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Abstract

Various phenomena of interest are often most clearly manifested in the ex-

tremes. I consider a particular type of extreme market � a market ravaged

by �re sales. In chapter 1 I present a theoretical model of �re sales that

incorporates interaction between forced asset sales and declining price spir-

als in a heterogeneous multi-asset, multi-investor setting. I show that a

unique equilibrium obtains in such a market and provide an analytical ap-

proximation of the resulting equilibrium �re-sale prices. Fire sales can drive

cross-asset contagion through leverage and overlapping assets holdings. In

addition, the leverage decisions of individual investors can impose external-

ities on other investors by exposing them to higher �re-sale risk. In chapter

2 I give empirical content to the �re-sale model by using market-estimated

parameters to calculate model �re-sale prices for US stocks from 1982 to

2010. Model �re-sale prices predict the cross-section of stock returns in

distressed markets (when the S&P 500 index declines by more than 10%

over a quarter), thus lending support to the theoretical model. In chapter

3 I turn to identifying extreme stocks. Using a simple unit root speci�ca-

tion I identify stocks that deviate from a pure random walk in log prices,

measured by autocorrelation. Autocorrelation predicts US stock returns

and this predictability is robust to a wide range of time-series risk factors

and stock characteristics. Stocks with autocorrelation substantially below

unity generate unusually persistent excess returns: a zero cost hedge port-

folio based on such stocks generate statistically signi�cant positive excess

returns in every month post-formation up to horizons of 25 years. Abnor-

mal returns around earning announcements indicate that this persistence is

unlikely to be the result of biased investor expectations of future earnings.

This suggests the possibility that downward deviations from the random

walk norm might be priced.
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Introduction
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Why should we care about extremes? Surely, one might argue, extreme markets are

comparatively rare and not at all representative of the orderly, well-conducted and

liquid markets that can be relied on to properly price �nancial assets. This argument

is only partially correct. Even in orderly markets, the price an asset commands should

bear some relation to its risk. Usually that risk remains latent; potential rather than

actual. But it is still present, and should still be priced. And it is in extreme markets

that assets often reveal the true extent of their otherwise hidden risk. Thus under-

standing how markets behave in extreme conditions has the potential to inform our

understanding of �nancial risk and how it relates to expected returns, a relationship

at the core of �nancial economics.

Normal markets are all normal in the same way, while extreme markets are each extreme

in their own unique way1. So which of the many extremes should we consider? I choose

to examine extreme markets from two di�erent vantage points.

First, I consider �re sales. Fire sales are a particular type of extreme market, one

that occurs when forced sellers encounter constrained buyers such that assets trade at

prices substantially below any reasonable measure of their intrinsic value. I formulate

a model of �re sales in chapter 1, and test the model empirically in chapter 2.

Second, I take a di�erent approach and attempt to identify extreme stocks empirically.

The intuition underlying my approach is to identify stocks with a price trajectory that

strays from the beaten path. More formally, I estimate the time series autocorrelation

of each stock; this can be interpreted as a measure of its deviation from a pure random

walk. I proceed to investigate how this measure relates to realised returns.

Fire sales already has a well-established literature. Some more in�uential early papers

include a theoretical model of �re sales within a given industry by Shleifer and Vishny

(1992), an empirical demonstration of �re sales in the market for used aircraft by

Pulvino (1998) and the cash-in-the-market �re-sale pricing model of Allen and Gale

(1994). A recent survey of �re sales can be found in Shleifer and Vishny (2010a).

The �re-sale literature might be best understood as the intersection of several related

literatures. Consider the necessary conditions for a �re sale: forced sellers and con-

strained buyers. Although investors might become forced sellers for any number of

reasons, two mechanisms have received particular attention in the literature, namely,

fund �ows and leverage. Funds often experience investor withdrawals after experien-

cing sub-par investment performance (see for instance, Coval and Sta�ord (2007), de

Souza (2010), Lou (2012) and Ben-David, Franzoni and Moussawi (2012)). Because

funds have to raise cash to meet the redemptions required by investor withdrawals, this

essentially makes them forced sellers. Leverage can have the same e�ect: as prices fall

leveraged investors experience reductions in their equity and eventually become forced

1Tolstoy (1878) makes a similar observation in a di�erent setting: �Happy families are all alike;
every unhappy family is unhappy in its own way.� (Chapter 1, line 1)
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sellers (see for example Miller and Stiglitz (2010), Longsta� (2008) and Richardson,

Sa� and Sigurdsson (2012)). Although the mechanisms underlying �ow-induced selling

and leverage-induced selling are di�erent, the e�ect is the same. As the value of an

investor's portfolio declines the investor becomes compelled to liquidate an increasing

fraction of his portfolio.

Fire sales also require constrained buyers. This assertion can be best explained by

considering a perfect market in which investors face no constraints or frictions. In

such a market any forced selling will be absorbed by investors who would be willing

to provide unlimited liquidity at any price fractionally below intrinsic value. However,

markets are not perfect and truly unconstrained investors are a theoretical abstraction

rather than a reality. The notion of constrained investors is closely related to the

literature on limits to arbitrage. The ideal arbitrageur is unconstrained; in reality

arbitrageurs face a variety of constraints, as discussed in Shleifer and Vishny (1997)

and Gromb and Vayanos (2002), that hinders their ability to arbitrage deviations from

intrinsic value2.

I have outlined some necessary conditions for a �re sale, but what happens if a �re

sale occurs? If a �re sale occurs in a single asset, then there is no direct contagion

e�ect. However, a �re sale might depress prices su�ciently to bring about the forced

liquidation of whole portfolios. This in turn might depress the prices of other, appar-

ently unrelated, assets. This intuition provides a link to the vast literature on �nancial

contagion. (See for instance, Kaminsky and Reinhart (2000), Allen and Gale (2000),

Longsta� (2009) and Iyer and Peydro (2010). Moser (2003) and Hasman (2012) are

useful surveys of the literature on �nancial contagion.) The model of Kiyotaki and

Moore (2002) is particularly relevant since it explicitly considers the negative feedback

loop between falling asset prices and binding leverage constraints.

If �re sales do potentially give rise to cross-asset contagion, that raises a further point

to consider. When �nancial contagion poses a systemic risk, asset prices should re�ect

that risk. Therefore, any actions by an investor that increases the risk of an asset

being subjected to a �re sale (for instance, by taking on more leverage) also increases

the risk and decreases the value of that asset ex-ante. This imposes externalities on

other investors that own the asset � they have lost money (today) solely because of

the actions of a third party. This is a point forcefully raised by the theoretical model

proposed in Wagner (2011). This model endogenously models the market participation

choices of three types of investors � leveraged investors, credit providers and liquidity

providers. Wagner (2011) shows that the market clearing prices of assets re�ect the

�re-sale risk associated with assets owned by liquidation-prone investors. Basically, an

asset held by liquidation-prone investors (such as highly leveraged hedge funds) is risky

because such an asset is both more likely to be involved in a �re sales and to sell at a

lower price if a �re sale occurs.

2A recent survey of the limits of arbitrage literature can be found in Gromb and Vayanos (2010)
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Understanding �re sales are important, not only because it can shed light on asset

pricing more generally, but also because �re sales impose signi�cant costs on the real

economy. Dislocated asset prices distort price signals and disrupt investment in the

real economy (Shleifer and Vishny, 2010b). The excessive price volatility associated

with �re sales can lead to the collapse of otherwise sound asset managers and �rms.

Furthermore, the anticipation of �re sales might prompt investors to hold more of their

portfolios in unproductive liquid assets such as cash, rather than in productive assets.

Fire sales thus have real welfare implications; as such there is a case to be made for

regulatory intervention aimed at preventing the frequency and severity of �re sales.

But to successfully contain and prevent �re sales, it is �rst necessary to understand the

mechanisms underlying �re sales. The model I present in chapter 1 and test in chapter

2 aims to contribute in this direction.

In chapter 3 I take a di�erent approach. Rather than focus on markets, I consider

individual assets. How can extreme behaviour in assets be quanti�ed? And how does

such extreme behaviour impact realised returns? Motivated by the work of Phillips and

Yu (2011) and Phillips, Wu and Yu (2011) on identifying bubbles in aggregate price

indices, I use a simple variant of a unit root test to quantify how far stocks deviate

from a pure random walk in log prices. The underlying intuition is that deviations

from a pure random walk mark out stocks as �extreme�. To my knowledge, there is no

theory to suggest that past deviations from a random walk should be priced. In this

sense chapter 3 has a more empirical orientation than the previous chapters.

The rest of this thesis is set out as follows. Part II collects three essays on extreme

markets. Chapter 1 presents a model of �re sales. Chapter 2 uses the model presented

in chapter 1 to calculate model �re-sale prices as a proxy for �re-sale risk. I show

that model �re-sale prices predict realised US stock returns in distressed markets, thus

empirically validating the model. Chapter 3 introduces autocorrelation as a measure

of the deviation of a stock from a pure random walk. I show that extreme realisations

of autocorrelation predict realised returns in US stocks and is robust to a range of time

series risk factors and stock characteristics. Part III concludes.

5





Part II

Essays on Extreme Markets
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Chapter 1

Fire Sales � Theory

Abstract

I formulate a general model of �re sales in which multiple heterogeneous investors,

each investing in multiple assets, become forced sellers because of exogenous price

shocks. Simultaneously prices endogenously adjust based on the volume of forced

sales. This induces strategic interaction between investors mediated by price

changes. I show that equilibrium �re-sale prices exist, are unique and can be

calculated to arbitrary accuracy using the method of successive approximations.

I derive an analytical price approximation shown (numerically) to explain 98%

of the equilibrium price adjustment. Analytical statics derived from this ap-

proximation allows me to quantify �re-sale contagion e�ects. Further, I show

that a change in leverage by a single investor has spillover e�ects such that risk

externalities are imposed on other investors.

1.1 Introduction

I consider a model of �re sales and contagion in a multi-investor, multi-asset setting.

Fire sales matter because they impose signi�cant welfare losses. When assets are sold

at a signi�cant discount to fundamentals it implies a high discount rate, unrelated

to the fundamental risk inherent in the asset. Such distortions in discount rates can

lead to the ine�cient allocation of capital. Some examples of misallocation in bank

lending include Diamond and Rajan (2011) and Shleifer and Vishny (2010c), in which

the expectation of windfall pro�ts from holding �re-sale assets displaces productive

lending. Another consequence of �re sales is that assets often end with a buyer of

last resort who might lack the expertise to put the asset to best use as in Shleifer

and Vishny (1992). Fire sales in one asset or asset class can also lead to contagion

to other assets or asset classes. Wagner (2011) presents a model in which investors

are concerned about the possibility of being involved in a (costly) �re sale alongside

other investors. He shows that in such a setting investors might rationally deviate
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from a diversi�ed portfolio to reduce their exposure to assets held by liquidation-prone

investors and that as a consequence equilibrium asset prices re�ect �re-sale risk.

My paper is in the spirit of Wagner (2011) in that I consider �re sales in a multi-

investor, multi-asset setting1. The approach I take di�ers from Wagner (2011) in two

respects. First, the Wagner (2011) model is a general asset pricing model in which

joint liquidation (�re-sale) risk is priced endogenously. By contrast, mine is a purely

mechanical model of �re sales, rather than a fully �edged asset pricing model. Wagner

(2011) shows that �re-sale risk should be re�ected in expected returns; my contribution,

which I view as complementary, is to quantify that �re-sale risk. Second, Wagner (2011)

models investors as a unit mass of in�nitesimally small investors. This �small investor�

assumption implies that no individual investor can a�ect asset prices unilaterally and,

therefore, there is no strategic interaction in such a setting2. On the other hand, I

explicitly model the strategic interdependence between investor portfolio choices that

result from endogenous asset price changes � to the best of my knowledge, this is a

novel contribution to the literature on �re sales.

The fundamental characteristic of a �re sale is that the a�ected asset trades at a price

signi�cantly below its true or fundamental value. In general, this requires that two

conditions hold. First, it requires one or more forced sellers. Second, some constraints

should exist that stop buyers from taking advantage of �re-sale prices. (For a recent

survey of the literature on �re sales, the reader is referred to Shleifer and Vishny

(2010a)).

Forced sellers imply the existence of duress or binding constraints of some sort, other-

wise sellers would not sell at a price so far below fundamental value. A non-exhaustive

list of constraints that might plausibly lead to a forced sale could include: bank-

ruptcy, �nancial distress (as documented in the market for commercial aircraft by

Pulvino (1998)), sale of collateral by lenders, margin calls, borrower covenants, adverse

changes in funding conditions (see for instance, Brunnermeier and Pedersen (2008)),

defence against a hostile takeover (for corporates), rating agency models, regulatory

capital requirements (for regulated entities such as banks and insurers), self-enforced

risk management, stop loss limits (trading desks), fund withdrawals (mutual funds and

hedge funds, see Brunnermeier and Pedersen (2005) and Coval and Sta�ord (2007)),

1Much of the theoretical literature on �re sales, starting with Shleifer and Vishny (1992) and Allen
and Gale (1994), considers a single risky asset over time. Although a single asset setting is instructive
in showing the various ways in which �re sales can occur and how they might evolve, I generalise
to a setting with many assets. This allows me to to link the �re-sale literature to that of �nancial
contagion.

2A similar point is made by Feeney and King (2001) in the context of parimutuel betting: �Much of
the theoretical work analysing parimutuel systems, however, makes a critical `small player' assumption
that one individual cannot in�uence the actions of others. In other words, there are always enough
players in the system so that the e�ect of one player's actions on the information and returns of other
players can be ignored. ... The small player assumption greatly simpli�es the modelling of parimutuel
systems, but it is very strong. For example, if there are few players or if some players wager relatively
large sums of money then the interdependency of returns in a parimutuel system means that the `small
player' assumption is likely to be violated�
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counter-party credit monitoring and legal constraints on assets held (regulated entities

again).

However, the presence of a forced seller, in itself, does not lead to a �re sale. In a

competitive market with no frictions or information asymmetries, some buyer should

be willing to trade with a forced seller at a small discount to fundamental asset value.

Hence, the second requirement, that there should be some constraints on potential

buyers. This is really equivalent to a constraint on perfect arbitrage in the spirit of the

literature on limits to arbitrage (see Gromb and Vayanos (2010) for a recent survey). A

non-exhaustive list of constraints that might prevent buyers from taking advantage of

�re sales could include: limited market participation (Allen and Gale, 1994), specialist

knowledge or skills concerning the asset (as in Shleifer and Vishny (1992) in a corporate

setting), asymmetric information, funding constraints, industry wide distress, agency

problems facing outside investors3, opacity of assets (consider for example sub-prime

CDO's) and liquidity hoarding (as in Acharya, Shin and Yorulmazer (2009)).

I abstract from the exact mechanism causing a forced sale; instead, I assume that

investors are subjected to some binding constraint expressed as an asset ratio. For

expository reasons I label this ratio the debt-to-asset or leverage ratio; however, a

similar analysis would apply to any constraint that can be expressed as an equity ratio.

Likewise, I abstract from the exact mechanism constraining potential buyers. Instead,

I model buyer constraints with an exogenous liquidity parameter such that prices are

linearly decreasing in the volume of forced sales. This re�ects the economic intuition

that price decreases are necessary to induce buyers to overcome any constraints or costs

they might face, and that the marginal buyer will require an ever lower price as the

volume of assets put up for sale increases. These assumptions allow me to keep the

model general, with a pure focus on �re sales and related contagion e�ects.

This means that my model is not an asset pricing model � instead, it is an attempt

to model the mechanics of a �re sale in a strategic multi-investor, multi-asset setting,

assuming the necessary impetus for a �re sale is in place. Thus it is a conditional

model in the sense that it presumes a �re-sale environment. In basic terms, I seek to

answer the question �How much will the price of this asset fall in a �re sale?� rather

than the more general question �How much is this asset worth given the presence of

�re-sale risk?�. This allows me to quantify �re-sale risk at the asset level rigorously,

which in turn opens the way to direct empirical tests of the hypothesis that expected

returns should re�ect �re-sale risk.

Within my model I show that equilibrium �re-sale prices exist. This equilibrium is

unique, and it can be calculated to arbitrary accuracy using the method of successive

approximations. Moreover, I derive an analytical approximation to equilibrium prices,

which I validate numerically. From this approximation I derive (approximate) model

3Outside investors will need to contract specialist managers for the assets they acquire, which
could give rise to costly agency problems.
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statics and policy implications. A change in leverage by one investor imposes extern-

alities, in the form of higher �re-sale risk and lower expected �re-sale prices, on other

investors. In addition, a shock to one asset � leading to a �re sale � translates directly

into contagion to other asset prices. Such contagion has implications for risk manage-

ment; in particular, �re-sale risk is dependent not only on asset characteristics, but

also on the overall pattern of asset ownership and investor leverage in the market.

1.2 Related literature

There has been renewed academic interest in �re sales recently, perhaps motivated

by the global �nancial crisis of 2007-2008. In this subsection I discuss several recent

working papers most closely related to the work presented in this chapter and the

next4.

Among the recent papers dealing with �re sales Cont and Wagalath (2012) is perhaps

the closest to this chapter in their theoretical approach. The major similarities are that,

as in this chapter, Cont and Wagalath (2012) considers a multi-asset multi-investor

setting in which changes in prices give rise to selling pressure on funds through a

speci�ed �deleveraging schedule� � this can be viewed as a generalisation of the binding

leverage requirement of my model. They also employ a �price impact� function, which

plays a similar role to the price response function in my model. However, the objective

in Cont and Wagalath (2012) is to characterise the covariance structure of returns

generated by �re sales, while I focus on characterising equilibrium �re-sale prices and

asset sales. In an empirical application of their model to two distinct market shocks

(the hedge fund unwind of 2007 and the collapse of Lehman Brothers in 2008) Cont

and Wagalath (2012) show that their model can detect the presence of �re-sale events.

Blocher (2013) proposes a model of overlapping holdings that generates spillover e�ects

(externalities) as a result of �peer �ows�5. As he puts it: "All of these studies focus

on the e�ect of a mutual fund's own �ows predicting its own future returns, whereas

my contribution is to consider a mutual fund's peers in the prediction of returns and

fund �ows through the channel of common stock holdings." (Blocher (2013), p6). In

the model presented by Blocher (2013), the similarity in asset holdings between two

funds is measured as the sum of the asset-by-asset product of their portfolio allocations,

divided by the product of the (Euclidean) distance of each funds asset allocations from

the origin in n-dimensional asset space6. Using this similarity measure, Blocher (2013)

goes on to estimate the volume of �ow a fund experiences because of its similarity to

4Except for Greenwood and Thesmar (2011), all the papers discussed here are unpublished working
papers as of September 2013. To the best of my knowledge these papers became publicly available
only after this chapter was publicly disseminated in December 2011 (see Geertsema (2011))

5See also Antón and Polk (2010) for an alternative model of stocks connected by overlapping
holdings.

6More precisely, let hi,j be the weight invested by fund i ∈ [1...M ] in asset j ∈ [1..N ], assuming
each fund's total holdings are normalised to unity so the holding can be interpreted as percentages.
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other funds that receive in�ows: for a given fund this is calculated as the fund �ows

of all other funds, weighted by their relative similarity7. Using mutual fund data from

Morningstar covering 1998 to 2009 Blocher (2013) shows that this measure of peer �ow

explains fund returns over and above the impact of the fund's own fund �ows and after

controlling for the common time-series risk factors.

The model I present is similar to that of Blocher (2013) in that both models explicitly

consider overlapping assets. However, the motivation of the model in Blocher (2013)

is to explain fund �ows while the primary motivation of my model is to derive �re-sale

prices8. In addition, the model of Blocher (2013) does not consider investor hetero-

geneity � the de�nition of peer �ow makes no distinction between highly leveraged

investors and cash only investors. Because Blocher (2013) applies his model only to

mutual funds this does not matter as mutual funds are typically barred from taking on

leverage. However, my model is intended to apply more generally to both leveraged and

non-leveraged investors. Finally, the model presented by Blocher (2013) is essentially

static; it does not consider the second order e�ects that arise as selling promotes further

selling and so on. In contrast my model explicitly models the cascading interaction

between asset sales and declining prices that gives rise to higher order e�ects.

A model with more of a focus on systematic risk is due to Caccioli et al. (2012). In their

model, institutions (referred to as �banks�) are linked by overlapping asset holdings. It

is assumed that at least some banks take on leverage. If the value of assets held by

a bank falls su�ciently to completely erode its equity, the bank liquidates its entire

portfolio of assets. Prices adjust based on the volume of assets liquidated � this is

similar to the price response mechanism in my model. However, in their model, banks

only sell assets at the point of bankruptcy � no prices move until at least one bank

fails. This is in contrast to my model where asset sales of investors are regulated by the

requirement to maintain a target leverage ratio. Caccioli et al. (2012) do not attempt

to provide an equilibrium concept for their model and thus resort to an algorithm

for calculating the impact of shocks in their model. Shocks take the form of either

exogenous bank failure or an exogenous drop in the price of an asset. Calculation of

the impact of a shock terminates when no further banks become insolvent. Using their

model Caccioli et al. (2012) show that there are critical levels of leverage. Below this

critical of level of leverage contagion does not occur, while above this level the network

is subjected to rare but catastrophic cascades of bank failures.

Greenwood and Thesmar (2011) introduce the notion of stock price �fragility�. Intu-

Then the similarity between funds 1 and 2 is de�ned as sA,B =
∑N

j=1 h1,ih2,j√∑N
j=1 h

2
1,j

√∑N
j=1 h

2
2,j

. Note, I have

simpli�ed and recast the formulas of Blocher (2013) to be more consistent with the notation used in
this chapter. For the original de�nitions see Blocher (2013), Appendix B, page 45.

7Again, to be more precise, for fund i �peer �ow� is calculated as pi =
∑N
j=1,j 6=i

si,j∑M
i=i si,j

flowi
8Because the equilibrium in my model determines both asset holdings and prices endogenously,

my model could in principle be used to explain fund �ows. However, in this chapter the primary focus
is understanding �re-sale prices.
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itively fragility measures the price pressure an asset might experience because of the

correlated (�ow driven) liquidity needs of investors in that asset9. To calculate fragility

Greenwood and Thesmar (2011) use ownership data from US mutual funds. They show

that their estimates of fragility have predictive power for future realised volatility.

1.3 Model

1.3.1 Motivation

The purpose of the model presented here is to describe what happens in a �re sale

scenario � when forced sellers are met in the market by constrained buyers.

I make a distinction between forced sellers, whom I model explicitly as individual agents

(hereafter �investors�), and the remainder of the investor universe (i.e. the constrained

buyers). Instead of directly modelling the constrained buyers, I model the e�ect of

buyer constraints on the price available to forced sellers; the price is linearly decreasing

in the volume of forced sales as explained in 1.3.5.

The leverage ratio (measured as the debt-to-asset ratio) is assumed to be a binding

constraint on investors � this is what makes them forced sellers when prices decrease.

The underlying assumption is that the starting point (period t = 0) is one of �equilib-

rium�. Each investor has decided on his own allocation of assets and degree of leverage,

and the assumption is that this is optimal for that investor. Note, I do not specify how

this initial equilibrium is arrived at or how it should be calculated. I simply assume

that, before the exogenous shock, each investor has taken on as much leverage as is

optimal for him or her. I then require that, post the exogenous shock, the investor

has to re-establish this initial leverage ratio. In reality, not all leveraged investors will

necessarily be bound to maintain their leverage ratio's � those investors should not be

included amongst the forced sellers in this model. On the other hand, this requirement

is a reasonable approximation of the situation faced by many investors that are trading

on margin, borrowing using collateral or otherwise compelled to liquidate assets when

prices decline substantially.

The initial pattern of ownership is exogenous and allows for multiple investors to be

invested in multiple assets. I rule out short positions for the modelled investors. (This

requirement aids tractability.) In reality investors can and do take on short positions.

I argue that disallowing short sales may not be as restrictive as it might appear at �rst

glance. If short positions are only a small fraction of the total investor portfolio then

the overall e�ect of the short positions are not likely to be economically signi�cant.

On the other hand, if an investor has large short positions (i.e. is short overall), such

9More precisely, the fragility Gi,t of a stock i at time t is calculated as Gi,t = 1
θ2t,t

W ′i,tΩtWi,t where

Wi,t is the vector of the ownership interests in asset i , Ωt is the variance-covariance matrix of investor
fund �ows and θi,t is the the market capitalisation of stock i.
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an investor will bene�t from a large negative price shock and will not become a forced

seller � instead, we can imagine such an investor buying stock from forced sellers to

cover his own short positions and take pro�t. This provision of liquidity is modelled

via the price response function described later in this section.

Additional borrowing or equity-raising by investors is ruled out. In the long run and

under benign market conditions, investors may of course have access to capital markets.

But �re sales are neither benign nor long-run, and hence I believe it is reasonable to

rule out access to capital markets for those investors that are forced to liquidate assets.

I make no assumptions about investor preferences. I don't need to. The modelled

investors corresponds to those investors that become forced sellers in a �re sale. Hence,

their preferences are irrelevant - they have to sell.

1.3.2 Description

I consider a three period model of N investors and M assets. In the �rst period

(t = 0), each investor owns a portfolio consisting of some mix of the available assets.

In addition, each investor's portfolio is partly funded by a given amount of debt. Both

the composition of the initial portfolios and the levels of debt are exogenously speci�ed.

In the second period (t = 1) each asset is subjected to an exogenous negative shock.

The reduction in the value of investor portfolios implies that investor leverage ratios

will now be higher than before. Therefore, at t = 2 each investor sells a portion of

their portfolio to reduce their debt to the point where their original leverage ratio is

re-established. If an investor's equity is reduced below zero he is bankrupted and his

entire portfolio is liquidated. A crucial assumption is the price at which the investors

can sell at t = 2. Initially, I take the liquidation price in period two as given and

determine the fraction of each portfolio sold. I then extend the model by endogenising

the liquidation price, linking it to the volume of portfolio sales in the same period.

1.3.3 Setup and notation

I start with N investors indexed by i ∈ [1..N ] with access to M assets in �xed supply

indexed by j ∈ [1..M ]. The units of asset j held by investor i is denoted by hi,j. Each

investor i has debt of di (dollar face value). For convenience, let

Ai ≡
M∑
j=1

hi,j (1.3.1)

be the value of each investor's portfolio at t = 0 prices (we assume pj = 1 at t = 0). I

also de�ne
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Hi ≡
M∑
j=1

hi,jpj (1.3.2)

This might be thought of as the valuation of the initial portfolio holdings {hi,1, ..., hi,M}
of investor i valued at the new t = 2 prices {p1, ..., pM}. I enforce a positive equity

constraint initially; assets exceed debt for all investors; 0 ≤ di < Ai. The initial period

t = 0 assets holdings and debt are thus as described in Table 1.1 below.

Table 1.1: Asset holdings and debt at t = 0

Asset 1 holdings · · · Asset M holdings Investor debt

Investor 1 h1,1 · · · h1,M d1

...
...

...
...

Investor N hN,1 · · · hN,M dN

Asset holdings are in�nitely divisible and non-negative � short positions are not allowed.

Therefore, hi,j ≥ 0 for all i ∈ [1..N ] and for all j ∈ [1..M ].10 Without loss of generality

I normalise the t = 0 prices of assets to unity. The initial leverage ratio of investor i is

then given by

Li(0) ≡ Debti(0)

Assetsi(0)
=
di
Ai

(1.3.3)

It is sometimes convenient to use the debt-equity ratio instead of the leverage ratio,

therefore, I de�ne the debt-equity ratio as

Di ≡
Debti
Equityi

=
di

Ai − di
. (1.3.4)

At t = 1 there occurs an exogenous negative shock to assets, such that prices reduce

to sj with 0 < sj ≤ 1.11 These negative shocks have the e�ect of increasing investor

leverage ratios:

Li(1) =
Debti(1)

Assetsi(1)
=

di∑M
j=1 hi,jsj

> Li(0) (1.3.5)

10Hereafter a subscript i will be taken to mean i ∈ [1..N ] (ie applicable to all investors) and similarly
a subscript j will be taken to mean j ∈ [1..M ] (ie applicable to all assets). Where relevant, the time
is indicated by the period in parenthesis. Therefore, Ki,j(t) means variable K for any investor i and
any asset j at time t.

11Provided that sj < 1 for at least one asset. If sj = 1 for all assets then the model is trivially
in equilibrium without the need for any portfolio sales � by requiring sj < 1 for at least one asset
j ∈ [1..M ] this trivial equilibrium is ruled out.
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At t = 2 investors re-establish their original leverage ratios by each selling a fraction of

their portfolio at prices pj (exogenously speci�ed, for now). If debt exceeds assets at the

new prices for any investor (before considering any sales), that investor is bankrupted

and their entire portfolio is liquidated. Otherwise the investor re-establishes his original

leverage ratio by selling a portion of his assets pro-rata.

1.3.4 Leverage and portfolio sales

At period t = 2 investor i sells an identical fraction xi = fi(p1, ..., pM) of each asset

held. Note that the sale fraction xi is the same for each of the assets held by that

investor � each investor liquidates his portfolio strictly pro-rata. This assumption is a

somewhat restrictive one because, in reality, investors might well choose to sell di�erent

fractions of each asset to maximise their �nal net worth. In particular, if there is an

idiosyncratic shock that a�ects only some assets but not others, an investor might

rationally decide that selling the una�ected assets at fundamental value is preferable

to selling those assets that have just experienced a negative price shock and are now

trading below fundamental value. In other words, an investor would liquidate assets

sequentially in descending price order to minimize the discount to fundamental value.

On the other hand the pro-rata portfolio sales assumption is not that unrealistic when

considering a systematic shock in which all assets decrease proportionately in price.

Because all assets are trading at the same discount to fundamental value, there is no

bene�t in selling more of one asset than another, so the assumption that investors sell

the same fraction of each asset is more realistic12.

I enforce pj ≤ sj for now, namely, the prices cannot exceed the period t = 1 price. In

addition, prices are strictly positive, such that pj > 0.13 Post asset-sale holdings and

sales are summarised in Table 1.2 below.

12As a robustness check I perform a numerical simulation (see subsection 1.8.4 in the Appendix for
details) in which I compare equilibrium prices derived using pro-rata asset sales against equilibrium
prices obtained using sequential asset sales in descending price order. It turns out that whether assets
are liquidated pro-rata or sequentially in descending price does not materially change the equilibrium
price outcome. Equilibrium prices obtained using the two assumptions are highly correlated (ρ > 0.97)
and the pro-rata equilibrium price adjustment explains 95% or more of the variation in sequential sales
equilibrium price adjustment. Based on this analysis I opt for the analytically simpler assumption of
pro-rata portfolio sales.

13These assumptions are required while prices are exogenous to our model. In the next subsection
I will endogenise prices, so I will no longer need to make these assumptions. However, the same
constraints emerge endogenously.
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Table 1.2: Post-sale asset holdings and asset sales at t = 1

Post-sale Holdings Fraction Sold

Asset 1 · · · Asset M Asset 1 · · · Asset M

Investor 1 (1− x1)h1,1 · · · (1− x1)h1,M x1h1,1 · · · x1h1,M

...
...

...
...

...

Investor N (1− xN)hN,1 · · · (1− xN)hN,M xNhN,1 · · · xNhN,M

Price p1 · · · pM

I proceed to derive the fraction sold by each investor, assuming the investor remains

solvent at the new prices. (If not solvent, the investor is bankrupted and is liquidated

such that xi = 1). Because I assumed investor solvency in this case, we have Hi > di.

I denote the portfolio sale fraction of investor i in the solvent case by f si to distinguish

it from the general case, which admits investor bankruptcy. The new level of leverage,

after portfolio sales, is then given by

Li(2) =
Debti(2)

Assetsi(2)
=
Debti(1)− Salesi(2)

Assetsi(2)
=

di − f siHi

(1− f si )Hi

(1.3.6)

To re-establish initial leverage, I require that the new leverage ratio Li(2) equal the

initial leverage ratio Li(0)

Li(2) = Li(0)

or, recalling that Li(0) = di
Ai

from equation (1.3.3)

di − f siHi

(1− f si )Hi

=
di
Ai

Rewriting for f si and rearranging slightly, I obtain

f si =
Ai −Hi

Hi

× di
Ai − di

=
Ai −Hi

Hi

Di (1.3.7)

This provides us with a convenient economic interpretation of f si (the fraction of the

portfolio investor i needs to sell to re-establish the original leverage ratio). The �rst

product term, (Ai − Hi)/Hi, corresponds to the percentage change in the value of

the initial portfolio (expressed in terms of the new portfolio value), while the second

product term, di/(Ai− di) or Di, corresponds to the initial debt-equity ratio. In other

words, the portfolio sale fraction f si is the product of the percentage change in the

value of the portfolio and the debt-equity ratio. Note that this relationship must hold

18



for any new prices pj if leverage ratios are to be re-established under those prices. The

portfolio sale fraction f si can be described graphically, as in Figure 1.3.1 below.

Figure 1.3.1: Optimal portfolio liquidation fraction f si as a function of pre-sale port-

folio value Hi and investor debt di

The limit of f si = 1 (selling the entire portfolio) is approached at the plane de�ned by

Hi = di, that is

lim
Hi→di

Ai −Hi

Hi

× di
Ai − di

= 1 (1.3.8)

Economically, this corresponds to the notion that an investor targeting a lower leverage

ratio will have to sell an ever larger fraction of the portfolio the closer the remaining

equity (Hi − di) approaches zero.

It is instructive to examine the statics of f si in terms of the pre-sale portfolio value Hi

∂f si
∂Hi

= − Aidi
(Ai − di)H2

i

≤ 0 and
∂2f si
∂H2

i

=
2Aidi

(Ai − di)H3
i

≥ 0

Thus the portfolio sale fraction f si is decreasing in the pre-sale portfolio value Hi at an

increasing rate. I now consider how initial debt in�uences the portfolio sale fraction

f si .

∂f si
∂di

=
Ai −Hi

Hi

× Ai

(Ai − di)2 ≥ 0 and
∂2f si
∂d2

i

=
Ai −Hi

Hi

× 2Ai

(Ai − di)3 ≥ 0

The portfolio sale fraction f si is increasing in the level of initial debt at an increasing

rate. Taken together, this implies that the portfolio sale fraction f si is highly non-

linear in investor equity (Hi− di). As equity declines and approaches zero the optimal

portfolio sale fraction rapidly increases towards 100% (see Figure 1.3.1 above).
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After substituting in the de�nition of Hi and Ai, f
s
i (as per equation (1.3.7)) can be

rewritten as

f si =
Ai −Hi

Hi

× di
Ai − di

=

(
Ai
Hi

− 1

)
× di
Ai − di

=

( ∑M
j=1 hi,j∑M
j=1 hi,jpj

− 1

)
× di(∑M

j=1 hi,j

)
− di

(1.3.9)

Note that the above expression assumes the investor is solvent. In the event of bank-

ruptcy (where Hi < di) the portfolio sale fraction for that investor is 1. Therefore, the

more general expression for the portfolio sale fraction, in which I explicitly consider

the possibility of investor bankruptcy, is given by

xi = fi(p1, p2, ..., pM) =

f si (p1, p2, ..., pM) Hi > di (Solvent)

1 Hi ≤ di (Bankrupt)

Because the limit of f si = 1 is approached as Hi → di, this can be written more

compactly as

fi = min(f si , 1) (1.3.10)

1.3.5 Price response

I now extend the model by determining portfolio sales prices endogenously. Broadly,

I would like prices to be decreasing in the volume of forced sales. This allows me

to abstract from the exact mechanism which might be constraining potential buyers

(of which there are potentially many). I focus instead on the impact of constraints on

buyers14. Buyers require a price discount to overcome their constraints, whatever those

constraints might be. Additionally, as the volume of forced sales increases the marginal

buyer faces ever tighter constraints, such that an ever larger price discount is needed

to surmount those constraints. This might be thought of as a liquidity e�ect � as the

volume of forced sales increases the price decreases. To model the impact of constraints

on buyers, I assume a constant liquidity parameter δj for each asset j15. The liquidity

14Thus, instead of directly modelling the buyers, I instead model the price discount they require
to provide liquidity to forced sellers.

15At �rst glance, constant liquidity appears a strong assumption � there is no reason to expect
liquidity to be constant, irrespective of the size of the shock. However, both the shock and the
liquidity are exogenously speci�ed in this setup. Therefore, nothing prevents us from choosing, for
each asset, a liquidity parameter that we consider appropriate given the size of the shock applied to
that asset.
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parameter δj equals the percentage change in quantity sold divided by the percentage

change in price (this is equivalent to the price elasticity concept in economics).

