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Abstract

In recent years, the advantage afforded by using multiple local searches in a
Memetic Algorithm to solve one problem (a single fitness function), has been ver-
ified in many successful experiments. However, theoretical studies cannot explain
why Memetic Algorithms with multiple local searches often outperform Memetic
Algorithms with a single local search in these experiments. In this paper, we will
formalize a (1+1) Restart Memetic Algorithm and two different local searches,
and run them on a single fitness function to solve the Clique Problem. We then
show that there are two families of graphs such that, for the first family of graphs,
Memetic Algorithms with one local search drastically outperform Memetic Algo-
rithms with the other local search, and vice versa for the second family of graphs.
Furthermore, we propose a (1+1) Restart Memetic Algorithm with an Alternative
Local Search, and show that the proposed algorithm is expected to solve the Clique
Problem on both families of graphs efficiently. Lastly, we verify our theoretical re-
sults by experiments.

1 Introduction

Memetic Algorithms (MAs) are a wide class of randomized search heuristics that hy-
bridize Evolutionary Algorithms (EAs) with local searches [17]. There are many exam-
ples in which MAs have successfully been used to solve various kinds of problems [2, 17].
This motivates the desire for a better understanding of MAs by using runtime analysis.

Since MAs combine EAs and local searches, in order to study the theory of MA, we
need to begin with EAs first. Some of the earliest runtime analyses of EAs started with
the basic (1+1) EA on, for example, simple pseudo-boolean functions [24], Onemax [24],
Trap Functions [6], and plateaus of constant fitness [11]. Droste, Jansen and Wegener [7]
summarized the basic (1+1) EA on which most theoretical studies of EAs are based.
The term (1+1) represents that, a) the population size of parents and children are both
one, and b) an elitist selection is used, i.e. the next generation will be chosen from
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both parents and children. After analyzing the ability of EAs to solve the previously
mentioned, artificially-created functions, many researches then went on to analyze the
suitability of EAs for solving main-stream combinatorial optimization problems such as
the Maximum Matching Problem [9], the Minimum Spanning Tree Problem [19], and the
Partition Problem [30]. Meanwhile, very important progress was made in the analysis
of population-based EAs, e.g. the (µ + 1) EA [31] and the (1 + λ) EA [10]. Also, many
researches have focused on showing that the recombination (also known as crossover)
operation is essential in EAs, e.g. [12, 14, 23]. More details of runtime analysis on EAs
can be found in [1, 13, 20, 21].

Shortly after the EAs were formalized and analyzed, Sudholt [26] proposed the first
(1+1) MA in 2006, and compared it with the basic (1+1) EA on some artificially cre-
ated functions. Because both MAs and EAs apply mutations and recombinations, and
these operations have already been studied in EAs, the theoretical analyses of MAs have
mainly focused on the impact of the local searches. For example, in 2008, Sudholt [28]
analyzed the (1+1) MA with variable-depth search to overcome local optima on three
binary combinatorial problems: Mincut, Knapsack, and Maxsat; similarly, in 2009, Sud-
holt [29] showed that changing the depth of local searches or the frequency of applying
local searches in MAs will reduce the performance from polynomial to super-polynomial.
Furthermore, the interaction of mutations and local searches has attracted much atten-
tion. For example, Sudholt and Zarges [27] analyzed the interaction of two different
mutations with local search for Vertex Coloring in 2010; Dinneen and Wei [4], in 2013,
analyzed a dynamic mutation with two different local searches on some artificially created
functions; and in the same year, Dinneen and Wei [5] analyzed a (1+1) Adaptive MA
on the clique problem and showed that, for any local optima that is hard to escape, the
(1+1) Adaptive MA is expected to overcome the local optima super-polynomially faster
than the basic (1+1) EA.

Theoretical studies of MAs have attracted many more researchers. The results of
these studies explain the success of some experiments. For example, in 2011, Dinneen,
Lin and Wei [3] proposed an MA with an adaptive mutation approach and gained success
in experiments, and a runtime comparison between the dynamic mutation approach and
the static mutation approach in MAs was studied in [4]. However, theoretical progress
still lags behind the experimental approach. In particular, one trend in experimental
research is to use multiple local searches in MAs to solve a single problem (one fitness
function). In 2001, Krasnogor and Smith [15] did experiments and showed that even for
a single problem class (TSP), the local search operator that gives the best results in an
MA is entirely instance specific. Then, in 2005, Krasnogor and Smith [16] presented a
taxonomy of memetic algorithms that provided a functional framework for using multiple
local searches. This trend is also known as the multimeme algorithm [18], where each
local search is a meme that is used adaptively or self-adaptively (see a survey in [22]).
Furthermore, Coevolving Memetic Algorithms have been studied that coevolve the local
search operators together with the mainstream population [25].

This trend of applying multiple local searches in MAs created new challenges in
the runtime analysis of MAs. A few theoretical studies show that, on one artificially
created function, MAs with one local search drastically outperform MAs with another
local search, but the results are reversed when the same algorithms are applied to a
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different function [4, 8, 26, 28]. However, to the best of our knowledge, no runtime
analyses show that, for a single problem (one fitness function), the local search operator
that gives the best results in an MA is entirely instance specific, which is the aim of this
paper.

In this paper, we will formalize a (1+1) Restart Memetic Algorithm (RMA) and two
local searches, the Random Complete Local Search (RCLS) and the Random Permutation
Local Search (RPLS). Then we will show that, for the Clique Problem, there exists two
families of graphs, such that:

1. For the first family of graphs (GRC), the (1+1) RMA with the RCLS is expected
to find the maximum clique within O(n2) fitness evaluations; but the (1+1) RMA
with the RPLS is expected to take a super-polynomial number of fitness evaluations
to find the maximum clique.

2. For the second family of graphs (GRP ), the (1+1) RMA with the RCLS is expected
to take a super-polynomial number of fitness evaluations to find a maximum clique;
but the (1+1) RMA with the RPLS is expected to find a maximum clique within
O(n1.5) fitness evaluations.

Lastly, we will propose a (1+1) Restart Memetic Algorithm with an Alternative
Local Search (ALS). We then show that, for any graph of the family GRC , the proposed
algorithm is expected to find the maximum clique within O(n2) fitness evaluations; and
for any graph of the family GRP , the proposed algorithm is expected to find a maximum
clique within O(n2.5) fitness evaluations.

The paper is structured as follows. In Section 2, we will formalize the fitness function
fOPL for the Clique Problem, then propose the (1+1) Restart Memetic Algorithm (RMA),
and two local searches, the Random Complete Local Search (RCLS) and the Random
Permutation Local Search (RPLS). Next, in Section 3, we will construct a family of graphs
(GRC), and show that the (1+1) RMA with the RCLS is expected to find the maximum
clique on any graph of the family GRC within a polynomial number of fitness evaluations,
but the (1+1) RMA with the RPLS is expected to take a super-polynomial number of
fitness evaluations to find the maximum clique. In Section 4, we will construct another
family of graphs (GRP ) and show the opposite, i.e. the (1+1) RMA with the RPLS is
expected to find a maximum clique on any graph of the family GRP within a polynomial
number of fitness evaluations, but the (1+1) RMA with the RCLS is expected to take a
super-polynomial number of fitness evaluations to find a maximum clique. In Section 5,
we will propose a (1+1) RMA with an Alternative Local Search, and show that the
proposed algorithm is expected to find a maximum clique on any graph of both families
(GRC and GRP ) within a polynomial number of fitness evaluations. Our experiments
will be given in Section 6. Finally, Section 7 concludes this paper and suggests possible
avenues for future research.

2 Algorithm definitions

In this section we give basic definitions of our algorithms and we begin with the following
standard notations that will be used throughout this paper.
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1. f(n) = ω(g(n))↔ ∀k > 0, ∃n0, ∀n > n0, g(n) · k < f(n).

2. f(n) = Ω(g(n))↔ ∃k > 0, ∃n0, ∀n > n0, g(n) · k ≤ f(n).

3. f(n) = o(g(n))↔ ∀ε > 0, ∃n0, ∀n > n0, f(n) < g(n) · ε.

4. f(n) = O(g(n))↔ ∃k > 0, ∃n0, ∀n > n0, f(n) ≤ g(n) · k.

5. f(n) = Θ(g(n))↔ ∃k1 > 0, ∃k2 > 0, ∃n0, ∀n > n0, g(n) · k1 ≤ f(n) ≤ g(n) · k2.

