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ABSTRACT

Most work on the asymptotic properties of least absolute deviations (LAD) estimators makes
use of the assumption that the common distribution of the disturbances has a density which is
finite and positive at zero. We consider the implications of weakening this assumption in a
regression setting. We see that the results obtained are similar in flavor to those obtained in a
least squares context when the disturbance variance is allowed to be infinite: both the shape
of the limiting distribution and the rate of convergence to it is affected in reasonably simple
and intuitive ways. As well as conventional regression models we outline results for some

simple autoregressive models which may have a unit root and/or infinite error variance.
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1. Introduction

We consider the linear regression model

Vi=x'p°+u, i=L..n

where the u; are independently and identically distributed with distribution function F, and
{x;} is a sequence of k x 1 regressor vectors. We are interested in the LAD (least absolute
deviations) estimator of °, which has long been of interest, especially as an alternative to the
ordinary least squares estimator. More recently the asymptotic properties of the estimator
have come under closer scrutiny, with quite a lot of attention being paid to alternative ways of
obtaining the limiting distribution of the estimator. Two recent approaches are due to Pollard
(1991) and Phillips (1991). The standard result here is that under some conditions

n"?(b,"*"-B°) =, N(O,M/(2£(0))}),
where b,*" is the LAD estimator of B°, f is the common probability density function of
the u, M is the probability limit (as n — «) of Z_,, xx//n; —,; denotes convergence in
distribution. In order to get this result it is assumed that the distribution of the u, has zero
median and possesses a density, f, which is both positive and continuous in a neighborhood
of 0. (Phillips (1991) adopts the slightly stronger assumption that f is analytic on such a
neighborhood .)

Such an assumption is an appealing one to make in many settings, but it seems
worthwhile to consider the consequences of weakening it. One reason for doing so comes
from inspection of the formula for the asymptotic covariance matrix for n'(b,"*°-p°): the
(asymptotic) efficiency of b,*" relative to, say, the OLS estimator depends only on

(2f(0))/c’, where o” = var(w,), provided the latter exists and it is also true that E[u] = 0. So,



it seems natural to want to know what will happen when f(0) =0 or f(0)=o. Such cases are
certainly quite consistent with conventional assumptions about the distribution of the u; in
regression contexts, such as symmetry about 0. Indeed, a comprehensive investigation of the
location model (for which x;=1 for all i) has been undertaken by Smirnov (1952), although
his work does not seem to have attracted much attention in the econometric literature on
quantile-like estimates, or indeed in the statistical literature (one exception being Serfling
(1980)). This is somewhat surprising given the amount of attention that has been paid to the
behavior of ordinary least squares and related estimators under non-standard conditions, such
as infinite variance disturbances.

The purpose of this paper is to provide some indications of what can happen under
weaker conditions on the nature of F near zero. The conditions we employ are motivated
partly by the ease with which they yield some definite results which are easy to understand.
Some of these results are outlined in the next section. More importantly, the conditions we
impose on F are closely related to conditions on domains of attraction that arise in Smirnov's
study of the location model. This motivation is provided in more detail in Section 3. In
Section 4 we see how relaxing the usual condition on F affects the rate of convergence of
coefficient estimators in some simple time series models, including ones where F exhibits

non-standard behavior in the tails as well as near zero.

2. Preliminary Ideas and Results
Here we suppose that {x;} is a deterministic sequence, and, as, in the preceding

section, that the u; are independently and identically distributed with distribution function F.



The usual argument leading to a limiting distribution for the LAD estimator is roughly as

follows. We note first that

sgn(y;x/b,"%) - sgn(y-x/$%) = - I{ [u;| < |x/8,|} x [sgn(x/8,)+sgn(u)]

where
8,=b,">-p°,
[ 1if |ul < ]x8,]
I(lul< [x8,] = ¢
L oif |yl > %8,
and sgn(z)=1 if z>0,sgn(z)=0 for z=0, sgn(z) =-1 if z<0. Multiplying through by
X;, summing over the i, and making use of the first order condition X, x;sgn(y-x,'b,"*") =
0, yields

0- X xisgn(u) = - Xy, x0(u;x/3,)[sgn(x'3, +sgn(u)].

The next step is not trivial, and amounts to establishing that asymptotically the summands on
the right hand side can be replaced by suitably evaluated expectations. Noting that for any
e R:, E[I{ |y l< |x/B | }[sanx{B-B*))+sen(u)]] = 2[Fx'(B-B°)) - F(0)], it turns out that
under some conditions on the x;,

Mo Zie10 X580(W) =, M, Xy, 2%[F(x8,) - F(0))]. 0]
where ~, denotes equality in distribution in the limit as n — o0, and {n,} is a sequence of
normalizing constants which is such that n, >, , x;sgn(u;) has a limiting distribution as n —
o; at this stage use is made of F(0)=1/2, i.e., the u, have zero median.

The next step typically taken is to apply first order Taylor series approximations to the

terms F(x/d,) - F(0) appearing in (1) to obtain

Mo 2, X8E0(W) =, M, 2y, 2%[F(0) + F(0)(x/8,) + o(x,'3,) - F(0)],



which after a little more work yields, in the case where n, =n"?,
n"2 %, xsgn(w) %, 0%, 2xxF(0)] x n'28,,

xXX' —

i=1n N

from which the standard result mentioned in the introduction follows, given n'},
M, 0%, xsgn(u) =, N(O,M) as n — oo, with M being positive definite.

The last step in the foregoing relies on a preliminary consistency argument to validate
the Taylor approximations. The novel approach adopted by Phillips (1991) proceeds from the
same starting point but avoids (1) and the Taylor series expansions applied to it, by treating
¢(-) initially as if it were differentiable and then arguing in terms of generalized functions,
and it is at this stage that the (local) differentiability of F is invoked. This approach does not
seem amenable to the sort of generalization we are interested in this paper. Instead we will
rely for a rigorous development on a modification of the elegant convexity argument of
Pollard (1991). This modification is presented in the Appendix. One advantage of Pollard's
approach is that it is self contained in the sense that there is no need to establish consistency
of the LAD estimator prior to examining its limiting distribution (after suitable centering and
scaling).

