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Abstract 

 Continuous Fibre Reinforced Thermoplastics (CFRTPs) combine high strength, stiffness, 

impact and chemical resistance with possibilities for efficient part production by various 

thermoforming processes. Sheet forming of molten CFRTP laminates has generated much 

interest, but problems of buckling, wrinkling and predicting fibre distribution have meant a 

deeper understanding of these processes is needed. 

 The first part of this study looks at the problem of gross buckling in homogeneous 

“trellis” flows of bidirectional laminates. Modelling the molten composite as a Newtonian fluid 

reinforced by inextensible fibres, linear stability analysis is used to determine the growth rate of 

small out-of-plane imperfections. Buckling is predicted when fibre tensions are negative, 

indicating that laminates must be kept in tension during forming to reduce such defects. 

 A new approach to Grid Strain Analysis is presented, which uses surface fitting to 

determine the deformations occurring in sheet forming. The new method improves analysis of 

smooth, inhomogeneous deformations, and allows greater flexibility in viewing the results. The 

technique has been used to visualise deformations in a blister fairing made from cross-ply 

PLYTRON laminates. Arrow diagrams produced from the part demonstrate the tendency of 

bidirectional composites to deform by trellis flow, while transverse flow results from the action 

of the diaphragms used to form the part. 

 The significance of inter-ply slip in CFRTP sheet forming provided the impetus to 

develop a finite element model for molten laminates, which treats each ply as a separate 

continuum. Contact between plies is modelled, with slip given a viscous response. Ply 

deformations are governed by a highly anisotropic elastic law, to handle the stiff fibres and as a 

first step towards a viscoelastic model of major intra-ply deformation modes. 

 The finite element model parameters were adjusted to fit the part shape and load response 

of unidirectional PLYTRON laminates in bending. However, a perfect fit is unobtainable due to 

local transverse flow occurring at the bend in the real laminate. Nevertheless, the bending of the 

remainder of the ply is well described by the elastic model, using a fibre direction stiffness 

25000 times that in the transverse direction. With the present model, a somewhat less anisotropic 

set of parameters gives the best overall fit and has been applied in several thermoforming 

simulations. 

 As observed in experiments, matched-die bending simulations display ply buckling at 

high forming speeds. Hemispherical dome forming simulations exhibit out-of-plane buckling and 
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near-inextensible fibre behaviour, with trellis-like deformation predominant in cross-ply 

laminates. In simulated double-diaphragm forming of bends and hemispherical domes, tension 

superimposed on the laminate from the stretching diaphragms is shown to eliminate buckling. 

However, high forming pressures and excessive transverse flow are a problem with current, stiff 

diaphragms. 

 Final discussions look at improving contact modelling, reducing model sizes by adopting 

thin shell assumptions, and improving the ply model. 
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