6. limn→∞ (1 + 1/n)n = e.

2.1 The Maximum Clique Problem

A clique of a graph is a subset of vertices from this graph such that every two vertices
in the subset are connected by an edge. The Clique Problem is the NP-hard problem of
finding the largest size of a clique in a graph. In this section, we will formalize a fitness
function fOPL for the Clique Problem.

For a given graph G = (V = {v1, v2, ..., vn}, E), a bit string x = (x1, x2, ..., xn) ∈
{0, 1}n defines a clique potential solution (an induced subgraph) where xi = 1 represents
that the vertex vi is selected. We say x represents a clique if each selected vertex in x is
connected to all other selected vertices in x, i.e. {(vi, vj) | xi = xj = 1 and i 6= j} ⊆ E.

Definition 1. The fitness function fOPL (ONES, P[otential]V[ertices], LACKEDGES)
is defined as follows:

fOPL(x) =

{
ONES(x) + PV(x)/n, if x represents a clique,

−LACKEDGES(x), otherwise,

where ONES(x) is the number of ones in x; PV(x) is the number of zeros in x such
that, when each of these zeros is flipped individually, a larger clique is obtained. And
LACKEDGES(x) is the number of missing edges such that the subgraph becomes a clique.

Example 2. For a given graph G, displayed below, we have:

1. fOPL(1101) = 3 because x = (1101) is a clique that consists of vertices 1, 2 and 4.

2. fOPL(1111) = −1 because we need to add one edge (1, 3).

3. fOPL(1100) = 2.25 because x represents a clique that consists of vertices 1 and 2,
and because there is a potential vertex 4, such that by flipping the 4-th bit, a larger
clique will be obtained.

4. fOPL(0101) = 2.5 because x represents a clique that consists of vertices 2 and 4, and
because there are two potential vertices 1 and 3, such that flipping either the first
or the third bit will obtain a larger clique.
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A maximum clique for a graph G is a global optimal solution x that maximizes fOPL(x).

2.2 Algorithms to be analyzed

The algorithms we will analyze on the Clique Problem are the (1+1) Restart Memetic
Algorithm (RMA) with two different local searches, the Random Complete Local Search
(RCLS) and the Random Permutation Local Search (RPLS). Note, these algorithms all
try to maximize the function f = fOPL. The time complexity analysis in this paper looks
at the number of evaluations of this fitness function fOPL. The algorithms are stated as
below:

Algorithm 3. (1+1) RMA.

1. Initialize the mutation probability p = 1/n, set gen := 0.

2. Choose x = 0n.

3. y := Mutation(x).

4. z := LocalSearch(y).

5. If f(z) ≥ f(x) then x := z.

6. gen := gen + 1.

7. If (gen mod λ) = 0 then go to step 2.

8. Stop if any stopping criterion is met, otherwise, go to step 3.

Note, the Mutation(x) flips each bit of x independently with probability p = 1/n.
LocalSearch(y) will be given below. Also note that the algorithm will restart in every λ
generations. We will analyze the impact of λ on the algorithm’s ability to find a global
optimal solution.

2.3 Two local searches

As stated before, the local search in MAs can have many variations. In this paper,
we will analyze a Random Complete Local Search (RCLS), which uses a steepest ascent
pivot rule (also known as best-improvement), and a Random Permutation Local Search
(RPLS), which uses a greedy pivot rule (also known as first-improvement).

Algorithm 4. Random Complete Local Search (RCLS). For a given string x ∈
{0, 1}n:
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1. BestNeighborSet :=

{
y | f(y) > f(x), Hamming(x, y) = 1, and
∀z with Hamming(x, z) = 1 : f(y) ≥ f(z)

}
.

2. Stop and return x if BestNeighborSet = ∅.

3. x is randomly choosen from BestNeighborSet.

4. Go to step 1.

Note, Hamming(x, y) is the number of different bits between x and y. Also note that the
RCLS will evaluate all n neighbors and then randomly select one of the best neighbors.
Thus, according to the fitness function fOPL in Definition 1, we have:

1. If the bit string after the mutation does not represent a clique, the RCLS will keep
flipping bits from ones to zeros until it finds a clique. Furthermore, the RCLS will
take n fitness evaluations to flip one bit from one to zero. Thus, it will take at most
n2 fitness evaluations to find a clique. After the RCLS finds a clique, it will keep
flipping bits from zeros to ones until it finds a local optimal clique, which again,
will take at most n2 fitness evaluations.

2. If the bit string after the mutation represents a clique, the RCLS will keep flipping
bits from zeros to ones until it finds a local optimal clique, which takes at most n2

fitness evaluations.

Therefore, the RCLS will stop on the fitness function fOPL within 2n2 fitness evaluations.
Unlike the RCLS, which evaluates all n neighbors before selecting one to flip, the

RPLS randomly generates a permutation to represent the sequence of bits to search and
executes the flipping as soon as the fitness evaluation improves. The algorithm is stated
as below:

Algorithm 5. Randomized Permutation Local Search (RPLS). For a given string
x = (x1, x2, · · · , xn) ∈ {0, 1}n:

1. Generate a random permutation Per of length n.

2. i := 0, NoImproveCount := 0.

3. y := flip(x, Per[i]).

4. If f(y) > f(x) then x := y, NoImproveCount := 0.

5. NoImproveCount := NoImproveCount + 1.

6. i := (i+ 1) mod n.

7. Stop if NoImproveCount = n. Otherwise, go to step 3.

Here flip(x, Per[i]) denotes that the Per[i]-th bit in x is flipped, and Per[i] is the i-th
number in the permutation Per.

Note that the RPLS moves to the first neighbor solution that improves the fitness, so
we have:
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1. If the bit string after the mutation does not represent a clique, the RPLS will take
at most n fitness evaluations to check all n bits and flip every bit from one to zero if
this flipping improves the fitness value. That is to say, the RPLS will find a clique
within n fitness evaluations. Then the RPLS will take at most n fitness evaluations
to flip bits from zeros to ones in order to find a local optimal clique.

2. If the bit string after the mutation represents a clique, the RPLS will take at most
n fitness evaluations to find a local optimal clique.

Therefore, the RPLS will stop on the fitness function fOPL within 2n fitness evaluations.

Example 6. Suppose the bit string x = (0, 0, 0, 0), and Per = (3, 2, 1, 4). So the
RPLS will first check a possible flipping for the third bit in x to get x′ = (0, 0, 1, 0). If
f(x′) > f(x) then x := x′. This check sequence follows Per in a cyclic fashion. That is,
after checking the fourth bit in x, the PRLS will restart checking the third bit in x.

Therefore, the RCLS will take at most 2n2 fitness evaluations to find a local optima
on the fitness function fOPL; and the RPLS will take at most 2n fitness evaluations to find
a local optima. In the rest of this paper, we will use (1+1) RMA RCLS to denote that
the (1+1) RMA is using the RCLS as the local search, and (1+1) RMA RPLS to denote
that the (1+1) RMA is using the RPLS as the local search.

3 A family of graphs on which the (1+1) RMA RCLS

outperforms the (1+1) RMA RPLS

In this section, we will construct a family of graphs GRC , and show that the (1+1)
RMA RCLS is expected to find the maximum clique on any graph of the family GRC

within a polynomial number of fitness evaluations, while the (1+1) RMA RPLS is ex-
pected to take a super-polynomial number of fitness evaluations to find the maximum
clique on any graph of the family GRC .

3.1 GRC and its landscape

Definition 7. The graph GRC(t) has n = t(2t + 2) vertices for the variable t. We
separate all vertices into (2t+ 2) disjoint sets V0, V1, · · · , V2t+1 such that Vi ∩ Vj = ∅ and
|Vi| = t for 0 ≤ i ≤ 2t+ 1, 0 ≤ j ≤ 2t+ 1 and i 6= j. We use vi,k to refer the k-th vertex
in Vi (0 ≤ k ≤ t− 1). To make it easier to understand the edge set E, we first assume it
is a complete graph, and then delete edges according to the following rules:

1. Delete the edge between vi,k and vj,k for all variables i, j, k with bi/2c 6= bj/2c,
0 ≤ k ≤ t− 1, 0 ≤ i ≤ 2t+ 1 and 0 ≤ j ≤ 2t+ 1.

