Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
EXTENDED THEORY
OF THE
BÉNARD CONVECTION PROBLEM

Thesis submitted to the
University of Auckland
for the degree of
Doctor of Philosophy

by

DONALD ARTHUR NIELD

Department of Mathematics
November, 1966
ACKNOWLEDGEMENTS

This research was performed under the supervision of Dr C.M. Segedin, whose help and encouragement were greatly appreciated.

The suggestion of the problem by Dr B.R. Morton, and the interest taken by Dr R.A. Wooding, are gratefully acknowledged.

The author wishes to thank his colleagues on the staff of the University of Auckland who made this work possible: to the academic staff for time; to the administrative and library staff for facilities; and to the technical and secretarial staff, and in particular Miss M. Long, for assistance with the preparation of this thesis.
ABSTRACT

The onset of convection in a horizontal fluid layer, heated from below, is examined by means of perturbation analysis. The resulting eigenvalue system of equations is solved by means of a new extension of a Fourier series technique. Two sets of coupled effects are investigated:

(i) thermal buoyancy and surface-tension effects, and
(ii) thermal buoyancy and solute buoyancy effects.

For the first set of effects the magnetohydrodynamic problem is also studied.

For the surface-tension problem, attention is focussed on the case where the lower boundary is a rigid conductor and the upper free surface is subject to a general thermal condition. It is found that for this case the surface-tension and buoyancy forces reinforce each other and are tightly coupled. Cells formed by surface tension are approximately the same size as those formed by buoyancy. The streamline patterns produced by the two agencies acting separately are again similar.

When the fluid is electrically conducting and is in the presence of a vertical magnetic field, it is found that the field always has a stabilizing effect. When convection cells are formed in the presence of such a field, their horizontal dimensions are less than for cells formed in the absence of the field. The magnetic field accentuates
the difference between the cells induced by surface tension and those by buoyancy, and thus reduces the coupling between the destabilizing forces. Increase of magnetic field causes the buoyancy cell pattern to become more symmetrical, but causes the streamlines in surface-tension cells to become bunched near the surface. When the magnetic field is large, the transition from one type of cell to the other type is extremely sudden, at least when the upper surface is a good thermal conductor.

It has been found that, on the model considered, there can be no oscillatory instability for this problem. However, dimensional analysis reveals that, for a sufficiently flexible upper surface, oscillatory instability might in fact occur.

Finally the thermohaline problem, where the density varies with both temperature and the concentration of some solute, is studied. The eigenvalue equation is now found for general boundary conditions. The degree of coupling between the thermal and the solute effects again depends on the similarity between convection cells caused by the two agencies acting separately. (For one extreme case studied the coupling is zero for a certain range of parameters.) In this problem both monotonic and oscillatory instability can now occur.
TABLE OF CONTENTS

Preface

1.1 The basic Rayleigh-Jeffreys problem 1
1.2 Additional effects 9
1.3 Other configurations 25
1.4 Non-linear effects 33
1.5 Geophysical and astrophysical applications 49
1.6 Other problems 54

CHAPTER 2 BASIC THEORY

2.1 Basic equations 56
2.2 Boundary conditions 61
2.3 Normal mode expansion 65
2.4 Completion of the solution 69

CHAPTER 3 A FOURIER SERIES METHOD

CHAPTER 4 SURFACE TENSION AND BUOYANCY EFFECTS:

