8888888

CDMTCS
Research
Report
Series

Deterministic Frequency
Pushdown Automata

C. S. Calude!, R. Freivalds?,
F. Stephan’

LUniversity of Auckland, NZ
2University of Latvia, Riga, Latvia
SNational University of Singapore,
Singapore

CDMTCS-441
September 2013

Centre for Discrete Mathematics and
Theoretical Computer Science



Deterministic Frequency Pushdown Automata

Cristian S. Calude', Risins Freivalds,>*** and Frank Stephan®

! Department of Computer Science, The University of Auckland
Auckland, New Zealand
cristian@cs.auckland.ac.nz
2 Institute of Mathematics and Computer Science, University of Latvia
Riga, Latvia
Rusins.Freivalds@Omii.lu.1lv
3 School of Computing, National University of Singapore
Singapore
fstephan@comp.nus.edu.sg

Abstract. Frequency computation was introduced by Rose [26]. Trakht-
enbrot [27] proved the existence of a continuum of functions computable
by frequency Turing machines with frequency % In contrast, every func-
tion computable by a frequency Turing machine with frequency exceeding

145 recursive. Essentially similar results for finite automata and other

topes of machines have been proved by Kinber [19] and Austinat, Diekert,
Hertrampf, Petersen [4].

In this paper we introduce the notion of frequency pushdown automa-
ton. Answering a question E. Shamir posed at LATA 2013, we prove
that there is a language which is %—recognizable but which is not %—
recognizable (for any n) by deterministic frequency pushdown automa-

ton.

1 Introduction

During a discussion of the paper [14] at the conference LATA 2018 in Bilbao,
Spain, E. Shamir asked the whether the results on frequency Turing machines
and frequency finite automata hold for pushdown automata as well. The difficulty
of the question is in the fact that an (n,n)-Turing machine or an (n,n)-finite
automaton can be presented as a Cartesian product of n separate n separate
Turing machines or finite automata and this construction does not seem to in-
crease the power of the machine. However, an arbitrary Turing machine can be
simulated by an automaton with 3 pushdown tapes [6]. Hence the definition of
frequency pushdown automata should avoid the use of several pushdown stores
in a single automaton.

The notion of frequency computation was introduced by Rose [26] as an
attempt to have a deterministic notion of computation with properties similar
to probabilistic algorithms. Let N = {0,1,2,...} denote the set of all natural

* Supported by Project 271/2012 from the Latvian Council of Science.
** Corresponding author.



2 C. S. Calude, R. Freivalds, and F. Stephan

numbers, Ny = N\ {0}. Fix m,n € N,;1 < m < n. The ith component of the
m-tuple (1, -, X,,) is denoted by (z1, -+, Tm )i

A function f: N — N is (m, n)-computable if there exists a recursive function
R: N"™ — N” such that for all n-tuples (1, ,2,) € N of mutually distinct
natural numbers we have:

card{i | (R(z1, -+ ,2n))i = f(z:) , 1 <i<n}>m.

Answering a problem by Myhill (see McNaughton [25]), Trakhtenbrot [27]
proved that an (m,n)-computable f is recursive iff 2m > n; on the other hand,
if 2m = n, then f can be not recursive. Kinber [20, 19] extended the results by
considering frequency enumeration of sets and proved that the class of (m,n)-
computable sets equals the class of recursive sets if and only if 2m > n.

The notion of frequency computation has been extended to other models
of computation. Frequency computation in polynomial time was discussed in
full detail by Hinrichs and Wechsung [16]. For resource bounded computations,
the behavior of frequency computability is completely different. For example,
under any reasonable resource bound, whenever n’ — m’ > n — m there exist
sets which are (m’,n’)-computable, but not (m,n)-computable. However, scal-
ing down to finite automata, the analogue of Trakhtenbrot [27] result holds
again: the class of languages (m, n)-recognizable by deterministic frequency au-
tomata equals the class of regular languages if and only if 2m > n; conversely,
for 2m < n, the class of languages (m,n)-recognizable by deterministic fre-
quency automata is uncountable for a two-letter alphabet (cf. Austinat, Diek-
ert, Hertrampf, Petersen [4]). When restricted to a one-letter alphabet, every
(m, n)-recognizable language is regular (cf. Kinber [20] and Austinat, Diekert,
Hertrampf, Petersen [4]).