2. Delete the edge between vi,t−1 and vj,t−1 for all variables i, j with 2 ≤ i ≤ 2t + 1
and bi/2c = bj/2c.
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3. Delete the edge between v1,k and vj,l for all variables j, k, l with 2 ≤ j ≤ 2t + 1,
0 ≤ k ≤ t− 1, 0 ≤ l ≤ t− 1 and k ≡ (l − 1) mod t.

Now we fill all vertices from the sets V0, V1, · · · , V2t+1 into a (2t+ 2)-by-t matrix with
each set Vi being the i-th row vector, as shown in Figure 1. Hence, vi,j is the vertex
in row i and column j. We use V (x) to denote the set of vertices x has chosen, recall
x = (x1, x2, . . . , xn). Then we use vi,k(x) = 1 (a solid circle in Figure 1) to denote
that vi,k ∈ V (x), and vi,k(x) = 0 (a hollow circle in Figure 1) otherwise. In Figure 1,
v0,0(x) = 1 and v0,1(x) = 0.

V0
V1

V2t
V2t+1

...

0 1 · · · t− 1

V2
V3

Figure 1: (2t+ 2)-by-t matrix for GRC(t)

Figure 2 demonstrates the edge deleting rules for the graph GRC(t), in which dashed
lines denote that the edges are deleted. In detail, Case 1 in Figure 2 is an example
of deleting edges that are connected to the vertices v0,0 and v1,0, according to Rule 1 in
Definition 7; Case 2 in Figure 2 demonstrates all edges that need to be deleted, according
to Rule 2 in Definition 7; and Case 3 in Figure 2 is an example of deleting edges that are
connected to the vertices v1,0 and v1,1, according to Rule 3 in Definition 7.

Claim 8. For the graph GRC(t), if the bit string x represents a clique, V (x) can have
at most two vertices in each column, i.e. ∀k, 0 ≤ k ≤ t− 1 :

∑2t+1
i=0 vi,k(x) ≤ 2.

Proof. Due to Rule 1 in Definition 7, every vertex is connected to at most one vertex in
the same column.

Claim 9. For the graph GRC(t), if the bit string x represents a maximal clique, V (x)
contains at least one vertex in each column, i.e. ∀k, 0 ≤ k ≤ t − 1 :

∑2t+1
i=0 vi,k(x) ≥ 1.

Furthermore, V (x) contains at least t vertices, i.e. |V (x)| ≥ t.

Proof. Recall the rules in Definition 7, for each column k (0 ≤ k ≤ t − 1), the vertex
v0,k is connected to all vertices in other columns. Thus, V (x) will either contain some
vertices from

⋃2t+1
i=1 {vi,k}, or contain the vertex v0,k. Furthermore, since V (x) contains
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V1

V2

10

V3

V4

t− 1

V2t

V2t+1

V0

... ... ... ...

· · ·
· · ·

· · ·

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

V5 · · · V5

V1

V2

t− 20

V3

V4

t− 1

V2t

V2t+1

V0

... ... ... ...

· · ·
· · ·

· · ·

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
...

1

V5

V1

V2

t− 10

V3

V4

V2t

V2t+1

V0

... ... ...

· · ·
· · ·

· · ·

. . .

· · ·

· · ·
· · ·
· · ·
· · ·

· · ·
...

1

...

2

Figure 2: Illustrating Cases 1, 2 and 3 for Definition 7.

at least one vertex in each column, and there are t columns, V (x) contains at least t
vertices.

Claim 10. Any maximal clique can have two vertices in the last column of the graph
GRC(t) if these two vertices are v0,t−1 and v1,t−1, otherwise, it can have one vertex.

Proof. Due to Rule 1 and Rule 2 in Definition 7, v0,t−1 and v1,t−1 are connected, but any
vertex in

⋃2t+1
i=2 {vi,t−1} is not connected to all other vertices in the same column.

Claim 11. The only maximum clique of the graph GRC(t) is Vglobal = V0 ∪V1, which
contains 2t vertices.

Proof. Firstly, due to the edge rules in Definition 7, there exists a 2t clique of V0 ∪ V1.
Secondly, according to Claim 8, any clique can have at most two vertices in each column,
and there are t columns in the graph, thus, the maximum clique size can not be larger
than 2t. This means that V0 ∪ V1 is a maximum clique.

Now we show that V0 ∪V1 is the only 2t clique in the graph. We assume that there is
another 2t clique y. Due to Claim 8, V (y) must contain two vertices in each column to
be a 2t clique. Furthermore, due to Claim 10, V (y) can only contain v0,t−1 and v1,t−1 in
the last column. Therefore, V (y) contains some vertices in V0∪V1. Since V (y) 6= V0∪V1,
and |V (y)| = |V0 ∪ V1| = 2t, V (y) must contain some vertices in

⋃2t+1
i=2 Vi. So, there

exists at least one column k, such that V (y) must contain vertices from V0 ∪ V1 in this
column, and which must also contain vertices from

⋃2t+1
i=2 Vi in the next column. Then in

the column k, V (y) can not contain the vertex v1,k, due to Rule 3 in Definition 7. Hence,
V (y) only contains one vertex in the column k, which conflicts with the requirement that
V (y) must contain two vertices in each column. Thus y does not exist.
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3.2 (1+1) RMA RCLS on GRC(t)

In this subsection, we say a bit string is on the Path if it represents a clique that only
contains vertices in V0 ∪ V1.

Theorem 12. For any constant λ with λ = Θ(1), the (1+1) RMA RCLS is expected
to find the maximum clique of the graph GRC(t) within O(n2) fitness evaluations.

Proof. Part 1. According to Algorithm 3, since the algorithm starts with x = 0n, and the
mutation probability is 1/n, the probability that the mutation does not flip any bits is
(1− 1/n)n, which approaches 1/e as n increases. Thus, within Θ(1) restarts, we expect
to have a mutation that gets a bit string y, with y = 0n. Furthermore, once the mutation
produces the bit string y, the RCLS will first add a vertex from V0 to the current clique,
i.e. it is on the Path. This is because that:

1. Let y′ be a bit string that adds a vertex v0,k (0 ≤ k ≤ t−1) to y. Then y′ represents
a clique of size one, and PV(y′) = PV(y) − 2t, i.e. there are 2t vertices that are in
PV(y) but not in PV(y′). In detail, these 2t vertices are

⋃2t+1
i=2 {vi,k}, due to Rule 1

in Definition 7.

2. Let y′′ be a bit string that adds a vertex that is not in V0 to y. Then y′′ represents
a clique of size one, and PV(y′′) ≤ PV(y)−2t−1, i.e. there are at least 2t+1 vertices
that are in PV(y) but not in PV(y′′). In detail, these 2t+ 1 vertices are a) 2t vertices
in the same column due to Rule 1 in Definition 7; and b) one vertex in a different
column due to Rule 3 in Definition 7.

Therefore, because we will restart the algorithm within every Θ(1) generations, and in
each generation, the RCLS will stop on the fitness function within 2n2 fitness evaluations
(see Algorithm 4), the (1+1) RMA RCLS is expected to find a clique on the Path within
O(n2) fitness evaluations.

Part 2. Now we show that, apart from the maximum clique bit string, for any bit
string z on the Path, the best neighbors of z must be on the Path as well. We prove this
by assuming that there exists a bit string z′ that is one of the best neighbors of z and
that is not on the Path, and then showing that there exists a bit string z′′, that is also a
neighbor of z, yet has a larger fitness value than z′, thus z′ does not exist.

Firstly, since z′ is not on the Path, and is a better neighbor of z (z represents a
clique on the Path), we know that z′ must be a bit string which flips one bit of z from
zero to one. Furthermore, let this flipped vertex be vi,k, we know that vi,k /∈ {V0 ∪ V1},
i.e. 2 ≤ i ≤ t + 1. Since z′ is a better neighbor of z, z′ is also a clique, and we have
PV(z′) ≤ PV(z) − 2t − 2. This is because there are at least 2t + 2 vertices in PV(z) but
not in PV(z′). In detail, these 2t+ 2 vertices are:

1. The flipped vertex vi,k.

2. One vertex v1,(k−1) mod t due to Rule 3 in Definition 7.

3. 2t vertices of vj,k for all 0 ≤ j ≤ 2t + 1 and bi/2c 6= bj/2c due to Rule 1 in
Definition 7.
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Secondly, let z′′ be a neighbor of z that flips the vertex v0,k, this means:

1. z′′ must be a better neighbor of z. This is because a), the vertex v0,k must not
be chosen by z, otherwise z′ can not be a better neighbor of z; and secondly, the
vertex v0,k is connected to all vertices in z since they are in V0 ∪ V1, which is the
maximum clique.

