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Preface

The main subject in the first part of this thesis are form methods. Abstractly, form
methods provide a means of both defining and studying unbounded operators in a
Hilbert space. The probably most well-known instance of a form method is Kato’s
representation theorem for closed sectorial forms (1966). This result is commonly
applied to obtain suitable realisations of elliptic differential operators in divergence
form as unbounded operators in L2-space.

Form methods tend to be quite robust, which is particularly useful for per-
turbation problems. Recently, Arendt and ter Elst (2008) have extended Kato’s
representation theorem to general sectorial forms, without the closedness condition
and relaxing the former requirement that the form domain is embedded in the
Hilbert space. This extension is well-suited for the degenerate elliptic setting and
has also been applied to the Dirichlet-to-Neumann operator.

The main contributions of this thesis regarding form methods are the intro-
duction of an abstract form method for accretive forms, the study of compactly
elliptic forms including an application to the convergence of generalised Dirichlet-
to-Neumann graphs and an investigation of the regular part of sectorial forms
providing a formula for the important case of second-order differential sectorial
forms. This part of the thesis includes joint work with Wolfgang Arendt, Tom
ter Elst, James Kennedy and Hendrik Vogt.

In the final chapter of the thesis we consider a notion of a weak trace for elements
of a Sobolev space, which is related to work of Maz’ya and arose in the study of the
Laplacian with Robin boundary conditions and the Dirichlet-to-Neumann operator
on arbitrary domains. Using tools from potential and lattice theory, we investigate
the space of elements with weak trace zero. This is related to questions regarding
the stability of the Dirichlet problem for varying domains.
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1
Introduction

This thesis is devoted to the study of extensions to the classical form method for
linear elliptic operators in a Hilbert space. A particular focus is on applications to
degenerate elliptic differential operators in L2(Ω), where Ω is an open set in Rd.

In this introduction, I first shall make precise what the term ‘form method’ means
here, explain the usefulness of this approach and briefly provide some information
regarding its history and development. This is followed by an overview of the
thesis. I give a summary of every chapter, highlighting the respective main results.
Then I provide details about the collaborative work and my contributions in this
thesis.

1.1 General background for the formmethod

Anatoliı̆ Mal’cev opens his Foundations of Linear Algebra as follows:

“In linear algebra one studies three kinds of objects; matrices, linear
spaces, and algebraic forms. The theories of these objects are so closely
related that most problems of linear algebra have equivalent formula-
tions in each of the three theories.”

This classical and fundamental viewpoint remains fruitful also when applied
in the topological and generally infinite-dimensional setting of functional analysis.
In this thesis the term ‘form method’ denotes a procedure in Hilbert space that
allows to generate operators (or extensions of operators) with certain properties by
a correspondence principle between appropriate sesquilinear forms and the desired
operators.

1



1 Introduction

One particularly simple classical example of a form method for bounded linear
operators is given by the Riesz–Fréchet representation theorem.

Example (Riesz–Fréchet). Let V be a Hilbert space and let a : V × V → C be a
continuous sesquilinear form. Suppose first that u ∈ V is fixed. Then a(u, ·) : V → C

is an element of V∗, i.e., a bounded conjugate-linear functional in V . By the Riesz–
Fréchet representation theorem there exists a unique w ∈ V such that a(u, v) =

(w | v)V for all v ∈ V . Hence, allowing u to vary in V , the map T : u 7→ w defines a
bounded linear operator on V such that

a(u, v) = (Tu | v)V (1.1)

for all u, v ∈ V . 3

Note that (1.1) gives an immediate one-to-one correspondence between continu-
ous sesquilinear forms and bounded operators.

The second example is the well-known Lax–Milgram lemma.

Lemma (Lax–Milgram). Let V be a Hilbert space. Denote by V∗ the conjugate-linear
dual space of V . Let a : V × V → C be a continuous sesquilinear from. Suppose that a is
coercive, i.e., there exists a µ > 0 such that

Re a(u,u) > µ‖u‖2V

for all u ∈ V . Then there exists an invertible bounded operator B : V → V∗ such that

a(u, v) = 〈Bu, v〉V∗×V (1.2)

for all u, v ∈ V .

So the Lax–Milgram lemma states that it is the invertible operators in L(V ,V∗)
which are associated via (1.2) with the coercive, continuous sesquilinear forms in V .
Equivalently, it shows that the operator T ∈ L(V) in (1.1) is invertible for a coercive,
continuous sesquilinear form a. We will make use of this in the following.

1.1.1 A formmethod for unbounded operators

The previous examples of form methods merely generate bounded linear operators.
We are mainly concerned with generating unbounded operators, however, since
differential operators generally are unbounded. We next discuss a construction that
allows to generate unbounded operators using the Lax–Milgram lemma.

Let H and V be Hilbert spaces. Suppose that V is continuously and densely
embedded into H, i.e., V ⊂ H, the closure of V in H is equal to H and there exists
an M > 0 such that ‖u‖H 6 M‖u‖V for all u ∈ V . We denote the corresponding

2



1.1 General background for the formmethod

embedding by j. Let a : V × V → C be a coercive, continuous sesquilinear form.
Then one can use (1.2) and the embedding of V in H to associate an unbounded
operator A in H with a. More precisely, for all x, f ∈ H, we set x ∈ D(A) and Ax = f
if and only if x ∈ V and

a(x, v) = (f | v)H

for all v ∈ V . The operator A has several remarkable properties. We shall single out
the property that it has a bounded inverse and give an instructional proof of this
property.

Proof. By the Lax–Milgram lemma there exists an invertible operator T ∈ L(V) such
that

a(u, v) = (Tu | v)V

for all u, v ∈ V . Let x, f ∈ H. Making use of the adjoint of the embedding j, it
follows that x ∈ D(A) and Ax = f if and only if there exists a u ∈ V such that
j(u) = x and

(Tu | v)V = a(u, v) = (f | j(v))H = (j∗f | v)V

for all v ∈ V . Therefore x ∈ D(A) and Ax = f if and only if x = jT−1j∗f. In
particular, the bounded operator jT−1j∗ is the inverse of A.

Remarkably, this proof also shows that the inverse of A is compact if j is compact
and that A is self-adjoint if a is symmetric.

The notion of an elliptic form extends that of a coercive form by allowing for a
shift with the inner product in H. Closely related is Kato’s notion of closed sectorial
forms, which requires that the form domain can be made into a Hilbert space in
a certain way. The latter approach also allows to consider sectorial forms that are
merely closable.

1.1.2 An application to the Dirichlet Laplacian

We give a simple example on how to apply the above form method. Let Ω be a
bounded, open set in Rd. Let V = H10(Ω) and H = L2(Ω). It is well-known that
H10(Ω) is compactly and densely embedded in L2(Ω). Define a : H10(Ω)×H10(Ω)→
C by

a(u, v) =
∫
Ω
∇u · ∇v.

Clearly the form a is continuous. Moreover, by the Poincaré–Friedrichs inequality
there exists a µ > 0 such that

µ‖u‖2L2(Ω) 6 ‖∇u‖
2
(L2(Ω))d (1.3)

3



1 Introduction

for all u ∈ H10(Ω). Hence a is coercive. By the above form method, the operator A
associated with a has a bounded inverse. Moreover, the inverse of A is compact
since the embedding j : H10(Ω)→ L2(Ω) is compact. Hence A has compact resolvent.
Moreover, the operator A is self-adjoint as a is symmetric.

Let x ∈ D(A). Then it follows from the identity∫
Ω
∇x · ∇v =

∫
Ω
(Ax)v

for all v ∈ C∞c (Ω) that Ax = −∆x in the sense of distributions. Note that x satisfies
Dirichlet boundary conditions in the sense that x ∈ H10(Ω). This shows that −A is a
realisation of the Dirichlet Laplacian in L2(Ω).

1.1.3 Beneäts of the formmethod

In this subsection we briefly address the question of why is it beneficial to use
the form method. We shall focus on its application to formal elliptic differential
operators. Then the form method is used to provide realisations of such operators
in a suitable L2-space. The sesquilinear form itself is usually directly obtained from
the formal operator using integration by parts and the corresponding quadratic
form often plays the role of a naturally associated energy functional.

Generally the classical function spaces, such as the continuously differentiable
functions, tend to be too restrictive to allow good realisations. Alternatively, the
approach based on distribution theory introduces additional difficulties due to the
lack of structure of the corresponding spaces. While the form method is limited to
the Hilbert space setting, it strikes a balance between the previous two extremes.
The richer functional analytic setting allows an elegant and powerful theory based
on Sobolev spaces and spectral theory.

For example, in Subsection 1.1.2 the form method directly provides a self-adjoint
realisation of the Dirichlet Laplacian with compact resolvent. So by the spectral
theorem there exists a corresponding orthonormal basis of eigenfunctions, which,
among other things, immediately allows a description of the C0-semigroup gener-
ated by the Dirichlet Laplacian. We stress that, in a sense, the only nontrivial in-
gredient in applying the form method in Subsection 1.1.2 is the Poincaré–Friedrichs
inequality in (1.3). The latter is, however, a property of the form domain. This
is remarkable since the form domain is far more ‘stable’ than the domain of the
associated operator. It was observed by von Neumann that domains of unbounded
operators are notoriously delicate [Neu29b, Satz 18]. So this gives a hint why
the form method is particularly useful for perturbation problems. Moreover, as
another application, forms sums frequently allow to give meaning to the sum of
two unbounded operators.

4



1.1 General background for the formmethod

1.1.4 Historical remarks

We give a brief and certainly incomplete historical overview of the development of
the form method.

It is classical to study bounded operators in terms of sesquilinear forms. In the
development of the theory of unbounded operators by von Neumann, however,
the form methods where de-emphasised, see Alonso and Simon [AS80, Section 1].
For example, von Neumann uses Cayley transformations and the theory of unitary
operators in his construction of extensions of symmetric operators in [Neu29a].
Friedrichs presented a very natural construction based on form methods of a unique
maximal positive self-adjoint extension of a positive symmetric operator [Fri34],
which answered a question of von Neumann [Neu29a, p. 103]. Still, the general
usefulness of the form method employed in this construction was only recognised
later. For example, Aronszajn opens in [Aro61] as follows:

“Since the first quarter of this century the theory of quadratic forms has
been somehow superseded by the theory of operators in the investigation
of vector spaces, and with such rewarding success that the older theory
has almost been forgotten – to an extent that younger mathematicians
to-day may not be aware of some of the basic results in the theory.”

In the early 1950’s the ellipticity property of the sesquilinear form associated
with an elliptic differential operator was established by Gårding [Går51; Går53]. In
1954 Aronszajn [Aro54] extended Gårding’s results. Around the same time Lax and
Milgram introduced their Lax–Milgram lemma while studying parabolic problems
for elliptic differential operators [LM54]. In the following years Kato [Kat55] and
J.-L. Lions [Lio57] established the abstract form method as a most convenient way
to generate and study unbounded operators in a Hilbert space, having in mind
the application to generate realisations of elliptic differential operators. In 1966

Kato presented his form method for closed sectorial forms [Kat80, Chapter VI],
which nowadays is both well-known and commonly used. Kato’s formulation
provides an elegant one-to-one correspondence between m-sectorial operators and
closed sectorial forms. McIntosh extended the theory of closed sectorial forms to
accretive forms, see [McI66; McI68; McI70]. For positive symmetric forms Simon
introduced the , which allowed to associate a positive self-adjoint operator even
with nonclosable forms, see [Sim78a; Sim78b].

Of the more recent work, we single out two contributions. The first one is due to
Vogt. He proved in [Vog09] that for a positive symmetric form associated with a real
pure second-order differential expression, the abstract construction of the regular
part respects the original form and yields a positive symmetric form that is again
associated with a real pure second-order differential expression. The second one
is by Arendt and ter Elst. In [AE12] they extended Kato’s form method for closed

5



1 Introduction

sectorial forms to general sectorial forms. Moreover, their construction allows to
use an arbitrary linear map from the from domain into the Hilbert space, instead
of an (injective) embedding.

1.2 Outline of the thesis

In the appendix we gather general background material for the convenience of the
reader. In particular, we recollect results about accretive operators and provide an
introduction to graphs, i.e., multi-valued linear operators. Moreover, we gather facts
about Kato’s notion of the gap, introduce the Moore–Penrose generalised inverse
along with two stability results by Izumino and recollect several basic properties of
Sobolev spaces.

We give a summary of the following chapters. Chapter 2 provides basic pre-
requisites for the form method that are used in Chapters 3 and 4.

1.2.1 Chapter 3: The formmethod for accretive forms and operators

In Chapter 3 we study the prospects of a generalised form method for accretive
forms to generate accretive operators. More precisely, the setting is as follows.
Let V and H be Hilbert spaces, a : V × V → C a continuous, accretive sesquilinear
form and j ∈ L(V ,H) be such that rg j is dense in H. This should be compared
with Subsection 1.1.1 where we required that a is coercive and j is an (injective)
embedding. In particular, in Chapter 3 we work with the same relaxed condition
on the form domain as used by Arendt and ter Elst in [AE12, Section 2].

Throughout the chapter we are mostly concerned with accretive operators, as
opposed to accretive graphs. We give a multitude of examples for many degenerate
phenomena that can occur in the most general setting. In particular we showcase
the pathological behaviour that can arise for accretive forms that are nonclosed in
the sense of McIntosh and for non-injective j. We give an abstract characterisation
of when the graph associated with (a, j) is an m-accretive operator. Furthermore,
we investigate the class of operators that can be generated. In particular, we prove
the following result in Theorem 3.29.

Theorem. An accretive operator A in H can be generated by a continuous accretive form
if and only if rg(I+A) is the range of a bounded operator on H.

We obtain as a corollary that an accretive operator generated by a continuous
accretive form is maximal accretive if and only if it is m-accretive. We also give
several examples of accretive operators that cannot be generated. For the case that
the associated graph is an m-accretive operator, we study form approximation and
Ouhabaz-type invariance criteria.

6



1.2 Outline of the thesis

1.2.2 Chapter 4: The formmethod for compactly elliptic forms

In this chapter we first introduce the notion of compactly elliptic forms. We then
study the graphs associated with compactly elliptic forms.

Let V and H be Hilbert spaces, j ∈ L(V ,H) and a : V × V → C a continuous
sesquilinear form. Note that we assume neither that j is an (injective) embedding,
nor that rg j is dense in H. The first main result is Theorem 4.9.

Theorem. Suppose that a is compactly elliptic. Let A be the graph associated with (a, j).
Then A is m-accretive if a is accretive and A is self-adjoint if a is symmetric.

We then study form approximation in this setting. Let (an) be a sequence of
compactly elliptic forms on V . We suppose that the forms are all accretive or all
symmetric and that (an) suitably converges to a. We tackle the question of whether
the associated graphs, which by the above theorem are m-accretive or self-adjoint,
converge in the strong resolvent sense. There naturally arises a sufficient condition
involving the dimensions of certain finite-dimensional subspaces Wj(an) of V . In
Theorem 4.19 we formulate the corresponding approximation result, which is the
second main result of the chapter. We then investigate the strong convergence of
the associated (degenerate) C0-semigroups. Again there naturally arises a sufficient
condition involving the dimensions of certain finite-dimensional subspaces of V .

Finally we apply the convergence result in Theorem 4.19 to generalised Dirichlet-
to-Neumann graphs. Surprisingly, the condition on the dimensions of the spaces
Wj(an) turns out to be connected with the unique continuation property for elliptic
operators.

In Section A.2 of the appendix we provide the required background on graphs
and (degenerate) C0-semigroups.

1.2.3 Chapter 5: The regular part of sectorial forms

For a general, possibly nonclosable, positive symmetric form, Simon [Sim78a]
introduced a decomposition into a maximal closable regular part and a singular part.
Using Kato’s first representation theorem, a self-adjoint operator can be associated
with the closure of the regular part. By a result of Arendt and ter Elst [AE12,
Theorem 1.1] one can naturally associate an m-sectorial operator to any densely
defined sectorial form. If the form is symmetric, then one reobtains the operator
associated with Simon’s regular part. This allows to generalise the notion of the
regular and singular part to sectorial forms. In Chapter 5, we study this generalised
regular and singular part in detail.

Throughout Chapter 5 we work in the setting of j-sectorial forms. We introduce
a suitable definition of the regular part areg of a j-sectorial form a, and show that
it is uniquely determined in a natural way. Moreover, we characterise when the
singular part as = a−areg is sectorial. The main result of the chapter is Theorem 5.7

7



1 Introduction

where we establish a formula of the regular part in terms of the real part of a,
which is crucial in Chapter 6.

1.2.4 Chapter 6: The regular part of diàerential sectorial forms

In Chapter 6 we study the regular part of a differential sectorial form that represents
a general linear second-order differential expression that may include lower-order
terms. Loosely speaking, such a differential expression has the form

−

d∑
k,l=1

∂lckl∂k +

d∑
k=1

bk∂k −

d∑
k=1

∂kdk + c0.

We impose mild conditions on the coefficients. Using the abstract formula for the
regular part in Theorem 5.7 and the techniques introduced by Vogt in [Vog09], we
obtain a formula for the regular part of the corresponding differential sectorial form
from which it follows that the regular part is again a differential sectorial form.
Furthermore, this formula allows to characterise when the singular part is sectorial
and when the regular part of the real part is equal to the real part of the regular
part. Remarkably, the presence of first-order terms introduces new phenomena
compared to the pure second-order case. We give several interesting examples
where we make use of our formula for the regular part.

1.2.5 Chapter 7: Elements of Sobolev space with weak trace zero

In Chapter 7 we consider a weak notion of the boundary trace for elements of the
Sobolev space W1,p(Ω) that is naturally defined via the approximation by functions
that are continuous on Ω. This notion was introduced by Arendt and ter Elst
in [AE11] and works for general open sets Ω.

Let p ∈ (1,∞). As usual, let W1,p
0 (Ω) be the closure of C∞c (Ω) in W1,p(Ω). Every

u ∈ W1,p
0 (Ω) has weak trace zero and becomes, if extended by 0 outside of Ω,

an element of W1,p(Rd). The main result of the chapter is Theorem 7.38, which
extends this extension property to all elements with weak trace zero. It, loosely
speaking, states the following.

Theorem. Let u ∈ W1,p(Ω). Suppose that u has weak trace zero, i.e., suppose that
there exists a sequence (un) in W1,p(Ω)∩C(Ω) such that un → u in W1,p(Ω) and the
restriction of un to the boundary converges to zero in a suitable sense. Then the extension
of u by 0 outside of Ω is an element of W1,p(Rd).

The proof relies crucially on an observation concerning the proof of [SZ99,
Theorem 2.2] by Swanson and Ziemer.

Further, letW1,p
0 (Ω) be the space of restrictions toΩ of elements inW1,p(Rd) that

are 0 a.e. on Rd \Ω. We provide examples which show that, in general, elements

8



1.3 Contributions

with weak trace zero are not contained in W1,p
0 (Ω) and that not every element of

W
1,p
0 (Ω) has weak trace zero. In Section 7.5 we discuss consequences of the main

result; this includes sufficient conditions on the domain Ω such that every element
with weak trace zero is contained in W1,p

0 (Ω).
The space of elements with weak trace zero is a closed subspace of W1,p(Ω). We

will see that it is a closed lattice ideal of both W1,p(Ω) and W1,p(Rd) in a suitable
sense. Using a result of Stollmann, this allows a description of the space of elements
with weak trace zero based on the support of quasi continuous representatives. We
compare this to very similar results for the space W1,p

0 (Ω).
The arguments throughout Chapter 7 require the notion of relative capacity and

fine representatives of elements in Sobolev space. The necessary background and
many references will be provided.

1.3 Contributions

The material in Chapter 3 is joint work in progress with Tom ter Elst and Hendrik
Vogt [ESV13]. We introduce an abstract form method for accretive forms and
operators which provides a common generalisation to both McIntosh’s form method
for closed accretive forms [McI68; McI70] and the recent results by Arendt and
ter Elst [AE12, Section 2]. In particular, we neither assume that the form is closed
nor that the form domain V is embedded in H. For this reason we consider general
accretive operators and not only m-accretive operators. In the most general setting,
various new phenomena occur, as well as new forms of degenerate behaviour. We
provide a plethora of examples and give conditions which ensure a more regular
behaviour.

Chapter 4 is based on joint work with Wolfgang Arendt, Tom ter Elst and James
Kennedy in [AEKS13]. Our research was motivated by questions concerning gener-
alised Dirichlet-to-Neumann graphs that were stimulated by [AE12, Subsection 4.4]
and [AM12]. The newly introduced notion of compactly elliptic forms gives rise to a
form method that is well-suited for the study of generalised Dirichlet-to-Neumann
graphs and their stability, both in the accretive and symmetric setting. For this it is
crucial that we do not assume that the form domain V is embedded in H.

The exposition in Chapter 4 is somewhat different from that in [AEKS13]. In
this thesis I present the material from the general viewpoint of Chapter 3 and
make use of results of Izumino about the stability of Moore–Penrose generalised
inverses [Izu83]. Moreover, both the accretive and the symmetric case are considered
at the same time. To relate the results of Chapter 4 to those in Chapter 3, it
is important to note that the graphs associated with an accretive or symmetric
compactly elliptic form are always m-sectorial graphs by Corollary 4.26.

The content in Chapter 5 is joint work with Tom ter Elst [ES11]. We study a

9



1 Introduction

generalised notion of the regular part for j-sectorial forms, which were introduced
in [AE12, Section 3]. In Theorem 5.7 we prove a formula for the regular part that
is useful to transfer results from the positive symmetric case. The work in this
chapter extends some results about the regular part of positive symmetric forms by
Simon [Sim78a].

The material in Chapter 6 is joint work with Tom ter Elst [ES13] that extends
our previous results from [ES11, Section 4]. The formula for the regular part of a
differential sectorial form in Theorem 6.5 extends results by Vogt [Vog09] and has
immediate interesting consequences. The results in this chapter apply to a large
class of forms associated with degenerate elliptic differential operators.

Chapter 7 contains my results about the space of elements with weak trace
zero. Theorems 7.38 and 7.66 allow to relate this space to the spaces W1,p

0 (Ω) and
W
1,p
0 (Ω). In particular, the findings extend [AE11, Proposition 5.5] to domains with

continuous boundary. Examples 7.56 and 7.55 show that the main result of the
chapter, Theorem 7.38, is in a sense best possible. Applications of the results in
Chapter 7 include domain approximation and the study of stability for problems
with Dirichlet boundary conditions. Moreover, for p = 2 the space of elements with
weak trace zero can be used as a form domain to obtain a realisation of the Dirichlet
Laplacian in L2(Ω), which is different from the usual realisation in Subsection 1.1.2
for irregular domains. This is analogous to using W1,2

0 (Ω) as the form domain,
which gives rise to the pseudo Dirichlet Laplacian, see for example [AM95]. These
remarks highlight that there is a considerable amount of freedom when considering
problems with Dirichlet boundary conditions on very irregular domains.
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2
Preliminaries

In this chapter we collect various prerequisites for Chapters 3 and 4.

2.1 General remarks

In the part of this work where we study form methods, we are always in a Hilbert
space setting. If not stated otherwise, we assume our Hilbert spaces to be complex
and possibly nonseparable.

We will distinguish between operators and graphs. The operators and graphs
considered here are always linear. We shall use the notion of graph to refer to what
is commonly called a multi-valued operator or linear relation, whereas an operator
will always be supposed to be a functional relation. We refer to Section A.2 for a
succinct overview of the required theory.

2.2 Background of the formmethod

Let V , H be Hilbert spaces, and let a : V × V → C be a continuous sesquilinear
form. Recall that a is continuous if and only if there exists an M > 0 such that
|a(u, v)| 6M‖u‖V‖v‖V for all u, v ∈ V . If V is continuously and densely embedded
in H, then one defines the graph of an operator A associated with the form a in H
as follows. Let x, f ∈ H. Then x ∈ D(A) and Ax = f if and only if a(x, v) = (f | v)H
for all v ∈ V . Lions [Lio57, Theorem 3.6] proved the following theorem.
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2 Preliminaries

Theorem 2.1 (Lions). Suppose that V is continuously and densely embedded in H.
Moreover, suppose that a is elliptic, i.e., there are ω ∈ R and µ > 0 such that

Re a(u,u) +ω‖u‖2H > µ‖u‖2V

for all u ∈ V . Then the operator A is m-sectorial.

In [McI68] McIntosh improved Theorem 2.1 to the setting of accretive forms.
Recall that a is called accretive if

Re a(u,u) > 0

for all u ∈ V .

Theorem 2.2 (McIntosh). Suppose that V is continuously and densely embedded in H.
Moreover, suppose that a is accretive and that there exists a µ > 0 such that

sup
‖v‖V61

|a(u, v) + (u | v)H| > µ‖u‖V (2.1)

for all u ∈ V . Then the operator A is m-accretive.

Clearly, if in Theorem 2.1 the ellipticity condition holds with ω = 1, then (2.1)
holds with the same value of µ (but a does not need to be accretive). Note that
if ω ∈ R and a ′ : V × V → C is given by a ′(u, v) = a(u, v) +ω(u | v)H, then the
operator A ′ associated with a ′ satisfies A ′ = A +ωI, thus differs from A only
by a shift. Traditionally the form a in Theorem 2.1 does not have to be accretive,
but in Theorem 2.2 the form a is supposed to be accretive. One can relax the
conditions in Theorem 2.2 by introducing a shift and replacing a(u, v) + (u | v)H by
a(u, v) +ω ′(u | v)H, but this essentially does not change the content. In order to
avoid introducing such a shift, in the following sections we assume that a is already
accretive.

Finally, we formulate a recent generalisation of Theorem 2.1 where the Hilbert
space V does not have to be embedded in the Hilbert space H.

Theorem 2.3 (Arendt and ter Elst [AE12, Theorem 2.1]). Let j : V → H be a continuous
linear map with dense range. Suppose a is j-elliptic, i.e., there exist ω ∈ R and µ > 0
such that

Re a(u,u) +ω‖j(u)‖2H > µ‖u‖2V
for all u ∈ V . Define the graph of an operator A as follows. If x, f ∈ H, then x ∈ D(A)

and Ax = f if and only if there exists a u ∈ V such that j(u) = x and a(u, v) = (f | j(v))H
for all v ∈ V . Then A is well-defined and m-sectorial.

In Section 3.1 we present a generation theorem which generalises both The-
orem 2.2 and 2.3.
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2.3 The abstract formmethod in the complete setting

In this section we introduce the notation that we will use in our investigation of
the form method in the complete setting. In particular, the notation here will be
used in Chapters 3 and 4. Moreover, we shall collect some basic properties of the
introduced objects in the process.

Let V and H be Hilbert spaces. Let a : V × V → C be a continuous sesquilinear
form and let j ∈ L(V ,H). Suppose that A ⊂ H×H is such that (x, f) ∈ A if and
only if there exists a u ∈ V such that j(u) = x and a(u, v) = (f | j(v))H for all v ∈ V .
Then A is a linear subspace of H×H; so A is a graph in H×H. We call A the
graph associated with (a, j) and say that (a, j) generates A. If A is the graph of
an operator, we also say that (a, j) generates an operator and call A the operator
associated with (a, j).

The following is an easy observation.

Lemma 2.4. Let ρ ∈ C and define b : V × V → C by

b(u, v) = a(u, v) + ρ(j(u) | j(v))H.

If A is the graph associated with (a, j), then ρI+A is the graph associated with (b, j).

On the one hand we are interested in conditions on (a, j) that ensure that the
graph A generated by (a, j) satisfies a certain range condition. For example, if a
is accretive we want to know when A is m-accretive. On the other hand we are
interested in conditions on (a, j) which imply that A is an operator.

We define

Dj(a) :=
{
u ∈ V : there exists an f ∈ H such that a(u, v) = (f | j(v))H for all v ∈ V

}
and

Vj(a) := {u ∈ V : a(u, v) = 0 for all v ∈ ker j}.

Then both Dj(a) and Vj(a) are subspaces of V , Dj(a) ⊂ Vj(a) and Vj(a) is closed in
V . Suppose that A is the graph generated by (a, j). Then Dj(a) is closely related
to the domain of A; more precisely, D(A) = j(Dj(a)). This direct connection to the
domain of the associated graph or operator highlights that Dj(a) is a delicate object
which in applications frequently will be unknown. In comparison, the space Vj(a)
is a simpler and more stable object. We will encounter conditions on (a, j) which
guarantee that Dj(a) is dense in Vj(a).

We define the operator T0 ∈ L(V) by requiring that (T0u | v)V = a(u, v) for all
u, v ∈ V . For all ρ ∈ C we define Tρ := T0 + ρj∗j. Then

(Tρu | v) = a(u, v) + ρ(j(u) | j(v))H
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for all u, v ∈ V . We will often use Tρ instead of working directly with a and j.
We shall see that sometimes restrictions of a to suitable subspaces of V exhibit

more regular behaviour. If V1 is a closed subspace of V , we will call the pair
(a|V1×V1 , j|V1) the restriction of (a, j) to V1.

Lemma 2.5. Let V , H, a and j be as above. Let A be the graph associated with (a, j).
Furthermore, let V1 be a closed subspace of V such that Dj(a) ⊂ V1, and let (a1, j1) be the
restriction of (a, j) to V1. Then the graph associated with (a1, j1) is an extension of A.

Proof. Let (x, f) ∈ A. Then there exists a u ∈ Dj(a) such that j(u) = x and
a(u, v) = (f | j(v))H for all v ∈ V . Since u ∈ V1, it follows that j1(u) = x and
a1(u, v) = (f | j1(v))H for all v ∈ V1. Hence (x, f) is an element of the graph
associated with (a1, j1).

The following gives an abstract characterisation of when the graph associated
with (a, j) is an operator.

Proposition 2.6. Let V , H, a and j be as above. Let A be the graph associated with (a, j).
Suppose that rg j is dense in H. Then the following are equivalent.

(i) A is an operator.

(ii) Dj(a)∩ ker j ⊂ ker T0.

(iii) Dj(a)∩ ker j ⊂ ker Tρ for some (or all) ρ ∈ C.

Proof. ‘(i)⇒(ii)’: Let u ∈ Dj(a)∩ ker j. Then

(T0u | v)V = a(u, v) = (Aj(u) | j(v))H = 0

for all v ∈ V , whence T0u = 0.
‘(ii)⇒(i)’: Let u ∈ Dj(a), f ∈ H and suppose that j(u) = 0 and a(u, v) = (f | j(v))H

for all v ∈ V . Then u ∈ Dj(a) ∩ ker j and hence T0u = 0 by Condition (ii). So
(f | j(v))H = a(u, v) = (T0u | v)V = 0 for all v ∈ V . As rg j is dense in H, one deduces
f = 0. By linearity this shows that A is an operator.

‘(ii)⇔(iii)’: This follows from Tρ = T0 + ρj
∗j.

Note that it is an immediate consequence of Proposition 2.6 that (a, j) generates
an operator if rg j is dense and Vj(a)∩ ker j = {0}.

Lemma 2.7. Let A be the graph associated with (a, j). Let ρ ∈ C. Then f ∈ rg(ρI+A) if
and only if there exists a u ∈ V such that Tρu = j∗f.

Proof. Let f ∈ H. If Tρu = j∗f, then

a(u, v) + ρ(j(u) | j(v))H = (Tρu | v)V = (j∗f | v)V = (f | j(v))H

16



2.3 The abstract formmethod in the complete setting

for all v ∈ V . So (j(u), f− ρj(u)) ∈ A, hence f ∈ rg(ρI+A). Conversely, suppose
f ∈ rg(ρI+A). Then there exists a u ∈ Dj(a) such that a(u, v) = (f− ρj(u) | j(v))H
for all v ∈ V . Hence Tρu = j∗f.

Lemma 2.8. Let ρ ∈ C and u ∈ V . Then u ∈ Dj(a) if and only if Tρu ∈ rg j∗.

Proof. By definition, u ∈ Dj(a) if and only if there exists an f ∈ H such that

(T0u | v)V = a(u, v) = (f | j(v))H = (j∗f | j(v))V

for all v ∈ V . Now the claim follows from the inclusion rg(Tρ − T0) ⊂ rg j∗.

Lemma 2.9. Let A be the graph associated with (a, j). Suppose that ρ(A) 6= ∅ and j is
compact. Then A has compact resolvent.

Proof. Choose ρ ∈ C such that (ρI+A)−1 ∈ L(H). Let f ∈ H. By Lemma 2.7 there
exists a u ∈ V such that Tρu = j∗f. Then (ρI+A)−1f = j(u). Set W := (ker Tρ)⊥.
We may assume that u ∈W. Then u is unique. So by mapping f 7→ u we obtain a
linear map Z : H→W. Using the closed graph theorem, it is readily verified that Z
is bounded. Since (ρI+A)−1 = jZ, the graph A has compact resolvent.

Definition 2.10. If there exists an ω ∈ R and a µ > 0 such that

Re a(u,u) +ω‖j(u)‖2H > µ‖u‖2V

for all u ∈ V , we say that a is j-elliptic.

The following is a straightforward generalisation of Theorem 2.3 that does not
require rg j to be dense in H. The proof shows that the graph associated with a
j-elliptic form a fails to be an operator only in a trivial way.

Theorem 2.11. Let V , H, a and j be as above. If a is j-elliptic, then (a, j) is associated with
an m-sectorial graph A such that A[0] = (rg j)⊥. In particular, if rg j is dense in H, then
A is an operator.

Proof. Set H1 := rg j. Define j1 : V → H1 by j1(u) = u. Let A1 be the m-sectorial
operator in H1 associated with (a, j1) by Theorem 2.3. Set H2 := H⊥1 . It is readily
verified that A = grA1 ⊕ ({0}×H2) and that A is m-sectorial.

Remark 2.12. To compare this with the general abstract setting, let f ∈ H and ρ ∈ C.
Then f ∈ A[0] if and only if there exists a u ∈ ker j such that Tρu = j∗f. So ker j
plays a vital role here, not merely ker j∗.
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3
The formmethod for accretive

forms and operators

In this chapter we introduce and study a form method for accretive forms and
operators. Our motivation is to provide a common generalisation to both McIntosh’s
generation theorem for accretive forms, Theorem 2.2, and the generation theorem
for j-elliptic forms by Arendt and ter Elst, Theorem 2.3.

We start in Section 3.1 by presenting the new generation theorem. We study
various sufficient conditions on the form which ensure that the generation theorem
can be applied. Moreover, we investigate generation properties of suitable restric-
tions of the form. In Section 3.2 we give a necessary and sufficient condition in
terms of operator ranges for an accretive operator to be associated with an accretive
form. We give examples of accretive operators which can not be generated by an
accretive form. In Section 3.3 we prove a basic form approximation result. We
investigate generation properties of the dual form in Section 3.4. This is followed by
Section 3.5, where we study a suitable sufficient condition for the range condition
in the generation theorem that is adapted from McIntosh [McI68]. In Section 3.6
we transfer a characterisation by Ouhabaz for the invariance of closed convex sets
under the associated semigroup to our setting. Finally, in Section 3.7 we briefly
discuss how our results can be applied in a setting where the form domain is
merely a pre-Hilbert space.

Throughout this chapter we provide various examples, give implications between
many different conditions and highlight fundamental differences to the well-known
elliptic theory. In Section A.1 of the appendix we collect various basic results about
accretive operators. The material in this chapter is joint work with Tom ter Elst and
Hendrik Vogt [ESV13].
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3.1 The complete case

Let V and H be Hilbert spaces, a : V × V → C a sesquilinear form and j ∈ L(V ,H).
We assume that

(I) a is continuous and accretive, and
(II) j(V) is dense in H.

We point out that we do not assume j to be injective.
Since a is continuous, there exists an operator T0 ∈ L(V) such that

a(u, v) = (T0u | v)V

for all u, v ∈ V . Clearly T0 is accretive, hence m-accretive by Corollary A.6. Recall
that

Dj(a) =
{
u ∈ V : there exists an f ∈ H such that a(u, v) = (f | j(v))H for all v ∈ V

}
.

Note that for any u ∈ Dj(a), the element f on the right hand side is unique since
j(V) is dense in H. Here we use the notation Dj(a) instead of the notation DH(a)
that was introduced in [AE12] to emphasise that this space depends not only on H,
but also on j. It will be convenient for the following to define the sesquilinear form
b : V × V → C by

b(u, v) = a(u, v) + (j(u) | j(v))H.

Since b is continuous, there exists an m-accretive operator T ∈ L(V) such that

b(u, v) = (Tu | v)V (3.1)

for all u, v ∈ V . Clearly T = T0 + j
∗j. We assume throughout this chapter that a and

j satisfy Conditions (I) and (II), and we define T0, T , b and Dj(a) as above.
If b(u,u) = 0, then ‖j(u)‖2H = 0 since a is accretive. Put differently,

(Tu |u)V = 0 implies u ∈ ker j. (3.2)

In particular, ker T ⊂ ker j. As T is m-accretive, it follows from Proposition A.8 that
ker T∗ = ker T ⊂ ker j. Hence

rg j∗ ⊂ rg T . (3.3)

Moreover, one has
ker T ⊂ Dj(a)∩ ker j. (3.4)

If the statements in Proposition 2.6 are satisfied, we say that (a, j) is associated
with an accretive operator and call A the operator associated with (a, j).
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Now we state the generalised generation theorem, which is the main result of
this section.

Theorem 3.1 (Generation theorem for m-accretive operators). Let V , H, a and j be
as above. Suppose that a and j satisfy Conditions (I) and (II). Assume that the equivalent
conditions of Proposition 2.6 are satisfied and let A be the operator associated with (a, j).
Then A is m-accretive if and only if

rg j∗ ⊂ rg T . (3.5)

We first establish a simple general formula. By T−10 [·] we denote taking the
preimage under T0 (analogously for T ).

Lemma 3.2. Suppose a and j satisfy Conditions (I) and (II). Then Dj(a) = T−10 [rg j∗] =
T−1[rg j∗]. In particular, T(Dj(a)) ⊂ rg j∗.

Proof. Let u ∈ V . By definition, u ∈ Dj(a) if and only if there exists an f ∈ H
such that a(u, v) = (f | j(v))H for all v ∈ V . This is equivalent to the statement
that there exists an f ∈ H such that (T0u | v)V = a(u, v) = (j∗f | v)V for all v ∈ V .
Therefore T0u ∈ rg j∗ if and only if u ∈ Dj(a). Now the second equality follows
from Dj(a) = Dj(b).

We will obtain Theorem 3.1 as a consequence of the following proposition.

Proposition 3.3. Suppose a and j satisfy Conditions (I) and (II). Assume that (a, j) is
associated with an accretive operator A. Let f ∈ H. Then f ∈ rg(I+A) if and only if
there exists a u ∈ Dj(a) such that Tu = j∗f. In particular, A is m-accretive if and only if
rg j∗ ⊂ T(Dj(a)).

Proof. Let f ∈ H. Then f ∈ rg(I+A) if and only if there exists a u ∈ Dj(a) such that

(Tu | v)V = a(u, v) + (j(u) | j(v))H = ((I+A)j(u) | j(v))H = (f | j(v))H = (j∗f | v)V

for all v ∈ V . Now the second statement follows from the above and the fact that
the accretive operator A is m-accretive if and only if rg(I+A) = H.

Proof of Theorem 3.1. If A is m-accretive, then Proposition 3.3 implies that Condi-
tion (3.5) is satisfied. Conversely, suppose Condition (3.5) is satisfied. By Lemma 3.2,
we obtain T(Dj(a)) = rg j∗. Therefore A is m-accretive by Proposition 3.3. This
proves the theorem.

Remark 3.4. 1. It follows from (3.4) that (a, j) is associated with an accretive oper-
ator if and only if

Dj(a)∩ ker j = ker T .
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Note that in general the latter equality does not hold with T0 instead of T . Moreover,
T may not be replaced by T0 in Condition (3.5). Both can be observed in the example
specified by V = H, T0 = 0 and j = I, where H is a Hilbert space with dimH > 0.

2. If V is finite-dimensional and (a, j) is associated with an accretive operator A,
then A is m-accretive. This follows from Theorem 3.1 since (3.3) implies rg j∗ ⊂ rg T .

3. Suppose (a, j) is associated with an accretive operator A. By Proposition 3.3
and Lemma 3.2 the operator A is m-accretive if and only if T(Dj(a)) = rg j∗.

4. If j is injective, then (a, j) is associated with an accretive operator. If, in
addition, T is bijective, then T−1 is bounded and the associated operator is m-
accretive. Thus Theorem 2.2 of McIntosh [McI68, Theorem 3.1] is a special case of
Theorem 3.1. We also point out that Condition (3.5) has already appeared in [McI66,
Theorem 3.5] in the setting of injective j. Moreover, Theorem 2.3 is a special case
of Theorem 3.1 by the following argument. Adopt the assumption of Theorem 2.3.
We may shift a such that ω = 0. Then a is accretive. By the ellipticity condition we
have

µ‖u‖2V 6 Re a(u,u) 6 |b(u,u)| 6 ‖Tu‖V‖u‖V
for all u ∈ V . This implies that T is injective and has closed range. It follows from
ker T∗ = ker T = {0} that rg T = V . Hence T is invertible. Moreover, if u ∈ V satisfies
a(u,u) = 0, then u = 0. Hence Dj(a) ∩ ker j = {0}. Therefore (a, j) is associated
with an accretive operator A by Proposition 2.6. Moreover, A is m-accretive by
Theorem 3.1. The same applies to the operator eiαA for all α ∈ R such that |α| is
small. Hence A is m-sectorial.

The following finite-dimensional example shows that it is possible that (a, j) is
not associated with an accretive operator even though T is invertible.

Example 3.5. Let V = C2, H = C and j(u1,u2) = u2. Define the form a : V ×V → C

by a(u, v) = u2v1 − u1v2. Then clearly T =
(
0 1
−1 1

)
, which is an invertible matrix.

However, (a, j) is not associated with an accretive operator. To prove this, let
u ∈ Dj(a) and f ∈ C be such that

u2v1 − u1v2 = a(u, v) = (f | j(v))C = f v2

for all v ∈ V . Then j(u) = u2 = 0 and u1 = −f. This implies that Dj(a) = ker j =
C× {0}. Then the claim follows by Proposition 2.6. 3

Even if (a, j) is associated with an accretive operator, the associated operator
need not be m-accretive. To make matters worse, the restriction of (a, j) to a closed
subspace W ⊂ V that contains Dj(a) and satisfies that j(W) is dense in H need not
be associated with an accretive operator, even if this is the case for (a, j).

Example 3.6. Let V = `2 and H = C. By (ek)k∈N we denote the usual orthonormal
basis in `2 such that ek is 1 at the kth position and zero otherwise. Let T0 ∈ L(V)
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be such that T0ek = 1
kek for all k > 3, T0e1 = −e2 and T0e2 = e1. Observe that T0

is m-accretive. Clearly w :=
(
0, 11 , 12 , 13 , . . .

)
∈ `2 is not in the range of T0. Define

j ∈ L(V , C) by j(u) = (u |w)`2 . Set T := T0 + j
∗j and note that T ∈ L(V) is m-

accretive. As T0 is injective and j∗(α) = αw for all α ∈ C, the operator T is injective
and w /∈ rg T . Hence T is not invertible. Define a : V ×V → C by a(u, v) = (T0u | v)`2 .
Then T0 and T are indeed the operators representing a and b in V .

Since rg j∗ = (ker j)⊥ = span{w}, it follows from Lemma 3.2 that Dj(a) = {0}.
Therefore (a, j) is associated with an accretive operator that is not m-accretive.

LetW = span{e1, e2} ⊂ V and define â := a|W×W and ĵ := j|W . It is easily observed
that we are now in the setting of Example 3.5. Therefore (â, ĵ) is not associated
with an accretive operator even though Dj(a) ⊂W and (a, j) is associated with an
accretive operator.

Furthermore, note that if we instead choose W = span{e2}, then a|W×W = 0 and
(a|W×W , j|W) is associated with the m-accretive zero operator on H = C. If one
chooses W = span{e3}, then (a|W×W , j|W) is associated with an m-accretive operator
that is different from the zero operator. In fact, a straightforward calculation shows
that the associated operator in this case is 4

3I. 3

The previous example shows that taking seemingly suitable restrictions of a and
j does not need to give ‘better’ operators and can introduce surprising degrees of
freedom. The next simple example illustrates that (a, j) can be associated with a
nonclosed accretive operator.

Example 3.7. Let V and H be Hilbert spaces and j ∈ L(V ,H) with dense range.
Choose the form a = 0 on V ×V . Then (a, j) is associated with an accretive operator
A. More precisely, D(A) = rg j and A = 0. Therefore A is m-accretive if and only
if it is closed. The latter is equivalent to rg j = H. Still, A is densely defined and
closable. 3

We now show that every densely defined, closed, accretive operator is, in the
obvious way, associated with an accretive form. Note that the operator does not
have to be m-accretive.