The derivation sketched out above requires for its final step that the Taylor argument
be applicable, with F being required to possess a positive derivative in a neighborhood of 0.
But even if the Taylor series argument is applicable, it is not clear that it is the only or most
natural approximation to apply.

Suppose, for example, that

F(z) - F(0) = L(z) x sgn(z) | z|", y>0 @)

where L is non-negative, L(z) > 0 for all z = 0, and is slowly varying at zero from above



and below. The slow variation (at zero) assumption means that for each A > 0,

L(Az)/L{z) > 1 as z—> 0.
Note that (2) implies that F(z) is regularly varying at zero from above and below, because

[F(Az)-F(0))/[F(z)-F(0)] = XY, [F(-Az)-F(0))/[F(-z)-F(0)] > A" as z — +0,
for each A > 0.

At this stage we motivate (2) simply as one of way of weakening the usual assumption
(i.e., 0 <F'(0) <), while at the same time preserving some smoothness in F at zero. In fact
(2) is of far greater importance in the asymptotic theory of LAD estimation than it might
appear, and we return to this point in the next section. Here we recall (see, e.g., Seneta
(1976)), that F is regularly varying at zero whenever

y(@) =lim, ,, [F(A2)-FO)V/[F(2)-F(0)]
exists and is positive and finite for each A > 0, so regular variation is obtained if we are
prepared to make mild assumptions on the limit function w(X). In addition, y(A) can be
thought of as a type of derivative of F at zero, with

y(A) =lim , [F(AO(1))-F(0)]t, 0(t) = FI(t+F(0))
and viewed in this way regular variation is a natural weakening of the assumption that F'(0)
is positive and finite. Ifit is, then 6(t) = 0 + t/F'(0) + o(t) ast-> 0, and y(A)=
lim , , , [FQA/F'(0)) + Ao(t) - F(0))/t, so w(L) = F'(0) for A = F'(0), from which F'(0) is
seen to be a fixed point of y in this special case.

If we use (2) in (1) we now have simply

Mo iy Xi5E0(W) =, 21, Zicy, (L x/3,) sgn(x8,) [ x:3,17, 3)

a result which can be established rigorously under a mild condition on the x; by adapting a



proof of Pollard (1991). How this can be done is explained in the Appendix. We now

explore some implications of (3) by means of a number of examples.

Example 1. (Location Model.) We consider the location model for which k=1,x, =1 for
alli. Inthis case n, =n"? and (3) reduces to

0", sEn(w) =, 20"°L(3,)sgn(3,) 13, |
here the limiting distribution of the term on the left hand side is N(0,1), and so the limiting
distribution (after normalization) of §, is non-normal in general: normality clearly occurs in
the special case where

Yy=1 and L(z)>c>0 as z—>0
for some constant c. If we impose the second of these conditions but do not constrain y to
equal one, we obtain

08~ sgn(v) x (| v|/2¢)", where v ~N(0,1).
Here, letting y differ from one has two effects. The first is to induce non-normality in the
limiting distribution, as we have already noted, and the second causes the rate of convergence
of b"® to B° to differ from the usual O (n'?) rate: the rate of convergence is faster
whenever y < 1, and slower for y> 1. The shape of the limiting distributions also clearly
depends on y in a very simple way. The smaller is y the more heavy tailed is this
distribution, but with greater concentration near zero, and the larger y is the thinner tailed it
is with less concentration near zero (with the distribution concentrated entirely at -1 and 1

in the limit as y — o).



For this example, in the special case where y=1, b,"*” hasa O,(n"?) convergence
rate to B°, and n'*(b,"*P-B°) has a normal limiting distribution with variance given by 1/4¢%,
given L(z) > ¢ >0 as z — 0. So, we obtain asymptotic normality with a OP(n'”Z)
convergence rate without imposing the usual differentiability condition on F. On the other
hand, if F is differentiable at 0, and the derivative (density) there is positive, F must be
regularly varying at zero with exponent equal to unity, so that (3) holds with y =1, i.e., F(z) -
F(0) = z L(z). Moreover, in this case, F'(z) =zL'(z) + L(z), so F'(0) = L(0) > 0, and (3)
yields n"?8, », v/2L(3,) =, v/2L(0) = v/2F'(0), for v ~N(0,1), which is the familiar result.

Before we proceed we note that if we relax the requirement that L(z) have a positive,
finite limit as z — 0, the shape of the limiting distribution is not affected if a symmetry
condition such as L(z)/L(-z) - 1 as z — 0 is imposed, provided y > 0, but the rate of
convergence of 3, is affected. This can be seen quite easily by means of examples such as
L(z) = -In( |z |) or L(z) ~ -1/In( lz| ) for z~ 0. Another possibility consistent with (2) is
L(z) —»c" as z—>+0,and L(z) > ¢ as z— -0 with ¢c"#c, c’, ¢ € (0,0). In this case, the
rate of convergence of the estimator is unaffected, but the limiting distribution is asymmetric.
There are other possibilities as well, and (2) may also be relaxed. With the exception of

Example 5 of the next section we will not pursue these issues here.

Example 2. (Univariate Regression.) Take k = 1, as in Example 1, but let the x; be
conventional non-stochastic regressors. Assuming that L(z) > ¢ as z— 0, (3) yields

UM Zi=l,n xsgn(w) =, 2N, Zi=l,n X; € sgn(x;8,) |Xi5n | A

and the fact that x, 3, are scalars allows us to write this as



Mo Sirn X58000) =, 21, Ty lx |7 spn’(x)sgn(s,) |6, 1.

Now, if, n'? ¥, , xsgn(u) =y N(OM,), with M, =lim, , . n" ¥, x2, thenn, =n'?, and
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sgn(3,) x n'?[8, |7 =, n T, , xsgn(u) / 207 Ty, el x M,
or

'3, | =, |[n"? T, xsgn(w) / 207 Ty e x| 7717,
and

n"3, =, sgn(v) x |v|", v ~N(@©O, Mydc™™?),
where M, =lim, . n' Y., |x|", assuming this limit exists.