Frequency computations became increasingly popular when relations between
frequency computation and computation with a small number of queries was

discovered [1, 4, 5, 7, 10, 11, 12, 15, 21, 22, 23, 24].

2 Frequency pushdown automata

Let X be any finite alphabet, and let X* be the free monoid generated by X.
The binary alphabet B is denoted by B. Every subset L C X* is said to be a
language. The elements of X* are called strings; |x| denotes the length of a string
x € X*. By xr: X* — B we denote the characteristic function of L.

A 1-deterministic pushdown automaton (PDA) is a T-tuple M =
(Q,X,I,0,q0, 7, F) where Q is a finite set of states, X is a finite set which
is called the input alphabet, I" is a finite set which is called the stack alphabet,
qo € @ is the start state, Z € I is the initial stack symbol, and F C @ is the
set of accepting states. An element (p,a, A, q,a) € 0 is a transition of M: in
state p € @ and input @ € X and with A € I" as topmost stack symbol, M may
read a, change the state to ¢, pop A, replace it by pushing a € I'*. Hence the
transition function is defined as follows: §: Q@ x X' x (I'U{e}) = Q x (I"'U{e}).



Deterministic Frequency Pushdown Automata 3

For n-frequency pushdown automata we modify the above definition allowing
n input words. However, we need to be aware that for the general case input
words can be of distinct lengths. Our definition closely models the definition
of n-frequency finite automata (see, e.g. [14]). An n-deterministic frequency au-
tomaton (n-DFA) is a T-tuple A = [Q, X, #,6,q0,7,n], where n € N, n > 1,
Q) is a finite set of states, qo is the initial state, X is a finite alphabet and #
is a symbol not in Y. The mapping §: @ x (X' U {#})" — @ is the transition
function; the function 7: @ — B" is the type of state which is used for outputs.
The type is interpreted as an n-tuple of answers «;: its i-th component records
whether the i-th input word read from the i-th input up to the current moment
belongs to the language. We use the notation 7(q, (x1#%, ..., 2,#%)) to denote
the type after reading the inputs the words (z1#%, ..., 2, #).

Next we formally describe the behavior of an n-DFA A. Let n € N, and let
x = (x1,...,2,) € (X*)" be an input vector. We define |z| = max{|z;| | 1 < i <
n}, and gox = §*(q, (x1#%, ..., 2, #)), where 6*: Q x (X U {#})™)* is the
usual extension of § on n-tuples of strings, and ¢; = |z| — |z;| for all 1 < i < n.
The output of A is defined to be the type 7(qo o z).

A language L C X* is said to be (m,n)-recognized by an n-DFA A if for each
n-tuple (z1,...,zy,) € (X*)™ of pairwise distinct strings the tuples 7(¢gp o ) and
(xr(z1),...,xr(x,)) coincide on at least m components. A language L C X* is
called (m,n)-recognizable if there is an n-DFA A that (m,n)-recognizes L.

To define n-deterministic frequency pushdown automata (with only one push-
down store) the transition function will be extended for n-tuples 6*: Q x X™ x
(ru{e}) = Q x (r'ufe}).

An n-deterministic frequency pushdown automaton (n-DFPA) is an 8-tuple
A=(Q,X,#,1,6,q0,Z, F), where # ¢ X and (Q, X U{#},1,0,q0,Z,F) is a
PDA.

Let n € N4, and let x = (z1,...,2,) € (X*)" be an n-tuple. We define
|z] = max{|z;| | 1 <i<n}, and

q oxr = 6*(q? (1'1#@1’ M axn#en))a

where ¢; = |z| — |z;| for all 1 < ¢ < n. Then the output of A is defined to be the
type 7(qo o ). We emphsize that the n-DFPA contains only one pushdown tape
which is used to process all n inputs.

A language L C Y™ is said to be (m, n)-recognized by an n-DFPA A if for each
n-tuple (z1,...,2,) € (X*)™ of pairwise distinct strings the tuples 7(gg o ) and
(xz(x1), ..., xr(zn)) coincide on at least m components. A language L C X* is
called (m,n)-recognizable if there is an n-DFPA A that (m,n)-recognizes L.

3 Results

We start with the following obvious facts.

Theorem 1. Assume that a language L is (m,n)-recognisable by a 2-DFPA.
Then:



4 C. S. Calude, R. Freivalds, and F. Stephan

(a) The language L is (m,n + 1)-recognisable by a 2-DFPA.
(b) If m > 1 then L is (m — 1,n — 1)-DFPA recognisable.