2. PV(z′′) = PV(z)− 2t− 1. This is because there are exactly 2t+ 1 vertices in PV(z),
but not in PV(z′′). In detail, these 2t+ 1 vertices are a) the flipped vertex v0,k, and
b) 2t vertices of vj,k for all 2 ≤ j ≤ 2t+ 1 due to Rule 1 in Definition 7.

Thus, we have a bit string z′′ that is a better neighbor of z, and has a larger fitness value
than z′. This conflicts with our assumption that z′ is one of the best neighbors of z.

We have shown that, apart from the maximum clique bit string, for any bit string z
on the Path, the best neighbors of z must be on the Path as well. Then we know that
once the RCLS finds a bit string on the Path, it will check its neighbors and move to
one of the best neighbors that are also on the Path. Thus, the RCLS will keep adding
vertices from V0 ∪V1 until it finds the maximum clique of V0 ∪V1. This will take at most
2tn fitness evaluations (recall that n = t(2t + 2)). Also, we expect to have a mutation
to find a clique on the Path within O(n2) fitness evaluations (see Part 1). Thus the
(1+1) RMA RCLS is expected to find the maximum clique of the graph GRC(t) within
O(n2 + 2tn) fitness evaluations, which is O(n2) due to n = t(2t+ 2).

3.3 (1+1) RMA RPLS on GRC(t)

We have shown that the (1+1) RMA RCLS with λ = Θ(1) is expected to find the maxi-
mum clique of the graph GRC(t) efficiently. We now show that the (1+1) RMA RPLS is
not well suited for finding the maximum clique of the graph GRC(t) within a polynomial
number of fitness evaluations, no matter what λ we choose for the restart condition.

Theorem 13. For any static or dynamic variable λ, the probability of the (1+1)
RMA RPLS finding the maximum clique of the graph GRC(t) within a polynomial number
of fitness evaluations is super-polynomially (to n) close to zero.

Proof. We prove the theorem by showing that from the start, or from each restart, the
(1+1) RMA RPLS is expected to become trapped in a local optimal solution and take
a super-polynomial number of fitness evaluations to find the global optimal solution.
In detail, our proof consists of three parts, with each part having a failure probability
super-polynomially close to zero.

Part 1. Let y be the first bit string found by the algorithm, after the start or each
restart, that represents a clique. We claim that V (y) is expected to have a constant
number of vertices in V0 ∪ V1 with a probability super-polynomially close to one.

According to Algorithm 3, since the algorithm starts or restarts with x = 0n, and
the mutation probability is 1/n, the bit string after the mutation is expected to have a
constant number of ones with a probability super-polynomially close to one. Then we
have:
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1. If the bit string after the mutation represents a clique, Part 1 is achieved.

2. If the bit string after the mutation is all zeros, i.e. 0n, the RPLS will search its
neighbors according to its random permutation array, and move to the first neighbor
which represents a clique of size one. Hence, V (y) contains a constant number of
vertices in V0 ∪ V1.

3. If the bit string after the mutation does not represent a clique, the function−LACKEDGES
in Definition 1 will guide the RPLS to flip some bits from ones to zeros in order to
find a clique. Thus, the number of vertices in V (y) is still a constant.

Part 2. Assume Part 1 has succeeded, i.e. the first clique found after start or each
restart has a constant number of vertices in V0∪V1. Let z be the first bit string found by
the algorithm, after start or each restart, that represents a local optimal clique. We claim
that V (z) is expected to have a constant number of vertices in V0∪V1 with a probability
super-polynomially close to one.

Starting from the first bit string that represents a clique in Part 1, the RPLS will
keep checking neighbors according to the sequence of its random permutation array, then
moving to the first neighbor that has a better fitness value until no better neighbors
exist. For any column k with 0 ≤ k ≤ t − 1, due to |⋃2t+1

j=2 {vj,k}| = t|{v0,k, v1,k}| = 2t,
the probability of the random permutation array guiding the RPLS to check a vertex in
{v0,k, v1,k} before checking any other vertices in the same column is 1/(t + 1). Thus, if
adding any vertex vi,k (0 ≤ i ≤ 2t + 1) from the column k to the current clique creates
a larger clique, then the probability of the RPLS adding a vertex from

⋃2t+1
j=2 {vj,k} is t

times the probability of the RPLS adding a vertex from {v0,k, v1,k}.
Given above, and because there are t columns in the graph, if we for now ignore the

consequences of Rule 3 in Definition 7, the first local optimal clique, that the RPLS will
find, is expected to have only one column that includes vertices from V0 ∪ V1. The prob-
ability of z having ω(1) columns that include vertices from V0 ∪V1 is super-polynomially
close to zero.

Even though Rule 3 in Definition 7 might cause the RPLS to add more vertices from
V0 ∪ V1 to the current clique, we will show that it is expected to increase with no more
than a constant number of vertices from V0 ∪ V1 as well. Now we look at Rule 3 in
Definition 7:

Delete the edge between v1,k and vj,l for all variables j, k, l with 2 ≤ j ≤ 2t + 1, 0 ≤ k ≤ t − 1,

0 ≤ l ≤ t− 1 and k ≡ (l − 1) mod t.

Before the RPLS reaches the local optimal z, there may be some cases as follows:
there exists a column k, 0 ≤ k ≤ t− 1, such that the current clique contains the vertex
v1,k, but does not contain any vertices in the next column (k+1) mod t. Thus adding any
vertex from

⋃2t+1
i=2 {vi,(k+1) mod t} will not improve the fitness, but adding any vertex from

{v0,(k+1) mod t, v1,(k+1) mod t} will improve the fitness. Consequently, the RPLS will choose
to add a vertex from {v0,(k+1) mod t, v1,(k+1) mod t} to the clique no matter the sequence
of the random permutation. After the RPLS has added the vertex v1,(k+1) mod t to the
clique, it might keep influencing the column (k + 2) mod t in which the RPLS can only
add vertices from {v0,(k+2) mod t, v1,(k+2) mod t}, and then the column (k+ 3) mod t, and so
on.
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However, we claim that if a clique includes a vertex from V1, but does not include
any vertices in the next µ columns for any µ = ω(1), then the probability of the RPLS
adding vertices from V0 ∪ V1 in the next µ columns is super-polynomially close to zero
(we will show this in the next paragraph). Thus, since we only expect to have a constant
number of vertices chosen from V0 ∪ V1 in Part 1, Rule 3 in Definition 7 is only expected
to result in an increase of a constant number of vertices from V0 ∪ V1.

Let us assume that there exists a column k, and the RPLS will keep adding vertices
from V0∪V1 in the columns (k+1) mod t, (k+2) mod t, · · · , (k+µ) mod t for any µ with
µ = ω(1). We now show that this probability is super-polynomially close to zero. Note,
for our assumption to succeed, the random permutation array needs to guide the RPLS
to check the vertex v1,(k+1) mod t before checking all vertices from

⋃2t+1
i=2

⋃(k+µ) mod t
j=(k+2) mod t{vi,j}

(the probability of getting this exact permutation array is 1/2t(µ − 1)). Otherwise, if

the RPLS checks one vertex from
⋃2t+1
i=2

⋃(k+µ) mod t
j=(k+2) mod t{vi,j} before checking the vertex

v1,(k+1) mod t, it will find out that adding this vertex to the clique will improve the fitness.
Since the RPLS moves every time it finds a better neighbor, our assumption fails. Mean-
while, the permutation array needs to guide the RPLS to check the vertex v1,(k+2) mod t

before checking all vertices from
⋃2t+1
i=2

⋃(k+µ) mod t
j=(k+3) mod t{vi,j}, and so on. In other words,

for each variable l with 1 ≤ l < µ, the permutation array needs to guide the RPLS to
check the vertex v1,(k+l) mod t before checking all vertices in

⋃2t+1
i=2

⋃(k+µ) mod t
j=(k+l+1) mod t{vi,j}.

