Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
An Investigation of Students' Understanding and Representation of Derivative in a Graphic Calculator-Mediated Teaching and Learning Environment

Alan Gil Gutierrez delos Santos

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics Education
The University of Auckland
2006
For my Mama and sisters
ABSTRACT

This research is a collective case study that investigates the constitutive relationship between students' representational competences and mathematical understanding of derivative. Its goal was to describe the representational abilities characterising different ways of knowing, and these were categorised as procedure-oriented, process-oriented, object-oriented, concept-oriented and versatile.

The study was conducted in four Form 7 classrooms, in their Mathematics with Calculus classes, where graphic calculators were used in the teaching and learning of derivative. The choice of the context was based on the belief that the use of graphic calculators might encourage a multi-representational approach to teaching, and support the development of students' multi-representational way of thinking. The research data were collected both from teachers and their students. These data comprise teacher and student interviews, with the first interviews conducted before their lessons on derivative and the second after the lesson. The students were also given pre-lesson and post-lesson tests in order to triangulate student data.

A Representational Framework of Knowing Derivative was constructed as an analysis tool, and used to explore students' representational abilities and ways of knowing. From the analysis, the students' cognitive processes were construed, together with the nature of their representational, cognitive and conceptual schemas. The representational framework of knowing was later refined to present an empirically-based theoretical framework that bridges the gap between what was theorised and what was observed.

The results of the study suggest that the relationship between students' ways of knowing and their representational abilities is mediated by the following factors: (i) the students' interpretation of the mathematical notion; (ii) the representational nature of their interpretations of derivative, and the representational aspects in their problem solving activities; and (iii) the nature of the representational links that they have formed between procedures, processes, objects and sub-concepts that were construed to constitute their conceptual and cognitive schemas of derivative. With regard to the use of the graphic calculator, this research has noted a possible contribution of the graphic calculator in the development of students' multi-representational ways of thinking and learning.
ACKNOWLEDGEMENT

The long journey of completion of this thesis would not be possible without the support of the following people and institutions.

- My supervisor, Associate Professor Michael O. J. Thomas, for his guidance, critical comments, and tremendous support, without which this thesis would not have seen the light of the day.
- My adviser, Professor Ivan Reilly, for his generous time, guidance, and support.
- To all the teachers and students who participated in this research for their time and contribution. Their experiences have made valuable contributions to my understanding of mathematical teaching and learning.
- For encouraging me to pursue a doctoral degree, I would like to thank Dr Kay Irwin, A/Prof Catherine Vistro-Yu and Dr Ferdinand Rivera.
- The following Mathematics Educators for their probing questions that allowed me to clarify a lot of my ideas, and for their generous advice in its development: A/Prof Bill Barton, Dr Andy Begg, Dr Robyn Pierce, and Prof Kaye Stacey.
- The University of Auckland for the International Doctoral Fees Bursary Scholarship; The Faculty of Science for the Postgraduate Tuition Fees Bursaries grant; and The Ateneo de Manila University (Philippines) for the financial assistance extended me during my first year of study in Auckland.
- The Staff of the Mathematics Department, The University of Auckland, for the assistance and support given me throughout my postgraduate studies.
- All my colleagues at the Mathematics Education Unit for their friendliness and willingness to help in times of need.
- Special thanks to the following for listening to my raw ideas, for sharing their own ideas, or for simply being a friend: Willy, Shehenaz, Sanka, David, Garry, Greg and Daniel.
- My non-Maths Ed friends Karan and Sami ... and to you Bernd.
- **Maraming Salamat Po Sa Inyong Lahat!**
PUBLICATIONS ARISING FROM THIS THESIS

TABLE OF CONTENTS

Abstract ... i
Acknowledgement ... ii
Publications Arising from this Thesis .. iii
Table of Contents .. iv
List of Tables .. viii
List of Figures ... ix

1 Introduction .. 1
1.1 Research Questions .. 4
1.2 Overview of the Thesis ... 4

2 Knowledge Construction and Representation .. 7
2.1 Knowledge ... 8
 2.1.1 A conceptualisation of knowledge .. 8
 2.1.2 The formation of knowledge .. 11
 2.1.3 Summary ... 16
2.2 Construction of Mathematical Knowledge ... 17
 2.2.1 Mathematical understanding ... 17
 2.2.2 Formation of mathematical objects ... 19
 2.2.3 The use of symbols in mathematical thinking .. 23
 2.2.4 Summary ... 24
2.3 Symbolisation and Representation ... 25
 2.3.1 Representation and representational systems ... 25
 2.3.2 Symbolisation ... 27
 2.3.3 Symbol use .. 30
 2.3.4 Multiple representation and representational fluency 32
2.4 Chapter Summary ... 35

3 Representational Framework of Knowing ... 37
3.1 Mathematical Knowing and Representation .. 38
3.2 A Representational Framework of Knowing ... 40
 3.2.1 Five dimensions of knowing ... 41
 3.2.2 Representational Framework of Knowing Matrix 46
3.3 Chapter Summary ... 49

4 Graphic Calculators in the Classroom ... 51
4.1 The Graphic Calculator as a Cognitive Technology ... 52
 4.1.1 Cognitive technology ... 52
 4.1.2 Instrumental genesis .. 55
4.2 Research Results on the Use of Graphic Calculators in Classrooms 56
 4.2.1 Effects of the use of graphic calculators in the classroom 56
 4.2.2 Factors identified as contributing to better performance 58
 4.2.3 Obstacles to using graphic calculators .. 59
4.3 The Graphic Calculator as a Third Agent in the Classroom

4.3.1 The externalisation of the internal
4.3.2 Teaching with graphic calculators
4.3.3 Instructional implications of using graphic calculators in classrooms
4.3.4 The instructional design

4.4 Chapter Summary

5 Research Method and Design

5.1 The Research Questions
5.1.1 Motivation for the study
5.1.2 Aims of the study
5.1.3 Research questions
5.1.4 Assumptions

5.2 Methodological Framework: Collective Case Study
5.2.1 What is a collective case study?
5.2.2 Why is collective case study appropriate for this research?

