http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

ResearchSpace at The University of Auckland > University of Auckland PhD Theses > PhD Theses (Closed Access) >

Please use this identifier to cite or link to:
http://hdl.handle.net/2292/568

Title: The middle Jurassic of New Zealand
Authors: Hudson, Neville
Issue Date: 2000
Publisher: ResearchSpace@Auckland
The middle Jurassic of New Zealand

A study of the Lithostratigraphy and Biostratigraphy of the Ururoan, Temaikan and Lower Heterian Stages (?Pliensbachian to ?Kimmeridgian)

Neville Hudson

The University of Auckland

A thesis submitted as a requirement for the degree of Doctor of Philosophy in Geology

University of Auckland

April 1999
“What’s the use of their having names,” the Gnat said, “if they won’t answer to them?”

“No use to them,” said Alice; “but it’s useful to the people that name them, I suppose. If not, why do things have names at all?”

Through the Looking-Glass - Lewis Carroll
ABSTRACT

The lithologic and biostratigraphic successions of Ururoan, Temaikan and Lower - Middle Heterian (?Sinemurian, Pliensbachian - ?Kimmeridgian) strata from southwest Auckland, south Otago and Southland, New Zealand, are described and discussed. A more logical correlation of the lithologic sequence at Port Waikato with that at Te Akau is proposed. Two new formations are introduced for the sequences on the western limb of the Kawhia Regional Syncline, the Whakapakiki Mudstone for the fine grained lower Kirikiri Group strata in the Awakino Valley and the Gribbon Formation for the Rengarenga Group strata between Marokopa and Mahoenui. In Southland a new formation (Ben Bolt Formation) is proposed for the c.1340m sequence overlying the Flag Hill Sandstone, in turn overlain by a 485m thick, mudstone-dominated formation for which a long disused name is resurrected (Lora Formation). The Lora Formation is in turn overlain by a coarse-grained unit, for which the name West Peak Formation is proposed.

In the absence of suitable alternatives, a subdivision of the Ururoan Stage into a Lower Ururoan, the range-zone of Pseudacella marshalli, and an Upper Ururoan, the interval-zone between the last appearance of Pseudacella marshalli and the first appearance of a Temaikan fauna is proposed. The existing three-fold subdivision of the Temaikan Stage is emended. Belemnopsis mackayi and B. deborahae are retained as the indices of the Temaikan and its lowest subdivision, as they are present in most sections at a consistent stratigraphic position. Retroceramus (Fractoceramus) inconditus is proposed as the basal Middle Temaikan index species. Retroceramus (R.) brownei, which first appears consistently higher than R. inconditus, but below R. marwicki is proposed as the index for the upper Middle Temaikan. Retroceramus (R.) marwicki is proposed as a replacement Upper Temaikan index for "Macrocephalites cf. beta-gamma" which is unsuitable. Meleagrinella n. sp. is inconsistent in its first appearance and therefore unsuitable as a Middle Temaikan index and, although confined to this stage, it ranges from Early to early Upper Temaikan. Basal Temaikan Belemnopsis spp. are absent from sections in the Catlins district whereas the earliest Temaikan taxon appearing above typical Ururoan faunas is Meleagrinella n. sp. In the absence of a better alternative Meleagrinella n. sp. is used to mark the base of the stage in the Catlins sections. However, the base of the Temaikan is here likely to be slightly younger than in other sections.

Within the redefined Upper Temaikan four subdivisions based on the sequence of Retroceramus species are recognised. The lowest of these is characterised by the first appearance of R. (R.) marwicki, the second by the first appearance of R. (R.) n. sp. A., the third characterised by the first appearance of R. (R.) stehni, and the highest marked by the first appearance of either R. (R.) sp. C. (a wide triangular form) or sp. D. (an ovate flat form). The presence of these two morphologic forms indicate finer zonation of the Upper Temaikan may be possible, with further field work.

