief summary of the terminology used in

GA literature with a focus on its biological origin.

The blueprint of each organism can be found in their DNA. It ismade up ofchromo-

somes, that can be divided into functional blocks calledgenes. Genes can be thought of

as an encodedtrait that can have multiple settings (e.g. blue, brown, green eyes) called

alleles. Each gene has a particularlocusor position on the chromosome. Thegenomeis

the complete collection of genetic materials of an organism.

Organisms that are considered arediploid, i.e. their chromosomes are in a paired ar-

ray. During reproduction, a phenomenon calledcrossovertakes place. Genes of the parent

generation are exchanged to form agamete(a single chromosome) in the offspring. Fur-

thermore, all offspring are subject tomutation, a process in which singlenucleotidesare

subject to changes resulting from copying errors.
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Figure 2.1: Typical progression of genetic algorithms

Thefitnessof an individual is a measure for the probability that an organism will live

to reproduce, calledviability. Individuals with a higher fitness compared to others have a

higher chance of being selected for reproduction in a process calledselection.

The computational implementation of this evolutionary process is as follows. A chro-

mosome typically refers to a candidate solution that is often coded in bitstrings. Several of

these individuals form a population of solution candidates. These candidates are evaluated

using a cost function or inverse fitness function. Based on their fitness (or cost), the next

generation is generated through a combination of the stochastic processes of crossover and

mutation. Once a population of children has been generated,their fitness is assessed and

the process is repeated until a solution satisfying the requirements is found or the algorithm

stalls for several generations. A typical progression of the best and mean costs in a GA

are depicted in 2.1. Here, one can see two things. First, the best fitness is maintained for

several iterations before an more suitable candidate can befound. This is a common occur-

rence to most GAs. Second, there is a certain degree of variance in the mean fitness value

of each generation, that - on average - converges slowly towards the best fitness value. This

is due to the stochastic nature of the algorithm based on crossover and mutation.
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One of the key benefits of GAs is their great versatility. Theycan be adapted to a wide

range of problems including clustering analysis, optimization, machine learning, parame-

ter estimation, economics and control [72, 73, 74, 75, 76]. Further, they are able to find

suboptimal or optimal solutions in large or complex search spaces and do not depend on

gradient search directions. This great adaptability does,however, pose a high cost on the

computational burden and requires that thousands or even millions of solutions are eval-

uated to obtain a good final solution. Therefore, their application is mostly restricted to

offline computations.

However, if the system response is slow enough, it is possible to implement GAs in

an online RHC control scheme, it is necessary to discretize the plant model with respect

to a suitable sampling time first. As the boiler-turbine system is a highly coupled and

slow system, a sampling time ofTs = 10s is chosen. The input signals are chosen to be

constant forTNu = 30s. To use evolutionary algorithms involves evaluating the cost of

thousands if not millions of solution candidates and, in general, the results improve if more

samples can be evaluated. As this approach aims for an onlineadaption of this optimiza-

tion problem, the benefit of more computation time and potentially better results have to

carefully weighted carefully against potential deviations of the actual system response to

the predicted response as well as disturbance rejection properties. Therefore, a new input

sequence is chosen every 3 sampling times.

Another necessary consideration in online RHC approaches isthe length of the predic-

tion horizon. In general, the best results for a given problem can be obtained for an infinite

horizon. This is, however, in impractical in practice, as itwould involve literally evaluating

an infinite number of candidate solutions. Therefore, the prediction horizon is usually lim-

ited to only a few sampling periods. If only a very small horizon is chosen, the demands

on the computational complexity are significantly reduced,however an optimal short term

solution may actually drive the system to an unstable state and the algorithm may fail al-
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together. A longer horizon generally leads to a more balanced and smoother solution, but

also increases the computational demand exponentially.

For the boiler-turbine system, simulations with a prediction horizon of 3 of input se-

quencesNu = 3 have shown a robust performance and could in general guarantee that the

system stays within its physical limitations. This does, however, imply an optimization

in 9 variables and extensive computations are necessary. Ingeneral, this leads to the ter-

mination of the GA optimization process due to time constraint and before the minimum

cost floor has been found and maintained over several GA generations. Therefore, a more

favorable approach in terms of computational complexity can be achieved with a horizon

Nu = 2, which does however not guarantee a robust performance by itself. This problem

can be overcome by carefully setting additional constraints to the optimization problem,

and thus a reduction of the overall required computational time in an optimization problem

with only 6 parameters can be achieved.

The additional constraints of the boiler-turbine system are set up as follows. Consider

the system states of the boiler-turbine systemx1,x2,x3. They are modeled such that they

represent the drum pressure (kg/cm2), the electrical power output (MW), and the fluid

density (kg/m3) of the system, respectively. Neither of these values should reach a negative

value in normal operations, thus we can use the following additional constraints

0≤ xi (i = 1,2,3), (2.1)

and therefore limit the search space for the optimal input sequences notably.

Furthermore, the steady convergence to the reference signal is monitored for each out-

put signal. The signal development from the known last output to the end of the prediction

horizon allows to penalize unfavorable signal responses such as dips and peaks as well

as oscillatory behaviour and leads to a smoother output signal that prevents the algorithm

from leading the system to an unstable region. In particular, none of the future outputs is

28



Chapter 2: Genetic Algorithms in Model Predictive Control forBoiler-Turbine Systems

allowed to move away from the trajectory towards the reference signal by more than 5 units

for each prediction horizon.

To evaluate the fitness of the solutions that do not violate any of the constraints, the

following cost function is used

J =
3Nu

∑
i=1

(
2i−1(y[i]−yre f)

TQ(y[i]−yre f)
)

+
Nu−1

∑
j=0

(
2 j(u[ j +1]−u[ j])TR(u[ j +1]−u[ j])

)





(2.2)

with penalty design matricesQ andR. The first term of (2.2) penalizes the deviation of the

measured output from the reference output. The choice of an appropriate weighting matrix

Q needs to be based on the system dynamics and can be further improved by considering

several numerical simulation results.

Furthermore, a progressive penalty factor 2i−1 has been used to pose a higher penalty

on the extrapolated outputs beyond the current prediction horizon, which helps a quick

convergence to the reference signal and an elimination of the steady state error. For this

extrapolation, it is assumed that the last output in the prediction horizon does not change

and is applied to consecutive sampling instances.

Moreover, it should be noted that the sum is over the length ofthe outputs at each sys-

tem sampling instance rather than the length of the actuallyapplied system inputs. Since

the plant is discretized with a sampling time of 10s, there are 2 intermediate output re-

sults available between the sampling times of constant input. Exploiting this additional

information helps to speed up the search for the optimal solution and generally a smoother

transition towards the reference signal can be obtained.

The second term of (2.2) captures the penalties on the changeof the input signals in

R. To guarantee a fast convergence towards a steady state, thechange in the input signals

should be as small as possible once the output signals approach the reference signals. In
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general, the impact ofR should be small compared to the penalty on deviations from the

reference signal, but large enough to allow quick settling in the vicinity of the steady state.

The setup of the GAs is discussed next. GAs are based on testing a large number

of possible solutions before eventually converging to the optimum. The solutions under

consideration are dependent on the population size and the number of generations before

the algorithm terminates. Both parameters must be sufficiently large to ensure that on the

one side the whole solution space is explored, and on the other side the algorithm can

converge to the real optimum.

A larger population size usually helps to identify new regions that are far from the best

solution so far with new local optimal solutions faster. However, the time needed to evaluate

all candidates for each generation increases linearly withan increase in population size.

For off-line computation these parameters are usually chosen rather large as computation

time is not a main concern. This changes however, if the time to termination becomes an

important design objective.

The optimization problem is a problem in 6 parameters that represent the inputs and

uses a population size of 40. The initial population is initialized with the inputs of the pre-

vious time step as well as some random alternations within the constraints (1.5) and (2.1).

This is done to promote the continuation of a good input sequences from previous predic-

tion cycles as well as to promote diversity of the populationto avoid premature convergence

to a local optimum.

The maximum number of generations before the algorithm terminates is another im-

portant parameter. A reasonably large number of generationis required to ensure that

the algorithm converges to the optimal solution. If it is chosen too large, only negligible

progress in the quality of the final solution will be made in the last generations. However,

if it is chosen too small, the algorithm might converge to a local optima that may be much

worse than the global optimum before better solutions in other regions of the search space

can be obtained.
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To avoid premature convergence and the termination of the algorithm with a subopti-

mal solution, a multistage strategy is implemented as follows. Instead of calling the GA

once with a large number of generations, it is called twice with a lower overall number of

generations. Both calls start with a high mutation variance,which helps to identify optima

that are far away from the so far best solution. In the first GA call, the initial population is

based on the previous inputs, whereas in the second call, it is based on the results of the first

run. Therefore, a reasonably good result is obtained from the first run, which most likely

reflects a local optima. Using this information to set up the second run generally results in

a better search direction, which in turn might be able to converge to an even better solution

due to the high mutation rate in the beginning of the algorithm. Experimental results for

the boiler-turbine system suggest that at least 300 generations are necessary for a single run

before the algorithm converges towards a stable solution and only negligible improvements

can be made. This is due to the complex structure of the searchspace, in particular for

the outputy3. Using the suggested multistage approach, a similar stablefinal result can be

obtained using 2 runs with 100 generations each, thus reducing the computational burden

by around 33%.

Moreover, several parameters have to be tuned properly so that they don’t increase the

computation time, the rate of convergence to a final value andthe quality of the best solution

found before the algorithm terminates. GAs make extensive use of random numbers, so that

multiple runs of the algorithm produce different results. These differences can be rather big

after only a couple of generations, but become negligible inthe long-run. However, this

behaviour makes it necessary to consider this characteristic if only a limited computation

time is available. As the novel controller approach presented here aims at providing a

real-time control, a sensible choice of parameters is necessary.

The presented GA uses a real valued coding to avoid extensiveencoding and decoding

of the parameters in otherwise commonly used bit sequences.New generations are cre-

ated using stochastic uniform selection with a crossover rate of 0.8 and a mutation with a
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Figure 2.2: Limitation of admissible solutions for inputu1

variance of 10 in the first generation that decreases linearly to 0 by the time the algorithm

arrives at the last generation. This approach helps to identify optima that are far away from

the so far best solution in the early stages of the algorithm,as well as optimizing the lo-

calized search for a better solution at the end in the vicinity of the best solution. This has

shown to be very effective in the proposed multistage strategy. Moreover, an elite survival

strategy was implemented that guarantees the unaltered survival of the best solution to the

next generation.

Besides the consideration of the additional constraints in (2.2), the search space can be

further reduced by taking the slew rate constraints from (1.5) into consideration and thus

restricting the search space to admissible solution candidates with respect to the previous

inputs only. This approach is illustrated for the inputu1 in Figure 2.2. The initial input

is shown as 0.5. Limiting the input with respect to the slew rate constraints in (1.5) for

the prediction horizon results in the solid blue lines and thus limit the search space for

the u1 to be

[
0.29 0.71

]
and

[
0.08 0.92

]
for the first and second constant input,
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respectively. Moreover, the dashed blue lines indicate thelimits for the discretized plant

model with respect to the sampling time and therefore allow to get a more accurate model

of the system behaviour and overall performance. It should be noted that the slew rate

constraints of the other inputs are not as constrictive as for u1 and do not provide the means

to limit the search plane as much as has been shown foru1. Nonetheless, they can be

efficiently used for the discretized model to support more accurate intermediate solutions.

After the optimal input sequence is obtained, only the first input is applied to the plant.

Based on this input, the final conditions of the plant at the endof the next period of constant

input can be predicted and used as initial conditions for thenext RHC cycle. The later inputs

obtained are used as the initial conditions for the next RHC cycle, where besides a constant

progression also random perturbations within the boundaries of the input constraints are

used to create a diverse initial population for the next RHC cycle. This preserves valuable

computation time that would otherwise be spend recovering already available information,

as well as also promoting a steady state input at the end of thehorizon.

2.3 Numerical Example

2.3.1 Receding Horizon Control with Genetic Algorithms

The following weighting matrices for the cost function (2.2) are chosen based on several

test runs:

Q=




101 0 0

0 100 0

0 0 105



, R=




102 0 0

0 102 0

0 0 102




(2.3)

The reason for the high penalty ony3 is its highly nonlinear and coupled nature.

In the examples that follow, a step change in the reference signal occurs att = 100

and the RHC with GAs is started. Since the outputy3 represents the drum water level, we

assume that it ideally stays constant and set the reference signal for this output equal to zero
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Figure 2.3: System response for a change to a close operatingpoint.

for all simulations that follow, unless otherwise stated. The observed steady state settling

refers to a quasi steady state cost function valueJ < 10−3, where deviations deviations

from the reference signal become negligible.

First, the results for a small change in the reference signalare considered. This is a

control task that can be efficiently handled by many controllers that use linearization tech-

niques, see for example [7]. Considery1 is increased from 108 to 129.6,y2 changes from

66.65 to 105.8. The output responses are shown in Figure 2.3.The final operating point

is approached quickly and a virtually steady state is achieved with almost no overshoot. It

should be noted that it takes some time for the system to finally settle to the steady state

using the proposed RHC GA approach. This can be explained by the discrete inputs with

a length of 30 seconds each. However, the overall time to reach the steady state is compa-

rable to the one achieved in [7], whereas the drum water levelcould be kept closer to the

desired level.
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Figure 2.4: System response from a nominal operating point to a far operating point.

Next, the efficiency of the presented control approach to transfer the system to a oper-

ating point that can be considered far away is investigated [7]. This is usually problematic

for controllers that are designed using only a linearized model. We consider the changes in

the reference fory1 from 108 to 150 andy2 from 66.65 to 90. As can be seen in Figure 2.4,

control using RHC in combination with GAs allows a fast transition to the new reference

and settles to the final value quickly. The linear controllerproposed in [7] was not able to

control this transition and the plant became quickly unstable.

To show that the proposed controller can operate well over a wide range of operation,

a change in the reference signal from operating point 1 to 7 isexamined, see table 1.1.

Figures 2.5 and 2.6 show the output and input response, respectively. The transition towards

the new operating point requires about 500s, which is fasterthan [7]. There is, however, an

overshoot in the signalsy1 andy2 before they settle towards their steady state values. This

can be explained by the choice of the weighting matricesQ andR, which are optimized to

enforce a stable output ofy3 rather than a transition ofy3.
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Figure 2.5: System response for change form operating point1 to 7. Outputs
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Figure 2.6: System response for change form operating point1 to 7. Inputs
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Figure 2.7: System response for a series of changes in the reference signal. Outputs
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Figure 2.8: System response for a series of changes in the reference signal. Inputs
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Figure 2.9: Switching principle

In a final simulation, multiple changes in the reference signal are considered to show the

tracking capabilities of the proposed controller. The reference signal fory3 is once again set

to zero for the whole simulation, whiley1 is changed fromy(1)1 = 75.6 toy(2)1 = 135.0,y(3)1 =

75.6,y(4)1 = 135,y(5)1 = 118.8 andy2 is changed fromy(1)2 = 15.27 y(2)2 = 127.0,y(3)2 =

15.27,y(4)2 = 127.0,y(5)2 = 85.06 at time instancest1 = 100, t2 = 490, t3 = 880, t4 = 1270,

respectively. It can be observed in Figure 2.7 that the controller is capable of tracking all

changes in the reference signal. Other controllers are not capable of tracking this reference

trajectory at all or fail to do so within the given time frame,see the designs proposed

in[16, 11, 13, 7, 77, 78, 79]. Figure 2.8 shows the input sequences for this setup.