The probability of this permutation array occurring is:

1

2t(µ− 1)

1

2t(µ− 2)
· · · 1

2t
=

1

(2t)µ−1(µ− 1)!
,

which is super-polynomially close to zero since µ = ω(1) and n = t(2t+ 2).
Thus, V (z) contains a constant number of vertices in V0 ∪ V1 with a probability

super-polynomially close to one.
Part 3. Assume Part 2 has succeeded. After z is found, we claim that the (1+1)

RMA RPLS will either a) restart (the next restart will find another z that represents a
clique with a constant number of vertices in V0 ∪ V1 as well), or b) become trapped in a
local optimal clique Vlocal with Vlocal ∩ (V0 ∪ V1) = ∅ before it finds the global optimal
clique of Vglobal = V0 ∪ V1 with a probability super-polynomially close to one.

Since V (z) has a constant number of vertices in V0 ∪ V1 (assuming Part 2 has suc-
ceeded), and because any local optimal clique has at least one vertex in each column
(see Claim 9), V (z) must have Θ(t) vertices in

⋃2t+1
i=2 Vi. Thus, within one mutation and

the following RPLS, the ratio that the probability of the (1+1) RMA RPLS finding any
local optimal clique that has no vertices in V0 ∪ V1 over the probability of the (1+1)
RMA RPLS finding the global optimal clique of V0 ∪ V1 is super-polynomially large.

Now we look at the case of the (1+1) RMA RPLS with multiple mutations, where
each mutation is followed by one RPLS. We will also show that the (1+1) RMA RPLS
is expected to become trapped in a local optima that has no vertices in V0 ∪ V1, before
it finds the global optimal clique of V0 ∪ V1.

We say that a mutation and the following RPLS is a success if it produces a new
string z′ in which, a) V (z′) has more (or less) vertices from V0 ∪ V1 than the current
V (z), and b) z′ is accepted as the new current string. In other words, z′ is a success if
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|V (z) ∩ (V0 ∪ V1) | 6= |V (z′) ∩ (V0 ∪ V1) | and fOPL(z
′) ≥ fOPL(z). In each success, if there

are α consecutive columns, where in each column, V (z) contains vertices in
⋃2t+1
i=2 Vi,

but V (z′) contains vertices in V0 ∪ V1, we call it an α-column positive change, since it is
approaching the global optimal solution. On the other hand, if there are α consecutive
columns, where in each column, V (z) contains vertices in V0 ∪ V1, but V (z′) contains
vertices in

⋃2t+1
i=2 Vi, we call it an α-column negative change, since it is approaching the

local optimal solutions with no vertices in V0∪V1. Overall, a success might include some
positive changes and/or some negative changes. For example, Figure 3 is a success on
the graph GRC(5) which has a 1-column negative change in the column 1 and a 1-column
positive change in the column 4.

Recall that V (z) has a constant number of vertices in V0∪V1. Thus, to find the global
optimal clique, we need the total number of columns that undergo positive changes to
be Θ(t) larger than the total number of columns that undergo negative changes. But to
find a local optimal clique with no vertices in V0 ∪ V1, we only need the total number
of columns that undergo negative changes to be Θ(1) larger than the total number of
columns that undergo positive changes. Note that the probability of a success changing
ω(1) columns is super-polynomially close to zero since the probability of one mutation
changing ω(1) bits is super-polynomially close to zero. Thus, the algorithm needs Ω(t)
successes to find the global optimal clique. Furthermore, we claim that after a number
of successes, the total number of columns that undergo negative changes is expected to
be ω(1) times the total number of columns that undergo positive changes (we will show
this later). This implies that within ω(1) and o(t) successes, the algorithm a) has not
found the global optimal clique, and b) has found a local optimal clique with no vertices
in V1 ∪ V2. Thus, with overwhelming probability, the (1+1) RMA RPLS will become
trapped in a local optimal clique with no vertices in V0 ∪ V1 before finding the global
optimal clique.

V1
V2

V9
V10

1 20 3

V3
V4

4

V5
V6
V7
V8

V11

V0

−→

z

V1
V2

V9
V10

V3
V4
V5
V6
V7
V8

V11

V0

z′

1 20 3 4

Figure 3: A success for the graph GRC(5)

Now we show that after a number of successes, the total number of columns that
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undergo negative changes is expected to be ω(1) times the total number of columns that
undergo positive changes.

Note that, for a column k, if the current clique contains vertices from
⋃2t+1
i=2 {vi,k}

in this column, there is only one possible way to achieve a 1-column positive change,
i.e. the mutation and the RPLS needs to remove the two vertices that the current clique
has chosen in the column k, and add the vertices from {v0,k, v1,k} to the clique. Then,
after achieving this 1-column positive change for the column k, there are t possible ways
to get a 1-column negative change, i.e. the mutation and the RPLS can remove the two
vertices from {v0,k, v1,k}, and add another two vertices from either {v2,k, v3,k}, {v4,k, v5,k},
· · · , {v2t−2,k, v2t−1,k}, or {v2t,k, v2t+1,k} to the clique. Furthermore, the probability of
achieving each of the possible ways of getting the 1-column negative change is the same
as the probability of achieving the 1-column positive change. This is because they all
need to change the same number of vertices. Thus, after the algorithm has gained a
1-column positive change, the probability of the algorithm gaining a corresponding 1-
column negative change, i.e. the clique will now choose vertices from

⋃2t+1
i=2 Vi in this

column, is t times the probability of the algorithm gaining the 1-column positive change.
Similarly, if the algorithm has gained an α-column positive change (α ≥ 1), there are

tα ways of getting an α-column negative change. That is to say, the probability of the
algorithm getting a corresponding α-column negative change is tα times the probability
of the algorithm gaining the α-column positive change.

Equivalently, if the current clique has gained an α-column negative change, the prob-
ability of the algorithm gaining a corresponding α-column positive change is 1/tα times
the probability of gaining the α-column negative change.

Overall, after a number of successes (each success includes some positive changes
and/or negative changes), the total number of columns that undergo negative changes is
expected to be ω(1) times the total number of columns that undergo positive changes.

Part 4. Assume Part 3 has succeeded, i.e. the (1+1) RMA RPLS has been trapped
in a local optimal solution x with V (x) ∩ (V0 ∪ V1) = ∅. We claim that, before the next
restart, the probability of the (1+1) RMA RPLS finding the global optimal clique within
a polynomial number of fitness evaluations is super-polynomially close to zero.

Since the current clique has no vertices in V0 ∪ V1, to find the global optimal clique,
we need the total number of columns that undergo positive changes to be t larger than
the total number of columns that undergo negative changes. However, as shown in
Part 3, after a number of successes, the total number of columns that undergo negative
changes is expected to be ω(1) times the total number of columns that undergo positive
changes. Therefore, the probability of the (1+1) RMA RPLS finding the global optimal
clique within a polynomial number of fitness evaluations is super-polynomially close to
zero.
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4 A family of graphs on which the (1+1) RMA RPLS

outperforms the (1+1) RMA RCLS

In this section, we will construct a family of graphs GRP and show that the (1+1)
RMA RPLS is expected to find a maximum clique within a polynomial number of fitness
evaluations, while the (1+1) RMA RCLS is expected to find a maximum clique within a
super-polynomial number of fitness evaluations.

4.1 GRP and its landscape

Definition 14. The graph GRP (t) has the same number of vertices as the graph
GRC(t), but the edge connections are different. It has n = t(2t + 2) vertices for the
variable t. We separate all vertices into (2t + 2) disjoint sets V0, V1, · · · , V2t+1 such that
Vi ∩ Vj = ∅ and |Vi| = t for 0 ≤ i ≤ 2t+ 1, 0 ≤ j ≤ 2t+ 1 and i 6= j. We use vi,k to refer
the k-th vertex in Vi (0 ≤ k ≤ t − 1). To make it easier to understand the edge set E,
we first assume it is a complete graph, and then delete edges according to the following
rules:

1. Delete the edge between vi,k and vj,k for all variables i, j, k with 0 ≤ k ≤ t − 1,
0 ≤ i ≤ 2t+ 1, 0 ≤ j ≤ 2t+ 1 and bi/2c 6= bj/2c.

2. Delete the edge between v0,t−1 and v1,t−1.

3. Delete the edge between vi,k and vj,l for all variables i, j, k, l with 2 ≤ i ≤ 2t + 1,
2 ≤ j ≤ 2t+ 1, bi/2c = bj/2c, 0 ≤ k ≤ t− 1, 0 ≤ l ≤ t− 1 and k 6= l.