Example 3.8. Let R be a densely defined, closed, accretive operator in a Hilbert space
H. Equip V := D(R) with the inner product (u | v)V = (Ru |Rv)H + (u | v)H. This
makes V into a Hilbert space. Define the form a : V × V → C by a(u, v) = (Ru | v)H.
Then a is accretive and continuous. Let j : V → H be the inclusion. Then j is
continuous with dense range. Obviously (a, j) is associated with an accretive
operator. It is easy to verify that Dj(a) = V . So R is the associated operator. 3

Next we give an example such that j is injective, whence (a, j) is associated with
an accretive operator, but such that rg T ∩ rg j∗ = {0}. In particular, the condition
rg j∗ ⊂ rg T in Theorem 3.1 is clearly not fulfilled. The example is based on the
following lemma.
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3 The formmethod for accretive forms and operators

Lemma 3.9. Let H be an infinite-dimensional Hilbert space. Suppose R,S ∈ L(H) are
self-adjoint, positive, injective operators such that rgR∩ rgS = {0}. Equip V = rgR with
the inner product (u | v)V =

(
R−1u |R−1v

)
H

. Let j : V → H be the inclusion. Then there
exists an accretive form a : V × V → C such that a and j satisfy Conditions (I) and (II),
and such that Dj(a) = {0}.

Proof. Note that both rgR and rgS are dense, V is a Hilbert space and j is continuous
with dense range. Moreover,

(j∗j(u) | v)V = (j(u) | j(v))H =
(
R−1R2u |R−1v

)
H
=
(
R2u | v

)
V

for all u, v ∈ V . This shows that j∗j = R2|V and j∗ = R2. Define the sesquilinear
form a : V × V → C by

a(u, v) :=
(
SR−1u |R−1v

)
H
=
(
RSR−1u | v

)
V

.

So T = R2|V + RSR−1. Let u ∈ rg T ∩ rg j∗. Then there exist v ∈ V and f ∈ H such
that Tv = u = j∗f. It follows that RSR−1v = R2(f− v), whence SR−1v ∈ rgR. So
R−1v = 0 and hence u = 0. This proves that Dj(a) = {0} by Lemma 3.2.

We point out that the form a in Lemma 3.9 is symmetric and positive, but not
elliptic. More precisely, by the above neither the conditions of Theorem 2.1 nor
those of Theorem 2.3 are satisfied.

Example 3.10. Let H = L2(R). Define R = exp(−Q4) and S = exp(−P4), where Q
is the multiplication operator with x in H (the so-called ‘position operator’) and
P is the operator i d

dx (the so-called ‘momentum operator’). It is a consequence of
Beurling’s theorem (see [Hör91], for example) that rgR∩ rgS = {0}. So R and S are
bounded linear operators that satisfy the conditions in Lemma 3.9. Alternatively,
see the first step of the proof of [FW71, Theorem 3.6] for the construction of such
operators on the Hilbert space `2.

By choosing V , a and j as in Lemma 3.9, we obtain an example where j is injective
and (a, j) is associated with an accretive operator that has the domain {0}. 3

It is trivial to construct examples with ker T 6= {0} such that (a, j) is associated
with an m-accretive operator.

Example 3.11. Let V = C2, H = C, a = 0 and j(u) = u1. Then T = j∗j, and the
equivalent conditions of Theorem 3.1 are satisfied. Moreover, Dj(a) = C2 and
ker j = {0}×C = ker T . 3

A convenient sufficient condition for (a, j) to be associated with an accretive
operator is as follows.
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3.1 The complete case

Lemma 3.12. Suppose a and j satisfy Conditions (I) and (II). Suppose for all u ∈ V with
b(u,u) = 0 one has u = 0. Then Dj(a) ∩ ker j = {0} and (a, j) is associated with an
accretive operator.

Proof. Let u ∈ Dj(a)∩ ker j. Let f ∈ H be such that a(u, v) = (f | j(v))H for all v ∈ H.
Then b(u,u) = a(u,u) + ‖j(u)‖2H = (f | j(u))H = 0, whence u = 0.

Another sufficient condition is as follows.

Lemma 3.13. If j(Dj(a)) is dense in H, then (a, j) is associated with an accretive operator.

Proof. This follows from the fact that densely defined, accretive graphs are single-
valued, see [HP97, Remark 3.1.42].

We provide a direct proof here to be self-contained. Let u ∈ Dj(a)∩ ker j and let
f ∈ H be such that a(u, v) = (f | j(v))H for all v ∈ V . Let w ∈ Dj(a) and λ ∈ C. Then
there exists a g ∈ H such that

a(w,u) = (g | j(u))H = 0.

Hence we obtain

0 6 Re a(w− λu,w− λu) = Re a(w,w) − Re (λf | j(w))H.

This shows that (f | j(w))H = 0 for all w ∈ Dj(a). Therefore f = 0. Hence T0u =

j∗f = 0. Now the statement follows from Proposition 2.6.

We next give an example where j(Dj(a)) is dense in H, but such that the associ-
ated operator is not m-accretive.

Example 3.14. Let H = L2(0,∞) and V = H10(0,∞). Let j be the (injective) embed-
ding of V into H. Define a : V × V → C by

a(u, v) = −

∫∞
0
u ′v.

Using the continuous representative of u ∈ H10(0,∞), we obtain

2Re a(u,u) = −

∫∞
0
(u ′u+ u ′u) = −

[
|u|2
]∞
0

= |u(0)|2 = 0

for all u ∈ V . Hence a and j satisfy Conditions (I) and (II). It is easily observed that
the operator A associated with (a, j) is given by Au = −u ′ and D(A) = H10(0,∞).

Note that the operator B in H defined by Bu = −u ′ and D(B) = H1(0,∞) is
accretive and strictly extends A. So D(A) is dense, but A fails to be m-accretive.

We remark that the operator −A is accretive and satisfies (−A)∗ = B. Clearly −A

is closed and densely defined. Hence −A is m-accretive by Proposition A.11. Note
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3 The formmethod for accretive forms and operators

that the operator −A is associated with (−a, j), while B = (−A)∗ is associated with
(ã, j̃), where the form ã : H1(0,∞)×H1(0,∞)→ C is defined by ã(u, v) = −

∫∞
0 u

′v

and j̃ is the embedding of H1(0,∞) into H. 3

The next proposition is a direct consequence of Lemma 2.9.

Proposition 3.15. Assume a and j satisfy Conditions (I) and (II). Assume that (a, j) is
associated with an m-accretive operator A. Suppose that j : V → H is compact. Then A has
compact resolvent.

In the following example an m-accretive operator is associated with an accretive
form corresponding to a second-order differential expression. Later in Section 3.5
after Proposition 3.55 we will briefly revisit this example.

Example 3.16. Let a,b ∈ R with a < 0 < b. Let H = L2(a,b), and let V = H10(a,b)
with norm ‖u‖2V =

∫b
a|u
′|2. Let j be the embedding of V in H. Define a : V × V → C

by

a(u, v) = i
∫b
a
(sgn x)u ′(x)v ′(x)dx.

Then a and j satisfy Conditions (I) and (II). Note that Re a(u,u) = 0 for all u ∈ V .
It is readily verified that the associated operator A is given by Au = −i(sgn · u ′) ′
on the domain D(A) = {u ∈ H10(a,b) : sgn · u ′ ∈ H1(a,b)}. Since iA is a self-
adjoint operator by [Naı̆68, Theorem 5 in §18.2], the operator A is m-accretive and
Condition (3.5) is satisfied. It follows from Proposition 3.15 that A has compact
resolvent.

In particular, we may choose a = −1 and b = 1. Then a straightforward
calculation yields (T0u)(s) = i(sgn s)

(
u(s) + (|s|− 1)u(0)

)
for all s ∈ (−1, 1) and

j∗j = (−∆D
(−1,1))

−1|H10(−1,1)
, where ∆D

(−1,1) denotes the Dirichlet Laplacian on (−1, 1).
Note that T0 is not injective since s 7→ 1− |s| is an element of the kernel of T0. In
this example a direct verification of Condition (3.5) appears to be difficult. 3

As in Section 2.3 we define the subspace

Vj(a) := {u ∈ V : a(u, v) = 0 for all v ∈ ker j}.

It is immediate from the definitions that Dj(a) ⊂ Vj(a) and that Vj(a) is closed.
Moreover, it is easily observed that

Vj(a) = Vj(b) = T
−1
[
(ker j)⊥

]
= (T∗ ker j)⊥,

where ⊥ denotes the orthogonal complement in V . Hence, if T is invertible, then it
follows from Lemma 3.2 that Vj(a) is the closure of Dj(a).
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The space Vj(a) plays an important role in the theory of j-elliptic forms as in
Theorem 2.3. If a is j-elliptic, then Dj(a) is dense in Vj(a) by [AE12, Proposi-
tion 2.3 (ii)], one has the (possibly nonorthogonal) decomposition V = Vj(a)⊕ ker j
by [AE12, Theorem 2.5 (i)], and the associated operator is determined by the restric-
tion (a|Vj(a)×Vj(a), j|Vj(a)). If a is merely accretive, then in general Dj(a) is not dense
in Vj(a) even if j is injective and (a, j) is associated with an m-accretive operator.
An example for this is as follows.

Example 3.17. Let V = H = `2. Let S ∈ L(V) be the right shift, so Sen = en+1 for
all n ∈N. Define T ′ ∈ L(V) by T ′en = 2−nen and j ∈ L(V ,H) by j = (I− 2S∗)T ′ =

T ′(I− S∗). Then j∗ = T ′(I− 2S) and hence rg j∗ ⊂ rg T ′. Since T ′(I− S∗) is the
composition of two injective maps, it follows that j is injective and, in particular,
Vj(a) = V . If u ∈ V , then

‖j(u)‖2H = ‖(I− 2S∗)T ′u‖2H 6 9‖T ′u‖2V 6 9
2

(
T ′u |u

)
V

.

Hence if one defines a : V × V → C by

a(u, v) = 9
2

(
T ′u | v

)
V
− (j(u) | j(v))H,

then a is continuous and accretive. As (I− 2S) is injective, also j∗ = T ′(I− 2S) is
injective. Therefore j has dense range. Note that b(u, v) = (Tu | v)V , where T = 9

2T
′.

So (a, j) is associated with an m-accretive operator by Theorem 3.1.
For all n ∈ N define wn :=

∑n
k=1 ek ∈ V . Then j(wn) = T ′en = 2−nen for all

n ∈ N. Hence limn→∞ j(wn) = 0 in H. Moreover, define w = limn→∞ T ′wn =∑∞
n=1 2

−nen ∈ V .
We show that w ∈ (Dj(a))

⊥. Let u ∈ Dj(a). By Lemma 3.2 there exists an f ∈ H
such that T ′u = j∗f. Then(

u | T ′wn
)
V
=
(
T ′u |wn

)
V
= (j∗f |wn)V = (f | j(wn))H

for all n ∈N. For n→∞ we obtain (u |w)V = 0. Since w 6= 0, it follows that Dj(a)
is not dense in Vj(a).

We also point out that in this example Dj(a) is closed in V . To this end, observe
that Dj(a) = T−1[rg j∗] = rg(12I− S). Therefore it suffices to show that 1

2I− S is
Fredholm. To this end it is useful to consider the Calkin algebra, which is the quo-
tient space of the bounded operators modulo the compact operators and becomes a
C∗-algebra in the natural way; see [Dou72, Chapter 5]. Let π be the corresponding
natural projection map. By [Dou72, Definition 5.14 and Theorem 5.17] the operator
1
2I− S is Fredholm if and only if π(12I− S) is invertible in the Calkin algebra. As
SS∗ − I is compact and S∗S = I, the operator π(S) is unitary in the Calkin algebra.
Hence π(12I− S) is invertible in the Calkin algebra. 3
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3 The formmethod for accretive forms and operators

The following example shows that (a, j) can be associated with a nonclosable
accretive operator. It is obtained by adapting Phillips’ example for a nonclosed,
maximal accretive (single-valued) operator in [Phi59, Footnote 6]. Note that the
operator here is not maximal accretive. We will see in Proposition 3.37 that we
cannot obtain a nonclosed, maximal accretive operator in our setting.

Example 3.18. Let H = `2(N), and let (en)n∈N be the standard orthonormal basis.
Equip the subset V of `2(N0) specified by

V :=
{
u = (un)n∈N0

∈ `2(N0) :

∞∑
n=0

|2nun|
2 <∞}

with the inner product

(u | v)V :=

∞∑
n=0

4nukvk

for all u, v ∈ V . Then V is a Hilbert space.
Define y :=

∑∞
n=2 2

−nen ∈ H. Let j ∈ L(V ,H) be defined by

j(u) = u0e1 + u1y+

∞∑
n=2

unen.

Note that j has dense range in H. We show that j is injective. Let u ∈ ker j. Then
u0 = 0. Moreover, un = −u12

−n for all n > 2. This implies that u = 0 because
(2nun)n∈N0

∈ `2(N0) as u ∈ V .
Define a : V × V → C by

a(u, v) = u1v0 − u0v1.

Then a is accretive and continuous. So a and j satisfy Conditions (I) and (II), and
(a, j) is associated with an accretive operator A since j is injective.

We first show that Dj(a) = {u ∈ V : u0 = 0}.
‘⊂’ Let u ∈ Dj(a), and let f ∈ H be such that

a(u, v) = (f | j(v))H

for all v ∈ V . Hence

u1v0 − u0v1 = (f | j(v))H = f1v0 + (f |y)Hv1 +

∞∑
n=2

fnvn

for all v ∈ V . This implies that fn = 0 for all n > 2. Hence (f |y)H = 0 and u0 = 0.
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‘⊃’ Let u ∈ V be such that u0 = 0. Set f := u1e1. Then

a(u, v) = u1v0 = f1v0 = (f | j(v))H

for all v ∈ V , i.e., u ∈ Dj(a).
Now we show that the operator A associated with (a, j) is not closable. Observe

from the preceding calculations that

D(A) =
{
u1y+

∞∑
n=2

unen : u ∈ V
}

and Ay = e1, Aen = 0 for all n > 2. Note that ym :=
∑∞
n=m 2

−nen is in D(A) for all
m > 2. Then limm→∞ ym = 0 in H, but Aym = e1 for all m > 2. Hence A is not
closable. Consequently, A cannot be densely defined by Lemma A.9.

For later use we note that

rg(I+A) =
{
u1y+

∞∑
n=1

unen : u ∈ V
}

. (3.6)

Finally, we point out that Dj(a) is closed in V , but Dj(a) 6= Vj(a) = V . 3

The next proposition explains why in the following we may restrict our attention
to the case ker T = {0}.

Proposition 3.19. Assume a and j satisfy Conditions (I) and (II). Let W be a closed
subspace of V such that V = W ⊕ ker T , where the direct sum does not need to be
orthogonal. Define â := a|W×W and ĵ := j|W . Then â and ĵ satisfy (I) and (II). Moreover,
the following statements hold.

(a) Let T̂ be defined as in (3.1) with respect to â and ĵ. Then ker T̂ = {0}.

(b) The following three identities hold:

ker j = ker ĵ⊕ ker T ,

Dj(a) = Dĵ(â)⊕ ker T ,

Vj(a) = Vĵ(â)⊕ ker T .

(c) One has Dj(a) ∩ ker j ⊂ ker T if and only if Dĵ(â) ∩ ker ĵ = {0}, and if this is the
case, then A = Â, where A and Â are the operators associated with (a, j) and (â, ĵ),
respectively.

(d) Assume in addition that (a, j) is associated with an m-accretive operator. Then there
exists a unique operator Z : H→W such that TZ = j∗. Moreover, Z is bounded and
(I+A)−1 = jZ.
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Proof. Obviously â is continuous and accretive. Since ker T ⊂ ker j by (3.2), the map
ĵ has dense range. So â and ĵ satisfy Conditions (I) and (II). Next we state some
basic identities. If u ∈ ker T , then b(u, v) = (Tu | v)V = 0 for all v ∈ V . If v ∈ ker T ,
then v ∈ ker T∗ by Proposition A.8 (b) and hence b(u, v) = 0 for all u ∈ V . Then
also a(u, v) = 0 for all u, v ∈ V with u ∈ ker T or v ∈ ker T .

(a) Let u ∈ ker T̂ . Then b(u, v) =
(
T̂u | v

)
V
= 0 for all v ∈W. As also b(u, v) = 0

for all v ∈ ker T , we obtain b(u, v) = 0 for all v ∈ V . Hence Tu = 0, i.e., u ∈ ker T .
Since u ∈W, we deduce that u = 0. So ker T̂ = {0}.

(b) Since ker T ⊂ Dj(a) ⊂ Vj(a) and ker T ⊂ ker j by (3.4), it suffices to show the
three identities

ker j∩W = ker ĵ,

Dj(a)∩W = Dĵ(â),

Vj(a)∩W = Vĵ(â).

The first identity is clear. For the proof of the second identity let u ∈ Dj(a) ∩W.
Then there exists an f ∈ H such that â(u, v) = a(u, v) = (f | j(v)) for all v ∈ W,
so u ∈ Dĵ(â). Conversely, let u ∈ Dĵ(â). Then there exists an f ∈ H such that
a(u, v) = (f | j(v))H for all v ∈ W. But a(u, v) = 0 = (f | j(v))H for all v ∈ ker T ,
by (3.2). Therefore a(u, v) = (f | j(v))H for all v ∈W + ker T = V . So u ∈ Dj(a) and
hence Dĵ(â) ⊂ Dj(a)∩W. The third identity is proved similarly.

(c) It follows from (b) that

Dj(a)∩ ker j =
(
Dĵ(â)∩ ker ĵ

)
+ ker T .

As ker ĵ ∩ ker T = {0}, this shows that Dj(a) ∩ ker j ⊂ ker T if and only if Dĵ(â) ∩
ker ĵ = {0}.

For the proof of the second claim, let u ∈W, w ∈ ker T and f ∈ H. Then by (3.2)
one has ĵ(u) = j(u+w), a(u, v) = 0 for all v ∈ ker T and a(w, v) = 0 for all v ∈ V .
Therefore a(u+w, v) = (f | j(v))H for all v ∈ V if and only if â(u, v) = (f | ĵ(v))H for
all v ∈W. It follows that A = Â.

(d) By Theorem 3.1 we have rg j∗ ⊂ rg T = rg T |W . Note that T |W is injective. So
the operator Z : H→W is given by Z = (T |W)−1j∗. It is closed as a composition of
a bounded and a closed operator. Consequently, Z is bounded. To prove the final
assertion, let f ∈ H. Then TZf = j∗f and hence (I+A)−1f = jZf.

In Example 3.6 we saw that various degenerate behaviour can occur if we restrict
a and j to a closed subspace W ⊂ V such that Dj(a) ⊂W and j(W) is dense in H.
The corollary to the following proposition shows that this does not happen if (a, j)
is associated with an m-accretive operator.
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Proposition 3.20. Assume a and j satisfy Conditions (I) and (II). Assume that j
(
Dj(a)

)
is

dense in H. Let W ⊂ V be a closed subspace such that j
(
Dj(a)∩W

)
= j
(
Dj(a)

)
. Define

â := a|W×W and ĵ := j|W . Then (a, j) and (â, ĵ) are associated with accretive operators A
and Â, respectively. Moreover, Â is an extension of A.

Proof. First note that (a, j) is associated with an accretive operator A by Lemma 3.13.
Also ĵ satisfies Condition (II) since by assumption j(Dj(a)) ⊂ j(W) = rg ĵ.

It is immediately clear that Dj(a)∩W ⊂ Dĵ(â). Therefore also (â, ĵ) is associated
with an accretive operator Â by Lemma 3.13. Let x ∈ D(A) and f = Ax. Then there
exists a u ∈ Dj(a)∩W such that j(u) = x. It follows that

a(u, v) = (f | j(v))H

for all v ∈ V . This shows that Â is an extension of A.

Corollary 3.21. Assume a and j satisfy Conditions (I) and (II). Suppose (a, j) is associated
with an m-accretive operator A. Suppose W satisfies the assumptions in Proposition 3.20.
Let â and ĵ be defined as in Proposition 3.20. Then the operator Â associated with (â, ĵ) is
equal to A.

Remark 3.22. 1. If W is a closed subspace of V such that Dj(a) ⊂ W, then the
condition j

(
W ∩Dj(a)

)
= j
(
Dj(a)

)
is clearly satisfied.

2. We note that in Proposition 3.20 one may choose W := Dj(a)∩ (ker T)⊥,
provided j(Dj(a)) is dense in H. This follows from Proposition 3.19 (b) using the
decomposition V = (ker T)⊥ ⊕ ker T .

3. Even if (a, j) is associated with an m-accretive operator, in general it is not
possible to choose W := Vj(a) ∩ (ker j)⊥ in Proposition 3.20. For example, let
V = C2, H = C, define j ∈ L(V ,H) by j(u1,u2) = u1 and define a : V × V → C

by a(u, v) = u2v2 + i(u1v2 + u2v1). Then a is j-elliptic (cf. Theorem 2.3) and (a, j)
is associated with an m-accretive operator. Moreover, ker j = {0}×C and Vj(a) =
{(α,−αi) : α ∈ C}. Hence Vj(a)∩ (ker j)⊥ = {0}.

The following example shows that the operator Â in Proposition 3.20 can indeed
be a proper extension of A, even if j is injective and W is the closure of Dj(a) in V .
In the construction of the example we rely on the following lemma.

Lemma 3.23. Let A > I be an unbounded self-adjoint operator in a Hilbert space H.
Suppose f ∈ H \D(A1/2). Equip V := D(A1/2) with the inner product (x |y)V =

(A1/2x |A1/2y)H. Then the set

{x ∈ D(A) : (Ax | f)H = 0}

is dense in V .
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Proof. Let W = D(A) be equipped with the induced topology of V . Note that W is
dense in V . It suffices to verify that ϕ : W → C defined by ϕ(x) = (Ax | f)H is an
unbounded linear functional. Then, by a well-known elementary fact of functional
analysis, the kernel of ϕ is dense in W. Hence kerϕ is dense in V , which proves
the claim.

We complete the proof by showing that ϕ is unbounded. Assume ϕ is bounded.
Then by the Riesz representation theorem there exists a v ∈ V such that

(Ax | f)H = ϕ(x) = (x | v)V =
(
A1/2x |A1/2v

)
H

for all x ∈ D(A). This implies that f ∈ D(A1/2), which is a contradiction.

Example 3.24. Define an unbounded self-adjoint operator Â > I in a separable Hil-
bert space H by taking the countable disjoint sum of an operator as in Lemma 3.23.
Equip V1 := D(Â1/2) with the inner product (u | v)V1 =

(
Â1/2u | Â1/2v

)
. Then there

exists a closed infinite-dimensional subspace H2 of H with V1 ∩H2 = {0} such that
the set

D := {x ∈ D(Â) :
(
Âx | f

)
H
= 0 for all f ∈ H2}

is dense in V1.
Let V2 and a2 be given as in Example 3.10 for the Hilbert space L2(R). Since H2

and L2(R) are isometrically isomorphic, we may identify H2 and L2(R) and assume
that j2 : V2 → H2 is the inclusion. Then Dj2(a2) = {0}. Let V = V1 ⊕ V2. Define
j : V → H by j(u1,u2) = u1 + u2. Define a : V × V → C by

a((u1,u2), (v1, v2)) =
(
Â1/2u1 | Â

1/2v1
)
H
+ a2(u2, v2).

Then a and j satisfy Conditions (I) and (II). Moreover, j is injective. Therefore (a, j)
is associated with an accretive operator A.

We determine Dj(a). Suppose u ∈ Dj(a) and let f ∈ H be such that a(u, v) =
(f | j(v))H for all v ∈ V . On the one hand, choosing v2 = 0 yields u1 ∈ D(Â) and
Âu1 = f. On the other hand, by choosing v1 = 0, we obtain

a2(u2, v2) = (f | v2)H =
(
Âu1 |Pv2

)
H
=
(
PÂu1 | v2

)
H2

for all v2 ∈ V2, where P is the orthogonal projection onto H2 in H. Hence u2 ∈
Dj2(a2) = {0} and PÂu1 = 0. This shows that u ∈ D× {0}. Conversely, assume that
u ∈ D× {0}. Then

a((u1, 0), (v1, v2)) =
(
Â1/2u1 | Â

1/2v1
)
H

=
(
Âu1 | v1

)
H
+
(
Âu1 | v2

)
H
=
(
Âu1 | v1 + v2

)
H

for all v = (v1, v2) ∈ V . Thus Dj(a) = D× {0}.
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Let A be the operator associated with (a, j). By construction, Dj(a) is dense in
W := V1 × {0}. This implies that D(A) is dense. Let â = a|W×W and ĵ = j|W . Then Â
is associated with (â, ĵ). The operator Â is an extension of A by Proposition 3.20.
Note, however, that D(A) is a proper subset of D(Â) since rg Â is dense in H,
whereas rgA ⊂ H⊥2 fails to be dense in H. 3

We close this section with another example. It shows that in the setting of
Proposition 3.20 one cannot expect to have any monotonicity of the domain of Â
with respect to the choice of W.

Example 3.25. Let Â > I be an unbounded self-adjoint operator in a Hilbert
space H. Equip W := D(Â) with the inner product (u | v)W =

(
Âu | Âv

)
H

. Let
w ∈ D(Â) \D(Â2) be such that ‖w‖W = 1. Then

W1 := {u ∈ D(Â) :
(
Âu | Âw

)
H
= 0}

is dense in H, which follows similarly as in the proof of Lemma 3.23. Moreover, we
have the orthogonal decomposition W =W1 ⊕ span{w}.

Set V := C⊕W and define j : V → H by j(α,u) = u. Define the form a : V ×V →
C by

a((α,u), (β, v)) =
(
Âu | v

)
H
+α(w | v)W −β(u |w)W .

Then a and j satisfy Conditions (I) and (II).
We determine Dj(a). Let (α,u) ∈ Dj(a) and f ∈ H be such that a((α,u), (β, v)) =

(f | j(v))H for all (β, v) ∈ V . Choosing β = 0 and v ∈W1 shows f = Âu. Moreover,
if β = 0 and v = w, then(

Âu |w
)
H
+α‖w‖2W = a((α,u), (0,w)) = (f |w)H =

(
Âu |w

)
H

.

Therefore α = 0. Furthermore, choosing β = 1 and v = 0 shows (u |w)W = 0, i.e.,
u ∈W1. Conversely, if u ∈W1, then

a((0,u), (β, v)) =
(
Âu | v

)
H
−β(u |w)W =

(
Âu | j(β, v)

)
H

for all (β, v) ∈ V . Therefore Dj(a) = {0}×W1. Note that j(Dj(a)) =W1 is dense in
H. Therefore (a, j) is associated with an accretive operator A. Moreover, A is the
(proper) restriction of Â to W1.

For simplicity, we now consider both W1 and W directly as closed subspaces
of V . Note that in this example Dj(a) = W1 ⊂ W. So Proposition 3.20 applies to
the restrictions of (a, j) to both W1 or W. Let a1 := a|W1×W1 , â := a|W×W , j1 := j|W1
and ĵ := j|W . Then A is associated with (a1, j1), the self-adjoint operator Â is
associated with (â, ĵ) and A is again associated with (a, j), despite W1 ⊂ W ⊂ V
and Dj(a) =W1. In the j-elliptic case this cannot happen, see also Corollary 3.21.
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3 The formmethod for accretive forms and operators

Finally, note that ĵ is injective and W = Dĵ(â) is the domain of â. So Proposition 3.20

cannot be applied to any proper restriction of (â, ĵ). 3

3.2 The class of accretive operators associated with an

accretive form

Example 3.8 shows that all closed, accretive, densely defined operators on a Hilbert
space H are associated with some accretive form. It is natural to ask if the same
holds without the assumptions that the operator be densely defined or closed.
Moreover, we are also interested in whether it can be arranged that the form
domain is continuously embedded into H.

Definition 3.26. Let A be an operator in a Hilbert space H. We say that A can
be generated by an accretive form if there exists a Hilbert space V , a linear map
j : V → H and a form a : V × V → C such that a and j satisfy Conditions (I) and (II),
and such that A is associated with (a, j). If j can be chosen to be injective, we say
that A can be generated by an embedded accretive form.

In this section we characterise which accretive operators can be generated by
an accretive form. Moreover, we provide examples of operators that cannot be
generated. The following notion turns out to be essential.

Definition 3.27. A subspace R of H is an operator range in H if there exists an
operator R ∈ L(H) such that R = rgR.

For an introduction to operator ranges we recommend [FW71]. We collect some
properties of operator ranges that we will require later on.

Proposition 3.28. Let H and K be Hilbert spaces.

(a) A subspace R of H is an operator range in H if and only if R can be given a Hilbert
space structure such that it is continuously embedded into H.

(b) Let R : H ⊃ D(R) → K be a closed operator. Then D(R) is an operator range in H
and rgR is an operator range in K. Moreover, if R is an operator range in H, then
R(R) is an operator range in K.

(c) The operator ranges in H form a lattice with respect to taking sums and intersections
of subspaces. The lattice of operator ranges in H contains the closed subspaces of H.

(d) Let R be an operator range in H. If R is nonclosed, then R has infinite codimension
in H.

(e) If R and S are operator ranges in H such that H = R⊕ S, where the direct sum does
not need to be orthogonal, then both R and S are closed in H.
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Proof. (a) This equivalence is part of [FW71, Theorem 1.1].
(b) The characterisations in [FW71, Theorem 1.1] can be easily extended to

include closed operators between two possibly different Hilbert spaces. This shows
that D(R) is an operator range in H and that rgR is an operator range in K. Now
the second statement readily follows from the fact that the composition of a closed
and a bounded operator is closed.

(c) It is obvious that a closed subspace of H is an operator range in H. The first
statement is proved in [FW71, Section 2].

(d) This is [FW71, Corollary of Theorem 2.3].
(e) See [FW71, Theorem 2.3].

Our main result in this section is the following.

Theorem 3.29. Let A be an accretive operator in a Hilbert space H. Then A can be
generated by an accretive form if and only if rg(I+A) is an operator range. Moreover, if
the orthogonal complement of D(A) in H is zero or infinite dimensional, then A can be
generated by an embedded accretive form.

The necessity of the condition on rg(I+A) is shown in the following proposition.

Proposition 3.30. Let A be an accretive operator in a Hilbert space H. If A can be
generated by an accretive form, then D(A), rg(I+A) and kerA are operator ranges in H.

Proof. Suppose A is associated with (a, j). By Proposition 3.19 (c) we may assume
that ker T = {0}. Then T−1 is a closed operator, so Dj(a) = T−1[rg j∗] is an operator
range in V by Proposition 3.28 (b). Composing this with j shows that D(A) =

j(Dj(a)) is an operator range in H. It follows similarly that also rg(I + A) =

j∗−1[TDj(a)] and kerA = j(ker T0 ∩Dj(a)) are operator ranges in H.

For the proof of the other direction in Theorem 3.29 we need the following
lemma.

Lemma 3.31. Let H be a Hilbert space. Then the operator A in H with domainD(A) = {0}

can be generated by an accretive form (a, j) such that Dj(a) = {0}. Moreover, if H is infinite
dimensional, then A can be generated by an embedded accretive form.

Proof. First suppose that H is finite dimensional. Let (eα)α∈I be an orthonormal
basis of H. Then similarly as in Example 3.6, we can choose Vα = `2, jα : V →
span{eα} and aα : Vα × Vα → C such that Djα(aα) = {0} for all α ∈ I. Taking the
direct sum over all α ∈ I gives a Hilbert space V , a linear map j : V → H and a form
a such that a and j satisfy Conditions (I) and (II). Moreover, A is associated with
(a, j).
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3 The formmethod for accretive forms and operators

Now suppose that H is infinite dimensional. To show that A can be generated
by an embedded accretive form, it suffices to obtain operators R and S on H as
required in Lemma 3.9. If H is separable, we may assume that H = L2(R) and take
the operators in Example 3.10. In the general case, we can take the direct sums of
suitably many disjoint copies of the operators from the separable case. Note that
only the Hilbert space dimension is of importance here.

For the proof of Theorem 3.29 we also rely on Phillips’ construction of extensions
of dissipative operators as presented in [Phi59, Section I.1]. We recall the required
results. Let A be an accretive operator in a Hilbert space H. The Cayley transform
of A is the operator J := (I−A)(I+A)−1 in H with domain D(J) = rg(I+A). The
operator J is contractive as ‖(I−A)x‖2 6 ‖(I+A)x‖2 for all x ∈ D(A). Moreover,
note that I+ J = 2(I+A)−1 is injective and that rg(I+ J) = D(A). The operator A
can be recovered from the equality

A(I+ J)u = (I− J)u (3.7)

for all u ∈ D(J). The operator A is closed if and only if J is closed. Moreover,
Phillips observed that every proper contractive extension J ′ of J such that I+ J ′ is
injective corresponds to a proper accretive extension of A.

We can now prove the remaining direction of Theorem 3.29.

Proof of Theorem 3.29. Suppose that A is an accretive operator such that rg(I+A) is
an operator range in H. Set H2 := D(A)⊥. By Lemma 3.31 there exist a Hilbert space
V2, a linear map j2 : V2 → H2 and a form a2 : V2 × V2 → C such that Dj2(a2) = {0}.
If H2 is infinite dimensional, we may assume that j2 is injective.

Let J be the contraction corresponding to A in the sense of Phillips, i.e., J :=
(I−A)(I+A)−1 with domainD(J) = rg(I+A). By Proposition 3.28 (a) we can equip
X := D(J) with a Hilbert space structure such that X is continuously embedded into
H. So there exists an M > 0 such that ‖Ju‖H 6 ‖u‖H 6M‖u‖X for all u ∈ X.

Define V := X⊕V2, j : V → H by j(u1,u2) = (I+ J)u1 + j2(u2) and a : V ×V → C

by

a((u1,u2), (v1, v2)) = ((I− J)u1 | (I+ J)v1 + j2(v2))H − (j2(u2) | (I− J)v1)H

+ a2(u2, v2).

By the previous paragraph both a and j are continuous. Observe that rg j =

D(A)⊕ rg j2 is dense in H = D(A)⊕H2. It is readily verified that

Re a((u1,u2), (u1,u2)) = ‖u1‖2H − ‖Ju1‖2H + Re a2(u2,u2) > 0.

So a and j satisfy Conditions (I) and (II). Note that j is injective if H2 is zero or
infinite dimensional.
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We show that Dj(a) = X× {0}. On the one hand, for all u1 ∈ X we have

a((u1, 0), (v1, v2)) = ((I− J)u1 | j(v1, v2))H

for all (v1, v2) ∈ V , and hence (u1, 0) ∈ Dj(a). On the other hand, let (u1,u2) ∈
Dj(a) and f ∈ H be such that a((u1,u2), (v1, v2)) = (f | (I+ J)v1 + j2(v2))H for all
(v1, v2) ∈ V . By choosing v1 = 0, we obtain

(f | j2(v2))H = a((u1,u2), (0, v2)) = ((I− J)u1 | j2(v2))H + a2(u2, v2)

for all v2 ∈ V2. Therefore u2 ∈ Dj2(a2) = {0}.
Clearly, Dj(a) ∩ ker j = {0} since I+ J is injective. Therefore (a, j) is associated

with an accretive operator B. By the previous paragraph, D(B) = j(Dj(a)) =

rg(I + J) = D(A) and B(I + J)u1 = Bj(u1, 0) = (I − J)u1 for all u1 ∈ X = D(J).
By (3.7) it follows that A = B.

The next two corollaries are special cases of Theorem 3.29. We will see in
Example 3.36 below that the closability condition in the following corollary cannot
be omitted. If A is densely defined, then A is automatically closable by Lemma A.9.

Corollary 3.32. Let A be a closable, accretive operator in a Hilbert space H. Suppose that
D(A) is an operator range in H. Then A can be generated by an accretive form. Moreover,
if the orthogonal complement of D(A) in H is zero or infinite dimensional, then A can be
generated by an embedded accretive form.

Proof. By assumption, there exists a bounded operator S ∈ L(H) such that rg(S) =
D(A). By Theorem 3.29 and Proposition 3.28 (b), it suffices to prove that R =

(I+A)S is a closed operator. This is clear since R is defined on the whole space H
and closable as a composition of a bounded and a closable operator.

Corollary 3.33. Let A be a closed, accretive operator in a Hilbert space. Then A can be
generated by an accretive form.

Proof. The space rg(I+A) is an operator range since it is closed by Lemma A.4.

It follows from (3.6) that Theorem 3.29 can be applied to the nonclosable operator
from Example 3.18. We point out, however, that for this operator the orthogonal
complement of its domain is merely one-dimensional. Hence the theorem does
not state that this operator can be generated by an embedded accretive form, as was
established in Example 3.18.

Next we give an example of an operator that can be generated by an accretive
form, but not by an embedded accretive form. This shows that in general we cannot
omit the condition on the dimension of the orthogonal complement of the operator
domain in Corollary 3.32.

37
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Example 3.34. Let H be a Hilbert space and let H0 be a closed subspace of H.
Suppose H0 has finite, nonzero codimension in H. Define the accretive operator A
in H by A = 0 on D(A) = H0.

Let V ⊂ H be a Hilbert space that is continuously embedded in H. Assume that
V is dense in H and H0 ⊂ V . Then V is a closed subspace of H since H0 has finite
codimension in H, so V = H as vector spaces. By the bounded inverse theorem, the
spaces V and H have equivalent inner products. Every continuous form on V is
therefore associated with a bounded operator on H. This shows that the operator
A cannot be generated by an embedded accretive form. 3

We next give examples of accretive operators that cannot be generated by an
accretive form. The arguments are based on Proposition 3.30.

Example 3.35. Let Ã be a bounded accretive operator on an infinite-dimensional
Hilbert space H. Suppose W is a nonclosed subspace of finite codimension in H.
For example, W could be the kernel of an unbounded linear functional on H. Let
A = Ã|W with domain D(A) =W. Then D(A) fails to be an operator range since a
nonclosed operator range has infinite codimension in H by Proposition 3.28 (d). By
Proposition 3.30 the operator A cannot be generated by an accretive form. 3

The next example shows that in general in Corollary 3.32 we cannot omit the
closability assumption on A. In other words, not every accretive operator with a
domain that is an operator range can be generated by an accretive form.

Example 3.36. Let H = `2(N0). Suppose ϕ is an unbounded linear functional on
`2(N). Then the operator A given by Ax = ϕ(x)e0 with domain D(A) = `2(N) =

{e0}
⊥ is accretive. Clearly, D(A) is an operator range. But kerA fails to be an

operator range since it is not closed and has codimension 2 in H. So A cannot be
generated by an accretive form by Proposition 3.30. 3

Finally, we prove that Phillips’ example of a maximal accretive operator that is
not m-accretive cannot be generated by an accretive form.

Proposition 3.37. Suppose A can be generated by an accretive form. Then A is maximal
accretive if and only if A is m-accretive.

Proof. Clearly, if A is m-accretive, then A is maximal accretive by Proposition A.5.
Now suppose that A is maximal accretive. Let J be the contraction corresponding

to A by Phillips’ extension theory. It follows that D(J) = rg(I+A) is dense since
A is maximal accretive. So J has a unique bounded extension J̃ on H. Note
that J̃ extends any contractive extension of J. Due to the maximality of A, the
operator I+ J̃|span{z}+D(J) cannot be injective for any z ∈ H \D(J). In other words,
D(J)⊕ker(I+ J̃) = H, where the direct sum might not be orthogonal in H. Note that
ker(I+ J̃) is an operator range in H since it is closed in H and that D(J) = rg(I+A)
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is an operator range in H by Proposition 3.30. It follows from Proposition 3.28 (e)
that rg(I+A) is closed. Hence rg(I+A) = H, so A is m-accretive.

3.3 Form approximation

Assume that a and j satisfy Conditions (I) and (II). Moreover, assume that (a, j)
is associated with an m-accretive operator A. It is natural to ask whether one can
approximate a by suitable j-elliptic forms an : V × V → C such that the operators
An associated with (an, j) converge to A in a suitable sense for n→∞.

The following result is a starting point for the study of resolvent convergence of
m-accretive operators generated by accretive forms.

Theorem 3.38. Assume a and j satisfy Conditions (I) and (II). Suppose (a, j) is associated
with an m-accretive operator A.

Let θ ∈ [0, π2 ). Let (Bn) be a sequence of bounded sectorial operators in V with vertex
0 and semi-angle θ. Moreover, suppose there exists an M > 0 and sequences of strictly
positive numbers (δn) and (εn) such that lim ε2n/δn = 0 and

δn‖u‖2V 6 Re (Bnu |u)V 6Mεn‖u‖2V (3.8)

for all u ∈ V and n ∈N. For every n ∈N define an : V × V → C by

an(u, v) = a(u, v) + (Bnu | v)V .

Then an is j-elliptic and continuous, and (an, j) is associated with an m-sectorial operator
An for all n ∈N. Moreover,

‖(λI+An)−1 − (λI+A)−1‖ → 0 (3.9)

in the uniform operator norm for all λ ∈ ρ(−A).

Proof. It suffices to prove (3.9) for λ = 1, cf. [Kat80, Subsection VIII.1.1]. For all
n ∈ N let Tn be defined as in (3.1) with respect to an and j. Then Tn = T + Bn.
Let f ∈ H and set u := Zf, where Z ∈ L(H,V) is as in Proposition 3.19 (d). Then u
satisfies Tu = j∗f. Define un := T−1n j∗f for all n ∈N. Observe that j(u) = (I+A)−1f

and j(un) = (I+An)
−1f.

Let n ∈N be fixed. Then we obtain

un − u = T−1n Tu− T−1n Tnu = −T−1n Bnu

and Tn(un − u) = −Bnu. Hence

‖j(un) − j(u)‖2H 6 Re (Tn(un − u) |un − u)V 6 ‖Bn‖2‖T−1n ‖‖u‖
2
V , (3.10)
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3 The formmethod for accretive forms and operators

where the first inequality follows from the accretivity of an.
Due to (3.8) we obtain

δn‖u‖2V 6 Re ((T +Bn)u |u)V 6 ‖Tnu‖V‖u‖V

for all u ∈ V . Using (3.8) and [Kat80, (1.15) in Section VI.1], we deduce

|(Bnu | v)V | 6M(1+ tan θ)εn‖u‖V‖v‖V

for all u, v ∈ V . Hence

‖T−1n ‖ 6
1

δn
and ‖Bn‖ 6M(1+ tan θ)εn (3.11)

for all n ∈N. So by (3.10) we have

‖(I+An)−1f− (I+A)−1f‖2H = ‖j(un) − j(u)‖2H 6M2(1+ tan θ)2
ε2n
δn
‖Z‖2‖f‖2H.

This shows that the resolvents converge uniformly.

The following is an interesting special case of Theorem 3.38.

Corollary 3.39. Assume a and j satisfy Conditions (I) and (II). Suppose (a, j) is associated
with an m-accretive operator A. For all n ∈N define the form an : V × V → C by

an(u, v) = a(u, v) +
1

n
(u | v)V .

Then a is j-elliptic and continuous, and (an, j) is associated with an m-sectorial operator
An for all n ∈N. Moreover,

‖(λI+An)−1 − (λI+A)−1‖ → 0

in the uniform operator norm for all λ ∈ ρ(−A).

Remark 3.40. It is not clear whether the upper bound Re (Bnu |u) 6 Mεn‖u‖2V
in (3.8) can be relaxed to limn→∞‖Bn‖ = 0. If T is invertible, however, the proof of
Theorem 3.38 can be greatly simplified under relaxed assumptions.

3.4 The dual form

Assume a and j satisfy Conditions (I) and (II). We define the dual form a∗ : V ×V →
C by a∗(u, v) = a(v,u). Then obviously a∗ is continuous and accretive. So a∗ and
j satisfy Conditions (I) and (II). While in the j-elliptic setting (a∗, j) is always
associated with the adjoint of the m-sectorial operator associated with (a, j), the
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following reconsideration of Example 3.8 shows that this is no longer true in the
accretive case, even if j is injective.

Example 3.41. Let R be a densely defined, closed, accretive operator in a Hilbert
space H. Equip V := D(R) with the inner product (u | v)V = (Ru |Rv)H + (u | v)H
and let j : V → H be the inclusion. Define a : V × V → C by

a(u, v) = (Ru | v)H.

We first prove that Dj(a∗) = D(R) ∩D(R∗). Let u ∈ Dj(a∗). There exists an f ∈ H
such that a∗(u, v) = (f | j(v))H for all v ∈ V , which means (u |Rv)H = (f | v)H for all
v ∈ D(R). Hence u ∈ D(R∗), and obviously we also have u ∈ V = D(R). For the
converse direction let u ∈ D(R)∩D(R∗). Set f = R∗u. Then

a∗(u, v) = (u |Rv)H = (f | v)H = (f | j(v))H

for all v ∈ D(R) = V . Therefore u ∈ Dj(a∗). Hence Dj(a∗) = D(R)∩D(R∗).
It is now clear that R∗|D(R)∩D(R∗) is the operator associated with (a∗, j).
The m-accretive operator R := −A in L2(0,∞) from Example 3.14 satisfies

D(R∗) = H1(0,∞) 6⊂ H10(0,∞) = D(R).