2.3.2 Robust Switching Control for Boiler-Turbine Systems

It is possible to further improve the overall performance byintroducing an adaptive switch-

ing regime as shown in Figure 2.9.

First, the switching control cycle determines whether the error signaleSWI is inside a

set error thresholdethr
SWI. If this condition is violated, i.e. there has been a change in the

reference signal, the predictive control scheme is used. Otherwise, the next step of the

switching control is to evaluate if the error signal is persistently within the error threshold.
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If this is the case, theH∞ fuzzy tracking controller is used. Otherwise, there might be a

bigger issue and the predictive control scheme takes over.

The cost function that forms the basis for the RHC control has to be adapted to reflect

the new task of the RHC control scheme: Fast settling to a steady state is no longer a

concern of the RHC part of the control cycle, as theH∞ fuzzy tracking controller will be

used to track small changes. Thus, no penalties need to be introduced in for a slew rate

change,

J =
3Nu

∑
k=1

( f (k)(yre f(k)−y(k))TQ(yre f(k)−y(k))). (2.4)

Here,Nu is the length of the prediction horizon,Q is the tracking error weighing matrix,

and f (k) is a penalty function defined as

f (k) = ak, a≥ 1. (2.5)

The penalty function (2.5) has a similar function as the penalty factor in (2.2): Deviation

in the tracking performance for later outputs face a heavierpenalty.

TheH∞ fuzzy tracking controller is obtained by applying the results of [35]. The design

process can be summarized as follows. Consider a nonlinear system in which the space of

operation can be partitioned into several regimes with respect to some premise variables.

Then, thei-th plant local linear model in Takagi-Sugeno (TS) fuzzy from is [19, 35]

Plant Rule i: IF ν1(t) is Mi1 and· · · andνϑ (t) is Miϑ , THEN

ẋ(t) = Aix(t)+Biu(t)+Bww(t),

z(t) =Czix(t)+Dziu(t)

y(t) = x(t)

(2.6)

wherei = 1,2, · · · , r, r is the number of rules,Mik (k = 1,2, · · · ,ϑ) are fuzzy sets,νi(t)

are premise variables,x(t) ∈ R
n is the state vector,u(t) ∈ R

m is the input,w(t) ∈ R
p is
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the disturbance signal,z(t) ∈R
s is the controlled output,y(t) ∈R

s is the measurement, the

matricesAi, Bi, Bw, Czi andDzi are of appropriate dimensions.

By using a center-average defuzzifer, product inference andsingleton fuzzifer, the local

models can be integrated into a global nonlinear model:

ẋ(t) =
r
∑

i=1
µi(ν(t))Aix(t)+

r
∑

i=1
µi(ν(t))Biu(t)

+Bww(t),

z(t) =
r
∑

i=1
µi(ν(t))[Czix(t)+Dziu(t)]

y(t) =
r
∑

i=1
µi(ν(t))Cyix(t)

(2.7)

where

ν(t) = [ν1(t),ν2(t), · · · ,νϑ (t)]
T , (2.8)

and

ωi(ν(t)) =
p

∏
k=1

Mik(νk(t)), ωi(ν(t))≥ 0,
r

∑
i=1

ωi(ν(t))> 0,

µi(ν(t)) =
ωi(ν(t))

∑r
i=1ωi(ν(t))

, µi(ν(t))≥ 0,
r

∑
i=1

µi(ν(t)) = 1.

Here,Mik(νk(t)) denote the grade of membership ofνk(t) in Mik.

H∞ performance is fulfilled if the gain from the disturbance input to the controlled

output is less than a prescribed valueγ > 0. In detail, the following condition must hold

[35]
∫ T

0
zT(t)z(t)dt ≤ γ2

∫ T

0
wT(t)w(t)dt. (2.9)

For the nonlinear plant represented by (2.7), the fuzzy state feedback controller is in-

ferred as follows:

u(t) =
r

∑
i=1

µi(ν(t))Kix(t). (2.10)

whereKi is the local controller gain for each plant rule.
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The closed-loop system (2.7) with (2.10) can be written as:

ẋ(t) =
r
∑

i=1

r
∑
j=1

µi(ν(t))µ j(ν(t))[Ai +BiK j ]x(t)+Bww(t)

z(t) =
r
∑

i=1

r
∑
j=1

µi(ν(t))µ j(ν(t))[Czi+DziK j ]x(t)

y(t) =
r
∑

i=1
µi(ν(t))Cyix(t)

(2.11)

Theorem 2.3.1 If there exit a symmetric positive definite matrix P and a matrix Yj such

that the following condition holds




AiP+PAT
i +BiYj +YT

j BT
i Bw PCz

T
i +YT

j Dz
T
i

∗ −γ2I 0

∗ ∗ −I



< 0 (2.12)

for i < j ≤ r, then the(2.9)holds. Moreover, a suitable choice of the fuzzy controller is

u(t) =
r

∑
j=1

µ j(x)K jx(t) (2.13)

with

K j =YjP
−1 (2.14)

Proof: See [35]. �

Theorem 2.3.2 The problem of designing a tracking controller for(2.7) with reference

tracking error

e(t) = y(t)−yre f(t) (2.15)

can be formulated as

˙̃x(t) =
r

∑
i=1

µi(ν(t))
[
Ãi x̃(t)+ B̃iu(t)+ B̃ww(t)+ d̃(t)

]
,

z(t) =
r

∑
i=1

µi(ν(t))[Czix(t)+Dziu(t)],

(2.16)
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with E(t) =
∫ τ

0 e(t)dτ and

x̃(t) =




x(t)

E(t)


 , d̃(t) =




0

−yre f(t)


 ,

Ãi =




Ai 0

Cyi 0


 , B̃i =




Bi

0


 , B̃ω =




Bω

0


 .

(2.17)

.

Proof: The proof is obvious. �

The benefit of the augmented problem formulation of Theorem 2.3.2 is that the aug-

mented system (2.16) can be directly addressed using Theorem 2.3.1. Thus, theH∞ fuzzy

reference tracking problem with integral action can be treated just as the standardH∞ prob-

lem.

For the adaptive switching controller, the error thresholdis set to be 10% of the initially

observed error. If the tracking error stays within this threshold for 2 consecutive sampling

periods, the control is switched toH∞ fuzzy tracking control, which then efficiently stabi-

lizes the system. Once that error threshold is violated again, the control switches back to

RHC control and a new error threshold is set with respect to thenew initial deviation.

The following design parameters have been chosen for the RHC scheme. The penalty

factor a in the penalty function (2.5) is set toa = 2. This results in a high penalty for

tracking errors at the end of the prediction horizon. The prediction horizon is chose as

Nu = 3 for discrete inputs of 10seach. This change from the design in Chapter 2 is possible

due to the less complex cost function and a relaxed approach with respect to steady state

settling behaviour of the RHC controller. The error weighting function in (2.4) is chosen

as
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Figure 2.10: Switching control system outputs

Q=




1 0 0

0 1 0

0 0 104



. (2.18)

Based on the new requirements for the RHC procedure, the choiceof Q is slightly

different than in (2.3), but still imposes a much higher penalty on tracking errors iny3

based on its high degree of nonlinearity and coupling.

The population size for the GA is set to 50 individuals and theGA terminates after at

most 300 iterations. The crossover ratio is set to 0.8, and anelite count of 2 is enforced to

preserve the two fittest of each generation unaltered.

To prevent integrator windup, an anti windup strategy as outlined in [80] has been

implemented for theH∞ fuzzy tracking controller.

The simulation results are compared to a linearH∞ control approach for a linearized

system model, see [7] for example.
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Figure 2.11: Switching control system inputs

To show the advantage of the propose adaptive control scheme, a change between dis-

tant operating points is of central interest. Therefore, a reference trajectory with respect to

Table 1.1 is chosen as: transition from operating point 1 to 7at t = 100s; from 7 to 1 at

t = 600s; and from 1 to 4 att = 1100s. We set the reference foryre f
3 = 0 for the whole

simulation to underline our desire to keep the drum water level as stable as possible. The

outputs and inputs for this tracking problem are shown in Figure 2.10 and Figure 2.11,

respectively. It can be observed that the linear controllerhas problems to stabilize the sys-

tem for large changes in the reference signal. There is a large derivation from the reference

value fory2 present which may result in a complete control failure. Due to the linearization,

there is a constant steady state error present fory2 andy3 after the first transition, which

increases significantly after the second transition. It incidentally manages to stabilize the

system after the last change of reference.

44



Chapter 2: Genetic Algorithms in Model Predictive Control forBoiler-Turbine Systems

This section focuses on the design of anH∞ tracking control for the boiler-turbine

modelled by a TS fuzzy model. Defining

u∗2(t) = u2(t)x1(t), (2.19)

the dynamics of the boiler-turbine system (1.3) can be rewritten as

ẋ1(t) =−0.0018u∗2(t)x
1/8
1 (t)+0.9u1(t)−0.15u3(t)+0.01w1(t),

ẋ2(t) = 0.073u∗2(t)x
1/8
1 (t)−0.016x1(t)x

1/8
1 (t)−0.1x2(t)+0.01w2(t),

ẋ3(t) = (141u3(t)−1.1u∗2(t)+0.19x1(t))/85+0.01w3(t),

y1 = x1(t),

y2 = x2(t),

y3 = 0.05(0.1307x3(t)+100acs+qe/9−67.975).

(2.20)

From the typical operation points given in Table 1.1, we can assume thatx1(t) ∈[
50 150

]
. Hence, the nonlinear termx1/8

1 (t) in (2.20) can be expressed as

x1/8
1 (t) = µ1(x1(t))×50+µ2(x1(t))×150 (2.21)

where

µ1(x1(t)) =
150

1
8 −x

1
8
1 (t)

150
1
8 −50

1
8

,

µ2(x1(t)) = 1−µ1(x1(t)).

(2.22)

The plots forµ1(x1(t)) and µ1(x1(t)) are given in Figure 2.12. Now, using the above

membership functions, the boiler-turbine system (2.20) can be exactly represented by the

following TS fuzzy model

ẋ(t) =
2

∑
i=1

µi(x1(t)) [Aix(t)+Biu(t)]+Bww(t) (2.23)
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Figure 2.12: The membership functions forH∞ fuzzy tracking control

where

x(t) =




x1(t)

x2(t)

x3(t)



, w(t) =




w1(t)

w2(t)

w3(t)



, u(t) =




u1(t)

u∗2(t)

u3(t)



, (2.24)

and

A1 =




0 0 0

−0.016×150
1
8 −0.1 0

0.19
85 0 0



, B1 =




0.9 −0.0018×150
1
8 −0.15

0 0.073×150
1
8 0

0 −1.1
85

141
85



,

A2 =




0 0 0

−0.016×50
1
8 −0.1 0

0.19
85 0 0



, B2 =




0.9 −0.0018×50
1
8 −0.15

0 0.073×50
1
8 0

0 −1.1
85

141
85



,

(2.25)
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and

Bw = 0.01




1 0 0

0 1 0

0 0 1



.

The controlled outputz(t) is chosen to be

z(t) = 10−4




1 0 0

0 1 0

0 0 1




x(t)+10−1




1 0 0

0 1 0

0 0 1




u(t). (2.26)

By applying the Theorem 2.3.2 with the integral action, the corresponding solutions are

obtained.
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P= 107




0.0003 0.0003 −0.0001 0.0074 0.0013 −0.0010

0.0003 0.0210 −0.0001 0.0180 0.2044 −0.0010

−0.0001 −0.0001 0.0010 −0.0013 −0.0002 0.0166

0.0074 0.0180 −0.0013 0.3584 0.0802 −0.0221

0.0013 0.2044 −0.0002 0.0802 2.0204 −0.0039

−0.0010 −0.0010 0.0166 −0.0221 −0.0039 0.5756




Y1 =




−89.9905 0.0074 −0.0023 0.2109 0.0371 −0.0282

0.2992 −11.8997 1.2927 0.1252 0.0217 −0.0167

14.9979 −0.0017 −165.8818 −0.0474 −0.0084 0.0059




Y2 =




−89.9793 0.0266 −0.0051 0.4581 0.0832 −0.0611

0.3208 −13.6769 1.2980 −0.3532 −0.0646 0.0471

14.9952 −0.0062 −165.8812 −0.1060 −0.0193 0.0137




(2.27)

The integral action matricesKI f i and the state feedback control matricesK f i are solved

as
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Figure 2.13: Integral state feedback control system with anti-windup for boiler-turbine unit

KI f 1 =




−0.0010 0.0002 −0.0001

−0.0019 −0.0067 0.0000

0.0001 −0.0001 −0.0010




K f 1 =




0.0504 −0.0022 0.0042

−0.0005 0.0672 −0.0003

−0.0007 0.0007 0.0346



,

KI f 2 =




−0.0016 0.0003 −0.0001

−0.0015 −0.0065 0.0001

0.0004 −0.0002 −0.0052




K f 2 =




0.0504 −0.0023 0.0042

−0.0006 0.0771 −0.0003

−0.0007 0.0008 0.0346



.

(2.28)

The guaranteed cost tracking control law for the boiler-turbine TS fuzzy models are

u(t) = [u1(t) u2(t) u3(t)] =
2

∑
j=1

µ j(x1)[KI f j E(t)+K f jx(t)]

with u2(t) =
u∗2(t)
x1(t)

andE(t) =
∫ t

0(x(t)−xre f(t))dt.

In order to prevent the windup caused by the saturations of the actuators, the tracking

anti-windup strategy [80] is applied here, see Figure 2.13.
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Figure 2.14: Boiler-turbine system outputs

The disturbancesw1(t),w2(t) andw3(t) are modeled as independent band-limited white

noises with noise power spectrum density of 10. To show the benefits of theH∞ fuzzy

reference tracking approach presented in Theorem 2.3.2, the results are compared to a

singleH∞ reference tracking controller that has been designed usinga linearization of the

system dynamics around the central operating point, but otherwise using the same design

process outlined in Section 2.3.2. The simulation results for (1.3) with constraints (1.5)

andH∞ fuzzy reference tracking control (2.28) are shown in Figures 2.14 and 2.15 for the

system output and input, respectively.

Both control approaches show similar tracking results for the outputy1, however the

linear tracking controller fails to track the desired outputs y2 andy3.

Furthermore, the results for an implementation of the proposedH∞ fuzzy tracking con-

troller with and without an anti-windup strategy are compared. The implementation of

an anti-windup concept is critical to the overall design process of an integral tracking con-
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Figure 2.15: Boiler-turbine system inputs

troller for systems with input constraints. Otherwise, thecontrol inputs can quickly saturate

and the overall system may not be controllable, see Figure 2.16. The proposed anti-windup

strategy avoids large overshoots as well as oscillatory behaviour in the output signals that

could otherwise damage the system. Furthermore, the deviations in the water levely3 may

result in an overall system failure and an emergency shutdown.

2.4 Conclusion

A novel GA-based nonlinear model predictive control approach has been proposed for

boiler-turbine systems. It has been shown that this controlapproach is capable of dealing

well with the nonlinearities in the plant model and can be used for a wide operating range.

Furthermore, a robust adaptive switching algorithm that uses GA-based nonlinear model

predictive control as well as robustH∞ fuzzy control was introduced to allow for a quick
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Figure 2.16: Impact anti-windup strategy
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decay in the tracking error towards a steady state. The simulation results showcase the

effectiveness of both approaches.

Even though the analysis was carried out for the specific boiler-turbine unit, this ap-

proach can easily be transferred to other nonlinear controltasks by careful adjustment of

the configuration parameters [81].