By Theorem 1, if L is (m, n)-recognisable by a 2-DFPA then L is (m—1,n)-
recognisable by a 2-DFPA and for every k < n, L is also (k, k)-recognisable by
a 2-DFPA.

Proposition 3 in Austinat, Diekert, Hertrampf, Petersen ([4] proved for DFAs
is true for DFPAs as well.

Theorem 2. A continuum of languages are (1,2)-recognizable by a 2-DFPA.

Proof. We define the following ordering < of words in B*. Let A = Ay, Ao, - -+
and g = p1, po, - - be arbitrary words. We say that A < p if either (A1 < pq) or
(A = p1) A(A2 < pg) or (A = p1) A (A2 = p2) A (As < pg) or, ete.

Let 8 € B* and construct the language Lg = {\ € B* | 8 < A}. Notice that
if §1 and Bs are distinct words and 1 < B2 then 82 € Lg, but 2 ¢ Lg, .

For every 8 € B* there exists a 2-DFPA (1,2)-recognizing the language Lg.
Indeed, when the 2-DFPA works on the pair (A1, A2), the automaton finds out
whether A\; < A9 or Ay < Aq. In the first case the automaton accepts Ao and
rejects A\1. In the second case the automaton accepts A\; and rejects As.

If A1 < Ag, then because of the definition of the language Lg only three (out
of four) cases are possible, namely: Case (a). Ay ¢ Lg and Ay ¢ Lg, Case (b).
M ¢ Lg and Ay € Lg Case (c). A € Lg and Ay € Lg.

In all three cases at least one of the result is correct.

O

For the proof of the subsequent Theorem 3 we need the following auxiliary
notions.

Definition 1. Let L be a language and x a word. We say that L, is a suffix
language of L corresponding to the word z if L, = {z | xz € L}.

Definition 2. Let L be a language. We say that a word x is L-suffix-equivalent
to the word y if L, = Ly.

Next we present a lemma proved in Freivalds [13].

Lemma 1. If L is a non-regular language then there exists an w-word w™ =
apaiasg - -+ such that for any distinct prefizes x and y of w™ the languages L,
and Ly are distinct.

Proof. By L we denote the family of all the languages L., x € X*. Let w™ =
apaias - -+ and consider the family

‘C(woo) = {Laoalaz-uam | m e N+}

Had L been finite, then the language L would be regular. If £(w®) is infinite,
the exist infinitely many prefixes of w™, y = agaias---am,z = apaias---ay



Deterministic Frequency Pushdown Automata 5

such that m < n, L, # L. If u™ is obtained from w® by removing the symbols
@1 -+ - Gp then £(u®) is also infinite. Informally, the proof consist of repeating
this procedure infinitely often. Formal proof, however, uses Konig’s lemma [17].

O

Lemma 2. If L is a non-regular language then there exist two w-words w™ =
agaias - -+ and u®> = bob1bs - - - having the property of Lemma 1.

Proof. If w> = agajas--- is an w-word with the property in Lemma 1, then the
w-word u*>® = ajasas - -- also has the property in Lemma 1. If w*™ = agaqas - --
contains at least two distinct elements a; and ag, then u® # w™. A language
L for which only single-letter w-words w® = agajas--- have the property of
Lemma 1, is regular. O

Lemma 3. Let L be a language (2,2)-recognizable by a 2-DFPA. Denote the
cardinality of the pushdown alphabet by d and the number of the states of the
2-DFPA by k. Let y = agayras -+ a., and z = agaias - --a, be two prefizes of
the same w-word such that m < n and Ly # L,. Then there exists a word v of
length not exceeding k - d™ such that yv € L, iff zv ¢ L.

Proof. If the state and the content of the pushdown after reading the word y
from the first input and some word from the second input and after reading
the word z from the first input and some (maybe different) words from the
second input are the same, then the pushdown computation on every pair (v, u)
produces the same result on the first output. The maximum possible length of
the pushdown used during max(m, n) = n steps is n, hence there can be no more
than d" distinct records in the pushdown. a

Theorem 3. Every (2,2)-recognizable language is regular.

Proof. By Lemma 1 there exists an w-word w® = agaias --- such that for any
distinct prefixes x and y of w* the languages L, and L, are distinct.