The Ururoan to Middle Heterian succession of New Zealand is correlated with the international chronostratigraphic scheme based mainly on comparison of New Zealand's Retroceramus succession with that of South America and Indonesia and on relatively rare ammonites. The Ururoan is equivalent to the ?Sinemurian to Late Toarcian, Temaikan to the ?latest Toarcian to Early Callovian and the Early Heterian to the Middle Callovian to latest Middle to Late Oxfordian.

Early Ururoan is correlated with the ?Sinemurian to Pliensbachian based on the presence of the ammonite
Juraphyllites. Presence of the Early Toarcian ammonites Harpoceras cf. falcifer and Dactylioceras spp. in the Late Ururoan indicates a potential international correlation of ?Late Pliensbachian to Late Toarcian.

A ?late Toarcian to Aalenian correlation for the Early Temaikan is suggested by the presence of the European belemnite Brevibelus zieteni. Retroceramus (Fractoceramus) inconditus is similar to the Northern hemisphere Mytiloceramus lucifer and the northern hemisphere Retroceramus gr. popovi and thus suggests a latest Aalenian to Early Bajocian correlation of the Middle Temaikan. The earliest Late Middle Temaikan Retroceramus (Retroceramus) marwicki is also present in the Late Bajocian (Rotundum Zone) of Argentina. ?Teloceras gr. banksi, ?Stephanoceras (S.) gr. humphriesianum, Chondroceras (C.) gr. evolvescens, C. (C.) cf. recticostatum, and C. (Defonticeras) cf. oblatum are present in the Middle Temaikan reinforcing an earliest to late Early Bajocian correlation for this stage. Toxamblyites aff. densicostatus Sturani, Chondroceras (C.) gr. evolvescens (Waagen), C. (Schmidtoceras) orbignyanum (Wright), C. (Defonticeras?) sp. indet. occur with Retroceramus marwicki indicating an Early to Late Bajocian correlation for this zone, slightly broader than in Argentina. However, somewhat anomalously the first of these ammonites suggests a Mid Aalenian to Early Bajocian correlation. The succeeding zone (Retroceramus (R.) n. sp A. zone) has yielded the Latest Bathonian Xenocephalites grantmackiei and Lilloyetta aff. boesei. Retroceramus (R.) stehni is the index for the third Upper Temaikan Retroceramus zone and is also known from the latest Bathonian to Early Callovian of Argentina. In New Zealand R. stehni is associated with Lilloyetta cf. lilloetensis and Xenocephalites cf. stipeaniceti which also indicate a latest Bathonian to Early Callovian correlation. The fourth and highest zone of the Upper Temaikan has yielded the ammonites Araucanites marwicki, Eurycephalites gr. extremus, Iniskinites gr. cepoides and Choffatia (Homoeoplanulites) sp. suggesting an Early to Middle Callovian correlation. The overseas relationships of the associated Retroceramus (R.) spp. C. and D. are unknown.

The Heterian index Retroceramus (Retroceramus) galoi is of Oxfordian age in Indonesia where it is associated with Malayomorica malayomorica. In New Zealand Araucanites marwicki and Sulaites heteriense are present in the Early Heterian, below the incoming of Malayomorica malayomorica, low in the range of Retroceramus galoi. The presence of Sulaites high in the Early Heterian suggests a Middle to Late Oxfordian correlation while Araucanites indicates the lowest part of the range of Retroceramus galoi could be slightly older, perhaps Upper Callovian.