Note here that the magnitude of y controls the rate of convergence of the estimator,
and determines the shape of its limiting distribution (after normalisation), as in Example 1,
but it also plays a central role in determining the size of the variance of the distribution of the
variate v via M,. We note in passing that it is possible to obtain simple bounds on the
relative magnitudes of the sums appearing in the definitions of M, and M,. For example, if
Y>1,

min,{ |Xi| }H < Ei=1,n |Xi | 1+Y/Zi=1,n xi2 < max;{ Ixi | }H;

for y <1, the same bounds apply, but with the equalities reversed.

Example 3. (Time Trend.) Here we consider the case of simple time trend with k =1, and
x,=1"1=1.2,..n.

It is well known that the OLS estimator is consistent under conventional error assumptions

(such as existence of E[y;’]) if and only if p >-1/2. For the LAD estimator the conditions

consistency turn out to be p = -1/(1+y) and p > -1/2y, and which of these binds clealry



depends on the sign of (y - 1). Given p > -1/(1+y), the condition p > -1/2y emerges from
easily from the arguments presented in the Appendix. And, if p > 0, so that both the LAD
and OLS estimators are consistent, the relationship between the rates of convergence is
similar to that in Example 2 above: for OLS it is O,(n"?*?), for LAD it is O(n"* " *), and
using arguments similar to those used in Example 2 (and noting that m, = n**) we can
obtain n'?r'?(b,""P-B°) -, sgn(v) x |v|", where v ~ N(O,(p(1+y)+1)dc(2p+1)?), if we
invoke the assumption that I L(z) | >casz—0.

Although we will be concerned with the case for which k = 1, we mention the
following generalization, partly to indicate the nature of the complications that can arise.
These are similar to issues involved in moving from the single to multiple parameter case in

the theory of M-estimates: see, e.g., Huber (1981).

Example 4. (Multivariate Regression.) We consider the same sort of model as in Example 3
but with k> 1. Assuming that L{z) » ¢ as z > 0, we have, as in Example 2,

n'"? %, xsgn(u) =, 20 T, ¢ x;sgn(x/8,) n'? /8, |,
assuming m, =n""> but this is harder to deal with now that 3, isa k x 1 vector, except of
course when y = 1, in which case the standard result is obtained, or when the x; have certain
simple structures. Another way of viewing this difficulty is via the adaptation of Pollard's
approach explained in the Appendix. If we suppose that there are constants, a , such that
a,0, has a limiting distribution with density at d € R* denoted by A(d), then A(d) = o(Q(d)),
where ¢ is the limiting density function of n'?Y,, , x;sgn(w,), and

Q) =lim ., 20" %, , ex;sgn(x/d/a,) n'? | x'd/a, |7;



for the last limit to exist we will typically require that n'? = &', so that &, has a O,(n"™")

convergence rate, as in Examples 1 and 2.

3. A Motivation for Regular Variation

We have considered the implications of a condition on F which, when combined
with some restrictions on {x;}, is sufficient to ensure that a (b ,"*°-B°) has a (non-degenerate)
limiting distribution, where {a} is a sequence of normalizing constants. The class of
limiting distributions encountered in the last section is quite narrow. The question that arises
naturally is how broad the class of possible limiting distributions can be. This question has
been comprehensively answered by Smirnov (1952) for the location model of Example 1,

where b,"A" is the sample median of the y..

Result 1 (Smirnov). Suppose that in the location model for which x,=1 forall i=1,...,n,
and the v, are independently and identically distributed, there exist sequences of normalizing
constants {a }, {c,} and a non-degenerate distribution function A such that
Pr[(b,*"-c,)/a, < z] =& A(2).
for all z at which A(z) is continuous. Then, aside from adjustments for scale and location,
A(z) = V(Q(2)),
at all z for which A(z) € (0,1), @ is the standard normal distribution function, and Q(z)
takes one of the following forms

[-pelz]”  for z € (~0,0)

(@) Q@) = {0 for z=0
[ p*z" for z e (0,0)
[0 for z e (-0,1]

10



(b) Qz) = 10 for z € (-1,1]
) for z e (1,)

for p°, p* positive and one of these (but not both) possibly infinite, and y°,y* > 0; if both
p®and p* are finite, then y° =y*.

Note that (b) can be regarded as a limiting case of (a) as y°, y* — oo, for finite p°,
p*. The range of possible limiting distributions in Result 1 is clearly narrow. In fact, if we
confine attention to those A which are symmetric around zero, the only possibility is A(z) =
d(u sgn(z) |z |7 ), ¥, 1 € (0,0), which is precisely the limiting distribution we encountered
in Example 1.

The next question concerns conditions on F which are such that (b,"*"-c_Y/a, has one

of the limiting distributions in Result 1, where we continue to confine attention to the location

model. This is the content of the next result, also due to Smirnov (1952).

Result 2 (Smirnov).

(a) Result 1(a) holds with p°® =0, up* <o ifand only if F satisfies
F(0+) = 1/2, (where F(0+) =lim, ,,, F(z)),
[F(z) - 1/2)/[1/2 - F(-z)] > 0 as z — +0,
[F(Az2)-12)/[F(2)-1/2] > A" as z— +0, foreach A > 0.

(b) Result 1(a) holds with p° <o, u* =o0 ifand only if F satisfies
F(0-) =1/2, (where F(0-) =1im,_,,, F(z)),
[F(z) - 12)/[1/2-F(-z)] > © as z— +0,

[F(-Az)-1/2)/[F(-z)-1/2] - A" as z — +0 foreach pu>0.

11



(c) Result 1(a) holds with pu® <o, p* <oo,and y*=y* =y if and only if F satisfies

F(0-)=F(0+)=1/2, so 0 is a continuity point of F,

F(-e) <F(0) <F(e) forall £>0,

[F(z) - 1/2]/[1/2 - F(-z)] = q as z - +0, where q is positive and finite,

[F(Az)-1/2)/[F(z)-1/2] > AT as z— +0 foreach p<O.

(d) Itis sufficient for Result 1(b) to hold that F be continuous at 0 (i.e., F(0-) = F(0+) =
1/2) and

[F(Az) - 1/2)/F(sgn(A)z) - 1/2] —» o as z —» +0, whenever |1} > 1.