δj =
%∆Qj

%∆pj
(1.3.11)

I de�ne %∆pj as the percentage change in price for asset j between t = 1 and t = 2

%∆pj =
∆pj
pj(1)

=
pj(2)− pj(1)

pj(1)
=
pj − sj
sj

(1.3.12)

and I de�ne %∆Qj as the percentage of asset j sold (by all investors) at time t = 2

%∆Qj =
∆Qj

Qj(1)
=
Qj(2)−Qj(1)

Qj(1)
= −

∑N
i=1 hi,jxi∑N
i=1 hi,j

(1.3.13)

Substituting equation (1.3.12) and (1.3.13) into equation (1.3.11) and solving for pj

yields

pj = sj −
sj
δj

(∑N
i=1 hi,jxi∑N
i=1 hi,j

)
(1.3.14)

Some constraints must be imposed on δj; if δj = 1, then prices would go to zero if all

investors sold all their assets. Likewise, δj < 1 implies the existence of negative prices.

Because I would like to ensure strictly positive prices, I assume the supply of assets is

strictly elastic for each asset, δj > 1. It is then easy to show that if all investors sold

all their assets, the resulting price would be at its minimum (because price is strictly

decreasing in portfolio sales) and the price of asset j is then given by

pminj = sj −
sj
δj
> 0 (1.3.15)

I assume that the price response (equation (1.3.14)) is binding in period t = 2. Prices

and portfolio sale fractions are thus resolved simultaneously in period t = 2.

Price pj is linearly decreasing in the portfolio sale fractions xi, as should be expected

given our assumption of constant liquidity. Analytically, the statics of equation (1.3.14)

with regards to the portfolio sale fraction xi of investor i is given by

∂pj
∂xi

= − hi,j∑N
i=1 hi,j

× sj
δj

= −
(
% of asset j held by investor i× Asset j shock

Asset j liquidity

)
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The strength of the negative price response of asset j to portfolio sales by investor i

depends on the shock sj relative to liquidity δj, and the fraction of asset j held by

investor i, that is hi,j/(
∑N

i=1 hi,j).

Crucially, the new price pj in equation (1.3.14) depends on the initial portfolios and

subsequent portfolio sales of all investors. This induces strategic dependence between

the investors � the portfolio sales of one investor moves the prices of all assets owned

by him and thereby in�uences the amount other investors need to sell, and vice versa.

Another way of looking at �re-sale risk is to introduce a �re-sale multiplier � how much

an initial price shock is aggravated by the e�ect of �re sales in that (and other) assets.

This yields the �re-sale multiplier mj.

mj ≡
Total price change

Price change due to shock

=
1− pj
1− sj

Rewriting the above suggests another way of presenting the equilibrium price pj

pj = 1−mj(1− sj)

The new price is equal to the initial price (1) less the �re-sale multiplier (mj) times

the exogenous shock (1− sj).

1.3.6 Model assumptions

For completeness, these are the assumptions placed on model parameters.

1. hi,j ≥ 0. Initial investor holdings of each asset are weakly positive (no short

positions).

2. Gj = h1,j + h2,j + · · ·+ hN,j > 0. The total stock of each asset (across the entire

set of investors) is strictly positive for each asset. This is necessary for the price

response to be well de�ned for each asset.

3. δj > 1. The supply of assets at t = 2 is strictly elastic. This rule out zero or

negative prices for any level of portfolio sales.

4. 0 < sj ≤ 1 with sj < 1 for at least one j ∈ [1..M ]. The period t = 1 (post-shock)

price is strictly positive and less than or equal to unity. At least one asset must

experience a non-zero price shock, otherwise the model is trivially in equilibrium

without requiring any portfolio sales.

5. 0 ≤ di < Ai = hi,1 + hi,2 + · · · + hi,M . For each investor initial debt is weakly

positive and less than the value of the investor's initial portfolio at t = 0 prices.
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1.4 Equilibrium

1.4.1 Introduction

Equilibrium is reached when all investors have either become bankrupt or have re-

established their leverage ratios at asset prices simultaneously determined through the

price response mechanism outlined earlier. It is this interdependence between portfolio

sales and asset prices that makes it particularly challenging to establish equilibrium.

Consider the mechanics of our model: asset prices are subjected to a negative exogenous

shock in period one. This results in higher leverage ratios for all investors holding those

assets; however, investors are compelled to keep their leverage ratios at their pre-shock

levels (this requirement creates the necessary set of forced sellers in our model). To do

so, investors need to sell some fraction of their portfolio. This would be straightforward

if they were all price takers; however, in our model this is not the case. When investors

sell assets this drives down the price of those assets in line with our assumption of

a constant liquidity parameter. The constant liquidity assumption is the mechanism

by which I model the other necessary component of �re sales � constrained buyers.

As the volume of forced asset sales increase, outside buyers need increasingly higher

price discounts to overcome any constraints they face and enter the market. So, when

investors sell assets they realise that doing so will drive down prices. Moreover, an

investor will need to consider not only the price-impact of his own assets sales, but also

the price-impact of sales by other investors. Those other investors, in turn, will need

to take into account asset sales by investors other than themselves. In other words, the

actions of investors are strategically interdependent. This suggests a game-theoretic

interpretation: investors sell a fraction their portfolio in order to re-establish their

leverage ratios, rationally taking into account the optimal strategies of other investors

to achieve the same result.

More formally, equilibrium is a set of portfolio sale fractions and a set of �nal asset

prices such that each investor either re-establishes his original leverage ratio at those

prices or goes bankrupt with his entire portfolio liquidated; at the same time prices

are determined by the volume of each asset sold by investors, according to the price

response mechanism. If in equilibrium no investors are bankrupted, I term this a

solvent equilibrium to distinguish it from the more general equilibrium, which admits

bankrupt investors.

The formal proof for the existence and uniqueness of equilibrium is set out in subsection

1.8.1 in the Appendix.

1.4.2 Existence and uniqueness

It is not obvious a priori that every combination of allowed model parameters should

result in equilibrium. The standard approach to establish equilibrium would be to
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derive the equilibrium portfolio sale fractions and asset prices analytically. I did so

(for the special case of two investors and two assets) by substituting prices into the

two investor's best response functions, then solving those best response functions sim-

ultaneously16. This yields a polynomial of degree 4, for which there are known to exist

general algebraic solutions. Even so, the resulting analytical expressions are unwieldy

(several pages long) and are also hard to interpret economically because the equilib-

rium quantities are potentially complex rather than real for some roots. In addition,

for more than two investors, the equivalent polynomial will in general be of degree 6

or higher � and by the Abel�Ru�ni theorem there are no general algebraic solutions

to polynomials of degree 5 and above.

Instead, I focus on the more general case of N investors and M assets. In this context

I show that equilibrium exists and that it is unique. Furthermore, this equilibrium can

be calculated to arbitrary degree of accuracy using the method of successive approx-

imations.

What insights do we gain from the existence of a unique equilibrium? Most obviously

each episode of �re sales must end with some set of new prices � and there is only one

such set of new prices. Therefore, we need not be concerned with the possibility of

multiple equilibria or how to select among them.

1.4.3 Method of successive approximations

Besides proving existence and uniqueness my proof also guarantees that the equilibrium

can be calculated using the method of successive approximations. What this means

in practice is that we take the initial set of shocked prices and calculate the optimal

portfolio sale fractions using equation (1.3.7) assuming prices won't change. Then we

calculate new prices using equation (1.3.14) based on those portfolio sale fractions.

These new prices will be closer to the true equilibrium prices than the initial set of

prices. Repeating the process yields prices that converge monotonically to equilibrium

prices as the number of iterations grows larger. Figure 1.4.1 shows the evolution of

prices using the method of successive approximations for the example discussed below.

16Results available from the author on request
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Figure 1.4.1: The evolution of prices using the method of successive approximations

In our example we have two investors: X and Y . Likewise there are two assets, 1 and

2. Investor X has debt corresponding to 20% of assets and has 70% of his portfolio

invested in asset 1 and 30% invested in asset 2. By contrast, investor Y has debt

corresponding to 40% of assets and has 30% of his portfolio invested in asset 1 and

70% invested in asset 2. The liquidity parameter for both assets is 2 and both assets

su�er a 10% exogenous shock so their period one shocked prices are both 0.9. What

will be the equilibrium prices and portfolio sale fractions? The method of successive

approximations starts by taking the shocked prices of 0.9 for each asset as given. These

are the zero order approximations (n = 0). I then calculate the optimal portfolio sale

fractions for both investors, and using those, calculate a new set of prices (the �rst order

approximations, or n = 1). These new prices turn out to be 0.881250 and 0.8729167

for asset 1 and 2 respectively. I continue to calculate new prices in the same way until

the prices converge to our desired degree of accuracy. The equilibrium prices in our

example turn out to be 0.874404731 and 0.862525028 for asset 1 and 2 respectively �

accurate to 9 decimal places and obtained after 15 iterations.

I illustrate the evolution of prices and portfolio share fractions graphically in Figure

1.4.2
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Figure 1.4.2: The evolution of portfolio share fractions (LHS) and prices (RHS) using

the method of successive approximations

Notably, the bulk of the adjustment from the initial shocked prices towards the �nal

equilibrium prices occur in the �rst iteration � the �rst order approximation accounts

for more than 70% of the adjustment towards the �nal equilibrium prices for both

prices in the example above (see RHS in Figure 1.4.2 above). This suggests that the

�rst order approximation may be a good estimate for �nal equilibrium prices, at least

in a relatively sense. I explore this idea further in the next section.

1.5 Approximation

1.5.1 An analytical approximation

As we do not have an analytic solution to the general case of N investors and M

assets, we need to consider alternative approaches. One such approach is to rely on

the fact that the method of successive approximations converge to a unique equilib-

rium solution, in accordance with our proof. One can then argue that the �rst order

approximation (i.e., the approximate solution obtained from iterating the equilibrium

requirements once) should provide a reasonable proxy for the direction and (relative)

magnitude of the true equilibrium prices.

I show (in subsection 1.8.2 in the Appendix) that the �rst order price approximation

p′j of asset j is given by

p′j = sj −
sj
δj
WAj [CiDi] (1.5.1)

where, for a given asset j,WAj[.] is the weighted average across investors of an investor

speci�c variable zi with weights provided by each investor's holdings of asset j. So
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WAj [zi] ≡
∑N

i=1 hi,jzi∑N
i=1 hi,j

=
1

Gj

N∑
i=1

hi,jzi

where

Gj ≡
N∑
i=1

hi,j

is the total supply of asset j. Recall that the initial debt-equity ratio Di of investor i

is denoted by

Di ≡
di

Ai − di
where Ai ≡

M∑
j=1

hi,j

I denote by Ci the percentage loss of investor i's portfolio caused by the shocked prices

sj in period one (the loss being expressed as a percentage of the portfolio valued at the

new shocked prices (Si))

Ci ≡
Ai − Si
Si

=
Ai
Si
− 1 where Si ≡

M∑
j=1

hi,jsj

This means that the change of price given by the �rst order approximation will be

∆p′j = p′j − sj

= −sj
δj
WAj [CiDi]

= − Asset j shocked price

Asset j price elasticity of supply

×WAj [(Investor i debt-equity ratio) (Investor i portfolio loss %)]

For a given asset, the �re sale induced drop in price beyond the initial shock is equal to

the ratio of the asset's shocked price to its liquidity, multiplied by the weighted average

(across all investors according to their initial holdings of the asset) of the product of

each investor's debt-equity ratio and their percentage portfolio loss due to the initial

shock (the percentage being expressed in terms of the value their post shock portfolio).

The relevance of this approximation becomes more apparent if we consider that the

approximate price of an asset can be interpreted as a measure of the �re-sale risk that

an asset is exposed to. In other words, it allows us to quantify �re-sale risk analytically

at the individual asset level. An immediate insight arising from this interpretation is

that the �re-sale risk of an asset depends not only on asset speci�c attributes such as

liquidity or asset-speci�c shock, but also depends crucially on the distribution of asset
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holdings and debt across all investors. All else being equal, an asset disproportionately

owned by indebted investors will have a lower �re-sale equilibrium price and a higher

�re-sale risk (Wagner (2011) reaches a similar conclusion in a di�erent setting). This

has policy implications; if some investors take on more debt, this increases the �re-sale

risk of assets owned by those investors. This in turn means that other investors in

those assets are now exposed to higher risk � clearly a negative externality.

With a few substitutions we can give the analytical expression for the �rst order ap-

proximation p′j purely in model parameters

p′j = sj −
sj
δj

(∑N
i=1 xihi,j∑N
i=1 hi,j

)

= sj −
sj
δj


∑N

i=1 hi,j

(( ∑M
j=1 hi,j∑M
j=1 hi,jpj

− 1

)
× di

(
∑M
j=1 hi,j)−di

)
∑N

i=1 hi,j


This provides us with an analytical approximation of the true equilibrium price �

useful in gaining economic insights into the equilibrium price; provided that it is a

good approximation. In the next section I numerically validate the accuracy of the

�rst order approximation.

1.5.2 Numerical validation

To test the performance of the �rst order approximation, I randomly sample the para-

meter space of our model 10 million times, calculating for each draw both the �rst order

price approximations and the true equilibrium prices (accurate to six decimal place).

This allows me to validate the accuracy of the �rst order approximation by regressing

true equilibrium prices on the corresponding �rst order approximations. To begin with,

I consider a setting with two investors and two assets (2 × 2). This setup requires 10

model parameters17, which I generate using a (uniformly distributed) random number

generator. Table 1.3 below details the range used for each class of model parameter.

17In general, a N ×M setup requires M × N + 2M + N model parameters, made up of M × N
initial asset holdings, M asset liquidity parameters, M shocked prices and N initial debt levels.
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Table 1.3: Model parameter sample ranges

Parameter class Symbol Min Max Theoretical Range

Asset holdings of asset j by i hi,j 0.01 0.99 [0,∞]

Debt of investor i di 0.01 Ai [0, Ai)

(where Ai =
∑M

j=1 hi,j)

Shocked price of asset j sj 0.51 0.99 [0, 1)

Liquidity of asset j δj 1.01 10.01 (1,∞)

Note that, although the shocked price sj theoretically ranges from 1 to 0, I instead

sample from the range 1 to 0.50 � this corresponds to negative individual asset price

shocks between 0% and 50%, which I consider more realistic. I limit the analysis below

to asset 1 � because the model is symmetric in assets, these results should equal that

obtained using any other asset18.

Regression (1) in Table 1.4 below sets out the results of a regression of the true equi-

librium price p∗1 on the shocked price s1. This is a benchmark, because s1 is one of the

model parameters rather than an approximation � therefore, any proposed approxim-

ation should do better than that. The variation in the shocked price explains 96% of

the observed variation in the true equilibrium price. Regression (2) shows the results

of regressing the equilibrium price p∗1 on the �rst order price approximation p′1. Fully

99% of the variation in the equilibrium price is explained by the �rst order approx-

imation. However, one may well argue that it is not the level of equilibrium prices

that are of interest, but the price adjustment from the initial shocked price to the �nal

equilibrium price � an argument boosted by the shocked price sj already explaining so

much of the variation in the true equilibrium price. In regression (4) I therefore regress

the equilibrium change in price ∆p∗1 ≡ p∗1 − s1 on the �rst approximation change in

price ∆p′1 ≡ p′1−s1. I also include regression (3) � a regression of the equilibrium price

adjustment on the initial shocked price � as an analogue to regression (1). The results

show that 86% of the change in price (from the initial shocked price to the true equilib-

rium price) is explained by the di�erence between the �rst order price approximation

and the shocked price. By comparison, the initial shocked price explains only 42% of

the equilibrium price adjustment.

18This is indeed the case in the data.
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Table 1.4: Regression results � true equilibrium price (2x2)

The regressions below consider the degree to which approximate equilibrium prices are able to explain
exact equilibrium prices using simulated data, assuming two investors and two assets. Regression (1)
considers a regression of the true equilibrium price p∗1 on the shocked price s1. Regression (2) shows
the results of regressing the equilibrium price p∗1 on the �rst order price approximation p′1. Regression
(3) regresses the equilibrium change in price ∆p∗1 ≡ p∗1 − s1 on the the shocked price s1. Regression
(4) regresses the equilibrium change in price ∆p∗1 ≡ p∗1− s1 on the �rst approximation change in price
∆p′1 ≡ p′1 − s1. t-Statistics are calculated using White robust OLS standard errors.

(1) (2) (3) (4)
p?1 p?1 ∆p?1 ∆p?1

β/t-Stat β/t-Stat β/t-Stat β/t-Stat
s1 0.856*** 0.144***

(15137.44) (2546.45)
p′1 0.961***

(31749.47)
∆p′1 1.280***

(4381.14)
Adj R2 0.9625 0.9902 0.4209 0.8647
N 10,000,000 10,000,000 10,000,000 10,000,000

It is reasonable to question whether these results, based as they are on a setup with

two investors and two assets, do in fact generalise to a setting with a larger number of

investors and assets. As a robustness check, I also consider a setup with �ve investors

and �ve assets (in Table 1.5) and 10 assets and 10 investors (Table 1.6). The results I

obtain are even stronger. For �ve investors and �ve assets, the �rst order approximation

explains 96% of the true price adjustment and 99.6% of the true equilibrium price.
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Table 1.5: Regression results � true equilibrium price (5x5)

The regressions below consider the degree to which approximate equilibrium prices are able to explain
exact equilibrium prices using simulated data, assuming �ve investors and �ve assets. Regression (1)
considers a regression of the true equilibrium price p∗1 on the shocked price s1. Regression (2) shows
the results of regressing the equilibrium price p∗1 on the �rst order price approximation p′1. Regression
(3) regresses the equilibrium change in price ∆p∗1 ≡ p∗1 − s1 on the the shocked price s1. Regression
(4) regresses the equilibrium change in price ∆p∗1 ≡ p∗1− s1 on the �rst approximation change in price
∆p′1 ≡ p′1 − s1. t-Statistics are calculated using White robust OLS standard errors.

(1) (2) (3) (4)

p?1 p?1 ∆p?1 ∆p?1

β/t-Stat β/t-Stat β/t-Stat β/t-Stat

s1 0.854*** 0.146***

(18423.93) (3145.89)

p′1 0.967***

(57638.14)

∆p′1 1.286***

(6679.31)

Adj R2 0.9744 0.9963 0.5258 0.9567

N 10,000,000 10,000,000 10,000,000 10,000,000

In a setup with 10 investors and 10 assets, the �rst order approximation explains

98% of the true price adjustment and 99.8% of the true equilibrium price. Taken

together, these results provide substantial support for the accuracy of the �rst order

approximation.
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Table 1.6: Regression results � true equilibrium price (10x10)

The regressions below consider the degree to which approximate equilibrium prices are able to explain
exact equilibrium prices using simulated data, assuming ten investors and ten assets. Regression (1)
considers a regression of the true equilibrium price p∗1 on the shocked price s1. Regression (2) shows
the results of regressing the equilibrium price p∗1 on the �rst order price approximation p′1. Regression
(3) regresses the equilibrium change in price ∆p∗1 ≡ p∗1 − s1 on the the shocked price s1. Regression
(4) regresses the equilibrium change in price ∆p∗1 ≡ p∗1− s1 on the �rst approximation change in price
∆p′1 ≡ p′1 − s1. t-Statistics are calculated using White robust OLS standard errors.

(1) (2) (3) (4)

p?1 p?1 ∆p?1 ∆p?1

β/t-Stat β/t-Stat β/t-Stat β/t-Stat

s1 0.854*** 0.146***

(20613.05) (3531.04)

p′1 0.968***

(80969.55)

∆p′1 1.271***

(10578.79)

Adj R2 0.9795 0.9980 0.5832 0.9825

N 10,000,000 10,000,000 10,000,000 10,000,000

If anything, the analysis presented here is conservative � for two reasons. First, in this

analysis I give equal weight to both median (typical) parameter values and extremal

(atypical) parameter values. Since the approximation error is generally larger when

confronted with extreme parameter values, this suggests that in an empirical applica-

tion � where parameter values are likely to be clustered around more typical levels �

approximation error would be smaller than that generated by this approach. Second,

in any empirical application one would likely be confronted with thousands of assets

and thousands of investors. Based on the improvement in accuracy we observe as we

scale up to more investors and more assets, an analysis based on a setting with only a

handful of investors and assets is likely to be conservative.

1.5.3 Fire-sale multiplier

Earlier I introduced the notion of a �re-sale multiplier, which I de�ne as the ratio

between the total change in price to the initial shock. The �re-sale multiplier mj is

given by

mj =
1− p∗j
1− sj

The numerical validation we performed earlier provides a useful way to quantify the

�re-sale multiplier under the assumption that all combinations of (valid) model para-
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meters are equally likely. For two investors and two assets, the mean value of the

�re-sale multiplier is 1.522. This means that �re-sale e�ects extend the drop due to

the exogenous shock by an additional 52% on average. In the 5× 5 setup the �re-sale

multiplier is 1.515 and in the 10 × 10 setup it is 1.512, similar to that of the 2 × 2

setup. This suggests that the average level of the �re-sale multiplier is not particularly

sensitive to the number of investors or assets.

Using the �rst order approximation, we can derive an approximate �re-sale multiplier

m′j de�ned as

m′j =
1− p′j
1− sj

Substituting in p′j from equation (1.5.1) and simplifying, we obtain

m′j = 1 +
sj

1− sj
× 1

δj
WAj [CiDi]

Note that the second term is always positive so m′j ≥ 1. In summary, the �re-sale

multiplier for an asset is highest when

• the liquidity (δj) is low (a small volume of forced sales induce a relatively large

drop in price)

• the expression sj
1−sj is large. This will be the case for sj close to 1, which implies

a small initial shock to the asset. This may seem counter-intuitive, but recall

that the �re-sale multiplier relates the total change in price to the initial shock.

If the initial shock is small � relative to the price change driven by �re-sale e�ects

involving this asset and, crucially, all other assets � then the ratio of the total

price change to the initial shock will be large.

• The weighted average of (�rst order) portfolio sale fractions is large. If investors,

weighted by their holdings of asset j, are likely to have to sell most of their

portfolio then the �re-sale multiplier will also be large. Because the �rst order

portfolio sale fractions are driven by shocks, this means the multiplier will be

large when the shocks to unrelated assets are large. (This is in contrast to the

impact of a same-asset shock � see the previous point.)

1.6 Discussion

A bene�t of having an analytic approximation to the equilibrium price is that we

can use it to derive analytic statics from which economic content can be extracted.

Of course, such statics � based as they are on an approximation � are themselves
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also approximate. (Derivations of the statics are collected in subsection 1.8.3 in the

Appendix). Note that, to avoid confusion, I adopt the convention of using bold-face

to indicate a speci�c investor or asset index. For instance, sj refers to a speci�c asset

j ∈ [1..M ] while sj, contained inside a sum over all assets, refers to the shocked price

of each asset in turn19.

1.6.1 Debt imposes externalities

Does debt matter? Yes, it does, at least within our model. Consider the �rst derivative

of the approximate price of some asset with regards to the debt of a given investor

∂p′j
∂di

= − sj
δjGj

hi,jCi
Ai

(Ai − di)2

This derivative is weakly negative, and if the investor's debt and holdings of the asset

are both strictly positive, the derivative is strictly negative. If an investor has some

debt, then an increase in that debt will decrease the approximate equilibrium price

of all assets held by this investor. The magnitude of the price change is particularly

sensitive to the level of debt the investor already has. Consider the last term in of

the expression, Ai/ (Ai − di)−2. The quantity Ai− di represents the di�erence between
initial assets and initial debt � that is, equity. As initial debt grows close to initial

assets, equity tends towards zero and the expression Ai/ (Ai − di)−2 tends towards

in�nity. In economic terms, as the initial equity of any investor in an asset approaches

zero, the sensitivity of the �re-sale price to that investor's initial debt becomes in�nite.

Thus an investor's debt imposes externalities on other investors. What this analysis

suggests is that the sensitivity of externalities imposed by debt is particularly severe

as the level of debt of investors in the asset becomes high relative to equity.

1.6.2 Fire-sale contagion

Consider the price impact of a shock to an unrelated asset. If p′k is the approximate

price of asset k, what is the price impact of a shock to an unrelated asset j 6= k? The

answer is

∂p′k
∂sj

=
1

δk
skWAk

[
hi,jDiAi
S2
i

]
19To make this clear, consider the following example

∂

∂sj

M∑
j=1

sj =

M∑
j=1

∂

∂sj
sj =

∂

∂sj
sj = 1

I am able reduce the sum to a single term because each sj 6=j is a constant for sj and therefore
becomes zero when taking the derivative, leaving only the term ∂

∂sj
sj=j = ∂

∂sj
sj = 1.
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The derivative is always positive, so a lower-shocked price sj (corresponding to a larger

negative shock) leads to a lower approximate price p′k. This is pure contagion. A shock

to one asset leads to a decrease in the price of unrelated assets. This contagion e�ect

is regulated by several factors. The price impact on asset k is reduced if the shocked

price of asset k itself is lower (a larger shock) or if its liquidity is higher (the e�ect of

additional supply on the price is small). In addition, the price impact depends on the

weighted average across all investors (weighted by initial holdings of asset k) of the

quantity
hi,jDiAi

S2
i

, which roughly corresponds to scaled leverage. In short, higher levels

of average investor leverage results in larger contagion e�ects.

Putting this together, the contagion e�ect will be most pronounced when

• System-wide average leverage (Di) is high, weighted by holdings in the unrelated

asset (hi,j)

• System-wide average post-shock portfolio values (Si) are low, in other words,

other assets are also su�ering from negative shocks (i.e., a systematic as opposed

to idiosyncratic shock)

• the asset in question (asset k) has itself experienced a smaller shock (higher sk)

or has a low liquidity (small δk)

• there is substantial overlap of asset holdings between asset j and asset k (so large

weights in the weighted average WAk[] coincide with large holdings of asset j

(hi,j) inside the weighted average)

1.6.3 Liquidity and robust markets

The price impact of a change in same-asset liquidity is given by

∂p′j
∂δj

=
sj
δ2
j

WAj [CiDi]

This derivative is always positive, so an increase in liquidity leads to a higher approx-

imate equilibrium price. The intuition behind this result is clear; higher liquidity is

equivalent to more buyers willing to buy at a smaller price discount. Higher liquidity

weakens the price response to the forced sales of investors seeking to re-establish their

leverage ratios. From a policy perspective, this suggests that markets could be made

more robust by reducing the barriers facing outside investors in assets in a �re sale,

such as information asymmetries and regulatory barriers. It also provides support for

the notion of a �buyer of last resort� that can enter markets and provide liquidity when

prices become severely dislocated.
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1.7 Conclusion

I formulate a model of �re sales consisting of multiple investors investing in multiple

assets. Initially investors have arbitrary holdings of assets and heterogeneous leverage

pro�les. Bankruptcy is endogenous and occurs whenever an investor's debt is greater

or equal to his assets. Exogenous individual price shocks interact with the require-

ment that each investor maintain their original leverage ratio to generate forced asset

sales. Simultaneously, a price response mechanism links individual asset prices to the

volume of forced sales of that asset. Within this framework I show that there exists

set of equilibrium prices that simultaneously satis�es equilibrium requirements. (That

is, (1) investors either re-establish their original leverage ratios or become bankrupt

and liquidate their entire portfolio and (2) equilibrium asset prices satis�es the price

response mechanism given the pattern of investor asset sales). I also show that such

an equilibrium set of prices are unique, and that it can be calculated to arbitrary ac-

curacy using the method of successive approximations. Because �re-sale equilibrium

prices can proxy for ex-ante �re-sale risk, this enables direct testing of the hypothesis

that �re-sale risk is priced. In numerical simulations an analytical approximation of

equilibrium prices is shown to explain 98% of the variation in true equilibrium prices.

I proceed to derive analytical statics for the (approximate) equilibrium prices. This

allows the existence of �re-sale contagion e�ects to be quanti�ed. These contagion

e�ects are entirely due to overlapping patterns of asset holdings and heterogeneous

leverage. Further, I show that a change in leverage by a single investor has spillover

e�ects such that risk externalities are imposed on other investors.
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1.8 Chapter 1 Appendix

1.8.1 Equilibrium

I show that equilibrium exists, that it is unique, and that it can be calculated to

arbitrary accuracy using the method of successive approximations. This is also true

for the case of a solvent equilibrium. My proof proceeds by showing that the iterated

application of equilibrium conditions gives rise to a sequence of prices that converge to

equilibrium prices.

Notation and assumptions

Notation I assume N investors indexed by i ∈ [1..N ] and M assets indexed by

j ∈ [1..M ]. The initial holdings of asset j by investor i (in units) is denoted by hi,j.

The price of asset j is denoted by pj. Let Hi ≡
∑M

j=1 hi,jpj be the dollar value of

investor i's portfolio at some set of prices (before taking into account any assets sales)

and let Ai ≡
∑M

j=1 hi,j be the initial portfolio value of investor when pj = 1 for all

assets. Initial debt for investor i is denoted by di. For asset j the period t = 1 shocked

price is denoted by sj and its liquidity is denoted by δj. The t = 2 period endogenous

portfolio sale fraction for investor i is denoted by xi.

Assumptions I make the following assumptions

Assumption 1. hi,j ≥ 0

Remark. Initial investor holdings of each asset are non-negative (no short positions).

Assumption 2.
∑N

i=1 hi,j = h1,j + h2,j + · · ·+ hN,j > 0

Remark. The total stock of each asset (across the entire set of investors) is strictly

positive for each asset. This is necessary for the price response to be well de�ned for

each asset.

Assumption 3. δj > 1

Remark. The supply of assets at t = 2 is strictly elastic. This rules out zero or negative

prices for any level of portfolio sales.

Assumption 4. 0 < sj ≤ 1 with sj < 1 for at least one j ∈ [1..M ]

Remark. The period t = 1 (post-shock) price is strictly positive and less than unity. At

least one asset must experience a non-zero price shock, otherwise the model is trivially

in equilibrium without requiring any portfolio sales.

Assumption 5. 0 ≤ di < Ai

Remark. No negative debt and all investors must be solvent initially.
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Equilibrium requirements

Equilibrium portfolio sale fractions (solvent case) Equilibrium portfolio sales

in period t = 2, such that each investor i re-establishes his initial leverage level, is

denoted by xsi (solvent portfolio sale fraction for investor i) and is given by

xsi = f si (p1, p2, ..., pM) =
di

Ai − di

(
Ai
Hi

− 1

)
(1.8.1)

This equation20 only holds if every investor is solvent, Hi =
∑M

j=1 hi,jpj > di. Below

I consider the more general formulation for the equilibrium sale fraction when the

bankruptcy of one or more investors is a possibility.

Equilibrium portfolio sale fractions (general case) An investor is bankrupted if

his assets valued at current prices is less than or equal to his debt, Hi =
∑M

j=1 hi,jpj ≤
di. In the event of bankruptcy the entire portfolio of the investor is liquidated, so

xi = 1. When we speci�cally address the possibility of bankruptcy we denote the

portfolio sale fraction formula by xi so

xi = fi(p1, p2, ..., pM) =

f si (p1, p2, ..., pM) Hi > di (Solvent)

1 Hi ≤ di (Bankrupt)
(1.8.2)

Note that the portfolio sale fraction equals one whenever Hi = di and less than one if

Hi > di
21. This means that fi remains a continuous function because the limit of fi as

Hi → di is one and fi is exactly one for any Hi ≥ di. It also means we can simplify

the representation of xi to

xi = min(xsi , 1)

In other words the portfolio sale fraction in the general case is equal to the portfolio

sale fraction in the solvent case, but bounded from above at 1.

Equilibrium price response At the same time we require that the price of asset j

is given by

pj = gj(x1, x2, ..., xN) = sj −
sj
δj

(∑N
i=1 hi,j(xi)∑N
i=1 hi,j

)
(1.8.3)

This can be written more compactly as

pj = gj(x1, ..., xN) = sj −
sj
δj
WAj[xi] (1.8.4)

20See subsection 1.3.4 for the derivation
21fi(p1, p2, ..., pM ) = di

Ai−di ×
Ai−Hi

Hi
= 1 if Hi = di
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where

WAj[xi] ≡
∑N

i=1 hi,jxi∑N
i=1 hi,j

is the weighted average of xi across all investors using their initial holdings of asset j

as weights22.

Equilibrium

De�nition 1. I de�ne equilibrium as the N +M tuple (x∗1, ..., x
∗
N , p

∗
1, ...p

∗
M) that sim-

ultaneously satis�es the following set of N +M equations.

x∗i =fi(p
∗
1, ...p

∗
M) for all i ∈ [1..N ]

p∗j =gj(x
∗
1, ..., x

∗
N) for all j ∈ [1..M ]

Remark. This is a broad de�nition of equilibrium such that the bankruptcy of one or

more investors is permitted in equilibrium. This means that it is not a requirement that

each investor re-establish their leverage ratio; instead, each investor re-establishes his

leverage ratio if he is able to, otherwise the entire portfolio of the investor is liquidated.

This de�nition of equilibrium is consistent with the notion of the model as a game

between investors, and, therefore, can be interpreted as a non-symmetric static Nash

equilibrium in continuous strategies. Strategic interdependence follows from the fact

that each investor's choice of portfolio sales impacts the price of one or more assets

and therefore impacts the portfolio sale requirements of other investors, and vice versa.

The game is non-symmetric because the investors di�er in their asset holdings and debt

constraints and are therefore ex-ante distinct.

De�nition 2. K is the closed unit hyper-cube inM -dimensional Euclidean space given

by K ≡ {(p1, ..., pM) ∈ RM | 0 ≤ pj ≤ 1 for all j ∈ [1..M ]}

Remark. K represents the �price space� in our model.

De�nition 3. The map h:K → RM is given by the composition of the optimal port-

folio sale fractions and price responses consistent with the de�nition of equilibrium in

De�nition 1.

p′ ≡ h(p) = (g1(x1, ..., xN), ..., g1(x1, ..., xN))

where

xi = min[1, fi(p1, ..., pM)]

22See subsection 1.3.5 for a detailed discussion and derivation of the price response.
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Remark. The function h transforms a given set of prices into a new set of prices in a

two stage process. First, optimal portfolio sale fractions are calculated based on the

initial prices. Then those portfolio sale fractions are used to calculate the new prices

using the price response formula.

Lemma 1. Let (p′1, ..., p
′
M) = h((p1, ..., pM)) with p ∈ K. Then 0 < p′j ≤ 1 for all

j ∈ [1..M ] and 0 < p′j < 1 for at least one j ∈ [1..M ]

Remark. This lemma restricts all prices to the range [0..1] and ensures that at least one

of the prices lies within [0..1). The general restriction is needed to show that prices are

bounded in the sense that they remain within the unit hyper-cube. The requirement

that at least one of the prices is strictly less than unity is needed to ensure that the

model converges to an interior equilibrium.

Proof. Case (a): p′j > 0

Consider p′j = gj(x1, ..., xN) =
sj
δj
×

∑N
i=1(δj−xi)hi,j∑N

i=1 hi,j
.23 Let wj =

∑N
i=1(δj−xi)hi,j∑N

i=1 hi,j
, so p′j =

sj
δj
wj. Note that δj − xi > 0 for given j and any i follows from xi ≤ 1 (because

xi = min[1, xsi ]) and δj > 1 (Assumption 3). In conjunction with
∑N

i=1 hi,j > 0

(Assumption 2) and hi,j ≥ 0 (Assumption 1) this implies that the numerator of wj

is strictly positive. Also the denominator of wj is strictly positive (again Assumption

2). Therefore wj > 0. Since sj > 0 (Assumption 4) and δj > 1 (Assumption 3), we

have p′j =
sj
δj
wj > 0 as required.

Case (b): p′j ≤ 1 for all j and p′j < 1 for some j

Consider p′j = gj(x1, ..., xN) = sj

(
1− 1

δj
WAj[xi]

)
.24 First, xi =

(
di

Ai−di

)(
Ai−Hi
Hi

)
with

Hi =
∑M

j=1 hi,jpj. Now
di

Ai−di ≥ 0 since 0 ≤ di < Ai (Assumption 5). Because p ∈ K,

this means 0 ≤ pj ≤ 1 for all j ∈ [1..M ]. Hence Hi ≥ 0 since pj ≥ 0 and hi,j ≥ 0

(Assumption 1) . And since pj ≤ 1, it follows that Hi ≤ Ai. Therefore Ai−Hi
Hi

≥ 0

and, as shown earlier, di
Ai−di ≥ 0 so xi ≥ 0. Now consider the term

(
1− 1

δj
WAj[xi]

)
.

Using xi ≥ 0, we have WAj[xi] ≥ 0 since the weights are non-negative (hi,j ≥ 0 by

Assumption 1). Therefore 1
δj
WAj[xi] ≥ 0 since δj > 1 (Assumption 3). It follows that(

1− 1
δj
WAj[xi]

)
≤ 1. Now sj ≤ 1 (Assumption 4) so p′j = sj

(
1− 1

δj
WAj[xi]

)
≤ 1

for all j ∈ [1..M ] as required. In addition, there exists at least one asset j such that

sj < 1 (Assumption 4) so p′j = sj

(
1− 1

δj
WAj[xi]

)
< 1 for at least one j ∈ [1..M ] as

required.

