Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
STUDIES OF DICHLORO- AND
TETRACHLORO- ADDUCTS OF NAPHTHALENE
AND SOME OF ITS SUBSTITUTED DERIVATIVES

A Thesis presented to the
University of Auckland
for the Degree of
Doctor of Philosophy

by

Graham William Burton

University of Auckland December, 1973
To

H E D Y

and

M A T T H E W
trans-1,2-Dichloro-1,2-dihydronaphthalene has been obtained as the major product of the photochlorination of naphthalene at low temperature, and is the first authentically described naphthalene dichloride. Its further reaction with chlorine, under heterolytic conditions gives, in part, a new naphthalene tetrachloride, whose configuration has been assigned, by 1H n.m.r., as being that of the \(r-1, c-2, c-3, t-4 \)-isomer. The assigned configuration and conformation of the compound are confirmed by its behaviour on alkaline dehydrochlorination, which gives mainly trans-1,2,4-trichloro-1,2-dihydronaphthalene as an intermediate.

The naphthalene dichloride, and its 4-chloro-derivative, have been found to undergo solvolysis in methanol-acetone (4:1), and it is further found that heterolysis of the carbon-chlorine bond at C-2 is strongly favoured, leading largely to the 1-chloro-substituted elimination product. The former dichloride also gives a small amount of 1-methoxynaphthalene, which is possibly derived by unimolecular substitution at the 1-position. The presence of a chlorine atom at the 3-position of the structure is found to inhibit the solvolytic reaction. Bimolecular syn-elimination in these compounds is accelerated by the presence of additional chlorine substituents, and the increasing preference shown for attack at H-2, which is further accentuated by the use of the powerfully basic reagent, potassium t-butoxide in t-butanoldimethylsulphoxide (1:4), is interpreted as indicating a transition
state tending toward the E1cB-like side of the E2 spectrum of transition states.

The naphthalene tetrachlorides, and some derivatives, have been found to undergo aluminium trichloride-catalysed epimerization at the benzylic centres, which yields information on the relative thermodynamic stabilities of isomers with identical relative configurations at C-2 and C-3, and can also be of synthetic value.

The photochlorination of 1-chloronaphthalene in CCl₄ at room temperature proceeds analogously with the reaction of naphthalene under the same conditions, giving five new tetrachlorides, four of which have been thoroughly characterized.

The presence, in some tetrachlorides, of inter-ring non-bonded compressions between adjacent chlorines has been found to cause significant changes in the geometry of the alicyclic ring, causing a tendency for the half-boat conformation to be adopted, provided this does not lead to 1,4-diaxially related chlorines. The strain present in these compounds is manifested by their very marked tendency to undergo isomerization in the presence of aluminium trichloride, and greatly increased rates of alkaline dehydrochlorination.

The chlorination of 1,5-dichloronaphthalene in chloroform, or dichloromethane, has been studied and has been found to be markedly catalysed by traces of iodine. The products are almost wholly derived by addition of chlorine in the first stage, and this has been interpreted as arising from a steric inhibition of proton-loss by the adjacent peri-chlorine.
ACKNOWLEDGEMENTS

It has been my great privilege and pleasure to have Professor P.B.D. de la Mare as supervisor. I wish to thank him, not only for the opportunity of working in such an interesting area of chemistry, in which it has been a joy to share his enthusiasm, but also for his personal interest and friendship, which has played no small part in finally bringing this project to fruition.

I wish to thank Hedy for the vast reserve of encouragement, support, and patience she has shown during the course of this undertaking, particularly in the latter stages.

I would like to thank Mike Wade for the valuable contribution he made leading to the isolation of the new naphthalene tetrachloride, and also for the exploratory investigation of the new naphthalene dichloride.

I would also like to thank Ms. Sue Nicolson, and Dr Jim Barnett, for their valuable assistance given in the investigation of the photochlorination of 1-chloronaphthalene.

I appreciate the friendship shown to me by Dr D.J. McLennan, and I thank him for many illuminating discussions concerning this work, and other less-related topics.

I owe a special debt of gratitude to Dave Calvert for the many hours he patiently, and uncomplainingly, devoted to the numerous 1H n.m.r. experiments performed in the course of this work. I would also like to thank Dr G.A. Bowmaker for adapting the computer program used for analysis of 1H n.m.r. spectra, and his assistance in running it.
I would especially like to thank Keith Bedford for the time he spent drawing many of the diagrams in this thesis, and the many other contributions he made which helped to finally bring it to completion. In this regard, I would also like to thank Chris Keong for the help he gave.

I am very grateful to Ms. Sue Robinson for the expert and efficient execution of a difficult typing task, and I greatly appreciate the sacrifice of her spare time that this involved.