The sufficient condition in (d) is that F be rapidly varying at zero from both the left
and right, so that F(z) - 1/2 approaches zero as z —>» 0 more rapidly than it would do if F
were regularly varying at zero.

The cases (a) - (c) all feature regular variation of F at zero prominently.

For (a), the third condition is that F be regularly varying at zero from the right with
exponent y*, the second being that if F(-0) = 1/2, F(z) approaches 1/2 from below more
slowly than from above. The conditions in (b) mirror those in (a).

The last condition in (c) is that F be regularly varying at zero from the right with
exponent 7, and the third condition in (¢) when combined with this is slightly stronger than
the requirement F be regularly varying from the left with the same exponent, y.

Therefore, the assumptions on F invoked in the preceding section are closely related
to the necessary and sufficient conditions for Result 2(c). If we restrict L(z) in (2) to satisfy

L(z)/L(-z) > q>0 as z — 0, these two sets of conditions are identical.

12



The main point here is that the regular variation assumption embodied in (2) has a
motivation beyond that of a convenient approximation which allows extensions to existing
results to be obtained in a straightforward manner.

It is instructive at this stage to compare the foregoing results for the LAD estimator,
b, *" - the sample median for the location mode! - with the results for the OLS estimator (i.e.,
the sample mean) for the same model. If we denote this estimator by b,”*, we know that if

b,°“*-c,)/n has a non-degencrate

there exist sequences of constants {a }, {c,} such that (
limiting distribution (as n — o) then this limiting distribution is stable. This is the analog of
Result 1. The analog of Result 2 is the following. It is necessary and sufficient for the
limiting distribution of (b,°*5-c_)/n to be stable with index «  (0,2] that F satisfy

I-F(z)y=[c,1(2)] x z* L°(z), z>0

C))

F(z) =[c+H,(2)] x (-z)* L°(-2), z<0,
with 1,(z) = 0, 1,(-z) > 0 as z - +w, and L°(7) is slowly varying at infinity, c, ¢, = 0,
c,tc, > 0. (See, e.g., Ibragimov and Linnik (1971), p.76.) Regular variation of 1-F at +o
and F at -0 clearly features here prominently, as does regular variation of F at zero in
Result 2.

Now we return to the regression model y; = x/p + u. A considerable amount of
attention has been paid to the consequences for least squares estimators of heavy tailed
distributions for the u;. The assumption most commonly made here is that these distributions
lie in the domain of attraction of a stable law with index o € (0,2), meaning that F satisfies

(4), since this is a necessary and sufficient for there to be a limiting distribution, after

normalization for scale and location, for the OLS estimator in the simplest case, namely the

13



location model.

Given that (4) is a commonly adopted assumption in regression contexts, particularly
when one of the estimators under consideration is the OLS estimator, it seems natural to
impose an analogous condition based on similar considerations for the LAD estimator. That,
is, Result 2 defines domains of attraction for the limiting distributions of the LAD estimator
for the location model, so the question arises as to what results we get for the LAD estimator
in more general regression settings when the disturbances have a distribution in one of these
domains of attraction. The results of the last section suggest some of the forms these results
can take. In the next section, we sketch some additional results for certain time series
models.

Before we proceed it may be worth mentioning the consequences of F obeying a
condition similar to that in Result 2 (a) where the behaviour of F near zero does not exhibit

the symmetry we imposed in Examples 1-3 of the last section.

Example 5. Suppose that F satisfies

[z’L(z) for z>0
F(0) - F(z) =1
l -(-z)"*L(z) for z<0,

where y>0 and € € (0,y),and L(z) > ¢ as z— 0, F(0)=1/2. We distinguish two cases.

(a) If x;=1 forall i, we know from Result 1(a) that the limiting distribution of given by
n'(b,""-°) ~, max{0,v} x (| v|/20)", v~N(@©,D),

which is a one-sided version of the result in Example 1. To see how this works in terms of

14



the approach of the preceding section we note that (1) yields
2|87 ~ v if v20

a

2|8, x v if v< 0

where v ~ N(0,1) and §," = max{0,6,}, 8, = min{0,5,}. Then &, has an Op(n'”zy)
convergence rate and 3, has the more rapid rate of O,(n"*"®). In this example it is the
larger of the two exponents of regular variation which determines the rate of convergence of
d, to zero in probability, since §,=38," + 3§,
(b) Suppose x;=-1 for i=1,...m, x;=1 fori=m+l,..,n. Now,if § >0,
n'? Y, 2% [F(x8,)-F(O)] =, 2en{m |5, + (n-m) | 5, |}
and if &, <0,
070 2X[F(x,3,)-F(0)] =, 20 {-m | 8,17 - (n-m) |5, [}
so from (1) we have, letting 8 " =max{0,8,} and & =min{0,8,} as in (a)
2en [m]8,"| ™+ (n-m) | 8, | ] =, max{0,v},
2en™ [-m |8, |7 - (m-m) |5, 1] ~ min{0,v}, v~N@©,).
Soif m/n-»r € (0,1)as n — o, then it follows from |6n | ®—, 0, that
[ |v/2e|veo if v20
295, =, |
l [v2a- ™= if v<o
which is evidently asymmetric unless r = 1/2 but exhibits a more rapid convergence rate
than in (a) whenever r # 0 (or 1), with this rate now being determined by the smaller of the
two exponents of regular variation.

The difference between (a) and (b) in this example is at first glance a surprising

consequence of an apparently minor difference between regressors, but has a simple

15



interpretation in terms of contamination. Suppose that x; =1 for all 1, as in (a), but that for
each 1, w = v; with probability 1-r, and u; = -v; with probability r e (0,1), where v, has
the asymmetric distribution in the preceding example. Then it is now the case that v, is
regularly varying at zero with exponent y-¢ from both the left and right, and it is this
exponent that controls the rate of convergence of b,""® to B°. Since contaminating a given
distribution can never thin its "waist" (or tails), such contamination can only improve the rate
of convergence of the LAD estimator in a simple location model, but, as is well known can

never improve that of the OLS estimator.

4. Some Further Results

Here we concentrate on the simple autoregressive model for which x, = y,,, so we
have

Yi=Byiatw i=l..n

vo=0, p=0.