Lemma 2. h is a self-map from K to K, that is h : K → K

23With a modest amount of rearranging we can show that this is the same as equation (1.8.3),
sj
δj
×

∑N
i=1(δj−xi)hi,j∑N

i=1 hi,j
= sj − sj

δj

(∑N
i=1 hi,j(xi)∑N

i=1 hi,j

)
.

24Derived from equation (1.8.4) by factoring out sj
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Proof. h maps from K by construction. By Lemma 1 we have 0 < p′j ≤ 1 for all

j ∈ [1..M ] whenever p′ = h(p) with p ∈ K. Therefore h(p) ∈ K for all p ∈ K and thus

h maps to K.

De�nition 4. The M -dimensional price sequence {p(n)} for n ∈ N, n ≥ 0 is de�ned

as follows: for n = 0 all prices are equal to unity, p(0) = (1, ..., 1). For n = 1, all prices

are equal to the shocked prices, p(1) = (s1, ..., sM). For n ≥ 2, prices are given by the

recurrence relation p(n+1) = h(p(n)). Because p(n) = (p
(n)
1 , ..., p

(n)
M ) this gives rise to a

sequence of prices {p(n)
j } for each asset j ∈ [1..M ].

Remark. {p(n)} is the sequence of price tuples generated by the repeated application

of the map h : K → K for n ≥ 2. The number n is a count of the repeated iterations

of the map h and should not be confused with the di�erent periods in the model.

De�nition 5. The M -dimensional price change sequence {∆p(n)} for n ≥ 1 is de�ned

by ∆p(n) ≡ p(n) − p(n−1). Similarly, for a speci�c asset j the price change sequence

{∆p(n)
j } is de�ned by ∆p

(n)
j ≡ p

(n)
j − p

(n−1)
j .

Remark. {∆p(n)} is the di�erenced price sequence starting at n = 1 while the price

sequence {p(n)
j } starts at n = 0.

De�nition 6. The N -dimensional portfolio sale fraction sequence {x(n)} for n ∈
N, n ≥ 1 is de�ned by x(n)

i = fi(p
(n−1)
1 , ..., p

(n−1)
M ). Because x(n) = (x

(n)
1 , ..., x

(n)
N ) this

gives rise to a sequence of portfolio sale fractions {x(n)
i } for each investor i ∈ [1..N ].

Remark. Note that each sequence element x(n) is calculated by reference to the prices

p(n−1) holding during the previous iteration.

De�nition 7. The N -dimensional portfolio sale fraction change sequence {∆x(n)} for
n ≥ 2 is de�ned by ∆x(n) ≡ x(n) − x(n−1). Similarly, for investor i the portfolio sale

fraction change sequence {∆x(n)
i } is de�ned by ∆x

(n)
i ≡ x

(n)
i − x

(n−1)
i .

Lemma 3. The sequence {p(n)} is bounded by the boundaries of K.

Proof. By induction on n. For n = 1 we have p(1)
j = sj so 0 < p

(1)
j ≤ 1 for all

j ∈ [1..M ] because 0 < sj ≤ 1 (Assumption 4). Thus p(1) ∈ K. Let n = k. If p(k) ∈ K
then p(k+1) ∈ K because p(k+1) = h(p(k)) (De�nition 4) and h maps from K to K

(Lemma 2). Therefore, by induction on n we have p(n) ∈ K for all n ≥ 1. For n = 0,

p(0) = (1, ..., 1) ∈ K also. Thus {p(n)} is bounded by K.

Lemma 4. For n ≥ 1 if ∆p
(n)
j ≤ 0 for all j ∈ [1..M ] then ∆x

(n+1)
i ≥ 0 for all i ∈ [1..N ].

Proof. For n ≥ 0, the next iteration portfolio sale fraction x
(n+1)
i is linked to the

previous iteration prices p(n)
j by the following expression for the optimal portfolio sale

fraction
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x
(n+1)
i =

di
Ai − di

(
Ai

Hi(p(n))
− 1

)
=

di
Ai − di

(
Ai∑M

j=1 hi,jp
(n)
j

− 1

)

and, therefore, for n ≥ 1 and for all i ∈ [1..N ] we have

∆x
(n+1)
i = x

(n+1)
i − x(n)

i

=
di

Ai − di

((
Ai∑M

j=1 hi,jp
(n)
j

− 1

)
−

(
Ai∑M

j=1 hi,jp
(n−1)
j

− 1

))

=
Aidi
Ai − di

(
1∑M

j=1 hi,jp
(n)
j

− 1∑M
j=1 hi,jp

(n−1)
j

)

=
Aidi
Ai − di

( M∑
j=1

hi,jp
(n)
j

)−1

−

(
M∑
j=1

hi,jp
(n−1)
j

)−1


Now, because ∆p
(n)
j ≤ 0 we can write p

(n)
j − p

(n−1)
j ≤ 0 or p(n)

j ≤ p
(n−1)
j for all

j ∈ [1..M ]. So
∑M

j=1 hi,jp
(n)
j ≤

∑M
j=1 hi,jp

(n−1)
j . That means

(∑M
j=1 hi,jp

(n)
j

)−1

≥(∑M
j=1 hi,jp

(n−1)
j

)−1

and therefore
(∑M

j=1 hi,jp
(n)
j

)−1

−
(∑M

j=1 hi,jp
(n−1)
j

)−1

≥ 0. And

because 0 ≤ di ≤ Ai (Assumption 5) it follows that Aidi
Ai−di ≥ 0 as well, so ∆x

(n+1)
i ≥ 0

for all i ∈ [1..N ] as required.

Lemma 5. For n ≥ 2 if ∆x
(n)
i ≥ 0 for all i ∈ [1..N ] then ∆p

(n)
j ≤ 0 for all j ∈ [1..M ].

Proof. For n ≥ 1 prices for a given iteration are determined according to the price

response requirement based on the portfolio sale fractions of that iteration

p
(n)
j = gj(x

(n)
1 , ..., x

(n)
N ) = sj −

sj
δj
WAj[x

(n)
i ]

and so for n ≥ 2 and for all j ∈ [1..M ]

∆p
(n)
j = p

(n)
j − p

(n−1)
j

=

(
sj −

sj
δj
WAj[x

(n)
i ]

)
−
(
sj −

sj
δj
WAj[x

(n−1)
i ]

)
= −sj

δj

(
WAj[x

(n)
i ]−WAj[x

(n−1)
i ]

)
= −sj

δj
WAj[x

(n)
i − x

(n−1)
i ]

= −sj
δj
WAj[∆x

(n)
i ]
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Now, because ∆x
(n)
i ≥ 0 for all i ∈ [1, .., N ], we have WAj[∆x

(n)
i ] ≥ 0 for any given j ∈

[1..M ]. (Recall the weights used in WAj[] are non-negative � hi,j ≥ 0 by Assumption

1.) Since sj
δj
> 0 (from Assumption 3 and 4), it follows directly from the above that

∆p
(n)
j ≤ 0 for any given j ∈ [1..M ], as required.

Lemma 6. For n ≥ 2 if ∆p
(n)
j ≤ 0 for all j ∈ [1..M ] then ∆p

(n+1)
j ≤ 0 for all

j ∈ [1..M ].

Proof. By Lemma 4 ∆p
(n)
j ≤ 0 for all j ∈ [1..M ] implies ∆x

(n+1)
j ≥ 0 for all i ∈ [1..N ].

And from Lemma 5 ∆x
(n+1)
j ≥ 0 for all i ∈ [1..N ] implies ∆p

(n+1)
j ≤ 0 for all j ∈ [1..M ]

as required.

Lemma 7. The sequence {p(n)
j } is monotonically decreasing for all j ∈ [1..M ].

Proof. By induction on n. For n = 1 we have ∆p
(1)
j = p

(1)
j − p(0) = sj − 1 for all

j ∈ [1..M ]. Since by Assumption 4 we have 0 < sj ≤ 1 for all j ∈ [1..M ], this means

that ∆p
(1)
j ≤ 0 for all j ∈ [1..M ]. Now let n = k ≥ 2 and assume ∆p

(k)
j ≤ 0 for all

j ∈ [1..M ], then (by Lemma 6) we have ∆p
(k+1)
j ≤ 0 for all j ∈ [1..M ]. Hence by

induction we have ∆p
(n)
j ≤ 0 for all j ∈ [1..M ] and for all n ≥ 1. Therefore {p(n)

j } is
monotonically decreasing in n for all j ∈ [1..M ].

Lemma 8. The sequence {p(n)} converges to p? ∈ K

Proof. By Lemma 7 the sequence {p(n)
j } is monotonically decreasing for each j ∈ [1..M ]

and by Lemma 3 the sequence {p(n)} is bounded by K, which, from the de�nition of K,

implies that {p(n)
j } is bounded by 0 ≤ p(n) ≤ 1 for each j ∈ [1..M ]. By the monotone

convergence theorem any monotonic and bounded sequence is also convergent. There-

fore, for all j ∈ [1..M ] the sequence {p(n)
j } converges to some p?j ∈ [0, 1]. Construct

p? = (p?N , ..., p
?
M). Because each sequence {p(n)

j } is de�ned by reference to the single

sequence {p(n)}, if follows that {p(n)} converges to p?. And because {p(n)} is bounded
by K (Lemma 3) we have p? ∈ K.

Theorem 1. Equilibrium exists, is unique, and can be calculated by the method of

successive approximations.

Proof. By Lemma 8 the sequence {p(n)} converges to p? ∈ K. The map h gen-

erating {p(n)} is formed from the composition of all the equilibrium requirements

� h enforces both the equilibrium portfolio sale fraction requirement and the price

response requirement for each investor and each asset � and, therefore, the tuple

(f1(p?1, ..., p
?
M), ..., fN(p?1, ..., p

?
M), p?1, ...p

?
N) constructed from p? is an equilibrium in ac-

cordance with De�nition 1. The convergence point p? is approached in the limit by the

successive application of the map h, and, therefore, p? can be calculated to arbitrary

accuracy by the method of successive approximations. Finally, because the limit of a

convergent sequence is unique, the equilibrium is also unique.
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1.8.2 Approximation

Substituting sj = pj in equation (1.3.7) I obtain

xi =

(
Ai
Si
− 1

)
×Di (1.8.5)

where Ai

Ai ≡
M∑
j=1

hi,j

is the initial, pre-shock portfolio value of investor i, Di

Di ≡
di

Ai − di

is investor i's initial debt-equity ratio and Si

Si ≡
M∑
j=1

hi,jsj

is his initial portfolio holdings (before any sales) valued at the period one shocked

prices sj. I can simplify this more by de�ning Ci

Ci ≡
Ai
Si
− 1 =

Ai − Si
Si

so I can write

xi = CiDi (1.8.6)

that is, the optimal portfolio sale fraction xi is the product of the investor's percentage

portfolio loss due to the period one shock and his initial debt-equity ratio. Having

�xed our equilibrium portfolio sale fractions, I consider the (�rst order) successive

price approximation given by p′ = (p′1, ..., p
′
M) where

p′j = g(x1, ..., xN) = sj −
sj
δj

(∑N
i=1 hi,jxi∑N
i=1 hi,j

)
(1.8.7)

What does this mean? Consider the expression inside the brackets. This is really just

the weighted average of xi, where the weights (hi,j) are the holdings of asset j across

the di�erent investors. So denote byWAj [zi] the weighted average of variable zj across

all investors using each investor's holdings of asset j as weights
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WAj [zi] ≡
∑N

i=1 hi,jzi∑N
i=1 hi,j

=

∑N
i=1 hi,jzi
Gj

where Gj is the total holdings (in units) of asset j by all investors, that is

Gj ≡
N∑
i=1

hi,j

Then I can rewrite the �rst order approximation as

p′j = sj −
sj
δj
WAj [xi] = sj −

sj
δj
WAj [CiDi] (1.8.8)

The �rst order change in price is then

∆p′j = p′j − sj

= −sj
δj
WAj [CiDi]

I can substitute the expression of CiDi in the above to obtain an expression for the

successive price approximation p′j expressed purely in model parameters.

p′j = sj −
sj
δj

(∑N
i=1 hi,jCiDi∑N

i=1 hi,j

)

= sj −
sj
δj


∑N

i=1 hi,j

((
Ai∑M

j=1 hi,jsj
− 1

)
× di

Ai−di

)
∑N

i=1 hi,j



45



1.8.3 Approximate Analytical Statics

Table 1.7 below provides a summary of the key statics derived from our price approx-

imation. I adopt the convention of using bold-face to indicate a speci�c investor or

asset index. For instance, sj refers to a speci�c asset j ∈ [1..M ] while sj, contained

inside a sum over all assets, refers to the shocked price of each asset in turn.

Table 1.7: Summary of approximate statics

∂p′k
∂hi,j

= −skhi,kDi

δkGk

(
Si − sjAi

S2
i

− Ci

Ai − ri

)
∂p′j
∂hi,j

= − sj
δjGj

(
hi,jDi

(
Si − sjAi

S2
i

− Ci

Ai − ri

)
−WAj [CiDi]

)
∂p′j
∂ri

= − sj
δjGj

hi,jCi
Ai

(Ai − ri)2

∂p′j
∂sj

= 1 +
1

δj
sjWAj

[
hi,jDiAi
S2
i

]
− 1

δj
WAj [CiDi]

∂p′k
∂sj

=
1

δk
skWAk

[
hi,jDiAi
S2
i

]
∂p′j
∂δj

=
sj
δ2
j

WAj [CiDi]

Investor debt

Select an asset j ∈ [1..M ]. The sensitivity of the approximate price of this asset, p′j, to

a change in debt di of a speci�c investor i ∈[1..N ] is given by
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∂p′j
∂di

=
∂

∂di

(
sj −

sj
δj
WAj [CiDi]

)
= −sj

δj

∂

∂di
WAj [CiDi]

= −sj
δj

∂

∂di

∑N
i=1 hi,jCiDi∑N

i=1 hi,j

= − sj
δjGj

∂

∂di

N∑
i=1

hi,jCiDi

= − sj
δjGj

N∑
i=1

hi,jCi
∂

∂di
Di (di�erentiation is linear)

= − sj
δjGj

hi,jCi
∂

∂di
Di (only term i = i is non-zero)

= − sj
δjGj

hi,jCi
∂

∂di

di
Ai − di

= − sj
δjGj

hi,jCi
Ai

(Ai − ri)2

Shocked price

Price e�ect of a shock to the same asset Select an asset j ∈ [1..M ]. The

sensitivity of the approximate price of this asset, p′j, to a change in the shocked price

sj of the same asset is given by
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∂p′j
∂sj

=
∂

∂sj

(
sj −

sj
δj
WAj [CiDi]

)
= 1− 1

δj

(
∂

∂sj
sjWAj [CiDi]

)
= 1− 1

δj

(
WAj [CiDi]

∂

∂sj
sj + sj

∂

∂sj
WAj [CiDi]

)
(product rule)

= 1− 1

δj

(
WAj [CiDi] + sj

∂

∂sj

(∑N
i=1 hi,jCiDi∑N

i=1 hi,j

))

= 1− 1

δj

(
WAj [CiDi] +

sj
Gj

∂

∂sj

(
N∑
i=1

hi,jCiDi

))

= 1− 1

δj

(
WAj [CiDi] +

sj
Gj

(
N∑
i=1

hi,jDi
∂

∂sj
Ci

))
(di�erentiation is linear)

= 1− 1

δj

(
WAj [CiDi] +

sj
Gj

(
N∑
i=1

hi,jDi
∂

∂sj

(
Ai
Si
− 1

)))

= 1− 1

δj

(
WAj [CiDi] +

sj
Gj

(
N∑
i=1

hi,jDiAi
∂

∂Si

1

Si

∂

∂sj
Si

))
(chain rule)

= 1− 1

δj

(
WAj [CiDi]−

sj
Gj

(
N∑
i=1

hi,jDiAi
1

S2
i

∂

∂sj

M∑
j=1

hi,jsj

))

= 1− 1

δj

(
WAj [CiDi]−

sj
Gj

(
N∑
i=1

hi,jDiAi
1

S2
i

∂

∂sj
hi,jsj

))
(only term j = j is non-zero)

= 1− 1

δj

(
WAj [CiDi]−

sj
Gj

(
N∑
i=1

hi,jDiAi
1

S2
i

hi,j

))

= 1− 1

δj

WAj [CiDi]− sj

∑N
i=1 hi,jDiAi

1
S2
i
hi,j∑N

i=1 hi,j

 (expand Gj)

= 1− 1

δj

(
WAj [CiDi]− sjWAj

[
hi,jDiAi
S2
i

])
= 1 +

1

δj
sjWAj

[
hi,jDiAi
S2
i

]
− 1

δj
WAj [CiDi]

Price e�ect of a shock to a di�erent asset Select an asset k ∈ [1..M ]. The

sensitivity of the approximate price of this asset, p′k, to a change in the shocked price

sj of a di�erent asset j 6= k is given by
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∂p′k
∂sj

=
∂

∂sj

(
sk −

sk
δk
WAk [CiDi]

)
= − 1

δk

(
∂

∂sj
skWAk [CiDi]

)
= − 1

δk

(
WAk [CiDi]

∂

∂sj
sk + sk

∂

∂sj
WAk [CiDi]

)
(product rule)

= − 1

δk

(
(0) + sk

∂

∂sj

(∑N
i=1 hi,kCiDi∑N

i=1 hi,k

))

= − 1

δk

(
sk
Gk

∂

∂sj

(
N∑
i=1

hi,kCiDi

))

= − 1

δk

(
sk
Gk

(
N∑
i=1

hi,kDi
∂

∂sj
Ci

))
(di�erentiation is linear)

= − 1

δk

(
sk
Gk

(
N∑
i=1

hi,kDi
∂

∂sj

(
Ai
Si
− 1

)))

= − 1

δk

(
sk
Gk

(
N∑
i=1

hi,kDiAi
∂

∂Si

1

Si

∂

∂sj
Si

))
(chain rule)

=
1

δk

(
sk
Gk

(
N∑
i=1

hi,kDiAi
1

S2
i

∂

∂sj

M∑
j=1

hi,jsj

))

=
1

δk

(
sk
Gk

(
N∑
i=1

hi,kDiAi
1

S2
i

∂

∂sj
hi,jsj

))
(only term j = j is non-zero)

=
1

δk

(
sk
Gk

(
N∑
i=1

hi,kDiAi
1

S2
i

hi,j

))

=
1

δk

sk
∑N

i=1 hi,kDiAi
1
S2
i
hi,j∑N

i=1 hi,k

 (expand Gk)

=
1

δk
skWAk

[
hi,jDiAi
S2
i

]
Liquidity

Price e�ect of the liquidity of the same asset Select an asset j ∈ [1..M ]. The

sensitivity of the approximate price of this asset, p′j, to a change in the liquidity δj is

given by
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∂p′j
∂δj

=
∂

∂δj

(
sj −

sj
δj
WAj [CiDi]

)
= −sj

(
∂

∂δj

1

δj
WAj [CiDi]

)
= −sj

(
WAj [CiDi]

∂

∂δj

1

δj
+

1

δj

∂

∂δj
WAj [CiDi]

)
(product rule)

= sj

(
WAj [CiDi]

1

δ2
j

+ 0

)
=
sj
δ2
j

WAj [CiDi]

Price e�ect of the liquidity of a di�erent asset Select an asset k ∈ [1..M ]. The

sensitivity of the approximate price of this asset, p′k, to a change in the liquidity δj of

a di�erent asset j 6= k is given by

∂p′k
∂δj

=
∂

∂δj

(
sk −

sk
δk
WAk [CiDi]

)
= −sk

δk

(
∂

∂δj
WAk [CiDi]

)
= −sk

δk
(0)

= 0

Investor holdings

Price e�ect of asset holdings on a di�erent asset It is more convenient to

calculate several preliminary derivatives beforehand. First, ∂
∂hi,j

Ai.

∂

∂hi,j
Ai =

∂

∂hi,j

M∑
j=1

hi,j

=
M∑
j=1

∂

∂hi,j
hi,j (di�erentiation is linear)

=
∂

∂hi,j
hi,j (only term j = j is non-zero)

= 1

Next, I consider ∂
∂hi,j

Si.
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∂

∂hi,j
Si =

∂

∂hi,j

M∑
j=1

hi,jsj

=
M∑
j=1

∂

∂hi,j
hi,jsj (di�erentiation is linear)

=
∂

∂hi,j
hi,jsj (only term j = j is non-zero)

= sj

Now, consider ∂
∂hi,j

xi.

∂

∂hi,j
xi =

∂

∂hi,j
CiDi

=

(
∂

∂hi,j
Ci

)
Di + Ci

(
∂

∂hi,j
Di

)
=

(
∂

∂hi,j

(
Ai

Si

− 1

))
Di + Ci

(
∂

∂hi,j

(
ri

Ai − ri

))
=

(
∂

∂hi,j

(
Ai

Si

))
Di + Ciri

(
∂

∂hi,j

(
1

Ai − ri

))

=

Si

(
∂

∂hi,j
Ai

)
−
(

∂
∂hi,j

Si

)
Ai

S2
i

Di + Ciri

(
∂

∂Ai

(
1

Ai − ri

)
∂

∂hi,j
Ai

)

=

(
Si (1)− (sj)Ai

S2
i

)
Di + Ciri

((
− 1

(Ai − ri)2

)
(1)

)
=
Si − sjAi

S2
i

Di −
Ciri

(Ai − ri)2

=
Si − sjAi

S2
i

Di −
Ci

(Ai − ri)
Di

= Di

(
Si − sjAi

S2
i

− Ci

Ai − ri

)

Finally, I calculate
∂p′k
∂hi,j

.
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∂p′k
∂hi,j

=
∂

∂hi,j

(
sk −

sk
δk
WAk [CiDi]

)
= −sk

δk

∂

∂hi,j
(WAk [CiDi])

= −sk
δk

∂

∂hi,j

(∑N
i=1 hi,kxi∑N
i=1 hi,k

)
Then apply the quotient rule

= −sk
δk


(∑N

i=1 hi,k

)(
∂

∂hi,j

∑N
i=1 hi,kxi

)
−
(

∂
∂hi,j

∑N
i=1 hi,k

)(∑N
i=1 hi,kxi

)
(∑N

i=1 hi,k

)2


= −sk

δk

Gk

(
∂

∂hi,j

∑N
i=1 hi,kxi

)
− (0)

(∑N
i=1 hi,kxi

)
G2

k


= −sk

δk

Gk

(
∂

∂hi,j

∑N
i=1 hi,kxi

)
G2

k


= −sk

δk


(∑N

i=1 hi,k
∂

∂hi,j
xi

)
Gk

 (di�erentiation is linear)

= −sk
δk

(
hi,k

∂
∂hi,j

xi

Gk

)
(only term i = iis non-zero)

= −sk
δk

hi,k
(
Di

(
Si−sjAi

S2
i
− Ci

Ai−ri

))
Gk


= −skhi,kDi

δkGk

(
Si − sjAi

S2
i

− Ci

Ai − ri

)
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Price e�ect of asset holdings on the same asset

∂p′j
∂hi,j

=
∂

∂hi,j

(
sj −

sj
δj
WAj [CiDi]

)
= −sj

δj

∂

∂hi,j
(WAj [CiDi])

= −sj
δj

∂

∂hi,j

(∑N
i=1 hi,jxi∑N
i=1 hi,j

)
Then apply the quotient rule

= −sj
δj


(∑N

i=1 hi,j

)(
∂

∂hi,j

∑N
i=1 hi,jxi

)
−
(

∂
∂hi,j

∑N
i=1 hi,j

)(∑N
i=1 hi,jxi

)
(∑N

i=1 hi,j

)2


= −sj

δj

Gj

(
∂

∂hi,j

∑N
i=1 hi,jxi

)
− (1)

(∑N
i=1 hi,jxi

)
G2

j


= − sj

δjGj

Gj

(
∂

∂hi,j

∑N
i=1 hi,jxi

)
− (1)

(∑N
i=1 hi,jxi

)
Gj


= − sj

δjGj

(∑N
i=1 hi,j

∂
∂hi,j

xi

1
−
∑N

i=1 hi,jxi
Gj

)

= − sj
δjGj

((
hi,j

∂

∂hi,j
xi

)
−WAj [xi]

)
= − sj

δjGj

(
hi,jDi

(
Si − sjAi

S2
i

− Ci

Ai − ri

)
−WAj [CiDi]

)
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1.8.4 Numerical Comparison of Pro rata versus Sequential

Asset Sales

In the model I assume that investors sell their assets pro rata to re-establish their ori-

ginal leverage ratios. As pointed out earlier, this is a somewhat restrictive assumption

� there is no a priori reason to suppose that investors are really bound by such a

constraint. Moreover, one might argue that investors may well prefer to sell more of

the assets that declined less in value rather than those assets that declined more in

value (in expectation that assets may revert to their fundamental value). Therefore,

an alternative assumption might be that investors sell their assets sequentially, selling

down each asset in turn from highest price to lowest price until they have re-established

their leverage ratio25. In this section I test (numerically) the impact of these compet-

ing assumptions on the resulting equilibrium prices. The numerical simulation setup

is identical to that discussed in subsection 1.5.2. First we consider a setup with 2

investors and 2 assets (2 × 2), then a setup with 5 investors and 5 assets (5 × 5) and

�nally a setup with 10 investors and 10 assets (10× 10). In each setup we perform 10

million random draws from the model parameter space. For each draw we calculate

both the equilibrium prices {p?j} based on the pro rata portfolio sale assumption and

the equilibrium prices {pseqj } based on the sequential asset sale assumption26. We are

interested in what impact the di�erent asset sale assumptions have on the numerically

calculated equilibrium prices. To test this we regress the equilibrium sequential sale

price of asset 1 (pseq1 ) on the equilibrium pro rata sale price of asset 1 (p?1), that is

pseq1 = βp?1 + ε

If the equilibrium pro rata sale price (p?1) is a good predictor of the equilibrium se-

quential sale price (pseq1 ), this would suggest that the equilibrium price in our model is

not particularly sensitive to the alternative assumption of sequential asset sales. The

results indicate that this is the case (for all regression results refer to Table 1.8 below).

Regression (1) in the table corresponds to the regression we discussed above. The

equilibrium pro rata sale price p?1 explains 99.56% of the variation in the equilibrium

sequential sale price in the 2× 2 setup (5× 5: 99.54%, 10× 10: 99.56%). The results

are even stronger in regression (2) in which I exclude simulations where sequential sale

prices did not converge to an equilibrium solution.

Again, one might argue that the more relevant metric is not the equilibrium price,

but rather the equilibrium price adjustment from the initial shocked price, that is

25Recall that prices are normalised to 1 initially. So decreasing price order is the same as ordering
assets from least a�ected to most a�ected by the negative shock.

26Note that prices do not always converge when using the sequential asset sales assumption. In the
simulation I limit the number of iterations used to calculate equilibrium prices to 1000. In every single
instance I am able to obtain equilibrium prices assuming pro rata sales. Assuming sequential sales,
however, often results in prices that fail to converge (typically, prices and sale fractions get stuck in a
repeating cycle).
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∆p?j ≡ sj−p?j for pro rata sales and, equivalently, ∆pseqj ≡ sj−pseqj for sequential sales.

This suggests a regression in the form

∆pseq1 = β∆p?1 + ε

in which the price adjustment under the assumption of sequential sales is regressed on

the price adjustment under the assumption of pro rata sales. The results are shown as

regression (3) in the table. The pro rata sales price adjustment ∆p?1 explains 93.6% of

the variation in the sequential sales price adjustment ∆pseq1 in the 2× 2 setup (5× 5:

91.6%, 10× 10: 91.5%). Again, the results are substantially improved when I exclude

simulations where sequential sale prices did not converge to an equilibrium solution,

shown as regression (4) in the tables.
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Table 1.8: Numerical simulation regression results

2 Investors and 2 assets (2× 2)

(1) (2) (3) (4)
pseq1 pseq1 ∆pseq1 ∆pseq1

β/t-Stat β/t-Stat β/t-Stat β/t-Stat

p?1 1.002*** 1.000***
(64871.53) (73042.83)

∆p?1 0.934*** 0.954***
(4803.41) (6183.69)

Adj R2 0.9959 0.9972 0.9360 0.9588
N 10,000,000 8,603,942 10,000,000 8,603,942

5 Investors and 5 assets (5× 5)

(1) (2) (3) (4)
pseq1 pseq1 ∆pseq1 ∆pseq1

β/t-Stat β/t-Stat β/t-Stat β/t-Stat

p?1 1.006*** 1.004***
(53965.15) (51683.84)

∆p?1 0.870*** 0.910***
(5345.95) (5859.76)

Adj R2 0.9954 0.9973 0.9160 0.9612
N 10,000,000 4,981,221 10,000,000 4,981,221

10 Investors and 10 assets (10× 10)

(1) (2) (3) (4)
pseq1 pseq1 ∆pseq1 ∆pseq1

β/t-Stat β/t-Stat β/t-Stat β/t-Stat

p?1 1.008*** 1.005***
(54051.05) (32848.62)

∆p?1 0.832*** 0.888***
(5978.95) (4327.30)

Adj R2 0.9956 0.9975 0.9150 0.9669
N 10,000,000 1,859,749 10,000,000 1,859,749

The results of this numerical study suggests that equilibrium prices in my model are

not particularly sensitive to the assumption of pro rata sales, as compared against an

assumption of sequential asset sales in reverse price order.
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Chapter 2

Fire Sales � Evidence

Abstract

I estimate �re-sale risk using a multi-asset, multi-investor �re-sale model driven

mainly by overlapping investor holdings and investor-level leverage constraints.

Model �re-sale returns predict the cross-section of US stock returns during times

of market distress. However, this risk does not appear to be priced ex-ante. These

�ndings have implications for investors, risk managers and regulators. In particu-

lar, it suggests that overlapping asset holdings and investor-level constraints may

be important determinants of stock returns during episodes of market distress.

2.1 Introduction

I use a multi-asset, multi-investor model that yields equilibrium �re-sale prices based

on the pattern of asset holdings and estimated investor-level leverage constraints as

described in detail in chapter 1. Conditional on market distress � which I de�ne as

a decrease of 10% or more in the S&P 500 index over a calendar quarter � model

�re-sale returns positively and signi�cantly predict the cross-section of realised US

equity returns. This conditional predictability persists after controlling for stock-level

characteristics such as size, book-to-market, CAPM beta, illiquidity and historical

return volatility.

However, this predictability does not hold unconditionally. Although there is some

evidence that model �re-sale risk1 is priced in panel data, both cross-sectional and

sorted portfolio tests fail to support the hypothesis that �re-sale return is priced.

A substantial literature on �re sales has developed over the past 30 years and the recent

�nancial crises has provided new impetus for work in this area. Shleifer and Vishny

(2010a) is a recent survey of the �re-sale literature. They provide the following working

de�nition of a �re sale:

1In this paper I use model-derived hypothetical �re-sale returns as a measure of ex ante �re-sale
risk. Therefore, I use the terms �model �re-sale return� and ��re-sale risk� interchangeably.
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The term ��re sale� has been around since the nineteenth century to

describe �rms selling smoke-damaged merchandise at cut-rate prices in the

aftermath of a �re. But what are �re sales in broad �nancial markets with

hundreds of participants? How can �re sales matter for generic goods, such

as airplanes or �nancial securities? In modern �nancial research, the term

��re sale� has acquired a di�erent meaning. As we suggested in a 1992

paper, a �re sale is essentially a forced sale of an asset at a dislocated price.

(Shleifer and Vishny (2010a) p. 3, emphasis added)

The two key elements in this de�nition of a �re sale are �forced sale� and �dislocated

price�. In the model presented here investors become forced sellers when an exogenous

negative price shock decreases the value of their assets and they have to liquidate part

of their portfolio to meet a binding leverage ratio requirement. Similarly, I model the

dislocated price element via prices that decrease linearly in the volume of forced sales.

Therefore, the greater the proportion of an asset put up for sale by forced sellers, the

greater the decrease in price.

Fire sales may also have implications for asset pricing. Wagner (2011) proposes a model

in which investors demand a premium for investing in assets held by �liquidation-prone�

investors. In distressed markets, liquidation-prone investors tend to liquidate their

assets at the same time. This gives rise to �re-sale prices in those assets predominantly

held by liquidation-prone investors. Ex ante, investors rationally demand a premium

to compensate them for su�ering large losses from holding such assets in the event of

market distress. The work by Wagner (2011) thus serves as a motivation in this paper

for considering whether �re sale returns might be priced.

The empirical impact of overlapping holdings in assets subjected to forced sales has

been shown recently by Hau and Lai (2012). They show that non-bank stocks held by

funds with large exposures to bank stocks su�ered disproportionate negative returns

during the banking-stock led market downturn of 2008. This is stark evidence that the

pattern of ownership can have a signi�cant impact on realised returns during episodes

of market distress.

For a detailed review of the literature on �re sales and how the model used here �ts

within that literature the reader is referred to subsection 1.1 in chapter 1.

In the next section I provide a summary of the model used to calculate stock-level

�re-sale returns. Section 2.3 outlines the data used, while section 2.4 considers the

hypothesis that �re-sale returns conditionally predict realised returns in the cross-

section. In section 2.5 I consider whether model �re-sale risk is priced. Section 2.6

concludes and section 2.7 contains the Appendix for this chapter.
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2.2 Model

What follows is a high-level overview of the �re-sale model used to calculate �re-sale

returns (for a detailed exposition, the reader is referred to chapter 1). Broadly, I model

equilibrium �re-sale prices in a setting where multiple investors holding multiple assets

are subjected to an exogenous negative price shock. Each investor has a given level of

leverage initially. After the negative price shock, this leverage increases. It is assumed

that each investor faces a binding requirement to re-establish their pre-shock leverage

ratio. This requires investors to sell a fraction (hereafter the portfolio sale fraction) of

their assets in the market � the �forced sale� element. Crucially, the prices investors

obtain are in turn linked to the volume of forced asset sales, such that the price of each

asset is linearly decreasing in the volume of �re sales of that asset � this provides the

�dislocated price� element (hereafter the price response). This means that investors

are a�ected not only by their own sale of assets, but also by the sale of assets by other

investors, and vice versa. Therefore, this is a situation where the optimal actions of

investors are interlinked; in other words this model constitutes a game in the game-

theoretic sense. I sketch out the model more formally below.

2.2.1 Notation and setup

This is essentially a two period model. Initial conditions are �xed at t = 0; at t = 1

an exogenous negative price shock occurs, which disrupts the initial equilibrium and at

t = 2 investors re-establish equilibrium at a new set of prices through portfolio sales.

I start with N investors indexed by i ∈ [1..N ] with access to M assets indexed by

j ∈ [1..M ]. The units of asset j held by investor i is denoted by hi,j. Each investor

i initially has debt of di. For convenience, let Ai ≡
∑M

j=1 hi,j be the value of each

investor's portfolio at t = 0 prices (without loss of generality I normalise the t = 0

prices of assets to unity). I also de�ne Hi ≡
∑M

j=1 hi,jpj � this might be thought of

as the valuation of the initial portfolio holdings {hi,1, ..., hi,M} of investor i valued at

the new t = 2 prices {p1, ..., pM}. I enforce a positive equity constraint initially; assets

exceeds debt for all investors; 0 ≤ di < Ai.

Asset holdings are in�nitely divisible and non-negative � short positions are not allowed.

Therefore, hi,j ≥ 0 for all i ∈ [1..N ] and for all j ∈ [1..M ].2 The initial leverage ratio

of investor i is given by Li(0) = di
Ai
. At t = 1 there occurs an exogenous negative

shock to assets, such that prices reduce to sj with 0 < sj ≤ 1. At t = 2 investors

re-establish their original leverage ratios by each selling (pro rata) a fraction xi of

their portfolio at prices pj.
3 The post-sale leverage ratio is thus given by Li(2) =

2Hereafter a subscript i will be taken to mean i ∈ [1..N ] (i.e., applicable to all investors) and
similarly a subscript j will be taken to mean j ∈ [1..M ] (i.e., applicable to all assets).

3If debt exceeds assets at the new prices for any investor (before considering any sales), that
investor is bankrupted and their entire portfolio is liquidated. Otherwise the investor re-establishes
his original leverage ratio by selling a portion of his assets pro rata. The assumption that investors
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OriginalDebt−Sales Proceeds
Original Portfolio−Sales Proceeds = di−xiHi

(1−xi)Hi .

2.2.2 Portfolio sale fractions

Each investor has to sell a fraction xi of his portfolio such that his original leverage

ratio is re-established. That is, xi has to satisfy Li(2) = Li(0) =⇒ di−xiHi
(1−xi)Hi = di

Ai
.

Solving for xi yields the portfolio sale fraction

xi = min

[
Ai −Hi

Hi

× di
Ai − di

, 1

]
where Hi ≡

M∑
j=1

hi,jpj and Ai ≡
M∑
j=1

hi,j (2.2.1)

Note that we impose a minimum portfolio sale fraction of 1, because in our model an

investor cannot sell more than 100% of his portfolio.