PART 1. THE HYDRODYNAMIC PROBLEM

4.1 Introduction 77
4.2 Analysis 78
4.2.1 Onset of steady convection 79
4.2.2 Onset of oscillatory convection 83
4.3 Results and discussion 84
4.3.1 Steady convection: eigenvalues 84
4.3.2 Steady convection: eigenfunctions 91
4.3.3 Oscillatory convection 95
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>CHAPTER 5 SUGGNET TENSION AND BUOYANCY EFFECTS</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>PART 2. THE MAGNETOHYDRODYNAMIC PROBLEM</td>
<td>100</td>
</tr>
<tr>
<td>5.2</td>
<td>Introduction</td>
<td>100</td>
</tr>
<tr>
<td>5.3</td>
<td>Analysis</td>
<td>101</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Results and discussion</td>
<td>102</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Steady convection: eigenvalues</td>
<td>102</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Steady convection: eigenfunctions</td>
<td>109</td>
</tr>
<tr>
<td>6</td>
<td>CHAPTER 6 THE THERMALILINE PROBLEM</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>113</td>
</tr>
<tr>
<td>6.2</td>
<td>Analysis</td>
<td>115</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Ideal boundary conditions</td>
<td>116</td>
</tr>
<tr>
<td>6.2.2</td>
<td>General boundary conditions</td>
<td>121</td>
</tr>
<tr>
<td>6.3</td>
<td>Results and discussion</td>
<td>124</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Steady convection</td>
<td>124</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Oscillatory convection</td>
<td>129</td>
</tr>
<tr>
<td>7</td>
<td>CHAPTER 7 CONCLUSION</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Retrospect</td>
<td>133</td>
</tr>
<tr>
<td>7.2</td>
<td>Prospect</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>APPENDICES:</td>
<td></td>
</tr>
<tr>
<td>App.1</td>
<td>On the vanishing of Z and X</td>
<td>136</td>
</tr>
<tr>
<td>App.2</td>
<td>Some asymptotic expressions</td>
<td>138</td>
</tr>
<tr>
<td>App.3</td>
<td>Onset of convection at zero wave-number</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAPHY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supplement</td>
<td>B1 or 146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B28</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>dimensionless wave-number, kd</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>dimensionless wave-number, a/x</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>layer depth</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>gravitational acceleration</td>
<td></td>
</tr>
<tr>
<td>h_i</td>
<td>magnetic field perturbation</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>horizontal wave-number</td>
<td></td>
</tr>
<tr>
<td>k_c</td>
<td>thermal conductivity of fluid</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>magnetic Prandtl number, v/η</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>time-constant</td>
<td></td>
</tr>
<tr>
<td>q_o</td>
<td>rate of change with temperature of heat per unit area per unit time across boundary</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>Prandtl number, v/k</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Schmidt number, v/k'</td>
<td></td>
</tr>
<tr>
<td>u,v,w</td>
<td>velocity components</td>
<td></td>
</tr>
<tr>
<td>x,y,z</td>
<td>Cartesian co-ordinates</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Marangoni number $\sigma_0 \beta d^2 / \rho w$</td>
<td></td>
</tr>
<tr>
<td>B_l</td>
<td>B/x^2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>d/dz with respect to length d/x</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>vertical magnetic field</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>electric current density</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>function expressing z-dependence of h_z</td>
<td></td>
</tr>
<tr>
<td>K'_v, K_u</td>
<td>velocity boundary-condition parameters</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Nusselt or Biot number, q_o/kd</td>
<td></td>
</tr>
<tr>
<td>L_l</td>
<td>L/x</td>
<td></td>
</tr>
</tbody>
</table>
\(L_u, L_v\)
thermal boundary-condition parameters

\(M_u, M_v\)
solute boundary-condition parameters

\(Q\)
square of Hartmann number, \(\mu H^2 a^2/(4\pi \rho \nu \eta)\)

\(Q_a\)
\(Q/\pi^2\)

\(R\)
thermal Rayleigh number, \(g\alpha \beta \delta a^4/\kappa \nu\)

\(R_1\)
\(R/\pi^4\)

\(S\)
solute Rayleigh number, \(g\alpha \beta \delta a^4/\kappa \nu\)

\(S_1\)
\(S/\pi^4\)

\(W\)
function expressing \(z\)-dependence of \(w\)

\(W_1\)
\(Wd/\pi \nu\)

\(X\)
function expressing \(z\)-dependence of curl \(h_1\)

