

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>


General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

An Investigation of Students' Understanding and Representation of Derivative in a Graphic Calculator-Mediated Teaching and Learning Environment

Alan Gil Gutierrez delos Santos

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Mathematics Education The University of Auckland 2006

For my Mama and sisters

ABSTRACT

This research is a collective case study that investigates the constitutive relationship between students' representational competences and mathematical understanding of derivative. Its goal was to describe the representational abilities characterising different ways of knowing, and these were categorised as procedure-oriented, process-oriented, object-oriented, concept-oriented and versatile.

The study was conducted in four Form 7 classrooms, in their Mathematics with Calculus classes, where graphic calculators were used in the teaching and learning of derivative. The choice of the context was based on the belief that the use of graphic calculators might encourage a multi-representational approach to teaching, and support the development of students' multi-representational way of thinking. The research data were collected both from teachers and their students. These data comprise teacher and student interviews, with the first interviews conducted before their lessons on derivative and the second after the lesson. The students were also given pre-lesson and post-lesson tests in order to triangulate student data.

A Representational Framework of Knowing Derivative was constructed as an analysis tool, and used to explore students' representational abilities and ways of knowing. From the analysis, the students' cognitive processes were construed, together with the nature of their representational, cognitive and conceptual schemas. The representational framework of knowing was later refined to present an empirically-based theoretical framework that bridges the gap between what was theorised and what was observed.

The results of the study suggest that the relationship between students' ways of knowing and their representational abilities is mediated by the following factors: (i) the students' interpretation of the mathematical notion; (ii) the representational nature of their interpretations of derivative, and the representational aspects in their problem solving activities; and (iii) the nature of the representational links that they have formed between procedures, processes, objects and sub-concepts that were construed to constitute their conceptual and cognitive schemas of derivative. With regard to the use of the graphic calculator, this research has noted a possible contribution of the graphic calculator in the development of students' multi-representational ways of thinking and learning.

i

ACKNOWLEDGEMENT

The long journey of completion of this thesis would not be possible without the support of the following people and institutions.

- My supervisor, Associate Professor Michael O. J. Thomas, for his guidance, critical comments, and tremendous support, without which this thesis would not have seen the light of the day.
- My adviser, Professor Ivan Reilly, for his generous time, guidance, and support.
- To all the teachers and students who participated in this research for their time and contribution. Their experiences have made valuable contributions to my understanding of mathematical teaching and learning.
- For encouraging me to pursue a doctoral degree, I would like to thank Dr Kay Irwin, A/Prof Catherine Vistro-Yu and Dr Ferdinand Rivera.
- The following Mathematics Educators for their probing questions that allowed me to clarify a lot of my ideas, and for their generous advice in its development: A/Prof Bill Barton, Dr Andy Begg, Dr Robyn Pierce, and Prof Kaye Stacey.
- The University of Auckland for the International Doctoral Fees Bursary Scholarship; The Faculty of Science for the Postgraduate Tuition Fees Bursaries grant; and The Ateneo de Manila University (Philippines) for the financial assistance extended me during my first year of study in Auckland.
- The Staff of the Mathematics Department, The University of Auckland, for the assistance and support given me throughout my postgraduate studies.
- All my colleagues at the Mathematics Education Unit for their friendliness and willingness to help in times of need.
- Special thanks to the following for listening to my raw ideas, for sharing their own ideas, or for simply being a friend: Willy, Shehenaz, Sanka, David, Garry, Greg and Daniel.
- My non-Maths Ed friends Karan and Sami ... and to you Bernd.
- Maraming Salamat Po Sa Inyong Lahat!

PUBLICATIONS ARISING FROM THIS THESIS

- delos Santos, A. G. & Thomas, M. O. J. (2005). The growth of schematic thinking about derivative. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds) Proceedings of the 28th Annual Conference of the Mathematics Education Research Group of Australasia, RMIT, Melbourne, 377– 384.
- delos Santos, A. G. & Thomas, M. O. J. (2003). Representational ability and understanding of derivative. Proceedings of the International Conference of the Psychology of Mathematics Education (PME-27), Honolulu, 325–332.
- delos Santos, A. G. & Thomas, M. O. J. (2003). Perspectives on the teaching of derivative with graphic calculators, *Australian Senior Mathematics Journal*, 17 (1), 40–58.
- delos Santos, A. G. & Thomas, M. O. J. (2002). Teaching derivative with graphic calculators: The role of representational perspective. *Proceedings of the Seventh Asian Technology Conference in Mathematics*, Melaka, Malaysia, 349–358.
- delos Santos, A. G. & Thomas, M. O. J. (2002). Teacher perspective on derivative. In B. Barton, K. C. Irwin, M. Pfannkuch, and M. O. J. Thomas (Eds) Proceedings of the 25th Annual Conference of the Mathematics Education Research Group of Australasia, Auckland, 227–235.
- delos Santos, A. G. & Thomas, M. O. J. (2001). Representational fluency and symbolization of derivative. *Proceedings of the Sixth Asian Technology Conference in Mathematics*, Melbourne, 282–291.