4. Delete the edge between v1,k and vj,l for all variables j, k, l with 2 ≤ j ≤ 2t + 1,
0 ≤ k ≤ t− 1, 0 ≤ l ≤ t− 1 and k ≡ (l − 1) mod t.

5. Delete the edge between v1,k and vj,l for all variables j, k, l with 2 ≤ j ≤ 2t + 1,
0 ≤ k ≤ t − 1 and l ∈ {k − k mod blog tc, k + blog tc − k mod blog tc} where
0 ≤ l ≤ t− 1.

Now we fill all vertices from the sets V0, V1, · · · , V2t+1 into a (2t+ 2)-by-t matrix with
each set Vi being the i-th row vector, as shown in Figure 4. Hence, vi,j is the vertex
in row i and column j. We use V (x) to denote the set of vertices x has chosen, recall
x = (x1, x2, . . . , xn). Then we use vi,k(x) = 1 (a solid circle in Figure 4) to denote
that vi,k ∈ V (x), and vi,k(x) = 0 (a hollow circle in Figure 4) otherwise. In Figure 4,
v0,0(x) = 1 and v0,1(x) = 0.

Figure 5 demonstrates the edge deleting rules for the graph GRP (t), in which dashed
lines denote that the edges are deleted. In detail, Case 1 in Figure 5 is an example of
deleting edges that are connected to the vertices v0,0 and v1,0, according to Rule 1 in
Definition 14; Case 3 in Figure 5 is an example of deleting edges that are connected to
the vertices v2,0 and v3,0, according to Rule 3 in Definition 14; Case 4 in Figure 5 is an
example of deleting edges that are connected to the vertices v1,0 and v1,1, according to
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Figure 4: (2t+ 2)-by-t matrix for GRP (t)
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Figure 5: Illustrating Cases 1, 3, 4 and 5 for Definiton 14.

Rule 4 in Definition 14; and Case 5 in Figure 5 is an example of deleting edges that are
connected to the vertices v1,1 and vblog tc−1,1, according to Rule 5 in Definition 14.

Claim 15. For the graph GRP (t), if the bit string x represents a clique, V (x) can
have at most two vertices in each column, i.e. ∀k, 0 ≤ k ≤ t− 1 :

∑2t+1
i=0 vi,k(x) ≤ 2.

Proof. Due to Rule 1 in Definition 14, every vertex is connected to at most one vertex
in the same column.

Claim 16. For the graph GRP (t), if the bit string x represents a maximal clique, V (x)
contains at least one vertex in each column, i.e. ∀k, 0 ≤ k ≤ t − 1 :

∑2t+1
i=0 vi,k(x) ≥ 1.

Furthermore, V (x) contains at least t vertices, i.e. |V (x)| ≥ t.

Proof. Recall the rules in Definition 14, for each column k (0 ≤ k ≤ t−1), the vertex v0,k
is connected to all vertices in other columns. Thus V (x) will either contain some vertices
from

⋃2t+1
i=1 {vi,k} or contain the vertex v0,k. Furthermore, due to V (x) contains at least

one vertex in each column, and there are t columns, V (x) contains at least t vertices.
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Claim 17. In the last column of the graph GRP (t), a maximal clique can have either
a) one vertex from {v0,t−1, v1,t−1}, or b) two vertices in the last column.

Proof. Due to Rule 1 and Rule 2 in Definition 14, v0,t−1 and v1,t−1 are disconnected,
thus any maximal clique can only contain one vertex from {v0,t−1, v1,t−1}. Meanwhile,
any vertex vi,t−1, 2 ≤ i ≤ 2t + 1, is connected to the vertex vj,t−1 with i 6= j and
bi/2c = bj/2c. Also, ∀v ∈ V, v 6= vi,t−1 and v 6= vj,t−1 : (v, vi,t−1) ∈ E ⇔ (v, vj,t−1) ∈ E.
Furthermore, any maximal clique must contain at least one vertex in each column due to
Claim 16. Thus, if any maximal clique does not contain any vertices from {v0,t−1, v1,t−1},
it will choose a pair of vertices in the last column.

Claim 18. For any bit string x that represents a maximal clique of the graph GRP (t),
if V (x) does not contain any vertices in V0 ∪ V1, then it must contain 2t vertices and is
a maximum clique. Otherwise, V (x) must contain less than 2t vertices.

Proof. Firstly, due to Claim 15, any clique can have at most two vertices in each column,
and there are t columns in the graph, thus the maximum clique size can not be larger
than 2t. Also, according to the edge rules in Definition 14, if a maximal clique V (x)
does not contain any vertices in V0∪V1, then it must contain exactly two vertices in each
column. Thus, it has 2t vertices, which is a maximum clique.

Secondly, if V (x) contains some vertices in V0 ∪ V1, x belongs to one of the following
two cases:

1. V (x) only contains vertices in V0 ∪ V1. Therefore, it can only contain one vertex in
the last column, due to Claim 17. In this case, the clique size of x will be less than
2t.

2. V (x) also contains some vertices in
⋃2t+1
i=2 Vi. Therefore, there exists a column k,

such that V (x) contains vertices from V0 ∪ V1 in this column, and contains vertices
from

⋃2t+1
i=2 Vi in the next column. Hence, V (x) contains only the vertex v0,k in the

column k due to Rule 4 in Definition 14. In this case, the clique size of x will be
less than 2t.

4.2 (1+1) RMA RPLS on GRP (t)

Theorem 19. For any constant λ with λ = Θ(1), the (1+1) RMA RPLS is expected
to find a maximum clique of the graph GRP (t) within O(n1.5) fitness evaluations.

Proof. Part 1. According to Algorithm 3, since the algorithm starts with x = 0n, and the
mutation probability is 1/n, the probability that the mutation does not flip any bits is
(1− 1/n)n, which approaches 1/e as n increases. Thus, within Θ(1) restarts, we expect
to have a mutation that produces the bit string 0n. Also, because we will restart the

18



algorithm after each λ generations, and the RPLS will take at most 2n fitness evaluations
in each generation (see Algorithm 5), we expect to have a mutation that does not flip
any bits within O(n) fitness evaluations.

Part 2. Proceeding from Part 1, i.e. the mutation does not flip any bits, now we look
at the probability of the RPLS finding a local optimal clique that does not contain any
vertices in V0 ∪ V1. This local optimal clique is also a maximum clique, according to
Claim 18.

Note that the RPLS will keep checking neighbors according to the sequence of its
random permutation array, then moving to the first neighbor that has a better fitness
value, until no better neighbors exist. Also, according to Claim 16, when the RPLS
finds a local optimal clique, this clique must contain at least one vertex in each column.
Therefore, if we look at each column, and focus on the first vertex in the column that
the RPLS will add to the current clique, there must exist a sequence of columns C =
(c1, c2, . . . , ct), such that the RPLS will first add one vertex from the column c1 to the
current clique, then add another vertex from the column c2 to the current clique, and so
on. Note that in each column k, |⋃2t+1

i=2 {vi,k}| = t|{v0,k, v1,k}| = 2t. Hence, in the first
column (c1), the probability of the random permutation array guiding the RPLS to add
a vertex from V0 ∪ V1 to the current clique is 1/(t+ 1). That is to say, in the column c1,
the probability of the random permutation array guiding the RPLS to add a vertex from⋃2t+1
i=2 V1 to the current clique is 1 − 1/(t + 1) = t/(t + 1). Also note that, if the RPLS

has added any vertex from
⋃2t+1
i=2 Vi in the column c1 to the clique, then, in the column

c2, there are two vertices from
⋃2t+1
i=2 Vi that are disconnected with the current clique,

due to Rule 3 in Definition 14. Therefore, in the column c2, the number of vertices from⋃2t+1
i=2 Vi that can be added to the current clique to get a larger clique will be decreased

to 2t− 2. Meanwhile, the number of vertices from V0 ∪ V1 in the column c2 that can be
added to the current clique to get a larger clique will be at most two (this value can be
less than two because that the Rules 4 and 5 in Definition 14 might prevent the addition
of the vertex from V1 in the column c2 as a means of improving the clique size). Thus,
the probability of the random permutation array guiding the RPLS to add a vertex from⋃2t+1
i=2 Vi in the column c2 to the current clique is at least (t− 1)/t. That is to say, in the

column ci, if the current clique does not contain any vertices in V0∪V1, i.e. there are i−1
columns from which the current clique contains vertices in

⋃2t+1
i=2 Vi, then, the probability

of the random permutation array guiding the RPLS to add a vertex from
⋃2t+1
i=2 Vi in the

column ci to the current clique is at least (t− i+ 1)/(t− i+ 2). Overall, the probability
of the random permutation array guiding the RPLS to find a local optimal clique that
does not contain any vertices in V0 ∪ V1 is at least t

t+1
t−1
t
· · · 1

2
= 1/(t+ 1).