The u;, have zero median (F(0) = 1/2), and are independently and identically
distributed. Throughout we assume for simplicity that the common distribution function of
the u,, F, lies in the normal domain of attraction of a stable distribution with index o e (0,2],
so that F satisfies (4) with L°(z) = 1, for z> 0. We also assume for expositional ease that in
(4) ¢,=c,=1. Assume that F is symmetric around zero, so that E[w] =0 whenever o > 1.
We will also assume that F satisfies (2), for y > 0 with L(z) in (2) satisfying L(z) > cas z
— 0. So o measures the fatness of F's tails, and y that of its "waist".

First we review some results for the standard case where y = 1. When B < 1, the

16



presence of fat tailed errors (i.e., o € (0,2)) causes the OLS estimator to converge at a faster
rate than in the traditional model with finite variance disturbances. Moreover, the rate of
convergence is faster the smaller is the index o. Compared to OLS, the LAD estimator has
the same convergence rate in the finite variance case, but a marginally faster rate in the heavy
tailed case. This last point is explained more fully below in Example 7 where we consider the
consequences of allowing y to differ from one. When the disturbances have finite variance,
the O,(n"?) convergence rate for the OLS estimator in the stationary autoregressive model
with B <1 changes abruptly to a O,(n") rate for the non-stationary case with §=1. The
same is true for the LAD estimator. And when [ = 1, the convergence rate for OLS remains
rather remarkably at Op(n"), when the disturbances are heavy tailed, i.e., for any o e (0,2).
This result is mentioned by Knight (1989) and a derivation appears in Chan and Tran (1989),
who also derive the limiting distribution of n'(b,”**-1). (Phillips (1990) generalizes their
results to integrated processes where the disturbances are weakly dependent as well as having
heavy tailed marginal distributions.) So far as the LAD estimator is concerned, the
combination of B =1 and a fat tailed error distribution gives rise to an O,(n"'”>") rate of
convergence, which is faster than the Op(n'l) rate for OLS, and more rapid the smaller is the
tail index «. This result is due to Knight (1989), and is noteworthy to the extent that we are
used to thinking of the tails of error distributions as being irrelevant for the limiting behaviour
of LAD estimators.

Now we consider the consequences of allowing the exponent y in (2) to differ from
unity. This does not affect the limiting behaviour of the OLS estimator, but can affect that of

the LAD estimator. What follows is based on
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a, b, - pe| =g, 0| T, visen(w) / Ty 2¢ ]y, [ 711+ 0(1) (5)
in which {a,'"*"} is a suitable sequence of normalizing constants such that the first term on
the right hand side has a non-degenerate limiting distribution. We do not provide a formal
justification for (5) here: a heuristic defence is available by analogy with (3) which we know
works for the deterministic regressor case. Tighter derivations of the results of this section

OLS }

appear in the Appendix. For the OLS estimator, {a, is the counterpart of {a,*"} - a

sequence of constants such that
anDLS(bnOLS - B = anOLS {zi:Z,n Y/ Zizz,n Yi—lz}

has a non-degenerate limiting distribution.

Example 6. Consider the random walk case where p°=1. Then, y,=2%_,;u, and forr e

Y2 54 8,(r), where S (r)isa a-stable process, and | -]

[0.1], ¥irns = Zimy, lens > and ¥,/ 0
denotes integer part. Now, as in Phillips (1991),
n"E 2 (via/0")sg0(W) = Ji, S.(0) W),
where S,(r) is the left limit of S (-) at r, and W(r) is a standard Wiener process. In addition
0’y 2| yum™ | o, [, 2¢|S. @ | *dr
So, from (5),
8, %[ B4 - 1] 8% x [(@/)n" / ("))
x [0 Ep,, 0/ sen(w) / 0" By 20|y, imte | 7] P
and we can conclude that

a.nLAD — 1/[(nlfl/n)nlla/(nl/q)lﬂr]1/7 — 1/[n-l/2 x n-y/a]l/y = nI/27+ l/u’

and
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n v [p 0 1| S [, S, @AW / f; 2¢] S0 | e [ 77
which coincides with Knight's (1989) result when y=1. (See also Phillips (1991).) For the
OLS estimator, a °"* =n, and

(b, - 1) =4 fo; S, dS@) / [y S,(r)’dr.

Evidently, the same sort of pattern as encountered in sections 2 and 3 emerges: the larger is
Y, the slower the rate of convergence of the LAD estimator. The LAD and OLS estimators
have the same rate of convergence when 1=1/2y + 1/a, which can only be satisfied if a >
1. Thatis, F cannot be so thin "waisted" that the LAD estimator is dominated by the OLS
estimator (in rate of convergence terms) when F has tails which are as fat or fatter than those

of the Cauchy distribution.

Example 7. Here we consider the stationary case for which B° € [0,1). For simplicity we
outline the argument for ° = 0, so that {y,} is an i.i.d. sequence. So far as the OLS
estimator is concerned, it is a simple matter to show that in

& (b -0y =2, x X /Y, u
the normalized quantities n**%,,, u.\*, (nln(n))"* X.,, u.,u; have non-degenerate limiting
distributions for o <2. (The factor nin(n) arises because of the presence of the product of
the independent variates u; and u,,, which have the same heavy-tailed distributions. See
Phillips (1990, Appendix A). So,

a,%" = 1/[(nin(n))™* / n¥*] = [0/In(n)] "™

For the LAD estimator, from (5),
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8,2 b4 - 0] ~, 8[| T, 580w / B 20 |uy [ 1[17,
Now, for any a e (0,2], the numerator in the right side here is

T UisER(UYR =, S (1),
while 2., |ui_1 [ is the sum of n-1 i.i.d. variates the distribution of which lies in the
domain of attraction of a stable law with index o/(1+y) which is less than 2 whenever o <
2. This follows from

Pr[lul"" <2z = Prfly| <£2"0] = max{z, 0} x Fz"*™"),
and the assumptions on F made above. There are two cases here with quite different
outcomes.
(a) Suppose that 1+y <o (<2) whichrequires y<1aswellas a>1 (sothat E[ | i !] <
®): in this case E[|u|™] < oo, n'Y,, |u,|™ has probability limit equal to this
expectation, and