TABLE OF CONTENTS

A	bstract_		i
Ā	cknowle	dgement	ii
P	Publications Arising from this Thesis		
T	able of (Contents	iv
		bles	
		gures	
1		duction	
1		Research Questions	
		Overview of the Thesis	
2			
2		vledge Construction and Representation	
	2.1 2.1.1	Knowledge	8
	2.1.1	A conceptualisation of knowledge The formation of knowledge	11
	2.1.2	Summary	
	2.2	Construction of Mathematical Knowledge	
	2.2.1	Mathematical understanding	17
	2.2.2	Formation of mathematical objects	19
	2.2.3	The use of symbols in mathematical thinking	23
	2.2.4	Summary	
	2.3	Symbolisation and Representation	25
	2.3.1	Representation and representational systems	25
	2.3.2	Symbolisation	
	2.3.4	Multiple representation and representational fluency	32
	2.4	Chapter Summary	
3		resentational Framework of Knowing	
5			
	3.1	Mathematical Knowing and Representation	
	3.2	A Representational Framework of Knowing	40
	3.2.1 3.2.2	Five dimensions of knowing Representational Framework of Knowing Matrix	41 46
	3.3	Chapter Summary	
4	Graf	phic Calculators in the Classroom	51
	4.1	The Graphic Calculator as a Cognitive Technology	52
	4.1.1	Cognitive technology	52
	4.1.2	Instrumental genesis	
	4.2	Research Results on the Use of Graphic Calculators in Classrooms	
	4.2.1	Effects of the use of graphic calculators in the classroom	56
	4.2.2 4.2.3	Factors identified as contributing to better performance	58 59
	4.2.3	Obstacles to using graphic calculators	

	4.3	The Graphic Calculator as a Third Agent in the Classroom	62
	4.3.1		
	4.3.2	Tracking aid and in the	(1
	4.3.3	Instructional implications of using graphic calculators in classrooms	
	4.3.4	The instructional design	69
	4.4	Chapter Summary	
5	Rese	arch Method and Design	
	5.1		
	5.1.1	The Research Questions	74
	5.1.2	Motivation for the study	75
	5.1.3	Aims of the study	75
	5.1.4	Research questionsAssumptions	15
	5.2	Methodological Framework: Collective Case Study	
	5.2.1		
	5.2.2	What is a collective case study?	78
	5.3	Methods of Data Collection	80
	5.3.1	Tests	81
	5.3.2	Interviews	82
	5.3.3	Classroom observation	84
	5.3.4	Summing up	85
	5.4	The Research Design	86
	5.4.1	Research site	80
	5.4.2	The research participants	87
	5.5	Research Instruments	91
	5.5.1	Teacher interviews	
	5.5.2	Discussion-workshop with the teachers	93
	5.5.3	The tests	94
	5.5.4	Student interviews	94
	5.5.5	Summary	
	5.6	The Data Collection Protocol	
	5.7	Data Analysis	0.5
		Interpretive activity	97
	5.7.2	Foci of analysis	98
	5.8	Chapter Summary	99
6	Case	2 Studies	101
	6.1	Analysis Framework	101
	6.1.1	Paths to understanding	101
	6.1.2		102
	6.1.3		102
	6.1.4	The individual case studies	103
	6.2	Procedure-Oriented Case Study: Steven	107
	6.2.1	Procedure-oriented knowing	107
	6.2.2	Process-oriented knowing	109
	6.2.3	Object-oriented knowing	111
	6.2.4	Concept-oriented knowing	113
	6.2.5	Interpretation of symbols	115
	6.2.6	Problem solving approaches	117
	6.2.7	A synopsis of Steven's way of knowing	119
	6.3	Process-Oriented Case Study: Emma	121
	6.3.1		121
	6.3.2	Process-oriented knowing	123
	6.3.3	Object-oriented knowing	176