The biostratigraphic scheme presented here is a significant advance on those proposed previously.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xii</td>
</tr>
</tbody>
</table>

CHAPTER 1 GENERAL INFORMATION

1.1 INTRODUCTION

1.1.1 Map coverage ... 1

1.1.2 Exposure ... 2

1.2 AIMS OF THE STUDY 3

1.3 METHODS FOR FIELD WORK 6

1.4 PREVIOUS WORK ... 9

1.5 GEOLOGICAL SETTING 12

1.5.1 Muririhiku Terrane 12

1.5.2 New Zealand’s other basement Terranes 13

1.5.3 Provenance of Eastern Province Terranes 15

1.5.4 The Rangitata Orogeny and accretion of the Eastern Province Terranes ... 16

1.5.5 Post-Rangitata Orogeny events 17

1.6 SAMPLES .. 19

1.7 INFORMAL GEOGRAPHIC NAMES 20

CHAPTER 2 LITHOSTRATIGRAPHY OF THE KAWHIA REGIONAL SYNCLINE

2.1 INTRODUCTION ... 22

2.2 MURIRIHUKU SUPERGROUP 25

2.3 NEWCASTLE GROUP ... 27

2.3.1 Pre-Ururoa Shellbed lithologies 27

2.3.1.1 Otamaehu Formation 28

2.3.1.2 Tewharau Formation 29

2.3.2 Ururoa Shellbed ... 30

2.3.3 Ururoa Formation 38

2.3.4 Pongawahakatiki Siltstone 40

2.4 RENGARENGA GROUP, AT KAWHIA HARBOUR AND ALBATROSS POINT ... 44

2.4.1 Uravitiki Measures 44

2.4.2 Opapaka Sandstone 45

2.4.3 Wharetunu Measures 47

2.4.4 Albatross Point Formations 48

2.4.4.1 Waioioi Formation 48

2.4.4.2 Tokatapu Sandstone 50

2.4.4.3 Te Angina Formation 50

2.4.4.4 Kaiate Formation 50

2.4.4.5 Correlation with the Te Maika - Totara Peninsula sequence ... 51

2.5 RENGARENGA GROUP, BETWEEN PORT WAIKATO AND KAWHIA ... 51

2.5.1 Ohautira Formation 52

2.5.2 Putau Siltstone ... 53

2.5.3 Wilson Sandstone 54

2.6 RENGARENGA GROUP, BETWEEN MAROKOPA AND AWAKINO ... 57

2.6.1 Gribbon Formation (new formation) 57
2.7 Kirikiri Group, the Type Formations at Kawhia Harbour and Their Correlation Southwards .. 60
2.7.1 Oraka Sandstone .. 60
2.7.2 Captain King’s Shellbed ... 68
2.7.3 Ohineruru Formation .. 68
2.8 Kirikiri Group, Between Port Waikato and Kawhia 71
2.8.1 Pakau Formation .. 71
2.8.2 Moewaka Formation .. 72
2.9 Kirikiri Group, a New Formation in the Awakino Valley 74
2.9.1 Whakapakipakipaki Mudstone (new formation) 74
2.10 Comparison of the Sequences 77
2.10.1 Comparison of Newcastle Group sequences 77
2.10.2 Comparison of Rengarenga Group sequences 80
2.10.3 Comparison of Kirikiri Group sequences 81
2.11 Depositional Environment .. 81