In fact, it is well known that there exists an m-sectorial accretive operator R such
that D(R∗) 6⊂ D(R). Moreover, one can even arrange that D(R) ∩D(R∗) = {0}. An
operator with the latter property can be readily obtained by adapting the first
part of the proof of [FW71, Theorem 3.6]. Choosing such an operator R, only a
restriction of R∗ is associated with (a∗, j). In particular, the operator associated with
(a∗, j) does not even need to be densely defined. 3

Still, if (a, j) is associated with an accretive operator, then also (a∗, j) is associated
with an accretive operator, as the following proposition shows.

Proposition 3.42. Assume a and j satisfy Conditions (I) and (II). Then the following
statements hold.

(a) Dj(a)∩ ker j = Dj(a∗)∩ ker j.

(b) (a, j) is associated with an accretive operator if and only if (a∗, j) is associated with
an accretive operator.

(c) Vj(a)∩ ker j = Vj(a∗)∩ ker j.

Proof. (a) It suffices to prove Dj(a∗) ∩ ker j ⊂ Dj(a). To this end, let u ∈ Dj(a∗) ∩
ker j. Then there exists an f ∈ H such that T∗0u = j∗f. Then

(T0u |u)V = (u | T∗0u)V = (u | j∗f)V = (j(u) | f)H = 0.
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So
(
(T0 + T

∗
0 )u |u

)
V

= 0. Since T0 + T∗0 is a positive (semi-definite) operator, it
follows that u ∈ ker(T0 + T∗0 ) and T0u = −T∗0u = −j∗f ∈ rg j∗. Therefore u ∈ Dj(a).

(b) This is a consequence of (a), Proposition 2.6 and Proposition A.8.
(c) It suffices to prove Vj(a∗) ∩ ker j ⊂ Vj(a). To this end, let u ∈ Vj(a∗) ∩ ker j.

Then j(u) = 0 and for all v ∈ ker j one has

a(v,u) = a∗(u, v) = 0.

In particular, a(u,u) = 0 and Re(a(u,u)) = (Re a)(u,u) = 0. So by [Kat80, Equa-
tion VI.1.15] (Re a)(u, v) = 0 for all v ∈ V . Therefore a(u, v) + a∗(u, v) = 0 for all
v ∈ V . In particular, if v ∈ ker j, then a(u, v) = 0 since a∗(u, v) = 0. So u ∈ Vj(a).

Corollary 3.43. Assume j(Dj(a)) is dense in H. Then (a, j) is associated with an accretive
operator A, and the operator associated with (a∗, j) is a restriction of A∗.

Proof. By Lemma 3.13 the operator A is well-defined. Hence, by Proposition 3.42 (b),
also (a∗, j) is associated with an accretive operator, which we denote by A1. Let
u ∈ Dj(a∗) and f ∈ H be such that T∗0u = j∗f. Then for all v ∈ Dj(a) we obtain

(j(u) |Aj(v))H = a(v,u) = a∗(u, v) = (f | j(v))H.

This shows that j(u) ∈ D(A∗) and A1j(u) = f = A∗j(u).

Together with Example 3.41, the above corollary illustrates that even if (a, j) is
associated with an m-sectorial accretive operator A, the operator associated with
(a∗, j) in general is merely a proper restriction of A∗ and thus not m-accretive. If
(a, j) is associated with an accretive operator A and the operator T is invertible,
then the dichotomy of Example 3.41 does not occur. In fact, in this case also T∗ is
invertible and the operator A1 associated with (a∗, j) is m-accretive. Maximality of
A1 and Corollary 3.43 imply that A1 = A∗.

We close this section with an easy observation connecting the radicals of a and
a∗. The (left) radical of a is defined by

R(a) := {u ∈ V : a(u, v) = 0 for all v ∈ V}.

Clearly R(a) is closed and R(a) = ker T0. Since ker T0 = ker T∗0 , we obtain R(a) =
R(a∗). This in particular shows that the left radical of a agrees with the right radical.

3.5 The McIntosh condition

Recall that we always assume that a and j satisfy Conditions (I) and (II). Consider
the following condition that, in the setting of injective j, was introduced by McIntosh
in [McI68].
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(III) There exists a µ > 0 such that

sup
v∈V
‖v‖V61

|a(u, v) + (j(u) | j(v))H| > µ‖u‖V

for all u ∈ V .

It is easy to verify that (III) implies that the operator T is injective and has closed
range. Since T is m-accretive, it follows that (rg T)⊥ = ker T∗ = ker T = {0}. Hence
T is invertible. Thus (III) is valid if and only if T is invertible. Note that if T0 is
invertible, then T is invertible by Proposition A.12.

If Conditions (I), (II) and (III) are satisfied and (a, j) is associated with an accretive
operator, then the associated operator is m-accretive. This follows immediately
from Theorem 3.1.

Note that if there exists a ρ > 0 such that |b(u,u)| > ρ‖u‖2V for all u ∈ V , then
Condition (III) is valid with µ = ρ.

The following example, in which Condition (III) is satisfied, shows that using
a non-injective map j allows a variety of new phenomena that do not occur in
the j-elliptic or embedded accretive case. It is particularly remarkable that in this
example Vj(a) = Dj(a) while the associated operator can be unbounded and m-
accretive. In both the j-elliptic setting of Theorem 2.3 and the embedded accretive
setting of Theorem 2.2 the property Vj(a) = Dj(a) implies that the associated
operator is bounded. This follows from Lemma 3.45 below or, for the j-elliptic case,
from an inspection of the proof of [Kat80, Theorem VI.2.1 (ii)] together with [AE12,
Theorem 2.5 (ii)].

Example 3.44. Let H be a Hilbert space and B ∈ L(H) an accretive operator. Let
V = H×H and define j ∈ L(V ,H) by j(u) = u2. Define the sesquilinear form
a : V × V → C by

a(u, v) =
((
B −I

I 0

)
u | v

)
V

= (Bu1 | v1)H − (u2 | v1)H + (u1 | v2)H.

Then a and j satisfy Conditions (I) and (II). Moreover, T =
(
B −I
I I

)
, whence T is

invertible with T−1 = (I+B)−1
(
I I
−I B

)
. Thus also Condition (III) is satisfied.

Since j∗(g) = (0,g) for all g ∈ H, it follows that rg j∗ is closed and rg j∗ =

(ker j)⊥. Therefore Vj(a) = Dj(a). We have Vj(a) = {u ∈ V : (Bu1 − u2 | v1)H =

0 for all v1 ∈ H} = grB, the graph of B. Hence by Condition (iii) in Proposition 2.6
(a, j) is associated with an accretive operator if and only if B is injective. Moreover
Vj(a) + ker j = H × rgB. This shows that Vj(a) + ker j = V if and only if B is
surjective.

Assume that B is injective. Then the associated operator A is m-accretive,
D(A) = j(Vj(a)) = rgB and (I+A)B = (I+B). Therefore A = B−1.
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We want to consider a concrete example in more detail. To this end, choose
an injective positive operator B ∈ L(H) that is not invertible. Then B has dense
range, but rgB is not closed. The latter implies that there does not exist a ρ > 0
such that (Bx | x)H > ρ‖x‖2H for all x ∈ H. Note that a and j satisfy Condition (III)
and that b(u,u) = 0 implies u = 0, but there does not exist a ρ > 0 such that
|b(u,u)| > ρ‖u‖2V for all u ∈ V . So (a, j) is associated with an unbounded m-
accretive operator. Moreover, Vj(a) + ker j 6= V and H = j(V) 6= j(Vj(a)) = rgB. 3

We are interested in when Dj(a) = Vj(a), which occurs in Examples 3.5, 3.44

or 3.60, for example. This is equivalent to (ker j)⊥ ∩ rg T ⊂ rg j∗ ∩ rg T . So if
Condition (III) holds, then this is equivalent to rg j∗ being closed. By Banach’s
closed range theorem, see [Kat80, Theorem IV.5.13], rg j∗ is closed if and only if rg j
is closed. Since the range of j is dense in H by Condition (II), we have proved the
following lemma.

Lemma 3.45. Suppose Condition (III) is satisfied. Then Dj(a) = Vj(a) if and only if j is
surjective.

Lemma 3.46. Suppose Condition (III) is satisfied. Then one has the following.

(a) Dj(a) is dense in Vj(a).

(b) T(Vj(a)∩ ker j) = T∗(Vj(a∗)∩ ker j).

(c) T(Vj(a)∩ ker j) =
(
Vj(a) + ker j

)⊥.

(d) Vj(a) + ker j is dense in V if and only if Vj(a)∩ ker j = {0}.

(e) Vj(a) + ker j = Vj(a∗) + ker j.

Proof. (a) Since Dj(a) = T−1 rg j∗ and Vj(a) = T−1
(
(ker j)⊥

)
, the statement follows

from the continuity of T−1 and the density of rg j∗ in (ker j)⊥.
(b) Note that the identity in (b) is equivalent to

(ker j)⊥ ∩ T ker j = (ker j)⊥ ∩ T∗ ker j.

Thus it suffices to show that (ker j)⊥ ∩ T ker j ⊂ T∗ ker j. Let u ∈ (ker j)⊥ ∩ T ker j.
Define v := (T∗)−1u. Then

(Tv | v)V = (v | T∗v)V =
(
(T∗)−1u |u

)
V
=
(
u | T−1u

)
V
= 0

since T−1u ∈ ker j and u ∈ (ker j)⊥. Hence v ∈ ker j by (3.2).
(c) We show the inclusion ‘⊂’. Clearly T

(
Vj(a)∩ ker j

)
⊂ TVj(a) = (ker j)⊥. Let

u ∈ Vj(a)∩ ker j and set w = (T−1)∗Tu. Then

(Tw |w)V = (w | T∗w)V =
(
(T−1)∗Tu | Tu

)
V
= (Tu |u)V = 0
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since Tu ∈ (ker j)⊥ and u ∈ ker j. Therefore w ∈ ker j by (3.2). Hence Tu = T∗w ∈
T∗ ker j = Vj(a)⊥.
We show the inclusion ‘⊃’. Clearly

T−1
(
(Vj(a) + ker j)⊥

)
⊂ T−1

(
(ker j)⊥

)
= Vj(a).

Let u ∈ (Vj(a) + ker j)⊥. Then u ∈ Vj(a)⊥ = T∗ ker j = T∗ ker j. Moreover,(
T(T−1u) | T−1u

)
V
=
(
u | T−1u

)
V
=
(
(T∗)−1u |u

)
V
= 0

since (T∗)−1u ∈ ker j and u ∈ (ker j)⊥. Therefore T−1u ∈ ker j by (3.2).
(d) This follows immediately from (c).
(e) This statement follows from applying (c) on both sides of (b) and taking the

orthogonal complement.

If Condition (III) holds, then Dj(a) is dense in Vj(a). It is natural to investigate
when Condition (III) is still satisfied if one restricts to Vj(a) .

Proposition 3.47. Suppose a and j satisfy Conditions (I), (II) and (III). Let â := a|Vj(a)×Vj(a)
and ĵ := j|Vj(a). Then â and ĵ satisfy Condition (III) if and only if Vj(a) + ker j = V .

Proof. We note that T̂ ∈ L(Vj(a)) can be defined for (â, ĵ) as in (3.1) since â satisfies
Condition (I).

‘⇒’: Assume that â and ĵ satisfy Condition (III), i.e., assume that T̂ is invertible.
Let J : Vj(a) ↪→ V be the natural embedding. Define P := (TJT̂−1)∗ : V → Vj(a). Let
u ∈ Vj(a) and v ∈ ker j. Then T̂−1u ∈ Vj(a) = Vj(b) and

(u |Pv)Vj(a) =
(
TJT̂−1u | v

)
V
= b(T̂−1u, v) = 0.

Therefore P|ker j = 0. For all u, v ∈ Vj(a) we have

(u |Pv)Vj(a) = b(T̂−1u, v) = b̂(T̂−1u, v) = (u | v)Vj(a),

whence P|Vj(a) = I. This shows that Vj(a)∩ ker j = {0}. We next show that Vj(a) +
ker j is closed. Let (uk)k∈N be a sequence in Vj(a) + ker j and u ∈ V . Suppose
limuk = u in V . Since P is continuous and both Vj(a) and ker j are closed, it follows
that Pu = limPuk ∈ Vj(a) and (I− JP)u = lim(I− JP)uk ∈ ker j. This shows that
u ∈ Vj(a) + ker j. Therefore Vj(a) + ker j is closed. Now we apply Lemma 3.46 (d)
to obtain Vj(a) + ker j = V .

‘⇐’: Assume that Vj(a) + ker j = V . Lemma 3.46 (d) yields that Vj(a) ∩ ker j =
{0}. Let P : V → Vj(a) be the projection along ker j. It follows from the closed
graph theorem that P is bounded. Let ε = µ/2 > 0, where µ is the constant
from Condition (III) for a. Let u ∈ Vj(a) \ {0}. Then there exists a v ∈ V \ {0}
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such that |b(u, v)| > ε‖u‖V‖v‖V . Since v− Pv ∈ ker j and u ∈ Vj(a), we obtain
b(u, v) = b(u,Pv). Since b(u, v) 6= 0, this implies that Pv 6= 0. Moreover,

|b(u,Pv)| > ε‖u‖V‖v‖V > εδ‖u‖Vj(a)‖Pv‖Vj(a),

where δ = ‖P‖−1. This shows that â and ĵ satisfy Condition (III).

Remark 3.48. The assumption that a and j satisfy Conditions (I), (II) and (III) in
Proposition 3.47 does not imply that j(Vj(a)) is dense in H, i.e., ĵ does not need to
satisfy Condition (II), cf. Example 3.5. However, if also â and ĵ satisfy Condition (III),
then rg ĵ = j(Vj(a)) = j(Vj(a) + ker j) = j(V) and ĵ does satisfy Condition (II).

It follows from Proposition 2.6 that Dj(a)∩ ker j = {0} implies that the associated
operator is well defined. We next give an example where T is invertible and
Dj(a)∩ ker j = {0}, but Vj(a)∩ ker j 6= {0}. This shows that Vj(a)∩ ker j = {0} is not
a necessary condition for (a, j) to be associated with an accretive operator, even if
(a, j) is associated with an m-accretive operator.

Example 3.49. Let H and H1 be Hilbert spaces such that H1 ( H is dense and
‖u‖H 6 ‖u‖H1 for all u ∈ H1. Denote the embedding of H1 into H by j1. Let
V = H1 ×C and j : V → H be defined by j(u,α) = j1(u). Then rg j is dense in H
and ker j = {(0,α) : α ∈ C}. Since

((u,α) | j∗f)V = (j(u,α) | f)H = (j1(u) | f)H = (u | j∗1f)H1 + (α | 0)C = ((u,α) | (j∗1f, 0))V ,

for all (u,α) ∈ V and f ∈ H, it follows that rg j∗ = rg j∗1 × {0}.
There exists an x ∈ H1 such that x /∈ rg j∗1 and ‖x‖H1 = 1. Define the form

a : V × V → C by

a((u,α), (v,β)) := (u | v)H1 + (αx | v)H1 − (u |βx)H1 − (j1(u) | j1(v))H.

Clearly a is accretive. It is easily observed that T is given by

T(u,α) = (u+αx,−(u | x)H1).

A straightforward calculation shows that T is invertible with

T−1(v,β) =
(
v− ((v | x)H1 +β)x, (v | x)H1 +β

)
.

So Condition (III) is valid. Moreover,

Vj(a) = {(u,α) ∈ V : −(u |βx)H1 = b((u,α), (0,β)) = 0 for all β ∈ C}

= {(u,α) ∈ V : (u | x)H1 = 0}
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and

Dj(a) = T
−1
(
rg j∗1 × {0}

)
=
{(
w− (w | x)H1x, (w | x)H1

)
: w ∈ rg j∗1

}
.

Thus Vj(a)∩ ker j = ker j 6= {0}, but

Dj(a)∩ ker j =
{
(0, (w | x)H1) : w ∈ rg j∗1, w− (w | x)H1x = 0

}
= {0}.

It follows from Theorem 3.1 that (a, j) is associated with an m-accretive operator A.
Lemma 3.46 implies that Dj(a) is dense in Vj(a) and that Vj(a) + ker j is not

dense in V .
We next determine the behaviour of the restriction of a to Vj(a). Let â :=

a|Vj(a)×Vj(a) and ĵ := j|Vj(a) as in Proposition 3.47. Then ĵ has dense range since
D(A) = j(Dj(a)) = ĵ(Vj(a)) is dense in H. Moreover, for all (u,α), (v,β) ∈ Vj(a) we
have

â((u,α), (v,β)) = (u | v)H1 − (j1(u) | j1(v))H

because (u | x)H1 = (v | x)H1 = 0. This shows that T̂(u,α) = (u, 0) and that T̂ is not
invertible. Therefore â and ĵ do not satisfy Condition (III) whilst a and j do. It is
easily observed that Vĵ(â) = Vj(a) and Vĵ(â)∩ ker ĵ = {0}×C 6= {0}. 3

At the end of Section 3.4 we observed the following.

Proposition 3.50. Suppose a and j satisfy Conditions (I), (II) and (III). Suppose that (a, j)
is associated with an accretive operator A. Then A∗ is m-accretive and associated with
(a∗, j).

Curiously, we shall see that as a consequence of Proposition 3.50 not every
m-accretive operator can be generated by an embedded accretive form that satisfies
Condition (III). This was observed in [McI70, Introduction and Theorem 4.2]. We
extend this result to a slightly more general setting.

Corollary 3.51. Suppose a and j satisfy Conditions (I), (II) and (III). Suppose that (a, j)
is associated with an accretive operator A such that iA is maximal symmetric. If Vj(a) +
ker j = V , then iA is self-adjoint. In particular, if j is injective, then iA is self-adjoint.

Proof. Suppose that Vj(a) + ker j = V . By Proposition 3.47 the restrictions â :=

a|Vj(a)×Vj(a) and ĵ := j|Vj(a) still satisfy Condition (III). Moreover, ĵ is injective by
Lemma 3.46 (d). By Corollary 3.21 the operator A is associated with (â, ĵ). So
without loss of generality we can assume that j is injective.

Note that for all u, v ∈ Dj(a) we have

a(u, v) = (Aj(u) | j(v))H = −i(iAj(u) | j(v))H = −(j(u) |Aj(v))H = −a∗(u, v).
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As Dj(a) is dense in Vj(a) = V by Lemma 3.46 (a), we obtain a∗ = −a. In particular,
−A = A∗ and −A is m-accretive by Proposition 3.50. Therefore both i,−i ∈ ρ(iA).
This shows that iA is self-adjoint.

Remark 3.52. Suppose that A is an m-accretive operator such that iA is maximal
symmetric but not self-adjoint. Note that the operator −A in Example 3.14 is an
example of such an operator. Then by Corollary 3.51 the operator A cannot be
generated by an embedded accretive form that satisfies Condition (III). It is not
clear whether A can be generated by a general non-embedded form that satisfies
Condition (III).

For completeness we mention the following positive result due to McIntosh,
see [McI70, Section 3, Example (c)].

Proposition 3.53. Let A be m-accretive such that D(A1/2) = D(A∗1/2). Then A can be
generated by an embedded accretive form that satisfies Condition (III).

We close this section with some references to other sufficient or equivalent
conditions for Condition (III). McIntosh introduced Condition (III) in [McI68]
as a closedness condition for densely defined, accretive forms. In that way he
generalised Kato’s theory for closed sectorial forms. In [McI70] he formulated a
more general abstract closedness condition for general densely defined, separated
sesquilinear forms. The connection between the latter abstract condition and
Condition (III) is explained by [McI70, Proposition 3.3 and Theorem 3.4]. The
following reformulation extends this to our case where j need not be injective. For
notation and underlying theory we refer to [McI70] and [Sch71].

Proposition 3.54. Suppose a and j satisfy Conditions (I) and (II). Suppose ker T = {0}.
Let X and Y denote the vector space V without topology. Then (X, Y, b) is a separated dual
pair. Denote by Xτ the space X equipped with the locally convex Mackey topology induced
by this dual pair. Then the operator T is invertible if and only if the topology of Xτ is that of
V .

Proof. Since ker T = ker T∗ = {0}, the dual pair (X, Y, b) is clearly separated.
Suppose T is invertible. Therefore every continuous linear functional on V is

of the form b(·,y) for some y ∈ Y. Since V is a Mackey space, this implies that Xτ
carries the same topology as V .

Conversely, suppose Xτ carries the same topology as V . Let z ∈ V . Then
(· | z)V is a continuous linear functional in Xτ. Hence there exists a y ∈ Y such
that (x | z)V = b(x,y) = (x | T∗y)V for all x ∈ X. Therefore T∗ is surjective. By the
bounded inverse theorem T∗ and T are invertible.

For general densely defined, symmetric sesquilinear forms, McIntosh’s closed-
ness condition in [McI70] can be recast in terms of Krein spaces as done in [Fle99]
and [FHS00]. This can be utilised in our setting for embedded accretive forms a such
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that ia is symmetric. An accretive form a is called conservative if Re a(u,u) = 0

for all u ∈ V . Moreover, an operator is called conservative if Re (Ax | x) = 0 for all
x ∈ D(A). An m-accretive operator A is conservative if and only if iA is self-adjoint,
see [Phi59, Lemma 1.1.4 and 1.1.5]. The following is now a consequence of [Bog74,
Theorem V.1.3].

Proposition 3.55. Suppose a and j satisfy Conditions (I) and (II). Moreover, suppose that
a is conservative. Let X be the vector space V without topology. Then T0 is invertible if and
only if (X, ia) is a Krein space. If T0 is invertible, then a and j satisfy Condition (III).

The above proposition can be used to establish that the form in Example 3.16

satisfies Condition (III) provided b 6= −a. For details see [Fle99, Lemma 6]. It is not
clear whether Condition (III) is also satisfied for the case b = −a.

3.6 Ouhabaz type invariance criteria

The following well-known result relates the invariance of closed convex sets under
a C0-semigroup of contraction operators to properties of the generator. For a proof,
see for example [Ouh96, Theorem 2.2 and Proposition 2.3].

Proposition 3.56. Let A be an m-accretive operator in H. Denote by S the C0-semigroup
generated by −A. Let C be a closed, convex subset of H and let P be the associated
orthogonal projection onto C. Then the following statements are equivalent.

(i) StC ⊂ C for all t > 0.

(ii) λ(λI+A)−1C ⊂ C for all λ > 0.

(iii) Re (Ax | x− Px) > 0 for all x ∈ D(A).

If the negative generator of the C0-semigroup is associated with a j-elliptic
accretive form, then one can conveniently characterise invariance by the form
itself [Ouh96]. In this section we generalise the following result to our setting.

Proposition 3.57 (Arendt, ter Elst [AE12, Proposition 2.9]). Suppose a is j-elliptic
and accretive. Let A be the m-accretive operator associated with (a, j). Denote by S the
C0-semigroup generated by −A. Let C be a closed, convex subset of H and P be the
associated orthogonal projection onto C. Then the following statements are equivalent.

(i) StC ⊂ C for all t > 0.

(ii) For all u ∈ V there exists a w ∈ V such that

Pj(u) = j(w) and Re a(u,u−w) > 0.

Note that Statement (ii) in Proposition 3.57 in particular states that Pj(V) ⊂ j(V).
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Now assume that an m-accretive operator A is associated with (a, j). By The-
orem A.13 the operator −A generates a C0-semigroup S on H. The following
example shows that even if C is a closed subspace of H that is invariant under S, in
general we do not have Pj(V) ⊂ j(V), where P is the orthogonal projection onto C
in H.

Example 3.58. Let H1 be a Hilbert space and R > I a self-adjoint operator in H1
such that D(R) 6= H1. Let V := H1 ×D(R), H := H1 ×H1 and define j ∈ L(V ,H) by
j(u1,u2) = (u1,u1 + u2). It is clear that j is injective and has dense range. We first
determine j∗ ∈ L(H,V). Let (u1,u2) ∈ V and (x,y) ∈ H. Then

((u1,u2) | j∗(x,y))V = (j(u1,u2) | (x,y))H = (u1 | x+ y)H1 + (u2 |y)H1

= (u1 | x+ y)H1 +
(
Ru2 |RR

−2y
)
H1

.

This shows that j∗(x,y) = (x+ y,R−2y) and j∗j(u1,u2) = (2u1 + u2,R−2(u1 + u2)).
Define the sesquilinear form a : V × V → C by

a(u, v) =
((

0 −R

R−1 R−1

)
u | v

)
V

.

Clearly, a is continuous and accretive because

a(u,u) = −(Ru2 |u1)H1 + (u1 + u2 |Ru2)H1 = 2i Im (u1 |Ru2)H1 + (u2 |Ru2)H1 .

Let T0 ∈ L(V) be such that a(u, v) = (T0u | v)V for all u, v ∈ V . Clearly T0 is invertible
and T = T0 + j

∗j. Therefore T is invertible by Proposition A.12 and Condition (III)
is satisfied. Hence (a, j) is associated with an m-accretive operator.

Let u ∈ V and f ∈ H be such that a(u, v) = (f | j(v))H for all v ∈ V . That means

(−Ru2 | v1)H1 + (u1 + u2 |Rv2)H1 = (f1 + f2 | v1)H1 + (f2 | v2)H1

for all v ∈ V . This implies that −Ru2 = f1 + f2 and u1 + u2 = R−1f2. Hence u1 ∈
D(R) and Dj(a) = D(R)×D(R). We obtain D(A) = D(R)×D(R) and A(w1,w2) =
(Rw1 − 2Rw2,Rw2). A straightforward calculation shows that for all λ > 0 we have

(λI+A)−1 = (λI+ R)−1
(
I 2R(λI+ R)−1

0 I

)
.

Obviously C := H1 × {0} is an invariant subspace of (λI+A)−1 for all λ > 0. By
Proposition 3.56 this shows that C is an invariant subspace of the C0-semigroup
generated by −A.
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Denote by P the orthogonal projection onto C in H. Let u ∈ H \D(R). Then

Pj(u, 0) = P(u,u) = (u, 0),

but (u, 0) /∈ rg j. To prove this, assume that there exists a (u1,u2) ∈ V such that
j(u1,u2) = (u, 0). Then u1 = u and u2 = −u, which is a contradiction since
u /∈ D(R) and u2 ∈ D(R).

Note that in this example one has Pj(Dj(a)) ⊂ j(Dj(a)), so PD(A) ⊂ D(A). 3

It is easy to give an example such that the associated C0-semigroup leaves a
closed, convex set invariant, but such that the operator domain of the generator is
not left invariant by the corresponding projection. For example, the Laplacian in
L2(R) with domain H2(R) is m-dissipative and it generates a positive C0-semigroup.
The projection onto the positive real-valued cone, however, does not leave H2(R)

invariant.
Alternatively, in the following example a closed subspace is invariant under the

semigroup, but the projection onto this closed subspace does not leave the operator
domain invariant.

Example 3.59. Let H1 be a Hilbert space and R > I be a self-adjoint unbounded
operator in H1. Let V := D(R)×H1 and H := H1 ×H1. Then the sesquilinear form
a : V × V → C defined by

a(u, v) = (Ru1 − u2 |Rv1)H1 + (u2 | v2)H1

is continuous and elliptic. Therefore by Theorem 2.1 the associated operator A is
m-sectorial. A straightforward calculation shows that x = (u1,u2) ∈ D(A) if and
only if u1 ∈ D(R) and Ru1 − u2 ∈ D(R).

The closed subspace C := H1× {0} is left invariant by the C0-semigroup generated
by −A, which is easily deduced from [Ouh96, Theorem 2.1]. Let u1 ∈ D(R) \D(R2)

and set u2 := Ru1. Then u = (u1,u2) ∈ D(A), but Pu /∈ D(A), where P denotes the
orthogonal projection onto C in H. 3

Still, one might hope that PD(A) ⊂ j(V) if P is the orthogonal projection onto
a closed subspace that is invariant under the C0-semigroup generated by an m-
accretive operator A. The following basic example shows that this is not true in
general.

Example 3.60. Let H = L2(R), V = H1(R) and let j : V → H be the inclusion. Define
a : V × V → C by

a(u, v) =
∫

R

u ′ v

for all u, v ∈ V . Then Re a(u,u) = 0 for all u ∈ V , whence a is accretive. Clearly a
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3 The formmethod for accretive forms and operators

and j satisfy Condition (I) and (II), Dj(a) = H1(R) = V and the associated operator
A is the derivative on H1(R).

Let S be the C0-semigroup generated by −A. Then (Stu)(x) = u(x− t) for all
t > 0, u ∈ L2(R) and a.e. x ∈ R. Let

C := L2(0,∞) =
{
u ∈ L2(R) : u(x) = 0 for a.e. x ∈ (−∞, 0)

}
.

Then C is a closed subspace that is invariant under S. The orthogonal projection P
from H onto C is given by Pu = 1(0,∞)u. Obviously PD(A) 6⊂ j(V).

Note that Condition (III) is not satisfied in this example. 3

The preceding examples show that if the associated C0-semigroup leaves some
closed subspace invariant, neither the form domain nor the domain of the operator
needs to be left invariant by the corresponding projection. Therefore it is not
surprising that some approximation arises if one transfers Proposition 3.57 to our
setting.

Proposition 3.61. Assume a and j satisfy Conditions (I) and (II). Assume that (a, j) is
associated with an m-accretive operator A. Denote by S the C0-semigroup generated by
−A. Let C be a closed, convex subset of H and P be the associated orthogonal projection
onto C. Then the following statements are equivalent.

(i) StC ⊂ C for all t > 0.

(ii) For all u ∈ Dj(a) and for all sequences (wk)k∈N in V such that lim j(wk) = Pj(u)

one has
lim
k→∞Re a(u,u−wk) > 0.

(iii) For all u ∈ Dj(a) there exists a sequence (wk)k∈N in Dj(a) (or equivalently, in V)
such that lim j(wk) = Pj(u) and

lim sup
k→∞ Re a(u,u−wk) > 0.

Proof. ‘(i)⇒(ii)’: Let u ∈ Dj(a). Then x := j(u) ∈ D(A). Let (wk)k∈N be a sequence
in V such that lim j(wk) = Px. Since a(u,u−wk) = (Ax | x− j(wk))H for all k ∈N,
the limit exists if k→∞ and

Re a(u,u−wk) = Re (Ax | x− j(wk))H → Re (Ax | x− Px)H > 0,

where we used Proposition 3.56 ‘(i)⇒(iii)’ in the last step.
‘(ii)⇒(iii)’: This follows from the fact that D(A) = j(Dj(a)) is dense in H.
‘(iii)⇒(i)’: Let x ∈ D(A). Then there exists a u ∈ Dj(a) such that j(u) = x. Let
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(wk)k∈N be a sequence in Dj(a) such that lim j(wk) = Px and

lim sup
k→∞ Re a(u,u−wk) > 0.

Since also
a(u,u−wk) = (Ax | x− j(wk))H → (Ax | x− Px)H

for k→∞, we obtain Re (Ax | x− Px)H > 0. Then (i) follows from Proposition 3.56.

3.7 Remarks on the incomplete case

In the following, let H be a Hilbert space and V0 be a semi-definite inner product
space, i.e., V0 is a vector space equipped with a nonnegative symmetric sesquilinear
form that makes it into a semi-normed space. Let j0 : V0 → H be continuous
with dense range and a0 : V0 × V0 → C be a continuous, accretive sesquilinear
form. We denote the Hausdorff completion of V0 by V , see [Bou66, Chapter II, §3,
Theorem 3] for technical details. Then there exist unique extensions of a0 and j0 to
the Hausdorff completion V which we denote by a and j, respectively. Note that V
is a Hilbert space and a and j satisfy Conditions (I) and (II).

We are interested in conditions on a0 and j0 which imply that (a, j) is asso-
ciated with an m-accretive operator. Clearly, one can express the conditions of
Proposition 2.6 and Theorem 3.1 in terms of Cauchy sequences introduced by the
completion.

A more easily verified sufficient condition is as follows. Assume that there exists
a ρ > 0 such that

|b0(u)| > ρ‖u‖2V0 (3.12)

for all u ∈ V0. This implies that the extensions a and j satisfy Condition (III) and
that b(u,u) = 0 implies u = 0. Therefore (a, j) is associated with an m-accretive
operator.

We note that Condition (3.12) is not necessary to ensure that (a, j) is associated
with an m-accretive operator, cf. Example 3.44. Still, this condition suffices to cover
the incomplete j-sectorial case as considered in [AE12, Section 3].
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4
The formmethod for compactly

elliptic forms

In this chapter we introduce a rather accessible condition on a continuous form a

which ensures that (a, j) is associated with a graph that satisfies an appropriate
range condition. More precisely, in both the accretive and symmetric case this
condition yields that the resolvent set of the associated graph is not empty. It allows
us to obtain generation theorems for both self-adjoint and m-accretive operators
and graphs. The condition itself is of a very standard nature and known to hold in
many cases.

A most interesting application is to generate and study generalised Dirichlet-to-
Neumann graphs for symmetric second-order elliptic differential operators on a
Lipschitz domain. In particular, we investigate the strong resolvent convergence of
generalised Dirichlet-to-Neumann graphs. The results in this chapter are joint work
with Wolfgang Arendt, Tom ter Elst and James Kennedy [AEKS13]. We point out
that the exposition here is somewhat different to that in [AEKS13] and that we only
present a selection of the results there. In particular, we will here use the theory of
the Moore–Penrose generalised inverse and properties of the gap between two closed
subspaces of a Hilbert space. For this background material, we refer to Sections A.4
and A.3 in the appendix, respectively.

4.1 Compactly elliptic forms

Let V be a Hilbert space and a : V × V → C a continuous sesquilinear form. We say
that a is compactly elliptic if there exists a Hilbert space H̃ and a compact linear

55



4 The formmethod for compactly elliptic forms

operator j̃ ∈ L(V , H̃) such that a is j̃-elliptic, i.e., such that there exists an ω ∈ R

and a µ > 0 such that

Re a(u,u) +ω‖j̃(u)‖2
H̃
> µ‖u‖2V (4.1)

for all u ∈ V . In this section we study the graphs associated with forms that are
compactly elliptic. We are particularly interested in the case when a is accretive or
symmetric.

The following lemma shows that a form is compactly elliptic if it is coercive on
the complement of a finite-dimensional subspace.

Lemma 4.1. Let V be a Hilbert space and a : V × V → C a continuous sesquilinear form.
Let µ > 0. Suppose that V = V+ ⊕ V−, where V+ is a closed subspace of V , dimV− <∞
and

Re a(u,u) > µ‖u‖2V
for all u ∈ V+. Then a is compactly elliptic.

Proof. Let M > 0 be such that |a(u, v)| 6M‖u‖V‖v‖V for all u, v ∈ V . Let H̃ = V−
and j̃ = P−, where P− is the projection of V onto V− along the decomposition
V = V+ ⊕ V−. Observe that j̃ is compact. Set ω := (µ/2+M+ 2M2/µ) > 0. Let
u ∈ V . Then u = u1 + u2 with u1 ∈ V+ and u2 ∈ V−. Using the Peter–Paul
inequality, we obtain

Re a(u,u) +ω‖j̃(u)‖2
H̃
> µ‖u1‖2V + (ω−M)‖u2‖2V − 2M‖u1‖V‖u2‖V

> µ‖u1‖2V +
(µ
2
+
2M2

µ

)
‖u2‖2V −

µ

2
‖u1‖2V −

2M2

µ
‖u2‖2V

=
µ

2

(
‖u1‖2V + ‖u2‖2V

)
>
µ

4
‖u‖2V .

This shows that a is j̃-elliptic.

Remark 4.2. Adopt the notation and assumptions of Lemma 4.1. If a is symmetric
and the decomposition V = V+ ⊕ V− is orthogonal with respect to a, then (V , a)
is a so-called Pontryagin space [Bog74], i.e., a Krein space with a finite rank of
indefiniteness.

Proposition 4.3. Let a be a compactly elliptic form and B ∈ L(V). Define b : V × V → C

by
b(u, v) = a(u, v) + (Bu | v)V .

Then one has the following.

(a) If B is compact, then b is compactly elliptic.

(b) There exists a δ > 0 such that if ‖B‖ < δ then b is compactly elliptic.
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4.1 Compactly elliptic forms

Proof. Let ω ∈ R, µ > 0 and j̃ be as in the compact ellipticity condition of a.
(a) By the Peter–Paul inequality

|(Bu |u)V | 6 ‖Bu‖V‖u‖V 6
µ

2
‖u‖2V +

1

2µ
‖Bu‖2V .

Let H ′ := H̃⊕V and j ′ ∈ L(V ,H ′) be given by j ′(u) = (j̃(u),Bu). Then j ′ is compact
and

Re b(u,u) +
(
ω+

1

2µ

)
‖j ′(u)‖2H ′ >

µ

2
‖u‖2V

for all u ∈ V . So b is compactly elliptic.
(b) Set δ = µ/2. If ‖B‖ < δ, then |(Bu |u)V | <

µ
2‖u‖

2
V . Now it is easily checked

that b is compactly elliptic.

In the following, we suppose that a is compactly elliptic. Let ω ∈ R, µ > 0 and
j̃ be as in (4.1). Let H be a Hilbert space and j ∈ L(V ,H). The next proposition
highlights why we are mainly interested in the case when j is not injective.

Proposition 4.4. Let V and H be Hilbert spaces. Let a : V × V → C be compactly elliptic.
Suppose j ∈ L(V ,H) is injective. Then a is j-elliptic.

Proof. By Lemma A.38 there exists a ρ > 0 such that

ω‖j̃(u)‖2
H̃
6 µ

2‖u‖
2
V + ρ‖j(u)‖2H

for all u ∈ V . Then, using that a is compactly elliptic, we obtain

Re a(u,u) + ρ‖j(u)‖2H > µ
2‖u‖

2
V

for all u ∈ V . Hence a is j-elliptic.

Next we introduce some technical notation that will be useful in the following.
Set K := ωj̃∗j̃. Then K ∈ L(V) is a compact operator. Recall that Tρ = T0 + ρj∗j for
all ρ ∈ C.

Lemma 4.5. Let ρ ∈ C be such that Re ρ > 0. Then the operator Tρ is Fredholm. In
particular, rg Tρ is closed and ker Tρ is finite-dimensional. Moreover, ind Tρ = 0.

Proof. Since a is compactly elliptic, we have

Re ((Tρ +K)u |u)V = Re
(
a(u,u) + ρ‖j(u)‖2H

)
+ω‖j̃(u)‖2

H̃
> µ‖u‖2V (4.2)

for all u ∈ V . It follows that the operator R := Tρ + K is injective and has closed
range. As R is m-accretive, (rgR)⊥ = kerR∗ = kerR = {0}. This proves that R is
invertible. Because K is compact, Tρ is invertible in the Calkin algebra. By [Dou72,
Theorem 5.17], Tρ is a Fredholm operator. Finally, ind(Tρ) = ind(R) = 0 by [Dou72,
Theorem 5.36].
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4 The formmethod for compactly elliptic forms

We define
Wj(a) := {u ∈ ker j : a(u, v) = 0 for all v ∈ V}.

Then Wj(a) is a closed subspace of V such that Wj(a) ⊂ Dj(a) ⊂ Vj(a). The next
two lemmas show that Wj(a) has special properties if a is accretive or symmetric.

Lemma 4.6. Suppose a is accretive. Let ρ ∈ C be such that Re ρ > 0. Then ker Tρ =Wj(a)

and rg Tρ =Wj(a)
⊥. Moreover, Wj(a) =Wj(a

∗).

Proof. Obviously, Wj(a) ⊂ ker Tρ. Now let u ∈ ker Tρ. Note that both Tρ and T0 are
accretive. Therefore 0 = Re (Tρu |u)V > (Re ρ)‖j(u)‖2H > 0. Hence u ∈ ker j and
T0u = Tρu = 0. So a(u, v) = (T0u | v)V = 0 for all v ∈ V . This shows that u ∈Wj(a).
By Lemma 4.5 and since Tρ is m-accretive, it follows from Proposition A.8 (b) that
rg Tρ = (ker T∗ρ )⊥ = (ker Tρ)⊥ =Wj(a)

⊥.
For the last statement note that Wj(a) = ker T1 = ker T∗1 =Wj(a

∗).

Lemma 4.7. Suppose a is symmetric. Let ρ ∈ C be such that Re ρ > 0 and Im ρ 6= 0.
Then ker Tρ =Wj(a) and rg Tρ =Wj(a)

⊥. Moreover, Wj(a) =Wj(a
∗).

Proof. As we can put the real part of ρ into a, we may assume without loss of
generality that Re ρ = 0. Obviously, Wj(a) ⊂ ker Tρ. Now let u ∈ ker Tρ. Then
0 = Im (Tρu |u)V = Im ρ‖j(u)‖2H. Hence u ∈ ker j and T0u = Tρu = 0. So a(u, v) =
(T0u | v)V = 0 for all v ∈ V . This shows that u ∈ Wj(a). By Lemma 4.5 it follows
that rg Tρ = (ker T∗ρ )⊥ = (ker Tρ)⊥ =Wj(a)

⊥. The last claim is trivial.

The proof of Theorem 4.9, which is the main result of this section, will be based
on the next proposition. The notion T †ρ refers to the Moore–Penrose generalised
inverse of Tρ, see Section A.4.

Proposition 4.8. Let H be a Hilbert space and j ∈ L(V ,H). Suppose that a is compactly
elliptic. Let A be the graph associated with (a, j). Suppose that either a is accretive and
ρ = 1 or that a is symmetric and ρ ∈ {−i, i}. Then ρ ∈ ρ(−A) and

(ρI+A)−1 = jT †ρj
∗. (4.3)

Proof. Let f ∈ H. We abbreviate W := Wj(a). Clearly, W ⊂ ker j and hence
rg j∗ ⊂ (ker j)⊥ ⊂ W⊥. Observe that by either Lemma 4.6 or Lemma 4.7 we have
rg Tρ = W⊥ and ker Tρ = W. So there exists a u ∈ W⊥ such that Tρu = j∗f. By
Lemma 2.7 this implies f ∈ rg(ρI+A).

Finally we establish (4.3). By Remark A.33.4 it follows that T †ρTρ = PW⊥ , where
PW⊥ denotes the orthogonal projection in V onto W⊥. So u = T †ρTρu = T †ρj

∗f. Hence

(ρI+A)−1f = j(u) = jT †ρj
∗f.

This concludes the proof.
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Theorem 4.9. Let H be a Hilbert space and j ∈ L(V ,H). Suppose that a is compactly
elliptic. Let A be the graph associated with (a, j). Then A is m-accretive if a is accretive
and A is self-adjoint if a is symmetric.

Proof. Let A ⊂ H × H be the graph associated with (a, j). It is clear that A is
symmetric if a is symmetric and accretive if a is accretive. To verify that A is
self-adjoint or m-accretive, it suffices to check the range condition rg(ρI+A) = H,
where ρ is as in Proposition 4.8. The range condition follows from (4.3).

Remark 4.10. We point out that if a is compactly elliptic, then also a∗ is compactly
elliptic. So suppose that a is accretive and compactly elliptic and let j ∈ L(V ,H).
Let A and B be the graphs associated with (a, j) and (a∗, j), respectively. Then A
and B are m-accretive by Theorem 4.9. It is easily verified that B ⊂ A∗, where A∗ is
the adjoint graph of A. Then B = A∗ by Proposition A.18 and Proposition A.16.

4.2 Form approximation

In this section we study form approximation in the setting of compactly elliptic
forms. We suppose that the forms uniformly satisfy the compact ellipticity condi-
tion of Section 4.1. Both for accretive and symmetric forms we obtain sufficient
conditions such that the associated graphs converge in the strong resolvent sense.

Throughout this section we shall use the following notation. Let V be a Hilbert
space. Let a : V × V → C be a continuous sesquilinear form. Let H be a Hilbert
space and j ∈ L(V ,H). Moreover, suppose that an : V × V → C is a continuous
sesquilinear form for all n ∈N. Suppose that (an) is uniformly compactly elliptic,
i.e., there exists a Hilbert space H̃, a compact operator j̃ ∈ L(V , H̃), an ω ∈ R and a
µ > 0 such that

Re an(u,u) +ω‖j̃(u)‖2
H̃
> µ‖u‖2V

for all u ∈ V and n ∈N.

Definition 4.11. We say that (an) converges weakly to a as n → ∞ if for every
sequence (wn) in V such that wn ⇀ w weakly in V it follows that

lim
n→∞ an(u,wn) = a(u,w)

for all u ∈ V and
lim
n→∞ an(wn, v) = a(w, v)

for all v ∈ V .
We say that (an) converges uniformly to a as n→∞ if there exists a sequence

(αn) in [0,∞) such that limn→∞ αn = 0 and

|an(u, v) − a(u, v)| 6 αn‖u‖V‖v‖V (4.4)
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4 The formmethod for compactly elliptic forms

for all u, v ∈ V and n ∈N.