Finally, I must acknowledge the many friendships shared and enjoyed in this Department, including those with Ron Wong, Mick Wilson, Brian Hannan, Max Rosser, Dave Williams, Keith Bedford, Peter Bailey, Lyndsay Main, and Ajit Singh.
TABLE OF CONTENTS

Abstract (i)
Acknowledgements (iii)

PART I. INTRODUCTION

1.1 Preamble 1
1.2 Naphthalene 2
1.3 Orientation of Chemical Attack in Naphthalene 8
1.4 Halogen Adducts of Naphthalene 15
1.5 Electrophilic Aromatic Addition 29
1.6 Intermediates, Stereochemistry, and the Electrophilic Addition of Chlorine 38
1.7 The Determination of Configuration and Conformation by \(^1\)H n.m.r. 52
1.8 1,2-Heterolytic Olefin-Forming Elimination 59
1.9 The Scope and Content of this Investigation 74

PART II. EXPERIMENTAL

2.1 Materials and Methods 75
2.2 r-1,c-2,c-3,t-4-Tetrachloro-1,2,3,4-tetrahydro-naphthalene 83
2.3 trans-1,2-Dichloro-1,2-dihydronaphthalene 85
2.4 Studies of Dehydrochlorination 88
2.5 Products from the Photochlorination of 1-Chloro-naphthalene 103
2.6 The Products from the Chlorination of 1,5-Dichloronaphthalene

2.7 Lewis Acid-Catalysed Reactions of the Naphthalene Tetrachlorides and Some Derivatives

PART III. DISCUSSION

3.1 trans-1,2-Dichloro-1,2-dihydronaphthalene

3.2 The Dehydrochlorination of trans-1,2-Dichloro-1,2-dihydronaphthalene and some of its Chloro-derivatives

3.3 The Configuration, Conformation, and Reactions of the New (sn) Naphthalene Tetrachloride

3.4 The Electrophilic Chlorination of 1,5-Dichloronaphthalene

3.5 The Photochlorination of 1-Chloronaphthalene

3.6 Reactions with Lewis Acids and the Effects of Non-bonded Strain

3.7 General Conclusions and Comments

PART IV. APPENDICES

Appendix 1: 1H n.m.r. spectra

Appendix 2: Publications

Note

Tables, Figures, Formulae, Equations, and References run consecutively with numbering recommencing at the beginning of each of Parts I-III.
<table>
<thead>
<tr>
<th>Figure number</th>
<th>Figure description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Free energy profile of an electrophilic aromatic substitution</td>
<td>9</td>
</tr>
<tr>
<td>1-2</td>
<td>The six stereoisomers of naphthalene tetrachloride</td>
<td>24</td>
</tr>
<tr>
<td>1-3</td>
<td>Reaction sequence in the chlorination of naphthalene</td>
<td>34</td>
</tr>
<tr>
<td>1-4</td>
<td>Reaction scheme for the chlorination of phenanthrene</td>
<td>47</td>
</tr>
<tr>
<td>1-5</td>
<td>Spectrum of E2 transition states</td>
<td>68</td>
</tr>
<tr>
<td>2-1</td>
<td>Computer-simulated spectra of the ABMIX-type</td>
<td>118</td>
</tr>
<tr>
<td>2-2</td>
<td>Changes in the aliphatic region (5 4.2-6.9) of the 1H n.m.r. spectrum of the reaction of 1,1,t-2,t-3,c-4,5- hexachloro-1,2,3,4-tetrahydronaphthalene with AlCl$_3$/PhNO$_2$ in CDCl$_3$</td>
<td>131</td>
</tr>
<tr>
<td>3-1</td>
<td>Conformations of five of the isomers of naphthalene tetrachloride</td>
<td>164</td>
</tr>
<tr>
<td>3-2</td>
<td>Reaction scheme for the dehydrochlorination of ξ- naphthalene tetrachloride in methanol-acetone (4:1) at 25°C</td>
<td>169</td>
</tr>
<tr>
<td>3-3</td>
<td>Reaction scheme for the heterolytic chlorination of 1,5-dichloronaphthalene</td>
<td>179</td>
</tr>
<tr>
<td>3-4</td>
<td>Reaction sequence leading to the products obtained from the photochlorination of 1-chloronaphthalene in CCl$_4$ at room temperature</td>
<td>189</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Proportions of addition and relative rates of chlorination in acetic acid at 25°C versus estimated loss of resonance energy upon forming a possible adduct</td>
<td>32</td>
</tr>
<tr>
<td>2-1</td>
<td>Proportions of dichloronaphthalenes formed from 7-naphthalene tetrachloride under various conditions</td>
<td>91</td>
</tr>
<tr>
<td>2-2</td>
<td>Proportions of dichloronaphthalenes formed by alkaline dehydrochlorination of the naphthalene tetrachlorides and trans-1,2,3-trichloro-1,2-dihydronaphthalene</td>
<td>96</td>
</tr>
<tr>
<td>2-3</td>
<td>Products from the solvolytic and alkaline dehydrochlorination of trans-1,2-dichloro-1,2-dihydronaphthalene</td>
<td>99</td>
</tr>
<tr>
<td>3-1</td>
<td>Summary of the combined results for the dehydrochlorinations of trans-1,2-dichloro-1,2-dihydronaphthalene and some chloro-derivatives, in methanol-acetone (4:1) at 25°C</td>
<td>158</td>
</tr>
<tr>
<td>3-2</td>
<td>The alkaline dehydrochlorinations and aluminium trichloride-catalysed isomerizations of the r-2,t-3,t-4- and r-2,t-3,c-4-isomers of 1-chloro- and 1,5-dichloronaphthalene tetrachlorides</td>
<td>199</td>
</tr>
</tbody>
</table>