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Abstract

In this thesis, a direct approach to improve the control ghhyi nonlinear, strongly cou-
pled boiler-turbine systems that are commonly found in ey generation environment
is introduced. Following the direct approach, more gemmszdl concepts of controlling
polynomial systems, a class of nonlinear systems that isrgupto linear systems in its
adaptability to real life systems in terms of system modglior approximation of other
nonlinearities, is discussed in detail.

The motivation for this research stems from its usefulnesa Wariety of power gener-
ating facilities used around the world. In particular, thglementation of an online model
predictive control scheme based on evolutionary computatill be introduced, including
an extension to a switching control regime to further insestine overall performance.

The discussions on polynomial system control is based onattieof a natural ex-
tension of linear control strategies to polynomial systeandifficult problem that cannot
be directly addressed by standard convex optimizatiorstbké semidefinite program-
ming. However, new methodologies will be introduced for getst of polynomial control
problems, includindd. control for systems with and without polytropic or norm-nded
uncertainties, which lead to an overall less conservatwigrol design. The discussion will
include robustH. control procedures for near real-world control problemst #re sub-
jects to polytropic and norm-bounded uncertainties fotesys with the state and output

feedback.



Finally, to demonstrate the effectiveness and advantafetheo proposed design
methodologies in this thesis, numerical examples are gwezach chapter. The simu-
lation results show that the proposed design methodolagaesachieve the prescribed

performance requirements.
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Notations

The notations used throughout this thesis are in accordaitbehe research field’s stan-
dard. R andR™" denote the set afi x 1 vectors anc x n matrices, respectively. The
superscript-)T denotes the transpose of a vector or matrix, @ds used to represent the
transposed symmetric entries in matrix inequalities. lert denotes the identy matrix

of appropriate dimensions amg|0, «| is the space of square summable vector sequences
over [0,0]. The || - [/jo,.] denotes the ;[0,] norm over[0, ) defined as| f(x)H[ZO?w] =

I 1f(x)||2dx. For any matrixQ, the relationship® = 0 (Q = 0) are used to describe
positive (semi-)definteness @), respectively. For simplicity, the time variant expres-
sions for system states, system outputs and system inputkeaoted ax,y, u rather than
X(t),y(t),u(t), respectively. The term degree of a polynomial refers tohigbest integer
exponent of a polynomial im. For example, the degrees of a linear, quadratic and cubic

equations are,P, and 3, respectively.

Xii
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Chapter 1

Introduction

In this chapter, an introduction to this thesis on robusttr@brior boiler-turbine systems
and the control synthesis for polynomial systems will bevted. After a short discussion
on general nonlinear systems, the two main parts of thetimabe introduced: In the first
part, an introduction to the control problem of boiler-tind systems will be provided; the
second part of the introduction discusses basic concepsrarolling polynomial systems.
Both parts include an overview of existing approaches initeeature dealing with the
particular difficulties of both problems. This discussi@ads to the motivation for this
thesis and its contributions to the research community. Iftreduction to this thesis is
concluded with the outline of the remainder of this thesighlighting the main contribu-

tions of each chapter.

1.1 Nonlinear System Control

Control engineering deals with the control of systems. Aeaysin this context is tra-
ditionally associated with a model of a real physical enwinent that can be of linear or
nonlinear nature, expressed in the form of differentialitiecence equations that are based
on physical laws governing the dynamics or measurementkelpast, major research was

undertaken in the field of linear control.
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Figure 1.1: Line plot of the Lorenz Attractor

However, physical systems are inherently nonlinear [Lhelr control techniques can
only be applied within a very limited range of operation atthand it has not been possible
to generalize linear control theory to nonlinear systenjs Rurthermore, extensive tests
are needed to verify the adaptability of linear controli@rsonlinear systems and often
result in tedious redesigns to meet the control objectives.

In general, the system description of a nonlinear systenbeatescribed as

(1.1)

wheref (-) andg(-) are nonlinear function of the stat&) and the inputi(t) andy(t) is the

measured output. For example, the system equation for diBedpnathematical model
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for atmospheric convection derived by Edward Lorenz in 1@GBe form of

X :a(y_ X)a
Y =Xp — XZ—YV, (1.2)
z=xy— Bz,

whereo is the Prandtl numbep is the Rayleigh number, arfélis a geometric factor [3].
The system is nonlinear due to the product of its states itetmesxz andxy and cannot
be controlled directly using linear control theory. Furiitee system exhibits chaotic be-
haviour for a range of parameters and is often referred the@kdrenz Attractor A 3D
line plot depicts this behaviour in Figure 1.1 for=10,p =28 8 = %.

A common approach to deal with these difficulties and to findrtroller for a wider
range of operation is the application of advanced apprakamaechniques such as fuzzy
control or neural networks [2], as well as the implementatid online model predictive
control procedures. The complexity of controllers basedsoch techniques increases
rapidly with an increase in nonlinearity or an increase mridinge of operation, and often
results in very complex controller designs. Furthermdnesé controllers aim at control-
ling an approximation of the system rather than a systertf,iesed it is thus not possible
to guarantee performance requirements such as stabilithdaonlinear system.

Due to the complexity and wide variety of nonlinear systeings customary for re-
search to aim at solving a specific control problem rathem th&ing a more general ap-

proach.

1.2 Boiler-Turbine Systems

Boiler-turbine systems are commonly used energy converdesices that consist of a
steam boiler and a turbine [4]. It's purpose is to transfoimemical energy to thermal

energy, which in turn can be used to generate electricityTBgir popularity in the power
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generation field is due to their capability to meet varyinggppdemands much faster than
traditional header systems [6].
Traditionally, the following requirements are posed on @idsl boiler-turbine control

system [7, 8]:
1. The electric power output must meet the load demand

2. The drum pressure must be maintained within some systiErateces despite the

load variations

3. The water level in the steam drum of the boiler must be mmipt at a desired level

to prevent overheating or flooding

4. The steam temperature must be maintained at a desirdddguevent overheating

or leakage of wet steam to the turbines
5. Input and system constraints have to be met at all times

Boiler-turbine systems can be modeled as a strongly couplidtiphe-input multiple-
output (MIMO) nonlinear system. To capture the system parémce better, various con-
straints on inputs, slew rates of the inputs and the systaputsihave to be considered.
This strong coupling and the constraints on the system énf@atd to an overall moder-
ately slow system response compared to many other constdreg. Therefore, classical
control schemes can only be applied in a very limited manngr a/very high degree of
customization as precautions have to be undertaken toestiseioverall system stability

within the given operating parameters.

1.2.1 Boiler-Turbine Model

Throughout the discussions on the control of boiler-tuelsipstems, the model of a 160MW
oil-fired electrical power plant model of a drum type boilada turbine will be considered.

The model is based on the P16/G16 at the Sydvenska Kraft A ipldlalmod, Sweden [9].
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The boiler dynamic model as in (1.3) is the result of both ptglsand empirical methods
based on data acquired from a series of experiments andfidatbns which capture all

the relevant characteristics of the process.

X1 (t) = —0.00181x(t)x” 8(t) -+ 0.9uq (t) — 0.15U3(t) + 0.0Iwy t),

X2(t) = (0.073U(t) — 0.016)xY/3(t) — 0.1xx(t) + 0.0Iwi(t),

X3(t) = [142u5(t) — (1.1up(t) — 0.19)xy (t)] /85+ 0.01ws(t), w3
ya(t) =xa(t),

ya(t) = Xa(t),

y3(t) = 0.05(0.130%s(t) + 1008cs+ Ge/9 — 67.975).

Here, the inputsiy (t), up(t) andus(t) are the valve positions for fuel flow, steam control
and feedwater flow, respectively. The state variablgs), xo(t) andxs(t) are the drum
pressureKg/cn?), electric output W) and fluid density Kg/cnt), respectively.wy, ws
andws are used to capture process disturbances and uncertaifitieutputys(t) is the
drum water level deviatiom{). acs andge are steam quantity and evaporation réig/§),
respectively, and are given as follows:

(1—0.00153&3(t))(0.8x1(t) — 25.6)
Bos = T 4(1)(1.0394— 0.00123044 (1)) 1.4)
Oe = (0.854up(t) — 0.147)x1(t) +45.59%4 (t) — 2.514u3(t) — 2.096.

The control inputs are subject to magnitude and rate sainsaas follows:

0 <ug(t),un(t),us(t) <1,

—0.007< Ly (t) < 0.007,
(1.5)

—2 < Up(t) < 0.02,

—0.05< Ug(t) < 0.05,
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Table 1.1: Typical operating points of a boiler-turbineteys[10]

#1 #2 #3 #4 #5 #6 #7
X} 75.60 86.40 97.20 108 118.8 129.6 140.4
Xg 15.27 36.65 50.52 66.65 85.06 105.8 128.9
Xg 299.6 342.4 385.2 428 470.8 513.6 556.4
ug 0.156 0.209 0.271 0.34 0.418 0.505 0.6
ug 0.483 0.552 0.621 0.69 0.759 0.828 0.897
ug 0.183 0.256 0.340 0.433 0.543 0.663 0.793
yg -0.97 -0.65 -0.32 0 0.32 0.64 0.98

Some typical operating points of the boiler-turbine modeB) are tabulated in Table 1.1.

1.2.2 Recent Work on Boiler-Turbine Systems

This thesis presents work on the implementation of refinaditional as well as modern
and alternative control techniques for boiler-turbineteyss. The novel approach and its
subsequent extension are presented in Chapter 2 and aredmaseline model predictive
control (MPC) that use Genetic Algorithms (GASs) to optimilze tomplex control problem
subject to a variety of nonlinear constraints.

As boiler-turbine units are popular modules in modern pogereration, considerable
research has been undertaken, see for example [10] [7, 82113, 14, 15, 16, 17, 18, 19]
and references therein. The main approaches and technigadsan be summarized as

follows

1. Approaches Based on Linear Control Theory: Linear control approaches show
an overall good system response for the boiler-turbinesuastlong as the change
of operation mode is sufficiently small [10, 15, 16]. The authassume that only
limited changes in the operation of the boiler-turbine @amé to be expected in nor-
mal operations and approximate the nonlinear system arapprbpriate operating

points. Unfortunately, these restrictions are very lingtand violations result in a
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slow and oscillatory system response. Also, the directémgntation of the system

constraints (1.5) is generally not possible.

2. Gain Scheduling: In [11], the authors propose a gain scheduliagoptimal con-
troller. The design approach relies on a transformatioh@ftonlinear plant dynam-
ics to a linear parameter varying form. The resulting cdrgtacture is augmented
to address the common problems encountered with large ekanghe reference
signals. In [19], a design for a fuzzy gain-scheduling magaedictive controller is
presented. To address the nonlinearities of the systenobalgiuzzy model for the

boiler-turbine unit is derived that is consequently usedawotrol the overall system.

3. Autoregressive Moving Average Control: The implementation of self-organizing
fuzzy logic controllers has been presented in [13, 17]. Titeragressive moving
average control approach is based on an online implementaithout the use of a
mathematical system model. The approach is based on areadimeration of the
plant rules that are stored and updated on a regular bassefbine and in contrast to
traditional fuzzy control schemes, no expert knowledgetgiired to derive a suit-
able fuzzy rule set. Unfortunately, this approach alsoesaffrom similar problems

when the changes in the reference signal are too severe.

4. Other Atrtificial Intelligence Approaches: As the control problem of boiler-turbine
systems is highly nonlinear and a hard problem for tradstia@ontrol approaches,
recent research suggests the use of artificial intelligapgeoaches. For example,
[14] suggests to use Genetic Algorithms to design a moralsieitP! controller com-
pared to previous results. In [18], an approach using newwabork inverse control
to realize a decoupling of the nonlinear system. A singleae®ID controller is de-
signed for the decoupled system that performs well as lotigeashange in reference

signals is limited.
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By far the most common underlying approach is to use linetwiza of the nonlin-
ear system and the assumption that the change of referequal 8 always performed
gradually. However, this assumption cannot be guarantepedaictice and thus is a major

drawback.

1.3 Polynomial Systems

1.3.1 Polynomial Systems

A variety of nonlinear systems can be exactly representgubbynomial systems, a super-
set to linear systems. One such example is the Lorenz Atir§®@ Compared to linear
systems, polynomial systems offer superior approximaticmaracteristics of other non-
linear system behaviour. It is therefore understandalaetths class of nonlinearity has
attracted considerable attention from researchers arthen@vorld, in particular in the ar-
eas of stability analysis and controller synthesis [20,221,23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34].

In a polynomial system, the functiorfgx,u) andg(x,u) in (1.1) are of polynomial
nature inx andu. More precisely, the systems under consideration in thesishcan be
described in terms of a state-depended linear-like form as

X =A(X)x+ B(xX)u,
(1.6)

y =C(X)X,
with x € R" is the state vectoy € R™ is the input vector ang is the vector of measured
output.A(x), B(x) andC(x) are the polynomial system matrices of appropriate dimessio
It should be noted that a nonlinear system in the form of (lnday have more than one

representation in the state-depended linear-like forg) (Eor example, the Lorenz System
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Figure 1.2: Tunnel diode [35]

(1.2) with an input inx; can be represented as

X1 -0 o 0| |[x 1
| = p -1 —x¢| [x|+|0]|uy (1.7)
X3 X2 0 =B [x3 0

as well as
X1 -0 o O X1 1
| =|p—x3 =1 0| x|+ |O]u (1.8)
X3 0 X1 —B| [X3 0

Another example of a polynomial system is the differentga&tion of a tunnel diode

circuit in Figure 1.2 with polynomial differential equatio

Cxq ~0.002-0.01x¢ 1| |x
(1.9)
-1 R X2

whereC is the value for the capacitdt,is the value for the inductance, aRds the resistor

value.
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1.3.2 Recent Work on Polynomial Systems

This thesis presents work on the controller synthesis ofraohial systems. The work is
build on Linear Matrix Inequalities (LMIs) and Sum of Squa(&0S) decompositions. As
the field of approaches to nonlinear control is almost asdesathe research topic itself,
the overview presented here will focuses on related reBedrdrief description on some
of the underlying techniques used for the control of polyramsystems will be presented
in a later part of this chapter.

There has been considerable research on controller sysidre$ stabilization of poly-
nomial systems in the past, for example see [20, 22, 23, 22&27, 28, 29, 30, 31, 32,
33, 34, 36, 33] and references therein. The main approactteteahniques used can be

summarized as follows

1. Moments and Sum of Squares (SOS)fhe moment problem is the dual to the prob-
lem of non-negative polynomials and Hilbert's 17th problemthe representation of
non-negative polynomials [37]. This approach has been irs§&B] to find a less
conservative solution to the global primal/dual problenshow non-negativity us-
ing semi-definite programming (SDP). For an in depth intctaun to SDP, see [38].
To obtain a convex problem, this algorithm is based on thentterstability crite-
rion rather than the Lyapunov stability theorem. This aidive decoupling of the
controller and Lyapunov function to obtain convex solvigpitonditions through a
hierarchy of convex LMI relaxations. The authors have mainbut that this ap-
proach is prone to numerical errors from the large numbemgbised constraints in

the resulting formulation.

2. Dissipation inequalities and SOS:Control theories for nonlinear systems based
on the theory of dissipative energy are known to be one of tliceessful methods
of analysing nonlinear systems [39]. It is based on the nma#itieal formulation of

dissipation inequalities, an approach that reduces thaldg$arge number of differ-

10
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ential equations that describe the system to a reasonalally sumber of algebraic
inequalities, resulting in a less complex problem. Thisrapph has been used in
combination with SOS programming in [32]. The system ofriests is represented
as a descriptor that is based on polynomial equations. Adfisepation inequalities
are obtained that are in turn solved by SOS. Unfortunatkbretis no unique pro-
cess to obtain the necessary affine dissipation inequalitvdich ultimately limits

this approach to a subset of problems.

3. Semi-tensor products: This approach allows the consideration of general polyno-
mial systems without any homogeneous assumption. It isdbasehe theory of
semi-tensors, which represent an extension of the comraitmatrix product that
has a matching rows/columns requirement. A brief overviaw!loe obtained in [31]
and the references therein. The presented algorithm igilasa positive definite
Lyapunov function and it's negative definite derivativergjdhe system trajectories.
These conditions are presented as linear algebraic eqeatial are suitable to verify
a candidate solution. Unfortunately, it seems that the@afft condition is a very

loose condition and is not clear how a candidate solutioo Betobtained.

4. Kronecker products and LMIs: A sufficient condition for the existence of a con-
troller is given in the form of LMIs based on a Kronecker proddecomposition
of the system equations, see for example [36, 27]. The peapakyorithm can be
applied to higher order polynomial systems, which is themaaivantage of this ap-
proach and makes it stand out from the other common appredlcatare limited in

their usability for higher order system.

5. Fuzzy control methods and SOSLiinear TS fuzzy control approaches have been
shown to be an effective tool to control nonlinear systenthiwia predefined space.
In [28], a SOS based approach that allows for higher ordeplgav functions has

been presented, hence representing a less restrictive earedadly less conserva-

11
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tive approach than previously available TS fuzzy methodsrere solely based on
guadratic Lyapunov functions. Sufficient conditions foe txistence of the Lya-
punov function as well as the controller are given in the fafnpolynomial matrix

inequalities that can be implemented using SOS. In [22],lgneonial fuzzy model

has been paired with a polynomial fuzzy controller. The arghnvestigate how
(im)prefect premise matching, i.e. fuzzy model and fuzzgtaaler (do not) share
the same premise variable membership function, influereekytapunov stability test
as well as the control synthesis, respectively. Yet anatkegnsion is presented in
[24], where polynomial fuzzy control is investigated foatst output feedback. The
application of polynomial fuzzy control for a two-link robarm has been outlined

in [23].

6. Localized control: Similarly, to the research in global control, improvememse
been made in the field of localized control. Generally spggKbcal controllers of-
ten provide better solutions than global controllers fersame system. For example,
[29] proposes a rational Lyapunov function approach thawstthat it is possible to
embed the domain of attraction into the region outlined leyrtbnlinear vector field
as long as the variation in the states is bounded, resulimpliynomial matrix in-
equalities. Even though an extension to rational Lyapunotions has been intro-
duced, the results still have to be considered rather coaipezly due to the coupling
between the system and Lyapunov matrices. To reduce thiste# slack variable
matrix that decouples the Lyapunov and system matricesdesihtroduced in [25],
resulting in the parametrization of the resulting con&olllhey show that the results

can be readily extended to robust control of uncertain pmiyial system.

By far the most common underlying principal for the contropofynomial systems is a
stability criterion based on Lyapunov’s second method fabisity. This will be discussed

in detail in the next section.