2.2.3 Price response

Equilibrium prices in turn depend on the volume of �re sales. The percentage change

in price for each asset is linearly decreasing in the percentage of each asset put up for

sale by all investors in aggregate. The slope of the linear price response is regulated

by a liquidity parameter δj for each asset. That is, δj =
%∆Qj
%∆pj

.4 I interpret the

change in price in the usual way as %∆pj =
pj−sj
sj

. The change in quantity is taken

to mean the percentage of each asset put up for sale by all investors in aggregate, so

%∆Qj = −
∑N
i=1 hi,jxi∑N
i=1 hi,j

. Solving for pj I obtain the price response

pj = sj −
sj
δj

(∑N
i=1 hi,jxi∑N
i=1 hi,j

)
(2.2.2)

Note that the price response depends on the level of equilibrium portfolio sales, and

vice versa.

2.2.4 Equilibrium �re-sale prices

Equilibrium in this model is a set of portfolio sale fractions {xi} and prices {pj} that
satis�es simultaneously the leverage requirement embodied by the portfolio sale fraction

sell their assets pro rata can be challenged. Hau and Lai (2012) report that investors su�ering losses
during the �nancial crises of 2008 tended to liquidate their least a�ected assets over assets that su�ered
larger losses. However, in previous work (Geertsema, 2011) I considered an alternative speci�cation in
which investors liquidate assets in their portfolio in descending order of the percentage losses su�ered
on each asset. (Investors �rst sell the asset with the smallest loss, then the asset with the second-
smallest loss, and so forth). Using simulated data I demonstrated that the numerical equilibrium
prices obtained using each of the two approaches are similar (correlations between the prices exceeded
98% in the simulated data). Therefore, in this paper I retain the assumption that the assets in each
investor's portfolio are sold pro rata.

4This de�nition is congruent with the price elasticity concept from economics
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equation (2.2.1) for each investor and the price response requirement for each asset as

per equation (2.2.2). In earlier work (see chapter 1) I proved that such an equilibrium

exists, that it is unique and that it can be calculated numerically using the method

of successive approximations. In this setting, that means starting with the initial set

of shocked prices and then iteratively applying �rst the portfolio sale fraction formula

and then the price response formula until convergence is achieved (convergence being

guaranteed by the proof).

It should be stressed that this model is a conditional model, not a general asset pricing

model. The model assumes that an exogenous price shock creates conditions under

which leveraged investors become forced sellers. Equilibrium �re-sale prices re�ect the

pattern of asset holdings, the leverage of investors and the price response of assets.

In short, the model reviewed here yields hypothetical prices that would obtain in a

setting where a negative market shock caused investors to become forced sellers. At

the same time prices are decreasing in the volume of forced assets put up for sale. The

interaction between forced selling and negative price response yields the model equi-

librium prices. The obvious question is � does the model work? Is there a relationship

between model �re-sale returns and realised returns? To answer that question I �rst

need to calculate model �re-sale prices; the next section explains this step in more

detail.

2.3 Data

2.3.1 Model inputs

To test the model I need to calculate model �re-sale prices. This requires knowledge

of the pattern of asset ownership, investor leverage and asset liquidity. The model we

consider is essentially a single period multi-asset model. It generates a vector of model

prices at a given point in time, based on the model inputs. It is understood that all

model inputs can change over time, even if they are not explicitly time subscripted.

Asset holdings

For asset holdings I turn to the Thompson Reuters 13F Institutional Ownership data-

base (previously the Spectrum database, hereafter the 13F data). The 13F data is

based on mandatory quarterly SEC form 13F �llings. Under US securities law institu-

tional investors with holdings of US equity securities in excess of USD 100mn have to

declare their holding on a quarterly basis. This requirement applies even if the investor

is not resident in the United States; as long as the investor conducts business in the

US the requirement applies. The dataset starts in 1980 and continues to the present.

Inevitably, the 13F dataset is not ideal. Most glaringly, it only covers some investors

(institutions with more than USD100mn of US equities under management) and some
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assets (US equities). In contrast, the model theoretically applies to all investors and all

assets. That said, the data can be considered reasonably reliable, if incomplete, given

that �lling 13F forms is a statutory requirement for those investors subjected to its

requirements. This also allays potential concern about the reporting bias that plague

some other databases. There are, nonetheless, a number of housekeeping issues that

need to be addressed before the 13F data can be used � these are discussed in more

detail in subsection 2.7.1 in the Appendix.

Debt

It is more di�cult to obtain data about the level of debt of each investor. I take a

pragmatic approach and estimate an �imputed� level of debt for each investor based on

their historical behaviour. If an investor tends to sell as markets decline we take the

view that they are behaving �as if� they are leveraged, whether or not they actually

are. This interpretation is consistent with the role of debt in the theoretical model

as a mechanism by which a negative price shock translates into forced sales. Such an

approach also allows me to sidestep the problem of how to take into account derivatives

(which can incorporate high levels of economic leverage without showing up as debt

on a balance sheet). I explain the process of estimating imputed debt from investor

behaviour in detail in the Appendix in subsection 2.7.2. For robustness checks, see

subsection 2.4.5.

Liquidity

As for the price response, I estimate the liquidity parameter (δ) for each quarter based

on prices and volumes over the past 250 trading days. The detail of the estimation is set

out in subsection 2.7.3 in the Appendix. It is well-known that liquidity is a predictor of

expected return in the cross-section (see for instance, Amihud, Mendelson and Pedersen

(2005)). Therefore, there is a possibility that any predictability we observe using model

�re-sale prices might be driven, at least in part, by the estimated liquidity used as a

model input. I deal with this concern in two ways. First, in robustness checks I use

a constant liquidity parameter in calculating model �re-sale prices.5 It turns out that

the results are essentially the same when I use a constant liquidity parameter. Second,

I include Amihud illiquidity as a control variable in my tests. Again, the results that

I obtain (including those where I use a constant liquidity parameter) are robust to the

inclusion of Amihud illiquidity as a control variable.

5In robustness checks I consider constant liquidity parameters δ = 1.5, δ = 2, δ = 2.5 and δ = 5.
See subsection 2.4.5.
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Shocked price

In the model assets are subjected to a negative exogenous shock such that prices are

reduced to their shocked level sj � 1.6 I impose a common shock across assets and

time. For simplicity I assume s = 0.9; this equates to a 10% negative price shock given

that all initial prices are normalised to unity in the model.7 The use of a constant shock

means that model �re-sale prices should be interpreted as the hypothetical model price

that would obtain if all assets su�ered the same negative return.

Model �re-sale prices and returns

I calculate model �re-sale prices at each quarter for each asset based on the 13F holdings

data for that quarter and the imputed debt levels calculated for each investor based

on their behaviour over the previous 4 years (16 quarters).8 Fire-sale prices are then

calculated numerically using the model parameters (for more detail, refer to subsections

2.7.1 to 2.7.3 in the Appendix):

model
[
{Hi,j(t)}, {d̂i(t)}, {δ̂j(t)}, {sj = 0.9}

]
→ {pFSj,t }

I de�ne the model �re-sale return of an asset as the hypothetical instantaneous raw

return that would obtain if the current price pj,t of asset j dropped to the �re-sale

price pFSj,t , so r
FS
j,t ≡

pFSj,t −1

1
= pFSj,t − 1 (recall that initial model prices are normalised to

unity). I then subtract the annualised risk free rate rf for the quarter (divided by 4) so

the model �re-sale return is expressed as a quarterly excess return. Therefore, rFSj,t ≡
pFSj,t − 1 − rf

4
. Note that the model �re-sale return rFSj,t incorporates only information

up to time t. (In this chapter all returns are excess returns, unless otherwise noted).

2.3.2 Independent variables and controls

The dataset consists of 112 quarters (from 1982Q1 to 2010Q4) with an average of c.

7000 stocks in each quarter. This gives around 780,000 realised return observations in

total. The principal variables of interest are described below.

The realised quarterly excess total return (�return�) is calculated from CRSP monthly

total returns compounded over each quarter, less the quarterly risk free rate [rj,t ≡
rtotalreturnj,t − rft

4
]. The model �re-sale return (�fsreturn�) is the instantaneous ex-

cess return implied by the calculated model �re-sale price [rFSj,t ≡
pFSj,t −1

1
− rf

4
=

pFSj,t − 1 − rft
4
]. The Amihud illiquidity measure is denoted �ailliq� (see Amihud,

6The notation � indicates that sj ≤ 1 for all j and sj < 1 for at least some j. Recall that initial
prices are normalised to 1 in the model.

7In my robustness checks I also consider negative shocks equivalent to price drops of 5%, 15% and
30%. See subsection 2.4.5.

8In robustness checks I also consider 8 quarter and 24 quarter estimation windows. See subsection
2.4.5.
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Mendelson and Pedersen (2005)). This is equal to the average (over 250 trading

days) of the absolute daily total return divided by the dollar daily trading volume.

[ailliqt = 1
250

∑t
s=t−250

|rs|
V olumes×ps ]. Volatility (�volatility�) is the realised daily re-

turn volatility (not annualised) over the quarter. The CAPM beta (�capmbeta�) is

estimated using an OLS regression of excess security returns on excess market re-

turns using monthly data and a 60 month rolling window. Market capitalisation

(�mktcap�) is the capitalisation (in USD billions) of the �rm at the end of the

quarter [mktcapt = pt × SharesOutstanding(bn)t]. The book-to-market ratio is de-

noted by �b2m�. I use reported equity as the measure of book value, then calcu-

late the book to market ratio as the ratio of �rm equity to market capitalisation

[b2mt = BookEquityt
MarketCapitalisationt

]. Weighted average investor debt (�wadebt�) is calculated

as the average debt-to-asset (namely, leverage) ratio for a given asset, weighted by the

holdings of each investor in that asset [wadebtt,j =
∑N
i=1 Li(0)hi,j∑N

i=1 hi,j
]. The weighted average

investor leverage is used as a control variable to address a potential endogenous clien-

tele e�ect (discussed in more detail later). Finally, the estimated liquidity parameter

δt (�liquidity�) is calculated as explained in the Appendix in sub-section 2.7.3.

2.3.3 Model �re-sale returns

Summary statistics are provided in Table 2.1. Note that explanatory and control

variables are lagged by one period. Using lagged explanatory variables allows me to

sidestep potential endogeneity issues and to characterise the cross-sectional relationship

between lagged variables and realised returns as predictive rather than explanatory.

Table 2.1: Summary statistics

count mean sd min max

rt 786,602 0.0309 0.3241 -1.0004 18.3317

rt−1 756,402 0.0336 0.3187 -0.9855 18.3318

rFSt 755,510 -0.1354 0.0479 -0.9935 -0.1000

rFSt−1 726,686 -0.1359 0.0481 -0.9935 -0.1000

capmbetat−1 495,882 0.9830 0.6744 -0.9264 4.0454

mktcapt−1 756,402 1.0251 3.6909 0.0005 52.2902

b2mt−1 644,862 1.1377 3.7408 -5.1535 104.1262

ailliqt−1 687,917 0.0000 0.0000 0.0000 0.0004

volatilityt−1 756,221 0.0339 0.0251 0.0027 0.2366

wadebtt−1 756,402 0.4124 0.3902 0.0000 0.9000

liquidityt−1(δt−1) 756,402 5.1753 7.4262 1.0100 20.0000

The pairwise correlations between the variables are set out in Table 2.2. A few are
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worth discussing. Note the high positive correlation (0.7) between �re-sale return and

lagged �re-sale return. This suggests that model �re-sale return is highly persistent

over time, unlike realised return9. Persistence in model �re-sale return is a mechanical

consequence of persistence in the model inputs. Asset holdings typically evolve slowly

and imputed debt is estimated using an 16-quarter rolling window. Also of interest is

the negative correlation between model �re-sale return and weighted average investor

debt. This suggests that higher average investor debt is associated with lower (more

negative) model �re-sale returns � consistent with the �re-sale model discussed earlier.

A word about weighted average investor debt: it is plausible that high-leverage investors

might endogenously elect to invest in high risk, high expected return assets (a clientele

e�ect). If so one might question whether any predictability attributed to model �re-sale

returns are not in fact due to this clientele e�ect. I address this concern by including

weighted average investor debt as a control variable. This provides some comfort that

the results I obtain are not merely driven by clientele e�ects.

Figure 2.3.1 shows a histogram of model �re-sale returns over the entire sample. The

setup of the model (strictly negative shocks, no short sales, positive asset holdings

only) means that model �re-sale returns are always negative and are bounded above

by the initial shock of -10%.

9As expected, the time-series variation in �re-sale returns is relatively low. The mean time-series
standard deviation of �re-sale returns (averaged across stocks) is 0.02 compared to the mean �re-sale
return of -0.13.
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Figure 2.3.1: Histogram of model �re-sale return (rFS)

The model �re-sale return � rFS � is calculated according to the model outlined in section 2.2 and
discussed in detail in chapter 1. Because of the model set up and associated assumptions, model �re-
sale prices will range between the initial shock (-10%) and total loss (-100%). The histogram below
shows the distribution of the model �re-sale return across the entire dataset, comprising of 755,510
observations.
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2.4 Conditional predictability

2.4.1 Hypothesis

Ideally our model of �re sales should have something to say about the realised pattern

of �re sales. However, our model cannot predict when a �re-sale episode will occur. It

simply predicts what would have happen if a �re-sale episode occurred. So the model

is conditional in the sense that it only holds in the context of a systemic negative price

shock. To make this operational, I assume that a large market downturn (de�ned as

a 10% quarter-to-quarter drop or more in the S&P 500 index) is a su�cient negative

systemic price shock.10 At the same time the multi-asset nature of the model means

that it is essentially a model of the cross-section of asset returns. Therefore, we have a

conditional cross-sectional model that naturally leads to a conditional cross-sectional

hypothesis.

10Hereafter I use the terms market downturn or market distress as a shorthand for �a quarter during
which the S&P 500 index su�ered a negative total return of 10% or more�.
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Hypothesis 1

Model �re-sale returns predict the cross-section of realised returns during a market

downturn.

Perhaps the most straightforward approach to testing this hypothesis11 is to conduct

cross-sectional regressions during each market downturn to see how well model �re-sale

returns predict realised returns; the results of this approach are set out below.

2.4.2 Cross-sectional tests

I consider the following cross-sectional regression at time t, conditional on a market

downturn in quarter t

rj,t = α + βFSt rFSj,t−1 + [controlsj,t−1] + εj,t

Under the null hypothesis that model �re-sale returns have no explanatory power for

subsequent realised returns, one would expect to �nd βFSt = 0.

As noted earlier, I restrict myself to examining those quarters in which a market down-

turn took place. For example, the S&P 500 su�ered a drop of 16% over 2001Q3. Thus

I regress the realised excess return of each asset for the quarter ended 2001Q3 against

the model �re-sale return for that asset as calculated based on asset holdings data

for the previous quarter (2001Q2). Loosely speaking, this is a test of the ability of

the �re-sale model to predict the cross-section of future returns conditional on market

distress in the future. In the period covered by the data I identify 10 market distress

quarters.12 The results of these conditional cross-sectional regressions are set out in

Table 2.3 (Panel A). I �nd that the model �re-sale coe�cient (βFSt ) is signi�cant at

a 1% con�dence level in 9 out of 10 of these quarters (the remaining observation is

signi�cant at a 10% con�dence level). Save for the �rst quarter, the model �re-sale

coe�cient is consistently positive, suggesting a positive relationship between model

�re-sale returns and realised returns over the subsequent quarter. This relationship is

economically signi�cant, with the model �re-sale coe�cient averaging 0.30 across all

the 9 positive coe�cient quarters13. Put di�erently, a 10% cross-sectional di�erence

in the model �re-sale return predicts a 3% cross-sectional di�erence in realised return

over the subsequent distressed quarter.

11In keeping with the approach commonly adopted in the empirical �nance literature, I state the
alternative hypothesis (that there is predictability) rather than the null hypothesis (that there is no
predictability). Hence my empirical tests are conducted under the null hypothesis that �re-sale returns
do not predict subsequent realised returns.

12For the record, these 10%+ market distress quarters are 1987Q4, 1990Q3, 1998Q3, 2001Q1,
2001Q3, 2002Q2, 2002Q3, 2008Q4, 2009Q1 and 2010Q2.

13While the R2 statistics are low, that does not in itself preclude economic signi�cance. This is
borne out by the results in the next section, where I show that a hedge portfolio comprising of a long
position in �re-sale safe securities and a short position in �re-sale risky securities generates excess
returns of between 5% and 7% on a quarterly basis.
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Panels B to D in Tables 2.3 to 2.5 include the Fama & French factors as well as the

Amihud illiquidity measure, realised historical volatility and weighted average investor

debt as controls. When including all the controls in Panel D (see Table 2.5) the

coe�cient on the lagged model �re-sale return is still positive in 9 out of 10 regressions

and positive and signi�cant in 8 out of 10 regressions.
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2.4.3 Sorted portfolio tests

Next I turn to sorted portfolios. Again, I consider only market distress quarters. For

each quarter t I rank stocks on their lagged (t − 1) model �re-sale returns and sort

them into �ve quintiles, such that quintile 1 contains the lowest (most negative) 20%

of model �re-sale returns and quintile 5 contains the highest (least negative) 20% of

model �re-sale returns. I then take the equal-weighted average of realised quarter t

returns to construct a portfolio return for each quintile. This allows me to construct a

�high minus low� portfolio that is long the quintile 5 portfolio and short the quintile 1

portfolio. Portfolio 5 corresponds to those stocks with the least negative model �re-sale

returns - the �safest� stocks. Similarly, portfolio 1 corresponds to those stocks with the

most negative model �re-sale returns, namely, the �riskiest� stocks. Thus we would

expect portfolio 5 (the safe portfolio) to outperform portfolio 1 (the risky portfolio)

in market downturns. Therefore, the �high minus low� portfolio formed by going long

the safe portfolio 5 and shorting the risky portfolio 1 should produce positive returns

in market downturns. This turns out to be the case in 9 out 10 quarters experiencing

market distress, as shown in Figure 2.4.1.
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Figure 2.4.1: High minus low (portfolio 5 - portfolio 1) realised portfolio returns

(sorted by lagged model �re-sale return, market distress quarters only)

This graph plots the return, in each of the 10 quarters during which the S&P500 index decreased by
10% or more, of a portfolio formed by going long the 20% of stocks with the lowest model �re-sale
returns and shorting the 20% of stocks with the lowest model �re-sale return in the prior quarter.
Therefore, the portfolio is essentially long �model �re-sale safe� stocks and short �model �re-sale risky�
stocks.
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This pattern is reinforced by the mean portfolio returns reported in Table 2.6. The

mean portfolio realised returns are monotonically increasing in the lagged model �re-

sale return quintiles, suggesting that lagged model �re-sale returns are indeed positively

related to subsequent realised returns during market downturns. The �safe� stocks of

portfolio 5 outperform the �risky� stocks of portfolio 1 by around 7% per quarter on

average over the 10 market distress quarters (5.3% per quarter on a market weighted

basis). The di�erence between the quintile 5 and quintile 1 mean returns are signi�cant

at the 1% level for both equal weighted and market weighted portfolios14. Interestingly,

most of the di�erence is between portfolios 4 and 5, particularly in the case of value

weighted portfolios. This suggest that only the very ��re-sale safest� securities confer

14Note, while I show the signi�cance of the returns for portfolios 1 to 5, I do not rely on those
results. Rather, I focus on the di�erence between the lowest and highest quintiles, where testing
against a null of zero di�erence is economically sensible.
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signi�cant protection, or alternatively, that even a modest amount of �re-sale risk

translates into realised losses during distressed market episodes.

Table 2.6: Conditional HML excess returns � sorted by lagged model �re-sale return

I report statistics relating to the model �re-sale return portfolio, calculated using both equal weights
and market weights. The model �re-sale return portfolio is formed by going long the 20% of stocks
with the highest model �re-sale returns and shorting the 20% of stocks with the lowest model �re-sale
returns in the prior quarter. In this table only the 10 quarters in which the S&P500 index decreased
by 10% of more are considered. Signi�cance levels are calculated using Newey West HAC adjusted
standard errors and are indicated with * ( p<0.1), ** (p<0.05) and *** (p<0.01).

Equal weighted lfsreturn HML portfolio timeseries statistics

mean sd n skew min max

1 -0.1800*** 0.0855 10 0.0381 -0.3112 -0.0588

2 -0.1732*** 0.0906 10 0.2021 -0.2914 -0.0356

3 -0.1674*** 0.1050 10 0.1267 -0.3095 -0.0059

4 -0.1461*** 0.1167 10 0.4510 -0.3061 0.0718

5 -0.1090** 0.1347 10 0.1340 -0.3204 0.1330

hml 0.0710*** 0.0639 10 0.0282 -0.0487 0.1918

Market weighted lfsreturn HML portfolio timeseries statistics

mean sd n skew min max

1 -0.1260*** 0.0556 10 -0.8383 -0.2256 -0.0541

2 -0.1189*** 0.0501 10 -0.4769 -0.2137 -0.0468

3 -0.1124*** 0.0691 10 -0.1528 -0.2330 -0.0243

4 -0.1101*** 0.0724 10 0.4533 -0.2268 0.0301

5 -0.0731*** 0.0747 10 -0.6114 -0.2128 0.0172

hml 0.0529*** 0.0391 10 0.3811 0.0044 0.1149

In short the sorted portfolio evidence supports the notion that model �re-sale returns

predict realised returns in a conditional sense. Combined with the cross-sectional

results discussed earlier, this suggests that model �re-sale returns are conditionally

predictive of the cross-section of realised returns in US stocks.

2.4.4 Power and size of tests

Overall the results appear to be signi�cant and suggests that our tests are not lacking

in power. However, we still need to consider the size of our tests. That is, can our

tests properly discriminate against the null hypothesis of no relationship between the

explanatory variables and realised returns. If not, then we cannot rely on these tests

to reject the null.
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To address this concern, I perform a Monte Carlo study. The approach and detailed

results are set out in the Appendix. In short I �nd that all of the tests are of su�cient

size to reject the null hypothesis when it is true.

2.4.5 Robustness

In calculating model �re-sale prices, there are a number of model parameters that I

either �x or estimate. To ensure that the results obtained are not driven by a particular

choice of model parameter, I recalculate model �re-sale prices using several alternate

parameter values. In short, I �nd that the results do not qualitatively change based

on the choice of model parameter values. Choices of parameter values are set out in

Table 2.7, each identi�ed by a unique �Run� name. I start by specifying a base set of

parameter values (see the �rst line of Table 2.7) � the �Base� run. The parameters for

the �Base� run use a 10% negative shock (so sj = 0.9 for all assets, see �Shock� in the

table), an estimated liquidity factor (see �Liquidity� in the table, described more fully in

subsection 2.7.3 in the Appendix ), a 16 period moving average for estimating imputed

debt (�DebtMA� in the table, described more fully in subsection 2.7.2 in the Appendix)

and zero debt for the �rest-of-the-world� assets not owned by investors covered by the

13F data set (�DebtRoW� in the table). I then systematically choose higher and lower

values for each of these parameters in alternative model �re-sale calculation runs. In

one case (run �b_rowe�) I estimate the rest-of-the-world debt level just as I do for

individual investors, rather than assuming a �xed leverage percentage.

Table 2.7: Robustness � choices of model parameters

Run Shock Liquidity DebtMA DebtRoW Comment

b 0.9 EST 16 0 Base run

b_s70 0.7 EST 16 0 Shocked price = 0.70 (vs 0.90 in Base)

b_s85 0.85 EST 16 0 Shocked price = 0.85 (vs 0.90 in Base)

b_s95 0.95 EST 16 0 Shocked price = 0.95 (vs 0.90 in Base)

b_l15 0.9 1.5 16 0 Liquidity = 1.5 (vs estimated in Base)

b_l20 0.9 2 16 0 Liquidity = 2 (vs estimated in Base)

b_l25 0.9 2.5 16 0 Liquidity = 2.5 (vs estimated in Base)

b_l50 0.9 5 16 0 Liquidity = 5 (vs estimated in Base)

b_row2 0.9 EST 16 0.2 Rest-of-world debt is 20% of assets (vs 0 in Base)

b_ma8 0.9 EST 8 0 Debt estimated with 8 quarters (vs 16 in Base)

b_ma24 0.9 EST 24 0 Debt estimated with 24 quarters (vs 16 in Base)

High-level results for each of the robustness checks in are summarised in Table 2.8.

Qualitatively the results presented earlier continue to hold. To help in the interpreta-

tion of these results, I discuss the results for run �b_s70� in detail - this corresponds

to the forth row in Table 2.8. In this run, we consider a systematic shocked price of

0.7 instead of 0.9 as in the base case. Put another way, we impose an exogenous neg-
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ative shock of 30% instead of the 10% assumed throughout this paper and in the base

scenario. The remaining cells in the forth row of Table 2.8 provide summaries of key

results presented earlier in the paper. The second column (labelled �Cross-sectional

coe�cients�) contains a count of the positive and signi�cant coe�cients on the lagged

�re-sale return in each of 10 cross-sectional regressions documented in Tables 2.3 to

2.5. There are four numbers, each corresponding to a particular regression speci�c-

ation. The �rst number, 10, indicates that the regression coe�cient on the lagged

�re-sale return was positive and signi�cant in 10 out of 10 cross-sectional regressions

following the speci�cation as set out in panel A of Table 2.3. The last number, 7,

indicates that the regression coe�cient on the lagged �re-sale return was positive and

signi�cant in 7 out of 10 cross-sectional regression following the speci�cation as set out

in panel D of Table 2.5.

The rest of Table 2.8 reports on the results of equal weighted portfolios sorted into

quintiles using the lagged �re-sale return, considering only distressed quarters. The

�rst of these remaining columns, labelled �Mean of sorted portfolio returns�, contain

the mean realised excess returns of the portfolios. It shows that, using the �re-sale

return calculated on the assumption of a negative shock of 30%, the 20% of stocks

with the lowest �re-sale return (namely, the most �risky� stocks) su�ered a loss of 18%

subsequently; on the other hand, the 20% of stocks with the highest �re-sale return

(namely, the �safest� stocks) su�ered a loss of 10.9% by comparison. The next column,

labelled �Monotonic?�, simply records whether the mean sorted portfolio returns are

monotonic. A monotonic pattern in mean realised returns of sorted portfolios is gen-

erally taken as evidence that the sorting variable has explanatory power with regards

to the realised returns. The next column, labelled �Mean� records the mean realised

excess return to a portfolio that is long the top 20% of stocks and short the bottom

20% of stocks, when sorted on the lagged �re-sale return. This means that, over the

10 distressed quarters in our dataset, investors holding the portfolio just described

would have earned a return of 7.05% per quarter (not annualised) on average. The last

column, labelled �Positive (of 10)� counts the number of distressed quarters (out of a

total of 10) during which the same portfolio would have generated a positive return.

Empirical results at the individual stock level might be driven by small market cap-

italisation stocks, which collectively make up only a very small fraction of the total

stock market capitalisation. To verify that my results are not driven by these �mi-

cro� stocks, I re-perform my analysis after removing any stocks below the bottom 20%

NYSE market capitalisation breakpoint for each quarter. I �nd that the results are

not signi�cantly a�ected when removing these small stocks from the sample.

It is interesting to consider how similar the model �re-sale returns calculated under

di�erent assumptions are. To answer this question, I considered the pairwise correlation

between base �re-sale return and the �re-sale returns generated under each of the ten

alternative model input assumptions as described in Table 2.7. The result of this
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analysis is presented in Table 2.9. The �rst column shows the correlation of the �re-

sale return generated under the base model assumptions (run �b�) with the �re-sale

return generated under each of the alternate robustness assumptions (runs �b_s70�

to �b_ma24�). The correlations range from 0.99 (for negative shocks of 5% and 15%

instead of the 10% negative shock in the base scenario) to 0.81 (when estimating the

�re-sale price using debt estimated over 8 quarters instead of 16 quarters in the base

scenario). Although the model �re-sale return is clearly sensitive to the exact model

assumptions used in calculating it, it does appear to share a substantial commonality

with �re-sale returns calculated using di�erent assumptions.

Table 2.9: Correlation matrix � �re-sale returns under alternate robustness assump-

tions

b b_s70 b_s85 b_s95 b_l15 b_l20 b_l25 b_l50 b_row2 b_ma8 b_ma24

b 1.00

b_s70 0.96 1.00

b_s85 0.99 0.98 1.00

b_s95 0.99 0.92 0.98 1.00

b_l15 0.84 0.80 0.84 0.84 1.00

b_l20 0.84 0.79 0.83 0.84 1.00 1.00

b_l25 0.84 0.78 0.83 0.85 1.00 1.00 1.00

b_l50 0.84 0.77 0.82 0.85 0.98 0.99 1.00 1.00

b_row2 0.95 0.91 0.94 0.94 0.72 0.72 0.72 0.71 1.00

b_ma8 0.81 0.85 0.82 0.78 0.66 0.65 0.65 0.64 0.76 1.00

b_ma24 0.87 0.83 0.86 0.87 0.75 0.75 0.75 0.75 0.80 0.69 1.00

2.5 Asset pricing tests

2.5.1 Hypothesis

If we accept that assets with high ex ante model �re-sale risk experience larger losses

during market downturns, it is reasonable to ask if model �re-sale risk is priced. There

is theoretical support for the idea that assets subjected to higher model �re-sale risk

should yield a higher expected return (namely, that model �re-sale risk should be

priced). In the Wagner (2011) model investors are reluctant to invest in assets held by

�liquidation-prone� investors. In times of market distress liquidation-prone investors

tend to all have to sell assets at the same time, giving rise to a �re sale in such

assets. Therefore, investors rationally demand a premium ex-ante for holding assets

disproportionately held by liquidation-prone investors. In contrast to my conditional

model of �re sales, the Wagner (2011) model is a fully �edged unconditional asset

pricing model in which the ��re-sale premium� arises endogenously. Hence there is

an argument that �re-sale return should be a priced risk, both on theoretical grounds

and based on the empirical evidence presented earlier, showing that assets with high

79



model �re-sale risk su�er disproportionately in market downturns. That leads us to

the second hypothesis:

Hypothesis 2

Model �re-sale returns are priced.

2.5.2 Cross-sectional tests

If model �re-sale return is a priced risk factor, then stocks with low �re-sale returns

(high model �re-sale risk) should have comparatively higher expected returns. As-

suming average realised return is a proxy for expected return, that implies low model

�re-sale returns should be associated with high excess realised returns. If model �re-sale

return is a priced risk, we would expect to �nd a negative and signi�cant coe�cient on

the lagged �re-sale return, that is, βFSt < 0 in the cross-sectional predictive regression

below.

rj,t = α + βFSt rFSj,t−1 + [controlsj,t−1] + εj,t

As in the conditional predictability section, in di�erent speci�cations I control for

the Fama & French characteristics as well as Amihud illiquidity, historical volatility

and weighted average investor debt. The results are set out in Figure 2.5.1. To aid

interpretation, the coe�cients associated with market distress quarters are indicated by

a large dot, while routine quarters are indicated by a square. A cursory examination

reveals that there appears no consistent or dominant pattern in the cross-sectional

lagged model �re-sale return coe�cient. Although the model �re-sale return coe�cient

is mostly signi�cant in speci�cation 1 (rj,t = α + βFSt rFSj,t−1 + εj,t), the sign of the

coe�cient is unstable. In speci�cation 4 I include all the controls � when I do so far

fewer lagged model �re-sale return coe�cients remain signi�cant. Among those that

do remain signi�cant there does not appear to be a dominant sign. On the whole the

cross-sectional evidence does not support the notion of model �re-sale returns as a

priced risk.
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2.5.3 Panel data tests

Next I turn to panel data tests. The basic regression speci�cation is

rj,t = α + βFSrFSj,t−1 + [controlsj,t−1] + εj,t

If model �re-sale risk is a priced risk factor, then the coe�cient βFS should be negative

and signi�cant. (A low �re-sale return implies high �re-sale risk and thus ought to be

compensated for by a high realised return on average.)

As before, I consider alternate speci�cations in which I control for the Fama & French

characteristics (CAPM beta, size, book-to-market) as well as Amihud illiquidity, his-

torical volatility and weighted average investor debt. I also consider the e�ect of adding

a dummy variable (crash), set equal to 1 if the S&P500 index decreased by more than

10% in a given quarter. Finally, I include an interaction term consisting of the product

of the lagged model �re-sale return and the crash dummy variable. The intent is to

better understand how return predictability is conditioned on market distress. After

including these terms the speci�cation becomes:

rj,t = α + βFSrFSj,t−1 + [controlsj,t−1] + βCrashcrasht + βFSCrash
(
crasht × rFSj,t−1

)
+ εj,t

I follow the guidance in Petersen (2008), adjusting standard errors by clustering along

both time and stock dimensions using the method set out in Thompson (2011) (see

also Cameron, Gelbach and Miller (2011) for a more general discussion of multi-way

clustered standard errors). The results are set out in Table 2.10.

I �nd that the lagged model �re-sale return coe�cient is not signi�cant in any of the �rst

four speci�cations, and in addition is positive rather than negative as would be expected

if model �re-sale returns were priced as a risk factor. The next four speci�cations

include the crash dummy variable and the crash×�re-sale return interaction term. The
model �re-sale return is negative in all four speci�cations and signi�cant (at the 5%

level) in three of the speci�cations � consistent with model �re-sale risk being priced.

At the same time, the crash×�re-sale return interaction term is positive and signi�cant

(at the 10% level) in all four speci�cations � consistent with the earlier evidence that

model �re-sale risk predicts realised returns conditional on market distress.

Taken together, the results suggests that model �re-sale risk might be priced (the

negative coe�cient for rFSj,t−1 in the last four speci�cations) but that the premium

investors demand is insu�cient to compensate fully for the actual losses incurred during

market downturns (the positive coe�cient for the crasht×rFSj,t−1 interaction term). This

could explain why the model �re-sale return is negative and not signi�cant in the �rst

four speci�cations, in which I do not explicitly control for the crash dummy or the

crash×�re-sale interaction term.
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In short, the panel data evidence for model �re-sale return as a priced risk factor is

suggestive but not persuasive.

Table 2.10: Panel regression of realised return on lagged model �re-sale return and

lagged controls

This table shows the results of panel data regressions at the individual stock level. The basic re-
gression, applicable to speci�cations (1) through (4), is rj,t = α + βFSrFSj,t−1 + [controlsj,t−1] + εj,t.
I regress stock realised excess return (rj,t) on the previous quarter model �re-sale return for that
stock (rFSj,t−1). Speci�cations (2) to (4) add stock-level controls to speci�cation (1). (The con-
trol variables are discussed in detail in section 2.3.) Speci�cation (5) extends speci�cation (1) by
adding the crash dummy variable (crasht), equal to 1 if the S&P500 decreased by 10% or more
in the quarter and otherwise is zero. I also interact the lagged model �re-sale return (rFSj,t−1)
with the crash dummy (crasht) in speci�cation (5). Speci�cations (6) to (8) add controls to
speci�cation (5). Thus the regression model for speci�cations (5) to (8) can be summarised as
rj,t = α + βFSrFSj,t−1 + [controlsj,t−1] + βCrashcrasht + βFSCrash(crasht × rFSj,t−1) + εj,t. All con-
trols are lagged by one quarter relative to the dependent variable and winsorized at the 1% level to
account for the e�ect of possible outliers. Signi�cance levels are indicated with * ( p<0.1), ** (p<0.05)
and *** (p<0.01) and are based on 2-way clustered standard errors as per Thompson (2011), following
the guidance in Petersen (2008).

