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Asymptotics of Coefficients of Multivariate Generating Functions

Preliminaries

Notation

I We use boldface to denote a multi-index: z = (z1, . . . , zd),
r = (r1, . . . , rd). Similarly zr = zr11 . . . zrdd .

I A (multivariate) sequence is a function a : Nd → C for some
fixed d. Usually write ar instead of a(r).

I The combinatorial case is when all ar ≥ 0.

I The generating function of the sequence is the formal power
series F (z) =

∑
r arz

r.

I If the series converges in a neighbourhood of 0 ∈ Cd, then F
defines an analytic function there.
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Introduction and motivation

Univariate case

Cauchy integral formula approach

I Let U be the open disc of convergence, ∂U its boundary, C a
circle centred at 0, inside U. Then

ar =
1

2πi

∫
C
z−r−1F (z) dz.

I Let ρ be the radius of U. The exponential growth rate is 1/ρ:

lim sup
1
r

log |ar| = − log |ρ|.

I Suppose that ρ <∞. Then in the combinatorial case

I (Vivanti-Pringsheim) z = ρ is a singularity of F ;
I If F is aperiodic, z = ρ is the only singularity on ∂U.

Further analysis depends on the type of singularity.
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Introduction and motivation

Univariate case

From singularities to asymptotic expansions

I There are standard methods for dealing with each type of
singularity:

I If ρ is large (essential), use the saddle point method. Move
contour so the maximum modulus of the integrand is
minimized.

I Otherwise, if F can be continued past ∂U:

I if ρ is algebraic/logarithmic, use singularity analysis
(Flajolet-Odlyzko 1990);

I if ρ is a pole, use the residue theorem (below);
I if F is rational, can also use partial fraction decomposition.

I If ∂U is a natural boundary, use Darboux’ method or circle
method or . . . .
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Introduction and motivation

Univariate case

Example: derangements

I Consider F (z) = e−z/(1− z), the GF for derangements.
There is a single pole at z = 1.

I Using a circle of radius 1 + ε we obtain, by the residue
theorem,

ar =
1

2πi

∫
C1+ε

z−r−1F (z) dz − Res(z−r−1F (z); z = 1).

I The integral is O((1 + ε)−r) while the residue equals −e−1.

I Thus [zr]F (z) ∼ e−1 as r →∞.

I Since there are no more poles, we can push C to ∞ in this
case, so the error in the approximation decays faster than any
exponential.
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Introduction and motivation

Univariate case

“Singularity analysis” (Flajolet-Odlyzko 1990)

I Assume F is analytic in a “Camembert” region.

I Choose an appropriate (“Hankel”) contour approaching the
singularity at distance 1/r.

I This yields asymptotics for [zr]F (z) where F looks like
(1− z)α[− log(1− z)]β. “Looks like” means o,O,Θ.

I Asymptotics for F (z) near z = 1 yields asymptotics for
[zr]F (z) automatically. Very useful: singularities in
applications are often poles, logarithmic, or square-root.
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Introduction and motivation

Univariate case

Darboux’ method

I Assume F is of class Ck on ∂U. Change variable
z = ρ exp(iθ), integrate by parts k times. Get

ar =
ρ−r

2π(ir)k

∫ 2π

0
F (k)(eiθ)e−irθ.

I Analyze the oscillating integral using Fourier techniques
(Riemann-Lebesgue lemma).

I Can’t be used for poles or if F has infinitely many singularities
on ∂U. In that case, sometimes the circle method of analytic
number theory works.



Asymptotics of Coefficients of Multivariate Generating Functions

Introduction and motivation

Univariate case

Darboux’ method

I Assume F is of class Ck on ∂U. Change variable
z = ρ exp(iθ), integrate by parts k times. Get

ar =
ρ−r

2π(ir)k

∫ 2π

0
F (k)(eiθ)e−irθ.

I Analyze the oscillating integral using Fourier techniques
(Riemann-Lebesgue lemma).

I Can’t be used for poles or if F has infinitely many singularities
on ∂U. In that case, sometimes the circle method of analytic
number theory works.



Asymptotics of Coefficients of Multivariate Generating Functions

Introduction and motivation

Univariate case

Darboux’ method

I Assume F is of class Ck on ∂U. Change variable
z = ρ exp(iθ), integrate by parts k times. Get

ar =
ρ−r

2π(ir)k

∫ 2π

0
F (k)(eiθ)e−irθ.

I Analyze the oscillating integral using Fourier techniques
(Riemann-Lebesgue lemma).