12
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Controller synthesis for polynomial systems based on Lyapuov’s second stability cri-

terion using SOS decompositions

The stability theorems developed by the Russian matheratigiapunov are widely re-
garded as some of the most fundamental in modern contralythda English translation
of his original publication, as well as his biography andibiggraphy can be found in [40].
Some of the reasons these more than 100 year old theoriegwrpagaular in modern con-
trol system theory is their general adaptability and sioighi His famous theorems were
originally intended to be used for stability analysis, h&asvever, become equally im-
portant for modern controller design synthesis [41]. Foyaanic systenx = f(x) with

an equilibrium atx = 0, the theorem can be summarized as follows. Consider a &mcti
V(x) : R" — R such tha/(x) is positive definite fox # 0 andV (x)|x—o = 0. If the time
derivative ofV (x) along the system trajectories 6fx) is negative semidefinite, thefr(x)

is asymptotically stable:

V(x) >0forvx#0, V(x=0)=0,

: dVv(x) dV(x)dx
p— p— _— < -
V=4 ax dt =0

(1.10)

To check stability for a linear system of the fobm="Ax amounts to finding a symmetric
positive definite matriy® such thatA” P+ PA =< 0, where the Lyapunov function i&(x) =
xTPx[42].

The problem of finding a Lyapunov function candidate andisgl¢1.10) is in essence
a polynomial nonnegativity problem. The idea to to use SO&uposition of polyno-
mials on control problems like this has been introduced abhodecade ago in [43]. It
has been shown that this approach allows a more efficiergrayahalysis, and has since
been widely adapted in a variety of control applications.e Tenefits of applying the
SOS decomposition algorithm to linear systems with quadtggpunov functions is only

marginal, and in many cases experienced researchers catrumira suitable Lyapunov

13
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function candidate manually or use traditional methodebtas linear matrix inequalities
(LMIs). This changes dramatically for polynomial vectoldif (x) or higher order poly-
nomial Lyapunov function candidat¥gx). Feasibility of such problems can be NP hard to
test[44]. Using a SOS decomposition as a relaxation of j1Hdvever, allows for efficient
computation using the SOS and SDP framework [43].

Since it's first application to control problems, severalmal extension of SOS decom-
position have been been presented. In [45, 46], a linearftikm is used for a polynomial
system and the construction of a Lyapunov function candidaproposed in the form of
sufficient nonnegativity conditions of polynomial vectoeléis that can be solved using
SOS decompositions and SDPs. To avoid nonconvex terms, sonaktions on the way
the matrixP is constructed are imposed, in particular that only statésimdynamics aren’t
directly affected by the control input may appear in the Lyags matrix, i.e. that the input
matrix B(x) has some zero rows. These conditions impose some consemnatihe design
process.

To overcome these conditions, the authors of [30] introcaurcadditional matrix vari-
able that allows the decoupling of the system and Lyapundvices. In theory, this allows
for a closer approximation of the nonnegativity problem. widger, to pose a tractable
problem, an upper bound has to be imposed on the matrix Variahich in turn leads to
another source of conservatism.

Besides classical state feedback control for polynomiaiesysa lot of attention has
been given to the problem of static output feedback conitindB0], the authors use a state-
depended linear-like system description, and, similaslthe state feedback case, assume
that the Lyapunov function only depends on the states tleatair directly effected by the

feedback controller, thus introducing conservatism todisign approach.

14
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Sum of Squares Decomposition

In this section, a brief outline of the concepts of SOS deamsitipns will be given. For a
more elaborate discussion see [43].

Due to the importance of the stability theorem introducedLipgpunov for a wide
variety of control problems, nonnegative multivariateypamials are of central concern.
To show that a multivariate polynomi&l(x) is always positive, it is obvious that it needs

to be a polynomial of even degree. Formally, one is intecesteshow that
F(Xt, %) >0, X1, X €R (1.11)

holds for any choice af.
A simple, yet effective way to show that a polynomial of forinl(1) is always nonneg-

ative is the existence of a SOS decompositioft of) as
FO) =Y (). (1.12)

If such a decomposition exists, it is clear that each squaogdhomial term is nonnegative
everywhere, thus their sum must also be nonnegative. Thef DS polynomials im
variables is a convex cone, and it can be shown that this ®arwee is proper [47]. If a
decomposition oF (x) in the form above can be obtained, it is clear fh&t) > 0,Vx € R".
The converse, however, is generally not true. This problesibieen studied by Hilbert

more than a century ago.

Proposition 1.3.1 [43] Let F(x) be a polynomial in xc R" of degree2d. Let Zx) be a
column vector which entries are all monomials in x with degfe@. Then, Kx) is said to

be SOS if and only if there exists a positive semidefiniteixi@tsuch that

F(X)=Z(X)"QZ(x), Q=0 (1.13)

15
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SinceQ is positive semidefinite, we can apply Cholesky decompasiiio(1.13) that

yields

F(x) =2Z(x)"QZ(x) = Z()T(L'L)Z(x) = [|LZ(X)[|I* = Y (LZ(¥)7, (1.14)

thus certifying nonnegativity. However, since the vargbin Z(x) are not independent,
(1.14) generally does not yield a unique solution.

In general, determining nonnegativity f&r(x) for degF) > 4 is a NP hard problem
[48, 44]. Proposition 1.3.1 provides a relaxation to foratelthe nonnegativity conditions
on polynomials that is computationally tractable. A moragyal formulation of this trans-

formation for symmetric polynomial matrices is given in fofowing proposition.

Proposition 1.3.2 [45] Let F(x) be an Nx N symmetric polynomial matrix of degr@d
in x € R". Furthermore, let Zx) be a column vector whose entries are all monomials in x

with a degree no greater than d, and consider the following ¢t
(1) F(x) = 0forall x e R";
(2) VIF(x)vis a SOS, where@ RN;

(3) There exists a positive semidefinite matrix Q such the{x)v= (v& Z(x))" Q(v® Z(x)),

with ® denoting the Kronecker product.

It is clear that from this if follows that Ex) being a SOS implies that(k) > 0. The

converse, however, is generally not true. Furthermoregst&nt (2) and (3) are equivalent.

Consider the following example from [43]

16
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Example 1.3.1 Consider the quartic form in two variables described belowd aefine

. 2 . 2 .
2] ‘=X, L = X5,23 = X1Xp.

F (Xl, Xz) = ZX;_"ZX%XZ — X1X2 + 5X‘21
- - T -
X2 2 0 1| x

= | x5 05 0f]x2

X1X2 1 0 —1] |x1x

Take for instanc&d = 3. In this case,

112 =31

Q=L"L, L=
V2io 1 3

Y

and therefore we have the sum of squares decomposition

((2x2 — 3%+ X1%0)2 + (X5 + 3x1x2)2) i

NI =

F(x1,%) =

The problem of finding a suitabl@ can be cast as a SDP and solved efficiently [43].
It should be noted that it is not always possible to find a SG®gosition and thus
a certificate for nonnegativity for nonnegative polynomidtor instance, a simple counter

example is the Motzkin form (here, for= 3)

M(X,y,2) = X2 433yt + 22— 32 (1.15)

Nonnegativity can be easily shown using the arithmeticagetoic inequality, however

there does not exist a SOS decomposition. This can be shawg stendard algebraic

17



Chapter 1: Introduction

manipulations and is showcased in [49]. The gap betweempaotjal nonnegativity and
showing that a polynomial has a SOS decomposition cannolelaely defined, however
recent research suggests that the gap is small [34].

Using SOS decomposition relaxes the NP-hard problem of sigononnegativity of
a polynomialF (x) into a computationally tractable problem that can be sobféidiently
using SDPs in at worst polynomial time. The term NP-hard égjfiently used in com-
putational complexity theory and refers to a class of pnaisléhat are non-deterministic
polynomial-time hard, i.e. problems that are at least ad haithe hardest problems in NP.
This does, however imply that SOS decompositions are imtigrémited to reasonably
small systems with reasonably small maximum degrees.

There are a variety of toolboxes available that readilydfamm a SOS problem to a
SDP, solve the SDP, and return the results in a form suitaltleet original problem. Most
available solvers have been developed by research teamsktiee world and are available
free of charge on the Internet. Some of the more common sobwer SOSTOOLS[50],
YALMIP [51], CVX [52, 53], and GLoptPoly [54]. It is noteworththat of the above
mentioned software packages only SOSTOOLS is specificadgded for and limited
to SOS decompositions, whereas the other packages alloddiess a wider variety of

optimization problems.

1.4 Research Motivation

The study of highly nonlinear and strongly coupled boilebtne systems poses an inter-
esting problem of immediate and direct concern to powelifiés around the world. It
is of utmost importance to these facilities to guaranteettier systems run within given
operating parameters at all times and that they quickly &afdaphanges in load demand.
Therefore, an improvement over existing control schemesadgorithms is always a con-

cern.
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The study of polynomial systems is a natural extension tgtiliy of linear systems. In
its most basic form with polynomials of a maximum degree oblypomial systems sim-
plify to linear systems. System control is, generally spegkconcerned with the control
of real life dynamic systems. Most of these systems are @rtigrnonlinear and it has been
customary to approximate these nonlinearities with systgnamics that can be easier ad-
dressed mathematically. Polynomial approximations of glemsystem dynamics can be
designed to represent the real dynamics closer than stitiiaear approximations. Fur-
ther, there is a variety of systems that come naturally iymparial forms like biological
systems, mechatronics or laser physics [55, 56]. Other pbeof polynomial systems are
Lorenz systems, Brockett integrators, Van der Pol oscibatartstein Circle, or MY con-
jecture, see [32] for further discussion. Even though afoesearch has been undertaken
in the field of polynomial control, no general solution hastebtained to date.

Results using higher order Lyapunov function candidatesmdérol polynomial systems
has been shown to produce better results than was previpassible with the restriction
to quadratic Lyapunov functions, see for example [46, 453B7. Unfortunately, it is not
possible to directly apply the theory of Lyapunov stabititypolynomial systems, as this
leads to a nonconvex problem that cannot be solved with SDResrefore, most research
relies on restrictions on the design parameters, in pdaticuis assumed that Lyapunov
matrix only depends on the states which rows in the inputimate zero. This does,
however, add some conservatism to the design and opens eheodisnprove the design
process in this respect as will be outlined in the followihgjaters. In particular, an iterative
algorithm will be introduced that allows for general Lyapurfunctions.

As polynomial system control is aimed at real life systemslase polynomial approx-
imation of these systems, it is therefore important to itigage how to ensure that the

obtained results are robust.
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1.5 Contribution of the thesis

The focus of this thesis is to establish new methodologiebdder-turbine system control
as well as polynomial systems control.

The main contributions with respect to the problem of cdhitrg the highly nonlinear
and strongly coupled boiler-turbine system is the appbcedf a noveH. fuzzy reference
tracking controller that is superior to previous resultgeirnms of tracking a desired system
trajectory. Furthermore, the integration of a novel onlimedel predictive control scheme
for boiler-turbine systems is presented. By incorporating@\olutionary computation ap-
proach like genetic algorithms, it is possible to overcoheeihherent difficulties that more
traditional control approaches have with respect to higloiglinear systems. This stochas-
tic artificial intelligence approach does not rely on gratdimethods to find an optimal
solution to a control problem, nor does it require that therde space is in any way con-
vex. Furthermore, it is also capable to deal with unusuaksydehaviour and operating
points without requiring a complete redesign of the cordtalcture.

The main contributions with respect to the polynomial syst®ntrol problem is the
implementation of a novel iterative sum of squares approachvariety of control prob-
lems. It derivation of convex stability criteria for polymial systems is a hard problem,
an in general requires that certain assumptions on the féthed_yapunov function, the
form of the controller, or the system matrices are met. Thesgictions can be overcome
with the proposed relaxation of the control problems and thas to be considered an
improvement over previous results.

Within the framework of an iterative sum of squares approacvel methodologies
for designing robust nonlinear controllers in the preseawsfggolytropic or norm-bounded
uncertainties are presented.

To demonstrate the effectiveness and problem solving dépes) some numerical ex-
amples are given. Where applicable, the simulation resldtsautline how the presented

methodologies can achieve the prescribed performanceasdi
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1.6 Thesis outline

The remainder of this thesis is organized as follows.
Part | is concerned with the control design for boiler-turbineteyss. In particular,

Chapter 2 describes how online model predictive control can be useathoeve su-
perior tracking performance for the highly nonlinear amrsgly coupled boiler-turbine
system. In particular, the focus of Chapter 2 is on the desigogss of a genetic algorithm
to solve the optimization problem arising from the modelductve control approach. Fur-
thermore, the extension of the proposed algorithm to a asapwitching control law to
take advantage of the strengths of Receding Horizon Controledisas the fast settling
capabilities ofH., fuzzy tracking control in the presence of small deviatiaisrf the ref-
erence signal is presented. Simulation results are protmiehowcase the overall perfor-
mance.

Part Il is concerned with the control design for polynomial systemsgarticular,

Chapter 3 describes a nonlinear feedback controller for polynomyatems. In this
chapter, a problem relaxation in terms of solvability cdiatis of polynomial matrix in-
equality is introduced and solved by an interactive sum ofasgs decomposition algo-
rithm. The direct extension of the results to systems witlgtpapic uncertainty is outlined
before the chapter concludes with a numerical example.

Chapter 4 outlines how the control problem of polynomial systems widihm-bounded
uncertainties can be addressed using a iterative sum ofesqapproach. This is achieved
by using an upper bound technique for on the uncertaintiasurAerical example is given
to illustrate the approach.

Chapter 5 presents the design of a robusy, state feedback control for polynomial
systems. The requirements for this control problem aredldofThe stability of the sys-
tem has to be insured while also having to guarantee thdtghgerformance criterion is

guaranteed. The implementation of the iterative sum of iguapproach is first outlined
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for a single system and then subsequently extended to polghsystems with polytropic
uncertainties. A numerical example is provided to showtasealidity of the approach.

Chapter 6 deals with the problem of robust nonlingdy, state feedback control for
polynomial systems in the presence of norm-bounded unoges This can be seen as the
superposition of the design requirements of the nonlikkacontrol problem described in
Chapter 5 and the robust control problem from Chapter 4. TleetfEness of the approach
is showcased in a numerical example

The previous chapters have assumed that all system statagaalable for a state feed-
back law. This assumption is, however, not true in many ca3é®refore,Chapter 7
discusses the extension of the robust control problem tgémeralized output feedback
case. The results are immediately extended to the applicttioutput feedback cases with
polytropic uncertainties. A numerical example is providedhow the effectiveness of the
presented methodology.

Chapter 7 is the extension of the results from Chapter 6 to the outputlfeek case,
and the iterative sum of squares approach is applied to thi@lean of robustH., output
feedback control in the presence of norm-bounded uncégainA numerical examples
showcases the effectiveness of the approach.

In Chapter 8, the problem of robust nonlineét,, output feedback control for polyno-
mial systems in the presence of norm-bounded uncertaiistipesented. This approach
represents the superposition of the design requiremertteeaionlineaH., output feed-
back problem described in Chapter 7 and the robust outpub&sdcontrol problem out-
lined in Chapter 7. To show the validity of the presented apginpa numerical example is
discussed.

Concluding remarks on the presented work as well as on outloakuggested future
work is given inChapter 9.

Lastly, some background information on Schur Complemerasithused throughout

this research is presentedAppendix A.
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Chapter 2

Genetic Algorithms in Model Predictive

Control for Boiler-Turbine Systems

2.1 Introduction

The control of boiler-turbine systems is a hard problemfeeexample [7, 10, 15, 58, 12].
In this chapter, an online model predictive control apphoaantroduced. In particular, a
receding horizon control (RHC) scheme that relies on artlfiotalligence to optimize the
highly nonlinear and coupled boiler-turbine system cdrgroblem is used. Genetic algo-
rithms have been shown to be effective in handling a varietpalinear control problems,
see for example [59, 58, 60, 61, 62, 63] and references therei

The proposed online RHC approach uses a discretized verkstoe aonlinear boiler-
turbine characteristics and directly implements all nogdir characteristics of the system,
including all input and input slew rate constraints.

The remainder of this chapter is organized as follows. Itice@.2 the online RHC
approach with GAs for the boiler-turbine system (1.3) isadticed. Simulation results for
the boiler-turbine system are presented in section 2.3yrédhe chapter concludes with

some final remarks in section 2.4.
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2.2 Main Results

The RHC approach discussed in this section is based on theonpput information of
(2.3) with system constraints (1.5) only and does not impjylieit knowledge of all sys-
tem states. To evaluate the quality of the solution candgjaBenetic Algorithms (GAs)
are used. They are a form of artificial intelligence (Al) aigam that is based on evolu-
tionary search techniques that mimic the phenomenon ofalagalection and the idea of
survival of the fittest, the phenomenon that drives biolabgvolution [64] [65] [66, 67]. It
is based on stochastic methods and is inherently drivenriyoraness and is thus strictly
non-deterministic [68]. GAs are a natural fit for computatibproblems that require a
search of a huge number of possibilities to find the best isply69]. Artificial intelli-
gence approaches made their first appearance in modern tairapal methods for control
problems as early as the 1960s and marked the beginning @f araeof control [70], [71].

The terminology used to describe GAs in computational ogation is adopted from
their biological role model. The following is a brief summaf the terminology used in
GA literature with a focus on its biological origin.

The blueprint of each organism can be found in their DNA. iigde up oichromo-
somesthat can be divided into functional blocks callgenes Genes can be thought of
as an encodettait that can have multiple settings (e.g. blue, brown, grees)eyalled
alleles Each gene has a particulacusor position on the chromosome. Thenomes
the complete collection of genetic materials of an organism

Organisms that are considered diploid, i.e. their chromosomes are in a paired ar-
ray. During reproduction, a phenomenon calteolssoveitakes place. Genes of the parent
generation are exchanged to forngamete(a single chromosome) in the offspring. Fur-
thermore, all offspring are subject toutation a process in which singleucleotidesare

subject to changes resulting from copying errors.
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Figure 2.1: Typical progression of genetic algorithms

Thefitnessof an individual is a measure for the probability that an argan will live
to reproduce, callediability. Individuals with a higher fitness compared to others have a
higher chance of being selected for reproduction in a pocaliedselection

The computational implementation of this evolutionaryqass is as follows. A chro-
mosome typically refers to a candidate solution that isrofieded in bitstrings. Several of
these individuals form a population of solution candidalésese candidates are evaluated
using a cost function or inverse fitness function. Based om fineess (or cost), the next
generation is generated through a combination of the sstich@rocesses of crossover and
mutation. Once a population of children has been gener#ted,fitness is assessed and
the process is repeated until a solution satisfying theireonents is found or the algorithm
stalls for several generations. A typical progression efltest and mean costs in a GA
are depicted in 2.1. Here, one can see two things. First,dkefiiness is maintained for
several iterations before an more suitable candidate céoubd. This is a common occur-
rence to most GAs. Second, there is a certain degree of eariarthe mean fitness value
of each generation, that - on average - converges slowlyrtisihe best fitness value. This

is due to the stochastic nature of the algorithm based orsaves and mutation.
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One of the key benefits of GAs is their great versatility. Thay be adapted to a wide
range of problems including clustering analysis, optirti@@g machine learning, parame-
ter estimation, economics and control [72, 73, 74, 75, 7&itHer, they are able to find
suboptimal or optimal solutions in large or complex seaqdces and do not depend on
gradient search directions. This great adaptability does/ever, pose a high cost on the
computational burden and requires that thousands or evdinmaiof solutions are eval-
uated to obtain a good final solution. Therefore, their aapion is mostly restricted to
offline computations.