The online solution presented in this work required the plant to be reasonably slow. An

extension to faster plants and the handling of noise terms and uncertainties are still open

topics for model predictive control incorporating GAs.
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Part II

Control Synthesis for Polynomial

Systems
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Chapter 3

Stabilization of Nonlinear Polynomial

System

3.1 Introduction

The control of polynomial systems is a nontrivial problem that stems from an inherently

nonconvex relationship between the controller matrix and the Lyapunov function. To avoid

this problem, it is customary to avoid the states that have nonzero entries in the system input

matrix in the construction of a Lyapunov function, see for example [46, 45, 57, 30]. This

is, however, not always practical. Furthermore, it introduces conservatism to the overall

design approach.

The lack of a design approach that addresses this problem allowing a greater design

freedom has been the motivation to investigate alternativemodelling approaches that lead

to overall less conservative control designs through a greater freedom in Lyapunov function

candidates. The following approach addresses the nonconvexity of the problem by intro-

ducing an iterative algorithm. In general, this iterative procedure leads to an overall larger

control problem, as more unknown coefficients in the Lyapunov function candidate have

to be considered. Furthermore, the iterative procedure outlined below requires that several
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control problems have to be solved sequentially, which introduces a higher computational

cost in the overall controller design. Results do, however, indicate that this higher cost

tends to find superior solutions to the more commonly used restrictive Lyapunov function

design and should more than make up the initial computational investment over the lifetime

of the implemented controller.

The remainder of this chapter is organized as follows: Section 3.2 outlines the general

control problem and presents the procedure for the iterative algorithm. The state feedback

control problem is then extended to the common problem of polytropic uncertainties and

the performance of the procedure is outlined with numericalexamples in 3.3. This chapter

closes with some concluding remarks in 3.4.

3.2 Main Results

In this section, the design of a state feedback controller for polynomial systems with poly-

tropic uncertainties is presented. First, a derivation of the control laws without uncertainties

is derived that is subsequently extended to the case of systems with polytropic uncertainties.

3.2.1 State Feedback Control for Polynomial Systems

Consider the dynamic system modelled by

ẋ=A(x)+B(x)u,

y=x,
(3.1)

whereA(x) is a polynomial vector andB(x) is a polynomial matrix of appropriate dimen-

sions. The objective is to find a polynomial controller as

u= K(x) (3.2)
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such that the system (3.1) is asymptotic stable.

Theorem 3.2.1 The polynomial system(3.1) is stabilizable via state feedback control if

there exist a polynomial function V(x) and a polynomial matrix K(x) such that for∀x 6= 0

V(x)> 0 (3.3)

and
∂V(x)

∂x
A(x)− 1

4
∂V(x)

∂x
Bu(x)B

T
u (x)

∂VT(x)
∂x

+

(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)T

< 0.
(3.4)

Proof: Note that for∀x 6= 0

V̇(x) =
∂V(x)

∂x
[A(x)+Bu(x)K(x)]≤ ∂V(x)

∂x
[A(x)+Bu(x)K(x)]+KT(x)K(x)

=
∂V(x)

∂x
A(x)− 1

4
∂V(x)

∂x
Bu(x)B

T
u (x)

∂V(x)
∂x

+

(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)T

.

(3.5)

Thus, it follows from the Lyapunov stability theorem that the system (3.1) with (3.2) is

asymptotic stable if (3.4) holds. �

Even though we have separated the Lyapunov function and the controller matrix

of the state feedback controller problem in (3.4), the problem cannot be directly trans-

formed into a state-depended LMI using Schur Complement due to the negative term

−1
4

∂V(x)
∂x Bu(x)BT

u (x)
∂VT(x)

∂x . Introducing a polynomial design vectorε(x) of appropriate

dimension, it is easy to verify that

(
ε(x)− ∂V(x)

∂x

)
Bu(x)B

T
u (x)

(
ε(x)− ∂V(x)

∂x

)T

≥ 0
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for anyε(x) and∂V(x)
∂x of the same dimension, with equality forε(x) = ∂V(x)

∂x . An expansion

yields

∂V(x)
∂x

Bu(x)B
T
u (x)

∂VT(x)
∂x

≥− ε(x)Bu(x)B
T
u (x)εT(x)+ ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

+
∂V(x)

∂x
Bu(x)B

T
u (x)εT(x).

(3.6)

Using (3.6) and (3.4), we can formulate the following theorem.

Theorem 3.2.2 The polynomial system(3.1)is stabilizable via state feedback(3.2), if there

exist a polynomial function V(x) satisfying(3.3), a polynomial vectorε(x) of appropriate

dimensions, and a polynomial matrix K(x) satisfying the following condition for∀x 6= 0

M(x) =




M11(x) (∗)

M21(x) −I


≺ 0, (3.7)

with

M11(x) =
∂V(x)

∂x
A(x)+

1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

,

M21(x) =

(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)T

,

(3.8)

Proof: It is obvious that using (3.6) in (3.4) yields

∂V(x)
∂x

A(x)+

(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)T

+
1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

= ˙̂V(x),

(3.9)

thus if a V̂(x) > 0 exists such thaṫ̂V(x) < 0 , it is clear thatV̇(x) is also negative and

represents a sufficient condition for asymptotic stabilitythat leads to (3.7) by applying

Schur Complement. �
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Unfortunately, there are nonconvex expressions in (3.7) that cannot be solved directly.

However, this nonconvexity can be overcome by applying an iterative SOS (ISOS) algo-

rithm.

ISOS algorithm for state feedback control of polynomial systems.

Step 1: Linearize system (3.1). Use the state feedback approach described in [82] to find

a solution to the linearized problem. Sett = 1,ε1(x) = xTP,V0 = xTPx.

Step 2: Solve the following SOS optimization problem inVt(x) andKt(x) with fixed aux-

iliary polynomial vectorεt(x) and some positive polynomialsλ1(x) andλ2(x):

Minimize αt

Subject toVt(x)−λ1(x) is a SOS,

−vT (Mα
t (x)+λ2(x)I)v is a SOS,

with

Mα
t (x),




M11(x)−αtVt−1(x) (∗)

M21(x) −I


 , (3.10)

v of appropriate dimensions, andM11(x),M21(x) are as in (3.8) withV(x) ,

Vt(x),K(x), Kt(x), andε(x), εt(x).

If αt < 0, thenVt(x) andKt(x) represent a feasible solution to the state feedback

control problem of polynomial systems. Terminate the algorithm.

Step 3: Sett = t +1 and solve the following SOS optimization problem inVt(x), Kt(x),

with Z(x) as in Proposition 1.3.1 and the SOS decomposition of the Lyapunov

functionVt(x) = Z(x)TQtZ(x),εt(x) = εt−1(x) as well as some positive polynomi-
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alsλ1(x) andλ2(x):

Minimize trace(Qt)

Subject toVt(x)−λ1(x) is a SOS,

−vT (Nα
t (x)+λ2(x)I)v is a SOS,

with

Nα
t (x),




M11(x)−αt−1Vt(x) (∗)

M21(x) −I


 , (3.11)

v of appropriate dimensions, andM11(x),M21(x) are as in (3.8) withV(x) ,

Vt(x),K(x), Kt(x), andε(x), εt(x).

Step 4: Solve the following feasibility problem withv2 ∈ R
n+1 and some positive toler-

ance functionδ (x)> 0,x 6= 0:

vT
2




δ (x) (∗)
(

εt(x)− ∂Vt(x)
∂x

)T
1


v2 is a SOS.

If the problem is feasible go to Step 5. Else, sett = t + 1 andεt(x) =
∂Vt−1(x)

∂x

determined in Step 3 and go to Step 2.

Step 5: The system (3.1) may not be stabilizable with state feedback (3.2). Terminate the

algorithm. �

The term−1
2ε(x)Bu(x)BT

u (x)
∂VT(x)

∂x makes (3.5) nonconvex, hence the inequality cannot

be solved directly by SOS decomposition. If, however, the auxiliary polynomial vectorε(x)

is fixed, (3.5) becomes convex and can be solved efficiently. Unfortunately, fixingε(x)

generally does not yield a feasible solution. Therefore, weintroduceαtVt−1(x) in (3.10) to

relax the SOS decomposition in (3.7), whereVt−1(x) is known from the previous step. This
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corresponds to the following Lyapunov inequalities:

Vt(x)> 0,

V̇t(x)≤ αtVt−1(x).

Similar Lyapunov inequalities can be obtained for (3.11), where nowαt−1 has a known

value and thus the productαt−1V(x)t is convex. It is clear that any negativeα in (3.10) or

(3.11) yields a feasible solution of the SOS decomposition and the system (3.1) with (3.2)

is asymptotic stable.

Step 1 is the initialization of the iterative algorithm and necessary to find an initial

value ofε1(x) to use in the following iterations. The optimization problem in Step 2 is

a generalized eigenvalue minimization problem and guarantees the progressive reduction

of αt . Meanwhile, Step 3 ensures convergence of the algorithm. Step 4 updatesε(x) and

checks whether the iterative algorithm stalls, i.e. the gapbetweenε(x) and ∂V(x)
∂x is smaller

than some positive tolerance functionδ (x).

Note that the iterative algorithm increases the iteration variablet twice per cycle (in

Step 3 and Step 4). This is done to avoid confusion with the indexes.

3.2.2 Polytropic Stability Synthesis

The results presented in the previous section assume that all system parameters are known

exactly. In this section, we extend the results to polynomial systems with polytropic uncer-

tainties.

Consider the following system

ẋ=A(x,θ)+Bu(x,θ)u,

y=x,
(3.12)

61



Chapter 3: Stabilization of Nonlinear Polynomial System

where the matrices·(x,θ) are defined as follows

A(x,θ) =
q

∑
i=1

Ai(x)θi , Bu(x,θ) =
q

∑
i=1

Bui(x)θ . (3.13)

θ =

[
θ1, . . . ,θq

]T

∈ R
q is the vector of constant uncertainty and satisfies

θ ∈ Θ ,

{
θ ∈ R

q : θi ≥ 0, i = 1, . . . ,q,
q

∑
i=1

θi = 1

}
. (3.14)

We further define the following parameter dependent Lyapunov function

V(x) =
q

∑
i=1

Vi(x)θi . (3.15)

With the results from the previous section, we can directly propose the main result the

state feedback controller design for polynomial systems with polytropic uncertainties.

Theorem 3.2.3 The polynomial system with polytropic uncertainties(3.12) is stabilizable

with state feedback(3.2) if there exist a polynomial function V(x) as in(3.15), a polynomial

vectorε(x) = ∑q
i=1εi(x)θi of appropriate dimensions, a polynomial matrix K(x), as well

as some positive functionsλ1(x)> 0 andλ2(x)> 0 satisfying the following conditions for

x 6= 0, i = 1, . . . ,q:

Vi(x)> 0 (3.16)

and

M(x) =
q

∑
i=1

Mi(x)θi , (3.17)
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with

Mi(x) =




Mi
11(x) (∗)

Mi
21(x) −I


≺ 0, (3.18)

with Mi
11(x),M

i
21(x) as in(3.8) for each subsystem of(3.12), respectively.

Proof: This theorem follows directly from Theorem 3.2.2. �

The same ISOS algorithm given in the previous section can be employed to solve for

each subsystem of (3.13) with (3.16) and (3.18) with the samecontroller matrix (3.2) for

all subsystems.

3.3 Numerical Examples

In this section, one example for the state feedback controller design for polynomial systems

as well as one example for the state feedback controller for systems with polytropic uncer-

tainty will be presented. Both examples are variations of thepolynomial system control

presented in [26].

3.3.1 State Feedback Control for Polynomial Systems

Consider the polynomial system

ẋ=



−x1+x2

1− 3
2x3

1− 3
4x1x2

2+
1
4x2−x2

1x2− 1
2x3

2

0


+




0

1


u. (3.19)

The system is characterized by one pure integrator, thus theopen-loop system is clearly

not stable. We selectλ1(x) = λ2(x) = δ (x) = 0.01
(
x2

1+x2
2

)
, setK(x) to be of the form

K(x) = µ10x1+ µ01x2+ µ11x1x2+ µ20x2
1+ µ02x2

2 and initially look for Lyapunov function

candidates of degree 4. The ISOS algorithm for state feedback design for polynomial
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systems terminates with a feasible solution and‖µ11‖ ≈ ‖µ20‖ ≈ ‖µ02‖ < 0.01. After

settingµ11 = µ20 = µ02 = 0 and initializingε1(x) as the final value of∂V(x)
∂x , the algorithm

terminates after 2 iterations and the following state feedback controller with:

K(x1,x2) = 3.12x1−4.24x2. (3.20)

and Lyapunov matrixQ fromV(x) = Z(x)TQZ(x) whereZ(x) is a vector of monomials

up to a degree of 2

Z(x)T =

[
x1 x2 x2

1 x1x2 x2
2

]
, (3.21)

Q=




1.5407 −0.0053 0.1246 −0.0122 −0.0034

−0.0053 0.7348 −0.0355 0.0156 0.0225

0.1246 −0.0355 0.8185 0.1798 −0.2656

−0.0122 0.0156 0.1798 0.8604 0.4648

−0.0034 0.0225 −0.2656 0.4648 1.3200




. (3.22)

It is noteworthy that it was possible to obtain alinear controller for thepolynomial

system (3.19). The closed loop response of the system for initial statesx0 = [−3,1]T is

shown in Figure 3.1, with the controller gains depicted in Figure 3.2.
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Figure 3.1: Polynomial state feedback control outputs
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3.3.2 Polytropic Stability Synthesis

In this example, the previously discussed system will be extended to the case of polynomial

system with polytropic uncertainties. Consider the polynomial system withβ ∈ [−1,1]:

ẋ=



−x1+x2

1− 3
2x3

1− 3
8x1x2

2+
1
4x2−x2

1x2− 1
4x3

2

0


+




0

1.1


u,

+β







3
8x1x2

2− 1
4x3

2

0


+




0

0.1


u


 .

(3.23)

First, the system (3.23) is transformed into form (3.13) with (3.14), i.e. θ1 = 1,θ2 = 0

for β = −1 and θ1 = 0,θ2 = 1 for β = 1. Next, we selectλ1(x) = λ2(x) = δ (x) =

0.01
(
x2

1+x2
2

)
, setK(x) to be of the formK(x) = µ10x1+µ01x2+µ11x1x2+µ20x2

1+µ02x2
2

and initially look for Lyapunov function candidates of degree 4. The ISOS algorithm

for state feedback design for polynomial systems terminates with a feasible solution and

‖µ11‖ ≈ ‖µ20‖ ≈ ‖µ02‖ < 0.01. After settingµ11 = µ20 = µ02 = 0, initializing ε1(x) as

the final value of∂V(x)
∂x , and rerunning the algorithm terminates after 2 iterationsand the

following state feedback controller is obtained

K(x1,x2) =−1.64x1−2.37x2 (3.24)

and Lyapunov matrices

Q1 =




1.7083 0.0121 0.1648 0.1709 −0.0085

0.0121 1.0235 0.0260 0.0277 0.0206

0.1648 0.0260 0.5886 0.4247 −0.3003

0.1709 0.0277 0.4247 1.0610 0.3637

−0.0085 0.0206 −0.3003 0.3637 1.6723




, (3.25)
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Figure 3.3: System response for polynomial state feedback control with polytropic uncer-
tainties

and

Q2 =




1.7783 −0.0250 0.3120 −0.0187 0.0450

−0.0250 1.1901 0.0309 −0.0127 −0.0007

0.3120 0.0309 1.2522 −0.2915 0.1870

−0.0187 −0.0127 −0.2915 1.3923 0.0000

0.0450 −0.0007 0.1870 0.0000 0.8953




, (3.26)

whereVi = Z(x)TQiZ(x), with Z(x) as in (3.21).