I Can’t be used for poles or if F has infinitely many singularities
on ∂U. In that case, sometimes the circle method of analytic
number theory works.



Asymptotics of Coefficients of Multivariate Generating Functions

Introduction and motivation

Univariate case

Saddle point method

I Used for “large” (essential) singularities.

I Example: F (z) = exp(z). Cauchy integral formula on a circle
CR of radius R gives an ≤ (2π)−1F (R)/Rn.

I Consider the “height function” logF (R)− n logR and try to
minimize over R. In this example, R = n is the minimum.

I We find that the integral over CR has most mass near z = n,
so that

an =
1

2πnn

∫ 2π

0
exp(−inθ)F (neiθ)) dθ

≈ en

2πnn

∫ ε

−ε
exp(−nθ2/2 +O(θ3)) dθ.

I Now Laplace’s method gives asymptotics of the integral;
leading term is

√
2π/n. This gives the first order Stirling

formula.
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Introduction and motivation

Multivariate case

Multivariate asymptotics — some quotations

I (Bender 1974) “Practically nothing is known about
asymptotics for recursions in two variables even when a GF is
available. Techniques for obtaining asymptotics from bivariate
GFs would be quite useful.”

I (Odlyzko 1995) “A major difficulty in estimating the
coefficients of mvGFs is that the geometry of the problem is
far more difficult. . . . Even rational multivariate functions are
not easy to deal with.”

I (Flajolet/Sedgewick 200x) “Roughly, we regard here a
bivariate GF as a collection of univariate GFs . . . .”
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Introduction and motivation

Multivariate case

The mvGF project

I Robin Pemantle (U. Penn.) and I have a major project on
mvGF coefficient extraction.

I Thoroughly investigate coefficient extraction for meromorphic
F (z∗) := F (z1, . . . , zd) (pole singularities). Amazingly little is
known even about rational F in 2 variables.

I Goal 1: improve over all previous work in generality, ease of
use, symmetry, computational effectiveness, uniformity of
asymptotics. Create a theory!

I Goal 2: establish mvGFs as an area worth studying in its own
right, a meeting place for many different areas, a common
language.

I Other workers on the project: Yuliy Baryshnikov, Andrew
Bressler, Manuel LLadser, Alexander Raichev, Mark Ward.
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Multivariate case

Some difficulties when d > 1

We have no other tool than the Cauchy integral formula.
I Asymptotics:

I many more ways for r to go to infinity;
I asymptotics of multivariate integrals are harder to compute.

I Algebra: rational functions no longer have a partial fraction
decomposition.

I Geometry: the singular variety V is more complicated.

I it does not consist of isolated points;
I real dimension of contour is d, that of V is 2d− 2, so less

room to avoid each other;
I topology of Cd \ V is much more complicated;

I Analysis: the (Leray) residue formula is much harder to use.
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Asymptotics of Coefficients of Multivariate Generating Functions

Introduction and motivation

Multivariate case

Outline of our approach

I Use Cauchy integral formula in Cd, attempt a residue
computation. Restrict to meromorphic F = G/H initially.

I Saddle point approach.
I Stratified Morse theory.

I If geometry of saddle point is reasonably nice:

I Deform the contour simply so as to write the integral as a
(d− 1)-dimensional integral of a 1-variable residue. Simplify
that residue term somehow.

I Convert the outer integral to a Fourier-Laplace integral.
I Extract asymptotics from the F-L integral using method of

stationary phase or similar.

I Otherwise: try resolution of singularities or other approach.
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Multivariate case

Outline of results

I Asymptotics in the direction r are determined by the
geometry of V near a (finite) set, crit(r), of critical points.

I For computing asymptotics in direction r, we may restrict to a
subset contrib(r) ⊆ crit(r) of contributing points.

I We can determine crit and contrib by a combination of
algebraic and geometric criteria.

I For each z∗ ∈ contrib, there is an asymptotic expansion
formula(z∗) for ar, computable via derivatives of G and H.

