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Abstract

The n-dimensional pseudospheres are the surfaces in R™*! given by the
equations z,2+ 222 +.. .+ 2l — 21’ — - —Tp1’ =1 (1 <k <n+1). The
cases k = 1,n + 1 give respectively a pair of hyperboloids, and the ordinary
n-sphere.

In the first chapter we consider the pseudospheres as surfaces in E,; x,
where E,, » = R* x (iR)m_k, and investigate their geometry in terms of the
linear algebra of these spaces.

The main objects of investigation are finite sequences of hyperplanes in
a pseudosphere. To each such sequence we associate a square symmetric
matrix, the Gram matrix, which gives information about angle and incidence
properties of the hyperplanes. We find when a given matrix is the Gram
matrix of some sequence of hyperplanes, and when a sequence is determined
up to isometry by its Gram matrix.

We also consider subspaces of pseudospheres and projections onto them.
This leads to an n-dimensional cosine rule for spherical and hyperbolic sim-
plices.

In the second chapter we derive integral formulae for the volume of an
n-dimensional spherical or hyperbolic simplex, both in terms of its dihedral
angles and its edge lengths. For the regular simplex with common edge length
«v we then derive power series for the volume, both in u = sinvy/2, and in
« itself, and discuss some of the properties of the coefficients. In obtaining

these series we encounter an interesting family of entire functions, R,(p) (n



a nonegative integer and p € C). We derive a functional equation relating
R (p) and R,_1(p).

Finally we classify, up to isometry, all tetrahedra with one or more ver-
tices truncated, for which the dihedral angles along the edges formed by
the truncations are all 7/2, and the remaining dihedral angles are all sub-
multiples of 7. We show how to find the volumes of these polyhedra, and
find presentations and small generating sets for the orientation-preserving
subgroups of their reflection groups.

For particular families of these groups, we find low index torsion free
subgroups, and construct associated manifolds and manifolds with boundary.
In particular, we find a sequence of manifolds with totally geodesic boundary
of genus g > 2, which we conjecture to be of least volume among such

manifolds.
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