Chapter 3 Biostratigraphy of the Kawhia Regional Syncline
3.1 Introduction .. 83
3.2 The Ururoan Stage in the Kawhia Regional Syncline 84
3.2.1 Ururoan Stage - Faunal sequence at the Stratotype 84
3.2.2 Faunal sequence at Port Waikato - Opua Stream section 86
3.2.3 Ururoan Stage - Faunal sequence in the Marokopa area 87
3.2.4 Ururoan Stage - Faunal sequence in the upper Awakino Valley 87
 3.2.4.1 Te Heruera Stream Section 87
 3.2.4.2 Te Putahaae Stream Section 87
 3.2.4.3 Te Whakapakipaki Stream Section 92
 3.2.4.4 Spellman’s Stream Section 92
 3.2.4.5 Gribbon’s Stream Section 92
 3.2.5 Faunal sequence in the Rauroa Valley and Awakino Gorge sections 93
 3.2.5.1 Rauroa Stream Section 93
 3.2.5.2 Awakino Gorge Section 93
 3.2.6 Biozonation of the Ururoan in the Kawhia Regional Syncline 93
3.3 The Temaikan Stage in the Kawhia Regional Syncline 100
3.3.1 Temaikan Stage - Faunal sequence at the Stratotype 103
3.3.2 Faunal sequence at Port Waikato - Opua Stream section 106
3.3.3 Temaikan Stage at South Kawhia 108
3.3.4 Temaikan Stage - Faunal sequence in the Marokopa area 108
 3.3.4.1 Paroahanga Stream section 108
 3.3.4.2 Temaikan Stage - Pomarangai Road section 111
 3.3.5 Temaikan Stage - Faunal sequence in the upper Awakino Valley sections 111
 3.3.5.1 Te Heruera Stream section 111
 3.3.5.2 Te Putahaae Stream section 112
 3.3.5.3 Te Whakapakipaki Stream section 113
 3.3.5.4 Spellman’s Stream section 114
 3.3.5.5 Gribbon’s Stream section 115
 3.3.6 Temaikan Stage - Faunal sequence in the Rauroa Valley sections 116
 3.3.6.1 Rauroa Stream section 116
 3.3.6.2 Temaikan Stage - Bluff Creek section 116
 3.3.7 Biozonation of the Temaikan in the Kawhia Regional Syncline ... 118
3.4 The Heterian Stage in the Kawhia Regional Syncline 121
3.4.1 Heterian Stage - Faunal sequence at the stratotype 121
3.4.2 Heterian Stage - Faunal sequence at Port Waikato - Opua Stream section 122
3.4.3 Heterian Stage - Faunal sequence at south Kawhia, Whakapirau Road sequence 123
3.4.4 Heterian Stage - Faunal sequences in the Marokopa area 123
3.4.4.1 Paraohanga Stream section .. 123
3.4.4.2 Pomarangai Road section ... 124
3.4.5 Heterian Stage - Faunal sequence in the upper Awakino Valley sections .. 124
3.4.5.1 Te Heruera Stream section ... 124
3.4.5.2 Spellman's Stream section .. 125
3.4.5.3 Griibon's Stream section ... 125
3.4.6 Biozonation of the Heterian in the Kawhia Regional Syncline 125

CHAPTER 4 LITHOSTRATIGRAPHY OF THE SOUTHLAND REGIONAL SYNCLINE

4.1 INTRODUCTION ... 127
4.2 CATLINS COAST SEQUENCES ... 129
4.2.1 Glenomaru Group ... 130
 4.2.1.1 Otekura Formation ... 130
4.2.2 Beresford Group ... 130
 4.2.2.1 McPhee Cove Conglomerate ... 130
 4.2.2.2 Purakauiti Formation .. 133
 4.2.2.3 Omaru Formation ... 134
 4.2.2.4 Boatlanding Bay Formation .. 134
 4.2.2.5 Ironwood Formation ... 134
 4.2.2.6 Tucks Bay Formation .. 135
4.2.3 Catlins Group ... 135
 4.2.3.1 Purakaunui Formation ... 136
 4.2.3.2 Hinahina Formation ... 136
 4.2.3.3 Ratanui Formation .. 136
 4.2.3.4 Sweetwater Formation ... 136
 4.2.3.5 Tuhawaiki Formation ... 137
 4.2.3.6 Pounawea Formation .. 137
4.2.4 New Haven Group ... 137
 4.2.4.1 False Islet Formation .. 138
4.3 HOKONUI HILLS SEQUENCES ... 138
4.3.1 Diamond Peak Group ... 139
 4.3.1.1 Flag Hill Sandstone ... 139
4.3.2 Ferndale Group ... 144
 4.3.2.1 Ben Bolt Formation .. 145
 4.3.2.2 Lora Formation ... 150
 4.3.2.2.1 Western Lora Valley Member ... 151
4.3.3 Mataura Group ... 153
 4.3.3.1 West Peak Formation .. 154
4.4 COMPARISON OF THE SEQUENCES ... 155
4.5 DEPOSITIONAL ENVIRONMENT .. 156