We require a number of auxiliary results before we can prove the results about
resolvent convergence in Theorem 4.19, which is our main result in this section. Let
ρ ∈ C be such that Re ρ > 0. We define the operator T := Tρ ∈ L(V) as in Section 4.1.
Analogously, for all n ∈N define the operator Tn := T

(n)
ρ ∈ L(V) by requiring that

(Tnu | v)V =
(
T
(n)
ρ u | v

)
V
= an(u, v) + ρ(j(u) | j(v))H

for all u, v ∈ V .
If (an) converges weakly (or uniformly) to a, then also a is compactly elliptic.

Moreover, if (an) converges uniformly to a, then by (4.4) it also converges weakly
to a as every weakly convergent sequence is bounded. It is easy to see that (an)
converges uniformly to a if and only if Tn → T uniformly. The next lemma gives a
similar characterisation for the weak convergence.

Lemma 4.12. The sequence (an) converges weakly to a as n → ∞ if and only if both
Tn → T strongly and T∗n → T∗ strongly.

Proof. Observe that (an) converges weakly to a if and only if for every sequence
(wn) in V such that wn ⇀ w weakly in V one has both T∗nwn ⇀ T∗w weakly in V
and Tnwn ⇀ Tw weakly in V . Now the claim follows from Lemma A.36.

Remark 4.13. Suppose that (an) converges weakly to a. Then Tn → T strongly by
Lemma 4.12. Therefore supn∈N‖Tn‖ <∞.

Lemma 4.14. Suppose that (an) converges weakly to a. Let u ∈ V and (un) be a
sequence in V such that un ⇀ u weakly in V . If limn→∞ an(un,un) = a(u,u), then
limn→∞‖un − u‖V = 0.

Proof. The assumptions imply

lim
n→∞ an(un − u,un − u) = 2a(u,u) − lim

n→∞ an(un,u) − lim
n→∞ an(u,un) = 0.

Moreover, limn→∞‖j̃(un − u)‖2H̃ = 0 as j̃ is compact. By the uniform j̃-ellipticity we
have

µ‖un − u‖2V 6 Re a(un − u,un − u) +ω‖j̃(un − u)‖2H̃
for all n ∈N. So the lemma follows from taking the limit.

Lemma 4.15. Suppose that (an) converges weakly to a. Let u ∈ V andwn ∈Wj(an) for all
n ∈N. Suppose thatwn ⇀ u weakly in V . Then u ∈Wj(a) and limn→∞‖wn−u‖V = 0.

Proof. Clearly j(u) = limn→∞ j(wn) = 0. Moreover, a(u, v) = limn→∞ an(wn, v) = 0
for all v ∈ V . Therefore u ∈Wj(a). So an(wn,wn) = 0 = a(u,u) for all n ∈N. Now
the norm convergence in V follows from Lemma 4.14.
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Lemma 4.16. Suppose that (an) converges weakly to a. Suppose dimWj(an) = Wj(a)

for all n ∈N. Then, after going to a subsequence, for all w ∈Wj(a) there exists a sequence
(wn) such that wn ∈Wj(an) for all n ∈N and limn→∞‖wn −w‖ = 0.
Proof. Let d := dimWj(a). Since Wj(a) ⊂ ker T0, it follows from Lemma 4.5 that
d < ∞. For all n ∈ N, let (f

(n)
1 , . . . , f(n)d ) be an orthonormal basis of Wj(an).

After going to a subsequence, there exist f1, . . . , fd ∈ V such that f(n)k ⇀ fk for all
k ∈ {1, . . . ,d}. By Lemma 4.15 we obtain fk ∈Wj(a) and limn→∞‖f(n)k − fk‖ = 0 for
all k ∈ {1, . . . ,d}. This implies that (f1, . . . , fd) is an orthonormal basis of Wj(a).
Now the claim follows by linearity.

Proposition 4.17. Suppose that (an) converges weakly to a. Denote by P and Pn
the orthogonal projections of V onto Wj(a) and Wj(an), respectively. Then one has
limn→∞‖(I− P)Pn‖ = 0. In particular, lim supn→∞ dimWj(an) 6 dimWj(a).

Proof. We first prove that limn→∞‖(I− P)Pn‖ = 0. Suppose not. Then, after going
to a subsequence, there exists an ε > 0 such that ‖(I− P)Pn‖ > 2ε for all n ∈ N.
So there exist un ∈Wj(an) such that ‖un‖V 6 1 and ‖(I− P)un‖ > ε for all n ∈N.
After going to a subsequence, there exists a u ∈Wj(a) such that limn→∞ un = u by
Lemma 4.15. Hence ε 6 ‖(I− P)un‖ → 0 as n → ∞, a contradiction. The second
statement is a consequence of Proposition A.30.

Proposition 4.18. Adopt the notation and conditions of Proposition 4.17. Suppose

lim
n→∞dimWj(an) = dimWj(a). (4.5)

Then Pn → P uniformly.

Proof. In view of Proposition A.29, it suffices to prove that limn→∞‖(I− P)Pn‖ = 0
and limn→∞‖(I− Pn)P‖ = 0. In Proposition 4.17 we established the former.

It remains to prove that limn→∞‖(I− Pn)P‖ = 0. Suppose not. Then, after going
to a subsequence, there exists an ε > 0 such that ‖(I− Pn)P‖ > 2ε for all n ∈ N.
So there exist un ∈ Wj(a) such that ‖un‖ 6 1 and ‖(I− Pn)un‖ > ε for all n ∈ N.
After going to a subsequence, we may suppose that there exists a w ∈Wj(a) such
that limn→∞ un = w. By Lemma 4.16 we find elements wn ∈ Wj(an) such that
limn→∞wn = w. Then ε 6 ‖(I− Pn)un‖ = ‖(I− Pn)(un −wn)‖ 6 ‖un −wn‖ → 0

as n→∞ gives a contradiction.

The next theorem is the main result of this section. Its proof is based on
convergence results for the Moore–Penrose generalised inverse by Izumino, see
Section A.4.

Theorem 4.19. Suppose that (an) is a uniformly compactly elliptic sequence of accretive or
symmetric forms. Suppose that (an) converges weakly to a. Moreover, suppose (4.5) holds.
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4 The formmethod for compactly elliptic forms

Let A be the graph associated with (a, j) and for all n ∈N let An be the graph associated
with (an, j). Then An → A in the strong resolvent sense. Moreover, if j is compact, then
the resolvents converge uniformly.

Proof. Let ρ = 1 in the accretive case and let ρ = i in the symmetric case. Note that
in both cases Wj(an) = ker Tn and rg Tn = (ker Tn)⊥ for all n ∈ N by Lemma 4.6
and Lemma 4.7. By Proposition 4.18 we know that limn→∞ Pn = P. Due to (A.4) it
follows that TnT

†
n = T

†
nTn = (I− Pn) → (I− P) = TT † = T †T uniformly as n → ∞.

Moreover, Tn → T strongly by Lemma 4.12.
We next show that supn∈N‖T

†
n‖ < ∞. To this end, let v ∈ V and set un := T

†
nv

for all n ∈N. By the uniform boundedness principle it suffices to show that (un)
is bounded in V . Due to (A.5) we have un ∈ Wj(an)

⊥ for all n ∈ N. Moreover,
Tnun = TnT

†
nv = (I− Pn)v. Let K = ωj̃∗j̃. It follows from (4.2) that

µ‖un‖V 6 ‖(Tn +K)un‖V 6 ‖v‖V + ‖Kun‖V (4.6)

for all n ∈N. So (un) is bounded in V if and only if (Kun) is bounded in V .
Assume that (un), and hence (Kun), is not bounded in V . We shall derive a

contradiction. After going to a subsequence, we may suppose that αn := ‖Kun‖ →∞ as n → ∞. Define ûn := α−1
n un for all n ∈ N. Then by (4.6), after going to a

subsequence, there exists a û ∈ V such that ûn ⇀ û weakly in V . As K is compact,
it follows that ‖Kû‖V = 1. In particular, û 6= 0.

On the one hand, Tnûn = α−1
n Tnun = α−1

n (I− Pn)v → 0 as n → ∞. Moreover,
Tnûn ⇀ Tû weakly in V since (an) converges weakly to a. So û ∈ ker T = Wj(a).
On the other hand, 0 = Pnûn ⇀ Pû weakly in V by Lemma A.36. So û ∈ Wj(a)

⊥.
Together this implies û = 0, a contradiction.

Using Proposition A.35 we establish that T †n → T † strongly. Now it follows
from (4.3) that

(ρI+An)
−1 = jT †nj

∗ → jT †j∗ = (ρI+A)−1 (4.7)

strongly. So An → A in the strong resolvent sense.
Finally, suppose that j is compact. By Lemma 4.12 and Proposition A.35, we also

obtain that (T †n)∗ = (T∗n)
† → (T∗)† = (T †)∗ strongly. Then jT †n → jT † uniformly by

Lemma A.37. So by (4.7) the resolvents converge uniformly.

Remark 4.20. Adopt the notation and conditions of Theorem 4.19. Suppose in
addition that (an) converges uniformly to a. Then, arguing as in the first paragraph
of the proof of Theorem 4.19, it follows from Proposition A.34 that T †n → T †

uniformly. So by (4.7) the resolvents converge uniformly. Note that in this case we
do not need to first prove supn∈N‖T

†
n‖ <∞.

We close this section with a simple example which shows that (4.5) is not
necessary for strong resolvent convergence.
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Example 4.21. Let V = C2 and H = C. Let a : V × V → C be given by a(u, v) = 0.
For all n ∈ N, let an : V × V → C be defined by an(u, v) = 1

nu2v2. Then (an) is a
sequence of symmetric forms that converges uniformly to a. Clearly, the sequence
(an) is uniformly compactly elliptic. Define j : V → H by j(u) = u1.

On the one hand, it is readily checked that Wj(a) = ker j and Wj(an) = {0} for
all n ∈ N. So (4.5) does not hold. On the other hand, an easy calculation shows
A = An = 0 for all n ∈N. So obviously An → A in the strong resolvent sense. 3

4.3 Lower boundedness, sectoriality and convergence of

the associated semigroups

In this section we will study the lower boundedness and sectoriality of graphs
associated with compactly elliptic forms. Let V and H be Hilbert spaces. Let
a : V × V → C be a continuous sesquilinear form. Suppose that a is compactly
elliptic. Let j ∈ L(V ,H). We first derive a criterion that ensures that the graph
associated with (a, j) is lower bounded. Next we consider a sequence of accretive
or symmetric forms converging weakly to a. We investigate when the associated
graphs are uniformly sectorial. The results are useful to establish the convergence
of the associated (degenerate) C0-semigroups.

Proposition 4.22. Let V1 := Vj(a) ∩ (Vj(a) ∩ ker j)⊥ and V2 := Vj(a) ∩ ker j. Then the
graph associated with (a, j) is lower bounded if a(w, v) = 0 for all w ∈ V2 and v ∈ V1. If
Dj(a) is dense in Vj(a), then the latter condition is necessary.

Proof. Note that Vj(a) = V1 ⊕ V2 and that j1 := j|V1 is injective. Let A be the graph
associated with (a, j). Let (x, f) ∈ A. Then there exists a u ∈ Dj(a) such that j(u) = x
and a(u,u) = (f | x)H. Then u = u1 + u2 with u1 ∈ V1 and u2 ∈ V2. Observe that
Re a(u,u) = Re a(u1,u1) and j(u) = j1(u1). This proves that A is lower bounded
since the restriction of (a, j) to V1 is j1-elliptic by Proposition 4.4.

Next, suppose that A is lower bounded and that Dj(a) is dense in Vj(a). Then
there exists a ρ > 0 such that

Re a(u,u) + ρ‖j(u)‖2H > 0

for all u ∈ Vj(a). Let u1 ∈ V1. Then

Re a(u1,u1) + Re a(u2,u1) + ρ‖j(u1)‖2H > 0

for all u2 ∈ V2. This implies a(u2,u1) = 0 for all u2 ∈ V2.

In the setting of Theorem 4.9 we obtain the following descriptions of Dj(a) and
Vj(a).
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Lemma 4.23. Adopt the notation and assumptions of Theorem 4.9. Then Dj(a) =

T
†
ρ rg j∗ ⊕Wj(a) and Vj(a) = T

†
ρ(ker j)⊥ ⊕Wj(a). In particular, Dj(a) is dense in Vj(a).

Proof. Let u ∈ V . Then u ∈ Dj(a) if and only if Tρu ∈ rg j∗ by Lemma 2.8.
Moreover, u ∈ Vj(a) if and only if Tρu ∈ (ker j)⊥ = rg j∗. It is obvious that
Wj(a) ⊂ Dj(a) ⊂ Vj(a). Recall that T †ρTρ = TρT

†
ρ is the orthogonal projection in

V onto Wj(a)
⊥ (see the proof of Proposition 4.8). Now both decompositions are

readily verified. Finally, the last statement follows from the fact that T †ρ rg j∗ is dense
in T †ρ(ker j)⊥.

Remark 4.24. Suppose a is accretive. Then Dj(a) is dense in Vj(a) by Lemma 4.23.
Moreover, the graph associated with (a, j) is trivially lower bounded. So let V1 :=
Vj(a)∩ (Vj(a)∩ ker j)⊥ and V2 := Vj(a)∩ ker j. Now it follows from Proposition 4.22

that a(w, v) = 0 for all w ∈ V2 and v ∈ V1.

The next proposition helps to characterise the graphs that we can obtain in the
setting of Theorem 4.9.

Proposition 4.25. Adopt the notation and assumptions of Theorem 4.9. Set V1 := Vj(a)∩
(Vj(a)∩ ker j)⊥. Let (a1, j1) be the restriction of (a, j) to V1. Then a1 is j1-elliptic and A
is associated with (a1, j1).

Proof. Let (â, ĵ) be the restriction of (a, j) to Vj(a). Clearly, â is still compactly
elliptic and accretive or symmetric. So (â, ĵ) generates an m-accretive or self-adjoint
graph Â. Let (x, f) ∈ A. Then there exists a u ∈ Vj(a) such that j(u) = x and
a(u, v) = (f | j(v))H for all v ∈ V . This implies that A ⊂ Â. It follows that Â = A by
Proposition A.16.

Next, note that a1 is compactly elliptic and that j1 is injective. Consequently,
a1 is j1-elliptic by Proposition 4.4. In particular, (a1, j1) generates an m-sectorial
graph A1. Let (x, f) ∈ A1. Then there exists a u ∈ V1 such that j1(u) = x and
a1(u, v) = (f | j(v))H for all v ∈ V1. As u ∈ Vj(a), we have a(u, v) = 0 = (f | j(v))H for
all v ∈ Vj(a) ∩ ker j. By linearity it follows that (x, f) ∈ Â = A. Hence A1 = A by
Proposition A.16.

So in the accretive or symmetric case, compactly elliptic forms only generate
graphs that are accretive and sectorial or self-adjoint and lower bounded. We
formulate this as a corollary.

Corollary 4.26. Adopt the notation and assumptions of Theorem 4.9. Then the graph A
associated with (a, j) is m-sectorial. In particular, A is lower bounded.

The following simple example shows that in the general case (i.e., if a is only
continuous but neither accretive nor symmetric) the graph associated with (a, j)
need not be lower bounded. Moreover, the graph associated with (a, j) can have
empty resolvent set.
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Example 4.27. Let V = C2 and H = C. Let a : V ×V → C be given by a(u, v) = u2v1.
Clearly, the form a is compactly elliptic. Define j : V → H by j(u) = u1. It is easily
verified that the graph A = C×C is associated with (a, j). This graph is not lower
bounded. 3

We require the following additional notation and assumptions. Let an : V × V →
C be a continuous sesquilinear form for all n ∈ N. We suppose that (an) is
uniformly compactly elliptic and that (an) converges weakly to a. By Corollary 4.26

the graph associated with (an, j) is lower bounded for all n ∈N. In the remaining
part of this section we study, in particular, when these graphs are uniformly lower
bounded. We then use the results in combination with Theorem 4.19 to obtain
a sufficient criterion for the associated (degenerate) C0-semigroups to converge
strongly.

Lemma 4.28. Let u ∈ V and wn ∈ Vj(an)∩ ker j for all n ∈N. Suppose that wn ⇀ u

weakly in V . Then u ∈ Vj(a)∩ ker j and limn→∞‖wn − u‖V = 0.

Proof. Clearly j(u) = limn→∞ j(wn) = 0. Moreover, a(u, v) = limn→∞ an(wn, v) = 0
for all v ∈ ker j. Therefore u ∈ Vj(a) ∩ ker j. So an(wn,wn) = 0 = a(u,u) for all
n ∈N. Now the norm convergence in V follows from Lemma 4.14.

Lemma 4.29. One has dim(Vj(a)∩ ker j) <∞. Furthermore, suppose that

dim(Vj(an)∩ ker j) = dim(Vj(a)∩ ker j)

for all n ∈N. Then, after going to a subsequence, for all u ∈ Vj(a)∩ ker j there exists a
sequence (un) such that un ∈ Vj(an)∩ ker j for all n ∈N and limn→∞‖un − u‖V = 0.

Proof. Note that a(u,u) = 0 for all u ∈ Vj(a)∩ker j. By (4.2) it follows that ‖Ku‖V >
µ‖u‖V for all u ∈ Vj(a)∩ ker j, where K := ωj̃∗j̃ comes from the compact ellipticity
condition, as before. Consequently, as K is compact, d := dimVj(a) ∩ ker j < ∞.
Now the claim follows by the same argument as in the proof of Lemma 4.16, using
Lemma 4.28 instead of Lemma 4.15.

Remark 4.30. It is possible to obtain a version of Proposition 4.17 or Proposition 4.18

for the sequence of the spaces Vj(an)∩ ker j instead of Wj(an). For details we refer
to [AEKS13]. Furthermore, we point out that analogous results could be also
obtained for ker T (n)ρ or (rg T (n)ρ )⊥ for all ρ ∈ C with Re ρ > 0.

Proposition 4.31. Suppose that

lim
n→∞dim(Vj(an)∩ ker j) = dim(Vj(a)∩ ker j). (4.8)

Then there exist ω ′ ∈ R and µ ′ > 0 such that

Re an(u,u) +ω ′‖j(u)‖2H > µ ′‖u‖2V
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for all n ∈N and u ∈ Vj(an)∩ (Vj(an)∩ ker j)⊥.

Proof. Suppose not. Let V(n) := Vj(an) ∩ (Vj(an) ∩ ker j)⊥ for all n ∈ N. Let ε > 0
be such that ε < µ. Then, after going to a subsequence, there exists a un ∈ V(n)

such that
Re an(un,un) +n‖j(un)‖2H < ε‖un‖

2
V

for all n ∈ N. After renormalisation, we may suppose that ‖j̃(un)‖H̃ = 1. By the
uniform j̃-ellipticity, we obtain

ω‖j̃(un)‖2H̃ + ε‖un‖2V > Re an(un,un) +ω‖j̃(un)‖2H̃ +n‖j(un)‖2H
> µ‖un‖2V +n‖j(un)‖2H

for all n ∈N. Hence
ω > (µ− ε)‖un‖2V +n‖j(un)‖2H (4.9)

for all n ∈ N. So, after going to a subsequence, there exists a u ∈ V such that
un ⇀ u weakly in V and u 6= 0 because ‖j̃(u)‖

H̃
= 1. Note that j(u) = 0 by (4.9). Let

v ∈ ker j. Then a(u, v) = limn→∞ an(un, v) = 0. So on the one hand u ∈ Vj(a)∩ker j.
On the other hand, let w ∈ Vj(a) ∩ ker j. By Lemma 4.29 there exists a sequence
(wn) in V with wn ∈ V(n) for all n ∈N such that limn→∞wn = w. Then (u |w)V =

limn→∞ (un |wn)V = 0. So u ∈ (Vj(a)∩ ker j)⊥. This is a contradiction.

Theorem 4.32. Suppose that (an) is a uniformly compactly elliptic sequence of accretive
or symmetric forms. Suppose that (an) converges weakly to a. Finally, suppose that (4.8)
holds. For all n ∈N, let An be the graph associated with (an, j). Then the graphs An are
uniformly sectorial. In particular, the graphs are uniformly lower bounded.

Proof. By Remark 4.13 there exists an M > 0 such that

|an(u,u)| 6M‖u‖2V

for all u ∈ V and n ∈N.
Choose ω ′ ∈ R and µ ′ > 0 as in Proposition 4.31. Let n ∈ N and (x, f) ∈ An.

Then there exists a u ∈ Vj(an) ∩ (Vj(an) ∩ ker j)⊥ such that an(u,u) = (f | x)H. By
Proposition 4.31 it follows that

Re (f | x)H +ω ′‖x‖2H > µ ′‖u‖2V >
µ ′

M
|Im (f | x)H|.

This completes the proof.

By Example 4.21 the condition (4.8) is not necessary for uniform lower bounded-
ness. The following example shows that (4.8) is not sufficient for strong resolvent
convergence.
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Example 4.33. Let V = C2 and H = C. Let a : V × V → C be given by a(u, v) = 0.
For all n ∈ N, let an : V × V → C be defined by an(u, v) = 1

nu2v1 +
1
nu1v2. Then

(an) is a sequence of symmetric forms that converges uniformly to a. Clearly, the
sequence (an) is uniformly compactly elliptic. Define j : V → H by j(u) = u1.

On the one hand, it is readily checked that Vj(a) = V and Vj(an) = ker j for all
n ∈N. So dim(Vj(a)∩ ker j) = 1 = dim(Vj(an)∩ ker j) for all n ∈N. On the other
hand, Wj(a) = ker j and Wj(an) = {0} for all n ∈N. So (4.5) does not hold. Let A
be the graph generated by (a, j), and let An be the graph generated by (an, j) for all
n ∈N. An easy calculation shows that A = C× {0} and An = {0}×C for all n ∈N.
So (iI+An)

−1 = 0 and (iI+A)−1 = −iI. In particular, the graphs are uniformly
lower bounded, but one does not have strong resolvent convergence. 3

Conversely, the next example shows that (4.5), and in particular strong resolvent
convergence, is not sufficient for uniform lower boundedness.

Example 4.34. Let V = C2 and H = C. Let a : V × V → C be given by a(u, v) =

u2v1 + u1v2. For all n ∈ N, let an : V × V → C be defined by an(u, v) = u2v1 +
1
nu2v2+u1v2. Then (an) is a sequence of symmetric forms that converges uniformly
to a. Clearly, the sequence (an) is uniformly compactly elliptic. Define j : V → H by
j(u) = u1.

On the one hand, it is readily checked that Vj(a) = ker j and

Vj(an) = {(u1,−nu1) : u1 ∈ C}

for all n ∈ N. So (4.8) does not hold. On the other hand, Wj(a) = Wj(an) = {0}

for all n ∈N. So (4.5) holds and one has strong resolvent convergence. Let A be
the graph generated by (a, j), and let An be the graph generated by (an, j) for all
n ∈ N. An easy calculation shows that A = {0}×C and An = −nI for all n ∈ N.
In particular, the graphs An are not uniformly lower bounded. 3

Finally, we discuss the convergence of the associated (degenerate) C0-semigroups.

Theorem 4.35. Adopt the notation and assumptions of Theorem 4.32. For all n ∈ N,
denote by Sn the (degenerate) C0-semigroup generated by −An. Let S be the (degenerate) C0-
semigroup generated by −A. If An → A in the strong resolvent sense, then Sn(t)→ S(t)

strongly as n→∞ for all t > 0. In particular, this is the case if (4.5) holds.

Proof. By Theorem 4.32 and Corollary 4.26 the graphs An are uniformly m-sectorial.
So we can apply Theorem A.28.

We close with an example where the associated graphs are uniformly lower
bounded and the corresponding (degenerate) C0-semigroups converge strongly
for all t > 0, but where (4.8) is not satisfied. Moreover, in this example the
corresponding (degenerate) C0-semigroups do not converge strongly at t = 0. It
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is easy to see that in the uniformly j-elliptic case strong resolvent convergence of
the generators is sufficient for the strong convergence of the (trivially degenerate)
C0-semigroups for all t > 0, see for example [Kat80, Theorem IX.2.16]. This shows
that in the compactly elliptic setting form approximation is more delicate.

Example 4.36. We shall modify Example 4.34. We use the notation from there, with
the exception that an : V × V → C be instead defined by an(u, v) = u2v1 − 1

nu2v2 +

u1v2 for all n ∈ N. As before, condition (4.8) does not hold. An easy calculation
shows that An = nI for all n ∈ N. In particular, the operators An are uniformly
lower bounded. The (degenerate) C0-semigroup generated by −A = {0}×C is given
by S(t) = 0 for all t > 0, while the C0-semigroup generated by −An is given by
Sn(t) = exp(−nt) for all t > 0 and n ∈ N. So Sn(t) → S(t) strongly for all t > 0,
but not at t = 0. 3

4.4 An application to Dirichlet-to-Neumann graphs

In this section we give an interesting application of the results of the previous
sections to generalised Dirichlet-to-Neumann graphs. First, we shall use the gen-
eration result Theorem 4.9 to define these graphs. Then we study the strong
resolvent convergence of such graphs. Finally we address the question of whether
the corresponding (degenerate) C0-semigroups converge strongly using the results
of Section 4.3. In the following, let Ω ⊂ Rd be Lipschitz and V = H1(Ω).

Definition 4.37. Let µ > 0. Let C : Ω → Rd×d and m : Ω → R be bounded
measurable maps. Suppose that C(x) is a symmetric matrix for all x ∈ Ω such that
C(x)ξ · ξ > µ|ξ|2 for all ξ ∈ Rd and x ∈ Ω, where by ζ · η we denote the Euclidean
inner product of ζ,η ∈ Cd. Then we say that (C,m) are µ-elliptic symmetric
coefficients.

Define the continuous sesquilinear form a : H1(Ω)×H1(Ω)→ C by

a(u, v) =
∫
Ω
C∇u · ∇v+

∫
Ω
muv.

We call a the form in H1(Ω) associated with (C,m).

In the following, let µ > 0 and let (C,m) be µ-elliptic symmetric coefficients. Let
a be the form in H1(Ω) associated with (C,m). Then a is symmetric and compactly
elliptic. In fact, let H̃ = L2(Ω) and j̃ be the embedding of H1(Ω) into L2(Ω). Then j̃
is compact by [EE87, Theorem V.4.17] and a is j̃-elliptic. Let BD be the m-sectorial
operator in L2(Ω) associated with the restriction of (a, j̃) to H10(Ω). Note that BD

has compact resolvent by Lemma 2.9.
Now let Γ be the boundary of Ω. Let H = L2(Γ) and j : H1(Ω) → L2(Γ) be the

trace map j(u) = Tru, see Theorem A.48. By Theorem 4.9 and Corollary 4.26 the
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graph N associated with (a, j) is self-adjoint and lower-bounded. We call N the
generalised Dirichlet-to-Neumann graph associated with (C,m). Note that N is
a graph in L2(Γ).

Example 4.38. Let λ ∈ R. Suppose C(x) = I and m(x) = −λ for all x ∈ Ω. Then
we shall use the notation Dλ := N. By the above, the graph Dλ is self-adjoint
and lower bounded. Note that BD is the realisation of −∆ − λI in L2(Ω) with
Dirichlet boundary conditions. Denote the Dirichlet Laplacian on Ω by ∆D. If λ = 0,
then Dλ is the classical Dirichlet-to-Neumann operator for Ω. We refer to [AE12,
Subsection 4.4] for details.

First suppose that λ ∈ R\σ(−∆D). ThenDλ is equal to the Dirichlet-to-Neumann
operator associated with −∆− λI. So if (φ,ψ) ∈ L2(Γ)× L2(Γ), then (φ,ψ) ∈ Dλ if
and only if there exists a u ∈ H1(Ω) such that

−∆u− λu = 0,

Tru = φ,

ψ = ∂νu,

where both −∆u − λu = 0 and ∂νu are understood in a suitable weak sense,
see [AE11] or [AM12]. In particular, Dλ is an operator.

Now suppose λ ∈ σ(−∆D). Then the situation mostly stays the same, with the
exception that the graph Dλ need not be an operator any more. To see this, assume
that Ω is C2. Let u ∈ H10(Ω) \ {0} be an eigenfunction for the eigenvalue λ, i.e.,
a weak solution of −∆x = λx in H10(Ω). Then it is known that u ∈ H2(Ω). In
particular, ∂νu exists. Moreover, ∂νu 6= 0 since otherwise the extension of u by
0 would be a weak solution of −∆x = λx in H1(Rd), which is impossible; see for
example Proposition 4.39. So Dλ is not an operator as (0,∂νu) ∈ Dλ. 3

The following result is based on a connection between the unique continuation
property and the space Wj(a).

Proposition 4.39. Let a and j be as above. If the second-order coefficients C are Lipschitz
continuous, then Wj(a) = {0}.

Proof. Let u ∈ Wj(a). As Ω is Lipschitz, ker j = H10(Ω). So u ∈ H10(Ω) satisfies
a(u, v) = 0 for all v ∈ H1(Ω). Denote by û : Rd → C and m̂ : Rd → R the
extensions by 0 of u and m. Then û ∈ H1(Rd). We can construct a bounded,
Lipschitz continuous extension Ĉ : Rd → Rd×d of C such that Ĉ(x) is symmetric
and Ĉ(x)ξ · ξ > µ ′|ξ|2 for all ξ ∈ Rd and x ∈ Rd, where 0 < µ ′ < µ. Then we have∫

Rd
Ĉ∇û · ∇v+

∫
Rd
m̂ûv = a(u, v|Ω) = 0
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for all v ∈ C∞c (Rd). So û is a weak solution of a strongly elliptic equation in Rd

with Lipschitz continuous second-order coefficients. Moreover, û vanishes on an
open set. Now it follows from [GL87, Theorem 1.1] or [AKS62, Section 5, Remark 3]
that u = 0.

Remark 4.40. In two dimensions, i.e., if Ω is a bounded open set in R2 with
Lipschitz boundary, then Wj(a) = {0} for general µ-elliptic symmetric coefficients
(C,m) by [Ale12].

In what follows we additionally assume that the coefficients C are Lipschitz
continuous. Let (Cn,mn) be µ-elliptic symmetric coefficients for all n ∈N. Suppose
that limn→∞Cn = C in L∞(Ω; Rd×d) and that mn → m weak∗ in L∞(Ω). Note that
we do not require the coefficients Cn to be Lipschitz continuous. For all n ∈N, let
an be the form in H1(Ω) associated with (Cn,mn).

Lemma 4.41. The sequence (an) converges weakly to a.

Proof. Let u ∈ H1(Ω) and (un) be a sequence in H1(Ω) such that un ⇀ u weakly
in H1(Ω). As j̃ is compact, it follows that limn→∞ un = u in L2(Ω). Moreover, (un)
is bounded in H1(Ω) and (mn) is bounded in L∞(Ω). Hence

an(un, v) − a(u, v) =
∫
Ω
(Cn −C)∇un · ∇v+

∫
Ω
C∇(un − u) · ∇v

+

∫
Ω
mn(un − u)v+

∫
Ω
(mn −m)uv→ 0

for all v ∈ H1(Ω).

The uniform j̃-ellipticity of (an) follows from the boundedness of (mn) in L∞(Ω).
As Wj(a) = {0} by Proposition 4.39, condition (4.5) is automatically satisfied by
Proposition 4.17. So we can apply Theorem 4.19 to obtain the uniform resolvent
convergence of the associated graphs. We consider the following concrete example,
which also shows that the corresponding (degenerate) C0-semigroups need not
converge strongly.

Example 4.42. Suppose C(x) = Cn(x) = I for all x ∈ Ω. Let λ ∈ σ(−∆D) be the
smallest positive eigenvalue of −∆D. Let (λn) be a sequence in R such that λn < λ
for all n ∈ N and limn→∞ λn = λ. Suppose m(x) = −λ and mn(x) = −λn for all
n ∈ N. This falls into the above setting. In particular, (an) is uniformly j̃-elliptic
and converges weakly to a. Observe that the graph Dλ is associated with (a, j),
whereas the operators Dλn are associated with (an, j) for all n ∈ N. Note that
Dλ does not need to be an operator since λ ∈ σ(−∆D), see Example 4.38. Still, by
Proposition 4.39 we have Wj(a) = {0}. So Dλn → Dλ in the strong resolvent sense.
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Next we discuss whether the operators Dλn are uniformly lower bounded in
n ∈N and whether one has strong convergence of the corresponding (degenerate)
C0-semigroups. For all n ∈ N denote by Sn the C0-semigroup generated by Dλn .
By [AM12, Proposition 5 and Proposition 3], there exists a sequence (µn) in R such
that µn is an eigenvalue of the operator Dλn for all n ∈N and limn→∞ µn = −∞.
Hence the operators Dλn are not uniformly lower bounded in n ∈ N. Moreover,
the sequence (Sn(t)) is unbounded in L(H) for all t > 0 and therefore does not
converge strongly. 3

Finally we show that the condition 0 ∈ ρ(BD) implies that the correspond-
ing (degenerate) C0-semigroups converge strongly. Suppose that 0 ∈ ρ(BD). Let
u ∈ Vj(a) ∩ ker j. Then u ∈ H10(Ω) and BDu = 0. Since 0 ∈ ρ(BD), it follows that
u = 0 and Vj(a)∩ ker j = {0}. By Theorem 4.35 and Remark 4.30, the corresponding
(degenerate) C0-semigroups converge strongly. Note, however, that in the setting of
Example 4.42 the condition 0 ∈ ρ(BD) amounts to choosing λ ∈ R \ σ(−∆D). In par-
ticular, in this case the graphs Dλn are eventually operators and the corresponding
C0-semigroups are not degenerate.

4.5 Notes and remarks

We point out that there is a connection between compactly elliptic forms and
Fredholm closed forms which were introduced by McIntosh in [McI70, Section 6]. The
forms considered there are continuous forms on the direct product of two possibly
different Hilbert spaces V1 and V2, where both V1 and V2 are continuously and
densely embedded into H. Such a form a : V1 × V2 → C is called Fredholm closed
if for some ρ ∈ C the operator Tρ ∈ L(V1,V2) is Fredholm, where Tρ satisfies

(Tρu | v)V2 = a(u, v) + ρ(u | v)H

for all u ∈ V1 and v ∈ V2. The corresponding generation theorem states that the
operator A associated with a has a nonempty Fredholm set; in fact, (ρI+A) is a
densely defined, closed Fredholm operator with the same index as Tρ. We shall not
go into details here and refer for definitions and properties of unbounded Fredholm
operators and the Fredholm set to the literature; see for example [Gol66, Chapter
IV], [KS63], or [GK60].

In Lemma 4.5 we established that for a compactly elliptic form the operator
Tρ is Fredholm for all ρ ∈ C such that Re ρ > 0. So if j is a dense embedding, a
compactly elliptic form is Fredholm closed. In this case, however, the notion of
compact ellipticity is not very interesting as we observed in Proposition 4.4. It is
really the non-injectivity of the map j which gives rise to new behaviour and makes
the results in the previous sections interesting.
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4 The formmethod for compactly elliptic forms

Still, we expect that mutatis mutandis the theory of Fredholm closed forms can
be extended to the case in which one merely has j1 ∈ L(V1,H) and j2 ∈ L(V2,H)
instead of two dense embeddings. This would yield a generation theorem for closed
graphs with nonempty Fredholm set. Of course, in this more general setting the
associated graphs are less regular. In particular, if A is the associated graph and
ρ ∈ C is such that Tρ is Fredholm, then in general one cannot expect that the index
of Tρ is equal to that of ρI+A. As a simple example, observe that the associated
operator in Example 4.27 has Fredholm set C, but the index differs from that of Tρ.
While the approach presented here is focused on the accretive and symmetric case, it
features the more accessible condition of compact ellipticity, allows a general linear
operator j ∈ L(V ,H) instead of a dense (injective) embedding and ensures that the
associated graph has a nonempty resolvent set. Still, the graphs associated with
accretive or symmetric compactly elliptic forms are always m-sectorial according to
Corollary 4.26.

Some of the results in the previous sections slightly extend those in [AEKS13].
Specifically this is the case for the statement in Remark 4.20 and for the accretive
case in Theorem 4.19. It is remarkable that under the assumptions of Theorem 4.19

one actually obtains T †n → T † strongly. In particular, in this case it is not the
operators j∗ and j in (4.7) that are essential for the convergence. This should be
compared with Theorem 3.38, where the situation is quite different. Consequently,
on the one hand one might take this as an indication that the condition (4.5) in
Theorem 4.19 is too strong. On the other hand, in the application to the Dirichlet-
to-Neumann graphs one has automatically Wj(a) = {0} as soon as the second-order
coefficients are Lipschitz or the dimension is 2, see Proposition 4.39. This follows
from the connection between the unique continuation property and Wj(a) = {0}. It
would be interesting to further the investigation of this connection. The remarkable
example of Filonov [Fil01b] of a pure second-order elliptic divergence form operator
with a nonzero compactly supported smooth solution shows that (4.5) is not
always satisfied in this setting. It is natural to ask whether one can have resolvent
convergence of Dirichlet-to-Neumann graphs if Wj(an) = {0} for all n ∈ N and
Wj(a) 6= {0}.

We note that it is possible to relax the regularity assumptions on the set Ω in
Section 4.4. We assumed that Ω is Lipschitz, but the embedding of H1(Ω) into
L2(Ω) remains compact for bounded open sets Ω with continuous boundary [EE87,
Theorem V.4.17], for example. Similarly, for the existence of a continuous trace
map from H1(Ω) into L2(Γ), it is not necessary that Ω is Lipschitz. In [AE11]
the classical Dirichlet-to-Neumann operator is considered on (basically arbitrarily)
rough domains via the form method in the incomplete sectorial case. There the
notion of the weak trace, which we consider in Chapter 7, is essential.
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5
The regular part of sectorial forms

In [Sim78a] Simon introduced a decomposition of a general, possibly nonclosable,
positive symmetric form into the sum of two positive symmetric forms: a maximal
closable regular part and a singular part. In this chapter we study a generalisation
of this decomposition for j-sectorial forms, which is made possible by Kato’s first
representation theorem [Kat80, Section VI.2.1] and the generation theorem for
j-sectorial forms in [AE12, Section 3].

In Section 5.1 we first recall the necessary notation and results from [AE12].
Then we define the regular and singular part of a j-sectorial form a and prove that
they are unique in a natural sense. Moreover, we deduce a formula for the regular
part in terms of the real part of the form. This is the main result of this chapter,
which will be used in Section 5.2 and in Chapter 6.

In Section 5.2 we study the real part of the regular part and properties of the
singular part. Since a sectorial form is closable if and only if its real part is closable,
one might expect that taking the real part of a form commutes with taking the
regular part of the form. We present a counterexample which shows that this is not
always the case. Furthermore, we characterise when the singular part is j-sectorial.

The results in this chapter are joint work with Tom ter Elst [ES11]. We wish to
thank Wolfgang Arendt for stimulating discussions and Brian Davies for raising
the question of whether Re(areg) = (Re a)reg.

5.1 The regular part expressed in terms of the real part

Let a : D(a)×D(a)→ C be a sesquilinear form. The form domain D(a) is merely
supposed to be a vector space. Let H be a Hilbert space and j : D(a) → H be a
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5 The regular part of sectorial forms

linear map with dense range. We allow that j is not injective. Throughout this
chapter we assume that the form a is j-sectorial, i.e., there exist a vertex γ ∈ R and
a semi-angle θ ∈ [0, π2 ) such that

a(u) − γ‖j(u)‖2H ∈ Σθ (5.1)

for all u ∈ D(a), where Σθ := {z ∈ C : z = 1 or |arg(z)| 6 θ}.
One of the main results in [AE12] is the following generation theorem.

Theorem 5.1. Let a be a sesquilinear form, H a Hilbert space and j : D(a)→ H a linear
map. Suppose a is j-sectorial and j(D(a)) is dense in H. Then there exists an m-sectorial
operator A in H such that for all x, f ∈ H one has x ∈ D(A) and Ax = f if and only if
there exists a sequence (un)n∈N in D(a) with the following three properties:

(I) limn→∞ j(un) = x in H,
(II) limn,m→∞ Re a(un − um,un − um) = 0, and,

(III) limn→∞ a(un, v) = (f | j(v))H for all v ∈ D(a).

The operator A in Theorem 5.1 is called the operator associated with (a, j).
If A is the operator as in Theorem 5.1, then due to a result by Kato [Kat80,

Theorem VI.2.7] there exists a unique densely defined, closed sectorial form ac in
H such that the operator A is ‘classically’ associated with ac. In [AE12, Propos-
ition 3.10] it is shown that j(D(a)) is a form core of ac. In [AE12] this has been
used to generalise the notion of the regular part of a semi-bounded symmetric
form to j-sectorial forms. Since this regular part is a form living in H, we call
it in the following the H-regular part. More precisely, the H-regular part of the
j-sectorial form a is the form ar with form domain D(ar) = j(D(a)) defined by
ar = ac|j(D(a))×j(D(a)).

Note that ar is a densely defined, closable sectorial form in H, and A is classically
associated with its closure. If a is symmetric and j is the inclusion map, then ar

coincides with the regular part defined by Simon [Sim78a]. However, one would
like to have a decomposition of the original j-sectorial form a into a sum of a regular
and a singular part. Since ar is defined on j(D(a)), this would make only sense
provided that D(a) ⊂ H and j is the corresponding inclusion map.

We prefer a slightly modified notion of the regular part. We define the j-regular
part areg of the j-sectorial form a to be the form with form domain D(areg) = D(a)

and areg(u, v) = ac(j(u), j(v)) for all u, v ∈ D(a). It is clear that also this definition
coincides with Simon’s in the symmetric case when j is the inclusion mapD(a) ↪→ H.
Moreover, A is associated with (areg, j) and (areg)reg = areg. Note that since areg is
defined on D(a), we immediately can write a as the sum of areg and the j-singular
part as := a − areg with the form domain D(as) = D(a).
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5.1 The regular part expressed in terms of the real part

If γ is as in (5.1), then

(u | v)a = (Re a)(u, v) + (1− γ)(j(u) | j(v))H (5.2)

is a semi-inner product on D(a), where we denote by Re and Im the real and
imaginary parts of a form. We always equip D(a) with this semi-inner product.
There exists a Hilbert space V and an isometric map q : D(a)→ V such that q(D(a))

is dense in V . Note that the pair (V ,q) is unique, up to unitary equivalence, since
it is the Hausdorff completion of the semi-inner product space D(a). There exist
unique continuous extensions of a and j to V , which we denote by ã and j̃.

We set
V(ã) := Vj̃(ã) =

{
u ∈ V : ã(u, v) = 0 for all v ∈ ker j̃

}
.

It follows from [AE12, Theorem 2.5] that V = ker j̃⊕ V(ã). This is to be understood
as a direct (but not necessarily orthogonal) sum of closed vector subspaces of V .
Denote by PV(ã) the projection of V onto V(ã) along this decomposition. Note that
if a, and therefore also ã, is symmetric, then the decomposition is orthogonal.

It is proved in Proposition 3.10 and Theorem 2.5 of [AE12] that

ac(j̃(u), j̃(v)) = ã
(
PV(ã)u,PV(ã)v

)
for all u, v ∈ V . Hence

areg(u, v) = ar
(
j̃(q(u)), j̃(q(v))

)
= ac

(
j̃(q(u)), j̃(q(v))

)
= ã
(
PV(ã)q(u),PV(ã)q(v)

)
(5.3)

for all u, v ∈ D(a).

Definition 5.2. Let H be a Hilbert space, W a vector space and j : W → H a linear
map with dense range. Let b : W ×W → C be a j-sectorial form. The form b is
called j-closable if every Cauchy sequence (un)n∈N in D(b) with limn→∞ j(un) = 0
in H also satisfies that limn→∞ b(un,un) = 0.

It is easily seen that the j-sectorial form a is j-closable if and only if j̃ is injective.

Proposition 5.3. Assume the notation and conditions of Theorem 5.1. Then the j-regular
part areg is the unique j-closable form with form domain D(areg) = D(a) such that A is
associated with (D(areg), j).

Proof. The map u 7→ PV(ã)q(u) fromD(a) into V(ã) is isometric and has dense range.
Hence one can use V(ã) as the completion of (D(a), ‖·‖areg

). The corresponding
continuous extension of j is j̃|V(ã). But j̃|V(ã) is injective. Therefore the form areg is
j-closable.

To prove the uniqueness, let b be a j-closable form with form domain D(b) =

D(a) such that A is associated with (b, j). We show that b = areg. Denote the
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5 The regular part of sectorial forms

completion of (D(b), ‖·‖b) by (Vb,qb) and the continuous extensions of j and b to
Vb by j̃b and b̃. We know that j̃b is injective, whence Vb(b̃) = Vb. Applying [AE12,
Theorem 2.5], we obtain that

b(u, v) = b̃
(
qb(u),qb(v)

)
= ac

(
j̃b(qb(u)), j̃b(qb(v))

)
= ac

(
j(u), j(v)

)
= areg(u, v)

for all u, v ∈ D(a), where ac denotes the unique closed sectorial form inH associated
with the m-sectorial operator A. This finishes the proof.