(1) (2) (3) (4) (5) (6) (7) (8)

spec1 spec2 spec3 spec4 spec1c spec2c spec3c spec4c

b/t b/t b/t b/t b/t b/t b/t b/t

rFSt−1 -0.059 -0.015 -0.094 -0.063 -0.206** -0.165 -0.265*** -0.242**

(-0.50) (-0.11) (-0.78) (-0.47) (-2.10) (-1.53) (-2.66) (-2.20)

capmbetat−1 -0.000 -0.004 -0.001 -0.008

(-0.07) (-0.69) (-0.12) (-1.47)

mktcapt−1 -0.001*** -0.001** -0.001*** -0.000

(-2.70) (-2.23) (-2.68) (-1.42)

b2mt−1 0.002*** 0.002*** 0.002*** 0.002***

(2.97) (2.91) (3.72) (3.69)

ailliqt−1 699.021*** 584.411** 560.371** 411.899*

(2.71) (2.56) (2.22) (1.91)

volatilityt−1 0.207 0.326 0.454 0.689*

(0.52) (0.73) (1.19) (1.72)

wadebtt−1 -0.001 0.001 -0.010 -0.009

(-0.02) (0.06) (-0.45) (-0.44)

crasht -0.139*** -0.130** -0.129** -0.129**

(-2.77) (-2.32) (-2.52) (-2.39)

rFSt−1 × crasht 0.437* 0.450* 0.513** 0.504*

(1.89) (1.67) (2.17) (1.96)

Const 0.021 0.034* 0.008 0.016 0.021 0.031* 0.000 0.006

(1.28) (1.89) (0.33) (0.53) (1.35) (1.94) (0.01) (0.23)

Adj R-sqr 0.0001 0.0008 0.0028 0.0038 0.0338 0.0359 0.0374 0.0406

N 726,686 420,822 670,151 420,815 726,686 420,822 670,151 420,815

2.5.4 Sorted portfolio tests

An alternative approach for testing whether model �re-sale return is a priced risk is to

create quintile portfolios sorted on the lagged model �re-sale return. Below I show the

next period portfolio returns for portfolios sorted on the model �re-sale return in the

current period. The mean realised returns for each of the sorted portfolios are tabulated

in Table 2.11. Recall that portfolio 1 refers to the portfolio formed from the 20% of
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stocks with the most negative model �re-sale returns (therefore, these are the ��re-

sale risky� stocks); similarly portfolio 5 is formed from the 20% of assets with the least

negative model �re-sale returns (and thus these are the ��re-sale safe� stocks). If model

�re-sale risk is priced, we would expect investors to require an additional premium for

holding those stocks. Again assuming realised returns proxy for expected returns on

average, this should result in portfolio 1 having the highest mean realised return and

portfolio 5 having the lowest mean realised return. Thus, the model �re-sale return

high-minus-low portfolio should generate a negative return if model �re-sale return is a

priced risk. This is not what I �nd; instead, the model �re-sale return high-minus-low

portfolio mean return is positive for equal weighted and market weighted portfolios, as

is evident in Table 2.11 (column �mean�)

Table 2.11: Lagged �re-sale return quintile portfolio excess returns

I report statistics relating to model �re-sale return portfolios, calculated using both equal weights
and market weights. The high-minus-low model �re-sale return portfolio is formed by going long the
20% of stocks with the highest model �re-sale returns and shorting the 20% of stocks with the lowest
model �re-sale returns in the prior quarter. This table is based on the full dataset. The last four
columns report the alpha of time series regressions controlling for common time-series risk factors.
The time series regressions are in the form rFireSaleHML

t = α+[TimeSeriesControlst]+εt; note that
rFireSaleHML
t denotes the realised return of the model �re-sale portfolio in the current quarter t but
is formed on the basis of the model �re-sale return in the prior quarter t− 1. �CAPM-α� controls for
the contemporaneous market excess return, �3F-α� additionally controls for the Small-minus-Big and
High-minus-Low portfolio returns of Fama and French (1993), �4F-α� additionally controls for the Up-
minus-Down momentum portfolio (as described in Carhart (1997)). Finally, �All-α� controls for all the
controls in 4F-α as well as long-term reversal, short-term reversal and Pástor and Stambaugh (2003)
liquidity innovations. Signi�cance levels are calculated using Newey West HAC adjusted standard
errors and are indicated with * ( p<0.1), ** (p<0.05) and *** (p<0.01).

Equal weighted lfsreturn HML portfolio timeseries statistics

mean sd n skew min CAPM-α 3F-α 4F-α All-α

1 0.0299*** 0.1117 111 -0.1626 -0.3112 0.0086 0.0055*** 0.0094*** 0.0104***

2 0.0310*** 0.1177 103 -0.0218 -0.2914 0.0086 0.0068*** 0.0110*** 0.0113***

3 0.0313*** 0.1248 103 0.0456 -0.3095 0.0084 0.0077*** 0.0099*** 0.0091***

4 0.0300*** 0.1200 103 0.0579 -0.3061 0.0091 0.0080*** 0.0110*** 0.0100***

5 0.0313*** 0.1182 100 0.0660 -0.3204 0.0138 0.0123*** 0.0116** 0.0096*

hml 0.0009 0.0716 100 0.5457 -0.1972 0.0045 0.0063 0.0014 -0.0014

Market weighted lfsreturn HML portfolio timeseries statistics

mean sd n skew min CAPM-α 3F-α 4F-α All-α

1 0.0467*** 0.0878 111 -0.2203 -0.2256 0.0292*** 0.0285*** 0.0286*** 0.0294***

2 0.0515*** 0.0882 103 -0.1676 -0.2137 0.0337*** 0.0340*** 0.0341*** 0.0335***

3 0.0694*** 0.1327 103 3.0010 -0.2330 0.0475*** 0.0532*** 0.0439*** 0.0437***

4 0.0598*** 0.1060 103 0.9203 -0.2268 0.0402*** 0.0420*** 0.0390*** 0.0382***

5 0.0609*** 0.1135 100 2.4531 -0.2128 0.0439*** 0.0459*** 0.0375*** 0.0372***

hml 0.0146* 0.0726 100 3.5918 -0.1424 0.0150** 0.0175** 0.0089* 0.0084

The sorted portfolio approach might be misleading if the sorting variable (in this case

lagged model �re-sale risk) is correlated with other potential pricing factors. In that
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case the sorted portfolios might have realised returns that appear to be due to the

sorting variable while the di�erence in realised returns could in fact be explained by

di�erences in some unmodelled risk factor between the portfolios. I deal with this

possibility by conducting a time-series regression of the model �re-sale high minus low

portfolio returns on a range of standard time series risk factor returns. First, I control

for the market excess return using the speci�cation

rFireSaleHML
t = α + βMKTMKTt + εt

where rFireSaleHML
t represents the excess return of the model �re-sale high minus low

portfolio. The alpha is positive for equal weighted and market weighted portfolios

(see column �CAPM-α� in Table 2.11). Because a priced risk factor should generate a

negative alpha for our portfolio, this does not support a priced risk interpretation. In

addition, I control also for the Fama and French three factor model (�3F-α� in Table

2.11) and the Carhart four factor model (�4F-α� in Table 2.11). Again, alphas are

positive for equal weighted and market weighted portfolios. Finally, column �All-α� in

Table 2.11 controls for all four of the Carhart factors and long-term reversal, short-term

reversal and Pástor and Stambaugh (2003) liquidity innovations. The alpha is negat-

ive for equal weighted portfolios, but at 0.14% is both economically and statistically

insigni�cant. For market weighted portfolios, the alpha is positive.

Based on the sorted portfolio evidence model �re-sale risk does not appear to be a

priced risk; at the very least, any premium does not appear to compensate, on average,

for realised losses incurred in episodes of market distress. I conclude that there is

insu�cient evidence to support the hypothesis that model �re-sale return is a priced

risk factor.

2.6 Conclusion

Two stylised facts emerge from the evidence presented in this chapter. First, model

�re-sale return appears to be a valid proxy for �re-sale risk. It positively predicts

realised returns conditional on market distress. Second, although �re-sale risk appears

real, I am unable to �nd substantial evidence of it being priced in the market. There

are several reasons why this might be the case. Participants in the market might not

be able to assess �re-sale risk at the individual asset level (perhaps they are not aware

of it; perhaps the cost of estimating the risk outweighs the perceived bene�ts). Or

possibly �re-sale risk is priced, but we lack su�cient data to detect the e�ect, which

would suggest that even if priced, the �market price of �re-sale risk� might be small.

Of equal importance is the �nding that the pattern of asset holdings and investor

constraints, as incorporated in the model �re-sale return, translates into realised returns

during times of market distress. This has implications for investors, risk managers and
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regulators. Investors need to be aware that, in a distressed market, much of the price

dynamics of assets might be driven by ownership patterns and investor constraints.

It appears that, historically, this risk has not been priced. But perhaps it should

be? Similarly, risk managers might want to re�ect on the possibility that the overall

�riskiness� of an asset might be determined not only by the inherent riskiness of the

asset, but also by the �riskiness� of the investors holding that asset. This argues for

vigilance when investing in �crowded� asset classes or trading strategies, particularly

those that hold appeal to leveraged investors. Finally, regulators have an interest

in preserving the integrity of markets � which includes reducing the frequency and

severity of �re-sale episodes. The �ndings in this chapter suggest that a combination

of overlapping holdings and binding investor constraints (such as might be induced

by excessive leverage) can exacerbate market downturns and lead to additional �re-

sale driven losses. Markets might be made more robust by policy measures that reduce

forced sales by investors during market downturns. For instance, lower leverage, higher

liquidity bu�ers, longer term �nancing and redemption lockout provisions might all help

reduce forced investor selling in market downturns.
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2.7 Chapter 2 Appendix

2.7.1 Thompson Reuters 13F data problems

There are several problems that need to be addressed before the 13F data can be used.

I summarise here the steps I took to address these problems.

Manager number's are recycled

Thompson Reuters reuses manager numbers. This means that manager numbers can-

not be relied on to uniquely identify an investor through time. However, Brian Bushee's

website15 provides hand-crafted permanent id's (at an annual frequency), matched to

the Thomson Reuters manager numbers. This allows researchers to substitute perman-

ent id's for the unreliable Thompson Reuters manager numbers.

Legacy CUSIP

Thompson Reuters uses legacy CUSIP's - so where CUSIP's have changed, this is not

re�ected in the records. This means the Thomson Reuters CUSIP cannot be used to

match to other datasets where the CUSIP identi�ers are kept current (such as CRSP).

To handle this I use the historical CUSIP in CRSP � this can be used to link to the

current CUSIP, which can then be used to link to CRSP market data.

Manager / Quarter combination can have several entries

This re�ects the fact that managers can �le updates and corrections for a given re-

porting date. Therefore, for a given combination of Manager and reporting quarter

(RDATE), there might be several �lings (FDATE entries). I use only the �rst �ling

date holdings. Usually the �rst �ling will contain the bulk of the holdings data, with

subsequent �lings used to correct mistakes.

Stock splits are not correctly accounted for

RDATE is the actual reporting date, while FDATE is the date that the report is �led.

If a stock split happens between RDATE and FDATE, holdings will be misstated. To

deal with this I use the CRSP shareholdings as of FDATE.

Reported prices for the same CUSIP are not the same across all managers

in the same quarter

Di�erent prices may be recorded in the 13F data set for the same assets at the same

point in time by di�erent managers. Note, if an asset did not trade, the manager has

some discretion as to where the asset is marked. To ensure consistent prices, I use the

15http://acct.wharton.upenn.edu/faculty/bushee/IIclass.html
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CRSP closing price instead of the individually disclosed prices as per the Form 13F

�llings.

2.7.2 Investor debt estimation

The approach is to impute a level of �debt� to each investor based on their historical

behaviour. The drawback of this approach is that there is no guarantee the imputed

level of debt has any bearing on actual debt levels. That said, the purpose of debt in

the theoretical model is to regulate the degree to which a negative portfolio return is

translated into fractional asset sales. Because we are modelling behaviour, perhaps it

is not unreasonable to calibrate our model to past behaviour. Of course, we are likely

to end with fairly noisy estimates of debt. The bene�ts of this approach is that it can

be implemented with the data available, it generates a debt measure that varies across

time and cross-sectionally and it sidesteps problems that otherwise bedevil estimates

of leverage (such as embedded leverage in derivatives such as swaps, futures, options,

high-beta stocks). In addition it encompasses behaviour consistent with (but distinct

from) leverage, such as sales driven by investor fund withdrawals, changes in funding

conditions, etc.

Going back to the theory, investors must sell a su�cient fraction of their portfolio to

re-establish their original leverage, that is Li(2) = Li(0)

or, recalling that Li(0) = di
Ai

and Li(2) =
di−fsi Hi
(1−fsi )Hi

di − fiHi

Hi − fiHi

=
di
Ai

Recall that Hi ≡
∑M

j=1 hi,j(0)pj(1) is the value of the investor's old (pre-sales) portfolio

at new prices and Ai ≡
∑M

j=1 hi,j(0)pj(0) is the original value of the investor's portfolio

at the old prices. Rewrite by introducing Gi as the total value realised from selling

assets at the new prices pj(1)

Gi ≡ fiHi =
M∑
j=1

(hi,j(1)− hi,j(0)) pj(1)

Therefore, we have

di −Gi

Hi −Gi

=
di
Ai

Solving for the level of debt di we obtain

di =
GiAi

Ai −Hi +Gi
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In the rest of the discussion we drop the investor subscript i (it being understood that

we are in each case estimating the debt of a speci�c investor) and add a time subscript

t to emphasise the time dependence of our calculated debt dt.

dt =
GtAt

At −Ht +Gt

I then estimate d̂t by taking the average of dt over a rolling 16 quarter window
16.

d̂t ≡
1

16

16∑
τ=1

dt−τ+1

The calculated d̂t theoretically range from negative in�nity to positive in�nity. As a

practical matter, I use the truncated debt dt such that debt is truncated at zero and

90% of the investor's assets17.

dt = max(0,min(0.9Ai, d̂t))

2.7.3 Liquidity estimation

In the broadest sense, the liquidity of a security relates its change in price (linearly) to

the change in quantity supplied. I equate �quantity supplied� with the volume traded

in the market. I start with the notion of liquidity as a price elasticity, given by the

basic relationship

δj = −%∆Qj

%∆pj

Note that %∆pj is just the one-period price return of asset j, which we denote as

rj. Because all initial prices are normalised to unity, it follows that the associated

trading volume should be measured in dollars. Therefore, the change in quantity can

be interpreted in this context as the dollar volume of shares that traded, so ∆Qj =

DollarV olumej and by extension, %∆Qj =
DollarV olumej
MarketCapj

. This yields (after some

rearranging)

δj = − rj
DollarV olumej

× 1

MarketCapj
16In robustness checks I also consider an 8 quarter (2 year) rolling window and a 24 quarter (6

year) rolling window.
17It seems reasonable to insist that there is no such thing as negative debt. In addition, if an

investor is presently part of the set of investors, it appears reasonable to assume such an investor is
not currently bankrupt.
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To obtain an estimate of the liquidity parameter I take a rolling window average of the

last 250 trading days (approximately one year)18. Dropping the asset subscript j and

introducing a time series subscript t yields

δ̂t ≡
1

250

250∑
τ=1

δt−τ+1

I then truncate these estimates to lie within the range [1.1, 10]. (The theoretical model

requires δj ≥ 1)

δt = max(1.1,min(10, δ̂t))

2.7.4 Monte Carlo study

In this sub-section I consider the �size� of the conditional predictability tests conducted

in section 2.4. In short, I conduct a Monte Carlo study to create a distribution of test

outcomes under the null hypothesis that realised returns are random noise uncorrelated

with any explanatory variables. I then compare the results of the tests obtained using

real data to see if it is signi�cantly di�erent from that expected under the null.

Given that all the tests are conditional on market distress, I model the uncorrelated

random returns by drawing them from a normal distribution with the same mean and

standard deviation as those of realised excess return in downturns. (In downturns

the mean realised excess return is -15.25% with a standard deviation of 0.2954.) Our

simulated returns under the null hypothesis then follows:

ri = ε, ε ∼ N(µ = −0.15, σ = 0.29)

In each simulation I replace the actual realised excess returns in the full sample of

downturn quarters (comprising of 73,666 observations) with returns drawn from the

normal distribution described above. I then proceed to perform the tests in exactly

the same manner as before. I complete a total of 1,000 simulations: the results are

set out in table 2.12. For comparison I also include the equivalent metrics obtained

by applying the same tests to actual data. As demonstrated in the table, the actual

results exceed the 95th percentile of simulated results by a wide margin. This provides

evidence that the tests of section 2.4 has su�cient size to reject the null hypothesis.

18Since the supply of stock could in principle exceed the actual amount traded (volume) the es-
timated liquidity parameter δj might be under-estimated. However, I show in the robustness section
that the main results continue to hold even if we use a constant liquidity parameter.
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Chapter 3

Extreme Stocks

Abstract

Autocorrelation of log stock prices predicts stock returns in US data. Stocks

with autocorrelation coe�cients substantially above or below unity outperform

the market in the subsequent month by 40-50bp. This outperformance is robust

to a wide range of previously documented risk factors and stock characterist-

ics, including the Fama & French factors, long and short-term reversal and mo-

mentum. The outperformance of stocks with autocorrelation substantially below

unity is highly persistent, earning statistically signi�cant excess returns in every

subsequent month up to 25 years post-formation. Analysis of returns around

earnings announcements suggest that this persistence cannot be attributed to

biased investor expectations.

3.1 Introduction

Autocorrelation of log-prices predicts future realised returns in US stocks. The top and

bottom deciles of stocks sorted on prior period autocorrelation1 generate mean excess

returns of 125 basis points and 118 basis points per month respectively, compared with

a mean excess return of 71 basis points for the remaining middle quintiles. This outper-

formance is statistically signi�cant and remains so after controlling for standard time

series risk factors such as the Fama & French factors, long and short-term reversal,

liquidity and momentum. I �nd similar statistical and economic signi�cance in pre-

dictive panel data regressions at the individual stock level, even after controlling for up

to 12 stock-level characteristics in various speci�cations. Intriguingly, this outperform-

ance is highly persistent for stocks with low autocorrelations but not for stocks with

high autocorrelations. On average the lowest decile autocorrelation stocks continue

to outperform in every post-formation month, up to a horizon of 25 years. This re-

mains the case even after controlling for the common time-series risk factors mentioned

1In this paper, �autocorrelation� means the �rst order autoregressive coe�cient estimated on the
natural logarithm of prices using the time series OLS regression ln(Pt) = βln(Pt−1) + εt.
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above. Such a persistent return premium is suggestive of a potential priced risk factor

not captured by the other standard time series risk factors. However, preliminary work

has not uncovered a convincing relationship with macroeconomic state variables that

might motivate such an interpretation.

This chapter is inspired by recent work on the dating of �nancial asset bubbles. In

particular, Phillips, Wu and Yu (2011) (hereafter PWY) develop a new econometric

approach for dating the origination and collapse of asset bubbles. In doing so the au-

thors are able to accurately date the bubble phase in the NASDAQ index as originating

in July 1995 and collapsing in March 2001. In a related paper Phillips and Yu (2011)

apply a similar approach to dating bubbles in house prices, crude oil prices and bond

spreads in the run-up to the sub-prime crises.

If it is indeed possible to accurately identify bubbles in real time it raises the question

whether such knowledge can be used to engage in pro�table trading. This intuition

is pursued by Guenster, Kole and Jacobsen (2012); their bubble signal is based on

prolonged and accelerating deviations of realised industry returns from the returns

predicted by standard models such as the Fama & French 3-factor model (Fama and

French, 1993) and the Carhart 4-factor model (Carhart, 1997). They show that �riding

bubbles�, as they term it, is a pro�table strategy when applied to US industry portfolio

returns, even after allowing for a reasonable degree of investor risk aversion.

I consider whether an approach in the spirit of PWY can be used to predict returns at

the individual stock level. In so doing I deviate from PWY in a number of important

respects. First, the motivation in PWY is to conduct statistical inference on a partic-

ular price time series with a view to date the inception and collapse of a bubble. By

contrast I do not consider whether the autocorrelations I estimate at the individual

stock level are statistically signi�cant; instead, I am interested in whether such point

estimates of autocorrelation have predictive power in the cross-section of stock returns.

Second, I deviate from PWY in that my estimate of autocorrelation corresponds to a

substantially simpler equivalent unit root test than is used by PWY.

It is tempting to argue that the predictive power of autocorrelation is based on some

underlying economic foundation. For instance, one might argue that deviations from

the canonical random walk paradigm might signal to investors that such (deviant)

stocks are somehow unusual and therefore more �risky�. The problem is that it is

di�cult to see how a simple economic story can simultaneously account for the fact

that upward deviations from the pure random walk norm are transient while downward

deviations are highly persistent. This suggests that the true economic explanation may

in fact be di�erent for upwards and downwards deviations from the pure random walk

norm. Rather than trying to �t a �pro-forma� theory to match the empirical �ndings

in this Chapter, I instead opt to delve deeper into the characteristics of those stocks

with estimated autocorrelations outside the normal range. As I discuss in sub-section

3.3.4, stocks with relatively low autocorrelation look a lot like �distressed value� stocks
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while stocks with relatively high autocorrelation look a lot like �risky growth� stocks.

This intuition may help guide further research into the ultimate economic foundation

of the predictability documented here.

The approach taken in this chapter is therefore decidedly empirical. In this respect I am

following a well-established tradition in the �nance literature of documenting empirical

�puzzles�, �anomalies� and �regularities�. Much of this empirical �nance literature is

not concerned with direct statistical tests of speci�c theoretical models. Nonetheless,

these �ndings highlight features in the data not accounted for by existing theory. It

also serves as an impetus for the development of new theory, capable of explaining

such anomalies and regularities. One of the premier examples in the empirical �n-

ance literature is momentum, as �rst documented by Jegadeesh and Titman (1993).

In documenting the momentum e�ect Jegadeesh and Titman (1993) did not rely on

hypothesis derived from any particular theory. But their work has motivated a large

body of subsequent theoretical literature that seeks to explain their results. A more

recent example of this empirical approach is the work of Han and Zhou (2012). In their

article, the authors show that a trend factor � based on a signal derived from historical

price moving averages � has explanatory power in the cross-section and is robust to

the usual factors including momentum.

The relevance of the momentum e�ect to this paper is conceptual rather than empirical;

I show that the predictive power of autocorrelation is independent of, and robust

to, momentum.2 The conceptual similarity between autocorrelation and momentum

derives from the fact that both factors can be estimated directly from past price history

with relative ease. Whereas momentum is essentially the average geometric return

based on past prices, my estimate of autocorrelation is a measure of the deviation from

a random walk in logged prices.

The rest of this chapter is set out as follows: in section 3.2 I de�ne autocorrelation,

section 3.3 describes the data, section 3.4 presents sorted portfolio evidence while

section 3.5 presents panel data evidence. In section 3.6 I present the evidence on

return persistence for low autocorrelation stocks. Section 3.7 discusses the results of

various robustness checks, while section 3.8 concludes. The Appendix is contained in

section 3.9.

3.2 Autocorrelation

In this section I de�ne the term autocorrelation as used in this paper; I also explain

how autocorrelation is related to unit root tests, random walks and exponential price

growth.

2As shown in Table 3.2, the pair-wise correlation between autocorrelation and 6-month momentum
is 0.15, which suggest that they constitute distinct empirical e�ects.
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Let Pt be the price of some asset at discrete time intervals indexed by t and denote by

pt ≡ ln(Pt) the natural logarithm of the price of such an asset at time t. Now consider

some time-series window such that we cover w time periods3 starting at tk−w+1 and

ending at tk inclusive, such that tk−w+1 ≤ t ≤ tk. The autocorrelation coe�cient ρ

over that window can then be estimated by the following OLS regression

pt = ρpt−1 + εt for tk−w+1 ≤ t ≤ tk (3.2.1)

Because this is a univariate OLS regression without an intercept, the autocorrelation

coe�cient ρ can be calculated directly using the following formula (Hamilton (1994),

page 475)

ρ̂ =

tk∑
s=tk−w+1

ps−1ps

tk∑
s=tk−w+1

p2
s−1

(3.2.2)

In the special case of ρ = 1 we obtain a pure random walk in log-prices:

pt = pt−1 + εt

Therefore the estimated autocorrelation coe�cient ρ can be interpreted as a measure

of the degree to which a log-price series over a given window follows a pure random

walk. If ρ > 1 then the price series will be increasing exponentially (and hence is

termed explosive) while ρ < 1 implies exponential decay, both of which are deviations

from a pure random walk. This insight is, of course, the basis of unit root testing. To

see this consider the following regression speci�cation derived from equation (3.2.1)

pt = ρpt−1 + εt

pt − pt−1 = ρpt−1 − pt−1 + εt

∆pt = (ρ− 1)pt−1 + εt

∆pt = βpt−1 + εt where β ≡ ρ− 1 (3.2.3)

The regression speci�cation derived above is in fact an augmented Dicky-Fuller (ADF)

test for unit roots on the log-price time series where we assume a zero intercept, no

deterministic time trend and no lags (see Dickey and Fuller (1979))4.

3In estimating autocorrelation I use w = 24 or 24 monthly observations. I consider alternate
windows and observation frequencies in the robustness section.

4To make this clear, consider the general speci�cation of the ADF test for a time series {yt}. The
augmented Dicky-Fuller test �ts the following regression using OLS: ∆yt = α+βyt−1 +δt+ζ1∆yt−1 +
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Consistent with Phillips, Wu and Yu (2011) I use the natural logarithm of prices (or

more concisely, log-prices). To see what this means for prices, it is instructive to re-cast

equation (3.2.1) in pre-log prices Pt (ignoring the error term εt)

pt = ρpt−1

ept = eρpt−1

eln(Pt) = eρln(Pt−1)

Pt = eln(P ρt−1)

Pt = P ρ
t−1

Contrast this with the usual de�nition of a price return

Pt = (1 + r)Pt−1

In other words the estimated autocorrelation coe�cient ρ induces growth in prices Pt

by raising the prior price Pt−1 by a power equal to ρ. If ρ = 1 the price does not

change - this corresponds to r = 0. Thus while conventional returns induce geometric

growth in prices, the estimated autocorrelation coe�cient ρ induces exponential growth

in prices.

3.3 Data and descriptive statistics

My primary dataset consists of all US stocks contained in the CRSP monthly data �le

between 1926m1 and 2013m12 inclusive, comprising of 3,871,825 non-missing return

observations. Prior to performing subsequent analysis (and consistent with standard

practise in the empirical �nance literature) I drop all observations where a) the security

is not a domestic US common stock (CRSP share code 10 or 11) in the previous month,

b) the price is below $5 dollars at the end of the previous month and c) the market

capitalisation of the security is below the 5% NYSE size percentile at the end of the

previous month. This leaves 2,028,477 non-missing return observations.

3.3.1 Autocorrelation

To calculate autocorrelation I apply equation (3.2.2) to individual stocks over 24-month

rolling windows5. Prior to doing so, I adjust all stock prices by dividing them by the

... + ζk∆yt−k + εt. Assume that there is no intercept (α = 0), no deterministic time trend (δ = 0)
and zero lags (ζk = 0 for all k), then the regression becomes ∆yt = βyt−1 + εt. Now if we assume the
time series under consideration is the natural logarithm of the asset price such that yt = pt = ln(Pt),
then we obtain ∆pt = βpt−1 + εt as per equation 3.2.3.

5I consider alternative windows and frequencies in the robustness section
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CRSP cumulative factor to adjust for prices (CFACPR) � this eliminates price dis-

continuities because of stock-splits and other corporate actions. After the �ltering

described above, this yields 1,750,404 estimates of autocorrelation (sometimes abbre-

viated as �ac� in the results). These estimates start in January 1928 and end in June

2013 (inclusive). As expected, autocorrelation is centred on unity with a sample mean

of 0.999 and standard deviation of 0.027; its distribution approximates the standard

bell curve shape of the normal distribution (see Figure 3.3.1). Autocorrelation is itself

highly auto-correlated, with pair-wise correlations around 0.959; this is not surprising,

given that it is estimated by overlapping rolling-window regressions.6 As a matter of

convenience, I use the term �explosive� to describe stocks with a comparatively high

level of autocorrelation (at an average of 1.017 in the top quintile) and the term �decay-

ing� to describe stocks with a comparatively low level of autocorrelation (at an average

of 0.973 in the bottom quintile).

Figure 3.3.1: Histogram of estimated autocorrelation

Histogram of autocorrelation (�ac�), as described in more detail in sub-section 3.3.3. The histogram
on the right excludes all autocorrelations outside the interval [0.9, 1.1] in order to provide more detail
on the central part of the distribution. This summary excludes any stocks below $5, stocks below the
5% NYSE cut-o� and any stocks that are not common domestic US stocks (i.e., stocks that do not
have a stock code of 10 or 11 in CRSP) in the prior month. Monthly estimates of autocorrelation
start in January 1928 and end in June 2013 (inclusive).
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3.3.2 Realised returns

The dependent variable in my tests of return predictability is the realised excess stock

return (�eret�), which I calculate as the raw monthly CRSP total return (RET) less the

monthly risk free rate (see sub-section �Time-series variables� below). In the robust-

ness section I also consider alternate measures of realised return. These are raw total

returns (�ret�), total returns excluding dividends (�retx�), excess returns excluding di-

6In robustness tests I also calculate monthly autocorrelation using daily data in each month, so
monthly autocorrelation in that setup is calculated using non-overlapping estimation windows. Then
I �nd that autocorrelation has a pair-wise autocorrelation of 0.306.
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vidends (�eretx�) and delisting adjusted excess returns (�dleret�, calculated following

the approach in Beaver, McNichols and Price (2007)).

3.3.3 Control variables

A summary of autocorrelation and the various control variables is presented in Table

3.1, hereafter referred to simply as �the dataset�.

Table 3.1: Summary data

Summary data for excess returns (�eret�), autocorrelation (�ac�) and the control variables described
in more detail in sub-section 3.3.3. This summary excludes any stocks below $5, stocks below the 5%
NYSE cut-o� and any stocks that are not common domestic US stocks (i.e., stocks that do not have a
stock code of 10 or 11 in CRSP) in the prior month. Note that both ac and the control variables are
lagged by one month relative to excess returns, the dependent variable. The variables from capmbeta
to coskew (inclusive) are winsorized at the 1% level to account for the in�uence of possible outliers.
Monthly estimates of autocorrelation start in January 1928 and end in June 2013 (inclusive).

count mean sd min max

ac 1,750,404 0.9986 0.0273 0.0522 1.3759

ret 2,028,477 0.0102 0.1266 -0.9813 6.4074

eret 2,023,094 0.0066 0.1267 -0.9830 6.4030

capmbeta 1,380,321 1.0859 0.5905 -1.6287 4.7171

size 2,036,592 1.2127 4.1678 0.0002 56.5078

b2m 1,368,809 0.7637 0.8267 0.0127 56.7900

momentum 1,949,745 0.0103 0.0492 -0.3627 0.4545

pe 1,393,013 14.1429 43.9122 -399.7877 456.1538

turnover 1,930,732 0.9117 1.4058 0.0000 48.7967

illiq 1,818,550 0.0000 0.0000 0.0000 0.0073

ivol 2,073,785 0.0212 0.0166 0.0000 0.3652

coskew 1,380,321 -0.0221 0.2491 -1.2437 1.6078

rating 376,234 9.8341 3.7377 1.0000 23.0000

prevret 2,014,953 0.0090 0.1250 -0.8940 7.9231

prev24mret 1,735,354 0.0136 0.0256 -0.1234 0.5856

l2price 1,954,986 38.4028 947.9842 5.0000 159,000.0000

The following is a concise description of the stock level control variables I use.

The CAPM beta (�capmbeta�) is estimated using an OLS regression of monthly excess

stock returns on the market excess return over rolling 60-month windows.

Size (�size�) is the market capitalisation calculated as the end of month stock price

times the number of shares outstanding, in billions of US dollars.

Book-to-market or �b2m� is the ratio of the book value of equity to the market cap-

italisation of the �rm. To calculate book value, I follow the de�nition from Kenneth

99



French's website7. That is, I calculate the di�erence between quarterly total assets

(ATQ)8 and total liabilities (LTQ), subtract preferred and preference stocks (PSTKRQ)

(if not missing), then add deferred taxes and investment tax credits (TXDITCQ)

(again, if not missing). Finally, I set all negative resulting book values equal to missing.

Jegadeesh and Titman (1993) momentum is calculated as the monthly compounded

total return over the previous six months, and is denoted, predictably, as �momentum�

in the results.

The price-to-equity ratio or �pe� is calculated as the end of month stock price divided

by the most recent earnings per share. I calculate earnings per share by dividing the

sum of the trailing 4 quarters of income (IBQ) by the total number of shares issued as

of the most recent quarter (CSHOQ).

Trading turnover (�turnover�) is the monthly volume of shares traded (CRSP �VOL�,

in units) divided by the number of shares outstanding (CRSP �SHROUT�) at the end

of the month. In other words, it is the percentage of outstanding shares that traded in

that month.

The Amihud measure of illiquidity or �illiq� (Amihud, 2002) is the average over the

preceding 12 months of daily data (sourced from the CRSP daily �le) of the ratio of

the daily absolute return over the daily dollar volume of trading. More succinctly,

illiq = Σ |rt|
Pt·volumet . I discard any measures of illiquidity estimated with less than 120

daily ratios over the past 12 months.

Idiosyncratic volatility (�ivol�) is calculated following Ang et al. (2006) as the standard

deviation of the residuals of a Fama & French style OLS regression (rt− rft = βMktRf ·
MktRft + βHML · SMBt + βHML ·HMLt + εt) on daily excess returns in each month.

I discard estimates of idiosyncratic volatility where I have fewer than 10 observations

in a given month.

Following Harvey and Siddique (2000) coskewness (�coskew�) is calculated over a

rolling 60-month window as

coskew =
E
[
εCAPM · εMarket

]√
E
[
(εCAPM)2] · E [(εMarket)2

]
where the E[·] operator represents the time-series mean over the window, εCAPMt is

the CAPM monthly OLS regression residual and εMarket
t ≡ rMarket

t − E[rMarket] is the

demeaned market return.

Ratings (�rating�) are sourced from the COMPUSTAT long term S&P issuer rating

(�SPLTICRM�) and is transformed into an ordinal number such that "AAA" → 1,

"AA+" → 2 and so on, all the way down to "D" → 23 (full default). Note that I

7http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
8I include the relevant COMPUSTAT variables in parenthesis where relevant.
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am able to obtain ratings for only 376,234 observations (post �ltering) � however, that

accounts for approximately 70% of market capitalisation across all time periods and

stocks in the data.

The previous period excess return is indicated by �prevret� and �prev24mret� de-

notes the average excess return over the previous 24 months.

Finally, �l2price� is the unadjusted9 price of the stock, twice lagged. (Excess return,

my dependent variable in tests of return predictability, is calculated directly by ref-

erence to the current price and the once-lagged price � to avoid econometric issues, I

therefore use the twice-lagged price as a proxy for the general price level of a stock.)

The following variables are winsorized at 1%: capmbeta, size, b2m, momentum, pe,

turnover, illiq, ivol and coskew. In return predictability tests all explanatory and con-

trol variables in this chapter are lagged by one month relative to realised excess return,

both in panel data regressions and sorted portfolio tests. This allows me to character-

ise the relationship between the explained variable and the explanatory variables as

�predictive� � it also mitigates endogeneity issues that might otherwise arise.

In Table 3.2 I present the correlation matrix of the variables discussed above. Excess

returns (�eret�) exhibit low correlation with both autocorrelation and the stock-level

control variables. Autocorrelation is also, on the whole, weakly correlated with the

control variables. The correlations between autocorrelation and the control variables

are less than 10% in absolute terms, with the exception of momentum (0.15) and book-

to-market (-0.13). (Again note that autocorrelation and all the stock-level control

variables are lagged by one month relative to excess returns.)

3.3.4 Stock characteristics of decaying and explosive stocks

It might be instructive to consider how the di�erent stock characteristics relate to

autocorrelation. In Table 3.3 I summarise various stock characteristics after pre-sorting

the dataset into autocorrelation quintiles. Doing so allow me to investigate relationships

that might not be be revealed by simple pair-wise correlations. Quintile 1 stocks, which

I label �decaying�, consist of those stocks with the lowest 20% of autocorrelations in

a particular month. These decaying stocks have an average autocorrelation of 0.973

versus a mean of 0.999 across all stocks. Quintile 5 stocks are labelled �explosive�; these

are the 20% of stocks with the highest autocorrelations in a particular month. Excess

returns (�eret�) are highest for decaying and explosive stocks � a result I will discuss

in more detail in the next section.

9Note, unlike the prices used to estimate autocorrelation, this price is not adjusted for corporate
actions using the CRSP cumulative factor to adjust prices (�CFACPR�).
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Table 3.3: Mean (equal-weighted) stock characteristics by autocorrelation quintile

This table presents mean stock characteristics of interest in each of �ve quintiles sorted on autocorrel-
ation (�ac�). The stock characteristic variables are described in more detail in sub-section 3.3.3. The
data this table is based on excludes any stocks below $5, stocks below the 5% NYSE cut-o� and any
stocks that are not common domestic US stocks (i.e., stocks that do not have a stock code of 10 or 11
in CRSP) in the prior month. Note that both ac and the control variables are lagged by one month
relative to excess returns (�eret�). The variables from capmbeta to coskew (inclusive) are winsorized
at the 1% level to account for the in�uence of possible outliers.