Therefore, if we have O(t) mutations that all produce the bit string 0n, the RPLS
is expected to find a local optima that does not contain any vertices in V0 ∪ V1. This
local optima is also a maximum clique due to Claim 18. Also, according to Part 1, we
expect to have a mutation that produces the bit string 0n within O(n) fitness evaluations.
Hence, the (1+1) RMA RPLS is expected to find a maximum clique within O(tn) fitness
evaluations, which is O(n1.5) since n = t(2t+ 2).
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4.3 (1+1) RMA RCLS on GRP (t)

We have shown that the (1+1) RMA RPLS with λ = Θ(1) is expected to find a maximum
clique of the graph GRP (t) within a polynomial number of fitness evaluations. We now
show that the (1+1) RMA RCLS is not well suited for finding a maximum clique of the
graph GRP (t) within a polynomial number of fitness evaluations no matter what λ we
choose for the restart condition.

Theorem 20. For any static or dynamic variable λ, the probability of the (1+1)
RMA RCLS finding a maximum clique of the graph GRP (t) within a polynomial number
of fitness evaluations is super-polynomially close to zero.

Proof. We prove this by showing that, from the start or from each restart, the (1+1)
RMA RCLS is expected to become trapped in a local optimal clique and take a super-
polynomial number of fitness evaluations to find a global optimal clique. In detail,
our proof consists of three parts, with each part having a failure probability super-
polynomially close to zero.

Part 1. Let y be the first bit string found by the algorithm after the start or each
restart that represents a clique. We claim that V (y) is expected to have a constant
number of vertices in

⋃2t+1
i=2 Vi.

According to Algorithm 3, since the algorithm starts with x = 0n, the bit string
after mutation is expected to have a constant number of bits flipped with a probability
super-polynomially close to one. If the bit string after the mutation represents a clique,
then Part 1 is achieved. Or if the bit string after the mutation is still 0n, the RCLS
will flip one bit from zero to one in order to get a clique, then Part 1 is achieved. Or
the bit string after the mutation has some ones, but it does not represent a clique, then
the RCLS will search all neighbors and remove some ones to zeros until the bit string
represents a clique. In this case, V (y) still contains a constant number of vertices in⋃2t+1
i=2 Vi.

Part 2. Assume Part 1 has succeeded, let z be the first bit string found by the
algorithm after the start or each restart that represents a local optimal clique. We claim
that z is expected to have a constant number of vertices in

⋃2t+1
i=2 Vi.

After y is found, the RCLS will keep checking the current string’s neighbors, then
moving to one of the best neighbors until it reaches a local optimal solution, i.e. z. Since
V (y) only contains a constant number of vertices, there are still Θ(t) columns from which
y has not chosen any vertices. Let us call them un-chosen columns. Furthermore, among
these un-chosen columns, we call a column a negative column if V (z) contains a vertex
from V0∪V1 in this column due to the fact that it is moving further away from all global
optimal cliques. Alternatively, if V (z) contains a vertex from

⋃2t+1
i=2 Vi in an un-chosen

column, we call it a positive column. We claim that, when the RCLS reaches z, there is at
most one positive column while all other un-chosen columns will be negative columns (we
will show this in the next paragraph). And for each negative column, the RCLS will not
add any vertices from

⋃2t+1
i=2 Vi in this column to the clique due to Rule 1 in Definition 14.

Also, the positive column can have at most two vertices from
⋃2t+1
i=2 Vi, due to Claim 15.

Thus, V (z) is expected to contain a constant number of vertices in
⋃2t+1
i=2 Vi.
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Now we show that when the RCLS reaches z, there is at most one positive column
while all other columns will be negative columns. We assume that there is more than one
positive column, then we can select any two positive columns of column k and l (k 6= l),
and show a contradiction. First, let vi,k be the first vertex in the column k that the
RCLS will add to the clique, and let vj,l be the first vertex in the column l that the
RCLS will add to the clique. Since the column k and the column l are both positive
columns, we know 2 ≤ i ≤ 2t + 1 and 2 ≤ j ≤ 2t + 1. Furthermore, let us assume that
the RCLS will add the vertex vi,k before adding the vertex vj,l. Let x be the bit string
before the RCLS adds the vertex vi,k, and x′ be the bit string after the RCLS adds the
vertex vi,k to x. Also, let s be the number of vertices in the column k that are in PV(x),

i.e. s = |PV(x)∩
(⋃2t+1

j=0 {vj,k}
)
|. Then we say PV(x′) ≤ PV(x)− s− 1 due to the fact that

there are at least s+ 1 vertices in PV(x), but not in PV(x′). In detail, these s+ 1 vertices
are:

1. s− 1 vertices in the column k. This is because the vertex vi,k is connected to only
one vertex in the same column, thus all other vertices would not be in PV(x′). Note
the vertex vi,k is in PV(x), but not in PV(x′).

2. 2 vertices in the column l. In detail, these two vertices are vi,l and vi′,l, with
bi/2c = bi′/2c and i 6= i′. This is because a) the vertices vi,l and vi′,l are not
connected to the vertex vi,k, due to Rule 3 in Definition 14, hence, they are not in
PV(x′); and b) vi,l and vi′,l must be in PV(x). We prove this by assuming that vi,l
or vi′,l is not in PV(x), and then show a contradiction. If vi,l or vi′,l is not in PV(x)
because of Rule 3 in Definition 14, then the vertex vi,k should not be in PV(x) as
well. Hence, the RCLS will not add the vertex vi,k to x. Or if vi,l or vi′,l is not in
PV(x) because of Rule 4 or Rule 5 in Definition 14, then the column l can not be a
positive column. Therefore, the vertices vi,l and vi′,l must be in PV(x).

Meanwhile, there exists another solution x′′, of which V (x′′) = V (x)∪{v0,k}. Thus, x′′

is a neighbor of x. Furthermore, we claim that x′′ has a larger fitness value than x′ (we will
show this later). Therefore, the RCLS will not choose to move to x′, which contradicts
our assumption. (Recall that the RCLS only moves to one of the best neighbors of the
current solution).

Firstly, x′′ must represent a clique. This is because V (x) does not contain any vertices
in the column k, and v0,k is connected to all vertices in other columns. Therefore, adding
the vertex v0,k into x still represents a clique. Thus ONES(x′′) = ONES(x′).

Secondly, according to the edge rules in Definition 14, the vertex v0,k is connected
to all vertices that are not in the column k. Thus, for all vertices in other columns, if
they are in PV(x), then they will still be in PV(x′′) as well. This means that PV(x′′) ≥
PV(x)− s > PV(x′). Hence, x′′ has a larger fitness value than x′.

Part 3. Assume Part 2 has succeeded, we claim that before the next restart, the
probability of the algorithm finding a maximum clique within a polynomial number of
fitness evaluations is super-polynomially close to zero.

Firstly, we look at the probability of the algorithm using one mutation and the RCLS
to find a global optimal clique. Since V (z) only contains a constant number of vertices in
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⋃2t+1
i=2 Vi, it must contain Θ(t) vertices in V0 ∪ V1 due to Claim 16. Thus, the probability

of the algorithm finding a global optimal clique with one mutation and the following
RCLS is super-polynomially close to zero.

Secondly, we look at the probability of the algorithm finding a maximum clique within
a polynomial number of fitness evaluations, by using multiple mutations, with each fol-
lowed by one RCLS. Recall Rule 5 in Definition 14, for a section of blog tc consecutive
columns from the column k1 to the column k2 with 0 ≤ k1 ≤ t − 1, 0 ≤ k2 ≤ t − 1,
k2 − k1 = blog tc and k1 mod blog tc = 0, every vertex from

⋃k2
k=k1
{v1,k} is disconnected

with every vertex from
⋃2t+1
i=2 {vi,k1 , vi,k2}. For each of the above sections of blog tc con-

secutive columns, if the current local optimal clique only contains 2blog tc vertices from
V0 ∪ V1 in this section, we call it a hard-to-escape section. This is because if we want
to remove some vertices that are in this section of columns and also in V0 ∪ V1 from the
current clique, and add the same number of vertices that are in this section of columns
and also in

⋃2t+1
i=2 Vi to the clique, then the only way is to remove all 2blog tc vertices

that are in V0∪V1, and add another 2blog tc vertices that are in
⋃2t+1
i=2 Vi and that can be

reached with one mutation and the following RCLS. The probability of achieving this is
super-polynomially close to zero. Alternatively, if one mutation and the following RCLS
only removes a constant number of vertices in this section from V0∪V1, and adds vertices
from

⋃2t+1
i=2 Vi to the clique, then the clique size will be decreased. Hence, the algorithm

will not accept this solution, and we cannot rely on using multiple mutations and RCLSs
to avoid the current clique from containing vertices in V0 ∪ V1 in this section.