However, if the system response is slow enough, it is passdimplement GAs in
an online RHC control scheme, it is necessary to discretigglaint model with respect
to a suitable sampling time first. As the boiler-turbine systis a highly coupled and
slow system, a sampling time @t = 10s is chosen. The input signals are chosen to be
constant forTy, = 30s. To use evolutionary algorithms involves evaluating thet auf
thousands if not millions of solution candidates and, inegah the results improve if more
samples can be evaluated. As this approach aims for an adagetion of this optimiza-
tion problem, the benefit of more computation time and paéntbetter results have to
carefully weighted carefully against potential deviasasf the actual system response to
the predicted response as well as disturbance rejectigepres. Therefore, a new input
sequence is chosen every 3 sampling times.

Another necessary consideration in online RHC approachés iength of the predic-
tion horizon. In general, the best results for a given pnoldan be obtained for an infinite
horizon. This is, however, in impractical in practice, asauld involve literally evaluating
an infinite number of candidate solutions. Therefore, tlegligtion horizon is usually lim-
ited to only a few sampling periods. If only a very small honzs chosen, the demands
on the computational complexity are significantly redudemlyever an optimal short term

solution may actually drive the system to an unstable stadietlae algorithm may fail al-
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together. A longer horizon generally leads to a more baldacel smoother solution, but
also increases the computational demand exponentially.

For the boiler-turbine system, simulations with a predicthorizon of 3 of input se-
qguences\, = 3 have shown a robust performance and could in general geartmat the
system stays within its physical limitations. This doeswaeer, imply an optimization
in 9 variables and extensive computations are necessageneral, this leads to the ter-
mination of the GA optimization process due to time constrand before the minimum
cost floor has been found and maintained over several GA geoes. Therefore, a more
favorable approach in terms of computational complexity lsa achieved with a horizon
Ny = 2, which does however not guarantee a robust performancesddy. iThis problem
can be overcome by carefully setting additional constsaiatthe optimization problem,
and thus a reduction of the overall required computatianad tn an optimization problem
with only 6 parameters can be achieved.

The additional constraints of the boiler-turbine systemsat up as follows. Consider
the system states of the boiler-turbine systamx,,x3. They are modeled such that they
represent the drum pressuieg/(cnt), the electrical power outpuMW), and the fluid
density kg/m®) of the system, respectively. Neither of these values sh@ach a negative

value in normal operations, thus we can use the followingtexhél constraints

0 <X (i=1,2,3), (2.1)

and therefore limit the search space for the optimal inpgtisaces notably.

Furthermore, the steady convergence to the referencel sggmanitored for each out-
put signal. The signal development from the known last duipthe end of the prediction
horizon allows to penalize unfavorable signal responsek a8 dips and peaks as well
as oscillatory behaviour and leads to a smoother outputktpat prevents the algorithm

from leading the system to an unstable region. In partical@ane of the future outputs is
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allowed to move away from the trajectory towards the refegesignal by more than 5 units
for each prediction horizon.
To evaluate the fitness of the solutions that do not violaied@rthe constraints, the

following cost function is used

2= 3 (27~ Yo QUH - eer)

Nod . . . (2.2)
+ I, 2+ 2= uli) TR + 1 - i)

with penalty design matricg® andR. The first term of (2.2) penalizes the deviation of the
measured output from the reference output. The choice oppropriate weighting matrix
Q needs to be based on the system dynamics and can be furthewvedy considering
several numerical simulation results.

Furthermore, a progressive penalty factbrlzhas been used to pose a higher penalty
on the extrapolated outputs beyond the current predictaizdn, which helps a quick
convergence to the reference signal and an eliminationeofthady state error. For this
extrapolation, it is assumed that the last output in theiptieth horizon does not change
and is applied to consecutive sampling instances.

Moreover, it should be noted that the sum is over the length@butputs at each sys-
tem sampling instance rather than the length of the actaglblied system inputs. Since
the plant is discretized with a sampling time ofslthere are 2 intermediate output re-
sults available between the sampling times of constanttingxploiting this additional
information helps to speed up the search for the optimatisoland generally a smoother
transition towards the reference signal can be obtained.

The second term of (2.2) captures the penalties on the chafrifpe input signals in
R. To guarantee a fast convergence towards a steady statshahge in the input signals

should be as small as possible once the output signals apptioa reference signals. In
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general, the impact dR should be small compared to the penalty on deviations fran th
reference signal, but large enough to allow quick settimtie vicinity of the steady state.

The setup of the GAs is discussed next. GAs are based ongestiarge number
of possible solutions before eventually converging to thgnoum. The solutions under
consideration are dependent on the population size andutinder of generations before
the algorithm terminates. Both parameters must be sufflgitarge to ensure that on the
one side the whole solution space is explored, and on the sttie the algorithm can
converge to the real optimum.

A larger population size usually helps to identify new regiohat are far from the best
solution so far with new local optimal solutions faster. Hwer, the time needed to evaluate
all candidates for each generation increases linearly antlincrease in population size.
For off-line computation these parameters are usuallyemaoather large as computation
time is not a main concern. This changes however, if the tortermination becomes an
important design objective.

The optimization problem is a problem in 6 parameters thatesent the inputs and
uses a population size of 40. The initial population is @itied with the inputs of the pre-
vious time step as well as some random alternations witl@rcéimstraints (1.5) and (2.1).
This is done to promote the continuation of a good input sege® from previous predic-
tion cycles as well as to promote diversity of the populat@mavoid premature convergence
to a local optimum.

The maximum number of generations before the algorithmitextas is another im-
portant parameter. A reasonably large number of gener&ioaquired to ensure that
the algorithm converges to the optimal solution. If it is sl too large, only negligible
progress in the quality of the final solution will be made ie thst generations. However,
if it is chosen too small, the algorithm might converge to @alomptima that may be much
worse than the global optimum before better solutions iotegions of the search space

can be obtained.
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To avoid premature convergence and the termination of therigthm with a subopti-
mal solution, a multistage strategy is implemented as\ialoinstead of calling the GA
once with a large number of generations, it is called twictn\&ilower overall number of
generations. Both calls start with a high mutation variamd¢ech helps to identify optima
that are far away from the so far best solution. In the first @A the initial population is
based on the previous inputs, whereas in the second calhaised on the results of the first
run. Therefore, a reasonably good result is obtained frafitht run, which most likely
reflects a local optima. Using this information to set up theosid run generally results in
a better search direction, which in turn might be able to eayw to an even better solution
due to the high mutation rate in the beginning of the algaritiExperimental results for
the boiler-turbine system suggest that at least 300 gaoesadre necessary for a single run
before the algorithm converges towards a stable solutidroaty negligible improvements
can be made. This is due to the complex structure of the sepate, in particular for
the outputys. Using the suggested multistage approach, a similar stiaaleresult can be
obtained using 2 runs with 100 generations each, thus negtlce computational burden
by around 33%.

Moreover, several parameters have to be tuned properlyasdhidry don’t increase the
computation time, the rate of convergence to a final valudladuality of the best solution
found before the algorithm terminates. GAs make extensesifirandom numbers, so that
multiple runs of the algorithm produce different resulte$e differences can be rather big
after only a couple of generations, but become negligiblhélong-run. However, this
behaviour makes it necessary to consider this charaatefisinly a limited computation
time is available. As the novel controller approach presgéritere aims at providing a
real-time control, a sensible choice of parameters is 1sacgs

The presented GA uses a real valued coding to avoid exteesa@ling and decoding
of the parameters in otherwise commonly used bit sequerides. generations are cre-

ated using stochastic uniform selection with a crossovierda0.8 and a mutation with a
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Figure 2.2: Limitation of admissible solutions for input

variance of 10 in the first generation that decreases lip¢aud by the time the algorithm
arrives at the last generation. This approach helps toifgeqtima that are far away from
the so far best solution in the early stages of the algoridsnyell as optimizing the lo-
calized search for a better solution at the end in the vigioitthe best solution. This has
shown to be very effective in the proposed multistage gyat®loreover, an elite survival
strategy was implemented that guarantees the unaltereda.of the best solution to the
next generation.

Besides the consideration of the additional constraint2.@)( the search space can be
further reduced by taking the slew rate constraints fror)(ihto consideration and thus
restricting the search space to admissible solution catesdwith respect to the previous
inputs only. This approach is illustrated for the inputin Figure 2.2. The initial input
is shown as . Limiting the input with respect to the slew rate constisiim (1.5) for
the prediction horizon results in the solid blue lines angsthmit the search space for

the u; to be [ 0.29 071} and { 0.08 092 } for the first and second constant input,
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respectively. Moreover, the dashed blue lines indicatdithis for the discretized plant
model with respect to the sampling time and therefore altwget a more accurate model
of the system behaviour and overall performance. It shoeleddted that the slew rate
constraints of the other inputs are not as constrictive iagfand do not provide the means
to limit the search plane as much as has been shown;foiNonetheless, they can be
efficiently used for the discretized model to support moigate intermediate solutions.
After the optimal input sequence is obtained, only the fivput is applied to the plant.
Based on this input, the final conditions of the plant at theadrtde next period of constant
input can be predicted and used as initial conditions fonthé RHC cycle. The later inputs
obtained are used as the initial conditions for the next RH&egyvhere besides a constant
progression also random perturbations within the bouedasf the input constraints are
used to create a diverse initial population for the next RHE8eyThis preserves valuable
computation time that would otherwise be spend recovelliegdy available information,

as well as also promoting a steady state input at the end dicthzon.

2.3 Numerical Example

2.3.1 Receding Horizon Control with Genetic Algorithms

The following weighting matrices for the cost function (Réte chosen based on several

test runs:
100 0 O 1 0 O
Q=0 1® 0|, R=]0 1® 0 (2.3)
0O 0 1@ 0O 0 1@

The reason for the high penalty gais its highly nonlinear and coupled nature.
In the examples that follow, a step change in the referergeakioccurs at = 100
and the RHC with GAs is started. Since the outptepresents the drum water level, we

assume that it ideally stays constant and set the referega for this output equal to zero
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Figure 2.3: System response for a change to a close opepeting

for all simulations that follow, unless otherwise statetheTobserved steady state settling
refers to a quasi steady state cost function value 10-2, where deviations deviations
from the reference signal become negligible.

First, the results for a small change in the reference sigreakonsidered. This is a
control task that can be efficiently handled by many cordrelthat use linearization tech-
niques, see for example [7]. Considgris increased from 108 to 129.%; changes from
66.65 to 105.8. The output responses are shown in FigureTh& final operating point
is approached quickly and a virtually steady state is aguevith almost no overshoot. It
should be noted that it takes some time for the system to Yisealtle to the steady state
using the proposed RHC GA approach. This can be explainedebgtisicrete inputs with
a length of 30 seconds each. However, the overall time tdrdecsteady state is compa-

rable to the one achieved in [7], whereas the drum water leweld be kept closer to the

desired level.
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Figure 2.4: System response from a nominal operating poiatfar operating point.

Next, the efficiency of the presented control approach tasfex the system to a oper-
ating point that can be considered far away is investigatgdihis is usually problematic
for controllers that are designed using only a linearized®hdWe consider the changes in
the reference foy, from 108 to 150 ang, from 66.65 to 90. As can be seen in Figure 2.4,
control using RHC in combination with GAs allows a fast traiosi to the new reference
and settles to the final value quickly. The linear contrgtliezposed in [7] was not able to
control this transition and the plant became quickly uristab

To show that the proposed controller can operate well oveida vange of operation,
a change in the reference signal from operating point 1 toek&nined, see table 1.1.
Figures 2.5 and 2.6 show the output and input response atasgg. The transition towards
the new operating point requires about 500s, which is falster [7]. There is, however, an
overshoot in the signalg andy, before they settle towards their steady state values. This
can be explained by the choice of the weighting matri@esdR, which are optimized to

enforce a stable output g% rather than a transition 0.
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Figure 2.9: Switching principle

In a final simulation, multiple changes in the reference aigne considered to show the
tracking capabilities of the proposed controller. Themrefiee signal foys is once again set
to zero for the whole simulation, whilg is changed frony(ll) =756 toygz) = 135O,y(13) =
756,y,Y = 135y{” = 1188 andy; is changed fromy}” = 1527 y? = 1270,y,Y =
15.27,y5Y = 1270,y5) = 85.06 at time instanceg = 100, = 490,t; = 880,t; = 1270,
respectively. It can be observed in Figure 2.7 that the otlatris capable of tracking all
changes in the reference signal. Other controllers areapattie of tracking this reference

trajectory at all or fail to do so within the given time framsge the designs proposed

in[16, 11, 13, 7, 77, 78, 79]. Figure 2.8 shows the input segese for this setup.

2.3.2 Robust Switching Control for Boiler-Turbine Systems

It is possible to further improve the overall performanceriyoducing an adaptive switch-
ing regime as shown in Figure 2.9.

First, the switching control cycle determines whether threresignalesyy, is inside a
set error thresholdll; . If this condition is violated, i.e. there has been a chamgené
reference signal, the predictive control scheme is usedhe@ise, the next step of the

switching control is to evaluate if the error signal is pstesntly within the error threshold.
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If this is the case, thél, fuzzy tracking controller is used. Otherwise, there mightab
bigger issue and the predictive control scheme takes over.

The cost function that forms the basis for the RHC control basetadapted to reflect
the new task of the RHC control scheme: Fast settling to a yptstde is no longer a
concern of the RHC part of the control cycle, as Hhefuzzy tracking controller will be
used to track small changes. Thus, no penalties need to foelilced in for a slew rate
change,

3Ny
J= kzl( F(K) (Yret (K) = Y(K)) T Q(¥ret (k) —¥(K))). (2.4)
Here,N, is the length of the prediction horizo®,is the tracking error weighing matrix,

andf (k) is a penalty function defined as
f(ky=a, a>1. (2.5)

The penalty function (2.5) has a similar function as the figiiactor in (2.2): Deviation
in the tracking performance for later outputs face a hegaealty.

TheH., fuzzy tracking controller is obtained by applying the résoff [35]. The design
process can be summarized as follows. Consider a nonlinetansyn which the space of
operation can be patrtitioned into several regimes witheesfp some premise variables.
Then, tha-th plant local linear model in Takagi-Sugeno (TS) fuzzynirs [19, 35]

Plant Rulei: IF vy (t) is Mj; and--- andvy(t) is Mjg, THEN

X(t) = Aix(t) + Bju(t) + Bywi(t),
z(t) = Cix(t) + Dju(t) (2.6)

y(t) = x(t)

wherei =1,2,---r, r is the number of ruledMix (k=1,2,---,3) are fuzzy setsy;(t)

are premise variableg(t) € R" is the state vectony(t) € R™ is the input,w(t) € RP is
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the disturbance signat(t) € R®is the controlled outpug(t) € R® is the measurement, the
matricesA;, Bj, By, C; andD,; are of appropriate dimensions.
By using a center-average defuzzifer, product inferencesangleton fuzzifer, the local

models can be integrated into a global nonlinear model:

K = 5 uv)AXD+ 3 w(v(E)Bul)
+ Bwwi(t),

2) = 3 p(v(D)/Cax(t) +Dut) o0
YO = 5 H(E)C
where
V) = a(0).valt). - s O] @8)
and

@V(D) = []M(ult), @) >0 im(\/(t))>0,
k=1 i=

(v(®)

Hi(v(t) = Si_ja(v(t)’

W) 20, 5 u(v(D) =1

Here,Mjx (v (t)) denote the grade of membershipwpft) in M.

H. performance is fulfilled if the gain from the disturbance uhpo the controlled
output is less than a prescribed vale 0. In detall, the following condition must hold
[35]

T T
/ 7T (®)z(t)dt < y? / wT (H)w(t)dt. 2.9)
0 0

For the nonlinear plant represented by (2.7), the fuzzye $ddback controller is in-

ferred as follows:

ut) = ilumvm)Kix(t). (2.10)

wherek; is the local controller gain for each plant rule.
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The closed-loop system (2.7) with (2.10) can be written as:

K(t) =
2(t) -
y(t) = i_ilumv( ))Cyix()

3 OO (V) A+ B + Bstt)

2 i (v (1)L (v(1))[Czi+ DziKjx(t) (2.11)

b3
3,

Theorem 2.3.11f there exit a symmetric positive definite matrix P and a matj such

that the following condition holds

AP+PAT +BY;+YBl B, PCJ+Y[D,
* —VA 0 <0 (2.12)
* * —|

fori < j <r, then the(2.9) holds. Moreover, a suitable choice of the fuzzy controBer i

r

ut) = 3 pi(0K;x(t) (2.13)
=1
with
Kj=Y;P?! (2.14)
Proof. See [35]. |

Theorem 2.3.2 The problem of designing a tracking controller f(&.7) with reference

tracking error
e(t) = y(t) — Yret(t) (2.15)

can be formulated as

Zu. [ t) + Biu(t) + Byw(t) +d(t) |,
(2.16)

lel NICzix(t) + Dziu(t)],
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with E(t) = [y e(t)dT and

X(t) ~ 0
X(t) = , dit) = :

E(t) —Yref(t)
- (2.17)

~ A O ~ Bi . B

A= ’ i = I ’ Bw = ¢
Ci O 0 0

Proof. The proof is obvious. [ |

The benefit of the augmented problem formulation of Theore®2ds that the aug-
mented system (2.16) can be directly addressed using Thhead@1. Thus, thél, fuzzy
reference tracking problem with integral action can beté@gust as the standaktl, prob-
lem.

For the adaptive switching controller, the error threshekket to be 10% of the initially
observed error. If the tracking error stays within this #ir@d for 2 consecutive sampling
periods, the control is switched th, fuzzy tracking control, which then efficiently stabi-
lizes the system. Once that error threshold is violatedraghée control switches back to
RHC control and a new error threshold is set with respect to¢heinitial deviation.