8, % b4 - po | =, 8, x [n"/n]" x [ [0 Xy, wysga@)n” Tigo 26 w7117
so a, % = 1/ = n* recalling that 1-o <0, in view of o > 1. In addition 14y < a

implies (a-1)/y > 1,s0 a AP >n'®

in this case, a point worth noting for (b) below.
(b) Now reverse the inequality in (a) so 1+y > a. Then E[ | u | "] = o0, and
8, [b,4 - Bo| =, a,"*" x [n"/(n"ey )Y
x [ |0, wysgnu) / ) oy, 20w, |11
from which we see that a *P = n'*, Here
En'”a)wzwz,n Iui-l | =>4 Sl

and the fact that a/(1+y) < 1 means that we do not need to bother with a sequence of

centering constants.
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Hence the rate of convergence of the LAD estimator in Example 7(b) is independent
of v, the parameter that is critical in determining the rate of convergence of the LAD
estimator in all the preceding examples considered in this paper. There is a parallel here of
sorts with the OLS estimator in Example 6 (where B° = 1) with fat tailed errors, because
there the rate of convergence of the OLS estimator is independent of the magnitude of the tail
parameter c.

If, in Example 7, 1+y = a, we get a result similar to that for (b) in the sense that
b,""-B° = O,(n™"*) but we need to be a little more careful about a choice of sequence of
centering constants. (See, e.g., Loeve (1977, p.402).)

Comparing the OLS and LAD estimators in Example 7 we see that the LAD estimator
converges at slightly faster rate whenever 1+y > «, with the rates of convergence of both
estimators dependent on o but not on y. When 1+y <o, the LAD estimator converges at a
faster rate, with this rate now dependent on the waist thickness parameter y.

Parts (a) and (b) of Example 7 together say in effect that the magnitude of o limits
the extent to which a reduction in 7y can improve the convergence rate of the LAD estimator
(absolutely and relatively to the OLS estimator): no improvement is ever possible when o €
(0,1), and when a € (1,2) such improvement is also impossible if y> 1.

And, if o =2, so the u; have finite variance, the OLS estimator has the usual O (n'?)
convergence rate, and the LAD estimator exhibits behavior similar to that encountered in
Examples 1 and 2 of the Section 2, i.e., it has an O (n"") convergence rate.

We conclude this section with a case which provides a parallel for Example 7, but not

for Example 6.
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Example 8. Suppose that in y; = x/B° + u, the {x;}, {w} are mutually independent i.i.d.
sequences, the distribution of the u; satisfies the assumptions made above (withy > 0, o €
(0,2)) and the distribution of the x; has tails with the same properties but with index x €
0,2). If a,*"(b,*"-B°) and a,°(b,"*-B°) have non-degenerate limiting distributions,
then

[0 if x<a

oLs _ {

t e if k>a

(with « < 2a being required for the consistency of b %), and

[n¥  if 1+y>x

[n®" §f 1+y <k,
As we might expect, the tail parameter, a, of the u,'s does not affect the convergence rate of
the LAD estimator, nor is that of the OLS estimator affected by y. But we again have a
situation in which the rate of convergence of the LAD estimator does not depend on the
parameter y, provided 1+y > k. Moreover, this rate is the same as that for the OLS
estimator when x <a. So

aOls =g LAD — Ik jif << 1+,
which is a condition involving the three parameters «, « and y.

The intuition here seems straightforward: if the distribution of the regressors has
sufficiently thick tails (i.e., small enough «) then this swamps the effect a large y has in
reducing the convergence rate of the LAD estimator. A similar phenomenon is present in
Example 7. This explanation is probably too simplistic, however, because the parameter y

always affects the convergence rate of the LAD estimator in the random walk case of
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Example 6, no matter how heavy tailed are the innovations. The same is true for the
deterministic trend case in Example 3, because there the tails of the disturbance distribution
are irrelevant for the asymptotics of the LAD estimator, and the trend parameter p can never
be large enough to obliterate the effect of y in these asymptotics.

Finally, the results of this section concern only rates of convergence of the estimators:
the shapes of their limiting distributions after normalization for scale will generally also

depend on the parameters of the models.

5. Conclusion

We have attempted to indicate how the asymptotic behavior of the LAD estimator is affected
when the conventional assumption on the disturbance distribution is relaxed in a way which
seems intuitively attractive, and which also has a compelling justification in the simple case
of a location model. We have seen (in Section 2) that the results for a location model
originally due to Smirnov (1952) apply with some modifications that are not especially
surprising in the single regressor case, but the range of results is substantially richer in the
case of stochastic regressors, including simple stable and unstable autoregressive models. At
the very least, these results should serve as a warning that the usual rule of thumb to the effect
that the LAD estimator is more robust to "outliers” can be seriously wrong, and can also be
interpreted in a way which understates the possible superiority of the LAD method. This is
so simply because this method of estimation is usually - but not always - sensitive to

"inliers".

23



Appendix

A.1  The primary objective here is to provide a formal justification for results on the LAD
estimator in the text. We first define
M(z) =E[|u -z - [u]],

and establish the following.

Lemma. Suppose that F satisfies (2) where L(z) is non-negative and slowly varying and
either (i) y> 0, or (ii) sgn(L(z)) is monotone non-decreasing in some neighborhood of 0.
Then
M(z) = (1+0(1)) x 2 | z| " L(z)/(1+y) as z—> 0.
Proof. Take z > 0, and note that
M(z) = -z[1-F(z)] - 2], tdF(t) + z{,, dF(t) + zF(0)
= -z[1-F(0)+F(0)-F(2)] - 2[,, tdF(t) + z[F(2)-F(0)] + zF(0)
= 22[F(2)-F(0)] - 2 [, tdF(t) (using 1-F(0)=F(0) =1/2)
which on integrating by parts yields
M(z) = 2z[F(z)-F(0)] + 2 [, [F(t)-F(0)]dt - 2z[F(z)-F(0)]
=2[,, [F®)-F(0)]dt.
Now using the regular variation assumption (2), we have, again for z> 0,
M(z) = 2 |, L' dt =22 [, L(vz)v' dv.
The next step involves establishing that

jo,1 L(vz)v' dv ~ L(z) -[0,1 vidv as z— 0.
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But this follows from an adaptation of Theorem 2.6 of Seneta (1976) to deal with regular
variation at zero rather than at infinity. Therefore,

M(z) =2 2"'L(z) [, v dv =2 L(z)z""/(14y) as z — +0.
The case z <0 is handled analogously, and the result follows immediately.
Note that when L(z) - ¢ as z — 0, the Lemma gives the simple convex power law
approximation M(z) ~ 2¢ | z| "1/(1+y), which is quadratic when y = 1; if, in addition, F is
differentiable in a neighborhood of zero with 0 < F’(0) < o, this in turn reduces to precisely

the quadratic approximation used by Pollard (1991), since then ¢ = F'(0).

