

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Ethylene biosynthetic genes in Actinidia chinensis

David J. Whittaker

Plant Science Group School of Biological Sciences University of Auckland

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

March, 1997

Table of contents

TABLE OF CONTENTS	i
ABSTRACT	v
ACKNOWLEDGEMENTS	vii
ABBREVIATIONS	ix
1 INTRODUCTION	1
1.1 Introduction	1
1.2 Genetic background and crop improvement of kiwifruit and Actinidia chinensis.	3
 1.3 Fruit ripening 1.3.1 Biochemical changes during fruit ripening 1.3.2 Respiration and ethylene production 1.3.3 Tree factors 1.3.4 Ripening and senescence 	4 5 6 8 8
 1.4 Ethylene biosynthetic genes 1.4.1 The ethylene biosynthetic pathway 1.4.2 SAM synthetase 1.4.3 ACC synthase 1.4.4 ACC oxidase 	9 9 9 11 13
 1.5 Regulation of ethylene biosynthesis 1.5.1 Feedback regulation 1.5.2 Developmental regulation 1.5.3 Regulation by hormones 1.5.4 Regulation by stress 1.5.5 Other regulators of ethylene biosynthesis 	14 16 17 18 19
1.6 Ripening in kiwifruit and <i>A. chinensis</i> 1.6.1 Physiological changes 1.6.2 The role of ethylene in ripening	20 20 23
 1.7 Approaches to the suppression of ethylene biosynthesis in transgenic plants 1.7.1 Antisense suppression and co-suppression 1.7.2 Antisense suppression of ACC oxidase 1.7.3 Antisense suppression of ACC synthase 1.7.4 Degradation of ACC and SAM 	24 25 27 28 28
1.8 Aims of this research	29
2 MATERIALS AND METHODS	33
2.1 Buffers and solutions	33
2.2 Enzymes, chemicals and radiochemicals	33
2.3 Plasmids	34

	ii
 2.4 Bacteria 2.4.1 Escherichia coli 2.4.2 Agrobacterium tumefaciens 2.4.3 Bacterial growth media 2.4.4 Antibiotic selection of bacterial strains and plasmids 2.4.5 Agrobacterium inocula for transformation experiments 	34 34 34 35 35
 2.5 Manipulation of bacteria 2.5.1 Preparation and transformation of competent cells 2.5.1.1 Heat-shock transformation 2.5.1.2 Electroporation 2.5.1.3 Freeze-thaw transformation 2.5.2 Colony lifts 	35 35 36 36 37 37
 2.6 Plant material 2.6.1 Ripe fruit samples for cDNA library construction 2.6.2 Fruit and flower samples for gene expression analyses 2.6.3 Samples of leaf material 2.6.3.1 Leaf material for transformation experiments 2.6.3.2 Leaf material for microsatellite analysis 	38 38 39 39 39
 2.7 Isolation of DNA and RNA 2.7.1 Isolation of plasmid DNA preparations for size screening 2.7.1.1 Rapid plasmid DNA preparations for size screening 2.7.1.2 Alkaline lysis extraction 2.7.1.3 Sequencing DNA preparations 2.7.1.4 Preparation of template DNA for in vitro transcription 2.7.1.5 Plasmid DNA preparation from Agrobacterium 2.7.2 Isolation of A. chinensis DNA 2.7.3 Isolation of A. chinensis RNA 2.7.4 Purification of poly (A)+ RNA 	39 39 39 40 40 40 40 40 41 41
 2.8 Manipulation of DNA and RNA 2.8.1 Agarose gel electrophoresis 2.8.1.1 Non-denaturing agarose gel electrophoresis 2.8.1.2 Denaturing agarose gel electrophoresis 2.8.2 Denaturing polyacrylamide gel electrophoresis 2.8.3 Restriction endonuclease digestions 2.8.4 Isolation of DNA fragments 2.8.5 Dephosphorylation 2.8.6 Generation of blunt-ended, phosphorylated termini 2.8.7 Ligation 2.8.8 DNA sequencing 2.8.9 Random prime labelling of DNA 2.8.10 Radioactive labelling by <i>in vitro</i> transcription 	42 42 42 43 43 43 44 44 44 44 45 45
2.9 Oligonucleotide primers and polymerase chain reaction (PCR)	45
 2.10 cDNA library construction 2.10.1 First strand synthesis 2.10.2 Second strand synthesis 2.10.3 Ligation and cleavage of adaptors 2.10.4 Size fractionation of cDNA 2.10.5 Ethidium bromide plate assay 2.10.6 Ligation of cDNA to pSPORT1 2.10.7 Amplification and storage of cDNA library 	46 47 47 47 47 48 48
 2.11 Detection and analysis of nucleic acids 2.11.1 Southern transfer 2.11.2 Northern transfer 2.11.3 Hybridisation to membrane-bound nucleic acids 	48 48 49 49