I This yields

ar ∼
∑

z∗∈contrib

formula(z∗)

where formula(z∗) is an asymptotic series that depends on
the type of geometry of V near z∗, and is uniform on compact
subsets provided the geometry does not change.
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Multivariate case

Generic shape of formula(z∗)
I (smooth point, or multiple point with n ≤ d)

z∗−r
∑
k

ak|r|−(d−1)/2−k.

I (smooth/multiple point n < d)

a0 = G(z∗)C(z∗)

where C depends on the derivatives to order 2 of H;
I (multiple point, n = d)

a0 = G(z∗)(det J)−1

where J is the Jacobian matrix (∂Hi/∂zj), other ak are zero;
I (multiple point, n ≥ d)

z∗−rG(z∗)P
(
r1
z∗1
, . . . ,

rd
z∗d

)
,

P a piecewise polynomial of degree n− d.
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Simplest special case in dimension 2

I Suppose that F = G/H has a simple pole at P = (z∗, w∗)
and F (z, w) is otherwise analytic for |z| ≤ |z∗|, |w| ≤ |w∗|.
Define

Q(z, w) = −A2B −AB2 −A2z2Hzz −B2w2Hww +ABHzw

where A = wHw, B = zHz, all computed at P . Then when
s→∞ with r/s = B/A,

ars = (z∗)−r(w∗)−s
[
G(z∗, w∗)√

2π

√
−A

sQ(z∗, w∗)
+O(s−3/2)

]
.

The apparent lack of symmetry is illusory, since A/s = B/r.

I This simplest case already covers Pascal, Catalan, Motzkin,
Schröder, . . . triangles, generalized Dyck paths, ordered
forests, sums of IID random variables, Lagrange inversion, . . . .
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Next simplest special case in dimension 2

I Suppose that F = G/H has a pole at P = (z∗, w∗), which is
a double point of V, F (z, w) is otherwise analytic for
|z| ≤ |z∗|, |w| ≤ |w∗|, and G(P ) 6= 0. Then as s→∞ for r/s
in a certain cone K,

ars ∼ (z∗)−r(w∗)−s
[

G(z∗, w∗)√
(z∗w∗)2 hess(z∗, w∗)

+O(e−c(r+s))

]

where hess is the Hessian of H.

I Note that

I the expansion holds uniformly over compact subcones of K
(defined later);

I the hypothesis G(P ) 6= 0 is necessary; when d > 1, can have
G(P ) = H(P ) = 0 even if G,H are relatively prime.
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Example: Delannoy numbers
I Consider walks in Z2 from (0, 0), steps in (1, 0), (0, 1), (1, 1).

Here F (x, y) = (1− x− y − xy)−1.

I Note V is globally smooth and crit turns out to be given by
1− x− y − xy = 0, x(1 + y)s = y(1 + x)r. There is a unique
solution for each r, s.

I Solving, and using the smooth point formula above we obtain
(uniformly for r/s, s/r away from 0)

ars ∼
[

∆− s
r

]−r [∆− r
s

]−s√ rs

2π∆(r + s−∆)2
.

where ∆ =
√
r2 + s2.

I Extracting the diagonal (“central Delannoy numbers”) is now
easy:

arr ∼ (3 + 2
√

2)r
1

4
√

2(3− 2
√

2)
r−1/2.
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Example: queueing network

I Consider

F (x, y) =
1

(1− 2x
3 −

y
3 )(1− 2y

3 −
x
3 )

which is the “grand partition function” for a very simple
queueing network.

I The point (1, 1) is a double point satisfying the above. In the
cone 1/2 < r/s < 2, we have ars ∼ 3. Outside, the smooth
formula holds.
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Obvious questions

I Can we always find asymptotics in a given direction in this
way? How do we compute contrib?

I What about higher order terms in the expansions?

I How easy is it to compute all these formulae automatically?

I How do the asymptotics patch together in various regimes?
What happens near the boundary of a cone?

I How does this method compare with others?

I How does it all work (I want to see the details)?
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Book references for this lecture

I E. Stein, Harmonic analysis: real-variable methods,
orthogonality, and oscillatory integrals, Princeton, 1993.

I L. Hörmander, The analysis of linear partial differential
operators. I., Springer, 2003.

I V. Arnol’d, S. Gusĕın-Zade, A. Varchenko, Singularities of
Differentiable Maps, Birkhaüser 1985, 1988.