The following design parameters have been chosen for the RHéh&e. The penalty
factor a in the penalty function (2.5) is set ®@= 2. This results in a high penalty for
tracking errors at the end of the prediction horizon. Theljtéen horizon is chose as
Ny = 3 for discrete inputs of I¥each. This change from the design in Chapter 2 is possible
due to the less complex cost function and a relaxed appro#hblregpect to steady state
settling behaviour of the RHC controller. The error weiggtfanction in (2.4) is chosen

as
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Figure 2.10: Switching control system outputs

10 O
Q=01 0. (2.18)
0 0 1¢

Based on the new requirements for the RHC procedure, the cbbiQeis slightly
different than in (2.3), but still imposes a much higher ggnan tracking errors inys
based on its high degree of nonlinearity and coupling.

The population size for the GA is set to 50 individuals and@#eterminates after at
most 300 iterations. The crossover ratio is set to 0.8, araliscount of 2 is enforced to
preserve the two fittest of each generation unaltered.

To prevent integrator windup, an anti windup strategy adired in [80] has been
implemented for théd., fuzzy tracking controller.

The simulation results are compared to a linlarcontrol approach for a linearized

system model, see [7] for example.
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Figure 2.11: Switching control system inputs

To show the advantage of the propose adaptive control sgleentenge between dis-
tant operating points is of central interest. Thereforefarence trajectory with respect to
Table 1.1 is chosen as: transition from operating point 1 & t7= 100s, from 7 to 1 at
t = 600s; and from 1 to 4 at = 110G. We set the reference f(ygef = 0 for the whole
simulation to underline our desire to keep the drum watezllag stable as possible. The
outputs and inputs for this tracking problem are shown irufFég2.10 and Figure 2.11,
respectively. It can be observed that the linear contrbléex problems to stabilize the sys-
tem for large changes in the reference signal. There is a Begvation from the reference
value fory, present which may result in a complete control failure. e linearization,
there is a constant steady state error presengf@ndys after the first transition, which
increases significantly after the second transition. lid@ctally manages to stabilize the

system after the last change of reference.
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This section focuses on the design of ldg tracking control for the boiler-turbine

modelled by a TS fuzzy model. Defining
Us(t) = uz(t)xa(t), (2.19)

the dynamics of the boiler-turbine system (1.3) can be teswrias

X1 (t) = —0.0018u5(t)x;®

(t) +0.9uy(t) — 0.15u3(t) + 0.01ws (1),
Xo(t) = 0.073u5(t)x1 3(t) — 0.016¢ (t)x2 3 (t) — 0.1%x(t) + 0.0Iwi (1),
Xa(t) = (141u3(t) — 1.1uj(t) + 0.19Kq(t)) /85+ 0.01wa(t),
(2.20)
y1= Xl(t)7
Y2 = XZ(U?

y3 = 0.05(0.1307s(t) -+ 1008cs+ /9 — 67.975).

From the typical operation points given in Table 1.1, we casume thatx;(t) €

{50 154 . Hence, the nonlinear temi/s(t) in (2.20) can be expressed as
Xt/ %(t) = p(xa(t)) x 50+ pa(x4(t)) x 150 (2.21)

where )

1508 — X8 (t)

1506 — 508 (2.22)
p2(xa(t)) = 1— pa(xa(t)).

Ha(xa(t)) =

The plots forp(x1(t)) and pi(x1(t)) are given in Figure 2.12. Now, using the above
membership functions, the boiler-turbine system (2.20) loa exactly represented by the

following TS fuzzy model

2

(D) = 3 () [AX(D) + BU(D)] + Ba() (2.23)
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Membership Functions
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Figure 2.12: The membership functions fég fuzzy tracking control

where
X1 (t) wa(t) uy(t)
X(t) - Xz(t) 9 W(t) — Wz(t) 9 U(t) = U;(t) 9 (224)
x3(t) ws(t) us(t)
and
0 0 0 0.9 —0.0018x 1506 —0.15
AL=|-0016x1506 —-01 0|, Bt =|0 0073x150 o |,
0.19 1.1 141
_—— o0 ° 8 1 8 1005
0 0 0 0.9 —0.0018x505 —0.15
Ay=1|-0016x505 —01 0|, Bo= 0  0073x 508 o |,
0.19 1.1 141
s 0 0 0 ~85 -
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and

1 00
By=001|0 1 0f.
0 01

The controlled output(t) is chosen to be

100 100
Z(t)=10"*|0 1 o/ x(t)+107'|o 1 of u(t). (2.26)
001 001

By applying the Theorem 2.3.2 with the integral action, theegponding solutions are

obtained.
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0.0003 00003 —0.0001 00074 Q0013 —0.0010
0.0003 00210 —0.0001 00180 02044 —0.0010
o qq | ~00001 —0.0001 00010 -00013 —0.0002 00166
0.0074 00180 —0.0013 03584 00802 —0.0221
0.0013 02044 —0.0002 00802 20204 —0.0039
~0.0010 —0.0010 00166 -0.0221 —0.0039 05756
] L (2.27)
~899905 00074 —0.0023 02109 00371 —0.0282
Yi=| 02992 -118997 12927 01252 00217 —0.0167
149979 —0.0017 —1658818 —0.0474 —0.0084 00059
| 809793 00266 —0.0051 04581 00832 —0.0611
Y2=| 03208 -136769 12980 —0.3532 —0.0646 00471
149952 —0.0062 —1658812 —0.1060 —0.0193 00137

The integral action matricds s; and the state feedback control matriggsare solved

as
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Figure 2.13: Integral state feedback control system withaimdup for boiler-turbine unit
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(2.28)

The guaranteed cost tracking control law for the boilebitug TS fuzzy models are

u(t) = [ua(t) uz

2
= > Hj(xa)[Kif E(t) +Kgjx(t)]

=1

w2 andE(t) = JS(X(t) — Xer (1)) dt.

In order to prevent the windup caused by the saturationseo&thuators, the tracking

with ux(t) =

anti-windup strategy [80] is applied here, see Figure 2.13.
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Figure 2.14: Boiler-turbine system outputs

The disturbances, (t), wo(t) andws(t) are modeled as independent band-limited white
noises with noise power spectrum density of 10. To show tmefite of theH., fuzzy
reference tracking approach presented in Theorem 2.32refults are compared to a
singleH., reference tracking controller that has been designed wslimgarization of the
system dynamics around the central operating point, bitraike using the same design
process outlined in Section 2.3.2. The simulation reswit%.3) with constraints (1.5)
andH. fuzzy reference tracking control (2.28) are shown in Figte 4 and 2.15 for the
system output and input, respectively.

Both control approaches show similar tracking results ferdhtputy;, however the
linear tracking controller fails to track the desired ouyyy andys.

Furthermore, the results for an implementation of the psepél., fuzzy tracking con-
troller with and without an anti-windup strategy are congghr The implementation of

an anti-windup concept is critical to the overall designgass of an integral tracking con-
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Figure 2.15: Boiler-turbine system inputs

troller for systems with input constraints. Otherwise,¢batrol inputs can quickly saturate
and the overall system may not be controllable, see Figl& Zhe proposed anti-windup
strategy avoids large overshoots as well as oscillatorgwiehr in the output signals that
could otherwise damage the system. Furthermore, the d&wsan the water levey; may

result in an overall system failure and an emergency shutdow

2.4 Conclusion

A novel GA-based nonlinear model predictive control applohas been proposed for
boiler-turbine systems. It has been shown that this coappltoach is capable of dealing
well with the nonlinearities in the plant model and can beduse a wide operating range.
Furthermore, a robust adaptive switching algorithm thasusA-based nonlinear model

predictive control as well as robust, fuzzy control was introduced to allow for a quick
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decay in the tracking error towards a steady state. The atioaol results showcase the
effectiveness of both approaches.

Even though the analysis was carried out for the specifiebaiirbine unit, this ap-
proach can easily be transferred to other nonlinear cotasbis by careful adjustment of
the configuration parameters [81].

The online solution presented in this work required the faiaie reasonably slow. An
extension to faster plants and the handling of noise terrdsuacertainties are still open

topics for model predictive control incorporating GAs.
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Chapter 3

Stabilization of Nonlinear Polynomial

System

3.1 Introduction

The control of polynomial systems is a nontrivial problerattetems from an inherently
nonconvex relationship between the controller matrix &edtyapunov function. To avoid
this problem, it is customary to avoid the states that havz e entries in the system input
matrix in the construction of a Lyapunov function, see foamyle [46, 45, 57, 30]. This
is, however, not always practical. Furthermore, it introgliconservatism to the overall
design approach.

The lack of a design approach that addresses this problenviad a greater design
freedom has been the motivation to investigate alternatiwdelling approaches that lead
to overall less conservative control designs through atgré@edom in Lyapunov function
candidates. The following approach addresses the nonciones the problem by intro-
ducing an iterative algorithm. In general, this iterativeqedure leads to an overall larger
control problem, as more unknown coefficients in the Lyapuiumction candidate have

to be considered. Furthermore, the iterative procedur@edtbelow requires that several
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control problems have to be solved sequentially, whictoghices a higher computational
cost in the overall controller design. Results do, howeveticate that this higher cost
tends to find superior solutions to the more commonly usetdictge Lyapunov function
design and should more than make up the initial computdtionastment over the lifetime
of the implemented controller.

The remainder of this chapter is organized as follows: $e@i2 outlines the general
control problem and presents the procedure for the iteratigorithm. The state feedback
control problem is then extended to the common problem oftpmpic uncertainties and
the performance of the procedure is outlined with numeegamples in 3.3. This chapter

closes with some concluding remarks in 3.4.

3.2 Main Results

In this section, the design of a state feedback controllepédynomial systems with poly-
tropic uncertainties is presented. First, a derivatiomefdontrol laws without uncertainties

is derived that is subsequently extended to the case ofsgsteh polytropic uncertainties.

3.2.1 State Feedback Control for Polynomial Systems

Consider the dynamic system modelled by

x =A(X) + B(x)u,
(3.1)

y =X

whereA(x) is a polynomial vector anB(x) is a polynomial matrix of appropriate dimen-

sions. The objective is to find a polynomial controller as

u = K(x) (3.2)

56



Chapter 3: Stabilization of Nonlinear Polynomial System

such that the system (3.1) is asymptotic stable.

Theorem 3.2.1 The polynomial systen{3.1) is stabilizable via state feedback control if

there exist a polynomial function(X) and a polynomial matrix Kx) such that forvx = 0
V(x) >0 (3.3)

d
o oV (X) AX) — 19V (x) (0BT (%) VT (x)
OX 4 gx VU ox

}
(570 B0+ (575 B+ ) <o

(3.4)

Proof: Note that forvx # 0

00 1A + BuK ()] < T
~ 0V (X) 10V(x)
= ax A(X)_Z Ix Bu(X)B (X) ax

)
+ @ ‘”;f(x) Bu(X) + KT(X)> (% a\oﬂi") Bu(X) +KT (x)) .

[AMX) +Bu()K(X)] + KT (K (x)
OV (x)

(3.5)

Thus, it follows from the Lyapunov stability theorem thaethystem (3.1) with (3.2) is
asymptotic stable if (3.4) holds. [ |
Even though we have separated the Lyapunov function and dh&otler matrix
of the state feedback controller problem in (3.4), the problcannot be directly trans-
formed into a state-depended LMI using Schur Complement dubé negative term

—%d\gix) Bu(X)B] (x)%. Introducing a polynomial design vectefx) of appropriate

dimension, it is easy to verify that

(200~ 252 ) BuoB] 0 (e - d\(Q(XX))T >0
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for anyg(x) andw( ) of the same dimension, with equality fofx) = ai) An expansion
yields
V(X aVT(x aVT(x
M B,10BT 0 2L >~ p(x)Bu(9BT (X)T () + £(MBu(B] (1 L )
oX oXx oX (3.6)
oV (X '
+ df( )BU(X)BI(X)ST (X).

Using (3.6) and (3.4), we can formulate the following theore

Theorem 3.2.2 The polynomial syste(B.1)is stabilizable via state feedba¢.2), if there
exist a polynomial function ) satisfying(3.3), a polynomial vectoe(x) of appropriate

dimensions, and a polynomial matrix¥ satisfying the following condition forx # 0

M (x) = Mul) () 0, (3.7)
M21(X) —I
with
;
M1 =720 Ax) + Ze(0BU0BT (9T (0 — Se(0By(B] 00 75 &,
10V (X) T (3.8)
Ma1(x) = (E S Bul) + KT(X)) :
Proof: Itis obvious that using (3.6) in (3.4) yields
;
‘“;E(X) AKX+ (% d\éi") Bu(X) + KT (x)) (% m;f(x) Bu(X) + KT (x)) -

1 1 VT (x) 4
+ ZE(X)BU(X)BE (x)e" (x) - 58(X)BU(X)BI X) =55 = VX,

thus if aV(x) > 0 exists such thd@(x) < 0, it is clear thatv(x) is also negative and
represents a sufficient condition for asymptotic stabilitgt leads to (3.7) by applying

Schur Complement. [ |

58



Chapter 3: Stabilization of Nonlinear Polynomial System

Unfortunately, there are nonconvex expressions in (3at)¢annot be solved directly.
However, this nonconvexity can be overcome by applying aerailve SOS (ISOS) algo-
rithm.

ISOS algorithm for state feedback control of polynomial sysems.

Step 1. Linearize system (3.1). Use the state feedback apipriescribed in [82] to find

a solution to the linearized problem. $et 1,£;(x) = x"P,Vp = x' Px.

Step 2: Solve the following SOS optimization problemViix) andK;(x) with fixed aux-

iliary polynomial vectorg (x) and some positive polynomialg (x) andAx(X):

Minimize ot
Subject tov; (x) — A1(X) isa SOS
—VT (MZ(X) 4+ Az2(X)1) v is a SOS
with
ME (x) & Mia(x) = a1 (+) , (3.10)

le(X) —I

v of appropriate dimensions, ard;i(x),M1(x) are as in (3.8) withv(x) =

Vi (X), K(X) 2 Ki(x), ande(x) £ &(x).

If ar < 0, thenV;(x) andK;(x) represent a feasible solution to the state feedback

control problem of polynomial systems. Terminate the atgor.

Step 3: Set =t+ 1 and solve the following SOS optimization problem\x), K¢(X),
with Z(x) as in Proposition 1.3.1 and the SOS decomposition of the yayp

function\t (x) = Z(X) TQZ(x), &(X) = &_1(x) as well as some positive polynomi-
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alsA1(x) andAz(x):

Minimize tracé Q)

Subject tovt(X) — A1(X) isa SOS
—vT (N (X) +A2(x)1) v is a SOS
with
Ntor (X) é Ml]_(X) - atfl\/t (X) (*) : (311)
M21(X) -

v of appropriate dimensions, and;i(x),M1(x) are as in (3.8) withv(x) =

Vi (X), K(X) 2 Ki(x), ande(x) £ &(x).

Step 4: Solve the following feasibility problem with € R"*1 and some positive toler-

ance functiord(x) > 0,x # 0:

Vo is a SOS.

M_1(x)

If the problem is feasible go to Step 5. Else, sett+1 andé&(x) = —5;

determined in Step 3 and go to Step 2.

Step 5: The system (3.1) may not be stabilizable with stadidfack (3.2). Terminate the

algorithm. ]

The term—%e(x) Bu(X)B/ (x) dV;X(X) makes (3.5) nonconvex, hence the inequality cannot

be solved directly by SOS decomposition. If, however, théleuy polynomial vector (x)
is fixed, (3.5) becomes convex and can be solved efficientlyfoktunately, fixinge(x)
generally does not yield a feasible solution. Thereforeini®@ducea;V;—1(x) in (3.10) to

relax the SOS decomposition in (3.7), wh¥fes (x) is known from the previous step. This
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corresponds to the following Lyapunov inequalities:

Vi(x) >0,

Vi (X) < atVi-1(X).

Similar Lyapunov inequalities can be obtained for (3.11heve nowa; ; has a known
value and thus the produat_1V (X); is convex. It is clear that any negatigein (3.10) or
(3.11) yields a feasible solution of the SOS decompositimhthe system (3.1) with (3.2)
is asymptotic stable.

Step 1 is the initialization of the iterative algorithm anecessary to find an initial
value of &1(Xx) to use in the following iterations. The optimization prablén Step 2 is
a generalized eigenvalue minimization problem and guaesnthe progressive reduction
of ar. Meanwhile, Step 3 ensures convergence of the algorithep Supdates(x) and
checks whether the iterative algorithm stalls, i.e. thelystpveere(x) anda\g—g(x) is smaller
than some positive tolerance functié(x).

Note that the iterative algorithm increases the iteratianablet twice per cycle (in

Step 3 and Step 4). This is done to avoid confusion with thexas.

3.2.2 Polytropic Stability Synthesis

The results presented in the previous section assume tisgst#m parameters are known
exactly. In this section, we extend the results to polynbsyatems with polytropic uncer-
tainties.

Consider the following system

x=A(x,8) + By(x,0)u,
(3.12)

y=X
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where the matricegx, 0) are defined as follows

q q
Ax,0) =S A(X)8, Bu(x,0)=" By (x)6. (3.13)
2,008, B8 =) B
T
6= [91, s eq] € RYis the vector of constant uncertainty and satisfies

q
Ge@é{GGRQ:G.zo,izl,...,q,ze,:l}. (3.14)
i=
We further define the following parameter dependent Lyapduanction
q
V(9 = 3 V(98 (3.15)
i=
With the results from the previous section, we can directhppse the main result the

state feedback controller design for polynomial systentk polytropic uncertainties.

Theorem 3.2.3 The polynomial system with polytropic uncertaint{@sl2)is stabilizable
with state feedbadfB.2)if there exist a polynomial function(X) as in(3.15) a polynomial
vectore(x) = zﬂzl &(x)6 of appropriate dimensions, a polynomial matrixx, as well
as some positive functiodg(x) > 0 and A2(x) > 0 satisfying the following conditions for
X#£0,i=1,...,Q:

Vi(x) >0 (3.16)

and

M) = 5 M8, (3.17)
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with

T N T (3.18)

Mi21(x) —I

with Mi ;(x), ML, (x) as in(3.8) for each subsystem ¢8.12), respectively.

Proof: This theorem follows directly from Theorem 3.2.2. [ |
The same ISOS algorithm given in the previous section cami@oyed to solve for
each subsystem of (3.13) with (3.16) and (3.18) with the seoméroller matrix (3.2) for

all subsystems.

3.3 Numerical Examples

In this section, one example for the state feedback coatrdéisign for polynomial systems
as well as one example for the state feedback controllerygiems with polytropic uncer-
tainty will be presented. Both examples are variations ofpiblgnomial system control

presented in [26].