Assume by absurdity that a non-regular language L is (2,2)-recognizable
by a 2-DFPA with the the pushdown alphabet of cardinality d. Take 2
distinct w-words w*™ = agajas--- and u> = bgb1by --- with the property in
Lemma 1. Let s be the smallest natural number such that as; # bs and take
an n such that n > s. Consider the computation of the 2-DFPA on pairs
of inputs (agaias - ,an,coc1Ca- -+ ,¢p), for various words cociea -+ ,¢,. By
wq we denote the word apaias - - - asyg. By ug we denote the word bpbybs - - - by g

We consider separately the following two possibilities:

1. There exist at least loglogn distinct words w, € {wi,ws, - ,w,} such
that there exists a pair of words (eiez---eg, fifo--- fg) for which during
the computation the pair (wyeiez---eg,ur fifa - fy) at moments ¢t € {n +
1,n+2,--- ,n+g} the 2-DFPA never reaches the part of the pushdown store
recorded at moments ¢t € {1,2,--- ,n}.



6 C. S. Calude, R. Freivalds, and F. Stephan

2. With the exception of no more than loglogn words, for all words w, €
{w1,ws, -+ ,w,} there exists a pair of words (eiez---eg, fifo--- fg) such
that for all pairs of words (wyeies---eq, urf1fo--- fy) at some moment ¢t €
{n+1,n+2, -+ ,n+g} the 2-DFPA always reaches the part of the pushdown
store recorded at moments ¢ € {1,2,--- ,n}.

In the first case, there are at least loglogn distinct words
w, € {wy,ws, -, w,} defining loglogn distinct suffix languages among
Li,Lo,---,L,, and these languages can be distingushed by words of length not
exceeding g. However, our 2-DFA has no information to distinguish these lan-
guages. In the second case, the 2-DFA during the time ¢t € {n+1,n+2,--- ,n+g}
has erased too much information in the pushdown to distinguish between the
suffix languages concerning the second input. a

To prove the subsequent theorems we need some tools from algorithmic in-
formation theory.

Definition 3. The numbering ¥ = {¥y(x), ¥1(z),¥2(x),...} of 1-argument par-
tial recursive functions is computable if the 2-argument function U(n,z) =
U, (x) is partial recursive.

Definition 4. The numbering ¥ is reducible to the numbering n if there exists
a total recursive function f(n) such that, for all n and x, ¥, (x) = Ng@m)(z).

Definition 5. A computable numbering ¢ of all 1-argument partial recursive
functions is a Godel numbering if every computable numbering (of any class
of 1-argument partial recursive functions, not only of the class of all partial
recursive functions) is reducible to .

Definition 6. A Gddel numbering ¥ is a Kolmogorov numbering if for arbi-
trary computable numbering ¥ (of any class of I-argument partial recursive
functions) there exist two constants ¢ > 0,d > 0, and a total recursive function
f(n) such that:

1. for all n and x, ¥, (x) = Vs (z),
2. forallm, f(n) <c-n+d.

Theorem 4 (Kolmogorov Theorem, [3]). There exists a Kolmogorov num-
bering.

Definition 7. Let ¢ be a Kolmogorov numbering. A word w € B"™ has 9-
complexity r if:

1. 9,(0) = w,

2. 94(0) # w, for all g < r.

Definition 8. A word w € B™ has mazximal 9-complexity if:

1. w € B™ has 9-complexity r,
2. every v € B" distinct from w has ¥-complezity less than r.



Deterministic Frequency Pushdown Automata 7

Definition 9. A pair of words (xz,z) has 9-complexity r if:

1. 9,.(0) =< z,2 >,
2. for every prefiz y of the word x and for every prefix u of the word z the pair
of words (L, L,) has 0-complexity less than r.

Kolmogorov complexity has been used many times to describe the degree of
incompressibility of an object [2, 8, 18]. The following characterization of the
notion of algorithmic independence [9] for words will be used in what follows.

Definition 10. A pair of words (z,z) has mazimal 9-complexity if there is a
natural number r such that:

1. (z,2) has ¥-complezity r,
2. for every prefix y of the word x and for every prefix u of the word z the
P-complexity of the pair of (y,u) is less than r.

The main idea of the proof of the subsequent Theorem 5 is to consider a
language which can be recognized by a DPA using essentially the pushdown.
We use PALINDROMES = {w € B* | w = w""} (w™" is the reversal of
w) for such a language. Since a (2,2)-DFPA has to produce correct results for
two inputs but the automaton has only one pushdown store, the main idea of
the proof is look at the computation of an independent pair of words and get
a contradiction with the assumption of (2,2)-recognizability of the language.
To this aim we consider several useful notions and introduce several auxiliary
functions.