I I. Aizenberg and A. Yuzhakov, Integral representations and
residues in multidimensional complex analysis, American
Mathematical Society, 1983.



Asymptotics of Coefficients of Multivariate Generating Functions

Analytic details

Notation and basic setup

I We assume F (z) =
∑
arzr = G(z)/H(z), meromorphic in

nontrivial polydisc in Cd. Example: rational functions!

I U is the domain of convergence of F ; V = {z|H(z) = 0}, the
singular variety of F .

I Separate r into direction r := r/|r| and amplitude |r|. The
set of all admissible directions is denoted Ξ.

I Log(z1, . . . , zd) := (log |z1|, . . . , log |zd|). Od is the positive
orthant in Rd ⊂ Cd.

I A point of V can be smooth (manifold), multiple (local
intersection of n manifolds) or bad (all other types).

I A point of V is minimal if it lies on ∂U.

I T(z∗),D(z∗) the torus, polydisc centred at 0, containing z∗.
I For a smooth point of V, dir(z∗) is the direction of

(z1H1, . . . , zdHd).
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Analytic details

Outline of method

I Use Cauchy integral formula in Cd.

I To each minimal point z∗ ∈ V we associate a cone K(z∗) of
directions.

I If r is bounded away from K(z∗), then |z∗rar| decreases
exponentially. We show that if r is in K(z∗), then z∗−r is the
right asymptotic order, and develop full asymptotic
expansions, on a case-by-case basis.

I So far we have done this by simple contour changes to use
1-variable residue theorem; convert to Fourier-Laplace integral
in remaining d− 1 variables; stationary phase/saddle point
analysis of these integrals.

I There may be other ways to compute the residue integral;
however they are unlikely to be easy: explicit residue
computation for d > 1 seems difficult.
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Analytic details

Saddle point approach: geometry

Cauchy integral formula

I We have

ar = (2πi)−d
∫
T

z−r−1F (z) dz

where dz = dz1 ∧ · · · ∧ dzd and T is a small torus around the
origin.

I We aim to use homotopy/homology to replace T by a contour
that is more suitable for explicit computation.

I This may involve additional residue terms.

I The homology of Cd \ V is the key to decomposing the
integral.

I It is natural to try a saddle point/steepest descent approach.
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Analytic details

Saddle point approach: geometry

Stratified Morse theory
I Consider hr(z) = r · Log(z) as a height function; try to

deform contour to minimize maxh.

I Critical points of h determine the homology of Cd \ V.
I Variety V decomposes nicely into finitely many cells, each of

which is a complex manifold of dimension k ≤ d− 1. The top
dimensional stratum is the set of smooth points.

I The critical points are those where the restriction of h to a
stratum has derivative zero. Generically, there are finite many.

I The Cauchy integral decomposes into a sum∑
ni

∫
Ci

z−r−1F(z) dz

where Ci is a quasi-local cycle for z∗(i) ∈ crit(r).
I Key problem: find the highest critical points with nonzero ni.

These form the set contrib(r). Others give exponentially
smaller contributions.
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Saddle point approach: geometry

Logarithmic domain

I Consider log U = {x ∈ Rd | ex ∈ U}, the image of U∩Od
under Log.

I This is known to be convex with boundary the image of
∂U∩Od under Log.

I (Combinatorial case) Each point of ∂ log U yields a minimal
point of V that lies in Od.

I The cone spanned by normals to supporting hyperplanes at
x∗ ∈ ∂ log U we denote by K(z∗). If z∗ is smooth, this is a
single ray determined by dir(z∗), the image of z∗ under the
logarithmic Gauss map.
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x∗ ∈ ∂ log U we denote by K(z∗). If z∗ is smooth, this is a
single ray determined by dir(z∗), the image of z∗ under the
logarithmic Gauss map.
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Crit and contrib

I It follows quickly from the definitions that for a smooth point
z∗, z∗ ∈ crit(r̄) iff r is a multiple of dir(z∗).

I Suppose that z∗ is minimal and smooth. Then dir(z∗) ≥ 0
and z∗ ∈ contrib(r) iff r is a multiple of dir(z∗). All such
points must lie on the same torus.

I These facts extend to multiple points (if G(z∗) 6= 0) by taking
the span/convex hull of the dir’s of the smooth pieces. But
we don’t yet know what to do for bad points in general.

