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Abstract

Alumina performs severat functions in a modern smelter - it is used to scrub the pot gases to

remove fluoride, acts as a thermal insulator on top of the cell and, when added to cryolite-based

electrolytes, it is the raw material used to produce aluminium. Alumina is also expected to have

good flow and handling properties, and dissolve well in the bath. Unfortunately, it does not

always dissolve rapidly and this leads to the forriration of "sludge", which creates operating

disturbances in the cell; it is ditficult to remedy this problem without a basic understanding of the

process of alumina dissolution. Consequently, the objective of the work presented in this thesis

was to develop an apparatus and technique that would allow the dissolution behaviour of powder

alumina to be measured as realistically and objectively as possible, and then determine the

important factors atfecting dissolution.

The method developed involved the merging of three different techniques:

O electroanalytical measurement of dissolved oxide concentrations

O recording of the associated thermal phenomena

o visual observation of the interaction of alumina with the bath

which were then used to investigate the etfect of a range of alumina properties and smelter

operating conditions on dissolution behaviour. A series of dissolution parameters was selected

to evaluate the relative dissolution behaviour of the different variables.

It was found that slow dissolution behaviour resulted primarily from poor feeding and/or

dispersion, coupled with poor heat transfer in the first few seconds of the dissolution process.

lf the flow properties of the alumina were good, alumina flowed easily out of the dropper on to the

surface of the bath forming relatively thin but well-distributed rafts. lf not, alumina could flow out

into a localized area producing very dense rafts which clumped together and eventually sank to

the bottom forming sludge. properties such as loss on ignition enhanced the dispersion of the

alumina through the release of volatiles, which caused the alumina to "effervesce" on the surface'

Conversely, bulk density aggravated the clumping problem as the density of the formed rafts

increased with increasing bulk density.
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Good feeder design can help to counteract deficiencies in the flow properties of an alumina, if the

importance of wide coverage and the imparting of a horizontal velocity component to the alumina

are kept in mind. lt was also found that if the bath agitation was increased, either by increasing

the amount of existing stirring or by reducing the bath volume in the feeding area for a given bath

velocity, the initial heat transfer to the alumina could be dramatically improved' The presence of

bath superheat was important for maintaining optimum heat transfer conditions for fast

dissolutions, as alumina was found to dissolve better when a higher propodion of the heat

required was supplied from the bulk of the liquid bath as opposed to localized freezing.

Increasing the initial alumina concentration in the electrolyte retarded the dissolution process, with

the retardation becoming increasingly more significant at higher concentration values. Similarly'

reducing the cryolite ratio, which also decreased the alumina solubility, resulted in the dissolution

being inhibited in the later stages, as more alumina dissolved. ln situations where the mass

transfer in the bath was improved, the impact of these concentration etfects was minimized.

The video recordings were usefulfor indicating potential operating difficulties with the samples,

such as excessive emissions and flow problems. Six ditferent raft formations, characterizing the

degree of bath surface coverage and the raft density or cohesion, were identified lrom the videos

and the aluminas were classified accordingly.

preliminary heat balance calculations were performed using the data obtained in this study and

were used to estimate the heat of dissolution for c-AlrO3, for a variety of alumina concentrations

in cryolite-based electrolytes. The results indicated heat values of 1'12 +15 and 55 'r-5 kJ mol'l

for alumina concentrations in the bath of 0.43 and 2.83 wt% respectively' Further work is

necessary to refine these calculations, however.

Reacted ore was found to dissolve more slowly than parent virgin alumina but it was difficult to

ascertain which property caused the difference - whether bulk density, flowability, influence of HF,

or presence of other impurities. As a result, it is recommended that a series ol dissolution runs

be performed on reacted samples of different compositions to establish which property associated

with reacted ore causes the problem.
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increased heat flux
area under the voltammogramme or quantity of electricity value

radius of the samPle disc
average regression coefficient
gas constant, 8.317 J mol'l K1

single point feeder
dissolution surface area
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xvtl

t
h
At
tinit
t'50
t'66
t'80
t'f

T
T"u
Tb
Tb"rtt
Tc
Too
Top,add'n1

Top,add'n4

lw
6Tu
6T"
ATu
ATu.rt,
AT"
TcQ
Tmax

g,

c-AlrO.
p-Al2o3
y-AlrOt
6-Al2o3
0-Al2o3
v

a

0
1-AlrOt
G)

time
time at the end of the initiation period
change in time
initiation time
time taken to reach 50 % dissolved minus tinit
time taken to reach 66 % dissolved minus tinit
time taken to reach 80 % dissolved minus tinit
time taken to reach 1OO o/" dissolved minus tinit
(based on initial rate of dissolution)
temperature
average temperature of the crucible wall
bath temperature
bath temperature
crucible wall temperature
bath operating temperature
bath operating temperature for the 1st addition
bath operating temperature for the 4th addition
wall temperature of the outside of the crucible
transient change in the bath temperature
transient change in the crucible wall temperature
bath temperature change or droP
bath temperature change
crucible wall temperature change or drop
temperature-corrected quantity of electricity val ue (cou lom bs)

maximum temperature drop recorded by the bath thermocouple

sweep rate
solution volume

width of the Hann window

addition number, 14

angle of repose
alpha alumina
beta alumina
gamma alumina
delta alumina
theta alumina
kinematic viscosity
a constant, - 3.141592654
transition time
angle of internal friction
chi alumina
angular velocity
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s
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"c
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v
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V s-l
m3

m-2 s
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To the memory of Fritz,

The best dog an engineer could have.