It was once again possible to obtain alinear controller for thepolynomialcontrol prob-

lem. The system response forβ =−1,0,1 are depicted in figure 3.3. It can be observed that

the system responses for different values ofβ are quite similar. Further, it is noteworthy

that the controller gains are similar in magnitude to the ones obtained for the single state

feedback case. It has to be assumed that is has happened purely by accident, as the over-

all problem without a performance criterion allows for a wide range of feasible solutions.
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For this particular example, it is also possible to restrictone of the controller gains to be

positive and still find alinear controller.

It is also worth mentioning that keeping higher order controller terms do not signifi-

cantly increase the overall system performance. Once again, this is most likely due to a

lack of performance criterion.

3.4 Conclusion

In this chapter, the concept of an iterative design algorithm for the problem of polynomial

system control with and without polytropic uncertainties has been presented. In detail, suf-

ficient conditions for the existence of a controller that stabilizes the system and guarantees

asymptotic stability have been formulated in terms of polynomial matrix inequalities. An

iterative algorithm was introduced to deal with the nonconvex terms in the problem formu-

lation, and the algorithm was able to obtain feasible solutions with very few iterations in

numerical examples. Furthermore, it was possible to obtainlinear controller gains for the

polynomialsystem.
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Chapter 4

Robust Nonlinear Control of Polynomial

Systems with Norm-Bounded

Uncertainties

4.1 Introduction

When dealing with real life control systems, it is important to ensure that the obtained con-

trol laws will work in the presence of uncertainties [83, 84]. Uncertainties can come from

a lot of sources, for example simplification in the system model or parameter inaccuracies

[85]. In general, the presence of uncertainties can degradethe system performance signif-

icantly, potentially even leading to instability of the overall control system. It is therefore

necessary to carefully consider uncertainties in the system.

One way of looking at uncertainties is through the study of system with polytropic

uncertainties, as has been presented in the previous chapter. Another way to model un-

certainties is by looking at norm-bounded uncertainties. This topic is of particular inter-

est for practical control applications as a lot of control systems can be approximated as

(polynomial) system with some degree of norm-bounded uncertainty. Therefore, a vast

69



Chapter 4: Robust Nonlinear Control of Polynomial Systems withNorm-Bounded
Uncertainties

amount of literature is available on system control with norm-bounded uncertainties, see

[86, 87, 88, 89].

In this chapter, the process of designing a controller for polynomial system subject

to norm-bounded uncertainties is investigated. Any controller for a system with norm-

bounded uncertainties is said to be robust and the overall control system is considered

robustly stable with respect to the system dynamics and within the assumed level of un-

certainty. In the following, an extension of the previouslyintroduced iterative design algo-

rithm is presented, followed by some numerical examples to showcase the validity of the

design approach. Lastly, some conclusions about the problem of polynomial systems with

norm-bounded uncertainties are given in the last part of this chapter.

4.2 Main Results

In the following, we consider the uncertain polynomial system of the form

ẋ= A(x)+B(x)u+∆A(x)+∆B(x)u, (4.1)

wherex andu are the system’s state and input, respectively.A(x) andB(x) are the polyno-

mial system vector and matrix, respectively. Further,∆A(x) and∆B(x) are used to capture

the uncertain parts of the system design. The following assumption will be used throughout

the remainder of this thesis

Assumption 4.2.1 The admissible parameter uncertainties considered here are assumed

to be norm-bounded and can be described as

[
∆A(x) ∆B(x)

]
= H(x)F(x)

[
E1(x) E2(x)

]
, (4.2)

70



Chapter 4: Robust Nonlinear Control of Polynomial Systems withNorm-Bounded
Uncertainties

with known polynomial matrices H(x),E1(x),E2(x) of appropriate dimensions and F(x)

being an unknown state-depended matrix that satisfies

‖FT(x)F(x)‖ ≤ I . (4.3)

Theorem 4.2.1 The polynomial system(4.1) is controllable via polynomial feedback con-

trol of the form

u= K(x) (4.4)

if there exist a Lyapunov function V(x), a polynomial design vectorε(x) of appropriate

dimensions satisfying the following conditions for x6= 0

V(x)> 0, (4.5)

and

M(x) =




M11(x) (∗) (∗) (∗)

M21(x) −I (∗) (∗)

M31(x) 0 −2I (∗)

M41(x) 0 0 −2I




≺ 0, (4.6)

with

M11(x) =
∂V(x)

∂x
A(x)+

1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

,

M21(x) =

(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)T

,

M31(x) =(E1(x)+E2(x)K(x)) ,

M41(x) =HT(x)
∂VT(x)

∂x
.

(4.7)
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Proof: The case without uncertainty has been discussed in Theorem 3.2.1 in the pre-

vious chapter. Using triangular inequality on the uncertainty term yields

Ξ(x) =
∂V(x)

∂x
H(x)F(x)(E1(x)+E2(x)K(x))

≤1
2

∂V(x)
∂x

H(x)F(x)F(x)TH(x)T ∂VT(x)
∂x

+
1
2
(E1(x)+E2(x)K(x))T (E1(x)+E2(x)K(x))

(4.8)

Therefore, using (3.9) and (4.8) combined suggests

V̇(x)≤∂V(x)
∂x

A(x)+

(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)T

+
1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

+Ξ(x)

≤∂V(x)
∂x

A(x)+

(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)T

+
1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

+
1
2

∂V(x)
∂x

H(x)F(x)F(x)TH(x)T ∂VT(x)
∂x

+
1
2
(E1(x)+E2(x)K(x))T (E1(x)+E2(x)K(x))< 0,

(4.9)

Thus, if (4.6) and (4.5) hold, it is clear that this satisfies the Lyapunov stability criterion by

applying Schur Complements and noting (4.3). �

The following ISOS approach can be used to find a solution to the control problem of

state feedback control for polynomial system with norm-bounded uncertainties

Step 1: SetF(x) = 0 and linearize the system (4.1). Use the state feedback approach

described in [82] to find a solution of the linearized problems without uncertainty.

Sett = 1,ε1(x) = xTP,V0 = xTPx.
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Step 2: Solve the following SOS optimization problem inVt(x) andKt(x) with fixed aux-

iliary polynomial vectorεt(x) and some positive polynomialsλ1(x) andλ2(x):

Minimize αt

Subject toVt(x)−λ1(x) is a SOS,

−vT (Mα
t (x)+λ2(x)I)v is a SOS,

with

Mα
t (x),




M11(x)−αtVt−1(x) (∗) (∗) (∗)

M21(x) −I (∗) (∗)

M31(x) 0 −2I (∗)

M41(x) 0 0 −2I




, (4.10)

v of appropriate dimensions, andM11(x),M21(x),M31(x),M41(x) are as in (4.7)

with V(x),Vt(x),K(x), Kt(x), andε(x), εt(x).

If αt < 0, thenVt(x) andKt(x) represent a feasible solution to theH∞ state feed-

back control problem of polynomial systems. Terminate the algorithm.

Step 3: Sett = t +1 and solve the following SOS optimization problem inVt(x), Kt(x),

with Z(x) as in Proposition 2.2 and the SOS decomposition of the Lyapunov func-

tion Vt(x) = Z(x)TQtZ(x),εt(x) = εt−1(x) as well as some positive polynomials

λ1(x) andλ2(x):

Minimize trace(Qt)

Subject toVt(x)−λ1(x) is a SOS,

−vT (Nα
t (x)+λ2(x)I)v is a SOS,
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with

Nα
t (x),




M11(x)−αt−1Vt(x) (∗) (∗) (∗)

M21(x) −I (∗) (∗)

M31(x) 0 −2I (∗)

M41(x) 0 0 −2I




, (4.11)

v of appropriate dimensions, andM11(x),M21(x),M31(x),M41(x) are as in (4.7)

with V(x),Vt(x),K(x), Kt(x), andε(x), εt(x).

Step 4: Solve the following feasibility problem withv2 ∈ R
n+1 and some positive toler-

ance functionδ (x)> 0,x 6= 0:

vT
2




δ (x) (∗)
(

εt(x)− ∂Vt(x)
∂x

)T
1


v2 is a SOS.

If the problem is feasible go to Step 5. Else, sett = t + 1 andεt(x) =
∂Vt−1(x)

∂x

determined in Step 3 and go to Step 2.

Step 5: The system (4.1) may not be stabilizable with state feedback control (4.4). Termi-

nate the algorithm. �

The term−1
2ε(x)Bu(x)BT

u (x)
∂VT(x)

∂x makes (4.6) nonconvex, hence the inequality cannot

be solved directly by SOS decomposition. If, however, the auxiliary polynomial vectorε(x)

is fixed, (4.6) becomes convex and can be solved efficiently. Unfortunately, fixingε(x)

generally does not yield a feasible solution. Therefore, weintroduceαtVt−1(x) in (4.10) to

relax the SOS decomposition in (4.6), whereVt−1(x) is known from the previous step. This

corresponds to the following Lyapunov inequalities:

Vt(x)> 0,

V̇t(x)≤ αtVt−1(x).
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Similar Lyapunov inequalities can be obtained for (4.11), where nowαt−1 has a known

value and thus the productαt−1V(x)t is convex. It is clear that any negativeα in (4.10)

or (4.11) yields a feasible solution of the SOS decomposition and the system (4.1) with

uncertainties as in (4.2)(4.3) is asymptotic stable with state feedback control (4.4).

Step 1 is the initialization of the iterative algorithm and necessary to find an initial

value ofε1(x) to use in the following iterations. The optimization problem in Step 2 is

a generalized eigenvalue minimization problem and guarantees the progressive reduction

of αt . Meanwhile, Step 3 ensures convergence of the algorithm. Step 4 updatesε(x) and

checks whether the iterative algorithm stalls, i.e. the gapbetweenε(x) and ∂V(x)
∂x is smaller

than some positive tolerance functionδ (x).

Note that the iterative algorithm increases the iteration variablet twice per cycle (in

Step 3 and Step 4). This is done to avoid confusion with the indexes.

4.3 Numerical Example

In the following, a numerical example is used to demonstratethe validity of the iterative

design approach.

Consider the following polynomial system

ẋ=A(x)+B(x)u+H(x)F(x)(E1(x)+E2(x)u) ,

A(x) =



−x1+x2

1− 3
2x3

1− 3
8x1x2

2+
1
4x2−x2

1x2− 1
4x3

2

0


 , B(x) =




0

1




H(x) = 1, E1(x) =




3
8x1x2

2− 1
4x3

2

0


 , E2(x) =




0

0.2


 , F(x) = I sin(x)

(4.12)

The system has one pure integrator, thus it is clearly open-loop unstable. We select

λ1(x) = λ2(x) = δ (x) = 0.01
(
x2

1+x2
2

)
, set the controller to be a function ofx up to a

degree of 3 and choose to look for Lyapunov function candidates of degree 4. By using
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the ISOS algorithm presented above, we were able to obtain the following controller after

3 iterations

K(x) =−2.2740x1−4.812x2 (4.13)

with the following Lyapunov matrix

Q=




1.8654 0.0676 0.1469 0.1406 0.0260

0.0676 0.9160 0.0247 0.0360 −0.0160

0.1469 0.0247 0.6280 0.5129 −0.2520

0.1406 0.0360 0.5129 1.0884 0.3016

0.0260 −0.0160 −0.2520 0.3016 1.2188




, (4.14)

with V(x) = Z(x)TQZ(x),Z(x) =

[
x1 x2 x2

2 x1x2 x2
2

]T

and noting that the coeffi-

cients for the higher order controller terms were almost zero, thus allowing to find a con-

troller to be linear by initializingε(x)1 =
∂V(x)

∂x with the results from the first ISOS run and

readjusting for a linearK(x). The simulation results for different initial conditions are de-

picted in figure 4.1 and 4.2 forx1 andx2, respectively. The proposed controller efficiently

stabilizes the system and the system states converge towards a steady state.

4.4 Conclusion

In this chapter, sufficient conditions for the existence of astate feedback controller for

systems with norm-bounded uncertainties has been presented. An iterative algorithm has

been used to address the nonconvexity in the problem formulation and the effectiveness of

the approach has been outlined with a numerical example.
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Chapter 5

Nonlinear H∞ State Feedback Control

for Polynomial Systems with Polytropic

Uncertainties

5.1 Introduction

The problem of designing a nonlinearH∞ controller has attracted considerable attention

for more than three decades, see for example [90, 91, 92, 93] and references therein. This

interest stems from the nature of theH∞ control problem. Generally speaking, the aim is to

design a controller such that the resulting closed-loop system is stable and a prescribed level

of attenuation from the exogenous disturbance input to the controlled output inL2/l2-norm

is fulfilled. There are two common approaches available to address nonlinearH∞ control

problems: One is based on the theory of dissipative energy [94] and theory of differential

games [90]; The other is based on the nonlinear version of thebounded real lemma as

developed in [95, 39]. The underlying idea behind both approaches is the conversion of the

nonlinearH∞ control problem into the solvability form of the Hamilton-Jacobi equation
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(HJE). Unfortunately, this representation is NP-hard and it is generally very difficult to find

a global solution.

In recent years, several approaches utilizing SOS decompositions to achieve nonlinear

H∞ control for polynomial system have been presented, e.g. [45, 46, 57, 30] and references

therein. The systems discussed are represented in a state dependent linear-like form and the

authors assumed that the control input matrix has some zero rows and that the Lyapunov

function only depends on the states whose rows are zero. These assumptions, however,

lead to conservatism in the controller design.

The remainder of this chapter is organized as follows: The main results for a single

polynomial system, as well as the subsequent extension to the case of systems with poly-

tropic uncertainties is discussed in section 5.2. Some numerical examples are provided in

5.3 to showcase the efficiency of the proposed algorithm before the chapter closes with

some final remarks in 5.4.

5.2 Main Results

5.2.1 NonlinearH∞ Control for Polynomial Systems

Consider the following dynamic model of a polynomial system

ẋ=A(x)+Bu(x)u+Bω(x)ω,

z=Cz(x)+Dz(x)u,
(5.1)

whereω ∈R
p is the disturbance input andz is the regulated output.A(x),Cz(x) are polyno-

mial vectors andBu(x),Bω(x),Dz(x) are polynomial matrices of appropriate dimensions.

The objective of state feedbackH∞ control is to find a controllerK(x) such that the closed-

loop system with

u= K(x) (5.2)
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is asymptotically stable and theL2 gain from the disturbance input to the controlled output

is less than a prescribed valueγ > 0. In detail, the following condition must hold:

∫ ∞

0
zTzdt≤ γ2

∫ ∞

0
ωTωdt. (5.3)

Theorem 5.2.1 The polynomial system(5.1) is stabilizable with a prescribed H∞ perfor-

manceγ > 0 via state feedback(5.2) if there exist a polynomial function V(x) and a poly-

nomial matrix K(x) such that for∀x 6= 0 such that

V(x)>0, (5.4)

and
∂V(x)

∂x
A(x)− 1

4
∂V(x)

∂x
Bu(x)B

T
u (x)

∂VT(x)
∂x

+

(
1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+

(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)T

+(Cz(x)+Dz(x)K(y))T (Cz(x)+Dz(x)K(y))< 0.

(5.5)

Proof: The case without disturbance has been discussed in Theorem 3.2.1, thus the

closed loop system is asymptotically stable withω = 0. This leave the contribution of
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Bω(x)ω andz to theH∞ control problem, i.e.