By «a(k) we denote the distance m between the initial stack symbol Zp and
the current position Z,, of the head of the pushdown at the moment k. By
B(k) = a(2n — k+ 1) we denote the distance m between the initial stack symbol
Zy and the current position Z,, of the head of the pushdown at the moment
2n — k + 1. By v(k) we denote the distance m between the initial stack symbol
Zy and the current position Z,, of the head of the pushdown at the moment
dn — k+ 1.

By alki, ko] we denote the set consisting of the integers {a(ki1), (ks +
1), - ,a(ke)}. By Blk1,k2] we denote the set consisting of the integers
{B(k1), (k1 +1),---,B(k2)}. By ~[k1, k2] we denote the set consisting of the
integers {y(k1),v(k1 + 1), -, v(k2)}.

By 9[k1, k2] we denote the maximum element in the set «[kq, ka|. By x[k1, ko]
we denote the minimum element in the set §[kq, ko).

Lemma 4. For arbitrary positive integers (ki,ks), if i € Blk1, k], € B[k, ko]
and i < j, then every integer n with i <n < j is in B[k1, k2.

We fix a Kolmogorov numbering ¢ of all one-argument partial recursive
functions. By v; we denote the word w2w"®¥ where w is the word such that:
1) w2w™, Jw| = n, 2) w has maximal ¥-complexity. !!! what is M,,? Sim-
ilarly, by va we denote the word w2w™" where w is the word such that: 1)
w2w"™, |w| = n?, 2) w has maximal ¥-complexity. Finally, by (v3, v4) we denote



8 C. S. Calude, R. Freivalds, and F. Stephan

the pair (vs,vq) = (W2W"Y, W2wW"") such that: 1) | w |=n and | W |> n, 2) the
pair (vs, v4) has maximal ¥-complexity.

The maximal ¥-complexity of (vs,v4) implies existence of a constant c, in-
dependent of n such that both the following two conditions are true: 1) vs has
Y¥-complexity no less than n — ¢ and 2) v4 has ¥-complexity no less than | w | —c.

Now consider the language

M = {w2w"’ | w e B*}

which is clearly (1, 1)-recognizable by a 2-DFPA. Assume by contradiction that
M is also (2,2)-recognizable by some 2-DFPA.

We consider the computation by the assumed 2-DFPA on a pair (vs, v4) such
that the with maximal ¥-complexity such that vs = w2w"™ with | w |= n and
vy = W2 with | W [> n.

Consider the moment when n symbols have been read from the inputs. At
this moment the length of the pushdown store is no less than d - n where d < 1
is an appropriate constant.

Lemma 5. Consider the pair (vs,v4) with mazimal 9-complexity such that vs =
w2w" with | w |=n and vy = W2W"Y with | ¥ |> n. Then

(3d < 1)(Fe)(Vk < n)|[a(k) > d -k —c].
Proof. Immediately from the maximality ¥-complexity of the pair (vs,vs4). O

We consider separately two possibilities:

1. (36 < 1)(3(]411,]62))“ ]412 — ]{11 |Z e-n and X[k’h kg] Z ¢[k1,/€2]},
2. (Ve < 1)(V(k1, ka)){| kz — k1 |< e or x[kn, k] < $lkn,kal}.

In the first case the DFPA has recorded the information on the symbols of the
first input word read during the moments (k1,k1 + 1,--- ,k2) in the squares Z;
of the pushdown store, where i € alk1, ko] and in the states of the finite memory,
but the (supposedly) palindromic image of this part of the first input word is
read at a different position of the pushdown store. The information about the
distinct parts of the word have to be “transported” but the automaton lacks
means to do this. Because of the maximality ¥-complexity of the pair (vs,vy)
this information cannot be compressed more than by an additive constant.