	6.3.4	Concept-oriented knowing	128
	6.3.5	Interpretation of symbols	134
	6.3.6	Problem solving approaches	
	6.3.7	A synopsis of Emma's way of knowing	140
	6.4	Process-Oriented Case Study: Brenda	
	6.4.1	Procedure-oriented knowing	
	6.4.2	Process-oriented knowing	143
	6.4.3	Process-oriented knowing	145
	6.4.4	Object-oriented knowing	147
	6.4.5	Concept-oriented knowing	149
	6.4.6	Interpretation of symbols	153
	6.4.7	Problem solving approachesA synopsis of Brenda's way of knowing	155
	6.5		
	6.5.1	Process-Oriented Case Study: Milton	158
	6.5.2	Procedure-oriented knowing	158
	6.5.3	Process-oriented knowing	
	6.5.4	Object-oriented knowing	- 161
	6.5.4		165
		Interpretation of symbols	165
	6.5.6 6.5.7	8 FF	170
		· · · · · · · · · · · · · · · · · · ·	
	6.6	Concept-Oriented Case Study: James	_ 172
	6.6.1	Procedure-oriented knowing	172
	6.6.2	Process-oriented knowing	173
	6.6.3	Object-oriented knowing	1/6
	6.6.4	Concept-oriented knowing	179
	6.6.5		183
	6.6.6	Problem solving approaches	190
	6.6.7	A synopsis of James's way of knowing	192
	6.7	Concept-Oriented Case Study: Tim	_ 195
	6.7.1	Procedure-oriented knowing	195
	6.7.2	Process-oriented knowing	197
	6.7.3	Object-oriented knowing	200
	6.7.4	Concept-oriented knowing	203
	6.7.5	Interpretation of symbols	208
	6.7.6	Problem solving approaches	
	6.7.7	A synopsis of Tim's way of knowing	213
7	Tead	cher as a Guide, Graphic Calculator as Instrument	_ 215
	7.1	Cognition as a Psychological and Socio-Cultural Construction	
	7.2	Graphic Calculators in the Classroom	_ 216
	7.2.1		217
	7.2.2	Students' tool schemas	218
	7.2.3	Influence of classroom practices on student learning	218
	7.3	Analysis Framework	_ 219
	7.4	Format of Case Study Presentation	_ 220
	7.5	Case Study 1: Classroom Taught by Graphic Calculator-Expert Teacher	221
	7.5.1	The Classroom Setting	221
	7.5.2		221
	7.5.3	Rachel's pedagogical practices	229
	7.5.4	Students' Perceptions on the Influence of Graphic Calculators on Learning	
	7.5.5		241
	7.6	Case Study 2: Classrooms Taught by Graphic Calculator-Novice Teachers_	243
	7.6.1	The Classroom Settings	243
	7.6.2	The Teachers' Pedagogical Framework	244
	7.6.3	Pedagogical practices	254

	7.6.4 7.6.5	Students' Perceptions of the Influence of Graphic Calculators on Learning An overview of case study 2	266 274
	7.7 7.7.1	Students' Perceptions on Learning in a Graphic Calculator Environment_ Teachers' use of the graphic calculator in teaching	277
	7.7.2	Graphic calculator mediation on learning	279
8	Disc	ussion	283
	8.1	The Refined Representational Framework of Knowing	285
	8.1.1	Procedure-oriented knowing	285
	8.1.2	riocess-oriented knowing	287
	8.1.3	Object-oriented knowing	288
	8.1.4	Concept-oriented knowing	290
	8.1.5	Summary	292
	8.2	Characterisation of Students' Ways of Knowing from a Representational	
	Perspe	ctive	297
	8.2.1	Procedure-oriented knowing	297
	8.2.2	Process-oriented knowing	301
	8.2.3	Concept-oriented knowing	308
	8.2.4	Summary	316
	8.3	Students' Representational Schemas for Derivative	319
	8.3.1	Procedure-oriented	320
	8.3.2	Process-oriented	522
	8.3.3	Concept-oriented	325
	8.3.4	Students' Representational Schemas and their Understanding of Derivative	331
	8.4 Graphic Calculators and Students' Learning and Understanding of Derivat 335		
	8.4.1		336
	8.4.2	On learning with a graphic calculator	341
	8.4.3	Learning in a graphic calculator mediated environment	344
	8.5	Representation, Understanding and the Graphic Calculator	
9	Con	clusion	349
	9.1	Ways of Knowing and Representational Ability	349
	9.2	Implications for Teaching	355
	9.3	Limitations of the Research	356
	9.3.1		356
	9.3.2		
		Limitations of the representational framework of knowing	357
	9.4	Limitations of the representational framework of knowing Suggestions for Further Research	
	9.4 9.5		358
R	9.5	Suggestions for Further Research Concluding Thoughts	358 359
	9.5 EFERI	Suggestions for Further Research Concluding Thoughts ENCES	358 359