Ξ(x) =
∂V(x)

∂x
Bω(x)ω =

∂V(x)
∂x

Bω(x)ω +
(
γ2ωTω −zTz

)
−
(
γ2ωTω −zTz

)

=−
(

1
2γ

∂V(x)
∂x

Bω(x)− γωT
)(

1
2γ

∂V(x)
∂x

Bω(x)− γωT
)T

+

(
1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+
(
γ2ωTω −zTz

)

+(Cz(x)+Dz(x)K(x))T (Cz(x)+Dz(x)K(x))

≤
(

1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+
(
γ2ωTω −zTz

)

+(Cz(x)+Dz(x)K(x))T (Cz(x)+Dz(x)K(x)) = Ξ̃(x).

(5.6)

Using (3.9) and adding̃Ξ(x) from (5.6), we have

V̇(x)≤∂V(x)
∂x

A(x)− 1
4

∂V(x)
∂x

Bu(x)B
T
u (x)

∂VT(x)
∂x

+

(
1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+

(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)T

+(Cz(x)+Dz(x)K(y))T (Cz(x)+Dz(x)K(y))

+
(
γ2ωTω −zTz

)
.

(5.7)

Thus, if (5.5) holds, we have

V̇(x)<−zTz+ γ2ωTω.

Integrating both sides of the inequality yields

∫ ∞

0
V̇(x)dt ≤

∫ ∞

0

(
−zTz+ γ2ωTω

)
dt,

V(x(∞))−V(x(0))≤
∫ ∞

0

(
−zTz+ γ2ωTω

)
dt.
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Noting that with initial conditionsx(0) = 0 andV(x(∞))≥ 0, we obtain

∫ ∞

0
zTzdt≤ γ2

∫ ∞

0
ωTωdt.

Hence (5.3) holds andH∞ performance is fulfilled. �

Theorem 5.2.2 The polynomial system(5.1) is stabilizable with prescribed H∞ perfor-

manceγ > 0 via state feedback(5.2), if there exist a polynomial function V(x) satisfying

(5.4), a polynomial vectorε(x) of appropriate dimensions, and a polynomial matrix K(x)

satisfying the following condition for∀x 6= 0

M(x) =




M11(x) (∗) (∗) (∗)

M21(x) −I (∗) (∗)

M31(x) 0 −I (∗)

M41(x) 0 0 −γ2I




≺ 0, (5.8)

with

M11(x) =
∂V(x)

∂x
A(x)+

1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

,

M21(x) =

(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)T

,

M31(x) =Cz(x)+Dz(x)K(x),

M41(x) =

(
1
2

∂V(x)
∂x

Bω(x)

)T

.

(5.9)
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Proof: Using (3.6) in (5.5) yields

∂V(x)
∂x

A(x)+

(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)T

+
1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

+

(
1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+(Cz(x)+Dz(x)K(x))T (Cz(x)+Dz(x)K(x))< 0,

(5.10)

which is a sufficient condition forH∞ stability. Applying Schur Complement results in

(5.8). �

With this, the following iterative SOS algorithm forH∞ control polynomial systems can

be proposed.

Step 1: Linearize system (5.1) and setω = 0. Use the state feedback approach described

in [82] to find a solution to the linearized problem without disturbance. Sett =

1,ε1(x) = xTP,V0 = xTPx.

Step 2: Solve the following SOS optimization problem inVt(x) andKt(x) with fixed aux-

iliary polynomial vectorεt(x) and some positive polynomialsλ1(x) andλ2(x):

Minimize αt

Subject toVt(x)−λ1(x) is a SOS,

−vT (Mα
t (x)+λ2(x)I)v is a SOS,

with

Mα
t (x),




M11(x)−αtVt−1(x) (∗) (∗) (∗)

M21(x) −I (∗) (∗)

M31(x) 0 −I (∗)

M41(x) 0 0 −γ2I




, (5.11)
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v of appropriate dimensions, andM11(x),M21(x),M31(x),M41(x) are as in (8.1)

with V(x),Vt(x),K(x), Kt(x), andε(x), εt(x).

If αt < 0, thenVt(x) andKt(x) represent a feasible solution to theH∞ state feed-

back control problem of polynomial systems. Terminate the algorithm.

Step 3: Sett = t +1 and solve the following SOS optimization problem inVt(x), Kt(x),

with Z(x) as in Proposition 1.3.2 and the SOS decomposition of the Lyapunov

functionVt(x) = Z(x)TQtZ(x),εt(x) = εt−1(x) as well as some positive polynomi-

alsλ1(x) andλ2(x):

Minimize trace(Qt)

Subject toVt(x)−λ1(x) is a SOS,

−vT (Nα
t (x)+λ2(x)I)v is a SOS,

with

Nα
t (x),




M11(x)−αt−1Vt(x) (∗) (∗) (∗)

M21(x) −I (∗) (∗)

M31(x) 0 −I (∗)

M41(x) 0 0 −γ2I




, (5.12)

v of appropriate dimensions, andM11(x),M21(x),M31(x),M41(x) are as in (8.1)

with V(x),Vt(x),K(x), Kt(x), andε(x), εt(x).

Step 4: Solve the following feasibility problem withv2 ∈ R
n+1 and some positive toler-

ance functionδ (x)> 0,x 6= 0:

vT
2




δ (x) (∗)
(

εt(x)− ∂Vt(x)
∂x

)T
1


v2 is a SOS.
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If the problem is feasible go to Step 5. Else, sett = t + 1 andεt(x) =
∂Vt−1(x)

∂x

determined in Step 3 and go to Step 2.

Step 5: The system (5.1) may not be stabilizable withH∞ performanceγ by state feedback

(5.2). Terminate the algorithm.

The term−1
2ε(x)Bu(x)BT

u (x)
∂VT(x)

∂x makes (5.8) non-convex, hence the inequality can-

not be solved directly by SOS decomposition. If, however, the auxiliary polynomial vector

ε(x) is fixed, (5.8) becomes convex and can be solved efficiently. Unfortunately, fixingε(x)

generally does not yield a feasible solution. Therefore, weintroduceαtVt−1(x) in (5.11)

to relax the SOS decomposition in (5.8). This corresponds tothe following Lyapunov in-

equalities:

Vt(x)>0,

V̇t(x)≤αtVt−1(x).

Similar Lyapunov inequalities can be obtained for (5.12). It is clear that any negativeα

in (5.11) or (5.12) yields a feasible solution of the SOS decomposition and the system (5.1)

with (5.2) can be stabilized withH∞ performanceγ with state feedback control.

Step 1 is the initialization of the iterative algorithm and necessary to find an initial

value ofε1(x) to use in the following iterations. The optimization problem in Step 2 is

a generalized eigenvalue minimization problem and guarantees the progressive reduction

of αt . Meanwhile, Step 3 ensures convergence of the algorithm. Step 4 updatesε(x) and

checks whether the iterative algorithm stalls, i.e. the gapbetweenε(x) and ∂V(x)
∂x is smaller

than some positive tolerance functionδ (x).

Note that the iterative algorithm increases the iteration variablet twice per cycle (in

Step 3 and Step 4). This is done to avoid confusion with the indexes.
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5.2.2 PolytropicH∞ Control Synthesis

The results from the previous section assume that all systemparameters are known exactly.

In this section, the results are extended to polynomial system with polytropic uncertainties.

Consider the system

ẋ=A(x,θ)+Bu(x,θ)u+Bω(x,θ)w,

z=Cz(x,θ)+Dz(x,θ)u,
(5.13)

where the matrices·(x,θ) are defined as follows

A(x,θ) =
q

∑
i=1

Ai(x)θi , Bu(x,θ) =
q

∑
i=1

Bui(x)θ , Bω(x,θ) =
q

∑
i=1

Bωi (x)θ ,

Cz(x,θ) =
q

∑
i=1

Czi(x)θ , Dz(x,θ) =
q

∑
i=1

Dzi(x)θ .
(5.14)

θ =

[
θ1, . . . ,θq

]T

∈ R
q is the vector of constant uncertainty and satisfies

θ ∈ Θ ,

{
θ ∈ R

q : θi ≥ 0, i = 1, . . . ,q,
q

∑
i=1

θi = 1

}
. (5.15)

We further define the following parameter dependent Lyapunov function

V(x) =
q

∑
i=1

Vi(x)θi . (5.16)

With the results from the previous section and the discussions in Chapter 3.2.2, we can

directly propose the theorem for robustH∞ state feedback controller design for polynomial

systems with polytropic uncertainties.

Theorem 5.2.3 The polynomial system with parametric uncertainties(5.13)is stabilizable

with prescribed H∞ performanceγ > 0 via state feedback control(5.2) if there exist a poly-

nomial function V(x) as in (5.16), a polynomial vectorε(x) = ∑q
i=1εi(x)θi of appropriate

dimensions, a polynomial matrix K(x), as well as some positive functionsλ1(x) > 0 and
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λ2(x)> 0 satisfying the following conditions for x6= 0, i = 1, . . . ,q:

Vi(x)> 0 (5.17)

and

M(x) =
q

∑
i=1

Mi(x)θi , (5.18)

with

Mi(x) =




Mi
11(x) (∗) (∗) (∗)

Mi
21(x) −I (∗) (∗)

Mi
31(x) 0 −I (∗)

Mi
41(x) 0 0 −γ2I




≺ 0, (5.19)

with Mi
11(x),M

i
21(x),M

i
31(x),M

i
41(x) as in(5.9) for each subsystem of(5.13), respectively.

Proof: This follows directly from Theorem 5.2.2. �

The iterative algorithm from the previous section can be adjusted to reflect the changes

from Theorem 5.2.2 to Theorem 5.2.3 as follows.

Step 1: Linearize each system from (5.13) and setω = 0. Use the state feedback approach

described in [82] to find a solution to each of the linearized problems without

disturbance. Fori = 1, . . . ,q, sett = 1 and[εi(x)]1 = xTPi , [Vi(x)]0 = xTPix.

Step 2: Solve the following SOS optimization problem in[Vi(x)]t and Kt(x) with fixed

auxiliary polynomial vectors[εi(x)]t and some positive polynomialsλ1 andλ2 for
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i = 1, . . . ,q:

Minimize αt

Subject to[Vi(x)]t −λ1(x), is a SOS,

−vT ([Mα
i (x)]t +λ2(x)I)v is a SOS,

with

[Mα
i (x)]t ,




Mi
11(x)−αt [Vi(x)]t−1 (∗) (∗) (∗)

Mi
21(x) −I (∗) (∗)

Mi
31(x) 0 −I (∗)

Mi
41(x) 0 0 −γ2I




, (5.20)

v of appropriate dimensions, andMi
11(x),M

i
21(x),M

i
31(x),M

i
41(x) are as in (5.9)

with V(x) , [Vi(x)]t ,K(y) , Kt(y), andε(x) , [εi(x)]t for each subsystem of

(5.14), respectively.

If αt < 0, thenVt(x) = ∑q
i=1 [Vi(x)]t θi andKt(x) represent a feasible solution. Ter-

minate the algorithm.

Step 3: Sett = t +1 and solve the following SOS optimization problem in[Vi(x)]t ,Kt(x),

with Z(x) as in Proposition 1.3.2 and the SOS decomposition of[Vi(x)]t =

Z(x)T [Qi ]t Z(x), and [εi(x)]t = [εi(x)]t−1 as well as some positive polynomials

λ1(x) andλ2(x) for i = 1, . . . ,q:

Minimize
q

∑
i=1

trace([Qi ]t)

Subject to[Vi(x)]t −λ1(x) is a SOS,

−vT ([Nα
i (x)]t +λ2(x)I)v is a SOS,
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with

[Nα
i (x)]t ,




Mi
11(x)−αt−1 [Vi(x)]t (∗) (∗) (∗)

Mi
21(x) −I (∗) (∗)

Mi
31(x) 0 −I (∗)

Mi
41(x) 0 0 −γ2I




, (5.21)

v of appropriate dimensions, andMi
11(x),M

i
21(x),M

i
31(x),M

i
41(x) as in (5.9) with

V(x) , [Vi(x)]t ,K(x) , Kt(x), andε(x) , [εi(x)]t for each subsystem of (5.13),

respectively.

Step 4: Solve the following feasibility problem withv2 ∈ R
n+1 and some positive toler-

ance functionδ (x)> 0,x 6= 0 for i = 1, . . . ,q:

vT
2




δ (x) (∗)
(

ε i
t (x)− ∂V i

t (x)
∂x

)T
1


v2 is a SOS.

If the problem is feasible go to Step 5. Else, sett = t+1 and[εi(x)]t =
[

∂Vi(x)
∂x

]
t−1

,

for i = 1, . . . ,q determined in Step 3 and go to Step 2.

Step 5: The system (5.13) may not be stabilizable withH∞ performanceγ by state feed-

back control (5.2). Terminate the algorithm. �

5.3 Numerical Example

Consider the following polynomial system with norm-boundeduncertainties withβ ∈

[−1,1]:
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Figure 5.1: Regulated output

ẋ=



−x1+x2

1− 3
2x3

1− 3
8x1x2

2+
1
4x2−x2

1x2− 1
4x3

2

0


+




0

1.1


u+




1.25

0


ω,

+β







3
8x1x2

2− 1
4x3

2

0


+




0

0.1


u+




0.25

0


ω


 ,

z=u.

(5.22)

We selectλ1(x) = λ2(x) = δ (x) = 0.01
(
x2

1+x2
2

)
, set the controller to be a function of

x up to a degree of 3 and choose to look for Lyapunov function candidates of degree 4. The

ISOS algorithm terminates with a feasible solution forγ2 = 1.423 after 3 iterations with

very small coefficients for the higher order terms inK(x). Thus, we initializeε i
t (x) =

∂Vi(x)
∂x ,

adjustK(x) to be linear and rerun the algorithm for a linear controller.After 3 iterations,

the followingH∞ controller for the polynomial system (6.14) with polytropic uncertainties
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Figure 5.2: Energy ratioE(τ) =
∫ τ
0 zTzdt∫ τ

0 ωTωdt

has been obtained

K(x) = 1.137x1−0.653x2, (5.23)

with Lyapunov functions

Q0 =




1.2940 −0.0322 0.1408 0.0515 −0.0128

−0.0322 0.6587 −0.0028 −0.0367 −0.1138

0.1408 −0.0028 0.3003 0.1737 −0.1311

0.0515 −0.0367 0.1737 0.5404 0.3576

−0.0128 −0.1138 −0.1311 0.3576 1.0156




(5.24)

91



Chapter 5: Nonlinear Control for Polynomial Systems with Polytropic Uncertainties

and

Q1 =




0.2912 −0.0485 −0.0169 −0.0093 0.0068

−0.0485 0.4639 0.0015 −0.0065 −0.0033

−0.0169 0.0015 0.1692 0.0942 −0.1621

−0.0093 −0.0065 0.0942 0.2807 0.0054

0.0068 −0.0033 −0.1621 0.0054 0.6608




(5.25)

for Vi(x) = Z(x)TQiZ(x), i = 1,2 andZ(x) =

[
x1 x2 x2

2 x1x2 x2
2

]T

.

Once again, it was possible to obtain alinear controller for thepolynomialsystem.

For initial statesxT
0 =

[
10 10

]T

and a disturbance modelled with Gaussian white noise

with power density spectrum of 0.01, the trajectories of theregulated output are depicted

in Figure 5.1. Figure 5.2 depicts the overall energy in the system. It can be observed that

E(τ) =
∫ τ
0 zTz∫ τ

0 ωTω falls below the prescribed performance value after 20 seconds for β = 1,

and after around 50 seconds for any admissible value ofβ .