Remark 5.4. It is not hard to see that the j-regular part in general differs from the
original form even in the complete case, i.e. if D(a) is a Hilbert space; see also the
example below. For a detailed discussion of the complete case, see [AE12, Section 2].
If D(a) is a Hilbert space, then one can choose the sequence (uk)k∈N in Theorem 5.1
to be constant and the associated operator is much more easily defined. Thus one
is tempted to require a sensible definition of the regular part to preserve a form in
the complete case. In fact, this is possible by considering the decomposition

V = V(ã)⊕ q(ker j)⊕
{
u ∈ ker j̃ : (Re ã)(u, v) = 0 for all v ∈ q(ker j)

}
.

Here both sums are direct, but the they are not orthogonal in general. If U(ã) :=
V(ã)⊕ q(ker j) and PU(ã) denotes the projection onto U(ã) along the above decom-
position, a candidate for such an alternative notion of the regular part is the form
(u, v) 7→ ã

(
PU(ã)q(u),PU(ã)q(v)

)
with form domain D(a). This would also be con-

sistent with Simon’s definition if j is the inclusion map. In some sense, however, the
complete case is not as nice as it seems, since a corresponding uniqueness statement
to the one in Proposition 5.3 does not hold in this setting. This is substantiated
by the following example. Therefore we decided to define the j-regular part as
introduced before.

Example 5.5. Let H be a nontrivial Hilbert space and set X := H×Hwith the natural
inner product. Define j ∈ L(X,H) by j(u1,u2) = u1 + u2. Define the forms a and b

with form domains D(a) = D(b) = X by a(u, v) = (u1 | v1)H and b(u, v) = (u2 | v2)H,
where u = (u1,u2) and v = (v1, v2). Then a and b are j-sectorial. Moreover, both
D(a) and D(b) are Hilbert spaces such that j(D(a)) and j(D(b)) are dense in H. It is
easy to verify that the zero operator is the operator associated with both (a, j) and
(b, j). Moreover, ker j = {(x,−x) : x ∈ H} and a(u, v) = b(u, v) for all u, v ∈ ker j. But
a 6= b. Thus there is no version of Proposition 5.3 for a regular part that preserves
the complete case. Note that actually V(a) = {0}×H, whereas V(b) = H× {0}. Also
areg = breg = 0. 3

Motivated by (5.3), we are going to describe PV(ã) more explicitly. Set h := Re a.
Note that (V ,q) is also the completion of the inner product space D(h). Let h̃ be
the continuous extension of h to V . Then Re ã = h̃. Therefore the inner product on

76



5.1 The regular part expressed in terms of the real part

V is given by
(u | v)V = h̃(u, v) + (1− γ)

(
j̃(u) | j̃(v)

)
H

. (5.4)

If we apply the above to h instead of a, we obtain the orthogonal decomposition

V = ker j̃⊕ V(h̃) =: V1 ⊕ V2,

where V1 = ker j̃ and V2 = V(h̃) = (ker j̃)⊥. Denote the projections of V along this
decomposition onto V1 and V2 by π1 and π2.

Lemma 5.6. There exists a unique T ∈ L(V ,V1) such that

(Im ã)(u, v) = h̃(Tu, v)

for all u ∈ V and v ∈ V1.

Proof. By the Riesz–Fréchet theorem, there exists a unique self-adjoint operator
R ∈ L(V) such that

(Im ã)(u, v) = (Ru | v)V

for all u, v ∈ V . Define T := π1R ∈ L(V ,V1). Then it follows from (5.4) that

(Im ã)(u, v) = (Tu | v)V = h̃(Tu, v)

for all u ∈ V and v ∈ V1. This proves existence. Next, let T ′ ∈ L(V ,V1) and suppose
that (Im ã)(u, v) = h̃(T ′u, v) for all u ∈ V and v ∈ V1. Then

0 = h̃((T − T ′)u, v) =
(
(T − T ′)u | v

)
V
=
(
(T − T ′)u | v

)
V1

for all u ∈ V and v ∈ V1, where the second equality again follows from (5.4). Thus
T = T ′.

Let T ∈ L(V ,V1) be as in Lemma 5.6. Then T11 := T |V1 is self-adjoint since both h̃

and Im ã are symmetric. Therefore (IV1 + iT11) ∈ L(V1) is invertible.
If u ∈ V , then obviously

u =
(
i(IV1 + iT11)

−1Tπ2u+ π1u
)
+
(
π2u− i(IV1 + iT11)

−1Tπ2u
)

.

Moreover, the first parenthesised summand clearly lies in V1 = ker j̃. We check that
the second summand, which we abbreviate in the following calculation by w, lies
in V(ã). Let v ∈ V1. Then

ã(w, v) = h̃((π1IV + iT)w, v)

= h̃((π1IV + iT)(π1w+ π2w), v)

= −h̃(iTπ2u, v) + h̃(iTπ2u, v) = 0.
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5 The regular part of sectorial forms

So w ∈ V(ã). Therefore

PV(ã)u = w = π2u− i(IV1 + iT11)
−1Tπ2u

for all u ∈ V . We substitute this into (5.3) and obtain

areg(u, v) = ã
(
PV(ã)q(u),π2q(v) − i(IV1 + iT11)

−1Tπ2q(v)
)

= ã
(
π2q(u),π2q(v)

)
− iã

(
(IV1 + iT11)

−1Tπ2q(u),π2q(v)
)

= ã
(
π2q(u),π2q(v)

)
− ih̃

(
(IV1 + iT11)

−1Tπ2q(u),π2q(v)
)

+ h̃
(
(IV1 + iT11)

−1Tπ2q(u), Tπ2q(v)
)

= ã
(
π2q(u),π2q(v)

)
+ h̃
(
(IV1 + iT11)

−1Tπ2q(u), Tπ2q(v)
)

for all u, v ∈ D(a), where we used in the second step the definition of V(ã) and that
PV(ã)q(u) ∈ V(ã), in the third step the definition of T , and in the fourth step the
orthogonality of the arguments in the second term.

We have proved the following.

Theorem 5.7. Let a be a sesquilinear form, H a Hilbert space and j : D(a)→ H a linear
map. Assume that a is j-sectorial and j(D(a)) is dense in H. Let (V ,q) be the completion
of D(a). Let ã : V × V → C and j̃ : V → H be the continuous extensions of a and
j, respectively. Let h̃ be the real part of ã. Let π1 be the orthogonal projection of V
onto V1 := ker j̃ and let π2 = IV − π1. Then π2 is the orthogonal projection of V onto
V(h̃) =

{
u ∈ V : h̃(u, v) = 0 for all v ∈ ker j̃

}
. Moreover, there exists a unique operator

T ∈ L(V ,V1) such that
(Im ã)(u, v) = h̃(Tu, v)

for all u ∈ V and v ∈ V1. Then the operator T11 := T |V1 ∈ L(V1) is self-adjoint. Define the
operator Π ∈ L(V) by

Πu = π2u− i(IV1 + iT11)
−1Tπ2u. (5.5)

Then the regular part of a is given by

areg(u, v) = ã(Πq(u),Πq(v)) (5.6)

= ã
(
π2q(u),π2q(v)

)
+ h̃
(
(IV1 + iT11)

−1Tπ2q(u), Tπ2q(v)
)

(5.7)

for all u, v ∈ D(a).

Remark 5.8. Note that the vertex γ of the form a is not unique. For different
admissible values of γ this in general leads to different Hilbert spaces V . These
Hilbert spaces are, however, isomorphic as normed spaces. Therefore the continuous
extensions ã and j̃ are independent of γ. Consequently also the operator T is
independent of γ.

78



5.2 About the singular part and the real part of the regular part

5.2 About the singular part and the real part of the regular

part

Theorem 5.7 enables us to deduce a formula for the real part of the j-regular part
of a j-sectorial form. Therefore we can characterise when it agrees with the regular
part of the real part in terms of the uniquely determined operator T .

Proposition 5.9. Assume the notation and conditions of Theorem 5.7. Let h be the real
part of the form a. Then(

Re(areg)
)
(u, v) − hreg(u, v) = h̃

(
(IV1 + T

2
11)

−1Tπ2q(u), Tπ2q(v)
)

(5.8)

=
(
(IV1 + T

2
11)

−1/2Tπ2q(u) | (IV1 + T
2
11)

−1/2Tπ2q(v)
)
V

for all u, v ∈ D(a). Moreover, Re(areg) = hreg if and only if Tπ2 = 0.

Proof. It follows from (5.3) applied to h that

hreg(u, v) = h̃(π2q(u),π2q(v)) = (Re ã)(π2q(u),π2q(v)) (5.9)

for all u, v ∈ D(a). Combining this with (5.7), one deduces that(
Re(areg)

)
(u, v) − hreg(u, v) = 1

2 h̃
(
(IV1 + iT11)

−1Tπ2q(u), Tπ2q(v)
)

+ 1
2 h̃
(
(IV1 + iT11)

−1Tπ2q(v), Tπ2q(u)
)

for all u, v ∈ D(a). Since h̃ is symmetric and

(IV1 + iT11)
−1 + (IV1 − iT11)

−1 = 2(IV1 + T
2
11)

−1,

one establishes that (5.8) is valid.
Finally, suppose Re(areg) = hreg. Then (5.8) gives ‖(IV1 + T211)−1/2Tπ2q(u)‖2V = 0

for all u ∈ D(a). This implies that Tπ2q(u) = 0 for all u ∈ D(a). The density of
q(D(a)) in V yields Tπ2 = 0. The converse direction is trivial.

Remark 5.10. By (5.3) it is obvious that Re(areg) = hreg if and only if Re(ar) = hr.
Also note that Re(areg)(u,u) − hreg(u,u) > 0 for all u ∈ D(a) by (5.8). Moreover,
since T is bounded on V it follows from (5.8) and (5.9) that there exists a C > 0
such that

hreg(u,u) 6 (Re(areg))(u,u) 6 C
(
hreg(u,u) + ‖j(u)‖2H

)
for all u ∈ D(a). Hence D(ar) = D(Re(ar)) = D(hr), which is Proposition 3.10 (iv)
in [AE12]. In fact, D(ar) = D(hr) = j̃(V).

Proposition 5.9 has inter alia an interesting consequence for the singular part of
sectorial forms.
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Corollary 5.11. Assume the notation and conditions of Theorem 5.7. If Re(areg) = hreg,
then as is j-sectorial with vertex 0.

Proof. It follows from Proposition 5.9 that Tπ2 = 0. Let u, v ∈ D(a). Then

areg(u, v) = ã
(
π2q(u),π2q(v)

)
by Theorem 5.7. Moreover,

ã
(
π2q(u),π1q(v)

)
= (h̃ + i Im ã)

(
π2q(u),π1q(v)

)
= ih̃

(
Tπ2q(u),π1q(v)

)
= 0.

Similarly it follows that ã(π1q(u),π2q(v)) = 0. Hence

as(u, v) = a(u, v) − ã
(
π2q(u),π2q(v)

)
= ã
(
π1q(u),π1q(v)

)
.

Therefore as is j-sectorial with vertex 0.

We continue by studying further properties of the singular part. In the following
lemma we provide formulas for the real and imaginary part of the singular part.

Lemma 5.12. Assume the notation and conditions of Theorem 5.7. Then(
Re (as)

)
(u, v) = h̃(π1q(u),π1q(v)) − h̃

(
(IV1 + T

2
11)

−1Tπ2q(u), Tπ2q(v)
)

(5.10)

and(
Im (as)

)
(u, v) = h̃(Tπ1q(u),π1q(v)) + h̃(Tπ2q(u),π1q(v))

+ h̃(π1q(u), Tπ2q(v))

+ h̃
(
T11(IV1 + T

2
11)

−1Tπ2q(u), Tπ2q(v)
) (5.11)

for all u, v ∈ D(b).

Proof. The formulas follow from a straightforward calculation using (5.7).

Next, we characterise when the singular part is j-sectorial.

Proposition 5.13. Assume the notation and conditions of Theorem 5.7. Then as is j-
sectorial if and only if there exists an M > 0 such that

‖Tπ2q(u)‖2V 6M‖j(u)‖2H (5.12)

for all u ∈ D(a).

Proof. First, suppose that b := as is j-sectorial with vertex −ωs. Without loss of
generality, we may assume that h̃ is the inner product on V and that ωs > 0. Then
it follows from (5.10) that

‖u‖2b = ‖π1q(u)‖
2
V + (1+ωs)‖j̃(q(u))‖2H − ‖(IV1 + T

2
11)

−1/2Tπ2q(u)‖2V (5.13)
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5.2 About the singular part and the real part of the regular part

for all u ∈ D(b). Let v ∈ V2. There are u1,u2, . . . ∈ D(b) such that limq(un) = v.
Since ‖un‖2b > 0 for all n ∈N, it follows from (5.13) that

(1+ωs)‖j̃(v)‖2H − ‖(IV1 + T
2
11)

−1/2Tπ2v‖2V > 0.

Hence
‖Tv‖2V 6 (1+ωs)‖IV1 + T

2
11‖‖j̃(v)‖

2
H. (5.14)

Note that j̃(π2q(u)) = j(u) for all u ∈ D(b). Hence (5.12) follows from (5.14).
For the converse, note that we may assume without loss of generality that

‖u‖2V = h̃(u,u) for all u ∈ V . By (5.10) and (5.12), there exists an ωs > 0 such that

Re b(u,u) > ‖π1q(u)‖2V −ωs‖j(u)‖2H (5.15)

for all u ∈ D(a). By (5.11), we have

|Im b(u,u)| 6 ‖Tπ1q(u)‖V‖π1q(u)‖V + 2‖Tπ2q(u)‖V‖π1q(u)‖V
+ ‖T11(IV1 + T

2
11)

−1‖‖Tπ2q(u)‖2V

for all u ∈ D(a). Using (5.12) and taking C > 0 sufficiently large, we obtain

|Im b(u,u)| 6 C
(
‖π1q(u)‖2V + ‖j(u)‖2H

)
.

for all u ∈ D(a). By (5.15) this shows that as = b is j-sectorial.

If the singular part is j-sectorial, then by Theorem 5.1 it is also associated with
some m-sectorial operator. Since the regular part should capture in some sense as
much as possible of the original form, one expects that operator to be trivial. This
is indeed the case.

Proposition 5.14. Assume the notation and conditions of Theorem 5.7. Moreover, assume
that as is j-sectorial. Then (as)reg = 0.

Proof. Assume that b := as is sectorial with vertex −ωs. We prove the proposition by
showing that the operator B associated with (b, j) is zero. Without loss of generality,
we may assume that h̃ is the inner product on V and that ωs > 0. It follows
from (5.13) that

‖π1q(u)‖2V 6 ‖u‖2b (5.16)

for all u ∈ D(b).
Next, let x ∈ D(B) and f = Bx. Then there exists a Cauchy sequence (un)n∈N

in D(b) such that lim j(un) = x in H and lim b(un, v) = (f | j(v))H for all v ∈ D(b).
Then also lim j̃(π2q(un)) = x in H. Hence (Tπ2q(un))n∈N is a Cauchy sequence in
V1 by (5.12) and w2 = lim Tπ2q(un) exists in V1. Similarly w1 = limπ1q(un) exists

81



5 The regular part of sectorial forms

in V1 by (5.16). Using (5.10) and (5.11), we therefore obtain

lim
n→∞(Re b)(un, v) = h̃(w1,π1q(v)) − h̃((IV1 + T

2
11)

−1w2, Tπ2q(v))

and

lim
n→∞(Imb)(un, v) = h̃(Tw1,π1q(v)) + h̃(w2,π1q(v)) + h̃(w1, Tπ2q(v))

+ h̃(T(IV1 + T
2
11)

−1w2, Tπ2q(v))

for all v ∈ D(b) = D(a). This yields

h̃(w1 + iTw1 + iw2, v) + h̃
(
iw1 − (IV1 + T

2
11)

−1(I− iT)w2, Tπ2v
)
=
(
f | j̃(v)

)
H

(5.17)

first for all v ∈ q(D(a)) and then by density for all v ∈ V . Choosing v = w1 +

iTw1 + iw2 gives w1 + iTw1 + iw2 = 0. Therefore w2 = i(I+ iT)w1. Substituting
this into (5.17) shows f = 0. So B = 0.

We next give an example of a sectorial form where the real part of the regular
part differs from the regular part of the real part and, in addition, the singular part
is still sectorial. We also provide an example such that in addition the form domain
is a dense subset of H. We need a lemma.

Lemma 5.15. Let X be an infinite dimensional, separable normed space. Then there exists a
dense linear subspace W of X×X such that π1|W is injective, where π1 denotes the natural
projection onto the first component in X×X.

Proof. Set Z := X×X. Since X is separable, there is a sequence (an)n∈N in Z such
that {an : n ∈N} is dense in Z. Choose (x1,y1) ∈ Z \ ({0}×X) such that ‖(x1,y1) −
a1‖ < 1. Let n ∈ N and suppose (x1,y1), . . . , (xn,yn) are chosen. Then there
exists an element (xn+1,yn+1) ∈ Z \ (span{x1, . . . , xn}×X) such that ‖(xn+1,yn+1) −
an+1‖ < 1

n+1 . Then {xn : n ∈N} is linearly independent and {(xn,yn) : n ∈N} is
dense in Z. Now choose W := span {(xn,yn) : n ∈N}.

Example 5.16. Let H be an infinite dimensional, separable Hilbert space. Let S be a
densely defined, closed operator in H such that ‖Sx‖ > ‖x‖ for all x ∈ D(S). Set
V := D(S)×D(S) and define h̃ : V × V → C by

h̃
(
(u1,u2), (v1, v2)

)
= (Su1 |Sv1)H + (Su2 |Sv2)H.

Note that h̃ is an inner product on V . We equip V with this inner product, which
turns V into a Hilbert space. Define the linear map j̃ : V → H by j̃(u1,u2) = u2.
Then V1 := ker j̃ = D(S) × {0} and V2 := (ker j̃)⊥ = {0} ×D(S). Therefore the
orthogonal projections from V onto V1 and V2, denoted by π1 and π2, are simply
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the respective coordinate projections. Define the form ã : V × V → C by

ã
(
(u1,u2), (v1, v2)

)
= (S(u1 + iu2) |Sv1)H + (S(u2 + iu1) |Sv2)H.

Note that ã is j̃-sectorial and D(ã) is a Hilbert space. Let R =
(
0 I
I 0

)
∈ L(V). Then

Re ã = h̃ and
ã(u, v) = h̃(u, v) + ih̃(Ru, v)

for all u, v ∈ V . By Lemma 5.15 there exists a dense linear subspace V0 of V such
that j̃(V0) is dense in H and j := j̃|V0 is injective. Consider the form a : V0 × V0 → C

given by a = ã|V0×V0 . Then a is a j-sectorial form with j(D(a)) dense in H. Moreover,
if T is the operator from Theorem 5.7, then T = π1R. Since Tπ2 = π1Rπ2 6= 0, we
obtain that Re(areg) 6= (Re a)reg by Proposition 5.9.

It follows from the construction, Theorem 5.7 and Proposition 5.9 that

(Re a)reg
(
(u1,u2), (v1, v2)

)
= (Su2 |Sv2)H

and

areg
(
(u1,u2), (v1, v2)

)
= (Re(areg))

(
(u1,u2), (v1, v2)

)
= 2(Su2 |Sv2)H

for all (u1,u2), (v1, v2) ∈ V0. Hence the operator associated with, for example,
((Re a)reg, j) is equal to S∗S.

It is now easy to give an example where the form domain is a subset of H. Define
the form b in H by setting D(b) = j(D(a)) and b(j(u), j(v)) = a(u, v). Then b is a
densely defined sectorial form in H with Re(breg) 6= (Re b)reg.

For example, one may take S = IH in the above. Then breg(y1,y2) = 2(y1 |y2)H
and breg is continuous. Therefore bs = b − breg is sectorial. Note that 0 is not a
vertex for bs. 3

5.3 Notes and remarks

A different approach to the regular part of a positive symmetric form based on
parallel sums is given in [HSS09]. Furthermore, we point out that, in the context
of nonlinear phenomena and discontinuous media, the relaxation of a functional
is a notion which in the linear setting corresponds to the regular part of positive
symmetric forms [Mos94; Bra02; Dal93].
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6
The regular part of second-order

diàerential sectorial forms

In this chapter we present a formula for the regular part of a sectorial form which
represents a general linear second-order differential expression, possibly including
lower-order terms. Loosely speaking, such a differential expression has the form

−

d∑
k,l=1

∂lckl∂k +

d∑
k=1

bk∂k −

d∑
k=1

∂kdk + c0.

The formula is given in terms of the original coefficients. It shows that the regular
part is again a differential sectorial form.

In Section 6.1 we introduce notation and assumptions. In particular, we make
precise what we mean by a ‘differential sectorial form’. In Section 6.2 we derive
the formula for the regular part of a differential sectorial form. This formula is
the main result of this chapter. It is established using the results of Chapter 5 and
the techniques introduced by Vogt in [Vog09]. In Section 6.3 we study when the
singular part of a differential sectorial form is sectorial. We provide examples which
show that the singular part is not always sectorial and that lower-order terms can
introduce new behaviour that does not occur in the pure second-order case.

The material in this chapter is joint work with Tom ter Elst, see [ES11, Section 4]
and [ES13]. We wish to thank El Maati Ouhabaz for raising the question of whether
the formula for the regular part can be extended to allow lower-order terms.
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6 The regular part of second-order diàerential sectorial forms

6.1 The deänition of diàerential sectorial forms

We introduce the form a that is considered throughout this chapter. Let Ω ⊂ Rd

be open. Let H = L2(Ω) and suppose D(a) is a vector subspace of H that contains
C∞c (Ω). Suppose that ∂ku ∈ L1loc(Ω) for all k ∈ {1, . . . ,d} and u ∈ D(a). For
all k, l ∈ {1, . . . ,d}, let ckl, bk, dk and c0 be measurable functions from Ω into
C. Suppose that c0 ∈ L∞(Ω). Define C : Ω → Cd×d by C(x) = (ckl(x))

d
k,l=1

and b,d : Ω → Cd by b(x) = (bk(x))
d
k=1 and d(x) = (dk(x))

d
k=1. Suppose that

C∇u · ∇u ∈ L1(Ω) for all u ∈ D(a), where ζ · η denotes the Euclidean inner product
of ζ,η ∈ Cd. Moreover, suppose there exists a θ ∈ [0,π/2) such that C(x)ξ · ξ ∈ Σθ
for all ξ ∈ Cd and x ∈ Ω. Define akl := 1

2(ckl + clk) and bkl := 1
2i(ckl − clk) for all

k, l ∈ {1, . . . ,d}. Then C = A+ iB, where A = (akl) and B = (bkl). Both A and B
can be considered as measurable maps from Ω into Cd×d that have values in the
Hermitian matrices. Note that A(x) is a positive semi-definite Hermitian matrix for
all x ∈ Ω. Hence A(x) admits a unique positive semi-definite square root A1/2(x)
for all x ∈ Ω. Furthermore, suppose there exists a K > 0 such that

|b(x) · ξ| 6 K‖A1/2(x)ξ‖Cd and |d(x) · ξ| 6 K‖A1/2(x)ξ‖Cd (6.1)

for all ξ ∈ Cd and x ∈ Ω.
In the next lemma it is shown that the measurable map B can be suitably

factorised ‘modulo’ A1/2. This is based on the sectoriality of C and will allow us to
effectively replace B by a bounded, measurable map. We also need that the map
x 7→ A1/2(x) is measurable from Ω into Cd×d, which will be proved first.

Lemma 6.1. The maps A1/2 : Ω→ Cd×d and Pker : Ω→ Cd×d are measurable, where the
matrix Pker(x) is the orthogonal projection from Cd onto kerA(x) for all x ∈ Ω. Moreover,
there exists a unique bounded, measurable map Z : Ω→ Cd×d such that Z(x) is Hermitian,
Z(x)Pker(x) = 0 and A1/2(x)Z(x)A1/2(x) = B(x) for all x ∈ Ω. Finally, B(x)Pker(x) = 0

for all x ∈ Ω.

Proof. It is not hard to see that one can approximate the function f : [0,∞)→ [0,∞)

given by f(t) = t1/2 pointwise by a sequence of real polynomials (pn)n∈N. Since
A(x) is diagonalisable, it follows from [Gan59, Theorem V.4.1] that the sequence
(pn(A(x)))n∈N converges for all x ∈ Ω to the positive semi-definite square root of
A(x). Therefore A1/2 is measurable. Similarly the map Pker is measurable since
Pker(x) = 1{0}(A(x)) for all x ∈ Ω.

Define g : [0,∞) → [0,∞) by g(t) = t−1/2 if t > 0 and g(0) = 0. Since one can
approximate g pointwise by real polynomials and A(x) is diagonalisable for all
x ∈ Ω, one deduces similarly that x 7→ g(A(x)) is measurable from Ω into Cd×d.
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Define Z : Ω→ Cd×d by

Z(x) := g(A(x))B(x)g(A(x)).

Then Z is measurable from Ω into Cd×d.
By the sectoriality condition one has

|Bξ · ξ| 6 (tan θ)Aξ · ξ (6.2)

for all ξ ∈ Cd. Therefore for all ξ,η ∈ Cd one deduces that

|Bξ · η| 6 (tan θ)
(
Aξ · ξ

)1/2(
Aη · η

)1/2 (6.3)

by [Kat80, Inequalities (1.15) in Section VI.1.2]. It is a straightforward consequence
of (6.3) that kerA(x) ⊂ kerB(x) for all x ∈ Ω. Hence it follows that B(x)Pker(x) = 0

and Z(x)Pker(x) = 0 for all x ∈ Ω.
As fg = gf = 1(0,∞), 1(0,∞)(A) + Pker = I and BPker = 0 we obtain

A1/2ZA1/2 = 1(0,∞)(A)B1(0,∞)(A) = B (6.4)

pointwise on Ω. If ξ ∈ Cd, then it follows from (6.2) that

|Zξ · ξ| = |g(A)Bg(A)ξ · ξ|
6 (tan θ)

(
A1/2g(A)ξ ·A1/2g(A)ξ

)
= (tan θ) |1(0,∞)(A)ξ|

2 6 (tan θ) |ξ|2

pointwise on Ω. Hence Z is bounded by tan θ. Finally, the uniqueness of the map
Z is easily deduced.

Next we suitably factorise the maps b and d.

Lemma 6.2. LetA1/2 and Pker be as in Lemma 6.1. There exist unique bounded, measurable
maps X, Y : Ω → Cd such that A1/2(x)X(x) = b(x), Pker(x)X(x) = 0, A1/2(x)Y(x) =

d(x) and Pker(x)Y(x) = 0 for all x ∈ Ω.

Proof. Let g be as in the proof of Lemma 6.1. Then, as before, the map x 7→ g(A(x))

is measurable from Ω into Cd×d. Therefore also the map X : Ω → Cd defined by
X(x) = g(A(x))b(x) is measurable. Moreover,

|X(x) · ξ| = |b(x) · g(A(x))ξ| 6 K‖A1/2(x)g(A(x))ξ‖Cd 6 K‖ξ‖Cd

for all ξ ∈ Cd and x ∈ Ω. This proves that X is bounded. Then arguing as in (6.4),
one deduces A1/2(x)X(x) = b(x). Existence and boundedness of Y are proved
similarly. The uniqueness of X and Y is easily deduced.
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6 The regular part of second-order diàerential sectorial forms

In the following, let A1/2 and Z be as in Lemma 6.1, and let X and Y be as in
Lemma 6.2. We define the form a : D(a)×D(a)→ C by

a(u, v) =
∫
Ω

d∑
k,l=1

ckl(∂ku)∂lv+

∫
Ω

d∑
k=1

bk(∂ku)v+

∫
Ω

d∑
k=1

dku∂kv+

∫
Ω
c0uv. (6.5)

Using the measurable maps A1/2, Z, X and Y, we obtain

a(u, v) =
(
(I+ iZ)A1/2∇u |A1/2∇v

)
+
(
A1/2∇u | vX

)
+
(
uY |A1/2∇v

)
+ (c0u | v)

(6.6)
for all u, v ∈ D(a). In particular, it follows that the first-order terms in (6.5) are
indeed integrable. Since X, Y and Z are bounded, the next lemma follows from (6.6).

Lemma 6.3. The form a is a sectorial form in L2(Ω).

Let b be a sesquilinear form in L2(Ω). If b is equal to the form a for an appropriate
choice of the coefficient functions ckl, bk, dk and c0 with k, l ∈ {1, . . . ,d}, then we
shall call b a differential sectorial form. The main result of this chapter establishes
that, under suitable mild conditions which we next introduce, the regular part of a
is also a differential sectorial form.

We introduce two conditions. We say that a satisfies Condition (L) if

(i) D(a)∩ L∞(Ω) is invariant under multiplication with C∞c (Ω; R) functions,

(ii) there exists a ψ ∈ C1b(R; R) such that ψ(0) = 0, ψ ′(0) = 1, and ψ ◦ (Reu) +
iψ ◦ (Imu) ∈ D(a) for all u ∈ D(a), and,

(iii) ckl + clk is real-valued for all k, l ∈ {1, . . . ,d}.

This is the condition introduced in [Vog09], adapted to complex vector spaces. For
real second-order coefficients and if D(a) = H1(Ω) or D(a) = H10(Ω), the form a

satisfies Condition (L) by [GT01, Sections 7.4 and 7.5]. Furthermore, we say that a
satisfies Condition (B) if

(i) D(a) is invariant under multiplication with C∞c (Ω; R) functions, and,

(ii) ckl ∈ L∞loc(Ω) for all k, l ∈ {1, . . . ,d}.

6.2 The formula for the regular part

We use the notation as introduced in Section 6.1. In particular, we assume that the
form a is as in (6.5).

In this section we derive a formula for the regular part of the form a. To this
end, we assume that a satisfies Condition (L) or (B). It will be immediate from
the obtained formula that both the regular and singular part of a continue to be
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differential sectorial forms. Note that this is not at all clear as the definition of the
regular part is rather abstract.

To be able to make use of Theorem 5.7, we must first construct a suitable
completion of the pre-Hilbert space (D(a), ‖·‖a) that allows us to get hold of the
corresponding continuous extensions of a and of the embedding of D(a) into H. We
note that the embedding of D(a) into H corresponds to the map j in Theorem 5.7.

Let h be the real part of a. Then

h(u, v) =
(
A1/2∇u |A1/2∇v

)
+ 1
2

(
A1/2∇u | v(X+ Y)

)
+ 1
2

(
u(X+ Y) |A1/2∇v

)
+ ((Re c0)u | v)

for all u, v ∈ D(a). Let H be the Hilbert space L2(Ω)× (L2(Ω))d with the usual
inner product. Let γ0 ∈ R be a vertex of the sectorial form a. Since X and Y are
bounded, there exists a γ 6 γ0 such that the sesquilinear form 〈·, ·〉 : H×H → C

defined by〈
(u1,w1), (u2,w2)

〉
= (w1 |w2) +

1
2(w1 |u2(X+ Y))

+ 1
2(u1(X+ Y) |w2) + ((1− γ+ Re c0)u1 |u2)

defines an equivalent inner product on H. Note that γ is also a vertex of a. We
shall fix this value of γ and use it in ‖·‖a, see (5.2).

Let H ′ denote the space L2(Ω)× (L2(Ω))d equipped with the inner product 〈·, ·〉.
Define the map Φ : (D(a), ‖·‖a)→ H ′ by

Φ(u) = (u,A1/2∇u).

Then Φ is an isometry. Hence the completion V of D(a) can be realised as the
closure of Φ(D(a)) in H ′ equipped with the inner product of H ′. In particular,
the map Φ corresponds to the map q in Theorem 5.7. Note that V is also equal
to the closure of Φ(D(a)) in H. The map j̃ : V → H defined by j̃(u,w) = u is the
continuous extension of the embedding of D(a) into H. Furthermore, due to (6.6)
the continuous extension of the form a is the form ã : V × V → C given by

ã((u1,w1), (u2,w2)) = ((I+ iZ)w1 |w2) + (w1 |u2X) + (u1Y |w2) + (c0u1 |u2). (6.7)

Then the real part h̃ of ã is given by

h̃((u1,w1), (u2,w2)) = (w1 |w2) +
1
2(w1 |u2(X+ Y))

+ 1
2(u1(X+ Y) |w2) + ((Re c0)u1 |u2).

(6.8)

Note that 〈
(u1,w1), (u2,w2)

〉
= ((u1,w1) | (u2,w2))h̃
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6 The regular part of second-order diàerential sectorial forms

for all (u1,w1), (u2,w2) ∈ V .
Next, set V1 := ker j̃ and V2 := V⊥1 . Let π1 and π2 be the orthogonal projections

in V onto V1 and V2, respectively. We shall show that π1 and π2 can be represented
by multiplication operators in H. To this end, let Vs be such that Vs ⊂ (L2(Ω))d

and V1 = {0} × Vs. Clearly Vs is a closed subspace of (L2(Ω))d. Consider the
orthogonal projection from (L2(Ω))d onto Vs. If Condition (L) is valid, then it
follows as in [Vog09, Proof of Theorem 1] that this projection is the multiplication
operator associated with a measurable function Q : Ω → Cd×d that has values in
the orthogonal projection matrices. Alternatively, also Condition (B) suffices for
this conclusion by an inspection of the proof in [Vog09]. To be more self-contained,
we provide the proof for this case.

Lemma 6.4. Suppose that Condition (B) is satisfied. Let P be the orthogonal projection
from (L2(Ω))d onto Vs. Then there exists a measurable function Q : Ω→ Cd×d that has
values in the orthogonal projection matrices such that P is the multiplication operator in
(L2(Ω))d associated with Q.

Proof. Let w ∈ Vs and ϕ ∈ C∞c (Ω; R). Then there exists a sequence (un) in
D(a) such that Φ(un) → (0,w) in H for n → ∞. Hence un → 0 in L2(Ω) and
A1/2∇un → w in (L2(Ω))d. After going to a subsequence, we may assume that
un → 0 pointwise a.e. By assumption, ϕun ∈ D(a) for all n ∈ N. Moreover, it is
clear that ϕun → 0 in L2(Ω). Next, observe that

A1/2∇(ϕun) = unA1/2∇ϕ+ϕA1/2∇un

for all n ∈N. By Condition (B) the functionA∇ϕ ·∇ϕ is bounded. So unA1/2∇ϕ→
0 in (L2(Ω))d. Hence A1/2∇(ϕun)→ ϕw in (L2(Ω))d. This proves that ϕw ∈ Vs.

Let f ∈ (L2(Ω))d and define M := [f 6= 0]. There exists a sequence (ϕn) in
C∞c (Ω; R) such that ϕn → 1M a.e. and ‖ϕn‖∞ 6 1 for all n ∈ N. It follows that
ϕnPf → 1MPf in (L2(Ω))d. Since Vs is closed, this implies that 1MPf ∈ Vs by the
first part of the proof. Then

‖f− 1MPf‖(L2(Ω))d = ‖1M(f− Pf)‖(L2(Ω))d 6 ‖f− Pf‖(L2(Ω))d .

Hence 1MPf = Pf. This shows that P is a local operator in the sense of [AT05]. It
follows from the vector-valued version of Zaanen’s theorem [AT05, Theorem 2.3]
that there exists a measurable function Q : Ω→ Cd×d such that Pf(x) = Q(x)f(x)

for all f ∈ (L2(Ω))d and a.e. x ∈ Ω. By [AT05, Corollary 2.4], one has |Q(x)| 6 1

and Q(x) = Q2(x) for a.e. x ∈ Ω. Hence one may assume that Q has values in the
orthogonal projection matrices.

The map Q is determined up to a set of measure zero. We point out that Q only
depends on the second-order coefficients (ckl)

d
k,l=1 and the form domain of a. Now
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6.2 The formula for the regular part

we are able to state the main result of this chapter.

Theorem 6.5. Let a be defined as in Section 6.1. Assume that a satisfies Condition (L)
or (B). Let Q : Ω → Cd×d be as before and set W := Q(I+ iQZQ)−1Q and P := I−Q.
Then the regular part of a is given by

areg(u, v) =
(
(I+ iZ+ZWZ)PA1/2∇u |PA1/2∇v

)
+
(
X

t
(I− iWZ)PA1/2∇u | v

)
+
(
u |Y

t
(I+ iW∗Z)PA1/2∇v

)
−
(
(X

t
WY)u | v

)
+ (c0u | v).

(6.9)

Proof. We will use and adopt the notation of Theorem 5.7. First we represent the
operators π2, Tπ2 and (IV1 + iT11)

−1 by multiplication operators.
Observe that (u,w) 7→ (0,w+ 1

2u(X+ Y)) is the orthogonal projection of H ′ onto
{0}× (L2(Ω))d. Moreover, considering {0}× (L2(Ω))d as a (closed) subspace of H ′,
the map (0,w) 7→ (0,Qw) is the orthogonal projection of {0}× (L2(Ω))d onto V1.
Since V1 ⊂ V ⊂ H ′, the map π1 is given by

π1(u,w) =
(
0,Qw+ 1

2uQ(X+ Y)
)

for all (u,w) ∈ V . Therefore

π2(u,w) =
(
u, (I−Q)w− 1

2uQ(X+ Y)
)

for all (u,w) ∈ V .
Let (u1,w1), (u2,w2) ∈ V . It follows from (6.7) that

(Im ã)
(
(u1,w1), (u2,w2)

)
= (Zw1 |w2) −

i
2(w1 |u2(X− Y))

+ i
2(u1(X− Y) |w2) + ((Im c0)u1 |u2).

So if (u2,w2) ∈ V1, then u2 = 0 and

(Im ã)
(
(u1,w1), (0,w2)

)
= (Zw1 |w2) +

i
2(u1(X− Y) |w2)

=
(
QZw1 +

i
2u1Q(X− Y) |w2

)
= h̃
(
(0,QZw1 + i

2u1Q(X− Y)), (0,w2)
)
.

Hence the operator T ∈ L(V ,V1) in Theorem 5.7 is given by

T(u,w) =
(
0,QZw+ i

2uQ(X− Y)
)

for all (u,w) ∈ V . Then T11 = T |V1 is given by T11(0,w) = (0,QZw) for all (0,w) ∈
V1. If w ∈ Vs, then (IV1 + iT11)(0,w) = (0, (I+ iQZ)w) = (0, (I+ iQZQ)w). Observe
that the map w 7→ (I+ iQZQ)w is invertible both as a map from Vs into Vs and as
a map from (L2(Ω))d into (L2(Ω))d since Z has values in the Hermitian matrices.
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6 The regular part of second-order diàerential sectorial forms

Therefore (I+ iQZQ)−1w ∈ Vs and (IV1 + iT11)(0, (I+ iQZQ)−1w) = (0,w) for all
w ∈ Vs. So we have

(IV1 + iT11)
−1(0,w) =

(
0, (I+ iQZQ)−1w

)
= (0,Ww)

for all (0,w) ∈ V1. Next note that

Tπ2(u,w) =
(
0,QZ(I−Q)w− 1

2uQZQ(X+ Y) + i
2uQ(X− Y)

)
(6.10)

for all (u,w) ∈ V .
Now we plug the representations for π2, Tπ2 and (IV1 + iT11)

−1 into (5.5). First
note that

i(W −Q) = iQ
(
(I+ iQZQ)−1 − I

)
Q = Q(I+ iQZQ)−1QZQ =WZQ. (6.11)

Similarly
i(W −Q) = QZW. (6.12)

Then, by a straightforward computation, it follows from (6.11) and (5.5) that

Π(u,w) =
(
u, (I− iWZ)Pw− uWY

)
for all (u,w) ∈ V , where Π is as in Theorem 5.7. Let (u1,w1), (u2,w2) ∈ V . Then

ã
(
Π(u1,w1),Π(u2,w2)

)
= ((I+ iZW∗)(I+ iZ)(I− iWZ)Pw1 |Pw2)

− (Q(I+ iZ)(I− iWZ)Pw1 |u2WY) + ((I− iWZ)Pw1 |u2X)

− (u1Y |W
∗(I− iZ)(I− iWZ)Pw2) + (u1Y | (I− iWZ)Pw2)

+ (u1Q(I+ iZ)WY |u2WY) − (u1WY |u2X) − (u1QY |u2WY) + (c0u1 |u2).
(6.13)

We simplify (6.13). It follows from (6.12) that

Q(I+ iZ)(I− iWZ)P = 0. (6.14)

This simplifies the first-order terms in (6.13) that involve w1 and u2. Using W∗ =
W∗Q, (6.14) and PW = 0, one establishes that

P(I+ iZW∗)(I+ iZ)(I− iWZ)P = P(I+ iZ)(I− iWZ)P = P(I+ iZ+ZWZ)P.

This simplifies the second-order terms in (6.13). Moreover, one readily verifies that
(I+ iQZQ)−1 maps the range of Q into itself. So

(I+ iQZQ)−1Q = Q(I+ iQZQ)−1Q.
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6.3 About the sectoriality of the singular part

Therefore
W∗ +W = 2Q(I− iQZQ)−1(I+ iQZQ)−1Q = 2W∗W. (6.15)

Since W∗P = 0, one deduces that

−W∗(I− iZ)(I− iWZ)P = iW∗WZP+ iW∗ZP+W∗ZWZP.

But

W∗ZWZP =W∗(QZW)ZP = iW∗(W −Q)ZP = iW∗WZP− iW∗ZP,

where we used (6.12) in the second step. Together with (6.15) one establishes that

−W∗(I− iZ)(I− iWZ)P+ (I− iWZ)P =
(
I+ i(2W∗W −W)Z

)
P = (I+ iW∗Z)P.

This simplifies the first-order terms that involve u1 and w2. Finally, for the terms
involving u1 and u2, observe that

Q(I+ iZ)W −Q =W + iQZW −Q = 0

by (6.12). Now the theorem follows from (6.13) and Theorem 5.7.

Theorem 6.5 shows that the regular part areg is indeed a differential sectorial
form. The most remarkable aspect of (6.9) is the appearance of the zeroth-order
term involving X and Y, even if c0 = 0, i.e., if the original form a did not have
a zeroth-order term. This new term can affect the vertex of the singular part. A
simple concrete example where this happens is given in Example 6.11.

We make a brief remark about the function Q. Clearly, the form a is closable if
and only if Q = 0 a.e. Moreover, it is not hard to see that if U is an open subset of
Ω and a is strongly elliptic on U, then Q(x) = 0 for a.e. x ∈ U.

6.3 About the sectoriality of the singular part

We suppose that a is a second-order differential sectorial form as defined in Sec-
tion 6.1. Moreover, we assume that a satisfies the conditions of Theorem 6.5, i.e.,
we assume that a satisfies Condition (L) or (B). In this section we characterise in
various ways when the singular part as = a− areg of the form a is sectorial. We will
see that the presence of lower-order terms can lead to a more diverse behaviour
than possible in the pure second-order case.

In the following, we shall use the notation of Theorem 6.5. In particular, P = I−Q.
Let ap be the differential sectorial form that belongs to the pure second-order
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6 The regular part of second-order diàerential sectorial forms

differential expression

−

d∑
k,l=1

∂lckl∂k.

We denote the regular part and the singular part of ap by a
p
reg and a

p
s , respectively.

By applying Theorem 6.5 to both a and ap, we obtain

areg(u, v) = a
p
reg(u, v) +

(
(I− iWZ)PA1/2∇u | vX

)
+
(
uY | (I+ iW∗Z)PA1/2∇v

)
−
(
uWY | vX

)
+ (c0u | v)

(6.16)

for all u, v ∈ D(a). Therefore with (6.6) one deduces that

as(u, v) = a
p
s (u, v) +

(
(Q+ iWZP)A1/2∇u | vX

)
+
(
uY | (Q− iW∗ZP)A1/2∇v

)
+ (uWY | vX)

(6.17)

for all u, v ∈ D(a).
We need the following lemma.

Lemma 6.6. If QZ(I−Q)A1/2 = 0 a.e., then QZ = ZQ a.e.

Proof. Let Pker be as in Lemma 6.1. If u ∈ D(a), then PkerA
1/2∇u = 0 by definition

of Pker. So by density Pkerw = 0 for all (u,w) ∈ V . In particular, Pkerw = 0 for all
w ∈ Vs and PkerQw = 0 for all w ∈ (L2(Ω))d. This implies that Pker(x)Q(x) = 0 for
a.e. x ∈ Ω. It follows by duality that Q(x)Pker(x) = 0 for a.e. x ∈ Ω.

By assumption there exists a null setN ⊂ Ω such thatQ(x)Z(x)(I−Q(x))A(x)ξ =

0 for all x ∈ Ω \N and ξ ∈ Cd. Then Q(x)Z(x)(I −Q(x))ξ = 0 for all x ∈
Ω \N and ξ ∈ rgA(x). But Q(x)Pker(x) = 0 = Z(x)Pker(x) for a.e. x ∈ Ω. So
Q(x)Z(x)(I−Q(x))ξ = 0 for a.e. x ∈ Ω and ξ ∈ Cd. Therefore QZ(I−Q) = 0 a.e.
By taking the adjoint we obtain that (I−Q)ZQ = 0 a.e. This yields QZ = ZQ

a.e.

