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Abstract

The n-dimensional pseudospheres a,re the surfaces in Rt+l given by the

equations xr2*rz2+...+frkz-rh+rz frn+r?:1(1 < k < rz*1). The

cases k : l,n * | give,respectively a pair of hyperboloids, and the ordinary

n-sphere.

In the first chapter we consider the pseudospheres as surfaces h En+r,r,

where Em,k: Rft x (iR)--t, and investigate their geometry in terms of the

linear algebra of these spaces.

The main objects of investigation are finite sequences of hyperplanes in

a pseudosphere. To each such sequence we associate a square syrnmetric

matrix, the Gra,n matrix, which gives information about angle and incidence

properties of the hyperplanes. We find when a given matrix is the Gram

matrix of some sequence of hyperpl&res, a.nd when a sequence is determined

up to isometry by its Gram matrix.

We also consider subspaces of pseudospheres and projections onto them.

This leads to an n-dimensional cosine rule for spherical and hyperbolic sim-

plices.

In the second chapter we derive integral formulae for the volume of an

n-dimensio.al spherical or hyperbolic simplex, both in terms of its dihedral

angles and its edge lengths. For the regular simplex with common edge length

'y we then derive power series for the volume, both in u: sin'y/2, and in

7 itself, and discuss some of the properties of the coefficients. In obtaining

these series we encounter an interesting family of entire functionso R*(p) (n



a noneg-atilr€ integer and p € C). We derive a firnctiond equation relating

&'(p) anrcl E"-rk).
Finally we classifu up to iso4etry', all tetr:ahedra with oae or lnore v€r-

tiaee trunc&ted, f,or which tlre dihcdml angles elong the edges formed by

the tfiimcations. a,re a,li nf2, and the renai4iag dihcdrat aagles are- all sub

multipleo of zr, lVe shry how to find the volunee of these polyhedrar aad

ffnd pr.eoentatiotrs and gmall geircraf,ing eets for the orisntetion;preserviug

nubgroups ef their' reflection group6.

For partieular families of th.rese groups, we,find low index tcncion fr,ee

eubgro-r,rps, a,lld cou$tnlet assoeiated manifolds and ma,nifolds with bormda,ry-

In particular, we fiud a sequenc€ of manifolde with totally,geodesicrbouqdary

of genu€, g Z 2, which we conjecture to be of least volume amoqg such

marrif,olds.
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