CHAPTER 5 BIOSTRATIGRAPHY OF THE SOUTHLAND REGIONAL SYNCLINE

5.1 INTRODUCTION ... 158
5.2 THE UURUROAN STAGE IN THE SOUTHLAND REGIONAL SYNCLINE 159
5.2.1 Faunal sequence on Catlins district ... 159
 5.2.1.1 Sandy Bay .. 159
 5.2.1.2 Papatowai strike belt ... 159
5.2.2 Faunal sequence in the Hokonui Hills .. 159
 5.2.2.1 Heale Ridge .. 162
 5.2.2.2 Conical Hill .. 162
5.2.3 Biozonation of the stage ... 162
5.3 THE TEMAIKAN STAGE IN THE SOUTHLAND REGIONAL SYNCLINE 165
5.3.1 Faunal sequence on Catlins district ... 165
5.3.1.1 Temaikan Stage, northern limb, Southland Regional Syncline ..169
5.3.1.2 Temaikan Stage, southern limb, Southland Regional Syncline ...169
5.3.2 Faunal sequence in the Hokonui Hills ...170
 5.3.2.1 Ben Bolt (= Flag Hill) ..170
 5.3.2.2 Otapiri Gorge sections (Conical Hill, Astarte Hill and McRae’s Road)171
 5.3.2.3 Heale Ridge ..171
 5.3.2.4 Lora-Makarewa Valley (including Taylors Gorge) ...172
5.3.3 Biozonation of the Temaikan Stage in the Southland Regional Syncline175
 5.3.3.1 Base of the Temaikan Stage in the Catlins district ...175
 5.3.3.2 Subdivision of the Temaikan Stage in the Southland Regional Syncline175
5.4 THE HETERIAN STAGE IN THE SOUTHLAND REGIONAL SYNCLINE - COMMENTS177

CHAPTER 6 INTERNAL & INTERNATIONAL CORRELATION;
CHRONOSTRATIGRAPHY

6.1 URUROAN STAGE ...179
 6.1.1 Comparison of North and South Island sequences ..179
 6.1.2 Definition of the Ururoan Stage ...179
 6.1.3 Subdivision of the Ururoan Stage ...182
6.2 TEMAIKAN STAGE ...182
 6.2.1 Comparison of North and South Island sequences ..182
 6.2.2 Definition of the Temaikan Stage ...183
 6.2.3 Subdivision of the Temaikan Stage ...183
 6.2.3.1 Type and Supplementary reference sections ..184
6.3 HETERIAN STAGE ...185
 6.3.1 Comparison of North Island sequences ...185
 6.3.2 Definition of the Heterian Stage ...185
 6.3.3 Subdivision of the Heterian Stage ...186
6.4 CORRELATION OF THE NEW ZEALAND STAGE, SUBSTAGE AND ZONE
SCHEME WITH THE INTERNATIONAL SCHEME ...186
 6.4.1 Previous Chronostratigraphic Correlations ..186
 6.4.1.1 The Oxfordian Problem ...186
 6.4.2 Points of Correlation between New Zealand local stages and the
 International Chronostratigraphic scheme ...188
 6.4.2.1 Retroceramids and Belemnites ...188
 6.4.2.2 Ammonites ..189
 6.4.3 Proposed correlation ..191
6.5 CONCLUSIONS ...191
6.6 FURTHER WORK ..194