LIST OF TABLES

TABLE 2.1. Translation Processes (from Janvier, 1987, p. 28)	34
TABLE 3.1 The Representational Framework of Knowing	47
TABLE 5.1. Teacher-participants Demographic	89
TABLE 5.2. Summary of Student-participants per School	90
TABLE 5.3. Demographics and Test Results of Interviewed Students	91
TABLE 6.1. James' changing interpretation of $\frac{dy}{dx}$ in the equation $\frac{dy}{dx} = 3$	183
TABLE 8.1. The Refined Representational Framework of Knowing	294

LIST OF FIGURES

Figure 2.1.	Multiple representations of the basic quadratic function (Sfard, 2000).	33
Figure 4.1.	Kaput's Model.	64
Figure 4.2.	Mathematics teaching cycle.	70
Figure 6.1.	Steven's solution to differentiation problems.	107
Figure 6.2.	Steven's application of the chain rule.	107
Figure 6.3.	Steven's graph of the derivative of a graph of a function.	111
Figure 6.4.	Equating the derivative to zero.	114
Figure 6.5.	Steven's solution on Question 1.	117
Figure 6.6.	Steven's solution on Question 12.	117
Figure 6.7.	Steven's solution on Question 15: Translating the graph but with	
	no symbolic attempt in his solution.	118
Figure 6.8.	Emma's solution to a differentiation problem.	120
Figure 6.9.	Graphical interpretation of the first principle.	124
Figure 6.10.	Emma's concept map (second interview)	127
Figure 6.11.	A pre- and post-test question.	137
Figure 6.12.	Emma's pre-test solution.	138
Figure 6.13.	Emma's post-test solution.	138
Figure 6.14.	Brenda's solution to a differentiation problem.	141
Figure 6.15.	Brenda's interpretations of $\frac{dy}{dx}$ and $f'(x)$.	148
Figure 6.16.	Brenda's demonstration of $f'(f'(x))$.	151
Figure 6.17.	Example for the interpretation of $f(f'(x))$.	152
Figure 6.18.	A pre- and post-test question.	153
Figure 6.19.	Brenda's pre-test solution on Question 6.	154
Figure 6.20.	Brenda's post-test solution on Question 6.	154
Figure 6.21.	Milton's solution to a differentiation problem.	157
Figure 6.22.	Milton's Interview 1 concept map.	162
Figure 6.23.	Milton's Interview 2 concept map.	163

Figure 6.24. M	ilton's algebraic illustration of $f(f'(x))$.	164
Figure 6.25. M	ilton's symbolic interpretation of $f(f'(x))$ as 'stationary point.'	165
Figure 6.26. Mi	ilton's illustrative example for $\frac{d(\frac{dy}{dx})}{\frac{dx}{dx}}$.	165
Figure 6.27. A	pre- and post-test question.	167
Figure 6.28. Mi	ilton's pre-test solution.	168
Figure 6.29. Mi	ilton's post-test solution.	168
Figure 6.30. Jar	mes' solution to differentiation problems.	171
Figure 6.31. Jar	mes' Interview 1 concept map.	174
Figure 6.32. Jar	mes' Interview 2 concept map.	176
Figure 6.33. Jar	mes' graphical illustration of first principles.	182
Figure 6.34. Jar	mes's working for Question 6.	190
Figure 6.35. Jar	mes's working for Question 10.	191
Figure 6.36. Tir	m's solution to a differentiation problem.	195
Figure 6.37. Gra	aphical interpretation of first principles.	197
Figure 6.38. Tir	m's graphical interpretation of derivative.	198
Figure 6.39. Tir	m's illustrative examples for $f(f'(x))$ and $f'(f'(x))$.	210
Figure 6.40. Pre	e-test solution to a problem.	211
Figure 6.41. Pos	st-test solution to a problem.	212
Figure 8.1. Inp	out-process-output structure.	306
Figure 8.2. Mu	altiple interpretation and representation of an object.	314
Figure 8.3. Rep	presentational links built between two distinct objects.	315