Now we are ready to characterise when the singular part of a is sectorial.

Proposition 6.7. The following statements are equivalent.

(i) as is sectorial.

(ii) QZ = ZQ a.e.

(iii) For all u ∈ D(a) one has

Tπ2Φ(u) =
(
0,−1

2uQZQ(X+ Y) + i
2uQ(X− Y)

)
.

94



6.3 About the sectoriality of the singular part

(iv) For all u, v ∈ D(a) one has

a
p
reg(u, v) =

(
(I+ iZ)(I−Q)A1/2∇u | (I−Q)A1/2∇v

)
. (6.18)

(v) a
p
s is sectorial.

Proof. ‘(i)⇒(ii)’: Let τ ∈ C∞c (Ω; R) and ξ ∈ Rd. For all λ > 0 define uλ ∈ C∞c (Ω) by
uλ(x) = e

iλx·ξτ(x). Since as is sectorial, it follows from Proposition 5.13 that there
exists an M > 0 such that

h̃(Tπ2Φ(uλ), Tπ2Φ(uλ)) 6M‖uλ‖2L2(Ω).

Expanding the terms using (6.8) and (6.10) gives∫
Ω
|QZ(I−Q)A1/2(iλτξ+∇τ) + 1

2τQZQ(X+ Y) + i
2τQ(X− Y)|2 6M‖τ‖2L2(Ω).

Dividing both sides by λ2 and letting λ → ∞ shows that τQZ(I−Q)A1/2ξ = 0

a.e. By linearity this implies that QZ(I−Q)A1/2 = 0 a.e. Now it follows from
Lemma 6.6 that QZ = ZQ a.e.

‘(ii)⇒(iii)’: This is immediate, using (6.10).
‘(iii)⇒(i)’: This is a consequence of Proposition 5.13.
‘(ii)⇒(iv)’: By assumption QZ = ZQ and therefore WZP = WQZP = 0 a.e.

Then (6.18) follows by applying Theorem 6.5 to ap.
‘(iv)⇒(v)’: By applying Theorem 6.5 to Re (ap) and using (6.18), we obtain

Re (a
p
reg) = (Re ap)reg.

Then it follows from Corollary 5.11 that ap
s is sectorial.

‘(v)⇒(ii)’: Suppose a
p
s is sectorial and let γs < 0 be a corresponding vertex.

Using (6.10) with X = Y = 0, it follows from Proposition 5.13 that there exists an
M > 0 such that

‖QZ(I−Q)A1/2∇u‖(L2(Ω))d 6M‖u‖2L2(Ω) (6.19)

for all u ∈ D(a). Now (ii) follows as in the proof of ‘(i)⇒(ii)’.

Remark 6.8. Suppose that as is sectorial. Then by Proposition 6.7 ‘(i)⇒(ii)’, (6.16)
and (6.17) it follows that

areg(u, v) =
(
(I+ iZ)(I−Q)A1/2∇u | (I−Q)A1/2∇v

)
+
(
(I−Q)A1/2∇u | vX

)
+
(
uY | (I−Q)A1/2∇v

)
−
(
Q(I+ iZ)−1QY)u | vX

)
+ (c0u | v).

(6.20)
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6 The regular part of second-order diàerential sectorial forms

and

as(u, v) = a
p
s (u, v) +

(
QA1/2∇u | vX

)
+
(
uY |QA1/2∇v

)
+ (uWY | vX)

for all u, v ∈ D(a).

Next we characterise when the regular part of the real part equals the real part
of the regular part.

Lemma 6.9. One has (Re a)reg = Re(areg) if and only if both (I+ iZ)QX = (I− iZ)QY

and QZ = ZQ a.e.

Proof. By Proposition 5.9, we know that (Re a)reg = Re(areg) if and only if Tπ2 = 0.
‘⇒’: Suppose Tπ2 = 0. By Proposition 5.13 the form as is sectorial. Therefore it

follows from Proposition 6.7 ‘(i)⇒(ii)’ and ‘(i)⇒(iii)’ that QZ = ZQ and iQ(X−Y) =

QZQ(X+ Y) a.e. Now the claim follows by rearranging the terms.
‘⇐’: After rearranging terms, we obtain iQ(X − Y) = QZQ(X + Y) a.e. and

QZ = ZQ a.e. Hence it follows directly from (6.10) that Tπ2 = 0.

In the remainder of this section we present two examples which showcase
Theorem 6.5 and Proposition 6.7. We first require some prerequisites. Let K ⊂ [0, 1]
be compact such that its interior is empty and its Lebesgue measure |K| is strictly
positive. We consider the positive symmetric form t with D(t) = H1(R) defined by

t(u, v) =
∫

R

1Ku
′v ′.

Define Φ(t) : D(t)→ L2(R)× L2(R) by Φ(t)(u) = (u, 1Ku
′).

Lemma 6.10. Let B ⊂ K be measurable. Then there exists a sequence (ψn)n∈N in D(t)

such that limn→∞Φ(t)(ψn) = (0, 1B) in L2(R)× L2(R).

Proof. The lemma can be proved by using [Vog09, Corollary 2], which itself is based
on the deep result [RW85, Theorem 1.1]. This immediately yields that treg = 0.
Hence the equivalent statements of Proposition 6.7 hold for the form t. Inspection
of the proof of Proposition 6.7 shows that Q(t)(x) = 1K(x). This implies that
V
(t)
s = L2(K), which is a reformulation of the lemma’s statement.

The following direct proof is obtained by adapting [FŌT94, Proof of The-
orem 3.1.6]. Let B ⊂ K be measurable. For all n ∈N and k ∈ {1, . . . ,n} define

In,k :=
[
k−1
n , kn

]
, αn,k :=

|In,k ∩B|
1+ |(In,k ∩K) \B|

and βn,k :=
αn,k

|In,k \K|
.
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6.3 About the sectoriality of the singular part

Note that βn,k is well-defined since K is nowhere dense. Fix n ∈N and consider
the function ϕn : R→ R given by

ϕn =

n∑
k=1

(
1In,k∩B −αn,k1(In,k∩K)\B −βn,k1In,k\K

)
.

Then ϕn ∈ L∞(R), suppϕn ⊂ [0, 1], [ϕn > 0] = B and∫
In,k

ϕn = |In,k ∩B|−αn,k|(In,k ∩K) \B|−βn,k|In,k \K| = 0

for all k ∈ {1, . . . ,n}. Define the function ψn : R→ R by

ψn(x) =

∫x
0
ϕn(t)dt.

It is a consequence of [Bre83, Lemma VIII.2] that ψn ∈ H1(R) = D(t). Let x ∈ [0, 1].
If k ∈ {1, . . . ,n} is such that x ∈ In,k, then it follows from the above properties of
ϕn that

|ψn(x)| 6
∫
In,k

|ϕn| =

∫
In,k∩B

ϕn −

∫
In,k\B

ϕn = 2

∫
In,k∩B

ϕn 6 2|In,k| =
2

n
.

This implies that limn→∞ψn = 0 in L2(R).
On the other hand, one has∫

R

|1Kψ
′
n − 1B|

2 =

∫
K
|ϕn − 1B|

2 =

n∑
k=1

α2n,k|(In,k ∩K) \B|

6
n∑
k=1

|In,k ∩B|2 6
n∑
k=1

1

n2
=
1

n

for all n ∈N. Thus limn→∞Φ(t)(ψn) = (0, 1B) in L2(R)× L2(R), as required.

Note that if a is a pure second-order differential sectorial form, then as is
sectorial if and only if (Re a)reg = Re(areg) by Lemma 6.9 and Proposition 6.7. We
now present an example of a form a with lower-order terms such that as is sectorial
while at the same time (Re a)reg 6= Re(areg). Moreover, the example shows that
if as is sectorial, then 0 need not be a vertex for as. By the previous comments
and Corollary 5.11, this is again a phenomenon that does not occur for differential
sectorial forms that are purely of second order.

Example 6.11. Let K ⊂ [0, 1] be a compact set with empty interior and strictly
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6 The regular part of second-order diàerential sectorial forms

positive Lebesgue measure |K|. Consider the form a : H1(R)×H1(R)→ C given by

a(u, v) =
∫

R

1Ku
′v ′ +

∫
R

1Ku
′v−

∫
R

1Kuv ′ +

∫
R

1Kuv.

Then a is sectorial in L2(R). More precisely,

(Re a)(u, v) =
∫

R

1Ku
′v ′ +

∫
R

1Kuv

and
|Im a(u,u)| 6 Re a(u,u)

for all u, v ∈ H1(R). So a has vertex 0. It follows from Lemma 6.10 that we may
take Q = 1K. Clearly Z = 0, so as is sectorial by Proposition 6.7. Using (6.20), we
obtain

areg(u, v) = 2
∫

R

1Kuv

and hence
as(u, v) =

∫
R

1Ku
′v ′ +

∫
R

1Ku
′v−

∫
R

1Kuv ′ −

∫
R

1Kuv

for all u, v ∈ H1(R). It is easily seen that

Re(areg) = areg 6= 1
2areg = (Re a)reg.

Now let u ∈ C∞c (R) be such that u|[0,1] = 1. Then Re as(u,u) = −|K| < 0. This
shows that 0 is not a vertex of as.

Finally, if b : H1(R)×H1(R)→ C is the form without zeroth-order term given by

b(u, v) =
∫

R

1Ku
′v ′ +

∫
R

1Ku
′v−

∫
R

1Kuv ′,

then
breg(u, v) =

∫
R

1Kuv

for all u, v ∈ H1(R). So breg contains a nontrivial zeroth-order term. 3

Finally we provide an example of a differential sectorial form that is purely of
second-order and satisfies both of the Conditions (L) and (B), but such that Z and
Q do not commute. Therefore the singular part is not sectorial and the regular part
is not of the form (6.18) by Proposition 6.7.

Example 6.12. Let d = 2, Ω = R2, H = L2(R2) and let K be a compact, nowhere
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6.3 About the sectoriality of the singular part

dense subset of [0, 1]. Define the form h on D(h) = H1(R2) by

h(u, v) =
∫

R2

(
1K×R(∂xu)∂xv+ (∂yu)∂yv

)
.

We determine the measurable map Q. To this end, define the isometry Φ : D(h)→
(L2(R2))3 by

Φ(u) =
(
u, 1K×R∂xu,∂yu

)
and let V be the closure of Φ(D(h)) in (L2(R2))3. Set

Vs :=
{
(v,w) ∈ (L2(R2))2 : (0, v,w) ∈ V

}
.

We next show that Vs = L
2(K×R)× {0}.

Let (v,w) ∈ Vs be given. Then there exists a sequence (un)n∈N in D(h) such that
limn→∞Φ(un) = (0, v,w). Then

(w |χ)H = lim
n→∞ (∂yun |χ)H = − lim

n→∞ (un |∂yχ)H = 0

for all χ ∈ C∞c (R2) by integrating by parts. Hence w = 0 and Vs ⊂ L2(K×R)× {0}.
Conversely, let B ⊂ K be measurable and τ ∈ C∞c (R). Let (ψn)n∈N be as in
Lemma 6.10. Then ψn ⊗ τ ∈ D(h) and

Φ(ψn ⊗ τ) =
(
ψn ⊗ τ, (1Kψ ′n)⊗ τ,ψn ⊗ τ ′)

for all n ∈N. Therefore

lim
n→∞Φ(ψn ⊗ τ) = (0, 1B ⊗ τ, 0).

Due to the density of elementary tensors of the form 1B⊗ τ in L2(K×R), it follows
that Vs = L

2(K×R)× {0}.
Define Q : R2 → C2×2 by

Q(x,y) = 1K×R(x,y)
(
1 0

0 0

)
.

Then the orthogonal projection from (L2(R2))2 onto Vs is the multiplication operator
associated with Q. Define A,B : R2 → C2×2 by A = 1K×R

(
1 0
0 0

)
+
(
0 0
0 1

)
and B =
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6 The regular part of second-order diàerential sectorial forms

1K×R

(
0 1
1 0

)
. Then the form a with D(a) = D(h) = H1(R2) given by

a(u, v) =
∫

R2
(A+ iB)∇u · ∇v

=

∫
R2

(
1K×R(∂xu+ i∂yu)∂xv+ (∂yu+ i1K×R∂xu)∂yv

)
is sectorial and has real part h. Moreover, Z = 1K×R

(
0 1
1 0

)
and QZ = ZQ does not

hold a.e. Therefore all of the equivalent statements in Proposition 6.7 are false. In
particular, Re(areg) 6= (Re a)reg. Explicitly, it follows from Theorem 6.5 that

areg(u, v) =
∫

R2
(1+ 1K×R)(∂yu)∂yv

and

(Re a)reg(u, v) =
∫

R2
(∂yu)∂yv

for all u, v ∈ D(a). Moreover,

(
Re(as)

)
(u, v) =

∫
K×R

(
(∂xu)∂xv− (∂yu)∂yv

)
for all u, v ∈ D(a). So clearly the singular part as of a is not sectorial. 3
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7
Elements of Sobolev space with

weak trace zero

Let Ω be a nonempty open subset of Rd and let p ∈ (1,∞). In this chapter we
study the notion of a weak trace for elements in the Sobolev space W1,p(Ω). The
notion was quite recently introduced in [AE11] for p = 2.

We start by providing general prerequisites in Section 7.1. This is followed by a
treatment of the relative capacity and related notions in Section 7.2. In Section 7.3
we will prove that elements in W1,p(Ω) with weak trace zero can be extended by
0 to obtain elements in W1,p(Rd), which is the main result in this chapter. We
proceed to collect related results pertaining the space W1,p

0 (Ω) in Section 7.4. In
Section 7.5 we give corollaries and applications of the main extension result. This is
followed by a potential theoretic description of the space of elements with weak
trace zero in Section 7.6. In Section 7.7 we briefly discuss two other approaches to
define traces for elements of Sobolev space on general domains.

Throughout we compare the space of elements in W1,p(Ω) with weak trace zero
with other related spaces such as W1,p

0 (Ω). In particular, we provide examples
which show that an element in W1,p(Ω) with weak trace zero does not need to
be an element of W1,p

0 (Ω). Moreover, we present sufficient conditions on the set
Ω which ensure that elements in W1,p(Ω) with weak trace zero are contained in
W
1,p
0 (Ω). The results presented here extend the corresponding results from [AE11],

specifically [AE11, Proposition 5.5]. The required standard results about Sobolev
spaces are collected in Section A.6 of the Appendix.

I would like to thank Tom ter Elst and Wolfgang Arendt for suggesting this topic
and for their continued interest and support concerning this project. Moreover, I
am indebted to Markus Biegert for providing Example 7.54.
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7 Elements of Sobolev space with weak trace zero

7.1 Preliminaries

In the following let Ω be a nonempty open subset of Rd, where d ∈N. We usually
work with the Sobolev space W1,p(Ω) for a p ∈ [1,∞) and refer to Ω as the domain
of the Sobolev space. In general we do not assume that Ω is bounded, connected
or of finite Lebesgue measure. We denote the boundary of Ω by Γ . By Hd−1 we
denote the (d− 1)-dimensional Hausdorff measure in Rd. The Lebesgue spaces on
subsets of Γ are always considered with respect to Hd−1. In this chapter we shall
assume that all function spaces are real. We make this assumption since we will use
truncation and lattice theoretic arguments. However, in most cases it is obvious that
the obtained results also hold in the complex case simply by considering the real
and imaginary part separately. Elements of W1,p(Ω) are by definition only elements
of Lp(Ω) and hence equivalence classes. We shall refer to a specific representative
of an element in W1,p(Ω) as a Sobolev function and identify it with its equivalence
class.

We start by defining the weak trace for elements of the Sobolev space W1,p(Ω).
This is a straightforward generalisation of the notion introduced in [AE11].

Definition 7.1. Let p ∈ [1,∞). Let u ∈ W1,p(Ω). Let r ∈ [1,∞). We call ϕ ∈ Lr(Γ)
a weak r-trace of u if there exists a sequence (un) in W1,p(Ω) ∩ C(Ω) such that
un|Γ ∈ Lr(Γ) for all n ∈N and

un → u in W1,p(Ω) and un|Γ → ϕ in Lr(Γ).

Moreover, we define the set

Vpr (Ω) =
{
u ∈W1,p(Ω) : the zero function in Lr(Γ) is a weak r-trace of u

}
.

Remark 7.2. The sequence (un) in the above definition may be assumed to be in
W1,p(Ω) ∩Cc(Ω), where we denote by Cc(Ω) the space of continuous functions
on Ω with compact support in Ω. In fact, let u ∈ W1,p(Ω) ∩C(Ω). Let r ∈ [1,∞)

and suppose u|Γ ∈ Lr(Γ). Let ζ ∈ C∞c (Rd) be such that 0 6 ζ 6 1 and ζ(x) = 1

for all |x| 6 1. Define ζn(x) = ζ( xn) for all x ∈ Rd and n ∈ N. Using dominated
convergence, it is readily verified that ζnu → u in W1,p(Ω) and (ζnu)|Γ → u|Γ in
Lr(Γ).

In [AE11] the exposition was confined to the Hilbert space case p = r = 2 and
some assumptions on Ω were made to reduce technicalities. We shall work in the
p-dependent setting and in addition not make latter assumptions.

Next we introduce several other spaces that are related to Vpr (Ω). As usual,
let W1,p

0 (Ω) be the closure of C∞c (Ω) in W1,p(Ω). Proposition A.40 implies that
W1,p(Rd) = W

1,p
0 (Rd). It follows immediately from the definitions that if u ∈
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7.1 Preliminaries

W
1,p
0 (Ω) then u ∈ Vpr (Ω) for all r ∈ [1,∞). If u : Ω→ R is a measurable function,

we denote by u∗ : Rd → R the extension of u by 0. We shall use the same notation
also for u ∈ Lp(Ω) and understand u∗ as an element of Lp(Rd) in the obvious way.
It is not hard to see that u∗ ∈ W1,p(Rd) for all u ∈ W1,p

0 (Ω). One can consider
W
1,p
0 (Ω) as a closed subspace of W1,p(Rd) by identifying u ∈W1,p

0 (Ω) and u∗.

Remark 7.3. The space W1,p
0 (Ω) is of great importance since its elements can be

considered to ‘vanish at the boundary’ in a sense compatible with the Sobolev
space structure. So the space W1,p

0 (Ω) arises naturally when dealing with Dirichlet
boundary conditions or if one wants to express in a weak way that two elements of
W1,p(Ω) have the same boundary values, for example. Note however, that functions
in W1,p

0 (Ω)∩C(Ω) need not vanish pointwise on Γ in general. For p = 2 it has been
shown in [BW06] that functions in W1,2

0 (Ω) ∩C(Ω) vanish pointwise on Γ if and
only if Ω is regular in 2-capacity, which is an extremely weak regularity condition
on a domain. So if Ω = B(0, 1) \ {0} is the punctured unit ball in R2, which is not
regular in 2-capacity, then there are functions in W1,2

0 (Ω)∩C(Ω) that do not vanish
in 0.

Another reasonable choice for a subspace of elements of W1,p(Ω) that ‘vanish at
the boundary’ is given by

W
1,p
0 (Ω) =

{
u|Ω : u ∈W1,p(Rd) such that u = 0 a.e. on Rd \Ω

}
.

This space was used for example in [AD08]. For us the next very similar space
will be more important. Regarding the tilde in the notation, we follow [Gri85,
Definition 1.3.2.5]. Let W̃1,p

0 (Ω) be the space defined by

W̃
1,p
0 (Ω) =

{
u|Ω : u ∈W1,p(Rd) such that u = 0 a.e. on Rd \Ω

}
=
{
u ∈W1,p(Ω) : u∗ ∈W1,p(Rd)

}
.

Clearly, W1,p
0 (Ω) ⊂ W̃1,p

0 (Ω) ⊂ W1,p
0 (Ω). In fact, if Γ is a Lebesgue nullset then

W̃
1,p
0 (Ω) = W

1,p
0 (Ω). The space

{
u∗ : u ∈ W̃1,p

0 (Ω)
}

is closed in W1,p(Rd) since
a convergent sequence in W1,p(Rd) has a subsequence that converges pointwise
almost everywhere on Rd. Moreover, if u ∈ W̃1,p

0 (Ω) then ∇u = 0 a.e. on Rd \Ω

by Proposition A.41. Consequently one has ‖u‖W1,p(Ω) = ‖u∗‖W1,p(Rd) for all

u ∈ W̃1,p
0 (Ω). Hence W̃1,p

0 (Ω) is a closed subspace of W1,p(Ω).
We define the space W̃1,p(Ω) by

W̃1,p(Ω) =W1,p(Ω)∩Cc(Ω),

where the closure is taken in W1,p(Ω). Then it follows from Proposition A.40 that
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7 Elements of Sobolev space with weak trace zero

Figure 7.1. An example of a domain Ω ⊂ R3 where the weak trace is not
unique, see [AE11, Example 4.4].

u|Ω ∈ W̃1,p(Ω) for all u ∈W1,p(Rd). Hence W̃1,p
0 (Ω) is a subspace of W̃1,p(Ω).

Remark 7.4. In general W̃1,p(Ω) is not equal to W1,p(Ω), although this is true if Ω
has continuous boundary by Theorem A.45. It is easy to obtain counterexamples
where Ω is not topologically regular, i.e., where the interior of Ω is different
from Ω. However, it is neither sufficient nor necessary for the equality W̃1,p(Ω) =

W1,p(Ω) thatΩ is topologically regular. IfΩ = Rd \ {0} where d > 2 and p 6 d, then
Ω is not topologically regular, but W̃1,p(Ω) = W1,p(Ω) as W1,p

0 (Ω) = W1,p(Rd)

by [EE87, Corollary VIII.6.4]. Conversely, in [Kol81] a counterexample with a
topologically regular bounded open set Ω is constructed.

For a discussion of positive and negative results concerning the density of
W1,p(Ω)∩Cc(Ω) in W1,p(Ω) see [O’Fa97, Section 1].

Example 7.5. Let Ω = (−1, 0) ∪ (0, 1). Then it is easily checked that W̃1,p(Ω) =

W1,p((0, 1)) 6= W1,p(Ω) and W̃1,p
0 (Ω) = W

1,p
0 (Ω) = W

1,p
0 ((0, 1)) 6= W

1,p
0 (Ω). Still,

V
p
r (Ω) =W1,p

0 (Ω) for all r ∈ [1,∞). An example of a topologically regular domain
Ω such that W1,p

0 (Ω) 6= W̃1,p
0 (Ω) =W1,p

0 (Ω) is given in [Hed00, Example on p. 94];
see also Examples 7.54 and 7.56. 3

Since only elements of W̃1,p(Ω) can have a weak trace, it follows that in general
not every element of W1,p(Ω) has a weak trace. In fact, if Ω has a sufficiently sharp
outward pointing cusp, then the restriction of a function in W1,p(Ω)∩C(Ω) to the
boundary does not need to be locally integrable at the tip of the cusp. Such an
example is given in [AE11, Example 9.1].

Moreover, depending on the geometry of Ω it is possible that an element of

104



7.1 Preliminaries

W1,p(Ω) has more than one weak r-trace, or put differently, it is possible that the
zero function has nontrivial weak r-traces.

Example 7.6. In [AE11, Example 4.4] the bounded and connected domain Ω ⊂ R3

depicted in Figure 7.1 was considered. We denote the part of the boundary
represented by the grey rectangle by Γs. The cylinders on top of the box have radii
that become small rapidly towards Γs. In particular, one has Hd−1(Γ) <∞. It was
established that 1Γs is a weak 2-trace of the zero function in H1(Ω). As Hd−1(Γs) > 0

this shows that the weak 2-trace is not unique in H1(Ω).
We note that in this example Ω has very low density at the part of the boundary

where the weak r-trace is not unique. In fact, this is the case for all known examples
where the weak trace is not unique. A connection between Ω having Lebesgue
density 0 and the nonuniqueness phenomenon was suggested in [BG10, p. 941]. 3

Lemma 7.7. Let p ∈ [1,∞) and r ∈ [1,∞). Then Vpr (Ω) is a closed subspace of W1,p(Ω).
Next, let u ∈ Vpr (Ω). Then u∨ 0 ∈ Vpr (Ω), u∧ 1 ∈ Vpr (Ω) and ζu ∈ Vpr (Ω) for all
ζ ∈ C∞c (Rd).

Proof. We first show that Vpr (Ω) is a closed subspace of W1,p(Ω). It is obvious
that Vpr (Ω) is a linear subspace. Let w ∈W1,p(Ω) and suppose (wn) is a sequence
in V

p
r (Ω) such that wn → w in W1,p(Ω). Then for all n ∈ N there exists a

w ′n ∈ W1,p(Ω) ∩ C(Ω) such that ‖wn −w ′n‖1,p < 1
n and ‖w ′n|Γ‖r < 1

n . Hence
w ′n → w in W1,p(Ω) and w ′n|Γ → 0 in Lr(Γ). So w ∈ Vpr (Ω).

The remaining claims follow similarly using Proposition A.41.

Definition 7.8. We denote the locally finite part of Γ by

Γloc =
{
z ∈ Γ : ∃r > 0 such that Hd−1

(
Γ ∩B(z, r)

)
<∞}.

Remark 7.9. As usual, the set B(z, r) in the definition of the locally finite part Γloc,
denotes the open ball in Rd centred in z with radius r. It is clear that Γloc is relatively
open in Γ and σ-compact, i.e., a countable union of compact sets.

We note that (Γloc, B(Γloc),Hd−1) is a locally finite Borel regular measure space
by [EG92, Theorem 2.1.1]. In particular, if K ⊂ Γloc is compact, then Hd−1(K) <∞.
Moreover, if d > 1 then this measure space is atomless by [Fre03, Exercise 264Yg].

Example 7.10. Let Ω ⊂ R2 be the interior of the Koch snowflake as depicted in
Figure 7.2. Then Γloc = ∅. Let p ∈ [1,∞). If r ∈ [1,∞) and u ∈ W1,p(Ω) ∩C(Ω)

is such that u|Γ ∈ Lr(Γ), then u|Γ = 0. It follows from Proposition A.43 that
u ∈W1,p

0 (Ω). Consequently Vpr (Ω) =W1,p
0 (Ω) for all r ∈ [1,∞). Of course, in this

case it is more natural to use the s-dimensional Hausdorff measure Hs on Γ , where
s =

log 4
log 3 . We refer to [Wal91] for a study of the trace operator for Sobolev spaces on

sufficiently regular fractal domains. 3
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7 Elements of Sobolev space with weak trace zero

Ω

Figure 7.2. The interior of the Koch snowflake

The following proposition shows that if Γ has finite (d− 1)-dimensional Haus-
dorff measure then, at least for bounded weak traces, the r-dependence is not really
relevant.

Proposition 7.11. Let p ∈ [1,∞). Let u ∈W1,p(Ω) and ϕ ∈ L∞(Γ). Let r ∈ (1,∞). If
ϕ is a weak 1-trace of u, then ϕ is a weak r-trace of u. Moreover, if Hd−1(Γloc) <∞, then
ϕ is a weak r-trace of u if and only if it is a weak 1-trace of u.

Proof. Suppose that ϕ is a weak 1-trace of u. It follows from Proposition A.41 that
then ϕ∨ 0 is a weak 1-trace of u∨ 0. So we may assume that u > 0 a.e. on Ω and
ϕ > 0 a.e. on Γ . Let M > 0 be such that ‖ϕ‖∞ 6 M. Let (un) be a sequence in
W1,p(Ω)∩C(Ω) such that un > 0 for all n ∈N, un → u in W1,p(Ω) and un|Γ → ϕ

in L1(Γ). Set θ := 1− 1
r . Then by the interpolation inequality for Lebesgue spaces

one obtains

‖ϕ− (un ∧M)|Γ‖r 6 ‖ϕ− (un ∧M)|Γ‖1−θ1 ‖ϕ− (un ∧M)|Γ‖θ∞
6 (2M)θ‖ϕ− (un ∧M)|Γ‖1−θ1 .

So, again using Proposition A.41, it follows that ϕ = ϕ∧M is a weak r-trace of
u∧M.

Define v := u− u∧M. Then v > 0 a.e. on Ω and v ∈ Vp1 (Ω). Let (vn) be a
sequence in W1,p(Ω) ∩C(Ω) such that vn > 0 for all n ∈ N, vn → v in W1,p(Ω)

and vn|Γ → 0 in L1(Γ). Let N > 0. Then by the interpolation inequality for Lebesgue
spaces one obtains

‖(vn ∧N)|Γ‖r 6 ‖(vn ∧N)|Γ‖1−θ1 ‖(vn ∧N)|Γ‖θ∞ 6 Nθ‖(vn ∧N)|Γ‖1−θ1 .

So v∧N ∈ Vpr (Ω). As v∧N→ v in W1,p(Ω) as N→∞, it follows from Lemma 7.7
that v ∈ Vpr (Ω). Hence ϕ is a weak r-trace of u = v+ u∧M.

Suppose now that Hd−1(Γloc) <∞ and that ϕ is a weak r-trace of u. It is clear
that ϕ = 0 a.e. on Γ \ Γloc. Moreover, Lr(Γloc) is continuously embedded into L1(Γloc).
This implies the claim.
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7.2 The relative capacity

Corollary 7.12. Let p ∈ [1,∞). If r ∈ (1,∞), then Vp1 (Ω) ⊂ V
p
r (Ω). Moreover, if

Hd−1(Γloc) <∞, then Vpr (Ω) = Vp1 (Ω) for all r ∈ (1,∞).

We shall make use of the class of locally integrable functions on Γloc to obtain a
larger space of elements that have weak trace zero. We work with the Borel regular
and locally finite measure space (Γloc, B(Γloc),Hd−1). We say that a measurable
function ϕ : Γloc → R is locally integrable on Γloc if ϕ1K ∈ L1(Γloc) for all K ⊂ Γloc
compact. Moreover, let L1loc(Γloc) be the vector space of all locally integrable func-
tions on Γloc, where we identify functions that agree Hd−1-a.e. We equip L1loc(Γloc)

with the locally convex topology induced by the seminorms ‖·‖K : ϕ 7→ ‖ϕ1K‖1,
where K ⊂ Γloc is compact. Since Γloc is σ-compact, it follows that L1loc(Γloc) is
metrizable. Clearly L1loc(Γloc) is complete and hence a Fréchet space. Moreover, a se-
quence which converges in L1loc(Γloc) has a subsequence such that the corresponding
representatives converge pointwise almost everywhere.

Definition 7.13. Let p ∈ [1,∞) and u ∈ W1,p(Ω). We say that u has weak trace
zero if there exists a sequence (un) in W1,p(Ω)∩Cc(Ω) such that limn→∞ un = u

in W1,p(Ω), un(z) = 0 for all z ∈ Γ \ Γloc and n ∈ N, and un|Γloc → 0 in L1loc(Γloc).
Moreover, we define the space

Vp(Ω) =
{
u ∈W1,p(Ω) : u has weak trace zero

}
.

It is immediately clear that Vpr (Ω) ⊂ Vp(Ω) for all r ∈ [1,∞). Moreover, the
statements in Lemma 7.7 also hold for Vp(Ω).

Remark 7.14. Suppose Ω is bounded and Lipschitz. Clearly Γloc = Γ . Let p ∈ [1,∞).
Then it follows from Theorem A.46 that W1,p

0 (Ω) = W̃1,p
0 (Ω) =W1,p

0 (Ω). Moreover,
it is clear that if u ∈ W1,p

0 (Ω) then u ∈ Vpr (Ω) for all r ∈ [1,∞). Conversely,
suppose that u ∈ Vp(Ω). Then there exists a sequence (un) in W1,p(Ω) ∩ C(Ω)

such that limn→∞ un = u and un|Γ → 0 Hd−1-a.e. on Γ . By Theorem A.48 one has
Tru = limn→∞ Trun in Lp(Γ). It follows that Tru = 0 in Lp(Γ). Now Theorem A.49

implies that u ∈W1,p
0 (Ω). Therefore W1,p

0 (Ω) = Vp(Ω).

7.2 The relative capacity

In this section we collect some more specialised prerequisites. We start by recalling
notation and results for the relative capacity that was introduced for p = 2 in [AW03,
Section 1]. There the relative capacity was realised as a capacity associated with
a certain Dirichlet form, see [BH91, Section I.8]. A thorough direct study of the
relative capacity for p ∈ (1,∞) can be found in [Bie09b; Bie09a]. We point out that
the case p = 1 is not covered.
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7 Elements of Sobolev space with weak trace zero

Definition 7.15 (Relative p-capacity). Let p ∈ (1,∞). The relative p-capacity of a
subset A ⊂ Ω is defined as

capp,Ω(A) = inf
{
‖u‖p1,p : u ∈ W̃

1,p(Ω) and there exists a relatively open

neighbourhood O of A in Ω such that u > 1 a.e. on O∩Ω
}

.

We call P ⊂ Ω relatively p-polar if capp,Ω(P) = 0. We say that a pointwise
property holds relatively p-quasi everywhere (relatively p-q.e.) on A if there
exists a relatively p-polar set P ⊂ Ω such that it holds for all points in A \ P.

Remark 7.16. IfΩ = Rd, then the relative p-capacity is equal to the usual p-capacity.
So capp(A) = capp,Rd(A) for all A ⊂ Rd. We shall use the above notation without
the qualifier ‘relative’ if we refer to the p-capacity. In particular, a set A ⊂ Rd is
called p-polar if capp(A) = 0. Note that u|Ω ∈ W̃1,p(Ω) for all u ∈W1,p(Rd). This
shows that

capp,Ω(A) 6 capp(A) (7.1)

for all A ⊂ Ω. In particular, if A ⊂ Ω is p-polar then A is relatively p-polar.
Moreover, if A ⊂ Ω, then A is p-polar if and only if A is relatively p-polar by [Bie09a,
Corollary 3.15]; see also Lemma 7.18.

It is clear by the above definition that capp,Ω(A) > |A| for all A ⊂ Ω, where
|A| denotes the Lebesgue measure of A. We consider the capacity as a means of
measuring subsets of Rd which are not negligible with respect to the structure of
the Sobolev space, despite being Lebesgue nullsets. For example, the Lebesgue–
Besicovitch differentiation theorem [EG92, Theorem 1.7.1] states that a locally
Lebesgue integrable function has a Lebesgue point almost everywhere. So in meas-
ure theoretic terminology such functions are approximately continuous. Taking into
consideration that a Sobolev space has considerably more structure, one naturally
expects that elements of a Sobolev space have ‘more’ Lebesgue points than merely
almost everywhere. It turns out that an element in W1,p(Rd) has Lebesgue points
everywhere in Rd \ P, where P is a p-polar set [EG92, Theorem 4.8.1] or [MZ97,
Theorem 2.55]. To emphasise how fine the notion of the p-capacity actually is, we
note that a p-polar set has (d− 1)-dimensional Hausdorff measure 0, see [EG92,
Theorem 4.7.4] or [MZ97, Theorem 2.53]. Curiously the latter property is not true
for relatively p-polar sets, see [AW03, Example 4.3] and Example 7.44.

We next provide some basic properties of the relative p-capacity and then study
relatively p-quasi continuous representatives of elements in W̃1,p(Ω). The following
proposition collects several basic results that can be found in [Bie09a, Subsection 3.1]
or [Bie09b, Section 3].
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Proposition 7.17. Let p ∈ (1,∞). The relative p-capacity has the following properties.

(i) capp,Ω(∅) = 0.

(ii) If A ⊂ B ⊂ Ω, then capp,Ω(A) 6 capp,Ω(B).

(iii) If (An) is a sequence of increasing subsets of Ω, then

lim
n→∞ capp,Ω(An) = capp,Ω

( ∞⋃
n=1

An

)
.

(iv) If (Kn) is a sequence of decreasing compact subsets of Ω, then

lim
n→∞ capp,Ω(Kn) = capp,Ω

( ∞⋂
n=1

Kn

)
.

(v) If A ⊂ Ω, then

capp,Ω(A) = inf
{

capp,Ω(O) : O ⊂ Ω is relatively open in Ω and A ⊂ O
}

.

(vi) If (An) is a sequence of subsets of Ω, then

capp,Ω

( ∞⋃
n=1

An

)
6
∞∑
n=1

capp,Ω(An).

(vii) If K ⊂ Ω is compact, then

capp,Ω(K) = inf
{
‖u‖p1,p : u ∈W

1,p(Ω)∩C(Ω)

such that u(x) > 1 for all x ∈ K
}

.

In particular, the relative p-capacity is a normed Choquet capacity and an outer measure.

The following result shows that the capacity and the relative capacity are com-
parable as long as one stays inside of a compact subset of Ω.

Lemma 7.18 (cf. [Bie09a, Example 3.12]). Let K ⊂ Ω be compact. Then there exists a
C > 0 such that

capp(A) 6 C capp,Ω(A)

for all A ⊂ K.

The following basic proposition, which is mostly a consequence of the Sobolev
embedding theorem A.50, shows why the p-capacity is usually only considered for
p 6 d. We have adapted the arguments given in [EE87, Section VIII.6].
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7 Elements of Sobolev space with weak trace zero

Proposition 7.19. Let p > d. Let A ⊂ Rd. Then capp(A) = 0 if and only if A = ∅.

Proof. Suppose that capp(A) = 0. We assume that A 6= ∅ and deduce a contradiction.
We may suppose that A = {x0} for an x0 ∈ Rd. By Proposition 7.17 (vii) there exists
a sequence (un) in W1,p(Rd)∩C(Rd) such that un → 0 in W1,p(Rd) and un(x0) > 1
for all n ∈N. Due to Proposition A.41 we may assume that 0 6 un(x) 6 1 for all
x ∈ Rd and n ∈N. Let ζ ∈ C∞c (Rd) be such that ζ(x0) 6= 0. Clearly, (1− un)ζ→ ζ

inW1,p(Ω). So it follows from Theorem A.50 that 0 = (1−un(x0))ζ(x0)→ ζ(x0) 6= 0
for n→∞. This is a contradiction.

Definition 7.20. A measurable function ũ : Ω → R is called relatively p-quasi
continuous if for every ε > 0 there exists a set V ⊂ Ω relatively open in Ω such
that capp,Ω(V) < ε and the restriction of ũ to Ω \ V is continuous.

A measurable function ũ : Ω→ R is called p-quasi continuous if for every ε > 0
there exists an open set V ⊂ Ω such that capp(V) < ε and the restriction of ũ to
Ω \ V is continuous.

The following standard construction of a quasi-continuous representative is
taken from [Bie09b, Lemma 3.17]; see also [EE87, Theorem VIII.5.2].

Lemma 7.21. Let u ∈ W̃1,p(Ω). Suppose (un) is a sequence in W1,p(Ω) ∩ Cc(Ω)

such that un → u in W1,p(Ω). Then, possibly after going to a subsequence, there
exists a relatively p-polar set P ⊂ Ω and a measurable function ũ : Ω → R such that
ũ(x) := limn→∞ un(x) for all x ∈ Ω \ P, ũ = u a.e. on Ω and ũ is relatively p-quasi
continuous.

Proof. After going to a subsequence, we may assume that

∞∑
n=1

2np‖un+1 − un‖p1,p <∞
and that (un) converges to u pointwise a.e. on Ω. We define

Gn :=
{
x ∈ Ω : |un+1 − un| > 2

−n
}

for all n ∈N. Then Gn is relatively open in Ω and 2n|un+1 − un| > 1 on Gn for all
n ∈N. Observe that |un+1 − un| ∈ W̃1,p(Ω) by Proposition A.41. This implies that

capp,Ω(Gn) 6 2
np‖un+1 − un‖p1,p

for all n ∈N. Consequently,

∞∑
n=1

capp,Ω(Gn) <∞.
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7.2 The relative capacity

If m ∈N, then by Proposition 7.17 (vi) there exists an nm ∈N such that

capp,Ω

( ∞⋃
n=nm

Gn

)
<
1

m
.

Set Vm :=
⋃
n>nm Gn for all m ∈ N and P :=

⋂
m∈N Vm. It follows from Proposi-

tion 7.17 (v) that capp,Ω(P) = 0.
Note that

un = u1 +

n−1∑
k=1

(uk+1 − uk)

for all n ∈ N. Moreover, the sequence of continuous functions (un) converges
uniformly on Ω \ Vm for all m ∈N. Therefore

ũ(x) := lim
n→∞un(x) = u1(x) +

∞∑
k=1

(
uk+1(x) − uk(x)

)
exists for all x ∈ Ω \ P. We set ũ(x) := 0 for all x ∈ P. Note that P is a Lebesgue
nullset. So (un) converges to ũ pointwise a.e. on Ω. In particular, ũ = u a.e. on Ω.
Hence the restriction of ũ to Ω \ Vm is continuous for all m ∈N. This finishes the
proof.

The following is now an immediate consequence.

Corollary 7.22. Every u ∈ W̃1,p(Ω) has a relatively p-quasi continuous representative
ũ : Ω→ R.

Theorem 7.23 (cf. [Bie09a, Theorem 3.26]). Let u, v ∈ W̃1,p(Ω) and let U ⊂ Ω be
relatively open in Ω. Suppose u 6 v a.e. on U ∩Ω. Let ũ and ṽ be relatively p-quasi
continuous representatives of u and v, respectively. Then there exists a relatively p-polar
set P ⊂ U such that ũ(x) 6 ṽ(x) for all x ∈ U \ P.

Corollary 7.24. Let u ∈ W̃1,p(Ω). Then the relatively p-quasi continuous representative
ũ is unique up to a relatively p-polar set.

Remark 7.25. For the special case Ω = Rd, one obtains by the previous results a
p-quasi continuous representative for every u ∈W1,p(Rd), which is unique up to
a p-polar set. It is not difficult to see that p-quasi continuity is a local property,
i.e., a function ũ : Ω → R is p-quasi continuous on Ω if and only if ũ is p-quasi
continuous on a neighbourhood of every point in Ω. Locally inside of Ω, however,
the p-capacity and the relative p-capacity are comparable by Lemma 7.18 and (7.1).

This helps to obtain the following consistency property. Let u ∈ W̃1,p(Ω) and
let ũ : Ω → R be a relatively p-quasi continuous representative of u. Then ũ|Ω
is a p-quasi continuous representative of u, which is unique up to a p-polar set
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7 Elements of Sobolev space with weak trace zero

by Corollary 7.24. For the full details we refer to [Bie09a, Theorem 3.31 and
Example 3.32].

The next result is a special case of [Bie09a, Theorem 3.29]. It shows that relatively
p-quasi continuous representatives behave well with respect to the convergence in
W1,p(Ω).

Proposition 7.26. Let u ∈ W̃1,p(Ω) and suppose (un) is a sequence in W̃1,p(Ω) such
that un → u in W1,p(Ω). Let ũ and ũn be relatively p-quasi continuous representatives
of u and un for all n ∈N, respectively. Then, after going to a subsequence, there exists a
relatively p-polar set P ⊂ Ω such that limn→∞ ũn(x) = ũ(x) for all x ∈ Ω \ P.

Next we show that a (relatively) p-quasi continuous representative exhibits other
desirable fine properties. This allows to obtain a representative for an element in a
Sobolev space that simultaneously exhibits several additional regularity properties.
In the literature the existence of a corresponding representative for each single one
of these regularity properties is well established. While the existence of a ‘simultan-
eous’ representative is not immediately obvious, it can be directly verified by an
inspection of the respective proofs that the pointwise limit of an appropriate smooth
approximation sequence exhibits all required properties. In [EG92, Chapter 4] the
first part of the following theorem can be found.

Theorem 7.27 (A representative for an element of Sobolev space). Let p ∈ (1,∞).
Let u ∈W1,p(Ω). We set

Ωk,y = {x ∈ Ω : x = (y1, . . . ,yk−1, t,yk, . . . ,yd−1) for a t ∈ R} (7.2)

for every k ∈ {1, . . . ,d} and y ∈ Rd−1. We may consider Ωk,y as an open subset of R.
Then there exists a measurable function ũ : Ω→ R and a p-polar set P ⊂ Ω such that

the following properties hold:

(i) ũ is a p-quasi continuous representative of u;

(ii) there exists a sequence (un) in W1,p(Ω)∩C∞(Ω) converging to u in W1,p(Ω) and
to ũ pointwise everywhere on Ω \ P;

(iii) every point in Ω \ P is a Lebesgue point of ũ;

(iv) for Ld−1-a.e. y ∈ Rd−1 and all k ∈ {1, . . . ,d} the one-dimensional function ũ|Ωk,y is
absolutely continuous on each compact interval of Ωk,y.

Moreover, if u ∈ W̃1,p(Ω), then there exists a measurable function ũ : Ω → R and a
relatively p-polar set P ⊂ Ω such that ũ|Ω satisfies all of the above properties and such that
the following properties hold:

(i)’ ũ is a relatively p-quasi continuous representative of u;
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7.2 The relative capacity

(ii)’ there exists a sequence (un) in W1,p(Ω)∩Cc(Ω) converging to u in W1,p(Ω) and
to ũ pointwise everywhere on Ω \ P.