5.4 Conclusion

An iterative procedure to obtain aH∞ state feedback controller for polynomials with poly-

tropic uncertainties has been presented in this section. Sufficient conditions for the exis-

tence of aH∞ controller have been derived in terms of bilinear matrix inequalities. An

iterative algorithm has been proposed that results in a polynomial controller that avoids ra-

tional components encountered when inverting the Lyapunovfunction in traditional control

approaches. Further, the Lyapunov function has been shown to be true function of all sys-

tem states and is not restricted to only incorporates stateswhich corresponding rows in the

control matrix are zeros. A numerical example has been provided to show the effectiveness

of the proposed approach.
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Chapter 6

Robust NonlinearH∞ State Feedback

Control for Polynomial Systems with

Norm-Bounded Uncertainties

6.1 Introduction

The motivation for this chapter stems from the concepts provided in the previous chapters.

In dealing with real life applications, we would like to ensure that our controller is robust

enough to stabilize the system in the presence of disturbances. Furthermore, it is desirable

to ensure that the controller is optimized in a way that the overall system response ensures

that the effect of disturbances on the system output is minimized. This chapter is organized

as follows. In section 6.2, the main results for the robust nonlinear H∞ state feedback

control problem for polynomial systems with norm-bounded uncertainties are presented.

A numerical example is provided in section 6.3 to showcase the validity of the design

approach before the chapter is concluded with final remarks in section 6.4.

93



Chapter 6: Robust NonlinearH∞ State Feedback Control for Polynomial Systems with
Norm-Bounded Uncertainties

6.2 Main Results

Consider the following polynomial system with norm-boundeduncertainties

ẋ= A(x)+Bu(x)+Bω(x)+∆A(x)+∆Bu(x),

z=Cz(x)+Dz(x)u,
(6.1)

wherex∈ R
n are the system states,u∈ R

m is the input andz is the controlled output.A(x)

andCz(x) are polynomial vectors andBu,Bω ,Dz are polynomial matrices of appropriate

dimensions. The disturbance signal isω, whereas the norm-bounded uncertainties of the

system are captured in∆A(x) and∆Bu(x). The objective of a state feedbackH∞ control is

to find a controllerK(x) such that the system (6.1) with

u= K(x) (6.2)

is asymptotically stable and theL2 gain from the disturbance input to the controlled output

is less than a prescribed valueγ > 0, that is

∫ ∞

0
zTzdt≤ γ2

∫ ∞

0
ωTωdt. (6.3)

The following assumption is used for the norm-bounded uncertainty

Assumption 6.2.1 The admissible parameter uncertainties considered here are assumed

to be norm-bounded and can be described as

[
∆A(x) ∆B(x)

]
= H(x)F(x)

[
E1(x) E2(x)

]
, (6.4)

94



Chapter 6: Robust NonlinearH∞ State Feedback Control for Polynomial Systems with
Norm-Bounded Uncertainties

with known polynomial matrices H(x),E1(x),E2(x) of appropriate dimensions and F(x)

being an unknown state-depended matrix that satisfies

‖FT(x)F(x)‖ ≤ I . (6.5)

Theorem 6.2.1 The polynomial system(6.1) is stabilizable with a prescribed H∞ perfor-

manceγ > 0 via state feedback controller(6.2) if there exist a polynomial function V(x)

and a polynomial matrix K(x) such that∀x 6= 0

V(x)> 0 (6.6)

and
∂V(x)

∂x
A(x)− 1

4
∂V(x)

∂x
Bu(x)B

T
u (x)

∂VT(x)
∂x

+

(
1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+

(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)T

+(Cz(x)+Dz(x)K(y))T (Cz(x)+Dz(x)K(y))

+
1
2

∂V(x)
∂x

H(x)F(x)F(x)TH(x)T ∂VT(x)
∂x

+
1
2
(E1(x)+E2(x)K(x))T (E1(x)+E2(x)K(x))< 0.

(6.7)

Proof: The proof follows directly from Theorem 4.2.1 and Theorem 5.2.1. �

Theorem 6.2.2 The polynomial system(6.1) is stabilizable with H∞ normγ > 0 via poly-

nomial state feedback control and

u= K(x) (6.8)

if there exist a Lyapunov function V(x), a polynomial design vectorε(x) of appropriate

dimensions satisfying the following conditions for x6= 0

V(x)> 0, (6.9)
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and

M(x) =




M11(x) (∗) (∗) (∗) (∗) (∗)

M21(x) −I (∗) (∗) (∗) (∗)

M31(x) 0 −2I (∗) (∗) (∗)

M41(x) 0 0 −2I (∗) (∗)

M51(x) 0 0 0 −I (∗)

M61(x) 0 0 0 0 −γ2




≺ 0, (6.10)

where

M11(x) =
∂V(x)

∂x
A(x)+

1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

,

M21(x) =

(
1
2

∂V(x)
∂x

Bu(x)+KT(x)

)T

,

M31(x) =(E1(x)+E2(x)K(x)) ,

M41(x) =HT(x)
∂VT(x)

∂x
,

M51(x) =Cz(x)+Dz(x)K(x),

M61(x) =

(
1
2

∂V(x)
∂x

Bω(x)

)T

.

(6.11)

Proof: This follows directly from applying Schur Complement to Theorem 6.2.1. �

The term−1
2ε(x)Bu(x)BT

u (x)
∂VT(x)

∂x makes (6.10) nonconvex, hence the inequality can-

not be solved directly by SOS decomposition. Therefore, thefollowing iterative SOS algo-

rithm is proposed

Step 1: Linearize the system (6.1) and setω = 0,F(x) = 0. Use the state feedback ap-

proach described in [82] to find a solution to the linearized problem without dis-

turbance. Sett = 1 andε1(x) = xTP,V0 = xTPx.
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Step 2: Solve the following SOS optimization problem inVt(x) andKt(x) with fixed aux-

iliary polynomial vectorεt(x) and some positive polynomialsλ1(x) andλ2(x):

Minimize αt

Subject toVt(x)−λ1(x) is a SOS,

−vT (Mα
t (x)+λ2(x)I)v is a SOS,

with

Mα
t (x),




M11(x)−αtV(x)t−1 (∗) (∗) (∗) (∗) (∗)

M21(x) −I (∗) (∗) (∗) (∗)

M31(x) 0 −2I (∗) (∗) (∗)

M41(x) 0 0 −2I (∗) (∗)

M51(x) 0 0 0 −I (∗)

M61(x) 0 0 0 0 −γ2




, (6.12)

v of appropriate dimensions, andM11(x),M21(x),M31(x),M41(x),M51(x),M61(x)

are as in (6.11) withV(x),Vi(x)t ,K(x), Kt(x), andε(x), εt(x).

If αt < 0, thenVt(x) = V(x)t andKt(x) represent a feasible solution. Terminate

the algorithm.

Step 3: Sett = t +1 and solve the following SOS optimization problem inV(x)t ,Kt(x),

with Z(x) of appropriate dimensions as in Proposition 1.3.1 and the SOS decom-

position ofV(x)t = Z(x)TQtZ(x), andε(x)t = ε(x)t−1 as well as some positive
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polynomialsλ1(x) andλ2(x):

Minimize trace(Qt)

Subject toVt(x)−λ1(x) is a SOS,

−vT (Nα
t (x)+λ2(x)I)v is a SOS,

with

Nα
t (x),




M11(x)−αt−1V(x)t (∗) (∗) (∗) (∗) (∗)

M21(x) −I (∗) (∗) (∗) (∗)

M31(x) 0 −2I (∗) (∗) (∗)

M41(x) 0 0 −2I (∗) (∗)

M51(x) 0 0 0 −I (∗)

M61(x) 0 0 0 0 −γ2




, (6.13)

v of appropriate dimensions, andM11(x),M21(x),M31(x),M41(x),M51(x),M61(x)

are as in (6.11) withV(x),Vi(x)t ,K(x), Kt(x), andε(x), εt(x).

Step 4: Solve the following feasibility problem withv2 ∈ R
n+1 and some positive toler-

ance functionδ (x)> 0,x 6= 0 for i = 1, . . . ,q:

vT
2




δ (x) (∗)
(

εt(x)− ∂Vt(x)
∂x

)T
1


v2 is a SOS.

If the problem is feasible go to Step 5. Else, sett = t + 1 andεt(x) =
∂Vt−1(x)

∂x

determined in Step 3 and go to Step 2.

Step 5: The system (6.1) may not be stabilizable withH∞ performanceγ by state feedback

control (6.2). Terminate the algorithm.
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Figure 6.1: Energy ratioE(τ) =
∫ τ
0 zTzdt∫ τ

0 ωTωdt

6.3 Numerical Example

Consider the following polynomial system with polytropic uncertainties

ẋ=A(x)+B(x)u+H(x)F(x)(E1(x)+E2(x)u)+Bωω,

A(x) =



−x1+x2

1− 3
2x3

1− 3
8x1x2

2+
1
4x2−x2

1x2− 1
4x3

2

0


 ,

B(x) =




0

1


 , Bω =




1.25

0


 , H(x) = 1,

E1(x) =




3
8x1x2

2− 1
4x3

2

0


 , E2(x) =




0

0.2


 , F(x) = I sin(x)

z=u.

(6.14)

We selectλ1(x) = λ2(x) = δ (x) = 0.01
(
x2

1+x2
2

)
, set the controller to be a function of

x up to a degree of 3 and choose to look for Lyapunov function candidates of degree 4.
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The ISOS algorithm terminates without finding a feasible solution. Therefore, the degree

of the Lyapunov function candidate is increased to 6 and the algorithm is restarted. The

ISOS algorithm terminates with a feasible solution forγ2 = 1.783 after 3 iterations with

very small coefficients for the higher order terms inK(x). Thus, we set these to zero,

initialize ε1(x) =
∂V(x)

∂x from the previous solution and rerun the algorithm for a linear

controller. After 3 iterations, the followingH∞ controller for the polynomial system (6.14)

with polytropic uncertainties has been obtained

K(x) =−1.893x1−2.642x2, (6.15)

Note that the Lyapunov function is omitted here due to its size. The smallest eigenvalue

of Q has been found as 1.376×10−3.

Once again, it was possible to obtain alinear controller for thepolynomialsystem.

The disturbance has been modelled as Gaussian white noise with power density spectrum

of 0.01, and Figure 6.1 shows the ratio of the regulated output energy to the noise energy

over time. The ratio clearly falls below the design threshold value ofγ2 after less than 60

seconds.

6.4 Conclusion

An iterative design algorithm for the problem of designing arobustH∞ controller for poly-

nomial systems with norm-bounded uncertainties has been presented in this chapter. In

detail, sufficient conditions for the existence of a controller that stabilizes the system with

H∞ performanceγ in the presence of norm-bounded uncertainties has been derived in the

form of polynomial matrix inequalities. The nonconvex components of these conditions

have been addressed using an iterative design algorithm, and a numerical example has been

provided to show the effectiveness of the proposed procedure. Furthermore, it was possible

to obtainlinear controller gains for thepolynomialsystem.
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Chapter 7

Nonlinear H∞ Output Feedback Control

for Polynomial Systems with Polytropic

Uncertainties

7.1 Introduction

The results in Chapters 3 to 6 were derived under the assumption that all system states are

available for the controller design. This is, however, onlyrarely the case in real life control

problems. Therefore, a lot of research has been undertaken in the field of static output

control, see [96] and references therein for a comprehensive survey. Among other things,

the authors prove that any dynamic output feedback problem can be transformed into a

static output feedback problem. Therefore, it is possible to design a full order dynamic

output feedback control law within the framework of static output feedback control. The

converse, however, is not true.

Compared to the linear case, the study of polynomial static output feedback is a rather

new field, see for example [33, 26]. In relation to the design of state feedback control for

polynomial systems, the design of a static output feedback controller represents a more
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complex problem and several approaches to deal with the resulting problems have been

proposed. In particular, [33] suggests to use the Hermite Stability Criterion and use a

SOS/moment primal/dual approach to generate a monotone sequence that converges to the

global optimum. In [26], an upper bound is introduced to limit the effect of the nonconvex

terms. To determine a suitable upper bound is, however, hardand the overall closed loop

stability can only be guarantee in a neighborhood of the origin.

In this chapter, the design problem of nonlinearH∞ output feedback for polynomial sys-

tems is discussed. In 7.2 the results for a nominal polynomial system are presented in form

of solvability conditions of polynomial matrix inequalities that are subsequently addressed

by a relaxation of the nonconvex terms and solved with an interactive SOS algorithm. The

presented framework is successively extended to the case ofpolynomial systems with poly-

tropic uncertainties. In 7.3 a numerical example is provided to show the effectiveness of

the proposed design. Some closing remarks are made in 7.4.

7.2 Main Results

The first part of this section investigates the problem of designing aH∞ output feedback

controller for a polynomial system. In the second part, the results are extended to the case

of polynomial system with polytropic uncertainties.

7.2.1 NonlinearH∞ Output Feedback Control for Polynomial Systems

Consider the following dynamic model of a polynomial system

ẋ=A(x)+Bu(x)u+Bω(x)ω,

y=Cy(x)+Dy(x)u,

z=Cz(x)+Dz(x)u,

(7.1)
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whereω ∈ R
p is the disturbance input,y and z are the measured and regulated output,

respectively.A(x),Cy(x),Cz(x) are polynomial vectors andBu(x),Bω(x),Cz(x),Dz(x) are

polynomial matrices of appropriate dimensions. The objective of static output feedback

H∞ control is to find a controllerK(y) such that the closed-loop system with

u= K(y) (7.2)

is asymptotically stable and theL2 gain from the disturbance input to the controlled output

is less than a prescribed valueγ > 0. In detail, the following condition must hold:

∫ ∞

0
zTzdt≤ γ2

∫ ∞

0
ωTωdt. (7.3)

Theorem 7.2.1 The polynomial system(7.1) is stabilizable with a prescribed H∞ perfor-

manceγ > 0 via static output feedback(7.2) if there exist a polynomial function V(x) and

a polynomial matrix K(y) such that for∀x 6= 0 such that

V(x)>0, (7.4)

and
∂V(x)

∂x
A(x)− 1

4
∂V(x)

∂x
Bu(x)B

T
u (x)

∂VT(x)
∂x

+

(
1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+

(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)T

+(Cz(x)+Dz(x)K(y))T (Cz(x)+Dz(x)K(y))< 0.

(7.5)

103



Chapter 7: Robust Output Feedback Control for Polytropic Polynomial Systems

Proof: Note that for∀x 6= 0

V̇(x) =
∂V(x)

∂x
[A(x)+Bu(x)K(y)+Bω(x)ω]

≤∂V(x)
∂x

[A(x)+Bu(x)K(y)+Bω(x)ω]+
(
γωTω −zTz

)

−
(
γωTω −zTz

)
+KT(y)K(y)

=
∂V(x)

∂x
A(x)− 1

4
∂V(x)

∂x
Bu(x)B

T
u (x)

∂VT(x)
∂x

+Θ(x,y)Θ(x,y)T

+

(
1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+zTz

−Θω(x,ω)Θω(x,ω)T +
(
γ2ωTω −zTz

)

≤∂V(x)
∂x

A(x)− 1
4

∂V(x)
∂x

Bu(x)B
T
u (x)

∂VT(x)
∂x

+Θ(x,y)Θ(x,y)T

+

(
1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+zTz

+
(
γ2ωTω −zTz

)
,

(7.6)

with

Θ(x,y) =

(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)

Θω(x,ω) =

(
1
2γ

∂V(x)
∂x

Bω(x)− γωT
)
.