3.3.1 State Feedback Control for Polynomial Systems

Consider the polynomial system

X =33 — 3xxE + 2xp — Xxo — 13 0
= 1277 3" T g 1 2%2| u (3.19)
0 1
The system is characterized by one pure integrator, thugade-loop system is clearly
not stable. We seledt;(X) = A2(X) = 5(x) = 0.01(X2 +x3), setK(x) to be of the form
K(X) = 10X + Ho1Xe + H11X1X2 + HUzoX2 + Lozx5 and initially look for Lyapunov function

candidates of degree 4. The ISOS algorithm for state feédbasign for polynomial
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systems terminates with a feasible solution dpds|| ~ ||t2ol| = ||to2|| < 0.01. After
setting11 = U2o = Moz = 0 and initializingey (x) as the final value o%, the algorithm

terminates after 2 iterations and the following state fee#ttcontroller with:
K(X1,X2) = 3.12¢1 — 4.24%>. (3.20)

and Lyapunov matrix fromV (x) = Z(x)T QZ(x) whereZ(x) is a vector of monomials
up to a degree of 2

Z0)T=1x X2 X xaxp X2, (3.21)

[ 15407 —0.0053 01246 —0.0122 —0.0034
00053 07348 -0.0355 00156 00225
Q= 01246 —-0.0355 08185 01798 —0.2656] - (3.22)
_00122 00156 01798 08604 04648

| —0.0034 00225 -0.2656 04648 13200 |

It is noteworthy that it was possible to obtainliaear controller for thepolynomial
system (3.19). The closed loop response of the system fialistatesxg = [—3,1]" is

shown in Figure 3.1, with the controller gains depicted igufe 3.2.
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Time [s]

Figure 3.2: Polynomial state feedback control inputs
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3.3.2 Polytropic Stability Synthesis

In this example, the previously discussed system will bereded to the case of polynomial

system with polytropic uncertainties. Consider the polyrasystem with3 € [—1,1]:

o ex = 33— 3xE - xo — X — 1x3 0
‘e 172X~ gX1X5+ 3 e 2| | "
0 1.1
(3.23)
3y v2_ 1,3
EX1X5 — FX 0
Lpl| [P U
0 0.1

First, the system (3.23) is transformed into form (3.13)w.14), i.e. 6 =1,6, =0
for B=—-1and6; = 0,6, =1 for B = 1. Next, we selec1(X) = Az2(X) = d(X) =
0.01(x% +x3), setk (x) to be of the formK (x) = HyoX1 + HoaXe -+ H11XaXe + HooXE + HooX
and initially look for Lyapunov function candidates of degr4. The ISOS algorithm
for state feedback design for polynomial systems termg;aii¢gh a feasible solution and
M1l ~ || H2ol| & [|Hoz|| < 0.01. After settingpiin = Hao = Hoz = 0, initializing &1(x) as

the final value ofd\gi"), and rerunning the algorithm terminates after 2 iteratiand the

following state feedback controller is obtained

K(X]_,Xz) = —1.64x1 — 2.37X2 (3.24)

and Lyapunov matrices

17083 00121 01648 01709 —0.0085
0.0121 10235 00260 00277 00206
Q1= | 0.1648 00260 05886 04247 —0.3003|, (3.25)
0.1709 00277 04247 10610 03637

| —0.0085 00206 —0.3003 03637 16723 |

66



Chapter 3: Stabilization of Nonlinear Polynomial System

Time [s]

Figure 3.3: System response for polynomial state feedbactca with polytropic uncer-
tainties

and

[ 17783 —00250 03120 -0.0187 00450 |
—0.0250 11901 00309 —0.0127 —0.0007
Q2= 03120 00309 12522 —0.2915 01870 |, (3.26)
—0.0187 —0.0127 —0.2915 13923 00000

| 0.0450 -0.0007 Q01870 Q0000 08953 |

whereV, = Z(x)TQiZ(x), with Z(x) as in (3.21).

It was once again possible to obtaitireear controller for thepolynomialcontrol prob-
lem. The system response @ —1,0,1 are depicted in figure 3.3. It can be observed that
the system responses for different valuegadre quite similar. Further, it is noteworthy
that the controller gains are similar in magnitude to thesoolgtained for the single state
feedback case. It has to be assumed that is has happeneyg puegicident, as the over-

all problem without a performance criterion allows for a @inge of feasible solutions.
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For this particular example, it is also possible to reswioe of the controller gains to be
positive and still find dinear controller.

It is also worth mentioning that keeping higher order cofgraerms do not signifi-
cantly increase the overall system performance. Once atiamis most likely due to a

lack of performance criterion.

3.4 Conclusion

In this chapter, the concept of an iterative design algoritbr the problem of polynomial
system control with and without polytropic uncertainties lbeen presented. In detail, suf-
ficient conditions for the existence of a controller thabgizes the system and guarantees
asymptotic stability have been formulated in terms of polyial matrix inequalities. An
iterative algorithm was introduced to deal with the non@erms in the problem formu-
lation, and the algorithm was able to obtain feasible sohgiwith very few iterations in
numerical examples. Furthermore, it was possible to olita@ar controller gains for the

polynomialsystem.
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Chapter 4

Robust Nonlinear Control of Polynomial
Systems with Norm-Bounded

Uncertainties

4.1 Introduction

When dealing with real life control systems, it is importamehsure that the obtained con-
trol laws will work in the presence of uncertainties [83, 84hcertainties can come from
a lot of sources, for example simplification in the system el@d parameter inaccuracies
[85]. In general, the presence of uncertainties can dedghradsystem performance signif-
icantly, potentially even leading to instability of the oa# control system. It is therefore
necessary to carefully consider uncertainties in the syste

One way of looking at uncertainties is through the study dfteyn with polytropic
uncertainties, as has been presented in the previous ch&ptether way to model un-
certainties is by looking at norm-bounded uncertaintieBis Topic is of particular inter-
est for practical control applications as a lot of contrasteyns can be approximated as

(polynomial) system with some degree of norm-bounded waitey. Therefore, a vast

69



Chapter 4: Robust Nonlinear Control of Polynomial Systems Wilhm-Bounded
Uncertainties

amount of literature is available on system control withmdyounded uncertainties, see
[86, 87, 88, 89].

In this chapter, the process of designing a controller fdymmmial system subject
to norm-bounded uncertainties is investigated. Any cdletrdor a system with norm-
bounded uncertainties is said to be robust and the overatraosystem is considered
robustly stable with respect to the system dynamics andimwitte assumed level of un-
certainty. In the following, an extension of the previoussifroduced iterative design algo-
rithm is presented, followed by some numerical examplehtovsase the validity of the
design approach. Lastly, some conclusions about the probigolynomial systems with

norm-bounded uncertainties are given in the last part efchapter.

4.2 Main Results

In the following, we consider the uncertain polynomial gystof the form
X = A(X) + B(x)u+ AA(X) + AB(X)u, (4.1)

wherex andu are the system’s state and input, respectiv&(x) andB(x) are the polyno-
mial system vector and matrix, respectively. Furtidgk(x) andAB(x) are used to capture
the uncertain parts of the system design. The followingragsion will be used throughout

the remainder of this thesis

Assumption 4.2.1 The admissible parameter uncertainties considered hezeagasumed

to be norm-bounded and can be described as

{AA(x) AB(X)} =H(X)F(x) {El(x) Ez(x)}, (4.2)
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with known polynomial matrices (1), E;(x), E2(X) of appropriate dimensions and(k)

being an unknown state-depended matrix that satisfies

IFT)OF (X)) <. (4.3)

Theorem 4.2.1 The polynomial systefd.1)is controllable via polynomial feedback con-
trol of the form

u = K(x) (4.4)

if there exist a Lyapunov function(X), a polynomial design vecta(x) of appropriate

dimensions satisfying the following conditions fo£X

V(X)>0, (4_5)
and ] ]
Mi1(X) (x) (%) (%)

M0 = a0 <0, (4.6)
Mai(x) O —21 (x)
Mar(x) 0 0 -2

with
.
Maa(x) = d\c/aix) Alx)+ %$(X> Bu(X)B{ (X)€" (x) - %s(x) Bu(X)B] (X) avax( 9,

;
Mes(9 = (52500800 + K7 )

M3z1(X) = (E1(X) + E2(X)K(X)),
VT (x)

M41(X) =H T (X) T

4.7)
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Proof: The case without uncertainty has been discussed in TheotziB the pre-

vious chapter. Using triangular inequality on the uncettaierm yields

=(9 =5 PHXF () (E2(0) + E200K ()

rVT(x)
ox

+ % (Ex(¥) + E2(00K (X)) (E1(X) + E2(0K (x))

<5 H(X)F (X)F (x)TH (x) (4.8)

Therefore, using (3.9) and (4.8) combined suggests

.
V(x) < a\gi") AX)+ (% a\;f:‘) Bu(X) +KT (x)) (% ‘9\25:() Bu(x) + K (x))

H

+ 2e0BUO0B] (e (00— 2e00Bu09BL 00 2 + =
< oV (x) 1oV(x)

]
AL A(x)+<2 > Bu(x)+KT(x)) (%a\gf(x)su(xHKT(x))

+ Z£(X)By(X)BT ()T (x) — %E(X) Bu(X)BY (X) aV;X( 9
16V(%) A
5 T T HOIF (OF () THOO TS

(Ex(x) +E2(x)K(x) " (Ex(x) +E2(x)K (X)) <0,

N
NI

(4.9)

TN

+

_|_

NI =

Thus, if (4.6) and (4.5) hold, it is clear that this satisfies Lyapunov stability criterion by

applying Schur Complements and noting (4.3). [ |

The following ISOS approach can be used to find a solutioneactmtrol problem of

state feedback control for polynomial system with norm+mted uncertainties

Step 1: Sef(x) = 0 and linearize the system (4.1). Use the state feedbacloagipr

described in [82] to find a solution of the linearized prolbdamthout uncertainty.
Sett = 1,&(x) = X"P Vo = X" Px
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Step 2:

Step 3:

Solve the following SOS optimization problemj(x) andK;(x) with fixed aux-
iliary polynomial vectorg (x) and some positive polynomialg (x) andAz(x):
Minimize ot
Subject tovi(X) — A1(X) isa SOS
—vT (M2 (X) + A2(X)1) v is a SOS
with ) -
Mi1(X) — atVe-1(X) (%) (%) ()
Ma1(X —I (% *
M (x) 2 21(X) () (%) | (4.10)
M31(X) 0o -2 (*)
M41(X) 0 0 =2l

v of appropriate dimensions, amd;1(x), M21(X), M3z1(X),M41(X) are as in (4.7)

with V (X) 2 Wt (X),K(X) 2 K¢(x), ande(x) = &(X).

If ar < 0, thenVt(x) andK;(x) represent a feasible solution to tHe state feed-

back control problem of polynomial systems. Terminate igera&hm.

Set =t +1 and solve the following SOS optimization problemwx), K (x),
with Z(X) as in Proposition 2.2 and the SOS decomposition of the Lyapfunc-
tion t(X) = Z(X)TQZ(x), &(xX) = &_1(X) as well as some positive polynomials

A1(x) andAz(X):

Minimize tracé Q)
Subject tovt(x) — A1(X) isa SOS

—VT (N (X) 4+ A2(x)1 ) v is a SOS
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with ~ i
M11(X) — a-1M(X) () (%) (%)
N[G (X) A MZI(X) =l (*) (*) 7 (411)
Mz1(X) 0 -2 ()
i M41(X) 0 o -2 |

v of appropriate dimensions, aid;1(x), M21(X), M31(x),Ma1(X) are as in (4.7)

with V (X) £Vt (x),K(X) £ K¢(x), andg(x) = &(X).

Step 4: Solve the following feasibility problem with € R"1 and some positive toler-

ance functiord(x) > 0,x # 0:

Vo is a SOS.

M—1(X)

If the problem is feasible go to Step 5. Else, sett+1 andé&(X) = — 5

determined in Step 3 and go to Step 2.

Step 5: The system (4.1) may not be stabilizable with staeldack control (4.4). Termi-

nate the algorithm. [ |

The term—%e(x) Bu(x)B] (x)% makes (4.6) nonconvex, hence the inequality cannot
be solved directly by SOS decomposition. If, however, théleuy polynomial vector (x)
is fixed, (4.6) becomes convex and can be solved efficientlyfoktlnately, fixinge(x)
generally does not yield a feasible solution. Thereforeini@ducea;V;—1(x) in (4.10) to
relax the SOS decomposition in (4.6), wh¥fes (x) is known from the previous step. This

corresponds to the following Lyapunov inequalities:

V(%) >0,

Vi (X) < aVi—1(X).
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Similar Lyapunov inequalities can be obtained for (4.11heve nowa;_; has a known
value and thus the produat_1V(Xx); is convex. It is clear that any negatieein (4.10)
or (4.11) yields a feasible solution of the SOS decompasitind the system (4.1) with
uncertainties as in (4.2)(4.3) is asymptotic stable withesteedback control (4.4).

Step 1 is the initialization of the iterative algorithm anecessary to find an initial
value of &1(x) to use in the following iterations. The optimization prablén Step 2 is
a generalized eigenvalue minimization problem and guaesnthe progressive reduction
of a;. Meanwhile, Step 3 ensures convergence of the algorithep &updates(x) and
checks whether the iterative algorithm stalls, i.e. thelystpveere(x) anda\g—g(x) is smaller
than some positive tolerance functidfx).

Note that the iterative algorithm increases the iteratianiablet twice per cycle (in

Step 3 and Step 4). This is done to avoid confusion with thexasd.

4.3 Numerical Example

In the following, a numerical example is used to demonstifagdevalidity of the iterative
design approach.

Consider the following polynomial system

X =A(X) +B(x)u+H(X)F (x) (Ex(x) + E2(x)u),

—x1 4+ X8 — 33 — X128 + 1xo — xoxo — 33 0
AKX) = 172X —gXXot g PeTXL gy =
0 1 (4.12)
3y.y2_ 143
3x1XE — 1x 0
H =1, Ex=|%"72 2|, Ew= . F(x)=1sin(x)
0 0.2

The system has one pure integrator, thus it is clearly opep-lnstable. We select
A1(X) = A2(x) = &(x) = 0.01(x2 +x3), set the controller to be a function a&fup to a

degree of 3 and choose to look for Lyapunov function candslaf degree 4. By using
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Figure 4.1: History ok for different initial conditions
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the ISOS algorithm presented above, we were able to obtaifotlowing controller after
3 iterations

K(X) = —2.2740¢ — 4.812¢; (4.13)

with the following Lyapunov matrix

(18654 00676 01469 01406 00260 |
0.0676 09160 00247 00360 —0.0160
Q=10.1469 00247 06280 05129 —0.2520|, (4.14)
0.1406 00360 05129 10884 03016

10.0260 —0.0160 —0.2520 03016 12188 |
T
with V(X) = Z(X)TQZ(X),Z(X) = |x; x» X5 xix; x5| and noting that the coeffi-
cients for the higher order controller terms were almosb z#us allowing to find a con-
troller to be linear by initializinge(x)1 = % with the results from the first ISOS run and
readjusting for a lineakK (x). The simulation results for different initial conditioneeade-

picted in figure 4.1 and 4.2 fo, andx,, respectively. The proposed controller efficiently

stabilizes the system and the system states converge waatdady state.

4.4 Conclusion

In this chapter, sufficient conditions for the existence dftate feedback controller for
systems with norm-bounded uncertainties has been preksefteiterative algorithm has
been used to address the nonconvexity in the problem fotionland the effectiveness of

the approach has been outlined with a numerical example.
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Chapter 5

Nonlinear H,, State Feedback Control
for Polynomial Systems with Polytropic

Uncertainties

5.1 Introduction

The problem of designing a nonlineklk, controller has attracted considerable attention
for more than three decades, see for example [90, 91, 92 nél3jedierences therein. This
interest stems from the nature of tHg control problem. Generally speaking, the aim is to
design a controller such that the resulting closed-loofesyss stable and a prescribed level
of attenuation from the exogenous disturbance input todinéralled output irL,/12-norm

is fulfilled. There are two common approaches available tiregs nonlineaH., control
problems: One is based on the theory of dissipative enedjydi®d theory of differential
games [90]; The other is based on the nonlinear version obtlumded real lemma as
developed in [95, 39]. The underlying idea behind both apphes is the conversion of the

nonlinearH. control problem into the solvability form of the Hamiltoacbbi equation
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(HJE). Unfortunately, this representation is NP-hard amslgenerally very difficult to find
a global solution.

In recent years, several approaches utilizing SOS decatigrssto achieve nonlinear
H., control for polynomial system have been presented, e.g4@%7, 30] and references
therein. The systems discussed are represented in a spateddat linear-like form and the
authors assumed that the control input matrix has some par® and that the Lyapunov
function only depends on the states whose rows are zero.eTdssuimptions, however,
lead to conservatism in the controller design.

The remainder of this chapter is organized as follows: Thenmesults for a single
polynomial system, as well as the subsequent extensioretoabe of systems with poly-
tropic uncertainties is discussed in section 5.2. Some nigalexamples are provided in
5.3 to showcase the efficiency of the proposed algorithmrbetwe chapter closes with

some final remarks in 5.4.

5.2 Main Results

5.2.1 NonlinearH. Control for Polynomial Systems

Consider the following dynamic model of a polynomial system

X :A(X) + Bu(X)U + Bw(X) w,
(5.1)

Z=C4(X) + Dz(X)u,

wherew € RP is the disturbance input arzds the regulated outpuf(x),C,(x) are polyno-
mial vectors and,(x),By(x),Dz(X) are polynomial matrices of appropriate dimensions.
The objective of state feedbatlk, control is to find a controlleK(x) such that the closed-

loop system with

u=K(x) (5.2)

79



Chapter 5: Nonlinear Control for Polynomial Systems with Rolgic Uncertainties

is asymptotically stable and the gain from the disturbance input to the controlled output

is less than a prescribed valye- 0. In detail, the following condition must hold:

/ T 2dt< 2 / o odt, (5.3)
0 0

Theorem 5.2.1 The polynomial systeifb.1) is stabilizable with a prescribed JHHperfor-
mancey > 0 via state feedbac{s.2)if there exist a polynomial function(X) and a poly-

nomial matrix K(x) such that forvx # 0 such that

V(x) >0, (5.4)

and

oV (x) AX)— 19V (x) VT (x)

ox 4 oJx ox

(2000 2 (12 )

. (}av(X) BU(X)+KT(y>> (}dV(x) Bu(x)+KT(y))T

Bu(X)B} (X)

(5.5)

2 0x 2 0x
+(C2(X) + D2(0)K(¥)) " (Co(X) + Dz (0K (y)) < O.