A.2 We are concerned here with the results based on (3) where the x, are non-stochastic. The
following follows Pollard's (1991) proof of his Theorem 1 closely, and much of the notation

is also his. Let

Gy(8) = Zuopy [lurx/8/2, |- [},
with {a,} being a sequence to be defined below. Then G (8) is a convex function of § which
is minimized at § = a (b "4P-B°). Define

I'y(8) = E[G,(8)] = X o M(x/'0/a,),
(recalling the definition of M(-) in A.1) and note that if we let

Ria(®) = luex'd/a, | - [u| +(x/8/a,) x sgnqu),

W, = - 21 X, sgn(w),

then E[W,]=0 if F(0+)=F(0-), and

G(8) =T'(8) + W,'8/a, + Xy, {R;(8) - E[R;,(8)]}

=T(8) + W,'d/a, + Q,(8)
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where
Qu(8) = Xir1a Rin(8) - E[R;,(B)].
We now confine attention to the case where k = 1, and define {a,} by
L*(max,{ | x| Va, x Xy, [x/a, 177 =1,
where
L*(z) = max{L(z), L(-z)}.
We assume that F satisfies the condition of the Lemma in A.1, and that forallv > 1,
max;{ x|}/ (Z, [%19% >0 as n > «.

This last condition implies that max;{ |xi | Va,—0; and if L(z) >c>0asz— 0,

Yorn Ix/a,|™ 5 1/c as n > o, 50 " xc ¥ x, | for large n in this case. Now,

i=1,n

from the Lemma in A.1,
[,(8)= T n M(x/8/a)) = Xy, [2L(x'87a) | x/8/a, | " /(149))(1 + (1)),
since max;{ |xi | }/a, = 0 ensures that |xi'5/an| — 0 for fixed & uniformly for all x,. So
,8) = [18] ™1+ x Ty, [2L0x/a) [ x/a, | (1 +0(1)
= [18]"(1+9)] x 2L*(max,{ | x; [ /2,}) x T o | /2,1 1(1+0(1))
by adapting for sums rather than integrals the modification of Seneta's Theorem 2.6 used in
A.1. Hence, from the definition of {a },
T&)=2[181"%1+)] + o(1) as n > .
and we can therefore write
G,(8) =2 [18]"1+p] + 0(1) + W,'8/a, + Qu(8).
Next we follow Pollard (1991) in writing

E[Q,3)] =E [Zie1n Rix(3) - E[R,(®)] I
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<E (10 i8]
<4 ¥, |x8 2P lu | < [x/87a, ]
=4 T, %82, | P[P (| x/8/2, |) - F(- | x/8/a, )]

=435, |x/8/a, 12| x'8/a, | "[L(] x/8/a, |) + L- | x/8/a, )]

=4 x2 |82 Lrmax{ | x| }/a) x Ty, Ix/a, |27 ( 1+o(1))
<4x2 max{|x/a, |} L*max{ | x| Va) x T, |x7a, | (1+0(1)).

So E[Q,’] » 0 asn — o, from max,{ |xi/anf } — 0 and the definition of {a,}, Q,(8) —,0
as n — o, for each as a consequence, and we can write

G,3) =2[ 18| ™/(1+p)] + o(1) + W, 8/a, + 0,(1).
Next, recall that G,(8) is minimized at 8 = a,(b,"*”-B°), let p = 6/a,, and write

Gu(anyn, = 2L la | /(pIm, + W, wn, + 0 (1/m,),
where 1, = (X, XD, so W/n, =, N(0,1) given 1-F(0) = F(0) = 1/2 and
max,{ | ;| M |%19® 5 0 as n > o (setting v = 2 here). The minimizer of the
approximation, 20[|a“p | Y4, + WuMm, . to Glap)n, satisfies the first order
condition

2 x (@&, " mysgn(w) [ |" = - Wm,,
and it is from this that (3) and the results in Examples 1 - 3 follow, once additional
arguments, including an appeal to Pollard's convexity lemma, are completed. Note that

a,'""m, =Lmax{x]/a} T, x|/ (S,
and the right hand side here is O(n'?) under conventional regressor assumptions (such as

invoked in Example 2). The requirement for consistency here is a,"""/n, & © as n — .
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A3  For the case of stochastic regressors, the argument in A.2 sometimes applies with little
modification. This is true for Example 8 if x > 1+y, for Example 7(a) (where o > 1+y) and
for Example 6, as explained in A.4 below.

However, the argument does not work for Example 8 when x < 1+y. But we can

adapt Pollard's (1991) proof of his Theorem 3 to handle this case in the following way. Let

G,(8) = Xics, [luex8/a, |- ],
where now we choose a, = n'*, in anticipation of the rate of convergence we wish to
demonstrate. G,(8) is minimized at & = a (b,"**-p®), G (0) =0, and
Go(8) = Ty (x/B/a)sg0(u) + 2%, |78/, - w1 ;| < [x/87a, ]}
= G,(8) + Gy(3), say,
with I{-} being the indicator function used in section 2 (i.e.,I{z<w} =1 if z< w,
I{z <w} otherwise). Following Pollard's (1991) idea, we want to show that, for large |d] ,
Pr[G,(d)>0] - 1 asn —» co, since this forces the minimizer of G(5), (i.c., a,(b,"*"-B°)) to lie
in [-d,d] with arbitrarily high probability for all n sufficiently large. Here,in G,(5),
G1y(8) = Tiey (x'8/a,)sg0(w) = & x 1T, xsgn(w) = O,(1),
so we want to show that Pr[G,(8)>q] > 1 asn = o, for [8| >d, for large d, q. Now,
Gul(®) =2 Xy | %7878, - u;| x I{ |u;| < |x/8/a, |}
225, %8/, -ul x 1 ul <0lxsf,l},
>2%,,, (1-0) | x/'8/a, | x 1{ || <0|x'8/a,|}

for 6 € (0,1). Note that the expectation of the ith summand here conditional on x; is