Thus, if there exist aV(x)> 0 such that (7.5) holds, it follows that

V̇(x)<−zTz+ γ2ωTω.

Integrating both sides of the inequality yields

∫ ∞

0
V̇(x)dt ≤

∫ ∞

0

(
−zTz+ γ2ωTω

)
dt,

V(x(∞))−V(x(0))≤
∫ ∞

0

(
−zTz+ γ2ωTω

)
dt.
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Noting that with initial conditionsx(0) = 0 andV(x(∞))≥ 0, we obtain

∫ ∞

0
zTzdt≤ γ2

∫ ∞

0
ωTωdt. (7.7)

Hence (7.5) holds andH∞ performance is fulfilled.

To proof asymptotic stability for the closed-loop system (7.1) with (7.2), the disturbance

is setω(t)= 0. From (7.7) it is obvious thaṫV(x)< 0, hence the Lyapunov stability theorem

is fulfilled and the closed-loop system (7.1) with (7.2) is asymptotically stable. �

Theorem 7.2.2 The polynomial system(7.1) is stabilizable with prescribed H∞ perfor-

manceγ > 0 via static output feedback(7.2), if there exist a polynomial function V(x)

satisfying(7.4)and(7.5), a polynomial vectorε(x) of appropriate dimensions, and a poly-

nomial matrix K(y) satisfying the following condition for∀x 6= 0

M(x,y) =




M11(x) (∗) (∗) (∗)

M21(x,y) −I (∗) (∗)

M31(x,y) 0 −I (∗)

M41(x) 0 0 −γ2I




≺ 0, (7.8)

with

M11(x) =
∂V(x)

∂x
A(x)+

1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

,

M21(x,y) =

(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)T

,

M31(x,y) =Cz(x)+Dz(x)K(y),

M41(x) =

(
1
2

∂V(x)
∂x

Bω(x)

)T

.

(7.9)
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Proof: Using (3.6) in (7.5) yields

∂V(x)
∂x

A(x)+

(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)T

+
1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

+

(
1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+(Cz(x)+Dz(x)K(y))T (Cz(x)+Dz(x)K(y))< 0,

(7.10)

which is a sufficient condition forH∞ stability. Applying Schur Complement results in

(7.8). �

With this, the following iterative SOS algorithm forH∞ control polynomial systems can

be proposed.

Step 1: Linearize system (7.1) and setω = 0. Use the static output feedback approach

described in [82] to find a solution to the linearized problemwithout disturbance.

Sett = 1,ε1(x) = xTP,V0 = xTPx.

Step 2: Solve the following SOS optimization problem inVt(x) andKt(y) with fixed aux-

iliary polynomial vectorεt(x) and some positive polynomialsλ1(x) andλ2(x):

Minimize αt

Subject toVt(x)−λ1(x) is a SOS,

−vT (Mα
t (x,y)+λ2(x)I)v is a SOS,

with

Mα
t (x,y),




M11(x)−αtVt−1(x) (∗) (∗) (∗)

M21(x,y) −I (∗) (∗)

M31(x,y) 0 −I (∗)

M41(x) 0 0 −γ2I




, (7.11)
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v of appropriate dimensions, andM11(x),M21(x,y),M31(x,y),M41(x) are as in

(7.9) withV(x),Vt(x),K(y), Kt(y), andε(x), εt(x).

If αt < 0, thenVt(x) andKt(y) represent a feasible solution to theH∞ static output

feedback control problem of polynomial systems. Terminatethe algorithm.

Step 3: Sett = t +1 and solve the following SOS optimization problem inVt(x), Kt(y),

with Z(x) as in Proposition 1.3.2 and the SOS decomposition of the Lyapunov

functionVt(x) = Z(x)TQtZ(x),εt(x) = εt−1(x) as well as some positive polynomi-

alsλ1(x) andλ2(x):

Minimize trace(Qt)

Subject toVt(x)−λ1(x) is a SOS,

−vT (Nα
t (x,y)+λ2(x)I)v is a SOS,

with

Nα
t (x,y),




M11(x)−αt−1Vt(x) (∗) (∗) (∗)

M21(x,y) −I (∗) (∗)

M31(x,y) 0 −I (∗)

M41(x) 0 0 −γ2I




, (7.12)

v of appropriate dimensions, andM11(x),M21(x,y),M31(x,y),M41(x) are as in

(7.9) withV(x),Vt(x),K(y), Kt(y), andε(x), εt(x).

Step 4: Solve the following feasibility problem withv2 ∈ R
n+1 and some positive toler-

ance functionδ (x)> 0,x 6= 0:

vT
2




δ (x) (∗)
(

εt(x)− ∂Vt(x)
∂x

)T
1


v2 is a SOS.
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If the problem is feasible go to Step 5. Else, sett = t + 1 andεt(x) =
∂Vt−1(x)

∂x

determined in Step 3 and go to Step 2.

Step 5: The system (7.1) may not be stabilizable withH∞ performanceγ by static output

feedback (7.2). Terminate the algorithm.

The term−1
2ε(x)Bu(x)BT

u (x)
∂VT(x)

∂x makes (7.5) non-convex, hence the inequality can-

not be solved directly by SOS decomposition. If, however, the auxiliary polynomial vector

ε(x) is fixed, (7.5) becomes convex and can be solved efficiently. Unfortunately, fixingε(x)

generally does not yield a feasible solution. Therefore, weintroduceαtVt−1(x) in (7.11)

to relax the SOS decomposition in (7.5). This corresponds tothe following Lyapunov in-

equalities:

Vt(x)>0,

V̇t(x)≤αtVt−1(x).

Similar Lyapunov inequalities can be obtained for (7.12). It is clear that any negativeα

in (7.11) or (7.12) yields a feasible solution of the SOS decomposition and the system (7.1)

with (7.2) can be stabilized withH∞ performanceγ with static output feedback control.

Step 1 is the initialization of the iterative algorithm and necessary to find an initial

value ofε1(x) to use in the following iterations. The optimization problem in Step 2 is

a generalized eigenvalue minimization problem and guarantees the progressive reduction

of αt . Meanwhile, Step 3 ensures convergence of the algorithm. Step 4 updatesε(x) and

checks whether the iterative algorithm stalls, i.e. the gapbetweenε(x) and ∂V(x)
∂x is smaller

than some positive tolerance functionδ (x).

Note that the iterative algorithm increases the iteration variablet twice per cycle (in

Step 3 and Step 4). This is done to avoid confusion with the indexes.
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7.2.2 PolytropicH∞ Output Feedback Synthesis

The results from the previous section assume that all systemparameters are known exactly.

In this section, the results are extended to polynomial system with polytropic uncertainties.

Consider the system

ẋ=A(x,θ)+Bu(x,θ)u+Bω(x,θ)w,

y=Cy(x,θ),

z=Dz(x,θ)+Dz(x,θ)u,

(7.13)

where the matrices·(x,θ) are defined as follows

A(x,θ) =
q

∑
i=1

Ai(x)θi , Bu(x,θ) =
q

∑
i=1

Bui(x)θ , Bω(x,θ) =
q

∑
i=1

Bωi (x)θ ,

Cy(x,θ) =
q

∑
i=1

Cyi(x)θ , Cz(x,θ) =
q

∑
i=1

Czi(x)θ , Dz(x,θ) =
q

∑
i=1

Dzi(x)θ .
(7.14)

θ =

[
θ1, . . . ,θq

]T

∈ R
q is the vector of constant uncertainty and satisfies

θ ∈ Θ ,

{
θ ∈ R

q : θi ≥ 0, i = 1, . . . ,q,
q

∑
i=1

θi = 1

}
. (7.15)

We further define the following parameter dependent Lyapunov function

V(x) =
q

∑
i=1

Vi(x)θi . (7.16)

With the results from the previous section and the discussions in Chapter 7.2.1, we

can directly propose the theorem for robustH∞ static output feedback controller design for

polynomial systems with polytropic uncertainties.

Theorem 7.2.3 The polynomial system with parametric uncertainties(7.13)is stabilizable

with prescribed H∞ performanceγ > 0 via static output feedback control(7.2) if there exist

a polynomial function V(x) as in(7.16), a polynomial vectorε(x) = ∑q
i=1εi(x)θi of appro-
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priate dimensions, a polynomial matrix K(y), as well as some positive functionsλ1(x)> 0

andλ2(x)> 0 satisfying the following conditions for x6= 0, i = 1, . . . ,q:

V1(x)> 0 (7.17)

and

M(x,y) =
q

∑
i=1

Mi(x,y)θi, (7.18)

with

Mi(x,y) =




Mi
11(x) (∗) (∗) (∗)

Mi
21(x,y) −I (∗) (∗)

Mi
31(x,y) 0 −I (∗)

Mi
41(x) 0 0 −γ2I




≺ 0, (7.19)

with Mi
11(x),M

i
21(x,y),y,M

i
31(x,y),M

i
41(x) as in(7.9) for each subsystem of(7.13), respec-

tively.

Proof: This follows directly from Theorem 7.2.2. �

The iterative algorithm from the previous section can be adjusted to reflect the changes

from Theorem 7.2.2 to Theorem 7.2.3 as follows.

Step 1: Linearize each system from (7.13) and setω = 0. Use the static output feedback

approach described in [82] to find a solution to each of the linearized problems

without disturbance. Fori = 1, . . . ,q, sett = 1 and[εi(x)]1 = xTPi , [Vi(x)]0 = xTPix.

Step 2: Solve the following SOS optimization problem in[Vi(x)]t and Kt(y) with fixed

auxiliary polynomial vectors[εi(x)]t and some positive polynomialsλ1 andλ2 for
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i = 1, . . . ,q:

Minimize αt

Subject to[Vi(x)]t −λ1(x), is a SOS,

−vT ([Mα
i (x)]t +λ2(x)I)v is a SOS,

with

[Mα
i (x,y)]t ,




Mi
11(x)−αt [Vi(x)]t−1 (∗) (∗) (∗)

Mi
21(x,y) −I (∗) (∗)

Mi
31(x,y) 0 −I (∗)

Mi
41(x) 0 0 −γ2I




, (7.20)

v of appropriate dimensions, andMi
11(x),M

i
21(x,y),M

i
31(x,y),M

i
41(x) are as in

(7.9) with V(x) , [Vi(x)]t ,K(y) , Kt(y), andε(x) , [εi(x)]t for each subsystem

of (7.13), respectively.

If αt < 0, thenVt(x) = ∑q
i=1 [Vi(x)]t θi andKt(y) represent a feasible solution. Ter-

minate the algorithm.

Step 3: Sett = t +1 and solve the following SOS optimization problem in[Vi(x)]t ,Kt(y),

with Z(x) as in Proposition 1.3.2. Further, the SOS decomposition of[Vi(x)]t =

Z(x)T [Qi ]t Z(x), and [εi(x)]t = [εi(x)]t−1 as well as some positive polynomials

λ1(x) andλ2(x) for i = 1, . . . ,q:

Minimize
q

∑
i=1

trace([Qi ]t)

Subject to[Vi(x)]t −λ1(x) is a SOS,

−vT ([Nα
i (x,y)]t +λ2(x)I)v is a SOS,
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with

[Nα
i (x,y)]t ,




Mi
11(x)−αt−1 [Vi(x)]t (∗) (∗) (∗)

Mi
21(x,y) −I (∗) (∗)

Mi
31(x,y) 0 −I (∗)

Mi
41(x) 0 0 −γ2I




, (7.21)

v of appropriate dimensions, andMi
11(x),M

i
21(x,y),M

i
31(x,y),M

i
41(x) as in (7.9)

with V(x) , [Vi(x)]t ,K(y) , Kt(y), andε(x) , [εi(x)]t for each subsystem of

(7.13), respectively.

Step 4: Solve the following feasibility problem withv2 ∈ R
n+1 and some positive toler-

ance functionδ (x)> 0,x 6= 0 for i = 1, . . . ,q:

vT
2




δ (x) (∗)
(

ε i
t (x)− ∂V i

t (x)
∂x

)T
1


v2 is a SOS.

If the problem is feasible go to Step 5. Else, sett = t+1 and[εi(x)]t =
[

∂Vi(x)
∂x

]
t−1

,

for i = 1, . . . ,q determined in Step 3 and go to Step 2.

Step 5: The system (7.13) may not be stabilizable withH∞ performanceγ by static output

feedback control (7.2). Terminate the algorithm. �

7.3 Numerical Example

Consider the following polynomial system with polytropic uncertainties withβ ∈ [−1,1]:
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Figure 7.1: Regulated output

ẋ=



−x1+x2

1− 3
2x3

1− 3
8x1x2

2+
1
4x2−x2

1x2− 1
4x3

2

0


+




0

1.1


u+




1.25

0


ω,

+β







3
8x1x2

2− 1
4x3

2

0


+




0

0.1


u+




0.25

0


ω


 ,

y=x1−x2,

z=u.

(7.22)

First, we bring (7.22) in form of (7.13) by settingθ1 = 1,θ2 = 0 for β = −1 and

θ1 = 0,θ2 = 1 for β = 1. Next, we selectλ1(x) = λ2(x) = δ (x) = 0.01
(
x2

1+x2
2

)
, set

the controller to be a function ofy up to a degree of 3 and choose to look for Lyapunov

function candidates of degree 6. The ISOS algorithm terminates with a feasible solution

for γ2 = 1.423 after 3 iterations with very small coefficients for the higher order terms in
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K(y). Thus, we set these to zero, initializeε i
1(x) =

∂V i(x)
∂x from the previous results and

rerun the algorithm for a linear controller. After 3 iterations, the followingH∞ controller

for the polynomial system (6.14) with polytropic uncertainties has been obtained:

K(y) = 0.389y. (7.23)

The Lyapunov function matrices have been omitted here due totheir size. The smallest

eigenvalue ofQ1,Q2 were obtained as 1.781×10−4 and 3.564×10−3, respectively. Once

again, it was possible to obtain alinear controller for thepolynomialsystem. For initial

statesxT
0 =

[
10 10

]T

and a disturbance modelled with Gaussian white noise with power

density spectrum of 0.01. The regulated output for different values ofβ are shown in Figure

7.1, with the state trajectories depicted in Figure 7.2. Figure 7.3 shows the progression of

the Energy ratio over timeE(τ) =
∫ τ
0 zTzdt∫ τ

0 ωTωdt
. It can be observed that the system is falls below
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the prescribed performance value after around 22 seconds for for all admissible values of

β .