REFERENCES ...195

APPENDIX 1 DETAILED LITHOLOGIC DESCRIPTIONS OF
SECTIONS IN THE KAWHIA REGIONAL SYNCLINE
A1.1 Opuatia Stream section, Port Waikato ...212
A1.2 Te Maika and Totara Peninsulas, Kawhia Harbour ...217
A1.3 Whakapirau Road section, South Kawhia ...224
A1.4 Paraohanga Stream section, Marokopa ..225
A1.5 Pomarangai Road and Mangakokopu Stream section, Marokopa227
A1.6 Te Heruera Stream to Waterfall Creek section, upper Awakino Valley230
A1.7 Te Putahaehae and Cascade Creek section, upper Awakino Valley233
A1.8 Te Whakapatiki Stream section, upper Awakino Valley ..237
A1.9 Spellman’s Stream section, upper Awakino Valley ..240
A1.10 Gibbon’s Stream section, upper Awakino Valley ...244
APPENDIX 2 DETAILED LITHOLOGIC DESCRIPTIONS OF HOKONUI HILLS SECTIONS (SHEET E45 WINTON), SOUTHLAND REGIONAL SYNCLINE

A2.1 Heale Ridge ... 257
A2.2 Conical Hill ... 257
A2.3 Astarte Hill ... 258
A2.4 McRae’s Road Section .. 259
A2.5 Ben Bolt Ridge Section .. 261
 A2.5.1 Ben Bolt (main section) ... 261
 A2.5.2 Ben Bolt (supplementary sections) 269
A2.6 Lora Valley - Makarewa Valley Section 270
 A2.6.1 Lora Valley - Makarewa Valley section (main section) 270
 A2.6.2 Silver Valley section .. 276
 A2.6.3 Cliff section on western side of Lora Valley 277
 A2.6.4 Taylors Gorge Road section 278

APPENDIX 3 FOSSIL LOCALITIES - KAWHIA REGIONAL SYNCLINE

A3.1 R13 Port Waikato .. 279
A3.2 R15 Kawhia ... 283
A3.3 R16 Marokopa .. 287
A3.4 R17 Awakino ... 291
A3.5 R18 Ohura ... 306