\(X_1\)
\(XdHd/(4\pi^2 \rho \nu)\)

\(Z\)
function expressing \(z\)-dependence of vorticity

\(\alpha\)
thermal expansion coefficient

\(\alpha'\)
solute expansion coefficient

\(\beta\)
adverse vertical temperature gradient

\(\beta'\)
adverse vertical solute concentration gradient

\(\gamma\)
solute concentration perturbation

\(\zeta\)
\(z\)-component of vorticity

\(\eta\)
magnetic diffusivity

\(\theta\)
temperature perturbation

\(\kappa\)
thermal diffusivity

\(\kappa'\)
solute diffusivity

\(\mu\)
magnetic permeability
\(\nu \)
kinematic viscosity

\(\xi \)
z-component of curl \(h_1 \)

\(\rho \)
density of fluid

\(\sigma_1 \)
time-constant, \(\rho d^2/\pi^2 \nu \)

\(\sigma_0 \)
rate of decrease of surface tension with increase of temperature at the surface

\(\omega \)
time constant, \(\text{Im}(\sigma_1) \)

\(\Gamma \)
function expressing \(z \)-dependence of \(\gamma \)

\(\Gamma_1 \)
\(\Gamma \sigma_0 \beta d^2 \nu \)

\(\theta \)
function expressing \(z \)-dependence of \(\theta \)

\(\theta_1 \)
\(\theta \sigma_0 \beta d^2 \nu \)
The literature survey which forms Chapter 1 of this thesis covers a range considerably wider than the topics on which the author has made an original contribution. (The parts of the survey particularly pertinent here are sections 1(i), 1(ii), 2(i), 2(vii) and 2(viii).) It is thought that nearly all published papers on the onset of thermal convection in an initially-static stratified fluid are considered in the survey. On the borderlines of this subject with other types of hydrodynamic stability, with post-instability flows, and with geophysical and astrophysical applications, a selection has necessarily been made. Much of the content of this thesis has already been published by the author; such work has been integrated into the survey.

In our Chapter 2 the perturbation analysis presented in Chandrasekhar's treatise has been extended in two particular aspects. First the boundary condition, derived by Pearson (1958), applicable to the free surface of a liquid whose surface tension varies with temperature, is incorporated into the theory. Then the analysis has been extended to a two-component system such as a liquid containing a dissolved salt. Such a system has previously been considered, but in less detail, by several authors, the first of whom was Vertgeim (1955).

The differential equation system arising from our perturbation analysis forms an eigenvalue problem. A practical method of solving
this eigenvalue problem is described in Chapter 3. The following three chapters, which form the bulk of the original work in this thesis, contain the results of applying this method to some problems of practical importance.
1 The basic Rayleigh-Jeffreys problem
 (i) Bénard's observations
 (ii) Theory
 (iii) Experiments

2 Additional effects
 (i) Magnetic fields
 (ii) Rotation
 (iii) Radiation
 (iv) Electric fields
 (v) Shear
 (vi) Viscoelasticity
 (vii) Surface tension
 (viii) Solvents
 (ix) Suspensions
 (x) Porous medium

3 Other configurations
 (i) Vertical channels and cylinders
 (ii) Horizontal channels and cylinders
 (iii) Spheres and spherical shells
 (iv) General confined configurations

4 Non-linear effects
 (i) Steady finite-amplitude effects
 (ii) Heat transfer
 (iii) Induced convection
 (iv) Time-dependent solutions
 (v) Penetrative convection
 (vi) Property variations
 (vii) Direction of flow
 (viii) Type of cell pattern
 (ix) Columnar convection
 (x) Transition to turbulence
 (xi) Analogies

5 Geophysical and Astrophysical applications
 (i) Earth physics
 (ii) Limnology and oceanography
 (iii) Meteorology
 (iv) Astrophysics

6 Some other problems
 (i) Rotating Couette flow
 (ii) Transition to turbulence in other flows