Autocorrelation ("ac") quintile

Stock characteristic Decaying 2 3 4 Explosive

ac 0.9730 0.9970 1.0012 1.0052 1.0168

eret 0.0087 0.0065 0.0065 0.0068 0.0103

capmbeta 1.2510 1.0391 0.9799 1.0239 1.1556

size 0.6662 1.4427 1.7693 1.6952 1.1455

b2m 0.9666 0.9189 0.8149 0.6948 0.5328

momentum -0.0050 -0.0012 0.0072 0.0164 0.0373

pe 9.1457 13.3076 14.5015 15.5845 18.2598

turnover 0.9942 0.7504 0.7027 0.7950 1.1908

illiq 1.3600 1.2900 1.1300 1.0500 1.0500

ivol 0.0230 0.0182 0.0165 0.0172 0.0208

coskew -0.0111 -0.0147 -0.0176 -0.0289 -0.0388

rating 11.6582 9.1255 8.4880 9.0629 11.0529

l2price 23.1986 44.7597 53.1847 42.9041 37.2458

The results in Table 3.3 can be summarised as follows: momentum and P/E ratio are

increasing in autocorrelation while book-to-market, illiquidity and coskewness are de-

creasing in autocorrelation. The remaining stock characteristics do not follow a simple

linear relationship. As seen earlier, autocorrelation-sorted excess returns follow a �U�-

shaped pattern with the decaying and explosive stocks generating higher excess returns

than the middle quintiles. The same �U�-shaped pattern also holds for CAPM beta,

rating, turnover and idiosyncratic volatility. As for size, the decaying and explosive

stocks tend to be smaller than average � an inverted �U�-shaped pattern. This also ap-

plies to twice-lagged price; the stocks in the highest and lowest autocorrelation deciles

have lower stock prices than average. These patterns hint at something � decaying

and explosive stocks are �extreme� stocks exactly because they stray from the middle-

of-the-road random walk. Those stocks most likely to stray are smaller stocks (size),

stocks sensitive to market shocks (capmbeta), volatile stocks (ivol) and �nancially/-

operationally leveraged or distressed stocks (rating). However, decaying and explosive

stocks are not extreme in the same way; decaying stocks have low P/E and high book-

to-market ratios while the reverse holds for explosive stocks. In other words, decaying

stocks look a lot like distressed �value� stocks while explosive stocks look a lot like risky

�growth� stocks.
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3.3.5 Time-series variables

In time-series regressions I control for seven factors, all sourced from Kenneth French's

data library10. The market excess return (�MktRf�) is the return on the market less the

risk free rate. The Fama & French factors and the momentum factor retain their con-

ventional names (�SMB� is Small-Minus-Big, �HML� is High-Minus-Low and �UMD� is

Up-Minus-Down). I also control for Pástor and Stambaugh (2003) liquidity innovations

(�PSLiq�), short term reversal (�STRev�) and long term reversal (�LTRev�).

3.3.6 Macroeconomic variables

In panel regressions I consider the following macroeconomic indicators, all at a monthly

frequency: investor sentiment (orthogonalised), as per Baker and Wurgler (2006),

NBER recessions (coded as a monthly dummy variable: 1 = recession), corporate

bond credit spreads (Aaa - Baa), term spread (10-year treasury yield minus the 1-year

treasury yield), US industrial production growth and US unemployment (all sourced

from the Federal Reserve Bank of St. Louis, save for sentiment).

3.4 Portfolio sorts

3.4.1 Single sorts

Can stock-level autocorrelation predict realised returns? To answer this question I turn

to sorted portfolios; the results are summarised in Figure 3.4.1. I sort stocks into decile

portfolios (cross-sectionally in each month) using the prior month autocorrelation es-

timate for each stock. Strikingly, the decile 1 and decile 10 portfolios show much higher

realised excess returns and Sharpe ratio's than the remaining middle decile portfolios.

The value-weighted mean portfolio excess return for deciles 1 and 10 are around 100

basis points per month; this contrasts with the remaining deciles, which average around

40 to 70 basis points per month. (The results for equal-weighted portfolios are similar,

if slightly stronger). The results in Figure 3.4.1 suggest that extreme autocorrelations

in past log price history � whether low or high � are associated with higher realised

excess returns in the following period.

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 3.4.1: Decile portfolio mean excess returns, sorted on lagged autocorrelation

(value weighted)

This �gure shows value-weighted mean monthly excess return (in basis points) for decile portfolios
sorted on autocorrelation (lagged one month) and annualised Sharpe ratios calculated from the mean
and standard deviation of monthly excess returns.
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Of course, this pattern may simply result from systematic di�erences in risk between

decile portfolios. Perhaps autocorrelation, as I estimate it, is somehow correlated with

other priced risk factors? If so, this might at least partially explain the pattern of excess

returns observed in Figure 3.4.1. To isolate the in�uence of known risk factors from

autocorrelation I turn to formal tests of time-series alphas. The results are summarised

in Table 3.4.

My methodology follows the standard approach in the literature. I calculate monthly

excess returns for each decile portfolio sorted on prior month autocorrelation. Portfo-

lio 1 corresponds to decaying stocks (low autocorrelation) and portfolio 10 corresponds

to explosive stocks (high autocorrelation). The �middle� portfolio consists of deciles

2 through to 9 inclusive. The decaying hedge portfolio or �p1mm� (portfolio 1 minus

middle) is formed by going long portfolio 1 and going short the middle portfolio in

equal measure. Similarly, the explosive hedge portfolio or �p10mm� (portfolio 10 minus

middle) is formed by going long portfolio 10 and going short the middle portfolio

in equal measure. Table 3.4 reports summary statistics (mean, standard deviation,

Sharpe ratio, skewness and minima) for each decile portfolio and for the hedge port-

folios. I calculate mean returns using equal weights (�rst panel) and market weights

(second panel). My decision to include results for both equal-weighted and value-
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weighted portfolios is motivated by the �nding of Plyakha, Uppal and Vilkov (2012)

that equal-weighted portfolios tend to outperform value-weighted portfolios because

equal-weighted portfolios have a higher exposure to the market, size and book-to-

market factors, as well as requiring more frequent rebalancing, thereby inducing a

higher exposure to the short-term reversal e�ect.

Both the decaying (�p1mm�) and explosive (�p10mm�) hedge portfolios generate excess

returns between 40 and 54 basis points per month relative to the middle portfolio. This

outperformance is signi�cant at the 1% con�dence level based on Newey-West HAC

standard errors.

To disentangle the potential in�uence of known risk factors, I perform time-series re-

gressions of the decile and hedge portfolio returns against the returns of other known

time-series risk factors. The column labelled �CAPM-α� in Table 3.4 controls for the

market excess return (�MktRf�). The resulting alphas range between 31 and 48 basis

points per month and remain statistically signi�cant. I perform a similar analysis using

the Fama & French factors (market excess return, SMB and HML) and the Carhart

four factor model which adds momentum (UMD) to the Fama & French factors. The

resulting alphas remain positive, and (with a single exception), statistically signi�cant.

Finally, in the last column of Table 3.4 I control for the four Carhart factors and short-

term reversal, long term reversal and Pástor and Stambaugh liquidity innovations �

and �nd that the hedge portfolio alphas range from 37 basis points per month to 57

basis points per month, all statistically signi�cant at the 1% level. (Detailed regression

results can be found in Tables 3.16 and 3.17 in the Appendix.) This suggests that the

returns earned by the decaying and explosive hedge portfolios cannot be attributed to

the standard time-series risk factors alone. The e�ect is economically signi�cant: the

value-weighted decaying hedge portfolio earns an annualised return of 7.1% (t-statistic

of 3.29) after accounting for all seven time-series risk factors. The value-weighted ex-

plosive hedge portfolio earns an annual excess return of 4.5% (t-statistic of 3.25), again

after accounting for all seven time-series risk factors.

It is instructive to visualise how the decaying and explosive hedge portfolios have

performed over time. In Figure 3.4.2 I plot a twenty-four-month trailing moving average

of the value weighted excess returns of the decaying and explosive hedge portfolios.

It is immediately apparent that both hedge portfolios have become more volatile in

the last two decades. This observation might be related to the well-documented fact

that stocks have become signi�cantly more volatile in recent times (see for instance,

Campbell et al. (2001) and Wei and Zhang (2006)). To the extent that both hedge

portfolios will tend to capture those stocks that deviate most from a random walk,

increasing stock volatility would be expected to disproportionately impact the returns

of the hedge portfolios. Less strikingly, but no less interesting, is the fact that the two

hedge portfolios appear to be fairly uncorrelated. The correlation between the value-

weighted monthly excess returns of the decaying hedge portfolio and the explosive hedge
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portfolio is only 10.3%; for the equal-weighted hedge portfolios it is 1.2%. Given that

both hedge portfolios individually generate substantial outperformance, the fact that

they appear to be largely uncorrelated suggests that a combination of these portfolios

might generate particularly favourable risk adjusted returns11.

Figure 3.4.2: Decaying and explosive portfolio monthly excess returns (value-

weighted trailing 24-month average)

The �gure below plots the 24-month trailing average of the excess returns earned by the decaying
hedge portfolio and the explosive hedge portfolio respectively (both value-weighted). The decaying
hedge portfolio is formed by going long portfolio 1 and going short the middle portfolio in equal
measure. Similarly, the explosive hedge portfolio is formed by going long portfolio 10 and going short
the middle portfolio in equal measure. Portfolio 1 corresponds to the lowest decile of stocks sorted on
autocorrelation while portfolio 10 corresponds to those stocks in the highest decile.
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I also consider whether the returns generated by the decaying and explosive hedge

portfolios are related to the macroeconomic state variables described in the data sec-

tion, namely, sentiment, NBER recessions, Aaa-Baa bond credit spread, 10-year treas-

ury term spread, US industrial production growth and US unemployment. US in-

dustrial production growth appears to positively explain some of the returns to the

equal weighted decaying hedge portfolio (see Table 3.35 in the Appendix), while the

other macroeconomic variables are not signi�cant. The NBER recession dummy has

a negative and signi�cant coe�cient for both the value-weighted and equal-weighted

explosive hedge portfolio (see Table 3.36 in the Appendix). No other macroeconomic

variables are signi�cant in explaining the returns of the explosive hedge portfolio. In

other words, the decaying hedge portfolio appears to do better when US industrial

11This might well be a fruitful avenue for future research (or trading)
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production is growing, while the explosive hedge portfolio seems to performs better in

NBER expansions.

3.4.2 Double sorts

To account for the potential in�uence of any cross-sectional risk factors based on stock

characteristics I consider simple cross-tabulations. I use independent sorts to construct

quintile based cross-tabulations of autocorrelation against CAPM beta, size, book-to-

market and momentum; the results are contained in Table 3.5. Cells in the table

contain the mean (equal-weighted) excess return. Rows labelled �HMM� provide the

di�erence between the explosive quintile (quintile 5) and the middle quintiles (quintiles

2 to 4). Similarly, �LMM� provide the di�erence between the decaying quintile (quintile

1) and the middle quintiles. Statistical signi�cance is calculated using a two-sample

t-test with unequal variances. The evidence in Table 3.5 suggests that the predictive

power of autocorrelation is reasonably robust to pre-sorting by CAPM beta, size and

book-to-market (Panels A to C); although more so for explosive stocks than decaying

stocks. The predictive power of autocorrelation is also robust to momentum (Panel

D), although in that case decaying stocks fare better than explosive stocks.

The results of two-way tabulation of autocorrelation against all 12 stock characteristics

are summarised more concisely in Table 3.6. Panel A details the mean (equal-weighted)

excess return of the explosive hedge portfolio after being presorted into quintiles based

on the stock characteristics listed in the row of that panel. Panel B provides the same

information, but for the decaying hedge portfolio. (Detailed results of cross-tabulations

using other stock characteristics are relegated to the Appendix in Tables 3.18 to 3.20).

In general the explosive hedge portfolio appears somewhat more robust to di�erent

stock characteristics than the decaying portfolio. The explosive hedge portfolio gener-

ates positive mean excess returns in all but one out of 60 cases (12 stock characteristics

times 5 quintiles), and is positive and signi�cant at the 5% level in 58 of those cases.

By comparison, the decaying portfolio generates positive mean excess returns in all but

5 cases and is positive and signi�cant at the 5% level in 48 out of 60 cases.

A notable result is that the explanatory power of both decaying and explosive stocks

appears weaker for some higher ratings categories. The explosive hedge portfolio gen-

erate statistically signi�cant positive excess returns in every ratings category save for

category 2 (stocks rated A- to A+), which produce an insigni�cant negative return of

-8 basis points. The decaying hedge portfolio generates positive excess returns in each

ratings category save for the highest (corresponding to stocks rated AA- or higher),

where it loses 12 basis points per month. The mean excess return earned by the decay-

ing hedge portfolio remains statistically signi�cant in three of the �ve ratings groups.

This pattern is reminiscent of the �nding in Avramov et al. (2013) that a range of

anomalies in the �nance literature is concentrated in stocks with low credit ratings.
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Table 3.5: Two-way tabulations showing mean monthly excess return (bp)

Each panel below shows the result of two-way tabulations of mean monthly excess returns (in basis
points). The rows in each panel relate to the di�erent quintiles of autocorrelation, while the columns
relate to quintiles of a stock characteristic. Rows labelled LMM (�Low Minus Middle�) provide stat-
istics for decaying hedge portfolios and rows labelled HMM (�High Minus Middle�) do the same for
explosive hedge portfolios. The last row in each panel, labelled �All�, provide the comparable mean
excess returns for the entire dataset. Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05
and *** for p < 0.01 and are computed using a two-sample t-test with unequal variances.

Panel A

CAPM Beta quintiles

ac quintiles Low 2 3 4 High HML All

Decaying 65 89 100 104 103 38*** 87

2 55 73 75 66 66 11 65

3 67 75 76 69 42 -25*** 65

4 78 84 78 68 43 -35*** 68

Explosive 94 111 121 107 78 -16** 103

HMM 27*** 34*** 45*** 39*** 26*** 38***

LMM -2 11* 24*** 36*** 51*** 21***

All 71 85 88 83 72 1 66

Panel B

Size (Market Cap) quintiles

ac quintiles Small 2 3 4 Big HML All

Decaying 92 83 90 89 75 -17** 87

2 74 59 68 68 57 -17*** 65

3 71 77 69 59 55 -16*** 65

4 90 77 73 63 50 -40*** 68

Explosive 138 119 107 89 71 -67*** 103

HMM 60*** 49*** 37*** 26*** 17*** 38***

LMM 14** 13** 20*** 26*** 21*** 21***

All 73 67 69 65 57 -16*** 66

Panel C

Book-to-market quintiles

ac quintiles Low 2 3 4 High HML All

Decaying 16 56 74 90 97 81*** 87

2 -2 34 37 64 93 95*** 65

3 2 37 50 66 104 102*** 65

4 11 32 57 89 122 111*** 68

Explosive 66 79 112 135 183 117*** 103

HMM 61*** 45*** 63*** 63*** 80*** 38***

LMM 11 23** 26*** 18*** -6 21***

All 17 39 60 78 105 88*** 66

Panel D

Momentum (prev. 6 months) quintiles

ac quintiles Down 2 3 4 Up HML All

Decaying 66 75 92 99 139 73*** 87

2 74 62 67 49 70 -4 65

3 70 74 64 53 60 -10 65

4 44 75 72 74 61 17** 68

Explosive 87 72 96 104 116 29*** 103

HMM 20** 3 28*** 42*** 53*** 38***

LMM 0 6 25*** 38*** 77*** 21***

All 49 64 69 71 94 45*** 66
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Table 3.6: Summary of two-way sorts showing mean monthly excess return

The panels below summarise the (equal-weighted) mean monthly excess returns earned by the auto-
correlation sorted hedge portfolios after pre-sorting by various stock characteristics. The explosive
hedge portfolio is long the highest quintile of stocks and short the middle quintiles (quintiles 2 to 4)
in equal measure, while the decaying hedge portfolio is long the lowest quintile of stocks and short
the middle quintiles (quintiles 2 to 4) in equal measure. The stock characteristics are described in
more detail in subsection 3.3.3. All quintiles are formed on the basis of one month lagged variables.
For ease of interpretation ratings are categorised into ratings categories, rather than strict quintiles,
on the following basis: 1 = AAA and AA, 2 = A, 3 = BBB, 4 = BB, 5 = below BB. Signi�cance
levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are computed using a
two-sample t-test with unequal variances.

Panel A: Explosive hedge portfolio (high-minus-middle)

Quintile of primary sorting variable

Primary sorting variable 1 2 3 4 5

capmbeta 27*** 34*** 45*** 39*** 26***

size 60*** 49*** 37*** 26*** 17***

b2m 61*** 45*** 63*** 63*** 80***

momentum 20** 3 28*** 42*** 53***

pe 59*** 63*** 42*** 46*** 65***

rating 36** -8 22** 24** 88***

turnover 36*** 31*** 34*** 40*** 52***

illiq 27*** 25*** 31*** 45*** 54***

ivol 38*** 35*** 40*** 44*** 62***

coskew 38*** 34*** 35*** 29*** 20***

l2price 52*** 54*** 38*** 29*** 27***

nysesize 66*** 43*** 28*** 25*** 13***

Panel B: Decaying hedge portfolio (Low-minus-middle)

Quintile of primary sorting variable

Primary sorting variable 1 2 3 4 5

capmbeta -2 11* 24*** 36*** 51***

size 14** 13** 20*** 26*** 21***

b2m 11 23** 26*** 18*** -6

momentum 0 6 25*** 38*** 77***

pe -28*** 31*** 65*** 68*** 76***

rating -12 34** 43*** 11 26*

turnover -4 12** 19*** 28*** 38***

illiq 15*** 20*** 8 16*** 21***

ivol 20*** 22*** 34*** 43*** 32***

coskew 28*** 21*** 21*** 28*** 33***

l2price 10* 27*** 30*** 37*** 50***

nysesize 13*** 17*** 28*** 25*** 27***

An interesting pattern reveals itself when we consider NBER expansions and recessions

separately. (See Figure 3.4.3 below � the last two data points represents the excess

returns of the hedge portfolios.) In expansions both the explosive hedge portfolio

and the decaying hedge portfolio generate positive excess returns (signi�cant at the

1% level); however, the returns earned by the decaying portfolio (35bp per month)

is much smaller than that earned by the explosive portfolio (72bp per month). In
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NBER recession months, the decaying hedge portfolio generates much higher positive

returns of 77bp per month (signi�cant at the 1% level). By contrast, the explosive

hedge portfolio generates only 2 basis points per month in NBER recessions and is not

statistically signi�cant. In other words, explosive stocks generate their excess returns

almost exclusively in expansions while decaying stocks generate excess returns in both

expansions and recessions, but much more so in recessions. These �ndings resonate with

our earlier characterisation of explosive stocks as risky �growth� stocks and decaying

stocks as distressed �value� stocks.

Figure 3.4.3: Monthly excess return by lagged autocorrelation decile in NBER ex-

pansions and recessions

The �gure below shows the monthly excess returns generated by decile portfolios sorted on autocor-
relation in the previous month in NBER expansions and recessions.
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3.4.3 Double-sorted time-series tests

Cross-tabulations are a simple but useful way to control for stock characteristics that

might be priced. However, a more stringent approach would be to �rst sort by a stock

characteristic and then apply time-series regressions to hedge portfolios created within

each of the characteristic-sorted portfolios, to additionally control for time-series risk

factors12. In fact it may be an overly stringent approach. Running asset pricing tests

within pre-sorted portfolios introduces a bias in favour of rejecting the model, as has

been shown by Berk (2000)13, particularly if the two sorting variables are correlated.

In our data momentum exhibits the highest correlation (0.15) with autocorrelation

among all the stock characteristics controlled for, and, therefore, is most likely to be

subjected to such a bias. For this reason I illustrate this approach using momentum as

the primary sorting variable14 � see Table 3.7. The results obtained by pre-sorting by

other stock characteristics are contained in the Appendix in Tables 3.21 to 3.34 and is

summarised in Figure 3.4.4.

12In the previous subsection I used independent sorts to generate the quintiles for both autocorrel-
ation and the various stock characteristics considered. However, in this subsection I �rst sort stocks
into quintiles by the relevant stock characteristic � the primary sorting variable � then sort stocks
into deciles separately within each of the primary quintiles. This approach ensures that, within each
primary quintile, an equal number of stocks are allocated to each of the 10 autocorrelation deciles
used to create the hedge portfolios. It also means that, in contrast to the cross-tabulations presented
earlier, the autocorrelation decile cut-points will likely di�er between di�erent primary variable quin-
tiles. This approach is consistent with underlying motivation of applying time-series tests on an equal
basis within each of the primary variable quintiles.

13�It is shown that this empirical procedure biases the results in favor of rejecting whatever asset
pricing model is being tested� (Berk (2000), page 1).

14In the next section I show that autocorrelation actually subsumes momentum in panel data
regressions.
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Table 3.7: Hedge portfolio time-series alphas within momentum sorted quintiles

The panels below show the alphas obtained from time-series regressions of the mean (equal-weighted)
excess returns of autocorrelation hedge portfolios. The columns contain the results of alternate time-
series regression speci�cations (described in detail in Table 3.4), while the di�erent momentum quin-
tiles are detailed in the rows, �rst using equal weights, then using value weights. The primary sorting
variable, momentum, is calculated over a 6-month horizon and is lagged one month relative to excess
returns. Panel A contains the results for the explosive hedge portfolio (quintile 10 minus quintiles 2
to 9, in equal measure) while panel B contains the results for the decaying hedge portfolio (quintile 1
minus quintiles 2 to 9, in equal measure). Signi�cance levels are calculated using Newey-West HAC
adjusted standard errors (at a maximum lag length of 12 months) and are indicated with * (p<0.1),
** (p<0.05) and *** (p<0.01).

Panel A: Explosive hedge portfolio time-series alphas

Portfolio (qmomentum) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0004 0.0004 0.0013 -0.0015 -0.0014

Equal weighted: quintile 2 0.0003 0.0003 0.0015 -0.0013* -0.0011

Equal weighted: quintile 3 0.0025** 0.0015 0.0020** 0.0008 -0.0001

Equal weighted: quintile 4 0.0052*** 0.0046*** 0.0055*** 0.0039*** 0.0055***

Equal weighted: quintile 5 0.0081*** 0.0075*** 0.0084*** 0.0070*** 0.0087***

Value weighted: quintile 1 0.0007 0.0007 0.0015 -0.0016 -0.0019

Value weighted: quintile 2 -0.0000 -0.0005 0.0007 -0.0023** 0.0001

Value weighted: quintile 3 0.0020 0.0008 0.0014 -0.0001 0.0008

Value weighted: quintile 4 0.0053*** 0.0043*** 0.0052*** 0.0038*** 0.0063***

Value weighted: quintile 5 0.0088*** 0.0077*** 0.0085*** 0.0069*** 0.0110***

Panel B: Decaying hedge portfolio time-series alphas

Portfolio (qmomentum) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0050*** 0.0044*** 0.0045*** 0.0049*** 0.0050***

Equal weighted: quintile 2 0.0033*** 0.0023** 0.0022** 0.0026*** 0.0010

Equal weighted: quintile 3 0.0022** 0.0012 0.0012 0.0020** 0.0022**

Equal weighted: quintile 4 0.0046*** 0.0035*** 0.0029*** 0.0041*** 0.0028**

Equal weighted: quintile 5 0.0068*** 0.0060*** 0.0059*** 0.0063*** 0.0062***

Value weighted: quintile 1 0.0044*** 0.0032** 0.0031** 0.0038*** 0.0042**

Value weighted: quintile 2 0.0030** 0.0016 0.0018 0.0029** 0.0044***

Value weighted: quintile 3 0.0025* 0.0014 0.0014 0.0025* 0.0013

Value weighted: quintile 4 0.0043*** 0.0033** 0.0030** 0.0041*** 0.0032

Value weighted: quintile 5 0.0070*** 0.0061*** 0.0060*** 0.0072*** 0.0085***

Table 3.7 shows the alphas from various regressions speci�cations (detailed in the

columns) within di�erent momentum quintiles (detailed in the rows), considering �rst

equal-weighted means, then value-weighted means. Panel A presents the results for

the explosive hedge portfolio while panel B presents the results for the decaying hedge

portfolio. The �rst column (�p10mm Mean� and �p1mm Mean� in the two panels)

shows mean excess return for the hedge portfolios. The remaining columns all show

time series alphas after controlling for di�erent risk factors. The �CAPM-α� column

contains the alpha after controlling for the market return (�MktRf�). The next column

shows results controlling for the three Fama & French time-series factors � the mar-

ket return, SMB and HML. The column headed �4F-α� adds the momentum factor
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(�UMD�) in addition to the Fama & French factors. Finally, the last column controls

for all the time-series risk factors. The regression for the last column is given below:

rHedgePortfoliot = α + β1MktRft + β2SMBt + β3HMLt + β4UMDt

+β5STRevt + β6LTRevt + β7PSLiqt + εt

The right-hand variables are all the time-series control variables discussed in the data

section earlier. I calculate signi�cance levels for the alphas (shown in Table 3.7 in

parenthesis) using Newey-West HAC adjusted standard errors with a maximum lag

length of 12 months.

Based on the evidence in panel A of Table 3.7 the explosive hedge portfolio excess

returns are quite robust to pre-sorting by momentum, generally faring better in the

high momentum quintiles. The results are stronger for the decaying hedge portfolio. As

is evident in panel B of Table 3.7 the equal-weighted decaying hedge portfolio remains

positive in every momentum quintile and regression speci�cation, and signi�cantly so

in 22 out of 25 cases. The evidence is slightly weaker in the value-weighted case, with

signi�cant alphas in 19 out of 25 cases, although the alphas remain positive everywhere.

Overall it seems that the predictive power of autocorrelation is mostly contained in the

higher momentum quintiles and less pronounced in the lower momentum quintiles.

A high-level summary of the double sorted time-series alpha tests is contained in Figure

3.4.4. The results indicate that the predictive power of autocorrelation is generally

robust to time series risk factors after pre-sorting by other stock characteristics. For

the explosive hedge portfolio, the stock characteristics momentum and rating do the

most to diminish the explanatory power of autocorrelation. The stock characteristics

that do the most to diminish the explanatory power of autocorrelation for decaying

stocks are book-to-market and rating. Stocks with high book-to-market ratios are often

the same �rms that might be experiencing �nancial distress and thus low ratings. This

suggests that, for decaying stocks, the explanatory power of autocorrelation is most

diminished when faced with �rms in relative distress. This result is consistent with our

earlier characterisation of decaying stocks as distressed �value� stocks.

In short, the predictive power of autocorrelation seems reasonably robust to a large

range of stock characteristics, even after controlling for time series risk factors within

each stock characteristic quintile. The single exception is ratings in the case of decaying

stocks, which warrants a closer look in the next subsection.

3.4.4 Ratings and autocorrelation

Pre-sorting by ratings results in a total of 15 signi�cant alpha's from 50 separate time

series regressions for the decaying hedge portfolio. Why does ratings do so much to re-

duce the apparent predictive power of autocorrelation? The detailed results (see Table
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3.30 in the Appendix) reveal that most of these signi�cant alpha's are concentrated

in the lower ratings categories 4 and 5, corresponding to �rms rated below investment

grade (that is, below BBB-). As noted earlier, this pattern is consistent with the �nding

by Avramov et al. (2013) that a wide range of anomalies appears to be concentrated

in the lower ratings groups. This suggests that ratings and autocorrelation may be

systematically related. While the pair-wise correlation between ratings and autocor-

relation is only -0.06 in the dataset (see Table 3.2), a simple frequency table reveals a

richer structure. In panel A of Table 3.8 I record, for each ratings category, the per-

centage of stocks associated with each autocorrelation decile (based on an independent

sort). Highly rated stocks appear clustered around the middle autocorrelation deciles,

while the lower-rated stocks are over-represented in the extreme autocorrelation deciles.

This gives rise to a subtle e�ect when pre-sorting by ratings category, then again sort-

ing by autocorrelation within each ratings category. In the high ratings group very

few stocks have extreme autocorrelation estimates compared to the dataset as a whole.

As a consequence, the median level of autocorrelation in the extreme autocorrelation

deciles are actually far less extreme for the higher ratings categories than they are for

the lower ratings categories � see panel B in Table 3.8. This results in hedge portfolios

with a much smaller range of autocorrelation estimates in the higher ratings than in

the lower ratings. Thus, even if autocorrelation does predict returns at the individual

stock level, this predictability might not be apparent in the higher ratings categories

for the simple reason that highly rated stocks tends to have very few extreme autocor-

relation estimates. In fact, at the individual stock level autocorrelation does predict

realised returns and this predictability is robust to the inclusion of stock-level rating

as a control variable, as I demonstrate in the next section.
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Table 3.8: Autocorrelation and ratings

The tables below show aggregate statistics of (rated) stocks grouped by ratings category. Panel A
shows the percentage of stocks allocated to each autocorrelation decile based on a full dataset sort,
that is, sorted independent of ratings. Panel B shows the median autocorrelation estimate of each
autocorrelation decile based on separate sorts on autocorrelation within each ratings category.

Panel A: Percentage allocated to independent autocorrelation deciles, by ratings group

Full dataset Ratings category

autocorrelation decile AAA/AA A BBB BB Below BB

1 1% 2% 4% 11% 20%

2 4% 6% 9% 12% 13%

3 10% 11% 12% 11% 9%

4 15% 15% 13% 9% 7%

5 17% 16% 13% 9% 6%

6 17% 16% 13% 9% 6%

7 14% 14% 13% 9% 7%

8 12% 11% 11% 10% 8%

9 7% 6% 8% 11% 10%

10 3% 3% 3% 8% 15%

All 100% 100% 100% 100% 100%

Number of Stocks 27,224 80,482 99,582 87,955 61,927

Panel B: Median autocorrelation by autocorrelation deciles sorted within ratings groups

Within ratings group Ratings category

autocorrelation decile AAA/AA A BBB BB Below BB

1 0.9963 0.9942 0.9912 0.9851 0.9778

2 0.9990 0.9981 0.9969 0.9927 0.9893

3 1.0001 0.9995 0.9988 0.9963 0.9941

4 1.0009 1.0006 1.0000 0.9987 0.9974

5 1.0017 1.0014 1.0011 1.0007 1.0000

6 1.0024 1.0022 1.0021 1.0025 1.0023

7 1.0033 1.0030 1.0031 1.0042 1.0047

8 1.0044 1.0040 1.0044 1.0062 1.0078

9 1.0060 1.0056 1.0063 1.0091 1.0126

10 1.0099 1.0098 1.0112 1.0160 1.0230
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3.5 Panel data regressions

Portfolio based tests have many bene�ts, such as conceptual simplicity and robustness.

However, panel data tests have complementary strengths. First, it makes use of all

observations in a direct way. Second, perhaps more important, it allows one to simul-

taneously control for multiple variables. Finally, it makes use of both cross-sectional

and time-series variation in the explained and explanatory variables. I follow the guid-

ance in Petersen (2008) regarding the use of �nance panel datasets. Petersen (2008)

shows that two-way clustered standard errors (see Thompson (2011) and Cameron,

Gelbach and Miller (2011)) are relatively robust to a range of issues typically a�ecting

�nance panel datasets compared to other common approaches15.

In Table 3.9 I show the results of various speci�cations in which I directly test the

predictive power of autocorrelation for subsequent realised excess returns, controlling

for a range of other variables known to have predictive power for stock returns. (These

variables are discussed in subsection 3.3.3)

To distinguish between the relative contribution of explosive and decaying stocks, I

generate two explanatory variables for use in panel regressions. This is necessary be-

cause the expected sign of the coe�cient depends on whether autocorrelation is above

or below unity. From the earlier sorted portfolio evidence we know that as autocorrela-

tion increases above unity, returns in the subsequent month tends to increase (implying

a positive coe�cient for autocorrelation). That is, explosive stocks appear to earn a

premium. However, as autocorrelation decreases below unity, returns in the subsequent

month also increases (implying a negative coe�cient for autocorrelation). I address this

by decomposing autocorrelation into two explanatory variables. The two explanatory

variables � explosive and decaying � are derived from the stock-level autocorrelation

estimate as follows: explosive = max(1, ac) and decaying = min(1, ac) where ac is the

autocorrelation estimate for a particular stock at a particular time. In other words,

explosive is autocorrelation �oored at unity, while decaying is autocorrelation capped

at unity. Thus the regression speci�cation provides for asymmetric coe�cients on

autocorrelation.

The general panel regression speci�cation is given below

ri,t − rft = α + βe · explosivei,t−1 + βd · decayingi,t−1 + [Σcβc · controlc,i,t−1] + εi,t

In summary, I regress the excess return of stock i at time t on the explosive and

decaying measures of stock i as estimated at time t − 1 as well as as on a number of

stock speci�c controls, also measured at time t− 1.

15Thompson (2011) (page 10) comes to the same conclusion: �Both the statistical theory and the
Monte Carlo results suggest that simultaneously clustering by �rms and time leads to signi�cantly
more accurate inference in �nance panels.�
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Speci�cation (1) in Table 3.9 considers the predictive power of explosive and decaying.

Explosive is positive and signi�cant at the 10% level while decaying is negative and

signi�cant at the 1% level. The opposite signs on explosive and decaying validate the

decision to decompose autocorrelation into two parts and is consistent with the �ndings

from sorted portfolios presented earlier.

The predictability is also economically signi�cant. Autocorrelation has a standard

deviation of 0.027 in our dataset � a change of that magnitude results in a change in

monthly realised returns of 42 basis points for explosive stocks and 23 basis points

for decaying stocks. (The e�ect is even stronger when I control for additional stock

characteristics: using the coe�cients in speci�cation (6) generates a change of 127 basis

points per month for explosive stocks and 74 basis points for decaying stocks, based

on the same one standard deviation shock.)

In speci�cation (2) I control for the size and book-to-market characteristics. (While

Fama and French (1993) claim that it is the covariance with the Small-Minus-Big and

High-Minus-Low portfolios that is priced, Daniel and Titman (1997) argue that it is

the characteristics (stock level size and book-to-market ratio), rather than the covari-

ance, that is priced). The results suggest that the predictive power of the explosive

and decaying metrics are robust to the inclusion of size and book-to-market ratio � the

coe�cients on both explosive and decaying are largely unchanged and remain statist-

ically signi�cant. Adding the CAPM beta in speci�cation (3) does not change things

signi�cantly, nor does adding momentum in speci�cation (4).

In speci�cation (5) I add all the stock characteristics as controls, save for rating. I

(initially) exclude rating since adding it would reduce the sample size from c. 943,000

to c. 311,000. I �nd that explosive and decaying remain signi�cant and of comparable

magnitude to the original speci�cation (1) results. Speci�cation (6) adds rating as a

control - this results in the coe�cients on both explosive and decaying roughly doubling

while statistical signi�cance is una�ected. This suggests that the predictive power of

the explosive and decaying metrics are robust to the inclusion of a range of stock

characteristics considered to have predictive power in the cross section; size, book-to-

market, CAPM beta, momentum, price-earnings ratio, Amihud illiquidity, idiosyncratic

volatility, stock turnover and rating.

Speci�cation (7) controls for a number of simple historical return metrics to rule out

the possibility that the predictive power of autocorrelation might be driven by those

metrics instead. I control for the previous period return (prevret) in case my results

are driven by a short term continuation or reversal e�ect. I also additionally control

for the average return over the previous 24 months (prev24mret). Since I estimate

autocorrelation over 24 months, I want to ensure that my results are not simply driven

by the average level of historical returns over the same sample window. Finally, I control

for the twice lagged16 stock price (l2price). Because autocorrelation is calculated using
16As noted in the data section, I lag the stock price twice since the dependent variable � excess
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past prices I want to ensure that my results are not simply driven by the price level of

individual stocks. The results suggest that the predictive power of both the explosive

and decaying metrics are independent of simple past returns or stock price levels.

In short, panel data tests provide substantial evidence that autocorrelation has pre-

dictive power at the individual stock level. This predictive power is robust to a range

of di�erent stock characteristics and regression speci�cations.

return � directly depends on the current stock price and the once lagged stock price. Using the twice-
lagged price allows me to avoid potential econometric issues while still controlling for the overall price
level of the stock.

121



Table 3.9: Panel regression of excess monthly realised returns on lagged autocorrela-

tion

The table below shows the results from individual stock-level panel regressions. The dependent variable
is realised excess return. The two explanatory variables � explosive and decaying � are derived from
the stock-level autocorrelation estimate as follows: explosive = max(1, ac) and decaying = min(1, ac).

The general regression equation can be written as ri,t−rft = α+βe ·explosivei,t−1+βd ·decayingi,t−1+
[βccontrolsi,t−1]+εt. The stock-level control variables are described in more detail in subsection 3.3.3.
All explanatory variables and controls are lagged by one month relative to the dependent variable. t-
Statistics are shown in parenthesis below their associated coe�cients. Signi�cance levels are indicated
by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are based on two-way clustered standard
errors (clustered by individual stock and by time).