Proof: The case without disturbance has been discussed in Theogei thus the

closed loop system is asymptotically stable with= 0. This leave the contribution of
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Bw(X)w andzto theH., control problem, i.e.

=(x) = d\(/?f(x) Bow(X)w = d\;ix) Bo(Xw+ (Yw' w-2"2) — (Yw' w-2'2)

:
(3t ) (500w
T
+ (%d\;i )Bw<x)) % (% 0\25()() Bw(x)) + (Yo' w-2"2)
+(Co(X) + D2(X)K (X)) (Cz(X) + D(X)K (x))
T
(1) ()

VZ
+(C2(%) + Dz(X)K (X)) (Co(x) + D2(X)K (X)) = Z().

(5.6)

[T

Using (3.9) and addin&(x) from (5.6), we have

o"'V(x) AV (X VT (x)

A%~ 377 %B, 08T (0

(idfax o ) (375 i)
(32,00 1k7)) (R Wm e KT) O

V(%)

+(C200) +D20K () " (Co(x) + D2()K ()
+ (Yo' w-2"7).

Thus, if (5.5) holds, we have
V(X) < —Z' 24 YPw' w.

Integrating both sides of the inequality yields

/ V(x dt</ —2'z+ Yo' w) dt,
VX)) -VXO) < [ (-7 7+ ol w)dt

0
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Noting that with initial conditionx(0) = 0 andV (x(e)) > 0, we obtain

/ 7' zdt< yz/ w' dt.
0 0
Hence (5.3) holds and. performance is fulfilled. [ |

Theorem 5.2.2 The polynomial systertb.1) is stabilizable with prescribed H perfor-
mancey > 0 via state feedbackb.2), if there exist a polynomial function(X) satisfying
(5.4), a polynomial vectoe(x) of appropriate dimensions, and a polynomial matrigK

satisfying the following condition forx # 0

(M) (6) (5 (%) ]
M(x) = Ma1(X) —1 (%) (%) -0 59
Msy(x) O =1 (%)
_|V|41(X) 0O O —y2|_
with
W19 =50 A0+ (0B 08" () B0l 0 5

;
Ma(X) = (% d\gix) Bu(X) + KT(X)) ,

M31(X) =Cz(X) + Dz(X)K(X),
;
Maz(X) = (% d\gix) Bw(x)) .

(5.9)
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Proof: Using (3.6) in (5.5) yields

.
a\gi)QA(x) N <%d\o{.§(X) Bu(X) —|—KT(X)) <%0\0{.§<X) Bu(X) _|_KT(X))

VT (x)
ox (5.10)

+ 2e(0BUB] (T (X) ~ 2(Bu(BY (4

(3200) & (20

+ (Co(X) 4+ D2(X)K (X)) T (Cx(X) + D(x)K (X)) < 0,

which is a sufficient condition foH. stability. Applying Schur Complement results in
(5.8). [
With this, the following iterative SOS algorithm fét., control polynomial systems can

be proposed.

Step 1: Linearize system (5.1) and set= 0. Use the state feedback approach described
in [82] to find a solution to the linearized problem withoustdirbance. Sedt=

1,&1(X) = x"P Vo = X" Px.

Step 2: Solve the following SOS optimization problem/iix) andK;(x) with fixed aux-

iliary polynomial vectorg (x) and some positive polynomialg (x) andAz(x):

Minimize ot
Subject tovi(X) — A1(X) isa SOS
—vT (MZ(X) + A2(X)1) v is a SOS
with ~ -
Mi11(X) —atVi—1(X) (%) (%) (%)
MZ (x) £ Maa(x) Y , (5.11)
Mgl(X) 0 —I (*)
Ms1(X) 0 0 —y
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v of appropriate dimensions, amd;1(x),M21(x),M31(x),Ma1(x) are as in (8.1)
with V (X) £V, (X), K(X) = K¢(x), ande(X) £ &(X).
If ar < 0, thenVt(x) andK;(x) represent a feasible solution to tHe state feed-

back control problem of polynomial systems. Terminate {gerghm.

Step 3: Set =t+ 1 and solve the following SOS optimization problemwx), K¢(X),
with Z(x) as in Proposition 1.3.2 and the SOS decomposition of the yayp
function\t (x) = Z(X) T QZ(x), &(X) = &_1(x) as well as some positive polynomi-

alsA1(x) andAa(x):

Minimize tracé Q)
Subject tovi (X) — A1(X) isa SOS

—VT (N (X) 4+ A2(x)1 ) v is a SOS

with

N7 (x) £ ) (5.12)

I Ma1(X) 0 0 —y

v of appropriate dimensions, amd;1(x), M21(X), M3z1(X),Ms1(X) are as in (8.1)

with V (X) £ Wt (X),K(X) £ K¢(x), ande(x) = &(X).

Step 4: Solve the following feasibility problem with € R"1 and some positive toler-

ance functiord(x) > 0,x # 0:

Vo is a SOS.
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If the problem is feasible go to Step 5. Else, sett+ 1 and&(X) = "Vt‘;;(x)

determined in Step 3 and go to Step 2.

Step 5: The system (5.1) may not be stabilizable Withperformancey by state feedback

(5.2). Terminate the algorithm.

The term—%e(x)Bu(x)BI (X)% makes (5.8) non-convex, hence the inequality can-
not be solved directly by SOS decomposition. If, howeves,abxiliary polynomial vector
£(x) is fixed, (5.8) becomes convex and can be solved efficientijoftunately, fixings (x)
generally does not yield a feasible solution. Therefore jintducea;Vi—1(X) in (5.11)
to relax the SOS decomposition in (5.8). This correspondkedollowing Lyapunov in-

equalities:

Vi (x) >0,

Vi (X) <arVe—1(X).

Similar Lyapunov inequalities can be obtained for (5.12)is Iclear that any negative
in (5.11) or (5.12) yields a feasible solution of the SOS daegosition and the system (5.1)
with (5.2) can be stabilized witH., performancey with state feedback control.

Step 1 is the initialization of the iterative algorithm andcassary to find an initial
value of £1(Xx) to use in the following iterations. The optimization prablén Step 2 is
a generalized eigenvalue minimization problem and guaesnthe progressive reduction

of a;. Meanwhile, Step 3 ensures convergence of the algorithep &updates(x) and

Vv (x)
ox

checks whether the iterative algorithm stalls, i.e. thelgsveere(x) and is smaller
than some positive tolerance functid(x).
Note that the iterative algorithm increases the iteratianablet twice per cycle (in

Step 3 and Step 4). This is done to avoid confusion with thexas.
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5.2.2 PolytropicH« Control Synthesis

The results from the previous section assume that all systegameters are known exactly.
In this section, the results are extended to polynomiaksystith polytropic uncertainties.

Consider the system
X =A(X, 8) + Bu(X, 8)u+Bew(X, 8)w,

(5.13)
z2=C;4(x,0) + D4(x,0)u,
where the matricegx, 0) are defined as follows
q q q
AXx,0) =Y A(X)6, Bu(x,0)=Y Bu(X)8, Bu(x,0) =" By(x)0,
( )i;()u u( )i;uﬁ o )i;m()
; ; (5.14)
Ci(x,0) =Y C;(x)8, Dz(x,0)="Y Dz(x)8.
(00 = 2, 08 Pale) =2 B
T
6= {91,,_-794 € RY%is the vector of constant uncertainty and satisfies
q
0co2 QeRq:G.ZO,izl,...,q,zie.zl . (5.15)
i=
We further define the following parameter dependent Lyapdnoction
q
V(9 = 3 008 (5.16)
i=

With the results from the previous section and the discassio Chapter 3.2.2, we can
directly propose the theorem for robii$t state feedback controller design for polynomial

systems with polytropic uncertainties.

Theorem 5.2.3 The polynomial system with parametric uncertain{ed.3)is stabilizable
with prescribed KB performancey > 0 via state feedback contr¢b.2)if there exist a poly-
nomial function \(x) as in(5.16), a polynomial vectog(x) = Ziq:l & (x) 6 of appropriate

dimensions, a polynomial matrix(K), as well as some positive functioAg(x) > 0 and
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A2(x) > 0 satisfying the following conditions forx 0,i=1,....q:

Vi(x) >0 (5.17)
and
M = 3 M8, 5.18)
with
M0 (1) (1) ()
Mi (X) = M%1<X) R <0, (5.19)
Mg (x) 0 =1 (%)
My 00—y

with Mi ;(x), M4 (x), M (x), M}, (x) as in(5.9) for each subsystem ¢6.13) respectively.

Proof: This follows directly from Theorem 5.2.2. |
The iterative algorithm from the previous section can beistéd to reflect the changes

from Theorem 5.2.2 to Theorem 5.2.3 as follows.

Step 1: Linearize each system from (5.13) andiset0. Use the state feedback approach

described in [82] to find a solution to each of the linearizedbpems without

disturbance. For=1,...,q, sett = 1 and[g (X)]; = X" P, Mi(X)]o = X" Px.

Step 2: Solve the following SOS optimization problem[¥)x)]; and K¢(x) with fixed

auxiliary polynomial vectorss;(x)]; and some positive polynomialg andA; for
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i=1....q
Minimize ot
Subject toV; (x)]; — A1(x), isa SOS
—VT ([MT(X)]; + A2 v is a SOS
with ~ .
M) —a M)y () (6 (%)
IME (x)], 2 Mél(x) IR B
M4 (%) 0 1 (¥
Mig1 (%) 0 0 —y

v of appropriate dimensions, aid};(x),Mb,(x),Mk,(x),M},(x) are as in (5.9)
with V(x) £ M(X)];,K(Y) £ Ki(y), ande(x) = [&(x)], for each subsystem of
(5.14), respectively.

If ot <0, thenv(x) = 31, M (X)], & andK;(x) represent a feasible solution. Ter-

minate the algorithm.

Step 3: Set =t+ 1 and solve the following SOS optimization problem{\f(x)]; , Kt(X),
with Z(x) as in Proposition 1.3.2 and the SOS decomposition\Q(x)], =
Z(x)" [Qi];Z(x), and [&(X)], = [&(X)];_, as well as some positive polynomials

A1(x) andAz(x) fori=1,...,q:

Minimize itraCE([Qi]t)

Subject toV; (x)]; — A1(X) isa SOS

—VT ([N ()] +A2(X)1) v is a SOS
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with ) ;
M () — a1 M)l (%) (x) (%)
N7 (), = ol OO s
M3, (X) 0 -1 (%)
M} (%) 0 0 —y]

v of appropriate dimensions, amd ,(x), M5, (x), Mk, (x),M},(x) as in (5.9) with
V(x) = M(X)];,K(X) = Ki(x), ande(x) = [&(X)], for each subsystem of (5.13),

respectively.

Step 4: Solve the following feasibility problem with € R"1 and some positive toler-

ance functiod(x) > 0,x#0fori=1,...,q:

Vo isa SOS

If the problem is feasible go to Step 5. Else,tsett + 1 and[g (X)]; = [a\gix)]t 1’

fori=1,...,qdetermined in Step 3 and go to Step 2.

Step 5: The system (5.13) may not be stabilizable Wthperformancey by state feed-

back control (5.2). Terminate the algorithm. [ |

5.3 Numerical Example

Consider the following polynomial system with norm-boundeattertainties withB €

[—1,1):
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5 ............................................ .......... :
i
=-1
O S
——B=0
- - — B =1
-15 1 1 1 1 )
0 2 4 6 8 10
Time [s]
Figure 5.1: Regulated output
o mxa— 33— S+ xo — xBxo — X3 0 1.25
« 1-2%1 " 8M2T3 1 a2 Ut o,
0 1.1 0
3y x2 _ 133 5.22)
X1X2 — 3x 0 0.25 (
+B g2 Atz u+ wl|,
0 0.1 0

We selecthy(x) = Az(X) = 5(x) = 0.01(x2 +x3), set the controller to be a function of
X up to a degree of 3 and choose to look for Lyapunov functiomlicktes of degree 4. The
ISOS algorithm terminates with a feasible solution §ér= 1.423 after 3 iterations with

very small coefficients for the higher order termsi(x). Thus, we initializeg; (x) = 0\2)((x)’

adjustK(x) to be linear and rerun the algorithm for a linear controllefter 3 iterations,

the followingH., controller for the polynomial system (6.14) with polytropincertainties

90



Chapter 5: Nonlinear Control for Polynomial Systems with Bolyic Uncertainties

O [ [ [ [ J
0 10 20 30 40 50
Time [s]
. . TT2d
Figure 5.2: Energy rati&(7) = firo(jTi)dtt
has been obtained
K(x) = 1.137%; — 0.653%y, (5.23)

with Lyapunov functions

[ 12940 —00322 01408 00515 -0.0128
~0.0322 06587 —0.0028 —0.0367 —0.1138
Qo= | 0.1408 -0.0028 03003 01737 -0.1311 (5.24)
0.0515 —0.0367 01737 05404 03576

| —0.0128 —0.1138 —0.1311 03576 10156 |
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and
0.2912 —-0.0485 —0.0169 —0.0093 Q0068

—0.0485 04639 00015 -0.0065 —0.0033
Q1= |[-0.0169 00015 01692 00942 -0.1621 (5.25)
—0.0093 —0.0065 00942 02807 00054

| 0.0068 —0.0033 —0.1621 00054 06608 |

.
for Vi(x) = Z(X)TQiZ(x),i = 1,2 andZ(x) = [Xl X2 X3 XiXo X2

Once again, it was possible to obtairimear controller for thepolynomial system.
For initial states% = {10 10]T and a disturbance modelled with Gaussian white noise
with power density spectrum of 0.01, the trajectories ofrégulated output are depicted
in Figure 5.1. Figure 5.2 depicts the overall energy in thetey. It can be observed that

g7z

E(r) = Torw falls below the prescribed performance value after 20 stdor 8 = 1,
0

and after around 50 seconds for any admissible valy® of

5.4 Conclusion

An iterative procedure to obtainkh, state feedback controller for polynomials with poly-
tropic uncertainties has been presented in this sectiofficigat conditions for the exis-
tence of aH. controller have been derived in terms of bilinear matrixqualities. An
iterative algorithm has been proposed that results in anpofyal controller that avoids ra-
tional components encountered when inverting the Lyap@unostion in traditional control
approaches. Further, the Lyapunov function has been shma true function of all sys-
tem states and is not restricted to only incorporates stetesh corresponding rows in the
control matrix are zeros. A numerical example has been geavio show the effectiveness

of the proposed approach.
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Chapter 6

Robust Nonlinear H,, State Feedback
Control for Polynomial Systems with

Norm-Bounded Uncertainties

6.1 Introduction

The motivation for this chapter stems from the conceptsigeain the previous chapters.
In dealing with real life applications, we would like to emsuhat our controller is robust
enough to stabilize the system in the presence of distudsar€urthermore, it is desirable
to ensure that the controller is optimized in a way that theral system response ensures
that the effect of disturbances on the system output is nim@da This chapter is organized
as follows. In section 6.2, the main results for the robusilinear H., state feedback
control problem for polynomial systems with norm-boundedtertainties are presented.
A numerical example is provided in section 6.3 to showcagevtlidity of the design

approach before the chapter is concluded with final remarkection 6.4.
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6.2 Main Results

Consider the following polynomial system with norm-boundedertainties

X = A(X) + Bu(X) + B (X) + AA(X) + ABy(X),
(6.1)

z=C4(x) + Dz(x)u,

wherex € R" are the system statasc R™ is the input andis the controlled outputA(x)
andC,(x) are polynomial vectors andy, B, D, are polynomial matrices of appropriate
dimensions. The disturbance signakes whereas the norm-bounded uncertainties of the
system are captured idA(x) andABy(X). The objective of a state feedbaklk control is

to find a controlleiK (x) such that the system (6.1) with
u=K(x) (6.2)

is asymptotically stable and tthe gain from the disturbance input to the controlled output

is less than a prescribed valye- 0, that is

/szdtg y2/ w' cdt. (6.3)
0 0

The following assumption is used for the norm-bounded uaagy

Assumption 6.2.1 The admissible parameter uncertainties considered hezeaasumed

to be norm-bounded and can be described as

[AA(X) AB(X)} =H(X)F(x) {El(x) Ez(x)}, (6.4)
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with known polynomial matrices (1), E;(x), E2(X) of appropriate dimensions and(k)

being an unknown state-depended matrix that satisfies

IFT)OF (X)) <. (6.5)

Theorem 6.2.1 The polynomial systeif6.1) is stabilizable with a prescribed JHHperfor-
mancey > 0 via state feedback controlld6.2) if there exist a polynomial function (X)

and a polynomial matrix Kx) such thatvx # 0

V(x) >0 (6.6)
and oV (X) 10V (X) VT (x)
X X X
WA(X) - ZTBU(X) By OQT
10V 10V (x T
+ (53700 B0 ) 5 (5o Bl )
10V (x) 16V (x) T
+ (5370 B+ K70 ) (5750080 + KT () 6
+(C2(X) + DK (¥)) " (Co(x) + D2(X)K(¥))
N, V' (x)
2 2R R (F () THT 7
+ % (E1(X) + E2(X)K (X)) " (Ex(X) + E2(X)K (X)) < O.
Proof: The proof follows directly from Theorem 4.2.1 and Theore 5. |

Theorem 6.2.2 The polynomial systeli.1)is stabilizable with i normy > 0 via poly-

nomial state feedback control and

u=K(x) (6.8)

if there exist a Lyapunov function(¥), a polynomial design vecta(x) of appropriate

dimensions satisfying the following conditions fo£

V(x) > 0, (6.9)
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and ) ;
Mia(X) (%) (%) (x) (%) (%)
Ma1(x) =1 () (%) (%) (%)
. Ve 0 -2 () () ()] o 6.10)
Mar(x) 0 0 =21 (%) (%)
M51(X) 0 0 0 —I (*)
(Mea(x) O 0 0 0 —y2_
where
110 =200 Ax) + Ze(x)BXB] (9T () — Z£(x)Bu(B] () av;)((x) ,
T
Mex(9 = (325008400 + K7 )
M31(X) = (Ex(X) + E2(X)K(X)),
(6.11)

|\/|41(X) :HT (X) %,

Ms1(X) =Cz(X) + Dz(x)K(X),
i
Mex(X) = (1 V) Bw(x)) .

2 0X

Proof: This follows directly from applying Schur Complementto Them 6.2.1. B

The term—%g(x) Bu(X)B] (x)% makes (6.10) nonconvex, hence the inequality can-
not be solved directly by SOS decomposition. Thereforefdhewing iterative SOS algo-

rithm is proposed

Step 1: Linearize the system (6.1) and eet O,F(x) = 0. Use the state feedback ap-
proach described in [82] to find a solution to the linearizeabem without dis-

turbance. Sett= 1 ande;(x) = X" P,Vo = X" Px.