Proof. Let u ∈ W1,p(Ω) and let ũ be a p-quasi continuous representative of u. It
follows from Lemma 7.21, Theorem A.39 and Remark 7.25 that ũ satisfies (ii). If
p > d, then it follows from Proposition 7.19 that ũ ∈ C(Ω). So (iii) is clearly
satisfied if p > d. For p ∈ (1,d] property (iii) follows from [MZ97, Theorem 2.55].
Property (iv) follows from [EG92, Theorem 4.9.2 (i)] since ũ satisfies (iii).

Suppose now that u ∈ W̃1,p(Ω) and let ũ : Ω → R be a relatively p-quasi
continuous representative of u. Then (i)’ and (ii)’ follow from Lemma 7.21. The
claims about ũ|Ω follow by Remark 7.25 from the first part of the theorem.

Remark 7.28. The first part of the theorem does extend to p = 1 for a suitable
version of the 1-capacity, see [EG92, Section 4]. It is not clear whether the notion of
the relative p-capacity can be extended to obtain a Choquet capacity also for the case
p = 1. In particular, the existence of a relatively 1-quasi continuous representative
is unclear.

We finally collect a few results about the p-fine topology and the Lebesgue
density topology. Both are topologies in Rd that are finer than the Euclidean
topology.

Definition 7.29. Suppose p ∈ (1,d ] and let E ⊂ Rd. Then E is called p-thin at a
point x ∈ Rd if ∫1

0

(capp(E∩B(x, r))

rd−p

)1/(p−1)
1

r
dr <∞. (7.3)

One defines
bp(E) =

{
x ∈ Rd : E is not p-thin at x

}
.

If bp(E) ⊂ E, then E is called p-finely closed.

Suppose that p ∈ (1,d ]. It is obvious that if E ⊂ F ⊂ Rd then bp(E) ⊂ bp(F).
The next proposition collects a few important properties of the p-fine topology.

The corresponding statements can be found in [MZ97, Remark 2.135, Theorem 2.136

and Corollary 2.143], for example.

Proposition 7.30. Suppose p ∈ (1,d ]. The family of complements of p-finely closed sets
defines a topology in Rd that is finer than the Euclidean topology. We call this topology the
p-fine topology. Moreover, let E ⊂ Rd. Then the closure of E in the p-fine topology is
given by E∪ bp(E). Furthermore, E is p-polar if and only if bp(E) = 0.

Remark 7.31. Suppose that d > 2 and p ∈ (1,d ]. As usual, let Ω ⊂ Rd be open
and Γ = ∂Ω. It follows from Proposition 7.30 that the boundary of Ω in the p-fine
topology, which we call the p-fine boundary of Ω, is equal to bp(Ω) \Ω. Clearly
bp(Ω) ⊂ Ω. Consequently the p-fine boundary of Ω is equal to bp(Ω)∩ Γ .
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7 Elements of Sobolev space with weak trace zero

The following lemma is readily obtained using the description of the p-fine
closure in Proposition 7.30. We give its simple proof to make a first use of the
introduced notation.

Lemma 7.32. Suppose p ∈ (1,d ]. Let u : Rd → R and x0 ∈ Rd. Then u is continuous at
x0 in the p-fine topology if and only if{

x ∈ Rd : |u(x) − u(x0)| > ε
}

(7.4)

is p-thin at x0 for all ε > 0.

Proof. ‘⇐’: Let ε > 0 and E be the set in (7.4). By assumption E is p-thin at x0. Then
x0 /∈ E∪ bp(E). Hence U := Rd \ (E∪ bp(E)) is an p-finely open neighbourhood of
x0 such that |u(x) − u(x0)| < ε for all x ∈ U. Therefore u is continuous at x0 in the
p-fine topology.

‘⇒’: Let ε > 0 and U ⊂ Rd be a p-finely open neighbourhood of x0 such that
|u(x) − u(x0)| < ε for all x ∈ U. Let E be the set in (7.4). Then E ⊂ Rd \U and
Rd \U is p-finely closed. So x0 /∈ Rd \U and bp(E) ⊂ bp(Rd \U) ⊂ Rd \U. Hence
E is p-thin at x0.

The next result connects p-quasi continuity to continuity with respect to the
p-fine topology. It is a special case of [MZ97, Theorem 2.145].

Proposition 7.33. Suppose p ∈ (1,d ]. Let u : Rd → R be a function. Then u is p-quasi
continuous if and only if there exists a p-polar set P ⊂ Rd such that u is p-finely continuous
at every point in Rd \ P.

Next we consider the Lebesgue density topology.

Definition 7.34. Let E ⊂ Rd. We say that E is open in the Lebesgue density
topology if E is Lebesgue measurable and every point of E is a Lebesgue density
point of E, i.e.,

lim inf
r→0+

|E∩B(x, r)|
|B(x, r)|

= 1 (7.5)

for all x ∈ E. The family of these sets define a topology, which we call the Lebesgue
density topology.

Remark 7.35. It is obvious that the Lebesgue density topology is finer than the
Euclidean topology. Moreover, in (7.5) one can equivalently replace the open balls
B(x, r) by open d-dimensional cubes centred in x with side-length 2r, for example.
We point out, however, that if d > 1 then one does not obtain the same topology if
one measures the density with respect to more general ‘d-dimensional rectangles’
centred at x. Details regarding different density topologies can be found in [Fug71,
Subsection 4.9] and in [LMZ86, Chapter 6].
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Fuglede observed that (7.3) allows to compare the 2-fine topology with the
Lebesgue density topology, see [LMZ86, Remarks and Comments, p. 326–327]
and [Fug71, Subsection 5.6]. In fact, the following holds for all p ∈ (1,d ].

Proposition 7.36 (cf. [MZ97, Corollary 2.51 and Remark 2.135]). Suppose p ∈ (1,d ].
Then the p-fine topology is coarser than the Lebesgue density topology.

7.3 Extendability of elements with weak trace zero

In this section we show that if u ∈W1,p(Ω) has weak trace zero then u ∈ W̃1,p
0 (Ω).

The next proposition is an essential technical ingredient for the proof. It is an
intermediate result in the proof of [SZ99, Theorem 2.2]. The latter theorem gives a
necessary and sufficient condition for an element of W1,p(Ω) to be in W1,p

0 (Ω); see
Theorem 7.46 in the following section.

Proposition 7.37 (see the proof of [SZ99, Theorem 2.2]). Suppose p ∈ (1,∞). Let
u ∈W1,p(Ω). Suppose that

lim
r→0+

1

rd

∫
B(z,r)∩Ω

|u| = 0 (7.6)

for Hd−1-a.e. z ∈ Γ . Then u ∈ W̃1,p
0 (Ω).

The proof of Proposition 7.37 is based on several elaborate results on functions
of bounded variation and fine properties of Sobolev functions. Therefore I shall not
attempt to provide a self-contained exposition here and refer to [SZ99] for the full
details. We will, however, continue with a sketch of the proof of Proposition 7.37.

Sketch of the proof. Let ũ : Ω → R be the p-quasi continuous representative of u.
Since a p-polar set has (d− 1)-dimensional Hausdorff measure 0, it follows from
Theorem 7.27 that ũ has a Lebesgue point Hd−1-a.e. in Ω. Due to (7.6) the extension
of ũ by 0, which we denote by ũ∗, has a Lebesgue point Hd−1-a.e. in Rd. Let
x0 ∈ Rd \Ω be a Lebesgue point of ũ∗. Then

lim
r→0+

|[ũ∗ > t]∩B(x0, r)|
|B(x0, r)|

=

{
0 for all t > 0, and

1 for all t < 0.

So for all t ∈ R \ {0} the point x0 is not contained in the measure theoretic bound-
ary of the superlevel set [ũ∗ > t]. Consequently, in a more technical notation,
Hd−1(∂m[ũ∗ > t] \Ω) = 0 for all t ∈ R \ {0}. Using this with a suitable version of
the coarea formula implies that ũ∗ is locally of bounded variation in Rd.
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Applying the notation (7.2) in Theorem 7.27 for the domain Rd, one has

(Rd)k,y =
{
x ∈ Rd : x = (y1, . . . ,yk−1, t,yk, . . . ,yd−1) for a t ∈ R

}
for all k ∈ {1, . . . ,d} and y ∈ Rd−1. Clearly (Rd)k,y is isomorphic to R for all
k ∈ {1, . . . ,d} and y ∈ Rd−1. We shall say that ũ∗ satisfies a property along
almost all lines parallel to the coordinate axes (along a.a.l.), if it holds for the one-
dimensional function ũ∗|(Rd)k,y

: R→ R for Ld−1-a.e. y ∈ Rd−1 and all k ∈ {1, . . . ,d}.
By [Fed69, Theorem 4.5.9 (29)] the function ũ∗ is continuous along a.a.l. since ũ∗ has
a Lebesgue point Hd−1-a.e. and is locally of bounded variation in Rd. Moreover, ũ∗

is of bounded variation on every compact interval along a.a.l. It is not hard to check
that ũ∗ maps one-dimensional Lebesgue nullsets into nullsets along a.a.l. Using
an appropriate characterisation for absolute continuity, the last three statements
imply that ũ∗ is absolutely continuous on every compact interval along a.a.l. It
follows that ũ∗ has classical partial derivatives in Lp(Rd) along a.a.l. By [EG92,
Theorem 4.9.2 (ii)], which is a kind of converse of Theorem 7.27 (iv), the function ũ∗

is a representative of an element of W1,p(Rd).

We point out that the proof of Proposition 7.37 does extend to the case p = 1. For
this it suffices to note that also for elements of W1,1(Ω) it is true that Hd−1-a.e. point
in Ω is a Lebesgue point, see for example [EG92, Theorem 4.8.1 and Theorem 5.6.3].
Moreover, for p = 1 the above proposition is a special case of [Swa07, Theorem 5.2];
see Theorem 7.47.

The following is the main result of this section. It allows to relate the property
that an element has weak trace zero to another notion for elements of W1,p(Ω) to
vanish at the boundary. Moreover, it shows that the notion of the weak trace is both
sensible and useful.

Theorem 7.38. Let p ∈ (1,∞) and u ∈ Vp(Ω). Then u ∈ W̃1,p
0 (Ω).

Proof. First suppose in addition that u > 0 a.e. on Ω and u ∈ L∞(Ω). Let M > 0 be
such that u 6M a.e. on Ω. We shall prove that u can be approximated in W1,p(Ω)

by elements of W̃1,p
0 (Ω).

Let (un) be a sequence in W1,p(Ω) ∩Cc(Ω) as in Definition 7.13. In particular,
un(z) = 0 for all z ∈ Γ \ Γloc and n ∈ N. After going to a subsequence, we may
assume that there is a Hd−1-nullset N ⊂ Γloc such that un(z)→ 0 for all z ∈ Γ \N.

Let ũ : Ω → R be a relatively p-quasi continuous representative of u as in
Lemma 7.21 defined with respect to (un), possibly after going to a subsequence.
So there exists a relatively p-polar set P ⊂ Ω such that ũ(x) = limn→∞ un(x)
for all x ∈ Ω \ P. Since ũ is relatively p-quasi continuous one deduces from
Proposition 7.17 (v) and (vi) that for all m ∈ N there exists a Vm ⊂ Ω relatively
open in Ω such that capp,Ω(Vm) <

1
m , P ⊂ Vm and the restriction of ũ to Ω \ Vm is
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continuous. So there exists a ζm ∈ W̃1,p(Ω) such that ‖ζm‖p1,p <
1
m and ζm > 1 a.e.

on Vm ∩Ω for all m ∈N. Moreover, due to Proposition A.41 we may additionally
assume that 0 6 ζm 6 1 a.e. on Ω for all m ∈N. Set vm := u− ζmu for all m ∈N.
Then vm ∈W1,p(Ω) by Lemma A.42. Moreover,

‖u− vm‖p1,p = ‖ζmu‖
p
1,p

6
∫
Ω
|ζm|

p|u|p + 2p
∫
Ω
|∇ζm|p|u|p + 2p

∫
Ω
|ζm|

p|∇u|p

6 (2M)p‖ζm‖p1,p + 2
p

∫
Ω
|ζm|

p|∇u|p

for all m ∈ N. Note that ζm → 0 in W1,p(Ω) for m → ∞. So after going to
a subsequence we may assume that ζm → 0 a.e. on Ω. Then it follows that∫
|ζm|

p|∇u|p → 0 by dominated convergence. Hence we have established that
vm → u in W1,p(Ω).

Let m ∈ N be fixed. We will show that vm ∈ W̃1,p
0 (Ω). Let z ∈ Γ \N. We

consider the two disjoint cases that z ∈ Vm or that z ∈ Ω \ Vm. Suppose first that
z ∈ Vm. Then there exists an R > 0 such that (B(z,R)∩Ω) ⊂ Vm. So

1

rd

∫
B(z,r)∩Ω

|vm| 6
1

rd

∫
B(z,r)∩Ω

M|1− ζm| = 0

for all r ∈ (0,R) since ζm = 1 a.e. on Vm ∩Ω. Next suppose that z ∈ Ω \ Vm.
Then ũ(z) = limn→∞ un(z) = 0 since z /∈ P and z /∈ N. Moreover, ũ|Ω\Vm

is
continuous. Let ε > 0. Then there exists an R > 0 such that |ũ(x)| < ε for all
x ∈ B(z,R)∩ (Ω \ Vm). Hence

1

rd

∫
B(z,r)∩Ω

|vm| 6
1

rd

∫
B(z,r)∩Ω∩Vm

M|1− ζm|+
1

rd

∫
B(z,r)∩(Ω\Vm)

|ũ| 6 ε|B(0, 1)|

for all r ∈ (0,R). So we have verified that vm satisfies (7.6) for all z ∈ Γ \N.
Therefore vm ∈ W̃1,p

0 (Ω) by Proposition 7.37. As vm → u in W1,p(Ω) and W̃1,p
0 (Ω)

is closed in W1,p(Ω), it follows that u ∈ W̃1,p
0 (Ω).

We now reduce the general case to the case considered above. First suppose that
u > 0 a.e. on Ω. Let M > 0. Using Proposition A.41, we obtain u∧M ∈ Vp(Ω). By
the above we know that u∧M ∈ W̃1,p

0 (Ω). Moreover, u∧M→ u in W1,p(Ω) for
M → ∞. As W̃1,p

0 (Ω) is a closed subspace of W1,p(Ω), this implies u ∈ W̃1,p
0 (Ω).

Finally, let us consider the general case. It follows from Proposition A.41 that both
u∨ 0 and (−u)∨ 0 are elements of Vp(Ω). By linearity and the above we obtain
u ∈ W̃1,p

0 (Ω).

In Section 7.1 we immediately established several inclusions between the various
introduced spaces. In combination with Theorem 7.38 we can summarise the
relationships in the following way.
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Corollary 7.39. One has the following inclusion properties.

W
1,p
0 (Ω) Vp(Ω) W̃

1,p
0 (Ω) W1,p(Rd)

W
1,p
0 (Ω) W̃1,p(Ω) W1,p(Ω)

↪→→ ↪→→
T. 7.38

↪→→∗
↪→

→

⊂

⊂ ↪→→

All the spaces along the ‘middle’ path are equipped with the norm ofW1,p(Ω). The arrow
↪→ expresses that the first space is a closed subspace of the second, and correspondingly for
the arrow

∗
↪→ after an extension by 0.

Remark 7.40. Clearly the space W1,p
0 (Ω) is a linear subspace of W1,p(Ω). If Γ has

Lebesgue measure zero, then W1,p
0 (Ω) is closed in W1,p(Ω) as W1,p

0 (Ω) = W̃1,p
0 (Ω).

In general W1,p
0 (Ω) does not need to be closed in W1,p(Ω). Still, one can make

W
1,p
0 (Ω) into a Banach space that is continuously embedded into W1,p(Ω) by

equipping it with a suitable quotient topology of W1,p(Rd). Since we do not require
these results in this chapter, we will not provide further details.

In Section 7.5 we will give more corollaries and examples to Theorem 7.38. To
this end we need some additional material that we introduce in the next section.

7.4 Related results

In this section we collect several related results for the spaceW1,p
0 (Ω). The following

theorem is a special case of [AH96, Theorem 9.1.3], where the more delicate case of
higher-order derivatives is considered. For this special case a simplified proof based
on the fact that W1,p(Rd) is closed under truncation is given in [AH96, Section 9.2].

Theorem 7.41 (Havin and Bagby). Let p ∈ (1,∞) and let u ∈ W1,p(Rd). Then
u|Ω ∈W1,p

0 (Ω) if and only if

lim
r→0+

1

rd

∫
B(z,r)

|u| = 0

for p-quasi every z ∈ Rd \Ω. So if ũ is a p-quasi continuous representative of u, then
u|Ω ∈W1,p

0 (Ω) if and only if ũ(z) = 0 for p-quasi every z ∈ Rd \Ω.

Remark 7.42. The result as stated above extends to the case p = 1 for a suitable
notion of the 1-capacity that was studied in [FZ72]. This can be readily obtained
from the proof in [AH96, Section 9.2]. We also refer to [AH96, Section 10.3] for a
discussion in a more general setting that includes the higher-order case.
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Figure 7.3. An example of an open set Ω ⊂ R2 where the weak trace is not
unique and the 2-fine boundary is not all of Γ .

The next result is a refinement of Theorem 7.41 in that it requires the p-quasi
continuous representative to vanish only on a part of Γ . The formulation relies
on the p-fine topology. Recall that the p-fine topology is finer than the Euclidean
topology by Proposition 7.30. Consequently, the p-fine boundary of Ω is contained
in Γ ; see also Remark 7.31.

Theorem 7.43 (cf. [MZ97, Theorem 2.147]). Let p ∈ (1,d ]. Let u ∈ W1,p(Rd) and
let ũ be a p-quasi continuous representative of u. Then u|Ω ∈ W1,p

0 (Ω) if and only if
ũ(z) = 0 for p-quasi every z in the p-fine boundary of Ω.

The following example shows that the p-fine boundary of Ω can be a proper
subset of Γ . We point out that the arguments can be adapted to work in any
dimension d > 2 and for all p ∈ (1,d ].

Example 7.44. We shall consider a simplified nonconnected 2-dimensional version
of Example 7.6. Let (rn) be a decreasing sequence of positive numbers such that
rn 6 4−n for all n ∈N. Let Ω ⊂ R2 be given by

Ω =

∞⋃
m=1

m−1⋃
k=1

B
(
(2−m, km), rm

)
;

see also Figure 7.3.
Clearly Γs := {0}× [0, 1] is contained in Γ . For all n ∈ N consider the function

un ∈W1,p(Ω)∩C(Ω) defined by un = 0 on

n⋃
m=1

m−1⋃
k=1

B
(
(2−m, km), rm

)
and un = 1 elsewhere in Ω. It follows that un → 0 in W1,p(Ω) and un > 1 in
a relative neighbourhood of Γs in Ω. Hence, capp,Ω(Γs) = 0, but Hd−1(Γs) > 0.
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7 Elements of Sobolev space with weak trace zero

Moreover, 1Γs is a weak r-trace of zero in W1,p(Ω) for all r ∈ [1,∞). We note that
capp(Γs) > 0.

Suppose now that p = 2. We shall show that Γs is disjoint from the 2-fine
boundary of Ω if one chooses the sequence (rn) appropriately. Take (rn) such that
for all n ∈N one has

∞∑
m=n

(m− 1) cap2(B(0, rm)) < 2
−n. (7.7)

Let z ∈ Γs. Let n ∈N and s ∈ (2−(n+1), 2−n]. Then it follows from (7.7) that

cap2(Ω∩B(z, s))
1

s
6 cap2

(
Ω∩

(
[0, 2−n]× [0, 1]

))
2n+1 6 2−n2n+1 = 2.

Therefore ∫1
0

cap2(Ω∩B(z, s))
1

s
ds <∞.

This means that Ω is 2-thin at z. Hence z is not in the 2-fine boundary of Ω by
Remark 7.31. 3

The following extends the corresponding result for p = 2 in [AW03, Theorem 2.3].

Theorem 7.45 (cf. [Bie09a, Corollary 4.4]). Let p ∈ (1,∞) and let u ∈ W̃1,p(Ω). Let
ũ : Ω → R be a relatively p-quasi continuous representative of u. Then u ∈ W1,p

0 (Ω) if
and only if ũ(z) = 0 for relatively p-quasi every z ∈ Γ .

For p = 2, the notion of the relative capacity has recently been extended to
Sobolev spaces on σ-compact Riemannian manifolds, see [ABE12, Section 5]. In
particular, a corresponding version of Theorem 7.45 holds in the manifold setting,
see [ABE12, Theorem 5.2].

The next result by Swanson and Ziemer characterises W1,p
0 (Ω) in some sense

intrinsically in W1,p(Ω). In its proof Proposition 7.37 was established as an inter-
mediate result. We recall that the latter proposition was a central ingredient for
Theorem 7.38,

Theorem 7.46 (cf. [SZ99, Theorem 2.2]). Let p ∈ (1,∞) and let u ∈ W1,p(Ω). Then
u ∈W1,p

0 (Ω) if and only if

lim
r→0+

1

rd

∫
Ω∩B(z,r)

|u| = 0

for p-quasi every z ∈ Γ .

The following result extends Theorem 7.46 to the case p = 1. It is the lack of
reflexivity that complicates matters in this case. See for example [FZ72, Section 4],
where a version of the 1-capacity is studied with tools from geometric measure
theory.
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7.5 Consequences of the extension result

Theorem 7.47 (cf. [Swa07, Theorem 5.2]). Let u ∈W1,1(Ω). Then u ∈W1,1
0 (Ω) if and

only if

lim
r→0+

1

rd

∫
Ω∩B(z,r)

|u| = 0

for Hd−1-a.e. z ∈ Γ .

7.5 Consequences of the extension result

In this section we give corollaries to Theorem 7.38 and provide examples where
Vp(Ω) 6= W

1,p
0 (Ω) or Vp(Ω) 6= W

1,p
0 (Ω). The following is an immediate con-

sequence of Theorem 7.38 and Theorem A.46.

Corollary 7.48. Suppose that Ω has continuous boundary. Then Vp(Ω) =W1,p
0 (Ω).

Corollary 7.49. Suppose that Ω is topologically regular and p > d. Then Vp(Ω) =

W
1,p
0 (Ω).

Proof. Let u ∈ Vp(Ω). We shall show that u ∈W1,p
0 (Ω). By Theorem 7.38 we have

u∗ ∈ W1,p(Rd). As p > d, we may assume that u∗ ∈ W1,p(Rd) ∩ Cb(R
d) by the

Sobolev embedding theorem, Theorem A.50. Clearly u∗(z) = 0 for all z ∈ Rd \Ω.
Let z ∈ Γ . As Ω is topologically regular, there exists a sequence zn ∈ Rd \Ω

such that limn→∞ zn = z. It follows from the continuity of u∗ that u∗(z) = 0. So
u∗|Ω ∈ W

1,p(Ω) ∩C(Ω) vanishes pointwise on Γ . Now Proposition A.43 implies
that u ∈W1,p

0 (Ω).

Remark 7.50. Corollary 7.49 does not hold without the assumption that Ω is
topologically regular. For example, let Ω = Rd \ {0} for a d > 2 and suppose that
p > d. We show that W1,p

0 (Ω) 6= Vp(Ω). Let ζ ∈ C∞c (Rd) be such that ζ(0) = 1.
Clearly ζ ∈ Vp(Ω) as Hd−1({0}) = 0. Assume, for contradiction, that ζ ∈W1,p

0 (Ω).
Then there exists a sequence (ζn) in C∞c (Rd) such that supp ζn ⊂ Ω and ζn → ζ

in W1,p(Ω). Then ζ∗n → ζ∗ in W1,p(Rd). By the Sobolev embedding theorem,
Theorem A.50, it follows that 0 = ζm(0) → ζ(0) = 1, which is a contradiction.
Hence ζ /∈W1,p

0 (Ω).
We point out that for p 6 d and Ω = Rd \ {0} one has W1,p

0 (Ω) = W1,p(Rd),
see [EE87, Corollary VIII.6.4].

Due to connections to the stability of the Dirichlet problem, it is well studied
when W1,p

0 (Ω) and W1,p
0 (Ω) are equal. In the case that Ω is topologically regular,

several potential theoretic conditions have been presented in [AH96, Theorem 11.4.1]
that are equivalent to this equality. The following theorem lists two of these
conditions. In combination with Theorem 7.38 this immediately yields sufficient
conditions on Ω which ensure that Vp(Ω) =W1,p

0 (Ω).
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7 Elements of Sobolev space with weak trace zero

Theorem 7.51 (cf. [AH96, Theorem 11.4.1]). Suppose that Ω is topologically regular
and p ∈ (1,d ]. The following statements are equivalent.

(i) W1,p
0 (Ω) =W1,p

0 (Ω).

(ii) capp(G \Ω) = capp(G \Ω) for all G ⊂ Rd open.

(iii) capp(Γ \ bp(R
d \Ω)) = 0.

The following is a basic example for a measure geometric condition that can
be obtained using properties of the p-fine topology. Its proof is inspired by the
techniques in [Hed00, p. 95].

Theorem 7.52. Let p ∈ (1,d ]. Suppose that there exists a p-polar set P ⊂ Rd such that
no point in Γ \ P is a Lebesgue density point of Ω. Then Vp(Ω) =W1,p

0 (Ω) =W1,p
0 (Ω).

Proof. First observe that (Rd \Ω)∪bp(Rd \Ω) is p-finely closed by Proposition 7.30.
Hence the set Ω \ bp(R

d \Ω), which is its complement in Rd, is p-finely open. By
Proposition 7.36 the set Ω \ bp(R

d \Ω) is open in the Lebesgue density topology.
Consequently, every point of Ω \ bp(R

d \Ω) is a Lebesgue density point of Ω.
Let z ∈ Γ \ P. It follows from the assumption that z /∈ Ω \ bp(R

d \Ω). Hence
z ∈ bp(Rd \Ω). This shows that Γ \ P ⊂ bp(Rd \Ω).

Now let u ∈ W1,p(Rd) be such that u = 0 a.e. on Rd \Ω. Let ũ be a p-quasi
continuous representative of u. By Theorem 7.23 it follows that ũ(x) = 0 for p-quasi
every x ∈ Rd \Ω. We may suppose that ũ(x) = 0 for all x ∈ Rd \Ω. Furthermore,
the function ũ is p-finely continuous p-quasi everywhere in Rd by Proposition 7.33.
Enlarging P if necessary, we may suppose that ũ is p-finely continuous at every
point in Rd \ P. Let x0 ∈ Rd \ P. Suppose that ũ(x0) 6= 0 and let ε = |ũ(x0)|/2. Then

E :=
{
x ∈ Rd : |ũ(x) − ũ(x0)| > ε

}
is p-thin at x0 by Lemma 7.32. Clearly Rd \Ω ⊂ E. Hence Rd \Ω is p-thin at x0. So
x0 /∈ bp(Rd \Ω) and therefore in particular x0 /∈ Γ \ P. This shows that ũ(x) = 0 for
p-quasi every x ∈ Rd \Ω. Hence u|Ω ∈W1,p

0 (Ω) by Theorem 7.41. We have proved
W
1,p
0 (Ω) =W1,p

0 (Ω). Now it follows from Theorem 7.38 that Vp(Ω) =W1,p
0 (Ω).

Remark 7.53. Suppose p ∈ (1,d ]. If Ω is Lipschitz, then clearly the conditions
of Theorem 7.52 are satisfied for P = ∅. Next suppose that Ω ⊂ R2 is a domain
as depicted in Figure 7.4. We assume that there are holes arbitrarily close to all
boundary points in the grey line segment on the left. Then Ω does not have
continuous boundary. Moreover, we can arrange that the Lebesgue density of
the holes is negligible at all points in the boundary. Then this domain satisfies
W
1,p
0 (Ω) =W1,p

0 (Ω) by Theorem 7.52.
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7.5 Consequences of the extension result

Figure 7.4. An open set Ω ⊂ R2 that does not have continuous boundary,
but which satisfies W1,p

0 (Ω) =W1,p
0 (Ω) by Theorem 7.52.

We finally present several examples.

Example 7.54. Suppose d > 1 and p ∈ (1,d). Choosing h(r) = rd−1, α = 1 and
c(r) = rd−p in [AH96, Theorem 5.4.1] yields a compact set E ⊂ Rd such that
Hd−1(E) = 0, but capp(E) > 0. We may suppose E ⊂ B(0, 1). Let Ω = B(0, 2) \ E,
see Figure 7.5. Let ζ ∈ C∞c (Rd) be such that supp ζ ⊂ B(0, 2) and ζ = 1 in B(0, 1).
Note that ζ ∈ Vp(Ω). But ζ /∈W1,p

0 (Ω) by Theorem 7.41. 3

Note that the domain Ω in Example 7.54 is not topologically regular. In the
next example we shall use the construction from [Hed00, Example, p. 94] to obtain
a topologically regular domain Ω such that W1,p

0 (Ω) 6= W
1,p
0 (Ω) and Vp(Ω) =

W
1,p
0 (Ω). Moreover, we point out that the construction can be adapted to allow

p = d; see [AH96, Theorem 5.4.1].

Example 7.55. Suppose d > 1 and p ∈ (1,d). Let E ⊂ B(0, 1) be as in Example 7.54.
Let (xn) be a sequence of pairwise distinct elements in B(0, 1) \ E such that the set
of limit points of (xn) is equal to E. We may suppose that dist(xn,E) < 1

n for all
n ∈ N. Let (rn) be a sequence of strictly positive numbers such that rn 6 2−n,
B(xn, 2rn) ⊂ (B(0, 1) \ E) and B(xk, 2rk)∩ B(xn, 2rn) = ∅ for all k,n ∈ N such that

Figure 7.5. A ball where in the interior a compact set of positive p-capacity
and Hd−1-measure zero has been removed.
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7 Elements of Sobolev space with weak trace zero

k 6= n. By further decreasing the elements of (rn), if necessary, we may suppose
that

capp

( ⋃
n∈N

B(xn, rn)
)
< capp(E).

We define
Ω := B(0, 2) \

(
E∪

⋃
n∈N

B(xn, rn)
)

.

We first prove a few topological properties of Ω.
Claim 1: Ω is open. It suffices to show that

E∪
⋃
n∈N

B(xn, rn) (7.8)

is closed. This is clear as the set in (7.8) contains its limit points.
Claim 2: Ω is equal to the set

A := B(0, 2) \
⋃
n∈N

B(xn, rn).

Since A is closed and Ω ⊂ A, clearly Ω ⊂ A. Conversely, it is readily verified that
every point in A is a limit point of Ω. This shows that Ω = A.

Claim 3: Ω is topologically regular. First observe that

Γ = Ω \Ω = ∂B(0, 2)∪ E∪
⋃
n∈N

∂B(xn, rn).

Clearly ∂Ω ⊂ Γ . The converse inclusion follows by observing that every point in Γ
is a limit point of Rd \Ω.

By choosing G = B(0, 2) in Theorem 7.51 (ii), it follows that W1,p
0 (Ω) 6=W1,p

0 (Ω).
We shall prove that Vp(Ω) = W

1,p
0 (Ω). The inclusion Vp(Ω) ⊂ W1,p

0 (Ω) follows
from Theorem 7.38. For the converse, let u ∈W1,p

0 (Ω). We first assume in addition
that u ∈ L∞(Ω) and u > 0 a.e. on Ω. Let

Ωn := B(0, 2) \
n⋃
k=1

B(xk, rk)

for all n ∈N. Then Ωn is Lipschitz and Ω ⊂ Ωn for all n ∈N. So it follows from
Remark 7.14 that u∗|Ωn ∈W

1,p
0 (Ωn) for all n ∈N. For all n ∈N let un ∈ C∞c (Ωn)

be such that 0 6 un 6 2‖u‖∞ and ‖u∗|Ωn − un‖W1,p(Ωn)
6 1

n . Then un|Ω → u

in W1,p(Ω). Since Hd−1(E) = 0, it follows that limn→∞Hd−1(Γ \ ∂Ωn) = 0. This
implies that un|Γ → 0 in L1(Γ). Hence u ∈ Vp1 (Ω). For the general case, we
note that W1,p

0 (Ω) = W̃
1,p
0 (Ω) since Γ is a Lebesgue nullset as Hd−1(Γ) < ∞.
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7.5 Consequences of the extension result

Ωl Ωr

Figure 7.6. This modified version of Figure 7.4 shows an open set Ω =

Ωl ∪Ωr ⊂ R2 where W1,p
0 (Ω) = Vp(Ω) 6=W1,p

0 (Ω) by Example 7.56.

Therefore W1,p
0 (Ω) is a closed subspace of W1,p(Ω) and by Proposition A.41 we can

approximate u in W1,p(Ω) by elements in W1,p
0 (Ω) ∩ L∞(Ω). Then u ∈ Vp1 (Ω) by

Lemma 7.7. So Vp1 (Ω) =W1,p
0 (Ω). This shows that W1,p

0 (Ω) is properly contained
in Vp(Ω) =W1,p

0 (Ω). 3

For simplicity we assume in the following example that d = 2. It is clear that
one can similarly obtain examples for every d > 2.

Example 7.56. Suppose that d = 2 and p ∈ (1,d ]. We consider a domain Ω ⊂ R2 as
depicted in Figure 7.6. More precisely, suppose that Ω =

(
(−1, 1)× (0, 1)

)
\U,

where U ⊂ (0, 1)2 is the open set considered in Example 7.44. Clearly Ω is
topologically regular. Using the same argument as in Example 7.55, we obtain
that W1,p

0 (Ω) 6= W
1,p
0 (Ω), provided the radii of the holes decrease sufficiently

quickly. Next we show that Vp(Ω) = W
1,p
0 (Ω). Let u ∈ Vp(Ω). Set Ωl := Ω ∩(

(−1, 0)× (0, 1)
)

and Ωr := Ω ∩
(
(0, 1)× (0, 1)

)
as indicated in Figure 7.6. Then

Ω = Ωl ∪Ωr, u|Ωl ∈ Vp(Ωl) and u|Ωr ∈ Vp(Ωr). So it follows from Theorem 7.52

that u|Ωl ∈W
1,p
0 (Ωl) and u|Ωr ∈W

1,p
0 (Ωr). Consequently u ∈W1,p

0 (Ω). This shows
that Vp(Ω) =W1,p

0 (Ω) is properly contained in W1,p
0 (Ω). 3

Remark 7.57. Suppose d > 1 and p ∈ (1,d ]. By suitably combining Example 7.56

and Example 7.55, one can obtain a topologically regular bounded open set Ω such
that Hd−1(Γ) < ∞ and Vp(Ω) is different from both W1,p

0 (Ω) and W1,p
0 (Ω). We

point out that it can be arranged that Ω is connected. For example, the domain in
Example 7.54 is connected by [LMZ86, Exercise 6.C.22]. This can be used to show
that the domain in Example 7.55 is connected.
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7 Elements of Sobolev space with weak trace zero

7.6 Order ideals and the space of elements with weak

trace zero

We repeat that in this chapter we always deal with real spaces in order to simplify
the exposition.

Definition 7.58. An ordered vector space is a vector space V equipped with a
partial order 6 such that the following two properties are satisfied.

(i) If x,y ∈ V and x 6 y, then x+ z 6 y+ z for all z ∈ V .

(ii) If x,y ∈ V and x 6 y, then αx 6 αy for all α > 0.

A Riesz space is an ordered vector space (V ,6) such that for all x,y ∈ V there
exists the supremum x∨ y := sup{x,y} and the infimum x∧ y := inf{x,y} with
respect to 6. Let (V ,6) be a Riesz space. Then |x| := x∨−x for all x ∈ V . A vector
subspace W of V is called an ideal of V if for all x ∈ W and y ∈ V the relation
|y| 6 |x| implies y ∈W. If V is in addition a Banach space such that |u| 6 |v| implies
‖u‖ 6 ‖v‖ for all u, v ∈ V , then it is called a Banach lattice.

Example 7.59. Let (X,Σ,µ) be a measure space. Let p ∈ [1,∞) and let Lp(X) be the
usual Lebesgue space of p-integrable measurable functions on X that are identified
if they are equal µ-a.e. We define a partial order 6 in Lp(X) by letting u 6 v if and
only if u 6 v µ-a.e. on X. Then (Lp(X),6) is a Riesz space. Furthermore, Lp(X) is a
Banach lattice.

Let A ∈ Σ be a measurable subset of X. Then the set

{u ∈ Lp(X) : u = 0 µ-a.e. on A} (7.9)

is easily seen to be a closed ideal of Lp(X). 3

The following description of closed ideals of Lp(X) is a special case of [Sch74,
Example 2 on p. 157].

Proposition 7.60 (Schaefer). Let (X,Σ,µ) be a σ-finite measure space. Let p ∈ [1,∞).
Then every closed ideal of Lp(X) is of the form (7.9) for some measurable A ∈ Σ.

Remark 7.61. It was also shown in [Sch74, Example 2 on p. 157] that the statement
of the proposition does in general not extend to p =∞.

It follows from Proposition A.41 that W1,p(Ω) and W̃1,p(Ω) are Riesz subspaces
of Lp(Ω). Moreover, by Theorem 7.23 the induced order on W̃1,p(Ω) is compatible
with the finer structure of the Sobolev space in the following sense.

Corollary 7.62. Let u, v ∈ W̃1,p(Ω). Then u 6 v a.e. on Ω if and only if ũ 6 ṽ relatively
p-q.e. on Ω.
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7.6 Order ideals and the space of elements with weak trace zero

Remark 7.63. It follows from Remark 7.25 that a corresponding statement holds
for the p-quasi continuous representatives in W1,p(Ω) for a general open Ω ⊂ Rd.

We are interested in the closed ideals of Sobolev spaces. Taking the finer structure
of Sobolev spaces into consideration, it is not surprising that the Lebesgue measure
in general does not suffice any more to distinguish closed ideals.

Example 7.64. Let A ⊂ Ω be Borel measurable. Define

D0(A) =
{
u ∈ W̃1,p(Ω) : ũ = 0 relatively p-q.e. on A

}
. (7.10)

Then D0(A) is closed ideal in W̃1,p(Ω). The two claims follow from Proposition 7.26

and Corollary 7.62. 3

The following result shows that closed ideals in W̃1,p(Ω) or W1,p(Rd) can be
described similarly as those of Lp(X) in Proposition 7.60, by using quasi continuous
representatives and capacity instead of the Lebesgue measure. We note that the
proof of [Sto93, Theorem 1] also works for p 6= 2 by the remark on [Sto93, p. 267].

Theorem 7.65 (Stollmann, [Sto93, Theorem 1]). Suppose p ∈ (1,∞). Let W be a closed
ideal of W̃1,p(Ω). Then there exists a Borel measurable set A ⊂ Ω such that W = D0(A),
where D0(A) is defined as in (7.10).

Using Proposition A.41 it is readily checked that W1,p
0 (Ω) is a closed ideal of

both W̃1,p(Ω) and W1,p(Rd). Then Theorem 7.65 allows to obtain an easy proof
for both Theorem 7.45 and Theorem 7.41. For details, see [AW03, Theorem 2.3]
and [AM95, Theorem 1.1]. We next show that Theorem 7.65 can be used to obtain
similar descriptions for Vp(Ω).

Theorem 7.66. The space Vp(Ω) is a closed ideal of W̃1,p(Ω) and, after extension by 0, of
W1,p(Rd). Moreover, there exist Borel sets A ⊂ Γ and M ⊂ Rd \Ω such that

Vp(Ω) =
{
u ∈ W̃1,p(Ω) : ũ = 0 relatively p-q.e. on A

}
=
{
u|Ω : u ∈W1,p(Rd) such that ũ = 0 p-q.e. on M

}
.

(7.11)

Proof. It follows as in the proof of Lemma 7.7 that the space Vp(Ω) is closed in
W̃1,p(Ω). Let u ∈ W̃1,p(Ω), w ∈ Vp(Ω) and suppose |u| 6 |w|. Due to Proposi-
tion A.41 we may suppose 0 6 u 6 w a.e. on Ω. Let (un) and (wn) be sequences
in W1,p(Ω) ∩ Cc(Ω) such that limn→∞ un = u and limn→∞wn = w in W1,p(Ω),
wn|Γloc → 0 in L1loc(Γloc) and wn(z) = 0 for all z ∈ Γ \ Γloc and n ∈ N. We may
assume that un > 0 and wn > 0 for all n ∈N. Define vn := un ∧wn for all n ∈N.
Then limn→∞ vn = u in W1,p(Ω) by Proposition A.41. Moreover, 0 6 vn|Γ 6 wn|Γ
for all n ∈N. It follows that u ∈ Vp(Ω). Hence Vp(Ω) is a closed ideal in W̃1,p(Ω).
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It follows from Corollary 7.39 that Vp(Ω) is, when extending elements by 0 to
Rd, a closed subspace of W1,p(Rd). If u ∈W1,p(Rd) and w ∈ Vp(Ω) are such that
0 6 u 6 w∗ a.e. on Rd, then u|Ω ∈ W̃1,p(Ω) and by the above u|Ω ∈ Vp(Ω).

Now it follows from Theorem 7.65 that there exist Borel sets A ⊂ Ω and M ⊂ Rd

such that (7.11) holds. It remains to show that we can arrange that A∩Ω = ∅ and
M∩Ω = ∅. Let K ⊂ Ω be compact. There exists a ζ ∈ C∞c (Ω) such that ζ = 1 on K.
Clearly ζ ∈ Vp(Ω). Hence capp,Ω(A∩K) = 0 and capp(M∩K) = 0. Exhausting Ω
with compact sets finishes the proof.

Remark 7.67. Let M ⊂ Rd \Ω be as in Theorem 7.66.
1. It is clear that M may be changed by a p-polar set without affecting (7.11). It

follows from Theorem 7.23 that

W
1,p
0 (Ω) =

{
u ∈W1,p(Rd) : ũ = 0 p-q.e. on R \Ω

}
. (7.12)

Hence we may assume R \Ω ⊂M by Theorem 7.38.
2. It can happen that both capp(Γ \M) > 0 and capp(Γ ∩M) > 0. In fact,

suppose d > 1 and p ∈ (1,d ]. Then there exists a bounded open set Ω such that
W
1,p
0 (Ω) ( Vp(Ω) ( W

1,p
0 (Ω) by Remark 7.57. By the previous remark we may

assume that R \Ω ⊂M. Then it follows from Theorem 7.41 that capp(Γ \M) > 0.
The property capp(Γ ∩M) > 0 is clear by (7.12).

3. In general, the set M is not uniquely determined up to a p-polar set. This
is in contrast to Proposition 7.60, where the measurable set A ⊂ X is determined
up to a µ-nullset. For example, suppose that Ω is a bounded Lipschitz domain.
Then W1,p

0 (Ω) = Vp(Ω) =W1,p
0 (Ω) by Remark 7.14. So one can choose for example

M = Rd \Ω or M = Rd \Ω in Theorem 7.66. We note, however, that Rd \Ω is the
p-fine closure of Rd \Ω by the argument in the proof of Theorem 7.52.

7.7 Other notions of traces

To complement our study of weak traces, in this section we shall briefly discuss two
other approaches to introduce traces in Sobolev spaces on general domains. First
we shall make some remarks about the ‘classical’ trace theory for Sobolev spaces,
which is based on regularity assumptions on the domain. We refer to [JW84] for
an overview of the classical theory and a general treatment that includes other
classes of function spaces and fractional-order Sobolev spaces. The results in [JW84]
characterise the trace space as a suitable Besov space and assert the existence
of continuous extension and restriction operators, provided the domain satisfies
certain regularity conditions. The essential notion there is that of an s-set.

Definition 7.68. Let A ⊂ Rd and s ∈ (0,d ]. Then A is called an s-set if there exist
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constants c1, c2 > 0 such that

c1r
s 6 Hs(A∩B(x, r)) 6 c2rs

for all x ∈ A and r ∈ (0, 1].

It follows directly from the definition that an s-set has Hausdorff dimension s.
The following is a special case of [JW84, Theorem VIII.1]. Note that the assumptions
are satisfied if Ω is a bounded Lipschitz domain.

Theorem 7.69. Let p ∈ (1,∞). Suppose thatΩ is a d-set and Γ is a (d− 1)-set. Moreover,
suppose that there exists a bounded linear extension operator from W1,p(Ω) into W1,p(Rd).
Then there exists a bounded linear trace operator from W1,p(Ω) onto the Besov space
B
p,p
β (Γ) where β = 1− 1

p .

Under weak additional assumptions, the kernel of the trace operator in The-
orem 7.69 has been described in [Mar87] and [Wal91]. These descriptions extend
Theorem A.49 to more general domains and fractional-order Sobolev spaces.