(1-8) | x8/a, | x [F@]x/8/a,|) - F(0) + F(0) - F(-8 | x'5/a, | )]

~2¢c(1-8)0 7| x/8/a, | " for small 0|x/5/a,

3>
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by virtue of the regularly varying property of F at zero, i.e., (2) with L(z) > c¢>0asz— 0.
To make use of this we consider x; for which 6 | x,'0/a, | <g> 0, for small €. So,

G,(8) 22 X, ,z;,

z,=(1-0) | x/8/a, | x I{|u| <0|x'8/a, |} x1{ x| <ae/10]3])},

and the expectation of the z is approximately

E[2¢(1-0) 0 | 8/a, | "7 [x, *|"]
where x;* =x; if x; <ag/(® 5] ). X;,* =0 otherwise. Now, from the assumption on the
common distribution of the x; ,

E[lx*|"1=B, x &/®|8 )" *a*, B.—>B>0asn-—>ow,
noting that 1+y-x > 0 for the case we are interested in here. So, for large n,

E[z] = B, x 2¢(1-8) 0 | 8/a, | "(e/(0]5 |)) ™ a,""

~ {B 2¢(1-0) 0" | 8| (/0)""**}/n

since a,=n"*. This is increasingin |5|. Similarly,

E[z2] ~ {C, x 2c(1-0Y 0" | 5|* (€/0)**}n, C,—>C>0 asn— w,
so var[2,_,, z] has a finite limit as n - . So, by Chebychev's inequality, for large n,
Pr[Z.,, z < q] can be made as close to zero as desired for fixed q > 0 by making H large.
In view of G,,(8) 22 I, z it follows that the rate of convergence of b,""’-p° is O (n™™).

Note that this approach, which can be adapted for Example 7(b), does not seem suitable for

showing that b,"*°-B° has a faster rate of convergence when 1+y < k.

A.4 Here we first see how the arguments in A.2 can be modified to obtain the convergence

rate for the LAD estimator in Example 6. Let G,(8) =2, [ | u-x;'d/a, |- y; | ], as before with
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a, = n"on""",
and recalling that x;=y;, = 2;;;, u, welet X, = {u,..,u.,} and redefine
M( x'8/a,) = (E[(|u-x/8/a, | - [w]) [ X;1),
T(8)=E[G,@3) | X,1 =X, M(x/8/a,)
so, if, as before
Ria® = luexfa,| - lu] +(x/8/2,) x sgn(u), W, =- Ty, x sgn(u),
then,
Gi(8) = T(8) + W,d/a, + Q(8) for Q8)=T.,.R,,(8) - ER,() | X}
Next note that
R (8) = 2|ux/8/a, |1¢ ;| < |x/6/a, |}
<2|x/8/a,| 1{ lu| < %873, |}
and, following the same lines as Knight (1989, pp 270 - 272), introduce the truncation
R,*@®) =2|x/8/a,| 1{lu| < |x/6/a, 1} 1{]x/8/2,] <M}, M<co,
so that the summands in
Q*(®) = Ziza {R,*(®) - E[R,*@) | X1}
are martingale differences. To show that Q,*(8) —, 0, we therefore want to show that
Tian B[ RG*@) | X115 0.
Now, from (2) with L(z) > ¢ as z— 0,
Tean B[RO | X1 =, Ty, 4l %802, |2 20 | x//2, |7 1{ | x/8/a, | <M}
< max{ | %8/, |} X, 4|x/8/a,| "7 2¢ TI{|x'6/a,| <M}
—,0as n>w

because
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max{ | x/a, | } = max,{ | x/n"*| }/n"@» —,0, as n— <,
and
Tion |x/802,[17 = T, Ix/8m¥ | " m=0,1), asn >
from the definition of {a,} and the assumption on the common distribution of the u,.
Hence Q,*(8) —,0 as n— . To show this also true of Q,(3), we use
P T, 218, 11y < |x'8m, )1 x/6/a,] >M} >¢]
< Pr[max].{|x,-'8/a“| }>M] >0 as n—> .
Next, from the Lemma in A.1,
I8 = 2, M(x/0/a,)
= 18 x B, 20 v, | (140,1))
=2[18]"11+)]0,(1) + oy1) as n— o,
again from the definition of {a,}, with the O,(1) term independent of & and so we can write
G,(®) =2 [|8]™/(1+IOL(1) + 01} + W,'8a,
or,
Gy(an)/my = 2[ | 2t | (41O D/, + Wyiwin, + o,(L/m,),
where we now choose 1, = n'’n'* so W /n, = 0,(1), and the result follows essentially as in
A.2: note that the convergence rate of the LAD estimator here is of order in probability

I/(anlﬂ/,rln)lfv — 1/[(nl/ani/(1+7))l+y/ nllznl/a]I/7 — 1/(n(1+y)/a 1.11/2/ nlla)lly — lln(1/a+ 1/2y) \

as stated in Example 6.

Note that if we apply the same argument to Example 7, we redefine X, =u,,=x, and

first choose a, sothat 2, |xi/a11 |1y = O/(1). In (a), where 1+y> a € (0,2), we can set
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a, " =n because >, , %, /n -, E[ |x,|""] <0, and max,{ | x/a, | } = max,{ | %/ |y

—, 0 because max;{ |x, m|y = O(1), and these two points drive the derivation just given

above. For (b) 1+y <a € (0,2) we set a,""" = (n"®)"*to get ¥, | x/a, |7 = O,(1) but now
max,{ |x/a,|} = max{|x/mn"|} = O,1) and so we need to make use of an alternative

derivation, such as that in A.3 above. The same ideas apply for Example 8, once we redefine

X, suitably.
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