	iii
2.11.4 Removal of bound probes 2.11.5 RNase protection analysis	49 50
 2.12 Transformation and regeneration of A. chinensis 2.12.1 Growth conditions for A. chinensis 2.12.2 Transformation of A. chinensis 2.12.3 Regeneration of A. chinensis plants 	50 50 50 51
 2.13 Analysis of transgenic A. chinensis plants 2.13.1 Amplification of transgenes 2.13.2 Microsatellite analyses 2.13.3 Measurement of wound ethylene 	51 51 52 52
2.14 Computing	52
3 ISOLATION AND CHARACTERISATION OF ETHYLENE BIOSYNTHETIC GENES FROM A. CHINENSIS FRUIT	55
3.1 Introduction	55
3.2 Construction of a ripe fruit cDNA library	55
3.3 Isolation and characterisation of SAM synthetase cDNA clones 3.3.1 PCR amplification of a SAM synthetase partial cDNA from <i>A. deliciosa</i> . 3.3.2 Isolation of clones with SAM synthetase homology from <i>A. chinensis</i> 3.3.3 Nucleotide sequences of ACSAM1, ACSAM2 and ACSAM3 3.3.4 Phylogenetic analyses	57 57 59 61 61
3.4 Isolation and characterisation of ACC synthase cDNA clones 3.4.1 PCR amplification and cloning of an ACC synthase partial cDNA from <i>A. deliciosa</i> 3.4.2 PCR amplification and cloning of an ACC synthase partial cDNA from <i>A. chinensis</i> 3.4.3 Nucleotide sequence of KIWIAS1 and ACAS1	68 68 69 71
 3.5 Isolation and characterisation of ACC oxidase cDNA clones 3.5.1 Isolation of clones with ACC oxidase homology 3.5.2 Partial nucleotide sequences of ACAO1 and ACAO2 	78 78 78
3.6 Isolation and characterisation of ubiquitin cDNA clones	80
 3.7 Discussion 3.7.1 Construction of a ripe fruit cDNA library 3.7.2 Abundance of cDNA clones 3.7.3 Sequence analysis of SAM synthetase cDNA clones 3.7.4 Sequence analysis of ACC synthase cDNA clones 3.7.5 Sequence analysis of ACC oxidase cDNA clones 	80 80 81 81 83 84
4 EXPRESSION OF ETHYLENE BIOSYNTHETIC GENES IN ACTINIDIA CHINENSIS FRUIT	87
4.1 Introduction	87
4.2 Response of fruit to exogenous ethylene	87
4.3 Northern analysis of transcript levels	90
 4.4 RNase protection analyses of transcripts 4.4.1 Construction of probes 4.4.2 RNase protection assays 4.4.3 Analysis of transcript levels 	92 92 94 101

	iv
 4.5 Discussion 4.5.1 Ethylene biosynthesis in A. chinensis fruit 4.5.2 Ethylene regulation of SAM synthetase transcripts 4.5.3 Ethylene regulation of ACC synthase and oxidase transcripts 4.5.4 Expression in other tissues 	104 104 104 107 108
5 CONSTRUCTION AND ANALYSIS OF TRANSGENIC PLANTS FOR ETHYLENE DOWN-REGULATION	109
5.1 Introduction	109
5.2 Construction of Agrobacterium binary vectors	110
5.3 Transformation and regeneration of A. chinensis	110
 5.4 Confirmation of T-DNA structure in transgenic A. chinensis plants 5.4.1 PCR analysis 5.4.2 Southern analysis 	111 111 120
5.5 Investigation of transgene expression5.5.1 Northern analysis5.5.2 Phenotypic analysis	125 125 127
5.6 Confirmation of genotype using microsatellite markers	128
 5.7 Discussion 5.7.1 Analysis of T-DNA structure in A. chinensis transformants 5.7.2 Analysis of transgene expression in A. chinensis transformants 	131 131 132
6 CONCLUDING DISCUSSION	135
6.1 Ethylene biosynthetic genes in A. chinensis	135
6.2 Regulation of ethylene biosynthetic genes in A. chinensis	137
6.3 Downregulation of ethylene in A. chinensis fruit	140
6.4 Investigation of the role of ethylene in A. chinensis fruit ripening	142
6.5 Crop improvement by manipulation of ethylene biosynthesis in <i>A. chinensis</i> and related species	143
REFERENCES	147
APPENDIX 1 Publications	173
Three cDNAs encoding S-adenosyl-L-methionine synthetase from Actinidia chinensis	174
Ethylene biosynthetic genes in Actinidia chinensis	176
Expression of ethylene biosynthetic genes in Actinidia chinensis fruit	180
APPENDIX 2 Quantification of relative transcript levels in RNase protection assays	191