On the other hand, the existence of the assumed 2-DFPA (2, 2)-recognizing
the language would allow to compress vs for const - n bits. Indeed, we construct
an algorithm B using as an input

| V3 | + ‘ V4 | —(kz — k1) + |—1ng1-|

bits of information describing all the symbols in the words (vs,vs) with the
exception of the symbols 2n+1 — ks, -+ ,2n+ 1 — ky. The algorithm B tests all
possible replacements of the missing (k2 — k1) symbols. In one and only one case



Deterministic Frequency Pushdown Automata 9

the assumed 2-DFPA (2, 2)-recognizing the language M accepts the first input.
This allows to reconstruct the pair (vs,v4) using only

| vz |+ | va | —(ko — k1) + [log k1]
bits of the input. Since ¢ is a Kolmogorov numbering, 1 uses no more that
| vs | + | va | —(ka — k1) + [log k1] + const

bits of the input. This is a contradiction with the maximality J-complexity of
the pair (vs, v4).

In the second case we consider processing the pair (vs,vs4) where vs € M,
va € M,|vs|=2n+1and | vy4 |=4n+ 1.

Let the set I" of the stack symbols contain no more than 2° distinct symbols.
Then a word of w symbols in the pushdown contains no more than sn bits of
information. The condition

(Ve < 1>(V<k‘1, kg)){‘ ko — k1 |< e-n or X[kl,l{ig] < w[kl,k‘g]}
implies (for e = %, ky =n and k; = n — 5% ) the inequality

n

o gl <o o],

hence
n

n
(ake [n 28,4)(,3(1@) < s)
Consequently, at the moment k each of the two inputs have received a word
of the length k € [n — %, n], this pair of words has maximal ¥-complexity and
this information is stored in the frequency 2-DFPA on a pushdown of a length
not exceeding 5=, a contradiction.

We have proved:

Theorem 5. The language M = {w2w™’ | w € B*} is (1, 1)-recognizable, but
not (2, 2)-recognizable by a 2-DFPA.

Theorem 5 can be strengthened as follows:

Theorem 6. The language M = {w2w™" | w € B*} is (1, 1)-recognizable but
for all n it is not (2,n)-recognizable by a 2-DFPA.

Idea of the proof. Following the example of Definition 10 we introduce the
notion “an n-tuple of words has maximal ¥-complexity”. The language M has
the following important property: the first half of any word in the language M
determines the word uniquely.

In Theorem 5 proof of Theorem 5, the first input word is shorter than the
other input words. Denote its length by s. The lengths of all input words are
in [s,h - s] with an appropriate constant h. Like in the proof of Theorem 5,
we distinguish two possibilities. Either during the moments [s, 2s] the head on



10

C. S. Calude, R. Freivalds, and F. Stephan

the pushdown store reads “nearly all the symbols recorded during the moments
[1,s]” or it is not so. In the first case the DFPA can be forced to err on all the
input words with the exception of the first input word. In the second case the
DFPA can be forced to err on the first input word but a similar argument can
be used for the second, the third,..., the (n — 1)-th input word.

Open problem. For which n € N there exist (2,n)-recognizable and regular

languages?

References

[1]

3]
[4]

[5]

[10]
[11]

[12]

Ablaev, F.M., Freivalds, R.: Why sometimes probabilistic algorithms can be more
effective. In: Gruska, J., Rovan, B., Wiedermann, J. (eds.) Mathematical Founda-
tions of Computer Science 1986, Proceedings of the 12th Symposium, Bratislava,
Czechoslovakia, August 25-29, 1986. Lecture Notes in Computer Science, vol. 233,
pp. 1-14. Springer, Berlin (1986)

Ambainis, A., Apsitis, K., Calude, C., Freivalds, R., Karpinski, M., Larfeldt, T.,
Sala, 1., Smotrovs, J.: Effects of Kolmogorov complexity present in inductive in-
ference as well. In: Li, M., Maruoka, A. (eds.) Algorithmic Learning Theory, 8th
International Conference, ALT ’97, Sendai, Japan, October 6-8, 1997, Proceed-
ings. Lecture Notes in Computer Science, vol. 1316, pp. 244-259. Springer, Berlin
(1997)

A.N.Kolmogorov: Three approaches to the quantitative definition of information.
Problems in Information Transmission 1(1), 1-7 (1965)

Austinat, H., Diekert, V., Hertrampf, U., Petersen, H.: Regular frequency com-
putations. Theoretical Computer Science 330(1), 15-21 (2005)

Balodis, K., Kucevalovs, 1., Freivalds, R.: Frequency prediction of functions. In:
Kotasek, Z., Bouda, J., Cerna, 1., Sekanina, L., Vojnar, T., Antos, D. (eds.) Math-
ematical and Engineering Methods in Computer Science. Lecture Notes in Com-
puter Science, vol. 7119, pp. 76-83. Springer, Berlin (2012)