I Note: for general F , there may not be any minimal points in
contrib.
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Summary: the aperiodic combinatorial case

I There is an onto map r 7→ z∗ taking each admissible direction
to a minimal point of V lying in the positive orthant. If all
minimal points are smooth, then this map is 1− 1.

I z∗(r) is the unique element of contrib(r) and is precisely the
element of crit(r) that is also a minimal point of V.

I Thus it suffices to: solve the system H(z) = 0, r ∈ K(z) for
z∗; classify local geometry; check for minimality.

I All steps but the last are straightforward polynomial algebra
for rational F ; the last is harder but usually doable.

I We can now use formula(z∗) to compute asymptotics in
direction r. Provided the geometry does not change, the
above expansion is uniform (over compact subsets) in r.
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Sample reduction to iterated integral in simple case

Suppose (WLOG) (1, 1) is a smooth or multiple (strictly) minimal
point. Here Ca is the circle of radius a centred at 0, R(z; s; ε) =
residue sum in annulus, N a nbhd of 1.

ars = (2πi)−2

∫
C1

z−r−1

∫
C1−ε

w−s−1F (z, w) dw dz

= (2πi)−2

∫
N
z−r−1

[∫
C1+ε

w−s−1F (z, w)− 2πiR(z; s; ε)

]
dz

∼= −(2πi)−1

∫
N
z−r−1R(z; s; ε) dz

= (2π)−1

∫
N
e−irθ(−R(z; s; ε)) dθ.

To proceed we need a formula for the residue sum.
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Dealing with the residues

I In smooth case, use local parametrization wv(z) = 1. Then
R(z; s; ε) = v(z)s Res(F/w)|w=1/v(z) := v(z)sψ(z). So above
has the form

(2π)−1

∫
N

exp
[
−(irθ + s log v(eiθ)

]
(−ψ(eiθ)) dθ.

I In the multiple case there are n+ 1 poles 1/v0(z), . . . , 1/vn(z)
in the ε-annulus and we use the following nice lemma:
Let h : C→ C and let µ be the normalized volume measure
on the unit simplex Sn. Then

n∑
j=0

h(vj)∏
r 6=j(vj − vr)

=
∫
Sn

h(n)(αv) dµ(α).
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Example: Delannoy numbers

I The relevant integral is∫
D

exp
[
irθ − s log

(
1 + z∗eiθ

1 + z∗
1− z∗

1− z∗eiθ

)]
1

1− z∗eiθ
dθ.

I Note that the argument f(θ) of the exponential has
Maclaurin expansion

i

(
r(z∗)2 + 2sz∗ − r

(z∗)2 − 1

)
θ +

sz∗(1 + (z∗)2)
(1− (z∗)2)2)

θ2 + . . .

I Recall that crit((r, s)) is defined by
1− z − w − zw = 0, s(1 + w)z = r(1 + z)w. Eliminating w
yields rz2 + 2sz − r = 0.

I Thus f(0) = 0, and f ′(0) = 0 because (z∗, w∗) is a critical
point for direction (r, s).
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Fourier-Laplace integrals

I We have been led to large-λ analysis of integrals of the form

I(λ) =
∫
D
e−λf(θ)ψ(θ) dV (θ)

where:

I 0 ∈ D, f(0) = 0 = f ′(0).
I Re f ≥ 0; the phase f and amplitude ψ are analytic.
I D is an (n+ d)-dimensional product of real tori, intervals and

simplices; dV the volume element.

I Difficulties in analysis: interplay between exponential and
oscillatory decay, nonsmooth boundary of simplex.
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Low-dimensional examples of F-L integrals
I Typical smooth point example looks like∫ 1

−1
e−λ(1+i)x2

dx.

Isolated nondegenerate critical point, exponential decay

I Simplest double point example looks roughly like∫ 1

−1

∫ 1

0
e−λ(x2+2ixy) dy dx.

Note Re f = 0 on x = 0, so rely on oscillation for smallness.
I Multiple point with n = 2, d = 1 gives integral like∫ 1

−1

∫ 1

0

∫ x

−x
e−λ(z2+2izy) dy dx dz.

Simplex corners now intrude, continuum of critical points.
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Asymptotics from F-L integrals
I This is a classical topic with many applications in physics.

I Exponential decay is much easier to deal with than oscillatory
decay.