APPENDIX 4 FOSSIL LOCALITIES - SOUTHLAND REGIONAL SYNCLINE

A4.1 E45 Winton Sheet (Hokonui Hills) 307
A4.2 G47 Tautuku (Catlins district) 311
A4.3 H46 Balclutha (Catlins district) 312
A4.4 H47 Hinahina (Catlins district) 313
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locality map of southwest Auckland, showing the distribution of Ururoan to Middle Heterian strata, major geological features and areas covered by this and some previous works.</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Locality map of South Otago and Eastern Southland, showing the distribution of Ururoan to Upper Temaikan strata, major geological features and areas covered by this and some previous works.</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Map of southwest Auckland showing location of sections discussed in this work.</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Map of Southland and south Otago showing location of sections discussed in work.</td>
<td>8</td>
</tr>
<tr>
<td>4A</td>
<td>Palaeogeographic Map of Australasia in the early Middle Jurassic.</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>Correlation of North Island lithostratigraphic subdivisions used in this and previous works.</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Detailed Stratigraphic Columns for the Ururoan to Heterian sequence at Te Maika - Totara Peninsulas and the Temaikan - Heterian sequence at Whakapirau Road.</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>Detailed Stratigraphic Columns for the Paraohanga Stream and Pomarangai Road - Mangakokopu Stream Sections</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>Detailed Stratigraphic Columns for the Gibbon's Stream and Bluff Creek Sections.</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>Detailed Stratigraphic Columns for the Te Heruera and Te Putahaehae Stream Sections.</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>Detailed Stratigraphic Columns for the Rauroa Valley (Rauroa and Dip-slope Streams) and Awakino Gorge Sections</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Detailed Stratigraphic Columns for the Te Whakapatiki and Spellman's Stream Sections.</td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>Detailed Stratigraphic Column for the Opua Valley Section.</td>
<td>42a</td>
</tr>
<tr>
<td>13</td>
<td>Simplified Stratigraphic Columns for the Kawhia Regional Syncline.</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>A typical exposure of Whakapatiki Mudstone.</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>Thin to thick bedded Whakapatiki Mudstone.</td>
<td>75</td>
</tr>
<tr>
<td>16</td>
<td>Stratigraphic Range Chart, Type Section</td>
<td>85</td>
</tr>
<tr>
<td>17</td>
<td>Stratigraphic Range Chart, Opua Valley Section</td>
<td>88</td>
</tr>
<tr>
<td>18</td>
<td>Stratigraphic Range Chart, Pomarangai Road - Mangakokopu Stream Section</td>
<td>89</td>
</tr>
<tr>
<td>19</td>
<td>Stratigraphic Range Chart, Te Heruera Stream Section (including Slippery and Waterfall Creeks)</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>Stratigraphic Range Chart, Te Putahaehae Stream Section (including Cascade Creek)</td>
<td>91</td>
</tr>
<tr>
<td>21</td>
<td>Stratigraphic Range Chart, Te Whakapatiki Stream Section.</td>
<td>94</td>
</tr>
<tr>
<td>22</td>
<td>Stratigraphic Range Chart, Spellman’s Stream Section.</td>
<td>95</td>
</tr>
<tr>
<td>23</td>
<td>Stratigraphic Range Chart, Gibbon's Stream Section.</td>
<td>96</td>
</tr>
<tr>
<td>Figure/Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>24 Stratigraphic Range Chart, Rauroa Stream Section</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>25 Stratigraphic Range Chart, Awakino Gorge</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>26 Stratigraphic Ranges of important taxa in the Ururoan to Middle Heterian of Kawhia Regional Syncline</td>
<td>101, 102</td>
<td></td>
</tr>
<tr>
<td>27 The stratigraphic ranges of stage and zone indices, and other important Ururoan to Middle Heterian species in the sections studies, Kawhia Regional Syncline</td>
<td>104, 105</td>
<td></td>
</tr>
<tr>
<td>28 Stratigraphic Range Chart, Whakapirau Road</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>29 Stratigraphic Range Chart, Paraohanga Stream Section</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>30 Stratigraphic Range Chart, Bluff Creek, Rauroa Valley</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>31 Summary of correlation between lithostratigraphic classification of present and previous works for the Ururoan - Temaikan sequence of the Southland Regional Syncline</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>32 Detailed Stratigraphic Columns for the Ben Bolt, Otapiri Valley and Heale Ridge Sections</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>33 Detailed Stratigraphic Columns for the Lora - Makarewa Valley and Taylors Gorge Sections</td>
<td>146</td>
<td></td>
</tr>
<tr>
<td>34 A typical Astarte shellbed in the Ben Bolt Formation</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>35 Stratigraphic Range Chart, Catlins district, northern limb of the Southland Regional Syncline</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>36 Stratigraphic Range Chart, Catlins district, southern limb of the Southland Regional Syncline</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>37 Stratigraphic Range Chart, Heale Ridge</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>38 Stratigraphic Range Chart, Astarte and Conical Hills</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>39 Stratigraphic Ranges of index and other important species in the Hokonui Hills and southeast Otago (Catlins district)</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>40 Stratigraphic Ranges of Important taxa in the Ururoan and Temaikan of the Southland Regional Syncline</td>
<td>167, 168</td>
<td></td>
</tr>
<tr>
<td>41 Stratigraphic Range Chart, Ben Bolt (Flag Hill)</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>42 Stratigraphic Range Chart, McRae’s Road, Otapiri Gorge</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>43 Stratigraphic Range Chart, Lora-Makarewa Valley section (including Taylors Gorge)</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>44 Composite Biostratigraphic Chart showing the distribution of Substages and zones identified in each section</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>45 Correlation and comparison of the biostratigraphic sequences between sections in the Kawhia and Southland Regional Synclines</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>46 Locality Map of the Opuatia Valley, Port Waikato</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>47 Locality Map of part of the South Kawhia district (Ururoan - Heterian sequence)</td>
<td>285</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