Barzdins, J.: On a class of turing machines (minsky machines). Algebra i Logika
1(6), 42-51 (1962)

Beigel, R., Gasarch, W., Kinber, E.: Frequency computation and bounded queries.
Theoretical Computer Science 163(1-2), 177-192 (1996)

Calude, C.: Borel normality and algorithmic randomness. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Developments in Language Theory, At the Crossroads of Math-
ematics, Computer Science and Biology, Turku, Finland, 12-15 July 1993. pp.
113-129. Lecture Notes in Computer Science, World Scientific, Singapore (1993)
Calude, C.S., Zimand, M.: Algorithmically independent sequences. Information
and Computation 208(1), 292-308 (2010)

Case, J., Kaufmann, S., Kinber, E.B., Kummer, M.: Learning recursive functions
from approximations. J. Comput. Syst. Sci. 55(1), 183-196 (1997)

Degtev, A.N.: On (m, n)-computable sets. In: Moldavanskij, D.I. (ed.) Algebraic
Systems, pp. 88-99. Ivanovo Gos. Universitet (1981), (in Russian)

Freivalds, R.: Complexity of probabilistic versus deterministic automata. In:
Barzdins, J., Bgjrner, D. (eds.) Baltic Computer Science. Lecture Notes in Com-
puter Science, vol. 502, pp. 565-613. Springer, Berlin (1991)



[13]

[14]

[15]
[16]
[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]

Deterministic Frequency Pushdown Automata 11

Freivalds, R.: Space and reversal complexity of probabilistic one-way turing ma-
chines. In: Karpinski, M., van Leeuwen, J. (eds.) North-Holland Mathematics
Studies, vol. 102, pp. 39-50. North-Holland (1997)

Freivalds, R., Zeugmann, T., Pogosyan, G.R.: On the size complexity of determin-
istic frequency automata. In: Adrian Horia Dediu, Carlos Martin-Vide, B.T. (ed.)
Language and Automata Theory and Applications. Lecture Notes in Computer
Science, vol. 7810, pp. 287—-298. Springer, Berlin (2013)

Harizanov, V., Kummer, M., Owings, J.: Frequency computations and the cardi-
nality theorem. The Journal of Symbolic Logic 57(2) (1992)

Hinrichs, M., Wechsung, G.: Time bounded frequency computations. Information
and Computation 139(2), 234-257 (1997)

Kénig, D.: Theorie der Endlichen und Unendlichen Graphen: Kombinatorische
Topologie der Streckenkomplexe. Akademie-Verlag, Leipzig (1936)

Khoussainov, B., Semukhin, P., Stephan, F.: Applications of kolmogorov complex-
ity to computable model theory. The Journal of Symbolic Logic 72(3), 1041-1054
(2007)

Kinber, E.B.: Frequency computations in finite automata. Cybernetics and Sys-
tems Analysis 12(2), 179-187 (1976)

Kinber, E.B.: Frequency calculations of general recursive predicates and frequency
enumerations of sets. Soviet Mathematics 13, 873-876 (1972)

Kinber, E.B., Smith, C.H., Velauthapillai, M., Wiehagen, R.: On learning multiple
concepts in parallel. J. Comput. Syst. Sci. 50(1), 41-52 (1995)

Kummer, M.: A proof of Beigel’s cardinality conjecture. The Journal of Symbolic
Logic 57(2), 677681 (1992)

Kummer, M., Stephan, F.: The power of frequency computation (extended ab-
stract). In: Reichel, H. (ed.) Fundamentals of Computation Theory, 10th Inter-
national Symposium, FCT ’95, Dresden, Germany, August 22-25, 1995. Lecture
Notes in Computer Science, vol. 965, pp. 323-332. Springer, Berlin (1995)
Kummer, M., Stephan, F.: Recursion theoretic properties of frequency computa-
tion and bounded queries. Information and Computation 120(1), 5977 (1995)
McNaughton, R.: The theory of automata, a survey. Advances in Computers 2,
379-421 (1961)

Rose, G.F.: An extended notion of computability. In: International Congress for
Logic, Methodology and Philosophy of Science, Stanford University, Stanford,
California, August 24 - September 2, 1960, Abstracts of contributed papers (1960)
Trakhtenbrot, B.A.: On the frequency computation of functions. Algebra i Logika
2(1), 25-32 (1964), (in Russian)