96



Chapter 6: Robust Nonline#t,, State Feedback Control for Polynomial Systems with
Norm-Bounded Uncertainties

Step 2: Solve the following SOS optimization problemVj(x) andK;(x) with fixed aux-

iliary polynomial vectorg (x) and some positive polynomialg (x) andAz(x):

Minimize ot
Subject tovi(X) — A1(X) isa SOS
—vT (M2 (X) + A2(X)1) v is a SOS
with
M) - aVOs () () () () ()]
Mz21(X) =1 () (%) (%) (%)
M@ (x) 2 Mz1(X) 0 =21 (x) (x) (%) | (6.12)
|V|41(X) 0 0 -2l (*) (*)
Ms1(X) 0O 0 0 -1 (%
| M) 0 0 0 0 -y

v of appropriate dimensions, amd1(X), M21(X), M31(X), Ma1(X), Ms1(X), Mg1(X)
are as in (6.11) witl (x) = Vi (X);, K(X) £ K¢(x), ande(x) = &(X).
If oy < 0, thent(X) = V(X); andK;(x) represent a feasible solution. Terminate

the algorithm.

Step 3: Set =t + 1 and solve the following SOS optimization problemMx);, K¢ (X),
with Z(x) of appropriate dimensions as in Proposition 1.3.1 and th® &&xom-

position ofV (x); = Z(x)TQZ(x), ande(X); = £(X);_1 as well as some positive
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polynomialsA(x) andAz(X):

Minimize tracé Q)

Subject tovt(X) — A1(X) isa SOS
—vT (N (X) +A2(x)1) v is a SOS
with
M) —a VO () () () () ()
M21(X) =1 () (x) (x) (%)
NE(x) £ Ma1(X) 0 -2 (x) () (% (613
M41(X) 0 0 =2l (*) (*)
Ms1(x) 0 0 0 -1 (%
I Me1(X) 0O 0 0 O —y2_

v of appropriate dimensions, amd1(x), M21(X), M31(x), M41(X), Ms1(x), Me1(X)

are as in (6.11) WitV (x) £ Vi (X)t, K(X) = K¢(x), ande(x) £ &(x).

Step 4: Solve the following feasibility problem with € R"?1 and some positive toler-

ance functiod(x) > 0,x#0fori=1,...,q:

Vo isa SOS

If the problem is feasible go to Step 5. Else, sett+ 1 and&(X) = ‘?Vtg—;(x)

determined in Step 3 and go to Step 2.

Step 5: The system (6.1) may not be stabilizable Withperformancey by state feedback

control (6.2). Terminate the algorithm.
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100

(6.14)
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Figure 6.1: Energy rati& (1) = %
6.3 Numerical Example
Consider the following polynomial system with polytropicogntainties
X =A(X) + B(x)u+H (X)F (X) (E1(X) + E2(X)u) 4 By,
A — | XE — 3 — §xxg + %0 —xXixe — 3 |
0
0 1.25
B(x) = , Byp= , H(XX) =1,
1 0
3y,v2_ 1,3
SXIX5 — ZX 0
Ei1(X) = g7 an2 , EBEa(x)= ,  F(x)=1sin(x)
0 0.2
zZ=u.

We selectd;(x) = A2(X) = 5(X) = 0.01(x2 +x3), set the controller to be a function of

X up to a degree of 3 and choose to look for Lyapunov functiordicktes of degree 4.
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The ISOS algorithm terminates without finding a feasibleisoh. Therefore, the degree
of the Lyapunov function candidate is increased to 6 and lyerighm is restarted. The
ISOS algorithm terminates with a feasible solution §8r= 1.783 after 3 iterations with
very small coefficients for the higher order termsKiix). Thus, we set these to zero,
initialize & (x) = 0\2—5(") from the previous solution and rerun the algorithm for admne
controller. After 3 iterations, the followinbl., controller for the polynomial system (6.14)

with polytropic uncertainties has been obtained

K(X) = —1.893; — 2.642%, (6.15)

Note that the Lyapunov function is omitted here due to ite.Sihe smallest eigenvalue
of Q has been found as376x 10°3.

Once again, it was possible to obtairimear controller for thepolynomialsystem.
The disturbance has been modelled as Gaussian white ndls@awer density spectrum
of 0.01, and Figure 6.1 shows the ratio of the regulated dwpeargy to the noise energy
over time. The ratio clearly falls below the design threshalue ofy? after less than 60

seconds.

6.4 Conclusion

An iterative design algorithm for the problem of designinghlustH., controller for poly-
nomial systems with norm-bounded uncertainties has beesepted in this chapter. In
detail, sufficient conditions for the existence of a cornolhat stabilizes the system with
H. performancey in the presence of norm-bounded uncertainties has beereden the
form of polynomial matrix inequalities. The nonconvex campnts of these conditions
have been addressed using an iterative design algorithda anmerical example has been
provided to show the effectiveness of the proposed proeedrurthermore, it was possible

to obtainlinear controller gains for th@olynomialsystem.
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Chapter 7

Nonlinear H,, Output Feedback Control
for Polynomial Systems with Polytropic

Uncertainties

7.1 Introduction

The results in Chapters 3 to 6 were derived under the assumtptib all system states are
available for the controller design. This is, however, asely the case in real life control
problems. Therefore, a lot of research has been undertakéreifield of static output
control, see [96] and references therein for a compreherssiwey. Among other things,
the authors prove that any dynamic output feedback probimbe transformed into a
static output feedback problem. Therefore, it is possiblddsign a full order dynamic
output feedback control law within the framework of statigmut feedback control. The
converse, however, is not true.

Compared to the linear case, the study of polynomial statipuddeedback is a rather
new field, see for example [33, 26]. In relation to the desifystate feedback control for

polynomial systems, the design of a static output feedbackraller represents a more
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complex problem and several approaches to deal with thdtiresproblems have been
proposed. In particular, [33] suggests to use the HermigbiBy Criterion and use a
SOS/moment primal/dual approach to generate a monotoneseg that converges to the
global optimum. In [26], an upper bound is introduced to tithe effect of the nonconvex
terms. To determine a suitable upper bound is, however, draidhe overall closed loop
stability can only be guarantee in a neighborhood of themrig

In this chapter, the design problem of nonlinelayroutput feedback for polynomial sys-
tems is discussed. In 7.2 the results for a nominal polynlsystem are presented in form
of solvability conditions of polynomial matrix inequabs that are subsequently addressed
by a relaxation of the nonconvex terms and solved with amacta’e SOS algorithm. The
presented framework is successively extended to the cgsdyoiomial systems with poly-
tropic uncertainties. In 7.3 a numerical example is progitteshow the effectiveness of

the proposed design. Some closing remarks are made in 7.4.

7.2 Main Results

The first part of this section investigates the problem ofgiesg aH. output feedback
controller for a polynomial system. In the second part, #mults are extended to the case

of polynomial system with polytropic uncertainties.
7.2.1 NonlinearH, Output Feedback Control for Polynomial Systems
Consider the following dynamic model of a polynomial system

X =A(X) + By(X)u+ By(X) w,
y =Cy(x) + Dy(x)u, (7.1)

Z=C4(X) + Dz(X)u,
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wherew € RP is the disturbance inpu; and z are the measured and regulated output,
respectively. A(x),Cy(x),C,(x) are polynomial vectors anBly(x), B (X),C;(X), D,(x) are
polynomial matrices of appropriate dimensions. The objeadf static output feedback

H. control is to find a controlleK (y) such that the closed-loop system with
u=K(y) (7.2)

is asymptotically stable and thhe gain from the disturbance input to the controlled output

is less than a prescribed valye- 0. In detail, the following condition must hold:

/szdtg y2/ w' codt. (7.3)
0 0

Theorem 7.2.1 The polynomial systeif7.1) is stabilizable with a prescribed JHperfor-
mancey > 0 via static output feedbadi.2)if there exist a polynomial function(X) and

a polynomial matrix Ky) such that fofvx = 0 such that

V(x) >0, (7.4)

and

oV (x) 10V (x) VT (x)
TA(X) - ZTBU(X) B} (X)T

(2000 2 (1% )

)
+ (570 B+ K70 ) (5750080 +KT())

(7.5)

+(C2(%) + Dz(X)K ()" (Cz(x) +Dz(X)K(y)) <O.
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Proof: Note that forvx # 0
Lo OV(X)
Vi = ox
<(S?V(x)
— OX

— (yw'w—2"2) + KT (y)K(y)

V() 10V () oV (x)
=T AN — 575 P BUOB] () T = + O y)0(x )T

T
() (i) o

[A(X) + By (X)K(y) + Bw(X) OL)]

[AX) +Bu(X)K(Y) + Bu(X) ] + (v’ w—22)

— Op(%, W)Ou(X, )" + (Yw' w—12"2)

]
< 0\25:() AX) — % m;f(x) (Nax(x) +0(xy)0(xy)"

+ (% 0\;§(x) Bw(x)) % (%d\;—ix)Bw(x))T +7'z

+ (Yo' w-22),

Bu(X)By (X)

with

2 0x

Ou(X, ) = (ziy"g(j) Bu(X) - va) .

Ox,y) = (WX) Bu(x) +KT<y>)

Thus, if there exist & (x) > 0 such that (7.5) holds, it follows that
V(X) < —2' 24 Yo' w.
Integrating both sides of the inequality yields

/O\'/(x)dtg/ (—2" 2+ 2w w) dit,

0
V (x(e0)) —V(X(0)) < /Ow (~Z" 2+ Yo' w) dt.
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Noting that with initial conditionx(0) = 0 andV (x(e)) > 0, we obtain

/szdtg yz/ w' dt. (7.7)
0 0

Hence (7.5) holds and. performance is fulfilled.
To proof asymptotic stability for the closed-loop systemifwvith (7.2), the disturbance
is setw(t) = 0. From (7.7) itis obvious that(x) < 0, hence the Lyapunov stability theorem

is fulfilled and the closed-loop system (7.1) with (7.2) igraptotically stable. [

Theorem 7.2.2 The polynomial systerf¥.1) is stabilizable with prescribed H perfor-
mancey > 0 via static output feedbacl’.2), if there exist a polynomial function (X)
satisfying(7.4)and (7.5), a polynomial vectoe(x) of appropriate dimensions, and a poly-

nomial matrix K(y) satisfying the following condition forx # 0

M) () () (%)
vy = MOV | 75
T IMaxy) 0 1 (0|

| Maa(x) 0 0 —

with

M2 =27 ) + 2By (0BT (97 (0 ~ 5e(X)BUXBT (9

)
Mas(y) = (5750 B +KT) )

VT (x)
ox '

(7.9)
Mz1(X,y) =Cz(X) + Dz(X)K(y),

T
Maz(X) = (%0\(/930 Bw(x)) .
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Proof: Using (3.6) in (7.5) yields

oV (X) 10V (X)
ax A(X)+(§ ax Bulx

]
+K70) (37580 +K7) )
. VT (x)

ox (7.10)

)
1 1
+ Z600Bu(0BL (T () — Se(0Bu(B] (X

(3000) 4 (24

+(Cy(X) + DAX)K(Y)) " (Co(x) +D2(x)K(y)) <O,

which is a sufficient condition foH. stability. Applying Schur Complement results in
(7.8). [
With this, the following iterative SOS algorithm fét., control polynomial systems can

be proposed.

Step 1: Linearize system (7.1) and set= 0. Use the static output feedback approach
described in [82] to find a solution to the linearized probleithout disturbance.

Sett = 1,&(x) =x"PVp = X" Px

Step 2: Solve the following SOS optimization problem/iix) andK;(y) with fixed aux-

iliary polynomial vectorg (x) and some positive polynomialg (x) andAz(x):

Minimize ot
Subject tov;(x) — A1(X) isa SOS
—VvT (ME(x,y) +A2(x)1) v is a SOS
with ~ .
M11(X) —atVi-1(X) () () (%)
ey e | VAT e @
Mgl(X,y) 0 —| (*)
Ma1(X) 0 0 —I]
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v of appropriate dimensions, and;1(x),M21(X,Y),M31(X,y),Ma1(X) are as in

(7.9) withV (x) £ Vk(X),K(y) = K¢(y), ande(x) £ &(X).

If oy <0, thenV;(x) andK;(y) represent a feasible solution to tHg static output

feedback control problem of polynomial systems. Termitla¢ealgorithm.

Step 3: Set =t -+ 1 and solve the following SOS optimization problem\itx), K;(y),
with Z(x) as in Proposition 1.3.2 and the SOS decomposition of the yayp
function\t (x) = Z(x) T QZ(x), &(X) = &_1(x) as well as some positive polynomi-

alsA1(x) andAa(x):

Minimize traceé Q)

Subject tovi(x) — A1(X) isa SOS
—VT (NZ(x,y) + A2(X)1) v is a SOS
with ) )
Mi1(X) — o1tV (X) (%) (%) (%)
M , — (% *
Coye | MY IO I
Maa(X,y) 0 -1 (%
Ma1(X) 0 0 —I]

v of appropriate dimensions, ard1(X), M21(X,y),Ma1(X,y),Ma1(X) are as in

(7.9) withV (x) £V (x),K(y) £ K(y), ande(x) £ &(x).

Step 4: Solve the following feasibility problem with € R"1 and some positive toler-

ance functiord(x) > 0,x # 0:

Vo is a SOS.
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0V—1(X)
ox

If the problem is feasible go to Step 5. Else, sett+ 1 and&(X) =

determined in Step 3 and go to Step 2.

Step 5: The system (7.1) may not be stabilizable withperformancey by static output

feedback (7.2). Terminate the algorithm.

The term—%e(x)Bu(x)BI (X)% makes (7.5) non-convex, hence the inequality can-
not be solved directly by SOS decomposition. If, howeves,abxiliary polynomial vector
£(x) is fixed, (7.5) becomes convex and can be solved efficientijoftunately, fixings (x)
generally does not yield a feasible solution. Therefore jinttducea;Vi—1(X) in (7.11)
to relax the SOS decomposition in (7.5). This correspondkedollowing Lyapunov in-

equalities:

Vi (x) >0,

Vi (X) <arVe—1(X).

Similar Lyapunov inequalities can be obtained for (7.12)is Iclear that any negative

in (7.11) or (7.12) yields a feasible solution of the SOS degosition and the system (7.1)

with (7.2) can be stabilized witH., performancey with static output feedback control.
Step 1 is the initialization of the iterative algorithm andcassary to find an initial

value of £1(Xx) to use in the following iterations. The optimization prablén Step 2 is

a generalized eigenvalue minimization problem and guaesnthe progressive reduction

of a;. Meanwhile, Step 3 ensures convergence of the algorithep &updates(x) and

Vv (x)
ox

checks whether the iterative algorithm stalls, i.e. thelgsveere(x) and is smaller
than some positive tolerance functid(x).
Note that the iterative algorithm increases the iteratianablet twice per cycle (in

Step 3 and Step 4). This is done to avoid confusion with thexas.
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7.2.2 PolytropicH. Output Feedback Synthesis

The results from the previous section assume that all systegameters are known exactly.
In this section, the results are extended to polynomiaksystith polytropic uncertainties.

Consider the system
X =A(X, 8) + Bu(X, 8)u+Bew(X, 8)w,

y=Cy(x,0), (7.13)
Z=Dy(x,0) + Dz(x, 0)u,

where the matricegx, 0) are defined as follows

A(x,0) :_iAi(x)G,, Bu(x, 8) :'iBUi (x)8, Bw(x,0) :.iB“ (x)0,

q q q (7.14)
(Xve) - i(x)97 C (Xve) = C(X)eu D (Xa 9) = D (X)e
SO =2, G008 Cau6) =2 kB Dl 0= D
T
6= [91, e eq} € RY%is the vector of constant uncertainty and satisfies
q
bcO= GeRq:G.ZO,izl,...,que.:l . (7.15)
i=
We further define the following parameter dependent Lyapduanction
q
V(9 =3 Vi08. (7.16)
i=

With the results from the previous section and the discuassio Chapter 7.2.1, we
can directly propose the theorem for robHist static output feedback controller design for

polynomial systems with polytropic uncertainties.

Theorem 7.2.3 The polynomial system with parametric uncertain{iz4.3)is stabilizable
with prescribed K performancey > 0 via static output feedback contr(d.2)if there exist

a polynomial function Vx) as in(7.16) a polynomial vectoe(x) = 31, & (x)6 of appro-
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priate dimensions, a polynomial matrix¥), as well as some positive functiokgx) > 0

andA2(x) > 0 satisfying the following conditions for 0,i = 1,...,Q:

and

V]_(X) >0

q

M(xy) Z_ZMi(X,y)Gl,

with

M; (X7 y) =

ML) (5) (%) (%)
My(6y) —1 (%) (%)
My (xy) O —I (%)
| Mp(x) 0 0 A

(7.17)

(7.18)

<0, (7.19)

with M} (x), M5 (X, Y),y, M&; (x,y), Ml (X) as in(7.9)for each subsystem §7.13) respec-

tively.

Proof: This follows directly from Theorem 7.2.2.

The iterative algorithm from the previous section can beisteéid to reflect the changes

from Theorem 7.2.2 to Theorem 7.2.3 as follows.

Step 1: Linearize each system from (7.13) andeset 0. Use the static output feedback

approach described in [82] to find a solution to each of thediized problems

without disturbance. Far=1,...,q, sett = 1 and[& (X)]; = X" B, M (X)]o = X" Bx.

Step 2: Solve the following SOS optimization problem[¥)x)]; and K(y) with fixed

auxiliary polynomial vectorss;(x)]; and some positive polynomialg andA, for
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i=1....q
Minimize ot
Subject toV; (x)]; — A1(x), isa SOS
—VT ([MT(X)]; + A2 v is a SOS
with
ML)~ MO 1 () () () |
ME (x,y)]; & Mél(x’y) AR (7.20)
M3, (X,Y) 0 —I (%)
Ml‘.l(X) 0O O —Vzl_

v of appropriate dimensions, and};(x),Mb;(x,y),Mb;(x,y),Mi;(x) are as in
(7.9) withV (x) £ M (X)];,K(y) £ Ki(y), ande(x) = [ ()], for each subsystem
of (7.13), respectively.

If or <0, thenvi(x) = 31 ; M(X)], & andK;(y) represent a feasible solution. Ter-

minate the algorithm.