I The main ideas for computing asymptotics of integrals are

I (localization) If there is no stationary point of f , then the
integral is rapidly decreasing. Thus we can restrict to nbhd of
stationary points.

I (change of variables/contour moving) ensure that phase has
nice form allowing explicit computation of integral.

I Integration by parts.

I The stationary phase approximation for the leading term,
given a quadratically nondegenerate stationary point in the
interior of D ⊆ Rm is

ψ(0)
(

2π
λ

)m/2 (
det f ′′(0)

)−1/2
.
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Difficulties with F-L asymptotics

I All authors assume at least one of the following:

I exponential decay on the boundary;
I vanishing of amplitude on the boundary;
I smooth boundary;
I purely real phase;
I purely imaginary phase;
I isolated stationary point of phase, usually quadratically

nondegenerate.

I Many of our applications to generating function asymptotics
do not fit into this framework. In some cases, we need to
extend what is known.
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F-L asymptotics: solutions

I If d = 2, smooth points, the F-L integral is in dimension 1 and
quite sharp results are possible.

I For complete intersection and generic smooth points, the F-L
integral has a single nondegenerate stationary point in the
interior of D, and standard methods apply.

I For generic multiple points with n > d the F-L integral again
has a single nondegenerate stationary point in the interior of
D.

I For multiple points with n < d we have a higher-dimensional
stationary phase set (more difficult).
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References for this lecture

I D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry,
Springer GTM 185, 2005.

I A. Flaxman, A. Harrow, G. Sorkin, EJC 11(1):Research Paper
8, 2004.

I M. Lladser, P. Potočnik, J. Šiagiová, J. Širáň, M. Wilson, The
diameter of random Cayley graphs, available from my website
www.cs.auckland.ac.nz/˜mcw/.

I J. Griggs, P. Hanlon, A. Odlyzko, M. Waterman, On the
number of alignments of k sequences, Graphs Combin.,
6(2):133-146, 1990.
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More combinatorial examples

Symbolic computational issues

I If F is rational, points in crit(r̄) are algebraic over C[r].
Solving explicitly for crit and contrib is often not possible.
Even when it is, substituting into formula leads to a huge
mess.

I It is preferable to work directly with the polynomial ideal I
generated by the equations for crit. Gröbner basis and other
techniques yield better results.

I For example, to simplify Q in the 2-D smooth formula, we
may

I reduce it modulo I;
I compute its minimal polynomial using a Gröbner basis with an

elimination term order;
I compute its minimal polynomial using the multiplication

matrix approach.



Asymptotics of Coefficients of Multivariate Generating Functions

More combinatorial examples

Symbolic computational issues

I If F is rational, points in crit(r̄) are algebraic over C[r].
Solving explicitly for crit and contrib is often not possible.
Even when it is, substituting into formula leads to a huge
mess.

I It is preferable to work directly with the polynomial ideal I
generated by the equations for crit. Gröbner basis and other
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More combinatorial examples

Maximum number of distinct subsequences I
I Let ank be the number of distinct subsequences of length k

contained in the prefix of length n of the string (123 . . . d)∞.
Then

F (x, y) =
∑
n,k

ankx
nyk =

1
1− x− xy(1− xd)

.

I Let λ = n/k. If λ ≥ d, clearly ank = dk.
I If λ ≤ (d+ 1)/2, there is a unique critical point, which is

smooth.
I If (d+ 1)/2 < λ < d, asymptotics are given instead by the

double point; get ank ∼ dk.
I Note that

F (x, y) =
φ(x)

1− yv(x)
.

Above analysis extends to GFs of this form (Riordan arrays).
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Maximum number of distinct subsequences: log U
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More combinatorial examples

Polyominoes

I The GF for horizontally convex polyominoes (k = rows, n =
squares) is

F (x, y) =
∑
n,k

ankx
nyk =

xy(1− x)3

(1− x)4 − xy(1− x− x2 + x3 + x2y)
.

I Generically, crit(r̄) has 4 points. For each direction with
n/k ≥ 1, there is a contributing point in O2.

I There are no more (can check that the others are on the
wrong torus).
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More combinatorial examples

Multiple point example — Cayley graph diameters I

I Fix t disjoint pairs from [n] := {1, . . . , n}. Let a(n, k, t) be
the number of subsets of [n] of size k that do not contain any
of the t pairs.