Table 1 Fauna of the pre-Ururoa Shellbed Formations .. 28
2 Fauna of the Ururoa Shellbed ... 38
3 Biota of the Ururoa Formation ... 41
4 Biota of the Uravitiki Measures ... 45
5 Biota of the Opapaka Sandstone ... 46
6 Fauna of the Ohautira Formation .. 53
7 Fauna of the Putau Siltstone .. 54
8 Fauna of the Wilson Sandstone .. 56
9 Biota of the Gibbon Formation ... 61 - 63
10 Biota of the Oraka Sandstone ... 66, 67
11 Biota of the Captain King’s Shellbed ... 69
12 Fauna of the lower Ohineruru Formation ... 70
13 Biota of the Pakau Formation .. 73
14 Biota of the Whakapakti Mudstone .. 78, 79
15 New collections of macrofossils from the Catlins district, southern limb of the Southland Regional Syncline .. 132
16 New collections of macrofossils from the Catlins district, northern limb of the Southland Regional Syncline .. 133
17 Fauna of the Flag Hill Sandstone and undifferentiated Diamond Peak Group ... 143
18 Biota of the Ben Bolt Formation .. 149
19 Biota of the Lora Formation ... 152
20 Biota of the West Peak Formation .. 155
21 Key Tamaikan and Lower Heterian ammonites and their correlation with the New Zealand and International Stage sequences .. 190
ACKNOWLEDGMENTS

I wish to thank the many people whose help has made this work possible. Firstly my supervisors, Drs Jack Grant-Mackie, Graeme Gibson and Kathy Campbell. Jack’s long suffering patience and helpfulness are gratefully appreciated, as is Jack and Dianna’s hospitality. Kathy’s constant support during the write-up is also gratefully acknowledged, which along with the constant encouragement of Professor Philippa Black have guided this project to completion.

I also wish to thank Isabel Sutherland and Keith Johnston for their encouragement, willingness to pass on expertise and solve the many problems associated with my overcollecting! Isabel’s help with proofreading, editing and formatting a large part of this thesis is acknowledged and appreciated, as is Judy Pickett’s help during the closing stages.

I also thank the many other staff and students of the department who have helped in numerous ways, especially Louise Cotterall (drafting), Elva Learning (Geology Librarian, Science Library) and Bothwell Wong (computing). I have also enjoyed many useful discussions with former students, Drs Fausie Hasibuan, Li Xiao-Chi and Assanee Meesook whose projects covered similar geologic time periods and had much in common with mine. I also wish to thank Barbara Grant from the Student Learning Centre for her assistance during the write-up phase.

The assistance of Ian Keyes, Drs Graeme Stevens, Hamish Campbell and James Crampton of the Institute of Geological and Nuclear Sciences during a visit to their collections and on other occasions is gratefully acknowledged. Funding for part of the field work carried out for this project was supplied by the Institute. Also a significant financial contribution by the Royal Society of New Zealand, to cover shipping of field samples from Southland is acknowledged.

There are numerous people at the University of Otago who have also assisted, especially Drs Doug Campbell, Ewan Fordyce, and former students Drs Nick Powell, Mark Rattenbury and Don MacFarlan. I am most grateful for the hospitality and encouragement of Doug and Ann Campbell.

I wish to also thank Brian and Christine Patrick (Dunedin), and Mike Goodwin (formerly of Riversdale) for their friendship and hospitality during long field summers in Southland and south Otago.

Dr Gerd Westermann’s enthusiastic unravelling of the systematics and correlation of the Temaikan and lowermost Heterian ammonite faunas is immensely appreciated, along with many enjoyable days in the field.

Greg Lind of the Department of Conservation (Owaka) is thanked for his help with permits and local knowledge.

With out the co-operation and assistance of the numerous land owners this project would not have been possible. I especially wish to thank the owners of Warwick Downs (Otapiri Valley) and John and Mary Spellman of Gribbon Road, Mahoenui.

The assistance of Graham Norton and Tim Hurley is appreciated, especially Tim’s help with the final stages of the project.

Lastly but not least my parents for all their support over the years, especially financial, for example when I had car problems in the southern South Island.