Now recall that V (z) contains a constant number of vertices from
⋃2t+1
i=2 Vi, therefore,

it is expected to have ω(1) number of the above hard-to-escape sections. Thus, the
probability of avoiding the current clique from containing vertices in V0 ∪ V1 is super-
polynomially close to zero, since the algorithm needs to change Θ(log t) vertices with one
mutation and the following RCLS.

5 (1+1) RMA with an Alternative Local Search

In this section, we will propose a (1+1) Restart Memetic Algorithm (RMA) with an
Alternative Local Search, which is denoted as (1+1) RMA ALS. Then we will show that
the proposed algorithm is expected to find a maximum clique of both families of graphs,
GRC and GRP , within a polynomial number of fitness evaluations. The algorithm is
stated as below:

Algorithm 21. (1+1) RMA ALS.

1. Initialize the mutation probability p = 1/n,
set gen := 0, the local search flag lsf := 1.

2. Choose x := 0n.

3. y := Mutation(x).

4. If lsf = 1 then z := RCLS(y) else z := RPLS(y).

5. If f(z) ≥ f(x) then x := z.

22



6. gen := gen + 1.

7. If (gen mod λ) = 0 then lsf := 1− lsf, go to step 2.

8. Stop if any stopping criterion is met, otherwise, go to step 3.

Note that the (1+1) RMA ALS will first use the RCLS as the local search until the
next restart, then it will switch to the RPLS until the second restart, and so on.

Corollary 22. For any constant λ with λ = Θ(1), the (1+1) RMA ALS is expected
to find the maximum clique of the graph GRC(t) within O(n2) fitness evaluations.

Proof. Recall that the RCLS will take at most 2n2 fitness evaluations in each generation
(see Algorithm 4), and the RPLS will take at most 2n fitness evaluations in each gen-
eration (see Algorithm 5). Also recall Theorem 12, the (1+1) RMA RCLS is expected
to find the maximum clique on the family GRC within Θ(1) generations. Therefore, be-
cause the (1+1) RMA ALS will alternatively apply the RCLS and the RPLS in every λ
generations, the algorithm is expected to find the maximum clique on the family GRC

within O(n2) fitness evaluations.

Corollary 23. For any constant λ with λ = Θ(1), the (1+1) RMA ALS is expected
to find a maximum clique of the graph GRP (t) within O(n2.5) fitness evaluations.

Proof. Recall that the RCLS will take at most 2n2 fitness evaluations in each generation
(see Algorithm 4), and the RPLS will take at most 2n fitness evaluations in each genera-
tion (see Algorithm 5). Also recall Theorem 19, the (1+1) RMA RPLS is expected to find
a maximum clique on any graph of the family GRP within O(t) generations. Therefore,
because the (1+1) RMA ALS will alternatively apply the RCLS and the RPLS in every
λ generations, the algorithm is expected to find a maximum clique on any graph of the
family GRP within O(tn2) fitness evaluations, which is O(n2.5) since n = t(2t+ 2).

6 Experiments

We now finally examine the experimental results regarding the behavior of the (1+1)
RMA with different local searches on the families of graphs GRC and GRP . We are
particularly interested in the number of fitness evaluations that each algorithm needs to
find a maximum clique as the order n of the graph grows. We run each of our algorithms
on each graph 50 times. Since we have shown that some algorithms are expected to take
a super-polynomial number of fitness evaluations to find a maximum clique on certain
graphs, we stop the algorithm and mark it as a fail if these 50 runs do not stop within
100 hours.

Firstly, we tested the (1+1) RMA RCLS, the (1+1) RMA RPLS and the (1+1)
RMA ALS on the family GRC . Recall we have shown that both the (1+1) RMA RCLS
and the (1+1) RMA ALS are expected to find the maximum clique on any graph of
the family GRC within a polynomial number of fitness evaluations with λ = Θ(1) (see
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Figure 6: A comparison of the average number of fitness evaluations (on a log-scale) as n
grows for the (1+1) RMA RCLS (λ = 1), the (1+1) RMA ALS (λ = 1), and the (1+1)
RMA RPLSs (λ ∈ {1, n3, n8, nn}) on the GRC(t), n = t(2t+ 2).

Theorem 12 and Corollary 22). Therefore, we tested these two algorithms with λ = 1.
Also recall that, for any static or dynamic λ, the (1+1) RMA RPLS is expected to take
a super-polynomial number of fitness evaluations to find the maximum clique on any
graph of the family GRC (see Theorem 13). Therefore, we tested the (1+1) RMA RPLS
on the family GRC with four different λs, λ ∈ {1, n3, n8, nn}, respectively. The results of
the above tested algorithms on the graphs of the family GRC are shown in Figure 8. A
comparison of the average number of fitness evaluations (on a log-scale) for all algorithms
tested on the family GRC is shown in Figure 6.

Secondly, we tested the (1+1) RMA RCLS, the (1+1) RMA RPLS and the (1+1)
RMA ALS on the family GRP . Recall we have shown that both the (1+1) RMA RPLS
and the (1+1) RMA ALS are expected to find a maximum clique on any graph of the
family GRP within a polynomial number of fitness evaluations with λ = Θ(1) (see The-
orem 19 and Corollary 23). Therefore, we tested these two algorithms with λ = 1. Also
recall that, for any static or dynamic λ, the (1+1) RMA RCLS is expected to take a
super-polynomial number of fitness evaluations to find a maximum clique on any graph
of the family GRP (see Theorem 20). Therefore, we tested the (1+1) RMA RCLS on the
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Figure 7: A comparison of the average number of fitness evaluations (on a log-scale) as n
grows for the (1+1) RMA RPLS (λ = 1), the (1+1) RMA ALS (λ = 1), and the (1+1)
RMA RCLSs (λ ∈ {1, n3, n8, nn}) on the GRP (t), n = t(2t+ 2).

family GRP with four different λs, λ ∈ {1, n3, n8, nn}, respectively. The results of the
above tested algorithms are shown in Figure 9. A comparison of the average number of
fitness evaluations (on a log-scale) for all algorithms tested on the family GRP is shown
in Figure 7.

7 Conclusion and future work

We have formalized a (1+1) Restart Memetic Algorithm and two local searches, RCLS
and RPLS, and run them on the fitness function fOPL to solve the Clique Problem. We
then constructed two families of graphs, GRC and GRP , and showed that, for the first fam-
ily of graphs GRC , the (1+1) RMA RCLS drastically outperforms the (1+1) RMA RPLS,
and vice versa for the second family of graphs GRP . Furthermore, we proposed a (1+1)
Restart Memetic Algorithm with an Alternative Local Search, and showed that the pro-
posed algorithm is expected to solve the Clique Problem on both families of graphs
efficiently. This indicates that an MA with multiple local searches can outperform MAs
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with a single local search in some instances of the Clique Problem. We also empirically
verified our theoretical results with computer programs.

For future work, we suggest analyzing the runtime performance of MAs with more
local search operators, and with a dynamic or adaptive strategy that will decide which
local search operator should be used.
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Figure 8: The number of fitness evaluations (on a log-scale) as t grows for the (1+1)
RMA RCLS (λ = 1), the (1+1) RMA ALS (λ = 1), and the (1+1) RMA RPLSs (λ ∈
{1, n3, n8, nn}) on the GRC(t), n = t(2t+ 2).
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Figure 9: The number of fitness evaluations (on a log-scale) as t grows for the (1+1)
RMA RPLS (λ = 1), the (1+1) RMA ALS (λ = 1), and the (1+1) RMA RCLSs (λ ∈
{1, n3, n8, nn}) on the GRP (t), n = t(2t+ 2).
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