7.7.1 Maz’ya’s approach

The first approach that we consider in this section is due to Maz’ya. It is closely
related to the notion of the weak trace. In [Maz85, Section 3.6 and Section 4.11]
Maz’ya considers the Sobolev-type space W1

p,r(Ω, Γ) defined as the completion of
the space

Yp,r(Ω) :=
{
u ∈W1,1(Ω)∩C∞(Ω)∩C(Ω) : u|Γ ∈ Lr(Γ)

}
(7.13)

with respect to the norm
‖∇u‖Lp(Ω) + ‖u|Γ‖Lr(Γ).

It is clear that elements of this completion have traces in Lr(Γ). Based on the
isoperimetric inequality, Maz’ya in particular shows that the following remarkable
Friedrichs-type inequality holds for general open sets Ω. There exists a C > 0 such
that

‖u‖Ld/(d−1)(Ω) 6 C
(
‖∇u‖L1(Ω) + ‖u|Γ‖Ld/(d−1)(Γ)

)
for all u ∈ Y1,d/(d−1)(Ω), see [Maz85, Theorem 3.6.3]. As a more concrete application
of these results, suppose that Ω has finite Lebesgue measure and let p = r = 2.
Then there exists a C > 0 such that

‖u‖L2d/(d−1)(Ω) 6 C
(
‖∇u‖L2(Ω) + ‖u|Γ‖L2(Γ)

)
(7.14)

for all u ∈ Y2,2(Ω), see [Maz85, Subsection 4.11.1]. Maz’ya’s inequality (7.14) plays
a central role in [Dan00; AW03; AE11]. It implies that the completion W1

2,2(Ω, Γ)
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7 Elements of Sobolev space with weak trace zero

Figure 7.7. A domain where the points in the dark grey line segment on the
left are ‘inaccessible’ from the inside with respect to the geodesic metric.

can be understood as a closed subspace of H1(Ω)⊕ L2(Γ). We shall adopt this
viewpoint. In [Dan00; AW03] it was observed that the intersection of {0}⊕ L2(Γ)
and W1

2,2(Ω, Γ) can be nontrivial. So while every element of W1
2,2(Ω, Γ) has a unique

trace, this does not need to be true after a projection on the H1(Ω) component. In
particular, this shows why a weak trace is not unique in general.

7.7.2 Shvartsman’s approach

The second approach that we discuss in this section is due to Shvartsman [Shv10]
and very recent. It allows to define a trace for all functions in W1,p(Ω) on a general
connected domain Ω ⊂ Rd provided that p > d. The latter condition implies that
functions in W1,p(Ω) are locally Hölder continuous. Fix α ∈ (0, 1] and define a
metric ρ on Ω by

ρ(x,y) := ‖x− y‖α + inf
γ

∫
γ

dist(z, Γ)α−1 ds(z),

where the infimum is taken over all rectifiable curves γ inΩ that join x to y. If α = 1,
then the second term in the definition of ρ is simply the geodesic metric on Ω. Now
suppose that α = (p− d)/(p− 1). Then α ∈ (0, 1). In [BS01, Theorem 3.2] it was
proved that functions in W1,p(Ω) are uniformly continuous on Ω with respect to ρ.
So every function admits a unique continuous extension to the Cauchy completion
of (Ω, ρ), which we denote by (Ω∗, ρ∗). It is not hard to see that ρ induces the
Euclidean topology on Ω. It follows that one can consider Ω as an open subset
of Ω∗. We set Γ∗ := Ω∗ \Ω. Note that while every element of Γ∗ corresponds to a
point in Γ , in general this is not a one-to-one correspondence. Consider for example
the domain Ω = (−2, 2)2 \ ([−1, 1]× {0}), a box with a slit. Then this procedure
will introduce ‘upper’ and ‘lower’ boundary points in Γ∗ for the interior of the
slit, which corresponds to cutting the domain open at the slit. Note that this is
basically opposite to what the weak trace does. Moreover, not every point in Γ
corresponds to an element of Γ∗ as we shall see in Example 7.70. Shvartsman’s
trace for an element u ∈W1,p(Ω) is a continuous function defined on Γ∗, namely
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the restriction to Γ∗ of the continuous extension of u to (Ω∗, ρ∗). In particular, this
trace splits where the domain is on ‘different sides’ of the boundary and it is not
defined on the ‘inaccessible’ part of Γ . Furthermore, Shvartsman gives a description
of the trace space, i.e., the space of continuous functions on Γ∗ that are traces of
elements in W1,p(Ω). Finally, we provide two examples of connected domains
where ‘large parts’ of their boundary are ‘inaccessible’. The first example is similar
to the comb-like domain in [Shv10, Figure 3].

Example 7.70. In Figure 7.7 a connected domain in R2 is depicted where some
points in Γ are ‘inaccessible’ from Ω in the metric ρ. More precisely, let x ∈ Ω
and z be a boundary point on the grey line segment on the left. Suppose (xn) is
a sequence of points in Ω such that xn → z in the Euclidean metric. Then the
geodesic distance from x to xn is not bounded for n→∞. In particular, (xn) cannot
be a Cauchy sequence in (Ω, ρ). 3

Example 7.71. We consider the domain in Figure 7.1. Let x ∈ Ω and z ∈ Γs be a
boundary point in the inside of the grey rectangle. Then there exists a sequence
(xn) of points in Ω such that xn → z in the Euclidean metric. While the geodesic
distance from x to xn is uniformly bounded in n, this is certainly not true for the
metric ρ as α ∈ (0, 1) and due to the constant proximity to the boundary inside of
the thinner and thinner cylinders. It follows that all boundary points in the inside
of the grey rectangle are ‘inaccessible’ from Ω in the metric ρ. 3

7.8 Notes and remarks

The notion of what we here call the weak trace has been introduced and studied
in [AE11], although it had previously been used in a more general context in [AE12,
Subsection 4.3]. It was Daners’ study of the Maz’ya inequality (7.14) and Robin
boundary value problems [Dan00] that stimulated some of the developments
in [AW03] and [AE12] and which led to the introduction of this notion.

Considering the practical importance of traces for elements in Sobolev spaces it
is not surprising that there exists a vast array of different approaches that extend
the classical trace results for bounded Lipschitz domains. For p = r = 2, the notion
under investigation here meshes well with the form method in the general sectorial
setting. It allows to obtain meaningful traces for elements in Sobolev spaces on
very rough domains. This allows to study objects like the Dirichlet-to-Neumann
operator [AE11] or elliptic operators with Robin boundary conditions [AW03] on
general domains. The notion is very natural in that it uses an approximation by
Sobolev functions that are continuous on the closure of the domain. Furthermore,
it is accompanied by the corresponding notion of the relative capacity, which
has been encountered before in the study of Dirichlet forms [BH91, Section I.8].
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7 Elements of Sobolev space with weak trace zero

However, a single element of W1,p(Ω) can have multiple weak traces or none at
all. If one is willing to work in a different Sobolev-type space, one can overcome
this by using Maz’ya’s spaces W1

p,r(Ω, Γ), which we mentioned in Section 7.7. In
the case p = r = 2, and specifically when studying Robin problems, the problem of
nonuniqueness can be resolved by going to the regular part of the corresponding
sectorial form, see [AW03, Section 3]. This approach has been employed in a very
recent study of the principal eigenvalue of generalised Robin problems on arbitrary
bounded domains [Dan13, Section 2].
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Appendix

A.1 Basic properties of accretive operators

In this section we collect basic results about linear accretive operators for the
reader’s convenience. Most of the results are standard and can be found in a more
general setting in the literature, see for example [Phi69] and [HP97, Chapter 3].

Definition A.1. Let A be an operator in a Hilbert space H with domain D(A). We
say that A is accretive if Re (Ax | x) > 0 for all x ∈ D(A). If A is accretive and
(I+A) is surjective, we say that A is m-accretive. The operator A is called maximal
accretive if for every accretive operator B with A ⊂ B it follows that A = B.

We first show that every m-accretive operator A is densely defined and satisfies
(0,∞) ⊂ ρ(−A).

Lemma A.2. Let A be an m-accretive operator. Then D(A) is dense in H, i.e., A is densely
defined.

Proof. Let f ∈ D(A)⊥. Then there exists an x ∈ D(A) such that (I+A)x = f. Hence

((I+A)x |y) = 0

for all y ∈ D(A). Choosing y = x yields ‖x‖2 = −Re (Ax | x) 6 0. Thus x = 0 and
f = (I+A)x = 0.

Lemma A.3. Let A be an operator. Then A is m-accretive if and only if (0,∞) ⊂ ρ(−A)
and (λI+A)−1 is accretive for all λ > 0.
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Proof. ‘⇒’: Let A be m-accretive. Since

‖x‖2 6 Re ((I+A)x | x) 6 ‖(I+A)x‖‖x‖

for all x ∈ D(A), it follows that (I+A) : D(A) → H is bijective with a bounded
inverse. This means 1 ∈ ρ(−A). Let R := {z ∈ C : Re z > 0} be the open half-plane
and S := R∩ ρ(−A). Clearly S is open in R. We show that S is closed in R as well.
To this end, assume λ ∈ S. Let x ∈ D(A) and set f := (λI+A)x. Then

Re λ‖(λI+A)−1f‖2 = Re λ‖x‖2 6 Re ((λI+A)x | x) = Re (f | x) 6 ‖f‖‖x‖.

Consequently we have the estimate

‖(λI+A)−1‖ 6 1

Re λ
. (A.1)

Let now (λn)n∈N be a sequence in S such that λn → µ ∈ R for n → ∞. Due to
the analyticity of the resolvent map, the norm of (λnI+A)−1 would blow up for
n→∞ if µ ∈ σ(−A). As this cannot happen due to (A.1), we infer µ ∈ S. Therefore
S is both open and closed in R, hence S = R since 1 ∈ S.
Let λ > 0. Let f ∈ H, set x := (λI+A)−1f ∈ D(A) and observe

Re
(
(λI+A)−1f | f

)
= Re (x | (λI+A)x) > 0.

Hence (λI+A)−1 is accretive. This completes the proof of the ‘only if’ part.
‘⇐’: For the converse, let x ∈ D(A), λ > 0 and f := (λI+A)x. Then

Re ((λI+A)x | x) = Re
(
f | (λI+A)−1f

)
> 0.

Taking the limit λ↘ 0 shows that A is accretive. Surjectivity of (I+A) is obvious.

Lemma A.4. Let A be an accretive operator. Then rg(I+A) is closed if and only if A is
closed.

Proof. Define the map F : grA → rg(I+A) by F(x,Ax) = (I+A)x. Give grA the
norm ‖(x,Ax)‖grA = ‖x‖+ ‖Ax‖ and rg(I+A) the induced norm of H. Clearly
F is continuous and surjective. The inequality ‖x‖+ ‖Ax‖ 6 2‖x‖+ ‖(I+A)x‖ 6
3‖(I+A)x‖ for all x ∈ D(A) implies that F is bijective and bicontinuous. This
proves the claim.

Proposition A.5. Let A be an operator in H. Then A is m-accretive if and only if A is
closed and maximal accretive.

Proof. ‘⇒’: Assume that A is m-accretive and A ⊂ B for an accretive operator B.
Then (I+A) ⊂ (I+ B), where both operators are bijective. Let x ∈ D(B). Then
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there exists an x ′ ∈ D(A) such that (I+A)x ′ = (I+ B)x. Using the injectivity of
the operator I+B, we deduce that x = x ′ ∈ D(A). So A = B. Hence A is maximal
accretive. Since 1 ∈ ρ(−A), it is clear that A is closed.

‘⇐’: This direction follows from [Phi59, Lemma 1.1.3 and the Corollary of
Theorem 1.1.1 on p. 201]. We give a proof to be self-contained.
Assume that f ∈ (rg(I+A))⊥. If f ∈ D(A), then

0 = Re ((I+A)f | f) = ‖f‖2 + Re (Af | f) > ‖f‖2

and f = 0. Therefore we can define an extension A1 of A by D(A1) = span{D(A), f}
and

A1(x+αf) = Ax+αf

for all x ∈ D(A) and α ∈ C. Observe that

Re (A1(x+αf) | x+αf) = Re (Ax | x) + ‖αf‖2 > 0

for all x ∈ D(A) and α ∈ C. This shows that A1 is accretive. Maximality of A
implies that A = A1, i.e., f = 0. Since A is closed, the range of I+A is closed by
Lemma A.4. Therefore rg(I+A) = H and A is m-accretive.

Corollary A.6. If A ∈ L(H) is accretive, then A is m-accretive.

Lemma A.7. Let A be a densely defined, accretive operator. Then kerA ⊂ kerA∗.

Proof. Let y ∈ kerA. Then for all x ∈ D(A) and λ ∈ C we have

Re (Ax | λy) + Re (Ax | x) = Re (A(x+ λy) | x+ λy) > 0.

So (Ax |y) = 0 for all x ∈ D(A). Therefore y ∈ D(A∗) and A∗y = 0.

If A is an m-accretive operator, then it is densely defined by Lemma A.2. There-
fore its adjoint operator exists.

Proposition A.8. Let A be an m-accretive operator. Then we have the following.

(a) A∗ is m-accretive.

(b) kerA = kerA∗.

Proof. Lemma A.3 yields that also A∗ is m-accretive. Then (b) follows from
Lemma A.7.

Lemma A.9. Let A be a densely defined, accretive operator. Then A is closable and its
closure A is accretive.
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Proof. Let (xn) be a sequence in D(A) and y ∈ H. Suppose that limn→∞ xn = 0 and
limn→∞Axn = y. We need to prove that y = 0. To this end, let α > 0 and z ∈ D(A).
By accretivity of A we have

‖ 1αxn + z‖ 6 ‖(I+αA)(
1
αxn + z)‖.

Letting n→∞ and using the triangle inequality yields

‖z‖ 6 ‖y+ z+αAz‖ 6 ‖y+ z‖+α‖Az‖.

Since this holds for any α > 0, it follows that

‖z‖ 6 ‖y+ z‖

for all z ∈ D(A). This implies that y = 0 because D(A) is dense in H.
As the graph of A is simply the closure of grA in H×H, the accretivity of A is

obvious.

Note that the following is a consequence of Proposition A.5 and Lemma A.9.

Corollary A.10. Let A be a densely defined, accretive operator. Then there exists an
m-accretive extension of A.

Proposition A.11. Let A be a densely defined, closed, accretive operator. Then A is
m-accretive if and only if A∗ is accretive.

Proof. If A is m-accretive, then A∗ is m-accretive by Proposition A.8.
To prove the converse, assume that A∗ is accretive. Let B be a maximal accret-

ive extension of A, which exists thanks to Zorn’s lemma. Then B is closed by
Lemma A.9. Hence B is m-accretive by Proposition A.5 and B∗ is m-accretive by
Proposition A.8. Let y ∈ D(B∗). Then

(Ax |y) = (Bx |y) = (x |B∗y)

for all x ∈ D(A) ⊂ D(B). Hence A∗ is an extension of B∗. So A∗ = B∗. Since
A is closed and densely defined, one obtains A = A∗∗ = B∗∗ = B. Thus A is
m-accretive.

We will need the following perturbation result for an invertible m-accretive
operator. The part about the invertibility of the operator A+ S appears to be new.

Proposition A.12. Let A be an m-accretive operator in H. Let S be a bounded sectorial
operator on H with vertex 0 and semi-angle θ. Suppose A is invertible. Then the operator
A+ S is m-accretive and invertible. Moreover,

‖(A+ S)−1‖ 6 2‖A−1‖+ (1+ tan θ)2‖S‖ ‖A−1‖2.
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Proof. Clearly, the operator A+ S is densely defined, accretive and closed. Since
also its adjoint operator (A + S)∗ = A∗ + S∗ is accretive, the operator A + S is
m-accretive by Proposition A.11.

First suppose that there exists an ε > 0 such that Re (Ax | x) > ε ‖x‖2 for all
x ∈ D(A). Then ε ‖x‖2 6 Re ((A+ S)x | x) 6 ‖(A + S)x‖ ‖x‖ and hence ε ‖x‖ 6
‖(A+ S)x‖ for all x ∈ D(A). This implies that A+ S is injective and has closed
range. By Proposition A.8 we obtain(

rg(A+ S)
)⊥

= ker(A+ S)∗ = ker(A+ S) = {0}.

Hence A+ S is invertible. By the second resolvent identity we have

(A+ S)−1 −A−1 = −A−1S(A+ S)−1.

Let P = ReS = 1
2(S+ S

∗). Then by [Kat80, Theorem VI.3.2] there exists a symmetric
operator B ∈ L(H) such that ‖B‖ 6 tan θ and S = P1/2(I+ iB)P1/2. By plugging the
latter into the above equation, we obtain

(A+ S)−1 −A−1 = −
(
A−1P1/2(I+ iB)

)
(P1/2(A+ S)−1).

If x ∈ D(A), then

‖P1/2x‖2 = (Px | x) 6 Re ((A+ S)x | x) 6 ‖(A+ S)x‖ ‖x‖.

So ‖P1/2(A+ S)−1x‖2 6 ‖x‖ ‖(A+ S)−1x‖ for all x ∈ H. Let x ∈ H. Then

‖(A+ S)−1x‖ 6 ‖A−1x‖+ ‖A−1P1/2(I+ iB)‖ ‖P1/2(A+ S)−1x‖

6 ‖A−1x‖+ ‖A−1P1/2(I+ iB)‖ ‖x‖1/2‖(A+ S)−1x‖1/2

6 ‖A−1x‖+ 1
2‖A

−1P1/2(I+ iB)‖2 ‖x‖+ 1
2‖(A+ S)−1x‖.

Hence

‖(A+ S)−1x‖ 6 2‖A−1x‖+ ‖A−1P1/2(I+ iB)‖2 ‖x‖
6 2‖A−1‖ ‖x‖+ (1+ tan θ)2‖S‖ ‖A−1‖2 ‖x‖.

This proves the norm estimate.
Now we prove the general case. Let ε > 0. Replacing A by εI+A gives

‖(εI+A+ S)−1‖ 6 2‖(εI+A)−1‖+ (1+ tan θ)2‖S‖ ‖(εI+A)−1‖2.
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Since A is invertible, it follows that

sup
ε∈(0,1]

2‖(εI+A)−1‖+ (1+ tan θ)2‖S‖ ‖(εI+A)−1‖2 <∞.

Hence A+ S is invertible as the operator norm of the resolvent does not blow up
for ε↘ 0.

Our main motivation to study m-accretive operators is the following theorem.
It highlights the usefulness of m-accretive operators for the study of evolution
equations.

Theorem A.13 (Phillips, cf. [Phi59, Theorem 1.1.3]). Let A be a linear operator in a
Hilbert space H. Then A is m-accretive if and only if −A is the generator of a C0-semigroup
of contraction operators on H.

A.2 General theory of graphs

An efficient introduction to multi-valued operators, which we call graphs here, can
be found in [Haa06, Appendix A]. Alternatively, the monograph [Cro98] deals
extensively with this subject. For the corresponding semigroup theory we refer
to [FY99]. Here we only present the theory that is required in the main text. We
reserve the term operator for the single-valued setting and assume that the reader is
familiar with bounded and unbounded linear operators.

Let H be a Hilbert space. A graph in H is a linear subspace of the Cartesian
product H×H. In the following, let A be a graph in H. If A is the graph of
an operator, we say that A is an operator. For all x ∈ H, we define the set
A[x] = {f ∈ H : (x, f) ∈ A}. Then A is an operator if and only if A[0] = {0}. If A
happens to be the graph of a bounded operator with domain H, we say that A is
a bounded operator and write A ∈ L(H). So, effectively, we identify an operator
with its graph.

We define the range of A by

rgA := {f ∈ H : there exists an x ∈ H such that (x, f) ∈ A},

the domain of A by

D(A) := {x ∈ H : there exists an f ∈ H such that (x, f) ∈ A}

and the kernel of A by

kerA := {x ∈ H : (x, 0) ∈ A}.
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The graph A is called closed if it is closed as a subset of H×H. Taking the
closure of A in H×H, we obtain a closed graph A which is called the closure of A.
The inverse of A is the graph given by

A−1 := {(f, x) ∈ H×H : (x, f) ∈ A}.

If B ∈ L(H) and α ∈ C, then we define the graph B+αA by

B+αA := {(x,Bx+αf) ∈ H×H : (x, f) ∈ A}.

For example, if λ ∈ C, then

(λI−A)−1 = {(λx− f, x) ∈ H×H : (x, f) ∈ A}.

The set
ρ(A) :=

{
λ ∈ C : (λI−A)−1 ∈ L(H)

}
is called the resolvent set of A. Note that if λ ∈ ρ(A), then for all f ∈ H there
exists a unique ‘solution’ xf ∈ H such that f ∈ (λI−A)[xf] and the map f 7→ xf is
continuous. It is easily checked that if ρ(A) is not empty, then A is a closed graph
and A[0] is closed. Much more is true.

Proposition A.14 (cf. [FY99, Theorem 1.6 and Theorem 1.8]). Let A be a graph. Then
ρ(A) is an open subset of C. Moreover, the map R(·,A) : ρ(A)→ L(H) given by

λ 7→ (λI−A)−1

is holomorphic and satisfies the resolvent identity

R(λ,A) − R(µ,A) = (µ− λ)R(µ,A)R(λ,A) (A.2)

for all λ,µ ∈ ρ(A).

If there exists a λ0 ∈ ρ(A) such that R(λ0,A) is compact, then we say that A has
compact resolvent. Note that then R(λ,A) is compact for all λ ∈ ρ(A) by (A.2).

The adjoint of A is the graph A∗ in H that is defined as follows. If y,g ∈ H then
(y,g) ∈ A∗ if and only if (f |y)H = (x |g)H for all (x, f) ∈ A. It is readily verified
that A∗ = (JA)⊥, where the orthogonal complement is taken with respect to H×H
and J : H×H→ H×H is defined by J(x, f) = (−f, x). This shows that the adjoint is
always a closed graph.

The graph A is called accretive if Re (f | x) > 0 for all (x, f) ∈ A. It is called
symmetric if (f | x) ∈ R for all (x, f) ∈ A. Moreover, A is called sectorial if there
exist γ ∈ R and θ ∈ [0, π2 ) such that (f | x) − γ‖x‖2 ∈ Σθ for all (x, f) ∈ A, where

Σθ = {z ∈ C : z = 0 or |arg z| 6 θ}.

139



Appendix

In this case one calls γ a vertex and θ a semi-angle of A. If there exists an ω ∈ R

such thatωI+A is accretive, then we say that A is lower bounded. So accretive and
sectorial graphs are trivially lower bounded. The graph A is called self-adjoint if A
is symmetric and rg(iI+A) = rg(−iI+A) = H. If A is accretive and rg(I+A) = H,
then A is said to be m-accretive. Furthermore, if A is sectorial such that ωI+A is
m-accretive for an ω ∈ R, then we say that A is m-sectorial.

The next lemma is an elementary observation.

Lemma A.15. Let A and B be graphs in H such that A ⊂ B. Let ρ ∈ C and suppose that
rg(ρI+A) = H and ker(ρI+B) = {0}. Then A = B.

It follows from Lemma A.15 that an m-accretive, m-sectorial or self-adjoint graph
is maximal in the following sense.

Proposition A.16. Let A and B be graphs in H such that A ⊂ B. Suppose that A is
m-accretive (or m-sectorial or self-adjoint) and that B is accretive (or sectorial or symmetric,
respectively). Then A = B.

The next result shows that the type of graphs that we are mainly interested in
are a direct sum of a densely defined operator and a closed subspace. This was
studied more generally in [Rof85].

Proposition A.17. Let A be a graph in H. Suppose that A is m-accretive (or m-sectorial
or self-adjoint). Let H1 = A[0]⊥. Then the single-valued part of A defined by A◦ :=
A ∩ (H1 ×H1) is an m-accretive (or m-sectorial or self-adjoint, respectively) operator in
H1. Moreover, D(A) is dense in H1 and H = D(A)⊕A[0] is an orthogonal decomposition.

Proof. Suppose that A is m-accretive. As −1 ∈ ρ(A), the space A[0] is closed. If
(x, f) ∈ A, then Re (f+ h | x) > 0 for all h ∈ A[0]. This shows that D(A) ⊂ A[0]⊥.
Clearly, A◦ is an accretive operator. Now let f ∈ H1. As A is m-accretive, there
exists an x ∈ D(A) ⊂ H1 such that (x, f− x) ∈ A. Then (x, f− x) ∈ A◦. So A◦

is an m-accretive operator in H1. In particular, D(A◦) = D(A) is dense in H1 by
Lemma A.2. This concludes the proof in the m-accretive case.

If A is m-sectorial or self-adjoint, the proof is similar.

The following is a consequence of Proposition A.17 and the corresponding
well-known properties for operators, see Proposition A.8.

Proposition A.18. Let A be a graph in H. If A is m-accretive (or m-sectorial or self-
adjoint), then also A∗ is m-accretive (or m-sectorial or self-adjoint, respectively).

Definition A.19. Let H be a Hilbert space. A map S : [0,∞) → L(H) is called a
(degenerate) C0-semigroup in H if it has the following two properties.

(i) The semigroup law S(t+ s) = S(t)S(s) holds for all t, s > 0.
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(ii) The map S(·)x : [0,∞)→ H is continuous for all x ∈ H.

It follows from the above definition that a (degenerate) C0-semigroup S is
exponentially bounded, i.e., there exist M > 0 and ω ∈ R such that ‖S(t)‖ 6
M exp(ωt) for all t > 0. If the latter holds with M = 1, then S is called quasi-
contractive. If ‖S(t)‖ 6 1 for all t > 0 then S is called contractive.

Proposition A.20 (cf. [Haa06, Proposition A.8.1]). Let H be a Hilbert space. Let S be a
(degenerate) C0-semigroup. Then there exists a unique graph A, called the generator of S,
such that there exists an ω ∈ R for which one has λ ∈ ρ(A) for all λ ∈ C with Re λ > ω
and

R(λ,A)x =
∫∞
0

exp(−λt)S(t)xdt

for all x ∈ H.

Remark A.21. Let A be the generator of the semigroup S and let α ∈ R. Then
it is easily checked that αI + A is the generator of the semigroup T given by
T(t) = exp(αt)S(t) for all t > 0.

Theorem A.22 (graph version of Lumer–Phillips, cf. [FY99, Theorem 2.7 and The-
orem 2.4]). Let H be a Hilbert space and A be an m-accretive graph in H. Then −A is
the generator of a (degenerate) C0-semigroup S in H. Moreover, ‖S(t)‖ 6 1 for all t > 0.
Furthermore, along the orthogonal decomposition H = D(A)⊕A[0], one has S = S0 ⊕ 0,
where S0 is the C0-semigroup in D(A) associated with A◦.

Remark A.23. Due to Remark A.21, it follows from Theorem A.22 that the negative
of an m-sectorial graph is the generator of a (degenerate) C0-semigroup S that is
quasi-contractive.

Definition A.24. Let H be a Hilbert space and let A, An be graphs in H for all
n ∈N. We say that An → A in the strong resolvent sense if there exists a λ0 ∈ ρ(A)
such that λ0 ∈ ρ(An) for all large n ∈ N and R(λ0,An) → R(λ0,A) in the strong
operator topology. If R(λ0,An)→ R(λ0,A) in the uniform operator topology, then
we say that A→ An in the uniform resolvent sense.

The following two theorems show that the convergence of a sequence of graphs
in the strong or uniform resolvent sense is a property that is, in a suitable sense,
independent of the point in the resolvent set.

Theorem A.25 (cf. [Haa06, Corollary A.5.2]). Let H be a Hilbert space and let A, An be
graphs in H for all n ∈N. Define the set

Ω := ρ(A)∩
{
λ ∈ C : there exists a N0 ∈N such that λ ∈ ρ(An) for all n > N0

and sup
n>N0

‖R(λ,An)‖ <∞}.
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Suppose An → A in the strong resolvent sense. Then R(λ,An) → R(λ,A) in the strong
operator topology for all λ ∈ Ω.

Theorem A.26 (cf. [Haa06, Proposition A.5.3]). Let H be a Hilbert space and let A, An
be graphs in H for all n ∈N. Let Ω be as in Theorem A.25. Suppose that An → A in the
uniform resolvent sense. Then Ω = ρ(A) and R(λ,An)→ R(λ,A) in the uniform operator
topology for all λ ∈ ρ(A).

Next we are interested when the (degenerate) C0-semigroups converge strongly
provided their generators converge in the strong resolvent sense.

Proposition A.27 (cf. [FY99, Section 3.6]). Let H be a Hilbert space and A an m-sectorial
graph in H. Suppose that A is sectorial with vertex −ω and semi-angle θ ∈ [0, π2 ). Let γ
be the contour in C formed by combining

γ± =
{
ω+ ρ exp(±iθ ′) : ρ > 1

}
and

γ0 =
{
ω+ exp(iα) : −θ ′ 6 α 6 θ ′

}
,

where θ ′ = 3
4π−

θ
2 . Then γ ⊂ ρ(−A) and the (degenerate) C0-semigroup S generated by

−A is given by

S(t)x =
1

2πi

∫
γ

exp(λt)R(λ,−A)xdλ

for all x ∈ H.

Using Proposition A.27, the following result is easily obtained. We point out
that in the classical setting of nondegenerate C0-semigroups stronger results hold,
see for example [Kat80, Theorem IX.2.16].

Theorem A.28 (Trotter–Kato for graphs, cf. [FY99, Section 3.6]). Let H be a Hilbert
space. Let A, An be m-sectorial graphs in H. Suppose that the graphs An are uniformly
sectorial and that An → A in the strong resolvent sense. Let S and Sn be the (degenerate)
C0-semigroups generated by −A and −An for all n ∈N, respectively. Then Sn(t)→ S(t)

in the strong operator topology for all t > 0.

In Theorem A.28 convergence at t = 0 cannot be expected, see also Example 4.36.

A.3 The gap in Hilbert space

Let H be a Hilbert space. Suppose M and N are closed subspaces of H. The gap (or
opening) δ̂(M,N) between M and N, denoted by δ̂(M,N), is defined as follows.
Set

δ(M,N) := sup
u∈M
‖u‖61

dist(u,N),
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and δ̂(M,N) := max{δ(M,N), δ(N,M)}. Clearly δ̂(M,N) 6 1. For a more general
discussion of the gap in the setting of Banach spaces we refer to [Kat80, Section IV.2]
or [GK60, Section 1].

Let PM and PN be the orthogonal projections of H onto M and N, respectively.
Then it is easily checked that

δ(M,N) = ‖(I− PN)PM‖ = ‖(PM − PN)PM‖ 6 ‖PM − PN‖.

As pointed out by Kato in [Kat80, Footnote 1, p. 198], it follows from the next
proposition that δ̂(M,N) = ‖PM − PN‖.

Proposition A.29 (special case of [Kat58, Lemma 221]). Let H be a Hilbert space. Let
P and Q be orthogonal projections in H. If ‖(I− P)Q‖ < 1 and ‖(I−Q)P‖ < 1, then

‖P−Q‖ = ‖(I− P)Q‖ = ‖(I−Q)P‖.

The following result can be useful to compare the Hilbert space dimension of
two finite-dimensional subspaces.

Proposition A.30 (cf. [Kat80, Lemma IV.2.3]). Let H be a Hilbert space. Let P and Q
be orthogonal projections in H. Suppose that dim rgP < ∞. If ‖(I− P)Q‖ < 1, then
dim rgQ 6 dim rgP.

Proof. We give a proof by contrapositive. Suppose dim rgP < dim rgQ. Then
P|rgQ : rgQ → H cannot be injective. Hence there exists an x ∈ rgQ such that
‖x‖ = 1 and Px = 0. So ‖(I− P)Q‖ > ‖(I− P)x‖ = ‖x‖ = 1.

Finally, we recollect a criterion for two closed subspaces to have the same Hilbert
space dimension.

Proposition A.31 (cf. [GK60, Theorem 1.2]). Let H be a Hilbert space. Let P and Q be
orthogonal projections in H. If ‖P−Q‖ < 1, then dim rgP = dim rgQ.

A.4 The Moore–Penrose generalised inverse

We require a few basic results about the Moore–Penrose generalised inverse (also
called pseudoinverse) for a bounded linear operator in Hilbert space. A thorough
discussion of generalised inverses for both matrices and operators with many
pointers to the literature is given in [BG03]. Apart from the existence of the Moore–
Penrose generalised inverse, we content ourselves here with results concerning the
approximation of the Moore–Penrose generalised inverse due to Izumino [Izu83].

Definition A.32 (existence and uniqueness; see for example [BG03, Theorem 9.3]).
Let H1 and H2 be Hilbert spaces. Let T ∈ L(H1,H2). If T has closed range in
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H2, then there exists a unique operator T † ∈ L(H2,H1), called the Moore–Penrose
generalised inverse, such that the following four identities hold:

TT †T = T , T †TT † = T †, (TT †)∗ = TT †, (T †T)∗ = T †T . (A.3)

Remark A.33. 1. If T is invertible, then clearly T † = T−1 satisfies (A.3).
2. One has (T∗)† = (T †)∗. This is readily verified with (A.3).
3. It follows from the first two identities in (A.3) that TT †TT † = TT † and T †TT †T =

T †T . The remaining two identities in (A.3) imply that TT † and T †T are orthogonal
projections in H2 and H1, respectively. Clearly, rg T †T = (ker T †T)⊥. Hence rg T =

rg TT †T ⊂ rg TT † ⊂ rg T and ker T ⊂ ker T †T ⊂ ker TT †T = ker T . This proves that
TT † is the orthogonal projection of H2 onto rg T and that T †T is the orthogonal
projection of H1 onto (ker T)⊥. In particular, this shows that closedness of rg T is a
necessary condition for the existence of the Moore–Penrose generalised inverse.

4. Let H be a Hilbert space and T ∈ L(H). Suppose that rg T = (ker T)⊥. Hence
T has closed range. Denote by P the orthogonal projection in H onto ker T . Then it
follows by the previous remark that

TT † = T †T = I− P. (A.4)

Moreover, as rg T † = rg T †TT † ⊂ rg T †T ⊂ rg T †, we obtain

rg T † = rg(T †T) = rg(TT †) = (ker T)⊥ = rg T . (A.5)

In fact, T |rg T is invertible as an operator on rg T . So T † = (T |rg T )
−1(I− P) by (A.4).

While the Moore–Penrose generalised inverse has a multitude of applications, its
behaviour under perturbation is quite delicate. More precisely, suppose that T and
Tn are bounded operators on H such that T and Tn have closed range for all n ∈N

and such that Tn → T uniformly. Then in general the Moore–Penrose generalised
inverses T †n need not converge to T † as n → ∞. If T is invertible, however, then
T
†
n → T † = T−1 uniformly.

The following two propositions from [Izu83] give convenient equivalent condi-
tions for the uniform and strong convergence of the Moore–Penrose generalised
inverses.

Proposition A.34 (cf. [Izu83, Proposition 2.4]). Let T and Tn be operators in L(H1,H2)
for all n ∈ N. Suppose that T and Tn have closed range for all n ∈ N and that Tn → T

uniformly. Then the following statements are equivalent.

(i) T †n → T † uniformly.

(ii) TnT
†
n → TT † uniformly.

(iii) T †nTn → T †T uniformly.
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Proposition A.35 (cf. [Izu83, Proposition 2.3]). Let T and Tn be operators in L(H1,H2)
for all n ∈ N. Suppose that T and Tn have closed range for all n ∈ N and that Tn → T

strongly. The following statements are equivalent.

(i) T †n → T † strongly.

(ii) supn∈N‖T
†
n‖ <∞, TnT

†
n → TT † strongly and T †nTn → T †T strongly.

A.5 Miscellaneous auxiliary results from functional

analysis

Lemma A.36. Let H be a Hilbert space and T , Tn ∈ L(H) for all n ∈ N. The following
statements are equivalent.

(i) If xn ⇀ x weakly in H, then Tnxn ⇀ Tx weakly in H.

(ii) T∗n → T∗ strongly.

Proof. ‘(i)⇒(ii)’: Suppose not. Then there exist y ∈ H and ε > 0 such that, after
going to a subsequence, ‖(T∗n − T∗)y‖ > ε for all n ∈ N. So for all n ∈ N there
exists an xn ∈ H such that ‖xn‖ = 1 and

ε 6 |(xn | (T
∗
n − T

∗)y)|. (A.6)

After going to a subsequence, there exists an x ∈ H such that xn ⇀ x weakly in
H. Then Tnxn ⇀ Tx weakly in H by assumption and Txn ⇀ Tx weakly in H by
continuity. So

(xn | (T
∗
n − T

∗)y) = ((Tn − T)xn |y)→ 0

as n→∞. This contradicts (A.6).
‘(ii)⇒(i)’: Let xn ⇀ x weakly in H. Note that supn∈N‖xn‖ <∞. So

(Tnxn − Tx |y) = (xn | (T
∗
n − T

∗)y) + (xn − x | T
∗y)→ 0

as n→∞ for all y ∈ H.

Lemma A.37. Let H be a Hilbert space. Let K, T , Tn ∈ L(H) for all n ∈N. Suppose that
K is compact and that T∗n → T∗ strongly. Then KTn → KT uniformly.

Proof. Suppose not. Then, after going to a subsequence, there exist ε > 0 and a
sequence (xn) in H such that ‖xn‖ = 1 and ‖KTnxn − KTxn‖ > ε for all n ∈ N.
We may assume that there exists an x ∈ H such that xn ⇀ x weakly in H. Then
Tnxn ⇀ Tx weakly in H by Lemma A.36. Moreover, Txn ⇀ Tx weakly in H. So
ε 6 limn→∞‖KTnxn −KTxn‖ = 0, a contradiction.
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The next lemma gives a folklore estimate for the norm of a compact operator in
terms of an injective operator.

Lemma A.38 (for example, cf. [Bre11, Example 6.13]). Let V , H1 and H2 be Hilbert
spaces. Suppose K ∈ L(V ,H1) is compact and S ∈ L(V ,H2) is injective. Then for all
ε > 0 there exists a C > 0 such that

‖Kx‖2H1 6 ε‖x‖
2
V +C‖Sx‖2H2

for all x ∈ V .

Proof. Suppose not. Then there exists an ε > 0 and a sequence (xn) in V such that

‖Kxn‖2H1 > ε‖xn‖
2
V +n‖Sxn‖2H2

for all n ∈ N. Since we may assume that ‖xn‖V = 1 for all n ∈ N, after going
to a subsequence there exists an x ∈ V such that xn ⇀ x weakly in V . On the
one hand, as K is compact, limn→∞ Kxn = Kx and ‖Kx‖2H1 > ε. In particular,
x 6= 0. On the other hand, it follows from the weak convergence of (Sxn) in H2 that
lim infn→∞‖Sxn‖2H2 > ‖Sx‖2H2 . This implies that

‖Kx‖2H1 > ε+M‖Sx‖
2
H2

for all M > 0. Therefore ‖Sx‖ = 0 and hence x = 0. This is a contradiction.

A.6 Standard results on Sobolev spaces

In this section Ω is a nonempty open subset of Rd. To simplify the exposition we
shall consider only real spaces. Let p ∈ [1,∞). By W1,p(Ω) we denote the Sobolev
space of elements u ∈ Lp(Ω) that have distributional derivatives Dju ∈ Lp(Ω) for
all j ∈ {1, . . . ,d}. We equip W1,p(Ω) with the norm

‖u‖1,p =
(
‖u‖pp +

d∑
j=1

‖Dju‖pp
)1/p,

which makes it into a Banach space that is reflexive if p ∈ (1,∞). As usual, W1,p
0 (Ω)

is the closure of C∞c (Ω) in W1,p(Ω). The following result shows that elements of
W1,p(Ω) can be approximated by smooth functions.

Theorem A.39 (Meyers and Serrin, cf. [EE87, Theorem V.3.2]). The linear subspace
W1,p(Ω)∩C∞(Ω) is dense in W1,p(Ω).

If the domain is equal to Rd, one has the following density property.
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Proposition A.40 (cf. [Neč12, Proposition 2.2.6]). The linear subspace C∞c (Rd) is dense
in W1,p(Rd).

The next proposition is a direct consequence of [GT01, Theorem 7.8 and Sec-
tion 7.5]. It shows in particular that the space W1,p(Ω) is closed under truncation.
Consequently, W1,p(Ω) is a Riesz subspace of Lp(Ω).

Proposition A.41. The maps u 7→ u∨ 0, u 7→ u∧ 1 and u 7→ |u| are continuous maps
from W1,p(Ω) into itself. Moreover, let u ∈ W1,p(Ω). Then ∇u = 0 a.e. on the set
[u = 0].

We will also need the following basic product rule, see [EG92, Theorem 4.2.4].

Lemma A.42. Let u, v ∈W1,p(Ω)∩ L∞(Ω). Then uv ∈W1,p(Ω) and

‖uv‖1,p 6 ‖u‖1,p‖v‖∞ + ‖u‖∞‖v‖1,p.

The next result gives a sufficient criterion for a continuous Sobolev function to
be contained in W1,p

0 (Ω). It follows from the proof of [Bre83, Theorem IX.17]. Note
that the converse fails without further assumptions on Ω.

Proposition A.43. Let u ∈W1,p(Ω)∩C(Ω). If u|Γ = 0, then u ∈W1,p
0 (Ω).

For some of the following domain regularity conditions we shall only give a
verbal definition. For details see for example [Gri85, Section 1.2].

Definition A.44. Let Ω ⊂ Rd be open. If the interior of Ω is equal to Ω, then Ω
is called topologically regular. One says that Ω has continuous boundary if for
all z ∈ Γ there exists a neighbourhood of z in which Ω lies, in local orthogonal
coordinates, above the graph of a continuous function from Rd−1 → R. If the
previous statement holds with a Lipschitz continuous function, then Ω is called
Lipschitz.

Clearly, a Lipschitz domain has continuous boundary. Moreover, note that a
domain with continuous boundary is topologically regular.

The following result shows that, for quite general domains, elements in W1,p(Ω)

can be approximated by smooth functions that are continuous on Ω.

Theorem A.45 (cf. [EE87, Theorem V.4.7]). Let Ω have continuous boundary and let
p ∈ [1,∞). Then the set of restrictions to Ω of all functions in C∞c (Rd) is dense in
W1,p(Ω).

Moreover, an inspection of the proof of [EE87, Theorem V.4.7] yields the following
result. Alternatively, see [Gri72, p. 77, 78] in combination with [EE87, Theorem V.4.4]
for a proof in the bounded setting.
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Theorem A.46. Let Ω have continuous boundary and let p ∈ [1,∞). Let u ∈W1,p(Rd)

be such that u = 0 a.e. on Rd \Ω. Then u|Ω ∈W1,p
0 (Ω).

It is well-known that Sobolev spaces on bounded Lipschitz domains are par-
ticularly well-behaved. The next result establishes the existence of a continuous
extension operator in this setting and can be found in [EG92, Theorem 4.4.1]
or [Gri85, Theorem 1.4.3.1], for example.

Theorem A.47. Let Ω be bounded and Lipschitz. Let p ∈ [1,∞). Then there exists
a bounded linear operator E : W1,p(Ω) → W1,p(Rd) such that (Eu)|Ω = u a.e. for all
u ∈W1,p(Ω).

On Lipschitz domains one also has the existence of a well-behaved trace operator
Tr. Moreover, the elements u ∈ W1,p(Ω) such that Tru = 0 are contained in
W
1,p
0 (Ω).

Theorem A.48 (cf. [EG92, Theorem 4.3.1]). Let Ω be bounded and Lipschitz. Let
p ∈ [1,∞). Then there exists a unique bounded linear operator Tr : W1,p(Ω) → Lp(Γ)

such that Tru = u|Γ for all u ∈W1,p(Ω)∩C(Ω).

Theorem A.49 (cf. [Neč12, Theorem 2.4.10]). Let Ω be bounded and Lipschitz. Let
p ∈ [1,∞) and let Tr be the operator from Theorem A.48. Then

W
1,p
0 (Ω) =

{
u ∈W1,p(Ω) : Tru = 0 in Lp(Γ)

}
.

A generalisation of Theorem A.49 to higher- and fractional-order Sobolev spaces
on Lipschitz domains can be found in [Mar87].

We shall make use of the following simplified version of the Sobolev embedding
theorem. For a proof in a more general setting see [Ada75, Theorem 5.4]. The
space Cb(Ω) is the space of bounded continuous functions on Ω equipped with the
sup-norm.

Theorem A.50. Let Ω be bounded Lipschitz or equal to Rd. Then the following statements
hold.

(i) If p < d, then define p∗ := dp/(d− p). It follows that W1,p(Ω) is continuously
embedded into Lq(Ω) for all q ∈ [p,p∗].

(ii) If p = d, then W1,p(Ω) is continuously embedded into Lq(Ω) for all q ∈ [p,∞).

(iii) If p > d, then there exists a C > 0 such that ‖u‖∞ 6 C‖u‖1,p for all u ∈W1,p(Ω).
Consequently, W1,p(Ω) is continuously embedded into Cb(Ω).

Remark A.51. Note that Theorem A.50 immediately implies the corresponding
local results for general Ω ⊂ Rd. In particular, if p > d, then every element in
W1,p(Ω) has a continuous representative.
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