Abstract

Actinidia chinensis, a diploid relative of kiwifruit, has valuable fruit characteristics, and varieties with superior flavour and marketable size have recently been selected in a classical breeding programme. However, the marketability of the fruit of *A. chinensis* and many other species of *Actinidia* is limited by poor fruit storage properties. Pioneering work in tomato has demonstrated that fruit ripening and senescence can be very effectively delayed by down-regulating genes required for biosynthesis of the phytohormone ethylene. The goal of this work was to isolate genes for ethylene biosynthesis in *A. chinensis*, characterise their expression, and to generate transgenic plants containing T-DNA constructs designed for ethylene downregulation.

A small cDNA library was constructed from RNA isolated from the ripe fruit of *A. chinensis*. The library was screened for genes encoding each of the enzymes in the ethylene biosynthetic pathway, by probing with PCR products amplified from kiwifruit cDNA and with a cDNA clone previously isolated from kiwifruit. Three distinct cDNA clones encoding *S*-adenosyl-L-methionine (SAM) synthetase (ACSAM1, ACSAM2 and ACSAM3) were isolated from the library, together with two distinct 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase cDNA clones (ACAO1 and ACAO2). No ACC synthase cDNAs were detected in the library, indicating low transcript abundance. However, a partial ACC synthase cDNA (ACAS1) was amplified from ripe fruit using PCR techniques, and subsequently cloned in a plasmid vector. Phylogenetic analysis of SAM synthetase protein sequences from *A. chinensis* and other plant species indicates bifurcation of angiosperm SAM synthetase sequences into two main branches; ACSAM3 was assigned to a different branch from ACSAM1 and ACSAM2. The peptide sequence of ACAS1 shows higher homology to several auxin-inducible ACC synthase peptides than the product of the ethylene-inducible ACC synthase gene which is predominantly transcribed in ripening tomato fruit.

RNAse protection assays were employed to estimate the relative transcript levels of each of the ethylene biosynthetic genes isolated from *A. chinensis* during ethylene-induced, post-harvest fruit ripening, and in immature fruit and floral samples. The response of the mature fruit to exogenous ethylene indicated a clear separation of ethylene sensitivity and ethylene production in *A. chinensis*. The application of exogenous ethylene correlated with increased transcript levels for all three SAM synthetase genes (ACSAM1, ACSAM2 and ACSAM3) and for the ACC oxidase gene family. Transcription of the ACC synthase gene ACAS1 was not affected by exogenous ethylene, but transcript levels increased during subsequent ethylene biosynthesis, consistent with this being a controlling step for the onset of ethylene production. One or more ACC oxidase transcripts increased significantly both prior to and during ethylene production. Only one of the SAM synthetase transcripts (ACSAM3) was induced during the late ethylene burst, and these transcripts were also

abundant in floral tissues and young fruit. A role for SAM synthetase genes in the methionine salvage pathway is discussed.

The expression patterns for ACAS1 and the ACC oxidase gene family are consistent with the consensus view that the rate of ethylene biosynthesis in plant tissues is dependent on both ACC synthase and ACC oxidase activity levels. Therefore, with the aim of down-regulating ethylene biosynthesis in *A. chinensis*, expression cassettes containing ACAS1 and ACAO1 cDNAs, each controlled by a d35S promoter, were inserted in tandem into the *Agrobacterium* binary vector pCGN1549, in both the sense and antisense orientations. Leaf tissue from the 'Earligold' variety of *A. chinensis* was transformed with the resulting binary vectors, and transgenic plants were regenerated. PCR and Southern analysis indicated intact T-DNAs were integrated in at least half of the transformed plants, and Northern analysis detected mRNAs from one of the transgenes transcribed from both the sense and antisense constructs. No decrease in wound-induced ethylene biosynthesis was detected in the leaves of a small sample of these transgenic plants, and a larger number of transformants are now being grown for phenotypic screening. Down-regulation of ethylene biosynthesis may improve the storage properties and/or the shelf life of transgenic *A. chinensis* plants and may provide insights into the roles of ethylene in fruit ripening.