5.3 Methods of Data Collection
5.3.1 Tests
5.3.2 Interviews
5.3.3 Classroom observation
5.3.4 Summing up

5.4 The Research Design
5.4.1 Research site
5.4.2 The research participants

5.5 Research Instruments
5.5.1 Teacher interviews
5.5.2 Discussion-workshop with the teachers
5.5.3 The tests
5.5.4 Student interviews
5.5.5 Summary

5.6 The Data Collection Protocol

5.7 Data Analysis
5.7.1 Interpretive activity
5.7.2 Foci of analysis

5.8 Chapter Summary

6 Case Studies

6.1 Analysis Framework
6.1.1 Paths to understanding
6.1.2 Analysis tool: The Representational Framework of Knowing
6.1.3 The individual case studies
6.1.4 The individual case studies

6.2 Procedure-Oriented Case Study: Steven
6.2.1 Procedure-oriented knowing
6.2.2 Process-oriented knowing
6.2.3 Object-oriented knowing
6.2.4 Concept-oriented knowing
6.2.5 Interpretation of symbols
6.2.6 Problem solving approaches
6.2.7 A synopsis of Steven's way of knowing

6.3 Process-Oriented Case Study: Emma
6.3.1 Procedure-oriented knowing
6.3.2 Process-oriented knowing
6.3.3 Object-oriented knowing
LIST OF TABLES

TABLE 2.1. Translation Processes (from Janvier, 1987, p. 28) 34
TABLE 3.1 The Representational Framework of Knowing 47
TABLE 5.1. Teacher-participants Demographic 89
TABLE 5.2. Summary of Student-participants per School 90
TABLE 5.3. Demographics and Test Results of Interviewed Students 91
TABLE 6.1. James' changing interpretation of $\frac{dy}{dx}$ in the equation $\frac{dy}{dx} = 3$ 183
TABLE 8.1. The Refined Representational Framework of Knowing 294
LIST OF FIGURES

Figure 2.1. Multiple representations of the basic quadratic function (Sfard, 2000). 33
Figure 4.1. Kaput’s Model. 64
Figure 4.2. Mathematics teaching cycle. 70
Figure 6.1. Steven’s solution to differentiation problems. 107
Figure 6.2. Steven’s application of the chain rule. 107
Figure 6.3. Steven’s graph of the derivative of a graph of a function. 111
Figure 6.4. Equating the derivative to zero. 114
Figure 6.5. Steven’s solution on Question 1. 117
Figure 6.6. Steven’s solution on Question 12. 117
Figure 6.7. Steven’s solution on Question 15: Translating the graph but with no symbolic attempt in his solution. 118
Figure 6.8. Emma’s solution to a differentiation problem. 120
Figure 6.9. Graphical interpretation of the first principle. 124
Figure 6.10. Emma’s concept map (second interview) 127
Figure 6.11. A pre- and post-test question. 137
Figure 6.12. Emma’s pre-test solution. 138
Figure 6.13. Emma’s post-test solution. 138
Figure 6.14. Brenda’s solution to a differentiation problem. 141
Figure 6.15. Brenda’s interpretations of \(\frac{dy}{dx} \) and \(f'(x) \). 148
Figure 6.16. Brenda’s demonstration of \(f'(f'(x)) \). 151
Figure 6.17. Example for the interpretation of \(f(f'(x)) \). 152
Figure 6.18. A pre- and post-test question. 153
Figure 6.19. Brenda’s pre-test solution on Question 6. 154
Figure 6.20. Brenda’s post-test solution on Question 6. 154
Figure 6.21. Milton’s solution to a differentiation problem. 157
Figure 6.22. Milton’s Interview 1 concept map. 162
Figure 6.23. Milton’s Interview 2 concept map. 163
Figure 6.24. Milton’s algebraic illustration of $f(f'(x))$. 164
Figure 6.25. Milton’s symbolic interpretation of $f(f''(x))$ as ‘stationary point.’ 165
Figure 6.26. Milton’s illustrative example for $\frac{d}{dx} \left(\frac{dy}{dx} \right)$. 165
Figure 6.27. A pre- and post-test question. 167
Figure 6.28. Milton’s pre-test solution. 168
Figure 6.29. Milton’s post-test solution. 168
Figure 6.30. James’ solution to differentiation problems. 171
Figure 6.31. James’ Interview 1 concept map. 174
Figure 6.32. James’ Interview 2 concept map. 176
Figure 6.33. James’ graphical illustration of first principles. 182
Figure 6.34. James’s working for Question 6. 190
Figure 6.35. James’s working for Question 10. 191
Figure 6.36. Tim’s solution to a differentiation problem. 195
Figure 6.37. Graphical interpretation of first principles. 197
Figure 6.38. Tim’s graphical interpretation of derivative. 198
Figure 6.39. Tim’s illustrative examples for $f(f''(x))$ and $f'(f'(x))$. 210
Figure 6.40. Pre-test solution to a problem. 211
Figure 6.41. Post-test solution to a problem. 212
Figure 8.1. Input-process-output structure. 306
Figure 8.2. Multiple interpretation and representation of an object. 314
Figure 8.3. Representational links built between two distinct objects. 315