I The quantity
(
n
k

)−1
a(n, k, b(n− 1)/12c) bounds the

probability that a random k-valent Cayley digraph on a group
of order n has diameter > 2.

I Relevant GF turns out to be

F (x, y, z) =
∑

a(n, k, t)xnykzt

=
(
1− z(1− x2y2)

)−1 (1− x(1 + y))−1 .

I Here a(n, k, t) can be negative for large t, so we are not in the
combinatorial case. But crit has two elements, both multiple
points with n = 2, d = 3.
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More combinatorial examples

Multiple point example — Cayley graph diameters II

I One point can be eliminated from contrib since it leads to
negative asymptotics for a positive sequence. Answer is
asymptotic to

C

(
n

k

)−1

x−ky−nz−tn−1/2

where x, y, z are quadratic over Z[r, s].

I Consider the case t = b(n− 1)/12c and linear growth in the
generating set k = dcne for some c < 1/2. The exponential

growth rate of
(
n
k

)−1
a(n, k, t) is obtained by solving for

crit(1, c, 1/12). It turns out to be negative, so almost all such
digraphs have diameter 2.

I More detailed analysis using (parameter-varying) F-L integrals
gives results in the sublinear case too.
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Alignments example
I A (d, r1, . . . , rd)-alignment is a d-row binary matrix with jth

row sum rj and no zero columns.
I The generating function for the number of (d, ·)-alignments is

F (z) =
∑

a(r1, . . . , rd)zr =
1

2−
∏d
i=1(1 + zi)

.

I V is globally smooth, and we are in the aperiodic
combinatorial case. For each r, contrib(r) consists of a single
element z∗(r) ∈ Od.

I For the diagonal direction we have z∗(1̄) = (21/d − 1)1, so
the number of “square” alignments satisfies

a(n, n . . . , n) ∼ (21/d − 1)−dn
1

(21/d − 1)2(d2−1)/2d
√
d(πn)d−1

I Confirms result of [GHOW1990], with less work, and extends
to generalized alignments.
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Advanced issues, related and future work

Comparing approaches for small singularities

I (GF-sequence methods) Treat F (z1, . . . , zd) as a sequence of
d− 1 dimensional GFs, use probability limit theorems. Pro:
can use 1-D methods. Con: complete expansions hard to get,
only works well for smooth singularities (below).

I (diagonal method) For each rational slope p/q, consider
singularities of f(t) := F (zq, t/zp). Pro: gives complete GF
for each diagonal using 1-D methods. Con: only works in
dimension 2; complexity of computation depends on slope;
only rational slopes, so uniform asymptotics impossible.

I (genuinely multivariate methods) Try to use Cauchy residue
approach, then convert to Fourier-Laplace integrals. Pro:
uniform asymptotics, complete expansions, general approach.
Con: geometry of singular set is hard.
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Advanced issues, related and future work

Limit laws

I Other authors on multivariate asymptotics concentrate almost
exclusively on proving central limit theorems, rather than the
“local limit theorems” that we have.

I CLT holds only in the smooth case where the Hessian is
nondegenerate.

I Our work also yields a CLT when it applies, but doesn’t
improve over previous work (nor is it worse). We cover many
more general situations too.
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Advanced issues, related and future work

Open problems

I Find and classify minimal singularities algorithmically.

I Compute expansions controlled by bad points.

I Explicit higher order asymptotics from F-L integrals.

I Complete analysis of F-L integrals in general case (large
stationary phase set).

I Patch together asymptotics at cone boundaries; uniformity,
phase transitions.

I Describe quantities in our formulae geometrically (e.g. using
Gauss map).
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Advanced issues, related and future work

Work in progress

I (Pemantle, Bressler) Applications to quantum random walks.
Here crit is sometimes an entire torus. Treated by a variant of
above analysis.

I (Raichev, Wilson) Extending theory to algebraic functions.
Currently using reduction of Safonov, which increases
dimension by 1, and necessitates higher-order asymptotics.

I (Raichev, Wilson) Explicit higher-order asymptotics for F-L
integrals. Applications to algebraic functions and higher
moments.

I (Pemantle, Baryshnikov) Derivation of asymptotic formulae
controlled by certain bad points (quadratic cones).

I (Lladser, Wilson) Uniform asymptotics near the coordinate
planes.
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