7.4 Conclusion

An iterative procedure to obtain aH∞ static output feedback controller for polynomials with

polytropic uncertainties has been presented in this section. Sufficient conditions for the ex-

istence of aH∞ controller have been derived in terms of bilinear matrix inequalities. An

iterative algorithm has been proposed that results in a polynomial controller that avoids ra-

tional components encountered when inverting the Lyapunovfunction in traditional control

approaches. Further, the Lyapunov function has been shown to be true function of all sys-

tem states and is not restricted to only incorporates stateswhich corresponding rows in the

control matrix are zeros. A numerical example has been provided to show the effectiveness

of the proposed approach.
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Chapter 8

Robust NonlinearH∞ Output Feedback

Control for Polynomial Systems with

Norm-Bounded Uncertainties

8.1 Introduction

In this chapter, the problem of designing a robustH∞ static output feedback controller for

polynomial systems with norm-bounded uncertainties is investigated. In detail, section 8.2

will outline how the state feedback results from chapter 6 can be extended to the static

output case. A numerical example will be presented in section 8.3 before this chapter

concludes with some final remarks in section 8.4.
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8.2 Main Results

Consider the following polynomial system with norm-boundeduncertainties

ẋ= A(x)+Bu(x)+Bω(x)+∆A(x)+∆Bu(x),

y=Cy(x)+Dy(x)u,

z=Cz(x)+Dz(x)u,

(8.1)

wherex∈R
n are the system states,u∈R

m is the input,y andzare the measured output and

the controlled output, respectively.A(x),Cy(x),Cz(x) are polynomial vectors andBu,Bω ,Dz

are polynomial matrices of appropriate dimensions. The disturbance signal isω, whereas

the norm-bounded uncertainties of the system are captured in ∆A(x) and ∆Bu(x). The

objective of a state feedbackH∞ control is to find a controllerK(y) such that the system

(8.1) with

u= K(y) (8.2)

is asymptotically stable and theL2 gain from the disturbance input to the controlled output

is less than a prescribed valueγ >−, that is

∫ ∞

0
zTzdt≤ γ2

∫ ∞

0
ωTωdt. (8.3)

The following assumption is used for the norm-bounded uncertainty

Assumption 8.2.1 The admissible parameter uncertainties considered here are assumed

to be norm-bounded and can be described as

[
∆A(x) ∆Bu(x)

]
= H(x)F(x)

[
E1(x) E2(x)

]
, (8.4)
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with known polynomial matrices H(x),E1(x),E2(x) of appropriate dimensions and F(x)

being an unknown state-depended matrix that satisfies

‖FT(x)F(x)‖ ≤ I . (8.5)

Theorem 8.2.1 The polynomial system(8.1) is stabilizable with a prescribed H∞ perfor-

manceγ > 0 via static output feedback controller(8.2) if there exist a polynomial function

V(x) and a polynomial matrix K(y) such that∀x 6= 0

V(x)> 0 (8.6)

and
∂V(x)

∂x
A(x)− 1

4
∂V(x)

∂x
Bu(x)B

T
u (x)

∂VT(x)
∂x

+

(
1
2

∂V(x)
∂x

Bω(x)

)
1
γ2

(
1
2

∂V(x)
∂x

Bω(x)

)T

+

(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)T

+(Cz(x)+Dz(x)K(y))T (Cz(x)+Dz(x)K(y))

+
1
2

∂V(x)
∂x

H(x)F(x)F(x)TH(x)T ∂VT(x)
∂x

+
1
2
(E1(x)+E2(x)K(y))T (E1(x)+E2(x)K(y))< 0.

(8.7)

Proof: The proof can be obtained in a similar manner as has been done for the state

feedback case in Chapter 6 for Theorem 6.2.1. �

Theorem 8.2.2 The polynomial system(8.1) is stabilizable with H∞ normγ > 0 via poly-

nomial static output feedback control(8.2) if there exist a Lyapunov function V(x), a poly-

nomial design vectorε(x) of appropriate dimensions and a controller matrix K(y) as in

(8.2)satisfying the following conditions for x6= 0

V(x)> 0, (8.8)
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and

M(x,y) =




M11(x) (∗) (∗) (∗) (∗) (∗)

M21(x,y) −I (∗) (∗) (∗) (∗)

M31(x,y) 0 −2I (∗) (∗) (∗)

M41(x) 0 0 −2I (∗) (∗)

M51(x,y) 0 0 0 −I (∗)

M61(x) 0 0 0 0 −γ2




≺ 0, (8.9)

where

M11(x) =
∂V(x)

∂x
A(x)+

1
4

ε(x)Bu(x)B
T
u (x)εT(x)− 1

2
ε(x)Bu(x)B

T
u (x)

∂VT(x)
∂x

,

M21(x,y) =

(
1
2

∂V(x)
∂x

Bu(x)+KT(y)

)T

,

M31(x,y) =(E1(x)+E2(x)K(y)) ,

M41(x) =HT(x)
∂VT(x)

∂x
,

M51(x,y) =Cz(x)+Dz(x)K(y),

M61(x) =

(
1
2

∂V(x)
∂x

Bω(x)

)T

.

(8.10)

Proof: This follows directly from applying Schur Complement to Theorem 8.2.2. �

The term−1
2ε(x)Bu(x)BT

u (x)
∂VT(x)

∂x makes (8.9) nonconvex, hence the inequality can-

not be solved directly by SOS decomposition. The following iterative SOS algorithm is

proposed

Step 1: Linearize the system (8.1) and setω = 0,F(x) = 0. Use the static output feedback

approach described in [82] to find a solution to each of the linearized problems

without disturbance. Fori = 1, . . . ,q, sett = 1 andε1(x) = xTP,V0(x) = xTPx.
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Step 2: Solve the following SOS optimization problem inVt(x) andKt(y) with fixed aux-

iliary polynomial vectorεt(x) and some positive polynomialsλ1(x) andλ2(x):

Minimize αt

Subject toVt(x)−λ1(x) is a SOS,

−vT (Mα
t (x,y)+λ2(x)I)v is a SOS,

with

Mα
t (x,y),




M11(x)−αtVt−1(x) (∗) (∗) (∗) (∗) (∗)

M21(x,y) −I (∗) (∗) (∗) (∗)

M31(x,y) 0 −2I (∗) (∗) (∗)

M41(x) 0 0 −2I (∗) (∗)

M51(x,y) 0 0 0 −I (∗)

M61(x) 0 0 0 0 −γ2




, (8.11)

vof appropriate dimensions, andM11(x),M21(x,y),M31(x,y),M41(x),M51(x,y),M61(x)

are as in (8.10) withV(x),Vt(x),K(y), Kt(y), andε(x), εt(x).

If αt < 0, thenVt(x) =Vt(x) andKt(y) represent a feasible solution. Terminate the

algorithm.

Step 3: Sett = t + 1 and solve the following SOS optimization problem inVt(x),Kt(y),

with Z(x) as in Proposition 1.3.1 and the SOS decomposition ofVt(x) =

Z(x)TQtZ(x), andεt(x) = εt−1(x) as well as some positive polynomialsλ1(x) and
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λ2(x):

Minimize
q

∑
i=1

trace(Qt)

Subject toV(x)t −λ1(x) is a SOS,

−vT (Nα
t (x,y)+λ2(x)I)v is a SOS,

with

Nα(x,y)t ,




M11(x)−αt−1Vt(x) (∗) (∗) (∗) (∗) (∗)

M21(x,y) −I (∗) (∗) (∗) (∗)

M31(x,y) 0 −2I (∗) (∗) (∗)

M41(x) 0 0 −2I (∗) (∗)

M51(x,y) 0 0 0 −I (∗)

M61(x) 0 0 0 0 −γ2




, (8.12)

vof appropriate dimensions, andM11(x),M21(x,y),M31(x,y),M41(x),M51(x,y),M61(x)

are as in (8.10) withV(x),Vt(x),K(y), Kt(y), andε(x), εt(x).

Step 4: Solve the following feasibility problem withv2 ∈ R
n+1 and some positive toler-

ance functionδ (x)> 0,x 6= 0 for i = 1, . . . ,q:

vT
2




δ (x) (∗)
(

εt(x)− ∂Vt(x)
∂x

)T
1


v2 is a SOS.

If the problem is feasible go to Step 5. Else, sett = t + 1 andεt(x) =
∂Vt−1(x)

∂x

determined in Step 3 and go to Step 2.

Step 5: The system (8.1) may not be stabilizable withH∞ performanceγ by static output

feedback control (8.2). Terminate the algorithm.
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Figure 8.1: Energy ratioE(τ) =
∫ τ
0 zTzdt∫ τ

0 ωTωdt

8.3 Numerical Example

Consider the following polynomial system with polytropic uncertainties

ẋ=A(x)+B(x)u+H(x)F(x)(E1(x)+E2(x)u)+Bω(x)ω,

A(x) =



−x1+x2

1− 3
2x3

1− 3
8x1x2

2+
1
4x2−x2

1x2− 1
4x3

2

0


 ,

B(x) =




0

1


 , Bω =




1.25

0


 , H(x) = 1,

E1(x) =




3
8x1x2

2− 1
4x3

2

0


 , E2(x) =




0

0.2


 , F(x) = I sin(x),

y=x1−x2,

z=x1−x2+u.

(8.13)
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We selectλ1(x) = λ2(x) = δ (x) = 0.01
(
x2

1+x2
2

)
, set the controller to be a function of

y up to a degree of 3 and choose to look for Lyapunov function candidates of degree 4. The

ISOS algorithm terminates without finding a feasible solution. Therefore, the degree of the

Lyapunov function candidate is increased to 6 and the algorithm is restarted. The ISOS

algorithm terminates with a feasible solution forγ2 = 6.921 after 5 iterations with very

small coefficients for the higher order terms inK(y). Thus, we set these to zero, initialize

ε1(x) =
∂V(x)

∂x from the previous solution and rerun the algorithm for a linear controller.

After 3 iterations, the followingH∞ controller for the polynomial system (8.13) with norm-

bounded uncertainties has been obtained

K(y) = 0.189y. (8.14)

Note that the Lyapunov function is omitted here due to its size. The smallest eigenvalue

of Q has been found as 4.511×10−5.

Once again, it was possible to obtain alinear controller for thepolynomialsystem.

The disturbance has been modelled as Gaussian white noise with power density spectrum

of 0.01, and Figure 6.1 shows the ratio of the regulated output energy to the noise energy

over time. The ratio clearly falls below the design threshold value ofγ2 after less than 80

seconds.

8.4 Conclusion

An iterative design algorithm for the problem of designing arobustH∞ static output con-

troller for polynomial systems with norm-bounded uncertainties has been presented in this

chapter. In detail, sufficient conditions for the existenceof a controller that stabilizes the

system withH∞ performanceγ in the presence of norm-bounded uncertainties has been

derived in the form of polynomial matrix inequalities. The nonconvex components of these

conditions have been addressed using an iterative design algorithm, and numerical exam-
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ples have been provided to show the effectiveness of the proposed procedure. Furthermore,

it was possible to obtainlinear controller gains for thepolynomialsystem.
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Chapter 9

Conclusion

9.1 Summary of Thesis

This thesis consist of two parts. In Part I, the controller design for a highly nonlinear, highly

coupled boiler-turbine systems has been discussed. In Chapter 2, a novel approach to online

model predictive control with genetic algorithms has been presented. In particular, the

careful design considerations necessary to use this stochastic artificial intelligence approach

to obtain a suitable system response have been discussed. Furthermore, a switching control

scheme that combines the benefits of theH∞ fuzzy reference tracking control design with

the advantages of the model predictive control based algorithm has been presented.

The great versatility and design freedom of that come with the implementation of ge-

netic algorithms in model predictive control problems allowed a well rounded customized

controller design. In general, an extension of the results is possible to other control prob-

lems, as long as the system dynamics are sufficiently slow. This restriction is also the

greatest drawback of the proposed control regime, and thus must be seen as a specialist

solution for a niche group of control problems.

In Part II, the more general case of polynomial system control was investigated. An it-

erative sum of squares decomposition algorithm has been presented and applied to a variety

126



Chapter 9: Conclusion

of state feedback as well as output feedback control problems. The outlined representation

of the problem is less conservative than other available control approaches and allows for

more design freedom in the choice of the form and structure ofthe (higher order) Lyapunov

functions and control matrices, that can be both formed without assumptions on the system

structure.

In particular, Chapter 3 introduces the basic state feedbackcontrol for polynomial sys-

tem as well as the case for polynomial systems with polytropic uncertainties. The con-

trol procedure for system with norm-bounded uncertaintieswas outlined in Chapter 4. In

Chapter 5 and Chapter 6, the effectiveH∞ control of systems with polytropic as well as

norm-bounded uncertainties has been derived, respectively. The discussion on polynomial

system control has been concluded with an investigation howthe iterative algorithm can

be extended to the output feedback case for systems with polytropic and norm-bounded

uncertainties in Chapter 7 and Chapter 8, respectively.

Sufficient conditions for stability and performance of state feedback and static output

feedback controllers have been presented in the form of polynomial matrix inequalities.

To avoid the nonconvex expressions in the problem formulation, a novel iterative design

algorithm for polynomial system design has been presented.This approach avoids several

of the most common problems found in other approaches. The controller does not directly

depend on the inverse of a polynomial Lyapunov matrix, thus rational controllers can be

avoided. Further, there is no restriction on the sparsity ofthe input or control matrix to

be able to form a suitable Lyapunov function, thus the presented iterative procedure can

be readily implemented for non-sparse systems. Moreover, the Lyapunov function is not

restricted to be a function of only the system states which corresponding rows in the control

input matrix are zero.

Generally speaking, the biggest problem of the proposed controller synthesis is the

computational complexity arising from higher order multivariate polynomials and their

SOS decompositions. To the best of the author’s knowledge, this is a problem common to
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all design approaches for polynomial systems, and thus the controller design is generally

limited to systems with only a few system states. The resulting SDP realizations of SOS

decompositions requirements quickly grow to a point that the SDP becomes too large to be

handled efficiently and numerical errors grow rapidly, making an efficient design impossi-

ble. This has also lead to the choice of presented numerical examples.

The main contributions of this thesis are:

• A novel approach to control highly nonlinear systems using online model predictive

control utilizing genetic algorithms to obtain the optimalinput sequence.

• A novel take on the robust controller synthesis problem for polynomial systems with

or without polytropic or norm-bounded uncertainties.

• A less restrictive design algorithm for the control synthesis that avoids rational feed-

back gains and was often able to obtainlinear controllers for thepolynomialcontrol

problems.

As a result, this thesis provides an integrated approach forthe controller synthesis for

polynomial systems and represents a valuable and meaningful contribution to the devel-

opment to the framework of polynomial system control. Furthermore, Part I of this thesis

suggests novel solutions to highly nonlinear system control of importance to the power

generating community.

9.2 Future Work

In general, nonlinear systems control is still an open area that requires a lot more research

work. In particular, further research could be directed to the following areas:

1. Application of online model predictive control theorieswith GAs to other (groups of)

systems. With the advance of modern computation hardware, an application of the
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proposed methodologies to faster systems or other hard nonlinear control problems

is desirable in the future.

2. Time-delayed polynomial systems. Time-delayed systemshave become some of the

most studied areas of control engineering and to the best of the author’s knowledge

no general framework has been developed for polynomial systems yet. A successful

extension of the iterative procedures to time-delayed systems could provide a novel

methodology for the controller synthesis of networked control systems.

3. Polynomial Filtering. Further research addressing the problem of polynomial system

filtering would be desirable, with extension to robust performanceH∞ methods for

polytropic and norm-bounded uncertainties. Also, a reduced order filter design would

be beneficially to limit the strain on numerical methods.

4. Rational systems. Existing methods are already able to address rational control sys-

tems as long as the denominator of the system is always positive or negative for all

system states. However, this requirement is very restrictive and it would be benefi-

cial to find a less restrictive extension of the presented polynomial control synthesis

to rational systems.

5. Extension of polynomial methods to other highly nonlinear systems with system

states having fractional exponents. It is currently not possible to apply polynomial

control problems to systems where system states have fractional exponents. An ex-

tension in this direction, together with a discussion on rational system could poten-

tially lead to an extension to highly nonlinear systems of interest such as the boiler-

turbine model from Part I.
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Appendix A

Schur Complement

The Schur Complement is a standard tool in the LMI context, seefor example [42]. Con-

sider a LMI 


A(x) B(x)

B(x)T D(x)


� 0, (A.1)

whereA(x) = A(x)T ,D(x) = D(x)T andB(x) is affine dependend onx, (A.1) is equivalent

to

D(x)> 0, A(x)−B(x)D(x)−1B(x)T ≥ 0. (A.2)

This relation holds vice versa.
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