(1) (2) (3) (4) (5) (6) (7)

r1 r2 r3 r4 r5 r6 r7

b/t b/t b/t b/t b/t b/t b/t

explosive 0.1560* 0.2173* 0.2149* 0.2494** 0.2803*** 0.4326** 0.3333***

(1.70) (1.88) (1.90) (2.32) (2.59) (2.10) (3.03)

decaying -0.0846*** -0.1115*** -0.1102*** -0.1111*** -0.1224*** -0.2746*** -0.0831***

(-3.88) (-4.63) (-5.17) (-5.19) (-5.54) (-3.46) (-3.93)

size -0.0000 -0.0001 -0.0001 -0.0001 -0.0002*

(-0.35) (-0.91) (-0.89) (-1.38) (-1.73)

b2m 0.0045*** 0.0051*** 0.0050*** 0.0048*** 0.0028***

(3.57) (3.72) (3.73) (3.81) (2.71)

capmbeta -0.0020 -0.0020 -0.0010 0.0008

(-1.26) (-1.30) (-0.71) (0.42)

momentum -0.0164 -0.0217 -0.0366

(-0.38) (-0.51) (-0.65)

pe -0.0000 -0.0000

(-0.44) (-0.79)

illiq 79.4918 -713.5042

(0.34) (-1.59)

ivol -0.1642 -0.2582

(-1.13) (-1.35)

turnover -0.0003 -0.0008

(-0.23) (-0.57)

coskew -0.0031 -0.0025

(-1.48) (-1.06)

rating -0.0002

(-0.47)

prevret 0.0090

(0.75)

prev24mret -0.1104

(-1.51)

l2price -0.0000

(-0.69)

const -0.0650 -0.1041 -0.1010 -0.1346 -0.1518 -0.1484 -0.2432**

(-0.69) (-0.90) (-0.89) (-1.26) (-1.38) (-0.65) (-2.29)

Adj R-sqr 0.0004 0.0012 0.0015 0.0015 0.0018 0.0022 0.0008

N 1,740,062 1,198,872 963,093 963,093 943,333 311,878 1,684,956

Based on panel data tests, there is limited evidence linking autocorrelation with macro-

economic state variables. Classic �nancial economics suggest that pricing factors ought

to be related to aggregate consumption. In this section, I consider the relationship

between autocorrelation and various macro-economic indicators typically associated

122



with systematic risk (and therefore, potentially related to aggregate consumption risk).

I consider the following indicators, all at a monthly frequency: investor sentiment (or-

thogonalised), as per Baker and Wurgler (2006), NBER recessions (coded as a monthly

dummy variable: 1 = recession), corporate bond spreads (Aaa - Baa) and US personal

consumption growth (the last two indicators are sourced from the Federal Reserve Bank

of St. Louis).

As before, I regress excess returns on the explosive and decaying metrics, as well as

on macroeconomic state variables. To gauge the marginal impact of macroeconomic

state variables on the predictive power of the explosive and decaying metrics, I add

interaction terms. Speci�cally, I interact both the explosive and decaying metrics with

various macroeconomic state variables (macrot) , as shown below:

ri,t − rft = α + βe · explosivei,t−1 + βd · decayingi,t−1 + βm · [macrot]

+βme · [macrot]× explosivei,t−1 + βmd · [macrot]× decayingi,t−1 + εt

This speci�cation allows me to test whether a particular macroeconomic state variable

acts to regulate the in�uence of either of the explosive and decaying metrics against the

null hypothesis that the macroeconomic state variable does not regulate the predictive

power of the two metrics. The results are set out in Table 3.10.
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Table 3.10: Panel regression of excess monthly realised returns on lagged autocorrel-

ation and lagged macroeconomic state variables and interaction terms

The table below shows the result of individual stock-level panel regressions. The dependent variable
is realised excess returns. The two explanatory variables � explosive and decaying � are derived
from the stock-level autocorrelation estimate as follows: explosive = max(1, ac) and decaying =
min(1, ac). Sentiment is the investor sentiment (orthogonalised) as per Baker and Wurgler (2006).
NBER recessions are coded as a monthly dummy variable (1 = recession). Corporate bond spreads
(Aaa - Baa) and US personal consumption growth are sourced from the Federal Reserve Bank of St.

Louis. The general regression equation can be written as ri,t − rft = α + βe · explosivei,t−1 + βd ·
decayingi,t−1 +βm · [macrot] +βme · [macrot]× explosivei,t−1 +βm · [macrot]× decayingi,t−1 + εt. In
other words, I interact a number of macroeconomic state variables with explosive and decaying. All
explanatory variables including the macroeconomic state variables are lagged by one month relative
to the dependent variable. t-Statistics are shown in parenthesis below their associated coe�cients.
Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are based
on two-way clustered standard errors (clustered by individual stock and by time).

(1) (2) (3) (4) (5) (6)
r1 r2 r3 r4 r5 r6

b/t b/t b/t b/t b/t b/t
explosive (exp) 0.1790 0.1233 0.1395 0.0828 0.1672* 0.5936

(1.61) (1.35) (0.73) (0.57) (1.76) (1.47)
decaying (dec) -0.1097*** -0.0739*** -0.0027 -0.0805*** -0.0862*** 0.0279

(-5.35) (-3.65) (-0.04) (-3.44) (-3.59) (0.47)
sentiment 0.0673

(0.65)
exp X sentiment -0.0491

(-0.49)
dec X sentiment -0.0222

(-1.44)
NBER dummy -0.1479

(-0.46)
exp X NBER 0.2109

(0.64)
dec X NBER -0.0674

(-0.94)
creditspread 3.4384

(0.21)
exp X Aaa-Baa spread 2.3820

(0.15)
dec X Aaa-Baa spread -5.3574

(-0.96)
termspread -3.2518

(-0.37)
exp X 10y - 1y spread 7.0383

(0.80)
dec X 10y - 1y spread -3.4856**

(-2.11)
indprodgrowth 4.5565

(0.76)
exp X indprodgrowth -5.0764

(-0.87)
dec X indprodgrowth 0.6517

(0.34)
unemployment 9.7846

(1.58)
exp X unemployment -7.6254

(-1.26)
dec X unemployment -1.8294*

(-1.80)
Const -0.0635 -0.0424 -0.1352 0.0008 -0.0750 -0.6347

(-0.56) (-0.45) (-0.69) (0.01) (-0.77) (-1.56)
Adj R-sqr 0.0014 0.0005 0.0010 0.0016 0.0005 0.0022
N 1,330,987 1,717,531 1,717,531 1,536,858 1,717,531 1,590,273

Two signi�cant results emerge: decaying is negatively signi�cant when interacted with
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the treasury term spread and is also negatively signi�cant when interacted with unem-

ployment. However decreasing unemployment is associated with lower macro-economic

risk, while decreasing term spread is commonly a precursor to lower economic growth

and hence is associated with higher macro-economic risk. Thus the signs on these

two interaction terms are contradictory, frustrating any attempt to motivate the out-

performance of decaying stocks as some sort of premium for bearing macro-economic

risk.

3.6 Persistence

3.6.1 Persistence of explosive and decaying stocks

The excess returns accruing to decaying stocks are persistent over very long horizons,

but this is not the case for explosive stocks. To investigate the return persistence of

explosive and decaying stocks, I consider the excess returns accruing to the explosive

and decaying hedge portfolios up to 300 months post-formation. I form the explosive

and decaying hedge portfolios at month t using the autocorrelation estimates as of

month t − 1. I then calculate the average excess returns across all those portfolios

(keeping their composition unchanged) for months t, t + 1 and so forth, up to month

t+300 (that is, 25 years later). I illustrate the average hedge portfolio excess return at

each month post-formation in Figure 3.6.1, along with 95% con�dence bounds. As is

evident from panel A, the explosive hedge portfolio generates excess returns that peak

in the second month post-formation and becomes statistically insigni�cant 9 months

post-formation. Informally, this suggests that whatever predictability is contained in

explosive stocks is most e�ective at a 2-month lag and becomes �stale� within 9 months.

By contrast, returns to the decaying hedge portfolio are highly persistent. As shown in

panel B of Figure 3.6.1, the decaying hedge portfolio generates monthly excess returns

that actually increases post-formation to a maximum of 66bp per month at 15 months

post formation. At longer post-formation lags the monthly excess returns become

smaller but remain positive and statistically signi�cant. Impressively, the decaying

hedge portfolio generates these positive and statistically signi�cant excess returns in

every post-formation month for up to 25 years.
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Figure 3.6.1: Mean portfolio excess return post-formation

The graphs below plot the average of monthly excess returns generated by hedge portfolios (across
each possible formation month) at k months post-formation, with 95% con�dence intervals. The hedge
portfolios are formed from decile sorts using lagged autocorrelation. The decaying hedge portfolio is
formed by going long the decile 1 stocks and going short the stocks in deciles 2 to 9 in equal measure.
Similarly, the explosive hedge portfolio is formed by going long the decile 10 stocks and going short the
stocks in deciles 2 to 9 in equal measure. Con�dence intervals are computed using Newey-West HAC
adjusted standard errors with a maximum lag length of 12 months, across each possible formation
month in the dataset.
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3.6.2 Controlling for time-series risk factors

Such a degree of return persistence is unusual. One potential explanation could be

that decaying stocks are di�erentially exposed to some priced risk factor. To consider

whether this is the impetus behind the return persistence observed in the decaying

hedge portfolio, I consider time-series alphas instead of excess returns. To calculate

these alphas I run the following time series regression for each lag 0 ≤ k ≤ 300, where

r
hedge(k)
t denotes the excess return earned by a hedge portfolio formed k months earlier

at time t− k.

r
hedge(k)
t = α(k) + β1MktRft + β2SMBt + β3HMLt + β4UMDt

+β5STRevt + β6LTRevt + β7PSLiqt + εt

This generates a sequence of alphas, one for each lag k, which I plot in Figure 3.6.2

for both the explosive and decaying hedge portfolios. Controlling for additional time-

series risk factors does not alter the picture signi�cantly. The decaying hedge portfolio

continues to generate positive excess returns in every month up to 25 years post-

formation (and is signi�cant in 287 out of 300 months); these excess returns cannot be

explained by the time-series risk factors controlled for17. It is tempting to speculate

whether this persistence is driven by some priced risk factor associated with decaying

stocks. If so, such a novel risk factor would have to be unrelated to size, book-to-

market, momentum, short-term reversal, long-term reversal, or liquidity. Alternatively,

behavioural or institutional factors might explain the outperformance generated by

decaying stocks. But any explanation that relies on a behavioural or institutional

story would still have to account for this long-term persistence18. It is not clear why

investors would continue to demand a premium for holding stocks that experienced a

�decaying� episode more than two decades ago, if not as compensation for some manner

of fundamental risk associated with those stocks. As noted in section 3.5, the potential

motivation for such a priced risk factor remains elusive.

17The results presented in Figures 3.6.2 and 3.6.1 are essentially unchanged when using delisting
adjusted returns (calculated in accordance with Beaver, McNichols and Price (2007))

18I show that returns around earnings announcements does not appear consistent with biased
investor expectations of future earnings (see subsection 3.6.4)
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Figure 3.6.2: Portfolio time-series alphas post-formation

The graphs below plot the alpha obtained from regressing the monthly excess return generated
by hedge portfolios formed k months earlier on a set of time-series risk factors, with 95% con-
�dence intervals for the alpha estimates. The hedge portfolios are formed from decile sorts us-
ing autocorrelation from k months previously. The decaying hedge portfolio is formed by going
long the decile 1 stocks and going short the stocks in deciles 2 to 9 in equal measure. Simil-
arly, the explosive hedge portfolio is formed by going long the decile 10 stocks and going short
the stocks in deciles 2 to 9 in equal measure. The time-series regression controls for the market
return, SMB portfolio return, HML portfolio return, momentum portfolio return, short-term re-
versal return, long-term reversal return and liquidity innovations (as described more fully in sub-
section 3.3.5). The time series regression speci�cation is, for each post-formation lag k contemplated:

r
hedge(k)
t = α(k)+β1mktrft+β2SMBt+β3HMLt+β4UMDt+β5STRevt+β6LTRevt+β7PSLiqt+εt.
Con�dence intervals are computed using Newey-West HAC adjusted standard errors with a maximum
lag length of 12 months.
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Panel B: Decaying portfolio
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3.6.3 Survivorship and potential delisting bias

In any static portfolio stocks are likely to drop out of the portfolio over time as stocks

delist from the exchange. Stocks usually delist for one of two reasons: they are acquired

by other �rms or they fail and are subsequently liquidated. In panel A of Table 3.6.3 I

show the percentage of surviving stocks for di�erent autocorrelation decile portfolios in

event time, with the event being the original formation of the portfolio. The decaying

portfolio P1 initially exhibits a high attrition rate, which subsequently moderates. By

contrast, the explosive portfolio exhibits comparatively low attrition rates from the

beginning. After about seven years post-formation both the decaying portfolio P1

and the explosive portfolio P10 have a higher percentage of surviving stocks than the

middle portfolio consisting of deciles 2 to 9 inclusive. This is notable, considering that

the stocks in both the decaying and explosive portfolios are smaller and more lowly

rated than the average stock.

The di�erential survival experience of the autocorrelation decile portfolios points to

a potential measurement problem: delisting returns. The more a portfolio su�ers

attrition, the more it will be a�ected by the omission of delisting returns. To address

this concern, I construct delisting adjusted excess returns, following the approach set

out in Beaver, McNichols and Price (2007). At a high level this means substituting

the average delisting return for any missing delisting returns, for each delisting code

in turn. These augmented delisting returns are the combined with the normal CRSP

returns to create delisting adjusted excess returns. Using delisting adjusted returns

instead of the standard CRSP returns yield essentially the same result.
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Figure 3.6.3: Stock performance and survival (in event time)

The graph below plots the percentage of surviving stocks in event time for autocorrelation portfolios.
The relevant event is the formation, in each month, of static portfolios sorted on prior month autocor-
relation. Portfolio P1 (decaying stocks) consists of the lowest decile of stocks, portfolio P10 (explosive
stocks) consists of the highest decile of stocks and the middle portfolio consists of all the remaining
stocks (in deciles 2 to 9 inclusive).

Surviving stocks as a percentage of original portfolio
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3.6.4 Returns around earnings announcements

Are decaying portfolio excess returns so persistent because investors collectively su�er

from systematic negative biases when assessing the expected return of these stocks?

Or are those persistent excess returns the result of investors collectively demanding

compensation for some manner of risk that happens to be prevalent in the decaying

portfolio? One way to distinguish between these alternative (but not mutually ex-

clusive) explanations is to consider the abnormal returns of stocks around earnings

announcements (see for instance, Jegadeesh and Titman (1993)). If investors are sys-

tematically negatively biased in forming expectations about the future earnings of

decaying stocks, then we would expect them to react strongly and positively to fu-

ture earnings announcements that exceed their biased expectations. In other words, if

the bulk of the decaying portfolio returns occurs around earnings announcements, that

could be interpreted as support an explanation involving investor biases. Alternatively,

if most of the decaying portfolio returns are realised on non-earnings announcement

days, that could be viewed as support for a risk premium explanation.

I start by de�ning the abnormal return of a stock as its CRSP total return less the

return on the CRSP value-weighted index. The abnormal returns earned by the dif-
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ferent autocorrelation portfolios are illustrated in panel A of Figure 3.6.4. Note, all

the abnormal returns are positive; this is because the market return proxy I use is

value-weighted, while the portfolios are formed using equal weights19. As before, both

the decaying (P1) and explosive (P10) autocorrelation deciles outperform the middle

portfolio initially. The decaying portfolio continues to generate substantial abnormal

returns relative to the middle portfolios while the outperformance of the explosive

portfolio is much more modest over horizons longer than one year. Panel B performs

the same analysis, but restricted to abnormal returns earned by stocks in the three

days centred on the earnings announcement date, which I term abnormal earnings an-

nouncement returns. Abnormal earnings announcement returns are calculated as the

cumulative abnormal daily return of a stock from the trading day preceding an earnings

announcement to the trading day following that earnings announcement (for a total

of three trading days). It is immediately apparent that the magnitude of earnings an-

nouncement abnormal returns is much lower than that of abnormal returns generally.

The mean abnormal return across all stocks in the dataset is 12.6bp per month; the

mean abnormal earnings announcement return is 3.6bp per month, or roughly 28% of

the total abnormal monthly return.20

19As pointed out in Plyakha, Uppal and Vilkov (2012) equal weighted portfolios tend to outperform
value weighted portfolios; their randomly constructed portfolio of 100 stocks generate equal weighted
returns of 271 bp per annum above the market weighted returns over the last forty years. That is
roughly 22 bp per month, consistent with the level of abnormal returns earned by the middle deciles
(deciles 2 to 9) in panel A.

20Of course, the abnormal earnings announcement return is earned over 1 day per month on average
for each stock (based on 3 days each quarter) while the abnormal return is usually calculated over
20 to 21 trading days per month. Therefore, the actual daily return on earnings announcements will
typically dwarf the daily returns on other days.
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Figure 3.6.4: Stock abnormal returns around earnings announcements (in event time)

The graphs below plots mean abnormal returns in event time for autocorrelation portfolios. The rel-
evant event is the formation, in each month, of static portfolios sorted on prior month autocorrelation.
Portfolio P1 (decaying stocks) consists of the lowest decile of stocks, portfolio P10 (explosive stocks)
consists of the highest decile of stocks and the middle portfolio consists of all the remaining stocks
(in deciles 2 to 9 inclusive). Panel A plots mean abnormal returns where abnormal return is the
monthly total return of each stock less the CRSP value weighted market return. Panel B plots mean
abnormal earnings announcement returns. Abnormal earnings announcement returns are calculated
as the cumulative abnormal return (as de�ned above) of a stock over the three trading days centred
on the date of its earnings announcement (returns on other days being ignored), that is CAR(-1,1)
returns.
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Panel B: Mean abnormal earnings announcement returns
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To return to our original question, how much of the return persistence observed in
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the decaying portfolio can be attributed to returns around earnings announcements?

To directly address this question I plot both abnormal returns and abnormal earn-

ings announcement returns for the hedge portfolios in panel A of Figure 3.6.5. Since

I am considering the hedge portfolios the abnormal returns are those over and above

the abnormal returns earned by the middle portfolio. In the �rst year post formation

abnormal earnings announcement returns form only a small fraction of the total abnor-

mal return; about 10%. This argues against an investor bias explanation, at least over

short horizons. Over longer horizons the decaying hedge portfolio continues to earn

most of its abnormal returns outside earnings announcements dates although the gap

tightens over time. Over all 300 post formation months considered, the abnormal earn-

ings announcement return of the decaying hedge portfolio makes up 21% of the total

total abnormal returns earned by the decaying hedge portfolio. This is reassuringly

close to, if somewhat below, the 28% ratio observed for stocks generally. In panel B I

make the comparison even more explicit by calculating abnormal earnings announce-

ments as a percentage of total abnormal returns for the autocorrelation deciles, again

in event time. The resulting percentages are mostly contained in the 15% to 35% range.

Overall, there is a tendency for the middle portfolio to lag the decaying and explosive

portfolio as the post formation horizon becomes longer. On the whole this analysis

tends to favours a risk based rather than an investor bias based explanation for the

persistent returns earned by the decaying portfolio.
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Figure 3.6.5: Relative contribution of earnings announcement days to abnormal re-

turns

The graph in panel A below plots the mean abnormal hedge portfolio return in event time for auto-
correlation portfolios. Abnormal return is the monthly total return of each stock less the CRSP value
weighted market return. The relevant event is the formation, in each month, of static portfolios sor-
ted on prior month autocorrelation. Portfolio p1mm (the decaying hedge portfolio) is long the lowest
decile of stocks and short the middle deciles (2 to 9 inclusive) in equal measure. Portfolio p10mm
(the explosive hedge portfolio) is long the highest decile of stocks and short the middle deciles (2 to
9 inclusive) in equal measure. Panel B plots mean earnings announcement abnormal returns as a
percentage of total abnormal returns for portfolio P1 (decile 1 stocks), P2 to P9 (stocks in the middle
deciles, 2 to 9 inclusive) and P10 (decile 10 stocks). Abnormal earnings announcement returns are
calculated as the cumulative abnormal return (as de�ned above) of a stock over the three trading
days centred on the date of its earnings announcement (returns on other days being ignored), that is
CAR(-1,1) returns.
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Panel B: Earnings announcement contribution to abnormal returns
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3.7 Robustness

In the previous sections I have demonstrated that the predictive ability of autocor-

relation is robust to a number of known priced risk factors, both in time-series and

cross-sectionally. The sorted portfolio tests as per Table 3.4 and the panel data re-

gressions as per Table 3.9 (hereafter the �main results�) are also robust to di�erent

estimation windows, data frequencies, sample periods and realised return de�nitions,

as I show below.

3.7.1 Sample periods

To test whether my main results also hold in sub-samples, I partition my dataset

chronologically into four sample periods. The �rst sample period runs from 1923 to

the end of 1945, the second sample period from the beginning of 1946 to the end of

1965, the third sample period from the beginning of 1966 to the end of 1985 and the

last sample period from the beginning of 1986 to the end of 2013. The results are

summarised in Table 3.11. Because of data constraints21 I only run panel data tests

for the last two sample periods (from 1966 onwards). The mean return of the explosive

hedge portfolio (p10mm) is positive and signi�cant at the 5% level in each of the four

chronological sample periods. The decaying hedge portfolio is positive in each of the

four chronological sample periods and signi�cant at the 10% level in all sample periods.

Panel data regressions yield positive coe�cients for the explosive metric in each of the

last two sample periods. However, these coe�cients are statistically signi�cant only in

the last sample period (1986 to 2013). The decaying metric is negative and signi�cant

at the 1% level in every speci�cation in both of the two most recent sample periods.

Overall the evidence suggests that the predictive power of decaying and explosive stocks

is not restricted to a single sample period. While the sorted portfolio evidence for a

predictive e�ect for decaying stocks in the period 1986 to 2013 is weak in comparison

to other sample periods, this is countered by strong evidence of predictability for the

decaying metric in panel data over the same period.

21Most of the panel data speci�cations require stock characteristics that are based on accounting
data sourced from Compustat. Quarterly compustat data are only available from 1961 onwards.
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Table 3.11: Sample period robustness results

The table below summarises the results of robustness checks relating to sample period. The �rst
column identi�es the range of the relevant sample. The second two columns, labelled �Mean� and
�Count Sig α�, details the excess returns accruing to a value-weighted portfolio and the number of
time-series regressions resulting in an alpha that is signi�cant at the 10% level (out of 10; based on 5
time series regression speci�cations times 2 portfolio weighting schemes). Columns 2 and 3 relate to
the explosive hedge portfolio while columns 4 and 5 relate to the decaying hedge portfolio. Both hedge
portfolios are formed on the basis of decile sorts, as explained in Table 3.4. The �nal two columns
record the number of signi�cant coe�cients (at the 10% level) obtained for each of the explosive and
decaying metrics from seven panel data regressions, as explained more fully in Table 3.9. Entries
marked �n/a� could not be calculated due to a lack of data. The pre-1946 time series alpha tests
do not include Pástor and Stambaugh (2003) liquidity since it is not available; hence the signi�cance
counts are scored out of 8 rather than 10.

Sorted Portfolio Excess Returns (VW, bp) Panel Regressions

Explosive Decaying Explosive Decaying

Sample window Mean Count Sig α Mean Count Sig α Count Sig Count Sig

1923-2013 47*** 9/10 40*** 10/10 7/7 7/7

Pre-1946 36** 7/8 29** 7/8 n/a n/a

1946-1965 29** 6/10 35*** 9/10 n/a n/a

1966-1985 57*** 8/10 41*** 10/10 1/7 7/7

1985-2013 60** 9/10 51* 5/10 6/7 7/7

3.7.2 Estimation windows and data frequencies

The main results are robust to di�erent estimation windows and data frequencies in the

calculation of autocorrelation. I estimated autocorrelation using a 24-month rolling es-

timation window and monthly data. As a robustness check I reproduce the main results

using autocorrelation calculated with both monthly and daily data. For autocorrela-

tion calculated on monthly data I recalculate the results using rolling windows of 6, 12,

36, 48 and 60 months in addition to the 24 months used before. The detailed results

are summarised in Table 3.12 below.
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Table 3.12: Estimation window robustness results (monthly data)

The table below summarises the results of robustness checks relating to estimation windows. The �rst
column speci�es the estimation window used. The second two columns, labelled �Mean� and �Count
Sig α�, details the excess returns accruing to a value-weighted portfolio and the number of time-series
regressions resulting in an alpha that is signi�cant at the 10% level (out of 10; based on 5 time series
regression speci�cations times 2 portfolio weighting schemes). Columns 2 and 3 relate to the explosive
hedge portfolio while columns 4 and 5 relate to the decaying hedge portfolio. Both hedge portfolios
are formed on the basis of decile sorts, as explained in Table 3.4. The �nal two columns record the
number of signi�cant coe�cients (at the 10% level) obtained for each of the explosive and decaying
metrics from seven panel data regressions, as explained more fully in Table 3.9.

Sorted Portfolio Excess Returns (VW, bp) Panel Regressions

Explosive Decaying Explosive Decaying

Estimation window Mean Count Sig α Mean Count Sig α Count Sig Count Sig

6 Months 41*** 9/10 23** 6/10 7/7 7/7

12 Months 68*** 10/10 24** 7/10 7/7 7/7

24 Months 47*** 9/10 40*** 10/10 7/7 7/7

36 Months 29** 9/10 48*** 10/10 5/7 7/7

48 Months 23* 7/10 49*** 10/10 0/7 7/7

60 Months 11 2/10 52*** 10/10 0/7 7/7

The predicative power of explosive stocks holds up well for shorter estimation windows

but tends to decrease as the window length increases. This may be because the pre-

dictability due to explosive stocks is relatively short term, peaking at 2 months post

formation. By contrast, the evidence supporting predictability due to decaying stocks

tends to increase as the window length is increased. The fact that returns generated

by decaying stocks are highly persistent may help make them less sensitive to di�erent

estimation windows. Overall the main results appear robust to di�erent estimation

windows.

Turning to daily data, in Table 3.13 I summarise the results of autocorrelation estim-

ated over di�erent monthly windows using daily data. As before explosive stocks do

better with shorter estimation windows while decaying stocks do (slightly) better with

longer estimation windows. Overall, the results suggest that the main results are ro-

bust to a range of di�erent estimation windows, although explosive stocks and decaying

stocks show di�erent patterns in predictive ability as window lengths change.
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Table 3.13: Estimation window robustness results (using daily data, estimated each

month)

The table below summarises the results of robustness checks relating to estimation windows, using
daily data. The �rst column speci�cities the estimation window used. The second two columns,
labelled �Mean� and �Count Sig α�, details the excess returns accruing to a value-weighted portfolio
and the number of time-series regressions resulting in an alpha that is signi�cant at the 10% level (out
of 10; based on 5 time series regression speci�cations times 2 portfolio weighting schemes). Columns
2 and 3 relate to the explosive hedge portfolio while columns 4 and 5 relate to the decaying hedge
portfolio. Both hedge portfolios are formed on the basis of decile sorts, as explained in Table 3.4. The
�nal two columns record the number of signi�cant coe�cients (at the 10% level) obtained for each
of the explosive and decaying metrics from seven panel data regressions, as explained more fully in
Table 3.9.

Sorted Portfolio Excess Returns (VW, bp) Panel Regressions

Explosive Decaying Explosive Decaying

Estimation window Mean Count Sig α Mean Count Sig α Count Sig Count Sig

1 Months 12 2/10 35*** 9/10 6/7 6/7

2 Months 23** 4/10 29*** 10/10 7/7 6/7

3 Months 33*** 9/10 28*** 9/10 7/7 7/7

6 Months 43*** 9/10 26** 7/10 7/7 7/7

12 Months 71*** 10/10 26** 7/10 7/7 7/7

24 Months 44*** 9/10 42*** 10/10 5/7 7/7

36 Months 27** 9/10 45*** 10/10 3/7 7/7

48 Months 18 6/10 51*** 10/10 0/7 7/7

60 Months 10 2/10 52*** 10/10 0/7 7/7

3.7.3 Di�erent realised return measures

In the results presented earlier I performed tests using realised excess returns (the

monthly raw CRSP total return (�ret�) less the risk free rate). I also consider whether

the main results are robust to using unadjusted monthly CRSP returns. I �nd that they

are. The same result holds when using realised returns excluding dividends (�retx�) and

when using excess realised returns excluding dividends (�retx� less �rf�, to be precise).

This suggests that my main results are not driven by a particular choice of realised

return. Also, since the results continue to hold after excluding dividends from realised

returns, it suggests that systematic di�erences in the underlying dividend cash �ow of

di�erent stocks are not the main driver of the main results. This �nding may be of

interest to those who would like to link autocorrelation to bubbles.22

To ensure that my results are not tainted by missing delisting returns (see Shumway

(1997)) I follow the approach in Beaver, McNichols and Price (2007); I �ll in missing

delisting returns by using the average delisting return for each delisting code. I then

22I prefer to remain agnostic on the matter, particularly because I am not formally presenting or
testing a theory of bubbles.

138



combine these augmented delisting returns with normal returns to generate delisting

adjusted excess returns (�dleret�). Using delisting adjusted returns as the dependent

variable does not materially alter the main results. Table 3.14 summarises these results.

Table 3.14: Realised return robustness results

The table below summarises the results of robustness checks relating to the realised return used. The
�rst column speci�cities the realised return metric used. The second two columns, labelled �Mean�
and �Count Sig α�, details the excess returns accruing to a value-weighted portfolio and the number
of time-series regressions resulting in an alpha that is signi�cant at the 10% level (out of 10; based on
5 time series regression speci�cations times 2 portfolio weighting schemes). Columns 2 and 3 relate to
the explosive hedge portfolio while columns 4 and 5 relate to the decaying hedge portfolio. Both hedge
portfolios are formed on the basis of decile sorts, as explained in Table 3.4. The �nal two columns
record the number of signi�cant coe�cients (at the 10% level) obtained for each of the explosive and
decaying metrics from seven panel data regressions, as explained more fully in Table 3.9.

Sorted Portfolio Excess Returns (VW, bp) Panel Regressions

Explosive Decaying Explosive Decaying

Realised return Mean Count Sig α Mean Count Sig α Count Sig Count Sig

eret (base case) 46*** 9/10 40*** 10/10 7/7 7/7

ret 55*** 10/10 47*** 10/10 7/7 7/7

retx 55*** 10/10 47*** 10/10 7/7 7/7

eretx 47*** 9/10 40*** 10/10 7/7 7/7

dleret 46*** 9/10 40*** 10/10 7/7 7/7

3.7.4 Other robustness checks

The main results continue to hold when winsorizing autocorrelation at the 1% level.

This suggests that the main results are not driven by outliers. I also re-estimate

autocorrelation using prices constructed from CRSP total returns23. This way I incor-

porate non-price related returns such as dividends and other distributions directly into

the price series used to estimate autocorrelation. The results are summarised in Table

3.15

23I start with the price at the start of the window, then in�ate it using the CRSP total return
(�ret�) to generate a price series over the relevant window. These synthetic �total return� prices are
then used to estimate autocorrelation in the same way as before.
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Table 3.15: Other robustness results

The table below summarises the results of two further robustness checks. The row �rst considers
the impact of winsorizing autocorrelation. The second row uses an estimate of autocorrelation based
on synthetic prices constructed from realised total returns instead of actual prices (which would not
include dividends and other distributions). The second two columns, labelled �Mean� and �Count Sig
α�, details the excess returns accruing to a value-weighted portfolio and the number of time-series
regressions resulting in an alpha that is signi�cant at the 10% level (out of 10; based on 5 time series
regression speci�cations times 2 portfolio weighting schemes). Columns 2 and 3 relate to the explosive
hedge portfolio while columns 4 and 5 relate to the decaying hedge portfolio. Both hedge portfolios
are formed on the basis of decile sorts, as explained in Table 3.4. The �nal two columns record the
number of signi�cant coe�cients (at the 10% level) obtained for each of the explosive and decaying
metrics from seven panel data regressions, as explained more fully in Table 3.9.

Sorted Portfolio Excess Returns (VW, bp) Panel Regressions

Explosive Decaying Explosive Decaying

Mean Count Sig α Mean Count Sig α Count Sig Count Sig

Winsorized 47*** 9/10 40*** 10/10 5/7 7/7

Total return prices 52*** 10/10 41*** 10/10 7/7 7/7
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3.8 Conclusion

I introduce autocorrelation as a new predictor of realised returns. Broadly speaking,

autocorrelation at the stock level captures past deviations from a pure random walk

in log-stock prices. In both portfolio tests and panel data regressions, autocorrelation

is a statistically and economically signi�cant predictor of subsequent realised returns.

This predictability appears to be distinct from a range of time-series risk factors and

cross-sectional stock characteristics. The predictability due to low autocorrelations �

decaying stocks � is particularly persistent; a �decaying� hedge portfolio formed by

investing in stocks with low historical autocorrelation and shorting �middle� stocks

continues (on average) to generate statistically signi�cant monthly excess returns even

at a lag of more than two decades post-formation.