Acknowledgements

Firstly, I would like to thank my supervisor, Associate Professor Richard Gardner, for his guidance and help throughout the practical work and writing. Many thanks also to my co-supervisors Garth Smith and Elspeth MacRae. I am very grateful to Elspeth and for her practical assistance during fruit harvests and subsequent physiological analyses, and for her editing contribution to this thesis. Thanks also to Alan Seal and Jonathan Toye for their help with fruit and leaf materials.

Special thanks to Jeanette Keeling and Susan Ledger for all their practical advice and assistance in the lab, and to Lena Fraser and Trixie Harvey for help with tissue culture work. Many thanks to all the members of the PMB group for their friendship and encouragement.

I extend my thanks to HortResearch and to the Foundation for Research Science and Technology for the financial assistance that they have provided for this project.

I would like to thank my parents and my grandmother for their support. Finally, I would like to thank my wife Epi for her love and support, and for standing by me throughout the course of this work.

Abbreviations

⁰ C	degrees Celsius
358	CaMV 35S promoter
ACC	1-aminocyclopropane-1-carboxylic acid
ADP	adenosine diphosphate
AOA	aminooxyacetic acid
ATP	adenosine triphosphate
AVG	aminoethoxyvinylglycine
bp	base pairs
BRL	Bethesda Research Laboratories
CaMV	cauliflower mosaic virus
cDNA	complementary DNA
CIP	calf intestinal phosphatase
cfu	colony forming units
cpm	counts per minute
CTAB	cetyl-trimethylammonium bromide
CV.	cultivar
d35S	modified CaMV 35S promoter
dATP	2'-deoxyadenosine triphosphate
dCTP	2'-deoxycytadine triphosphate
dGTP	2'-deoxyguanosine triphosphate
DMDC	dimethyl-dicarbonate
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
dNTP	unspecified 2'-deoxynucleotide triphosphate(s)
DTT	dithiothreitol
dTTP	2'-deoxythymadine triphosphate
EDTA	ethylene diamine tetra-acetic acid
EtBr	ethidium bromide
8	acceleration of gravity
h	hour(s)
IBA	indole-3-butyric acid
IPTG	isopropyl-β-D-thiogalactoside
kb	kilobase(s)
kDa	kilodaltons
KMB	2-keto-4-methylthiobutyric acid
MACC	malonyl ACC [1-(malonylamino)cyclopropane-1-carboxylic acid]

min	minute(s)
MOPS	3-(N-morpholino) propanesulfonic acid
mRNA	messenger RNA
MTA	5'-methylthioadenosine
MTR	5'-methylthioribose
MTR-1-P	5'-methylthioribose-1-phosphate
N-terminal	amino terminal
NAA	α-naphthalene acetic acid
NaOAc	sodium acetate
nptII	neomycin phosphotransferase
PAUP	phylogenetic analysis using parsimony
PCR	polymerase chain reaction
PE	pectin methylesterase
PEG	polyethylene glycol
PG	polygalacturonase
Pi	inorganic phosphate
PPi	pyrophosphate
ppm	parts per million
rATP	adenosine triphosphate
RNA	ribonucleic acid
RNase	ribonuclease
rpm	revolutions per minute
SAM	S-adenosyl-L-methionine
SAMase	S-adenosyl-L-methionine hydrolase
SDS	sodium dodecyl sulphate
T-DNA	transferred DNA
TEMED	NNN'N'-tetramethylethylenediamine
Tris	2-amino-2-hydroxymethylpropane-1,3-diol
USA	United States of America
UTP	uridine-5'-triphosphate
UV	ultraviolet
UWGCG	University of Wisconsin Genetics Computer Group
v/v	volume per volume
var.	variety
X-Gal	5-bromo-4-chloro-3-indolyl-β-D-thiogalactoside
XET	xyloglucan endotransglycosylase
YN	yeast nutrient