Step 3: Set =t+ 1 and solve the following SOS optimization problem{\f(x)], , Kt (y),
with Z(x) as in Proposition 1.3.2. Further, the SOS decompositioV;(f)], =
Z(x)" [Qi];Z(x), and [&(X)], = [&(X)];_; as well as some positive polynomials

A1(x) andAz(x) fori=1,...,q:

Minimize _itraCE([Qi]t)

Subject toVi (X)]; — A1(X) isa SOS

— VT ([NT (%, )], +A2(¥)1) v is a SOS
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with
(ML) — o 1ML () () (%)
Nepey 2 | MY oy
My (X,y) 0 1 (»)
| M) 0 0 —y)

v of appropriate dimensions, amd;;(x), Mb,(x,y),Mb;(x,y),M;(x) as in (7.9)
with V(x) £ M(X)];,K(Y) £ Ki(y), ande(x) = [&(x)], for each subsystem of
(7.13), respectively.

Step 4: Solve the following feasibility problem with € R"1 and some positive toler-

ance functiomd(x) > 0,x#0fori=1,...,q:

Vo isa SOS

If the problem is feasible go to Step 5. Else,tsett + 1 and[&;(X)], = [0\gf(x)]t X

fori=1,...,qdetermined in Step 3 and go to Step 2.

Step 5: The system (7.13) may not be stabilizable Withperformancey by static output

feedback control (7.2). Terminate the algorithm. [ |

7.3 Numerical Example

Consider the following polynomial system with polytropicoantainties with3 € [—1,1]:
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Time [s]

Figure 7.1: Regulated output

X E — 33 — 28+ 2xo — XX — X3 0 1.25
a 12X —gX1X+ 3 e we| | U o,
0 1.1 0
3y.¢2 1.3
EX1X5 — FX 0 0.25
w8 1% P+ u-+ wl, (7.22)
0 0.1 0
y:XJ._X27

First, we bring (7.22) in form of (7.13) by settingg = 1,6, = 0 for 3 = —1 and
61=0,6, =1 for B =1. Next, we selech;(x) = Az(X) = 6(x) = 0.01(x2 +x3), set
the controller to be a function of up to a degree of 3 and choose to look for Lyapunov
function candidates of degree 6. The ISOS algorithm tertegwavith a feasible solution

for y? = 1.423 after 3 iterations with very small coefficients for thgher order terms in
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10

x,®

Time [s]

12

X0

Time [s]

Figure 7.2: System response
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E(t=

0 5 10 15 20 25 30 35 40 45 50
Time [s]
Figure 7.3: Energy rati& (1) = gz zdt
"~ Jo ' wdt

K(y). Thus, we set these to zero, initializi(x) = a\g)((x) from the previous results and

rerun the algorithm for a linear controller. After 3 itets, the followingH., controller

for the polynomial system (6.14) with polytropic uncertas has been obtained:
K(y) = 0.389y. (7.23)

The Lyapunov function matrices have been omitted here duleto size. The smallest
eigenvalue o1, Q, were obtained as.181x 10~* and 3564 x 103, respectively. Once
again, it was possible to obtainliaear controller for thepolynomialsystem. For initial

states% = [10 10} ! and a disturbance modelled with Gaussian white noise wivepo
density spectrum of 0.01. The regulated output for diffevatues of3 are shown in Figure

7.1, with the state trajectories depicted in Figure 7.2uFggr.3 shows the progression of

_ JgZTzdt

the Energy ratio over timg(1) = T ot
Jo

. It can be observed that the system is falls below
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the prescribed performance value after around 22 secondarfall admissible values of

B.

7.4 Conclusion

An iterative procedure to obtaint, static output feedback controller for polynomials with
polytropic uncertainties has been presented in this sec8afficient conditions for the ex-
istence of aH. controller have been derived in terms of bilinear matrixqualities. An
iterative algorithm has been proposed that results in anpohyal controller that avoids ra-
tional components encountered when inverting the Lyaptunoetion in traditional control
approaches. Further, the Lyapunov function has been showa true function of all sys-
tem states and is not restricted to only incorporates stdtesh corresponding rows in the
control matrix are zeros. A numerical example has been geavio show the effectiveness

of the proposed approach.
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Chapter 8

Robust Nonlinear H,, Output Feedback
Control for Polynomial Systems with

Norm-Bounded Uncertainties

8.1 Introduction

In this chapter, the problem of designing a rohbidststatic output feedback controller for
polynomial systems with norm-bounded uncertainties isstigated. In detail, section 8.2
will outline how the state feedback results from chapter B lba extended to the static
output case. A numerical example will be presented in se@®i@ before this chapter

concludes with some final remarks in section 8.4.
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8.2 Main Results

Consider the following polynomial system with norm-boundedertainties

X = A(X) + Bu(X) + B (X) + AA(X) + ABy(X),

y = Cy(X) + Dy(x)u, (8.1)

z=C4(x) + Dz(x)u,
wherex € R" are the system statasc R™is the inputy andz are the measured output and
the controlled output, respectivek(x),Cy(x),C,(x) are polynomial vectors arig|;, By, D,
are polynomial matrices of appropriate dimensions. Theidiance signal isv, whereas
the norm-bounded uncertainties of the system are captar@d\ix) and ABy(x). The
objective of a state feedbatk., control is to find a controlleK(y) such that the system
(8.1) with

u=K(y) (8.2)

is asymptotically stable and the gain from the disturbance input to the controlled output

is less than a prescribed valye- —, that is

/ T zdt< 2 / o codt, (8.3)
0 0

The following assumption is used for the norm-bounded uaasgy

Assumption 8.2.1 The admissible parameter uncertainties considered hezeaasumed

to be norm-bounded and can be described as

{AA(X) ABu(X)} =HX)F(x) [El(x) Ez(X)l’ (8-4)

118



Chapter 8: Robust Output Feedback Control for Polynomial 8ysteith
Norm-Bounded Uncertainties

with known polynomial matrices (1), E;(x), E2(X) of appropriate dimensions and(k)

being an unknown state-depended matrix that satisfies

IFT)OF (X)) <. (8.5)

Theorem 8.2.1 The polynomial systeif8.1) is stabilizable with a prescribed JHperfor-
mancey > 0 via static output feedback controll€B.2)if there exist a polynomial function

V(x) and a polynomial matrix Ky) such thatvx # 0

V() >0 (8.6)
and -
P a2 2 Vg T 9 2
19V 19V (x T
+(§ 0<X>Bw(x)) yz(z ai)Bw(X))
)
+ (5370 B+ K70 ) (5750080 + KT () .
H(CoX) + oK ()T (Calx) + DK ()
T
2 2R R THET RS X
+ 5 (Es(0) + E2(K ()T (E1(9 + B2 (XK (¥)) < O

Proof: The proof can be obtained in a similar manner as has been dotieef state

feedback case in Chapter 6 for Theorem 6.2.1. [ |

Theorem 8.2.2 The polynomial systei8.1) is stabilizable with i, normy > 0 via poly-
nomial static output feedback conti@.2)if there exist a Lyapunov function(X), a poly-
nomial design vectog(x) of appropriate dimensions and a controller matriXy¥ as in

(8.2) satisfying the following conditions forx O

V(x) >0, (8.8)
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and _ -
M) (+) () (x) () (%)
Mai(xy) =1 (+)  (x) (x) (%)
Mooy = MY O 2 @) | o 69)
Mar(x) 0 0 =21 (¥) (%)
M51(X,y) 0 0 0 —I (*)
| Me(x) 0 0 0 0 —y2_
where
Maa(x) = d\gi") AK)+ 7E00BUIB (9T (%)~ S£(XBu(X)BL () 0V0TX(X) ,
T
Mas(xy) = (5500800 +K7))
Ms1(x,y) = (E1(X) + E2(X)K(y)),
(8.10)

VT (x)
ox '

Ms1(x,y) =Cz(X) + Dz(X)K(y),
:
Me(X) = (1 V() Bw(x)) .

|V|41(X) =H T (X)

2 0x

Proof: This follows directly from applying Schur Complement to Them 8.2.2. B

The term—%s(x)BU(x)BE (x)% makes (8.9) nonconvex, hence the inequality can-
not be solved directly by SOS decomposition. The followitegative SOS algorithm is

proposed

Step 1: Linearize the system (8.1) andeet O,F (x) = 0. Use the static output feedback
approach described in [82] to find a solution to each of thediized problems

without disturbance. Fdr=1,...,q, sett = 1 ande; (x) = X' P,Vp(X) = X' Px
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Step 2: Solve the following SOS optimization problemVj(x) andK;(y) with fixed aux-

iliary polynomial vectorg (x) and some positive polynomialg (x) andAz(x):

Minimize ot
Subject tovi(X) — A1(X) isa SOS

—VvT (ME(x,y) +A2(x)1) v is a SOS

with

-Mll(x) —otVi-1(X) (%) (%) (%)
M21(X,y) =1 () (%)
)

MZ (xy) & Mailxy) 0 24 b . (@81
Ma1(X) 0 0 -2 (#) (¥
Ms1(X,y) 0 0 0 -1 (%
Me1(X) 0 0 0 0 -

v of appropriate dimensions, aii 1(X), M21(X,Y), M31(X,y), Mg1(X), Ms1(X,y), Mg1(X)
are as in (8.10) witl (x) = Wk (x),K(y) = K¢(y), ande(x) = &(X).

If oy <O, thenVi(X) =W (X) andKi(y) represent a feasible solution. Terminate the

algorithm.

Step 3: Set =t -+ 1 and solve the following SOS optimization problem\tx), K (y),
with Z(x) as in Proposition 1.3.1 and the SOS decompositionigk) =

Z(x)TQZ(x), andg (x) = &_1(x) as well as some positive polynomialg(x) and

121



Chapter 8: Robust Output Feedback Control for Polynomial 8ysteith
Norm-Bounded Uncertainties

A2(X):
q
Minimize _thrace(Qt)
Subject toV (X); — A1(X) isa SOS
— VT (N?(x,y) + A2(X)1 ) v is a SOS
with
Mt -G () (1) () () ()]
Ma1(x,y) =) () (x) (%)
N (x,y); 2 Ms1(x,y) 0 -2 () (x) (0 @12
My1(X) 0 0 -2 (x) (%)
Msz(X,y) 0 0 0 -1 (%
| Me(®) 0 0 0 0 -y

vof appropriate dimensions, aMi1(x), M21(X,y), Ma1(X, ), Ma1(X), Ms1(X, y), Me1(X)
are as in (8.10) witV (x) =Vt (x),K(y) £ K¢(y), ande(x) = &(X).

Step 4: Solve the following feasibility problem with € R"1 and some positive toler-

ance functiod(x) > 0,x#0fori=1,...,q:

Vo isa SOS

If the problem is feasible go to Step 5. Else, sett+ 1 and&(X) = ‘9\/‘5;(’0

determined in Step 3 and go to Step 2.

Step 5: The system (8.1) may not be stabilizable Wwithperformancey by static output

feedback control (8.2). Terminate the algorithm.
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Figure 8.1: Energy rati& (1)

40

8.3 Numerical Example

50
Time [s]

60 70

_ foZTzdt
T Jp w'wdt

Consider the following polynomial system with polytropicagmtainties

x=A(X) + B(x)u+ H (X)F (X) (E1(X) + E2(X)u) + B(X) w,

p = | B B e e b
0
0 1.25
B(x) = , Bw= , H(X) =1,
1
3 2 1,3
2X1X5 — 7 X 0
Eix)= |82 Y2 Eyx) = , F(x)=1sin(x),
0 0.2
y:Xl_X27

Z=X1 — X2+ U.

100

(8.13)

123



Chapter 8: Robust Output Feedback Control for Polynomial 8ysteith
Norm-Bounded Uncertainties

We selectdy(x) = Az(X) = 8(x) = 0.01(x2 +x3), set the controller to be a function of
y up to a degree of 3 and choose to look for Lyapunov functiowlicktes of degree 4. The
ISOS algorithm terminates without finding a feasible solutiTherefore, the degree of the
Lyapunov function candidate is increased to 6 and the dlguaris restarted. The ISOS
algorithm terminates with a feasible solution fgr = 6.921 after 5 iterations with very
small coefficients for the higher order termsKity). Thus, we set these to zero, initialize
&(X) = a\g_g(x) from the previous solution and rerun the algorithm for adineontroller.
After 3 iterations, the followindH., controller for the polynomial system (8.13) with norm-

bounded uncertainties has been obtained
K(y) = 0.189y. (8.14)

Note that the Lyapunov function is omitted here due to ite.sihe smallest eigenvalue
of Q has been found as311x 10>,

Once again, it was possible to obtairiear controller for thepolynomialsystem.
The disturbance has been modelled as Gaussian white ndls@awer density spectrum
of 0.01, and Figure 6.1 shows the ratio of the regulated dwpargy to the noise energy
over time. The ratio clearly falls below the design threshalue ofy? after less than 80

seconds.

8.4 Conclusion

An iterative design algorithm for the problem of designinghustH,., static output con-
troller for polynomial systems with norm-bounded uncentigs has been presented in this
chapter. In detail, sufficient conditions for the existenta controller that stabilizes the
system withH,, performancey in the presence of norm-bounded uncertainties has been
derived in the form of polynomial matrix inequalities. Thentonvex components of these

conditions have been addressed using an iterative degigntaim, and numerical exam-
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ples have been provided to show the effectiveness of theopeapprocedure. Furthermore,

it was possible to obtailinear controller gains for th@olynomialsystem.
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Chapter 9

Conclusion

9.1 Summary of Thesis

This thesis consist of two parts. In Part I, the controllesige for a highly nonlinear, highly
coupled boiler-turbine systems has been discussed. In &t novel approach to online
model predictive control with genetic algorithms has beessented. In particular, the
careful design considerations necessary to use this sttichéificial intelligence approach
to obtain a suitable system response have been discusséierifwore, a switching control
scheme that combines the benefits of thefuzzy reference tracking control design with
the advantages of the model predictive control based #igoras been presented.

The great versatility and design freedom of that come wighithplementation of ge-
netic algorithms in model predictive control problems wa#al a well rounded customized
controller design. In general, an extension of the resslfssible to other control prob-
lems, as long as the system dynamics are sufficiently slows mEstriction is also the
greatest drawback of the proposed control regime, and thust be seen as a specialist
solution for a niche group of control problems.

In Part I, the more general case of polynomial system comtas investigated. An it-

erative sum of squares decomposition algorithm has besepied and applied to a variety
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of state feedback as well as output feedback control prabldine outlined representation
of the problem is less conservative than other availablércbapproaches and allows for
more design freedom in the choice of the form and structutieeofhigher order) Lyapunov
functions and control matrices, that can be both formedoutlassumptions on the system
structure.

In particular, Chapter 3 introduces the basic state feedbawtcol for polynomial sys-
tem as well as the case for polynomial systems with polytrapicertainties. The con-
trol procedure for system with norm-bounded uncertaintias outlined in Chapter 4. In
Chapter 5 and Chapter 6, the effectidg control of systems with polytropic as well as
norm-bounded uncertainties has been derived, respactiMet discussion on polynomial
system control has been concluded with an investigation thewterative algorithm can
be extended to the output feedback case for systems withrppiy and norm-bounded
uncertainties in Chapter 7 and Chapter 8, respectively.

Sufficient conditions for stability and performance of stigedback and static output
feedback controllers have been presented in the form ofmpatyal matrix inequalities.
To avoid the nonconvex expressions in the problem formutata novel iterative design
algorithm for polynomial system design has been preseriteid. approach avoids several
of the most common problems found in other approaches. Thiealler does not directly
depend on the inverse of a polynomial Lyapunov matrix, ttat®nal controllers can be
avoided. Further, there is no restriction on the sparsitthefinput or control matrix to
be able to form a suitable Lyapunov function, thus the preskiterative procedure can
be readily implemented for non-sparse systems. Moreodverl_yapunov function is not
restricted to be a function of only the system states whickesponding rows in the control
input matrix are zero.

Generally speaking, the biggest problem of the proposedratar synthesis is the
computational complexity arising from higher order mudtiate polynomials and their

SOS decompositions. To the best of the author’s knowledhg®is a problem common to
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all design approaches for polynomial systems, and thusdhtaller design is generally

limited to systems with only a few system states. The resgl8DP realizations of SOS

decompositions requirements quickly grow to a point that3DP becomes too large to be
handled efficiently and numerical errors grow rapidly, nmakan efficient design impossi-

ble. This has also lead to the choice of presented numerieahgles.

The main contributions of this thesis are:

e A novel approach to control highly nonlinear systems usiniine model predictive

control utilizing genetic algorithms to obtain the optinmgbut sequence.

¢ A novel take on the robust controller synthesis problem tdympomial systems with

or without polytropic or norm-bounded uncertainties.

e A less restrictive design algorithm for the control synteélsat avoids rational feed-
back gains and was often able to obthiear controllers for thgpolynomialcontrol

problems.

As a result, this thesis provides an integrated approacthé@controller synthesis for
polynomial systems and represents a valuable and meahcwitribution to the devel-
opment to the framework of polynomial system control. Fenthore, Part | of this thesis
suggests novel solutions to highly nonlinear system cbowiframportance to the power

generating community.

9.2 Future Work

In general, nonlinear systems control is still an open araarequires a lot more research

work. In particular, further research could be directech®fbllowing areas:

1. Application of online model predictive control theoriggh GAs to other (groups of)

systems. With the advance of modern computation hardwarappglication of the
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proposed methodologies to faster systems or other hardheanicontrol problems

is desirable in the future.

2. Time-delayed polynomial systems. Time-delayed systeame become some of the
most studied areas of control engineering and to the besedadthor's knowledge
no general framework has been developed for polynomiaésysiet. A successful
extension of the iterative procedures to time-delayedesystcould provide a novel

methodology for the controller synthesis of networked oargystems.

3. Polynomial Filtering. Further research addressing thblpm of polynomial system
filtering would be desirable, with extension to robust perfanceH., methods for
polytropic and norm-bounded uncertainties. Also, a redwcder filter design would

be beneficially to limit the strain on numerical methods.

4. Rational systems. Existing methods are already able teeasldational control sys-
tems as long as the denominator of the system is always\sitinegative for all
system states. However, this requirement is very restei@nd it would be benefi-
cial to find a less restrictive extension of the presenteglmhial control synthesis

to rational systems.

5. Extension of polynomial methods to other highly nonlmegstems with system
states having fractional exponents. It is currently notsgae to apply polynomial
control problems to systems where system states havednat&xponents. An ex-
tension in this direction, together with a discussion oioretl system could poten-
tially lead to an extension to highly nonlinear systems tériest such as the boiler-

turbine model from Part I.
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Appendix A

Schur Complement

The Schur Complement is a standard tool in the LMI contextfeeexample [42]. Con-

sider a LMI
[A(x) B(x)] 0. A1)

whereA(x) = A(x)T,D(x) = D(x)T andB(x) is affine dependend ag (A.1) is equivalent
to

D(x) >0, A(X)—BxX)D(X) 1BxT>0. (A.2)

This relation holds vice versa.
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