An analysis of returns around earnings announcements does not support biased in-

vestor expectations as an explanation for this persistence. This suggests a risk factor

explanation; however, preliminary work has not uncovered a convincing relationship

with macroeconomic state variables that might motivate such an interpretation. Much

work remains to be done to understand why autocorrelation predicts returns, and why

excess returns accruing to decaying stocks are so persistent.
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3.9 Appendix

3.9.1 Portfolio time-series alphas (common risk factors)

Table 3.16: Explosive portfolio (P10 minus middle portfolio) excess returns, regressed

on common risk factors

Panel A: Equal weighted portfolios

(1) (2) (3) (4) (5) (6)

mean market sizebook FF3 Carhart4 all

b/t b/t b/t b/t b/t b/t

MktRf 0.0952** 0.1110*** 0.1828*** 0.1418***

(2.56) (3.98) (5.98) (5.15)

SMB 0.2565*** 0.1993** 0.2198*** 0.3407***

(2.65) (2.02) (2.68) (7.30)

HML -0.3547*** -0.3873*** -0.2422*** -0.4020***

(-3.74) (-4.58) (-3.32) (-4.37)

MOM 0.3224*** 0.4485***

(5.08) (13.24)

STRev -0.1377***

(-3.55)

LTRev 0.0348

(0.45)

PSLiq -0.0088

(-0.39)

Const 0.0054*** 0.0048*** 0.0062*** 0.0058*** 0.0025*** 0.0042***

(5.10) (4.62) (6.74) (6.58) (3.03) (4.49)

Adj R-sqr -0.0000 0.0290 0.2325 0.2666 0.4730 0.7318

N 1,025 1,025 1,025 1,025 1,025 605

Panel B: Value weighted portfolios

(1) (2) (3) (4) (5) (6)

mean market sizebook FF3 Carhart4 all

b/t b/t b/t b/t b/t b/t

MktRf 0.1062** 0.1337*** 0.2201*** 0.1330***

(2.47) (3.64) (5.56) (3.61)

SMB 0.2502** 0.1813 0.2061** 0.3477***

(2.21) (1.55) (2.12) (5.92)

HML -0.4031*** -0.4423*** -0.2676*** -0.5112***

(-3.66) (-4.52) (-3.02) (-4.24)

MOM 0.3884*** 0.5343***

(5.83) (10.83)

STRev -0.1546***

(-2.71)

LTRev -0.0482

(-0.50)

PSLiq -0.0339

(-1.20)

Const 0.0047*** 0.0040*** 0.0056*** 0.0051*** 0.0012 0.0037***

(3.95) (3.38) (5.44) (5.15) (1.36) (3.25)

Adj R-sqr -0.0000 0.0246 0.1896 0.2234 0.4286 0.6671

N 1,026 1,025 1,025 1,025 1,025 605

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are computed

using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.
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Table 3.17: Decaying portfolio (P1 minus middle) excess returns, regressed on com-

mon risk factors

Panel A: Equal weighted portfolios

(1) (2) (3) (4) (5) (6)
mean market sizebook FF3 Carhart4 all
b/t b/t b/t b/t b/t b/t

MktRf 0.1741*** 0.1293*** 0.1046*** 0.1898***
(4.70) (4.38) (4.54) (4.72)

SMB 0.3448*** 0.2781*** 0.2710*** 0.2789***
(10.34) (10.03) (11.11) (6.80)

HML -0.0417 -0.0796* -0.1294** -0.1188*
(-0.99) (-1.68) (-2.52) (-1.92)

MOM -0.1106** -0.2594***
(-2.00) (-5.08)

STRev 0.0384
(0.82)

LTRev 0.1851***
(3.17)

PSLiq -0.0160
(-0.84)

Const 0.0047*** 0.0036*** 0.0040*** 0.0035*** 0.0046*** 0.0043***
(5.38) (4.32) (5.21) (4.54) (5.30) (4.16)

Adj R-sqr -0.0000 0.1466 0.2109 0.2797 0.3149 0.5255
N 1,025 1,025 1,025 1,025 1,025 605

Panel B: Value weighted portfolios

(1) (2) (3) (4) (5) (6)
mean market sizebook FF3 Carhart4 all
b/t b/t b/t b/t b/t b/t

MktRf 0.1517*** 0.1434*** 0.1118*** 0.1955***
(3.24) (3.54) (3.19) (3.39)

SMB 0.2405*** 0.1665*** 0.1575** 0.2548***
(4.04) (2.68) (2.44) (3.04)

HML -0.1334** -0.1755*** -0.2393*** -0.3050***
(-2.55) (-3.42) (-3.87) (-3.16)

MOM -0.1419** -0.3461***
(-2.00) (-4.80)

STRev -0.0026
(-0.05)

LTRev 0.3300***
(3.28)

PSLiq -0.0345
(-1.08)

Const 0.0040*** 0.0031*** 0.0040*** 0.0034*** 0.0048*** 0.0057***
(3.58) (2.79) (3.53) (3.07) (3.74) (3.29)

Adj R-sqr -0.0000 0.0677 0.0772 0.1288 0.1642 0.4057
N 1,026 1,025 1,025 1,025 1,025 605

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are computed

using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.
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3.9.2 Double sorts

Table 3.18: Two-way tabulations showing mean monthly excess return (bp)

Panel A
P/E ratio quintiles

ac quintiles Low 2 3 4 High HML All
Decaying 15 150 134 97 60 45*** 87

2 25 119 76 25 -5 -30*** 65
3 47 114 66 30 -22 -69*** 65
4 66 126 66 31 -23 -89*** 68

Explosive 101 183 111 75 49 -52*** 103
HMM 59*** 63*** 42*** 46*** 65*** 38***
LMM -28*** 31*** 65*** 68*** 76*** 21***
All 28 132 84 47 12 -16*** 66

Panel B
Major rating class (AAA/AA, A, BBB, BB, )

ac quintiles High 2 3 4 Low HML All
Decaying 55 108 111 70 44 -11 87

2 60 88 71 51 23 -37** 65
3 71 72 62 57 20 -51*** 65
4 66 60 70 68 13 -53*** 68

Explosive 103 65 89 83 106 3 103
HMM 36** -8 22** 24** 88*** 38***
LMM -12 34** 43*** 11 26* 21***
All 69 76 75 62 45 -24*** 66

Panel C
Turnover quintiles

ac quintiles Low 2 3 4 High HML All
Decaying 54 79 94 97 80 26*** 87

2 52 61 73 68 57 5 65
3 56 68 77 66 34 -22*** 65
4 67 74 75 71 32 -35*** 68

Explosive 94 99 109 109 93 -1 103
HMM 36*** 31*** 34*** 40*** 52*** 38***
LMM -4 12** 19*** 28*** 38*** 21***
All 56 67 76 75 63 8** 66

Panel D
Amihud illiquidity quintiles

ac quintiles Liquid 2 3 4 Illiquid HML All
Decaying 68 77 70 85 102 34*** 87

2 56 62 53 67 76 20*** 65
3 53 55 66 66 78 25*** 65
4 50 55 67 74 90 40*** 68

Explosive 80 82 93 114 135 55*** 103
HMM 27*** 25*** 31*** 45*** 54*** 38***
LMM 15*** 20*** 8 16*** 21*** 21***
All 59 63 65 77 91 32*** 66

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using a two-sample t-test with unequal variances.
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Table 3.19: Two-way tabulations showing mean monthly excess return (bp)

Panel A
Idiosyncratic volatility quintiles

ac quintiles Decaying 2 3 4 Volatile HML All
Decaying 92 98 112 102 34 -58*** 87

2 65 74 81 68 6 -59*** 65
3 69 75 72 58 2 -67*** 65
4 81 80 81 49 -2 -83*** 68

Explosive 110 112 119 103 64 -46*** 103
HMM 38*** 35*** 40*** 44*** 62*** 38***
LMM 20*** 22*** 34*** 43*** 32*** 21***
All 73 81 87 70 3 -70*** 66

Panel B
60-month coskewsness quintiles

ac quintiles Low 2 3 4 High HML All
Decaying 107 94 90 93 91 -16* 87

2 71 70 64 64 65 -6 65
3 78 69 69 66 58 -20*** 65
4 88 79 74 65 50 -38*** 68

Explosive 117 107 104 94 78 -39*** 103
HMM 38*** 34*** 35*** 29*** 20*** 38***
LMM 28*** 21*** 21*** 28*** 33*** 21***
All 92 84 80 76 68 -24*** 66

Panel C
2 period lagged price quintiles

ac quintiles Low 2 3 4 High HML All
Decaying 67 90 102 106 113 46*** 87

2 53 67 73 66 63 10 65
3 53 57 74 67 64 11 65
4 69 67 69 71 62 -7 68

Explosive 109 117 111 98 91 -18** 103
HMM 52*** 54*** 38*** 29*** 27*** 38***
LMM 10* 27*** 30*** 37*** 50*** 21***
All 50 66 76 71 71 21*** 66

Panel D
NYSE size quintiles

ac quintiles Small 2 3 4 Big HML All
Decaying 81 85 98 92 84 3 87

2 56 60 74 78 58 2 65
3 65 69 67 64 57 -8 65
4 82 73 70 60 53 -29*** 68

Explosive 133 110 99 92 69 -64*** 103
HMM 66*** 43*** 28*** 25*** 13*** 38***
LMM 13*** 17*** 28*** 25*** 27*** 21***
All 64 67 71 68 59 -5** 66

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using a two-sample t-test with unequal variances.
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Table 3.20: Two-way tabulations showing mean monthly excess return (bp)

Panel A

NBER recession Dummy

ac quintiles Expansion Recession HML All

Decaying 96 28 -68*** 87

2 79 -21 -100*** 65

3 80 -30 -110*** 65

4 87 -54 -141*** 68

Explosive 127 -44 -171*** 103

HMM 45*** -9 38***

LMM 14*** 63*** 21***

All 84 -45 -129*** 66

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using a two-sample t-test with unequal variances.

3.9.3 Double-sorted time series alphas

Table 3.21: Alpha's sorted on momentum

Portfolio (qmomentum) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0050*** 0.0044*** 0.0045*** 0.0049*** 0.0050***

Equal weighted: quintile 2 0.0033*** 0.0023** 0.0022** 0.0026*** 0.0010

Equal weighted: quintile 3 0.0022** 0.0012 0.0012 0.0020** 0.0022**

Equal weighted: quintile 4 0.0046*** 0.0035*** 0.0029*** 0.0041*** 0.0028**

Equal weighted: quintile 5 0.0068*** 0.0060*** 0.0059*** 0.0063*** 0.0062***

Value weighted: quintile 1 0.0044*** 0.0032** 0.0031** 0.0038*** 0.0042**

Value weighted: quintile 2 0.0030** 0.0016 0.0018 0.0029** 0.0044***

Value weighted: quintile 3 0.0025* 0.0014 0.0014 0.0025* 0.0013

Value weighted: quintile 4 0.0043*** 0.0033** 0.0030** 0.0041*** 0.0032

Value weighted: quintile 5 0.0070*** 0.0061*** 0.0060*** 0.0072*** 0.0085***

Portfolio (qmomentum) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0004 0.0004 0.0013 -0.0015 -0.0014

Equal weighted: quintile 2 0.0003 0.0003 0.0015 -0.0013* -0.0011

Equal weighted: quintile 3 0.0025** 0.0015 0.0020** 0.0008 -0.0001

Equal weighted: quintile 4 0.0052*** 0.0046*** 0.0055*** 0.0039*** 0.0055***

Equal weighted: quintile 5 0.0081*** 0.0075*** 0.0084*** 0.0070*** 0.0087***

Value weighted: quintile 1 0.0007 0.0007 0.0015 -0.0016 -0.0019

Value weighted: quintile 2 -0.0000 -0.0005 0.0007 -0.0023** 0.0001

Value weighted: quintile 3 0.0020 0.0008 0.0014 -0.0001 0.0008

Value weighted: quintile 4 0.0053*** 0.0043*** 0.0052*** 0.0038*** 0.0063***

Value weighted: quintile 5 0.0088*** 0.0077*** 0.0085*** 0.0069*** 0.0110***

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.
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Table 3.22: Alpha's sorted on CAPM beta

Portfolio (qcapmbeta) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0009 0.0001 -0.0003 -0.0000 -0.0006

Equal weighted: quintile 2 0.0037*** 0.0028*** 0.0026*** 0.0031*** 0.0018*

Equal weighted: quintile 3 0.0049*** 0.0044*** 0.0039*** 0.0041*** 0.0031**

Equal weighted: quintile 4 0.0032*** 0.0028*** 0.0029*** 0.0042*** 0.0054***

Equal weighted: quintile 5 0.0069*** 0.0064*** 0.0062*** 0.0070*** 0.0079***

Value weighted: quintile 1 0.0007 -0.0004 -0.0005 0.0010 0.0016

Value weighted: quintile 2 0.0041*** 0.0036*** 0.0033** 0.0048*** 0.0027

Value weighted: quintile 3 0.0034** 0.0030** 0.0029** 0.0035** 0.0042**

Value weighted: quintile 4 0.0039** 0.0030* 0.0029* 0.0054*** 0.0058***

Value weighted: quintile 5 0.0076*** 0.0068*** 0.0063*** 0.0077*** 0.0098***

Portfolio (qcapmbeta) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0037*** 0.0030*** 0.0036*** 0.0014* 0.0022***

Equal weighted: quintile 2 0.0037*** 0.0034*** 0.0041*** 0.0019** 0.0026**

Equal weighted: quintile 3 0.0047*** 0.0049*** 0.0058*** 0.0028*** 0.0039***

Equal weighted: quintile 4 0.0041*** 0.0043*** 0.0055*** 0.0020** 0.0036***

Equal weighted: quintile 5 0.0046*** 0.0043*** 0.0049*** 0.0018 0.0054***

Value weighted: quintile 1 0.0028** 0.0022** 0.0030*** 0.0007 0.0018

Value weighted: quintile 2 0.0038*** 0.0035*** 0.0040*** 0.0017* 0.0023*

Value weighted: quintile 3 0.0060*** 0.0059*** 0.0067*** 0.0031*** 0.0046***

Value weighted: quintile 4 0.0052*** 0.0052*** 0.0060*** 0.0024** 0.0044***

Value weighted: quintile 5 0.0058*** 0.0054*** 0.0062*** 0.0022 0.0065***

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.

Table 3.23: Alpha's sorted on size

Portfolio (qsize) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0046*** 0.0040*** 0.0044*** 0.0042*** 0.0038***

Equal weighted: quintile 2 0.0050*** 0.0038*** 0.0040*** 0.0048*** 0.0047***

Equal weighted: quintile 3 0.0053*** 0.0038*** 0.0037*** 0.0053*** 0.0063***

Equal weighted: quintile 4 0.0041*** 0.0028** 0.0027** 0.0050*** 0.0047***

Equal weighted: quintile 5 0.0025** 0.0017 0.0020* 0.0038*** 0.0036**

Value weighted: quintile 1 0.0046*** 0.0038*** 0.0042*** 0.0040*** 0.0038***

Value weighted: quintile 2 0.0051*** 0.0038*** 0.0040*** 0.0049*** 0.0051***

Value weighted: quintile 3 0.0053*** 0.0038*** 0.0037*** 0.0053*** 0.0063***

Value weighted: quintile 4 0.0042*** 0.0029** 0.0027** 0.0051*** 0.0049***

Value weighted: quintile 5 0.0031*** 0.0022* 0.0023** 0.0044*** 0.0044**

Portfolio (qsize) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0033** 0.0029** 0.0038*** 0.0012 0.0033***

Equal weighted: quintile 2 0.0057*** 0.0055*** 0.0061*** 0.0030*** 0.0044***

Equal weighted: quintile 3 0.0050*** 0.0048*** 0.0059*** 0.0025** 0.0043***

Equal weighted: quintile 4 0.0055*** 0.0046*** 0.0054*** 0.0021 0.0034**

Equal weighted: quintile 5 0.0046*** 0.0038*** 0.0049*** 0.0016* 0.0043***

Value weighted: quintile 1 0.0040*** 0.0037*** 0.0045*** 0.0019 0.0035***

Value weighted: quintile 2 0.0056*** 0.0054*** 0.0061*** 0.0030*** 0.0040***

Value weighted: quintile 3 0.0051*** 0.0049*** 0.0061*** 0.0025** 0.0044***

Value weighted: quintile 4 0.0054*** 0.0045*** 0.0052*** 0.0019 0.0036**

Value weighted: quintile 5 0.0043*** 0.0034*** 0.0043*** 0.0012 0.0040***

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.
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Table 3.24: Alpha's sorted on book-to-market

Portfolio (qb2m) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0034 0.0024 0.0014 0.0039* 0.0032

Equal weighted: quintile 2 0.0055*** 0.0040** 0.0040** 0.0058*** 0.0054***

Equal weighted: quintile 3 0.0041** 0.0026 0.0026 0.0048*** 0.0048***

Equal weighted: quintile 4 0.0051*** 0.0034** 0.0035** 0.0061*** 0.0063***

Equal weighted: quintile 5 0.0017 -0.0002 -0.0009 0.0008 0.0010

Value weighted: quintile 1 0.0088*** 0.0073** 0.0064** 0.0096*** 0.0092***

Value weighted: quintile 2 0.0055*** 0.0041* 0.0035* 0.0057*** 0.0055***

Value weighted: quintile 3 0.0034 0.0016 0.0007 0.0049** 0.0052**

Value weighted: quintile 4 0.0032 0.0013 0.0018 0.0052** 0.0049**

Value weighted: quintile 5 0.0026 0.0002 -0.0005 0.0020 0.0024

Portfolio (qb2m) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0119*** 0.0112*** 0.0123*** 0.0084*** 0.0091***

Equal weighted: quintile 2 0.0091*** 0.0086*** 0.0090*** 0.0054*** 0.0059***

Equal weighted: quintile 3 0.0069*** 0.0064*** 0.0069*** 0.0040*** 0.0039***

Equal weighted: quintile 4 0.0049*** 0.0046*** 0.0051*** 0.0021** 0.0025**

Equal weighted: quintile 5 0.0029** 0.0029** 0.0039*** 0.0010 0.0016

Value weighted: quintile 1 0.0108*** 0.0093*** 0.0116*** 0.0074*** 0.0084***

Value weighted: quintile 2 0.0071*** 0.0062*** 0.0071*** 0.0023 0.0028

Value weighted: quintile 3 0.0046*** 0.0038** 0.0042*** 0.0005 0.0004

Value weighted: quintile 4 0.0030 0.0026 0.0034** -0.0004 -0.0001

Value weighted: quintile 5 0.0030 0.0027 0.0042** 0.0004 0.0014

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.

Table 3.25: Alpha's sorted on price-earnings ratio

Portfolio (qpe) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0062*** 0.0051*** 0.0044** 0.0062*** 0.0065***

Equal weighted: quintile 2 0.0044*** 0.0030** 0.0023* 0.0039*** 0.0040***

Equal weighted: quintile 3 0.0079*** 0.0068*** 0.0060*** 0.0083*** 0.0079***

Equal weighted: quintile 4 0.0075*** 0.0065*** 0.0059*** 0.0079*** 0.0076***

Equal weighted: quintile 5 0.0092*** 0.0085*** 0.0079*** 0.0107*** 0.0106***

Value weighted: quintile 1 0.0056** 0.0043* 0.0031 0.0052** 0.0056**

Value weighted: quintile 2 0.0036* 0.0021 0.0014 0.0043** 0.0042**

Value weighted: quintile 3 0.0076*** 0.0065*** 0.0055*** 0.0084*** 0.0086***

Value weighted: quintile 4 0.0059*** 0.0048*** 0.0041** 0.0075*** 0.0071***

Value weighted: quintile 5 0.0089*** 0.0077*** 0.0074*** 0.0116*** 0.0112***

Portfolio (qpe) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0087*** 0.0083*** 0.0101*** 0.0054*** 0.0067***

Equal weighted: quintile 2 0.0048*** 0.0039*** 0.0046*** 0.0013 0.0016

Equal weighted: quintile 3 0.0066*** 0.0056*** 0.0061*** 0.0038*** 0.0042***

Equal weighted: quintile 4 0.0094*** 0.0087*** 0.0098*** 0.0068*** 0.0067***

Equal weighted: quintile 5 0.0105*** 0.0099*** 0.0119*** 0.0078*** 0.0081***

Value weighted: quintile 1 0.0060*** 0.0054** 0.0080*** 0.0029 0.0049**

Value weighted: quintile 2 0.0042** 0.0031* 0.0040** 0.0002 0.0008

Value weighted: quintile 3 0.0044** 0.0034* 0.0043** 0.0007 0.0012

Value weighted: quintile 4 0.0077*** 0.0069*** 0.0084*** 0.0044*** 0.0046***

Value weighted: quintile 5 0.0110*** 0.0103*** 0.0127*** 0.0085*** 0.0092***

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.
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Table 3.26: Alpha's sorted on turnover

Portfolio (qturnover) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0030** 0.0017 0.0015 0.0023** -0.0006

Equal weighted: quintile 2 0.0028*** 0.0017* 0.0012 0.0018* 0.0020*

Equal weighted: quintile 3 0.0054*** 0.0041*** 0.0037*** 0.0047*** 0.0053***

Equal weighted: quintile 4 0.0040*** 0.0032*** 0.0033*** 0.0051*** 0.0058***

Equal weighted: quintile 5 0.0071*** 0.0067*** 0.0066*** 0.0080*** 0.0081***

Value weighted: quintile 1 0.0017 -0.0003 -0.0006 0.0013 0.0003

Value weighted: quintile 2 0.0020 0.0008 0.0005 0.0017 0.0022

Value weighted: quintile 3 0.0052*** 0.0043*** 0.0042*** 0.0054*** 0.0071***

Value weighted: quintile 4 0.0026* 0.0021 0.0026* 0.0042*** 0.0061***

Value weighted: quintile 5 0.0084*** 0.0075*** 0.0073*** 0.0093*** 0.0095***

Portfolio (qturnover) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0031*** 0.0027*** 0.0032*** 0.0017** 0.0032***

Equal weighted: quintile 2 0.0036*** 0.0032*** 0.0037*** 0.0018** 0.0025***

Equal weighted: quintile 3 0.0050*** 0.0048*** 0.0055*** 0.0027*** 0.0041***

Equal weighted: quintile 4 0.0068*** 0.0068*** 0.0077*** 0.0052*** 0.0047***

Equal weighted: quintile 5 0.0082*** 0.0083*** 0.0091*** 0.0055*** 0.0069***

Value weighted: quintile 1 0.0026** 0.0017 0.0019* 0.0006 0.0015

Value weighted: quintile 2 0.0030*** 0.0022*** 0.0027*** 0.0005 0.0016

Value weighted: quintile 3 0.0052*** 0.0049*** 0.0057*** 0.0027*** 0.0043***

Value weighted: quintile 4 0.0064*** 0.0059*** 0.0066*** 0.0034*** 0.0042***

Value weighted: quintile 5 0.0087*** 0.0085*** 0.0095*** 0.0059*** 0.0083***

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.

Table 3.27: Alpha's sorted on Amihud illiquidity

Portfolio (qilliq) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0029*** 0.0021* 0.0024** 0.0048*** 0.0046***

Equal weighted: quintile 2 0.0046*** 0.0034*** 0.0034*** 0.0055*** 0.0059***

Equal weighted: quintile 3 0.0044*** 0.0031*** 0.0032*** 0.0050*** 0.0047***

Equal weighted: quintile 4 0.0041*** 0.0031*** 0.0032*** 0.0039*** 0.0035**

Equal weighted: quintile 5 0.0052*** 0.0042*** 0.0040*** 0.0040*** 0.0035**

Value weighted: quintile 1 0.0035*** 0.0026** 0.0028** 0.0053*** 0.0055***

Value weighted: quintile 2 0.0043*** 0.0033*** 0.0035*** 0.0052*** 0.0060***

Value weighted: quintile 3 0.0042*** 0.0027** 0.0025** 0.0041*** 0.0047***

Value weighted: quintile 4 0.0043*** 0.0029*** 0.0029*** 0.0032*** 0.0030**

Value weighted: quintile 5 0.0071*** 0.0052*** 0.0049*** 0.0048*** 0.0040**

Portfolio (qilliq) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0051*** 0.0042*** 0.0052*** 0.0019* 0.0041***

Equal weighted: quintile 2 0.0059*** 0.0053*** 0.0063*** 0.0026** 0.0033***

Equal weighted: quintile 3 0.0054*** 0.0052*** 0.0060*** 0.0027** 0.0036***

Equal weighted: quintile 4 0.0049*** 0.0048*** 0.0059*** 0.0025** 0.0053***

Equal weighted: quintile 5 0.0036*** 0.0029** 0.0036*** 0.0010 0.0032***

Value weighted: quintile 1 0.0044*** 0.0035*** 0.0044*** 0.0014 0.0038***

Value weighted: quintile 2 0.0050*** 0.0043*** 0.0053*** 0.0017 0.0032**

Value weighted: quintile 3 0.0045*** 0.0038*** 0.0044*** 0.0014 0.0027**

Value weighted: quintile 4 0.0040** 0.0039*** 0.0049*** 0.0011 0.0040***

Value weighted: quintile 5 0.0045*** 0.0037** 0.0040*** 0.0014 0.0030*

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.
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Table 3.28: Alpha's sorted on idiosyncratic volatility

Portfolio (qivol) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0029*** 0.0021*** 0.0020*** 0.0025*** 0.0028***

Equal weighted: quintile 2 0.0032*** 0.0024*** 0.0025*** 0.0034*** 0.0030***

Equal weighted: quintile 3 0.0061*** 0.0054*** 0.0053*** 0.0062*** 0.0056***

Equal weighted: quintile 4 0.0057*** 0.0053*** 0.0053*** 0.0063*** 0.0074***

Equal weighted: quintile 5 0.0077*** 0.0074*** 0.0074*** 0.0079*** 0.0076***

Value weighted: quintile 1 0.0036*** 0.0027*** 0.0027*** 0.0036*** 0.0038***

Value weighted: quintile 2 0.0032*** 0.0025** 0.0028*** 0.0041*** 0.0046***

Value weighted: quintile 3 0.0070*** 0.0062*** 0.0058*** 0.0077*** 0.0078***

Value weighted: quintile 4 0.0056*** 0.0051*** 0.0049*** 0.0059*** 0.0073***

Value weighted: quintile 5 0.0093*** 0.0084*** 0.0082*** 0.0087*** 0.0084***

Portfolio (qivol) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0044*** 0.0037*** 0.0041*** 0.0028*** 0.0035***

Equal weighted: quintile 2 0.0051*** 0.0046*** 0.0053*** 0.0030*** 0.0043***

Equal weighted: quintile 3 0.0064*** 0.0061*** 0.0070*** 0.0040*** 0.0051***

Equal weighted: quintile 4 0.0057*** 0.0055*** 0.0063*** 0.0027*** 0.0058***

Equal weighted: quintile 5 0.0060*** 0.0061*** 0.0072*** 0.0032** 0.0074***

Value weighted: quintile 1 0.0040*** 0.0032*** 0.0039*** 0.0020*** 0.0043***

Value weighted: quintile 2 0.0055*** 0.0049*** 0.0056*** 0.0028** 0.0035***

Value weighted: quintile 3 0.0066*** 0.0066*** 0.0074*** 0.0036*** 0.0054***

Value weighted: quintile 4 0.0072*** 0.0066*** 0.0073*** 0.0030** 0.0071***

Value weighted: quintile 5 0.0068*** 0.0068*** 0.0079*** 0.0026 0.0082***

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.

Table 3.29: Alpha's sorted on 60-month coskewness

Portfolio (qcoskew) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0040*** 0.0030*** 0.0030*** 0.0037*** 0.0035***

Equal weighted: quintile 2 0.0042*** 0.0026** 0.0018* 0.0039*** 0.0041***

Equal weighted: quintile 3 0.0043*** 0.0036*** 0.0036*** 0.0044*** 0.0028**

Equal weighted: quintile 4 0.0040*** 0.0034*** 0.0035*** 0.0043*** 0.0049***

Equal weighted: quintile 5 0.0042*** 0.0033*** 0.0034*** 0.0034** 0.0044***

Value weighted: quintile 1 0.0047*** 0.0034** 0.0036** 0.0050*** 0.0036*

Value weighted: quintile 2 0.0039** 0.0023 0.0017 0.0049*** 0.0063***

Value weighted: quintile 3 0.0056*** 0.0051*** 0.0052*** 0.0065*** 0.0056***

Value weighted: quintile 4 0.0056*** 0.0043** 0.0043** 0.0066*** 0.0079***

Value weighted: quintile 5 0.0038** 0.0026* 0.0027* 0.0033* 0.0050**

Portfolio (qcoskew) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0036*** 0.0037*** 0.0046*** 0.0014 0.0025**

Equal weighted: quintile 2 0.0039*** 0.0037*** 0.0046*** 0.0013 0.0029**

Equal weighted: quintile 3 0.0040*** 0.0039*** 0.0050*** 0.0016* 0.0039***

Equal weighted: quintile 4 0.0044*** 0.0034*** 0.0041*** 0.0011 0.0025*

Equal weighted: quintile 5 0.0035*** 0.0037*** 0.0052*** 0.0012 0.0022**

Value weighted: quintile 1 0.0033*** 0.0031** 0.0038*** 0.0005 0.0029**

Value weighted: quintile 2 0.0045*** 0.0038*** 0.0041*** 0.0009 0.0023*

Value weighted: quintile 3 0.0052*** 0.0045*** 0.0052*** 0.0015 0.0043***

Value weighted: quintile 4 0.0046*** 0.0035*** 0.0039*** 0.0006 0.0029**

Value weighted: quintile 5 0.0033** 0.0034** 0.0050*** 0.0012 0.0030*

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.
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Table 3.30: Alpha's sorted on rating level

Portfolio (qrating) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 -0.0039 -0.0062 -0.0073 -0.0038 -0.0039

Equal weighted: quintile 2 0.0035 0.0014 -0.0000 0.0032 0.0030

Equal weighted: quintile 3 0.0017 -0.0006 -0.0021 0.0018 0.0016

Equal weighted: quintile 4 0.0048* 0.0030 0.0017 0.0041 0.0041

Equal weighted: quintile 5 0.0085** 0.0069* 0.0051 0.0071** 0.0074**

Value weighted: quintile 1 -0.0021 -0.0045 -0.0058 -0.0015 -0.0016

Value weighted: quintile 2 0.0045* 0.0025 0.0016 0.0054** 0.0051*

Value weighted: quintile 3 0.0018 -0.0007 -0.0018 0.0025 0.0025

Value weighted: quintile 4 0.0080** 0.0062 0.0048 0.0076** 0.0077**

Value weighted: quintile 5 0.0099** 0.0084* 0.0050 0.0080** 0.0085**

Portfolio (qrating) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 -0.0003 -0.0014 0.0001 -0.0021 -0.0018

Equal weighted: quintile 2 0.0007 -0.0000 0.0018 -0.0012 -0.0011

Equal weighted: quintile 3 0.0036 0.0029 0.0044** 0.0010 0.0014

Equal weighted: quintile 4 0.0088*** 0.0088*** 0.0106*** 0.0066*** 0.0070***

Equal weighted: quintile 5 0.0114*** 0.0112*** 0.0127*** 0.0076*** 0.0082***

Value weighted: quintile 1 0.0006 -0.0004 0.0011 -0.0013 -0.0009

Value weighted: quintile 2 0.0015 0.0008 0.0028 -0.0001 0.0000

Value weighted: quintile 3 0.0055* 0.0043* 0.0062** 0.0031 0.0034

Value weighted: quintile 4 0.0105*** 0.0099*** 0.0122*** 0.0079*** 0.0085***

Value weighted: quintile 5 0.0074** 0.0076** 0.0082** 0.0040 0.0047

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.

Table 3.31: Alpha's sorted on previous month excess return

Portfolio (qprevret) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0065*** 0.0058*** 0.0055*** 0.0060*** 0.0074***

Equal weighted: quintile 2 0.0034*** 0.0022** 0.0018* 0.0025** 0.0018

Equal weighted: quintile 3 0.0040*** 0.0031*** 0.0032*** 0.0037*** 0.0038***

Equal weighted: quintile 4 0.0036*** 0.0025** 0.0026*** 0.0041*** 0.0037***

Equal weighted: quintile 5 0.0049*** 0.0045*** 0.0047*** 0.0055*** 0.0045***

Value weighted: quintile 1 0.0056*** 0.0046*** 0.0043*** 0.0057*** 0.0073***

Value weighted: quintile 2 0.0033** 0.0026* 0.0029** 0.0042** 0.0054***

Value weighted: quintile 3 0.0044*** 0.0033** 0.0032** 0.0047*** 0.0069***

Value weighted: quintile 4 0.0057*** 0.0042*** 0.0041*** 0.0063*** 0.0066***

Value weighted: quintile 5 0.0059*** 0.0055*** 0.0057*** 0.0066*** 0.0069***

Portfolio (qprevret) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0034*** 0.0032*** 0.0037*** 0.0007 0.0026**

Equal weighted: quintile 2 0.0040*** 0.0034*** 0.0043*** 0.0014 0.0015

Equal weighted: quintile 3 0.0051*** 0.0045*** 0.0054*** 0.0022*** 0.0038***

Equal weighted: quintile 4 0.0060*** 0.0055*** 0.0064*** 0.0038*** 0.0053***

Equal weighted: quintile 5 0.0108*** 0.0100*** 0.0108*** 0.0081*** 0.0087***

Value weighted: quintile 1 0.0038*** 0.0033** 0.0037*** 0.0009 0.0030*

Value weighted: quintile 2 0.0041*** 0.0029** 0.0038*** 0.0005 0.0017

Value weighted: quintile 3 0.0037*** 0.0030** 0.0043*** 0.0009 0.0032***

Value weighted: quintile 4 0.0053*** 0.0047*** 0.0056*** 0.0028*** 0.0042***

Value weighted: quintile 5 0.0093*** 0.0087*** 0.0097*** 0.0057*** 0.0083***

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.
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Table 3.32: Alpha's sorted on mean 24 month previous excess return

Portfolio (qprev24mret) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0032*** 0.0027*** 0.0031*** 0.0028** 0.0032**

Equal weighted: quintile 2 0.0048*** 0.0036*** 0.0040*** 0.0040*** 0.0027**

Equal weighted: quintile 3 0.0037*** 0.0025** 0.0027** 0.0032*** 0.0027*

Equal weighted: quintile 4 0.0033*** 0.0023* 0.0026** 0.0033** 0.0031**

Equal weighted: quintile 5 0.0067*** 0.0057*** 0.0059*** 0.0072*** 0.0066***

Value weighted: quintile 1 0.0038*** 0.0033*** 0.0040*** 0.0040*** 0.0056***

Value weighted: quintile 2 0.0062*** 0.0052*** 0.0058*** 0.0061*** 0.0069***

Value weighted: quintile 3 0.0036*** 0.0026** 0.0032** 0.0043*** 0.0049***

Value weighted: quintile 4 0.0040*** 0.0030** 0.0034** 0.0048*** 0.0054***

Value weighted: quintile 5 0.0082*** 0.0073*** 0.0074*** 0.0086*** 0.0097***

Portfolio (qprev24mret) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0022** 0.0033*** 0.0039*** 0.0027*** 0.0014

Equal weighted: quintile 2 0.0019** 0.0027*** 0.0031*** 0.0030*** 0.0018**

Equal weighted: quintile 3 0.0042*** 0.0050*** 0.0053*** 0.0052*** 0.0047***

Equal weighted: quintile 4 0.0052*** 0.0060*** 0.0064*** 0.0055*** 0.0060***

Equal weighted: quintile 5 0.0079*** 0.0083*** 0.0090*** 0.0071*** 0.0099***

Value weighted: quintile 1 0.0001 0.0010 0.0016* 0.0001 -0.0005

Value weighted: quintile 2 0.0016* 0.0022*** 0.0026*** 0.0017** 0.0010

Value weighted: quintile 3 0.0029*** 0.0032*** 0.0036*** 0.0031*** 0.0038***

Value weighted: quintile 4 0.0045*** 0.0049*** 0.0053*** 0.0045*** 0.0056***

Value weighted: quintile 5 0.0089*** 0.0088*** 0.0093*** 0.0079*** 0.0114***

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.

Table 3.33: Alpha's sorted on 2-period lagged price

Portfolio (ql2price) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0061*** 0.0058*** 0.0062*** 0.0064*** 0.0072***

Equal weighted: quintile 2 0.0049*** 0.0040*** 0.0040*** 0.0049*** 0.0040***

Equal weighted: quintile 3 0.0049*** 0.0039*** 0.0041*** 0.0047*** 0.0043***

Equal weighted: quintile 4 0.0043*** 0.0038*** 0.0042*** 0.0053*** 0.0045***

Equal weighted: quintile 5 0.0036*** 0.0031*** 0.0030*** 0.0043*** 0.0048***

Value weighted: quintile 1 0.0053*** 0.0051*** 0.0055*** 0.0054*** 0.0077***

Value weighted: quintile 2 0.0037*** 0.0030** 0.0028** 0.0039*** 0.0033*

Value weighted: quintile 3 0.0021 0.0009 0.0011 0.0022 0.0024

Value weighted: quintile 4 0.0034*** 0.0027*** 0.0029*** 0.0044*** 0.0032**

Value weighted: quintile 5 0.0037*** 0.0032*** 0.0030*** 0.0049*** 0.0051***

Portfolio (ql2price) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0036** 0.0037** 0.0043*** 0.0012 0.0018

Equal weighted: quintile 2 0.0039*** 0.0037*** 0.0046*** 0.0016 0.0030***

Equal weighted: quintile 3 0.0051*** 0.0044*** 0.0050*** 0.0016 0.0032***

Equal weighted: quintile 4 0.0052*** 0.0043*** 0.0052*** 0.0025*** 0.0037***

Equal weighted: quintile 5 0.0059*** 0.0051*** 0.0061*** 0.0031*** 0.0064***

Value weighted: quintile 1 0.0030* 0.0026 0.0028* -0.0012 0.0012

Value weighted: quintile 2 0.0035** 0.0038*** 0.0046*** 0.0009 0.0022

Value weighted: quintile 3 0.0034** 0.0025* 0.0032*** -0.0009 0.0021

Value weighted: quintile 4 0.0057*** 0.0049*** 0.0057*** 0.0021* 0.0040***

Value weighted: quintile 5 0.0060*** 0.0050*** 0.0060*** 0.0031*** 0.0063***

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.

152



Table 3.34: Alpha's sorted on NYSE size quintile breakpoints

Portfolio (qnysesize) p1mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0053*** 0.0049** 0.0054*** 0.0056*** 0.0043***

Equal weighted: quintile 2 0.0042*** 0.0032*** 0.0033*** 0.0044*** 0.0039***

Equal weighted: quintile 3 0.0046*** 0.0036*** 0.0041*** 0.0057*** 0.0058***

Equal weighted: quintile 4 0.0028** 0.0015 0.0014 0.0032** 0.0033**

Equal weighted: quintile 5 0.0028*** 0.0020** 0.0020** 0.0043*** 0.0041***

Value weighted: quintile 1 0.0046** 0.0041** 0.0046** 0.0049** 0.0045***

Value weighted: quintile 2 0.0045*** 0.0034*** 0.0035*** 0.0048*** 0.0043***

Value weighted: quintile 3 0.0048*** 0.0037*** 0.0042*** 0.0060*** 0.0060***

Value weighted: quintile 4 0.0028** 0.0016 0.0014 0.0034** 0.0035**

Value weighted: quintile 5 0.0031*** 0.0022** 0.0021* 0.0046*** 0.0044**

Portfolio (qnysesize) p10mm Mean CAPM-α 3F-α 4F-α All-α

Equal weighted: quintile 1 0.0013 0.0012 0.0021 -0.0014 0.0034***

Equal weighted: quintile 2 0.0055*** 0.0049*** 0.0058*** 0.0032*** 0.0052***

Equal weighted: quintile 3 0.0046*** 0.0046*** 0.0057*** 0.0020* 0.0037***

Equal weighted: quintile 4 0.0053*** 0.0047*** 0.0058*** 0.0022* 0.0032**

Equal weighted: quintile 5 0.0043*** 0.0034*** 0.0043*** 0.0010 0.0037***

Value weighted: quintile 1 0.0019 0.0018 0.0027 -0.0010 0.0034***

Value weighted: quintile 2 0.0053*** 0.0046*** 0.0055*** 0.0030*** 0.0050***

Value weighted: quintile 3 0.0047*** 0.0048*** 0.0059*** 0.0022** 0.0037***

Value weighted: quintile 4 0.0054*** 0.0047*** 0.0058*** 0.0022* 0.0033**

Value weighted: quintile 5 0.0040*** 0.0030** 0.0039*** 0.0009 0.0034**

Note: Signi�cance levels are indicated by * for p < 0.1, ** for p < 0.05 and *** for p < 0.01 and are

computed using Newey-West HAC adjusted standard errors with a maximum lag length of 12 months.

3.9.4 Portfolio time-series alphas (macroeconomic risk factors)
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I would like to use the conclusion to direct attention to what I consider the major

contributions of this thesis to the wider literature. In the introduction I motivate

my focus on extreme markets by arguing that extremes are relevant to the day-to-

day pricing and risk management of �nancial assets. I present a model of �re sales in

chapter 1. The model incorporates multiple investors with heterogeneous leverage, each

investing in multiple assets with heterogeneous liquidity. Due to an exogenous price

shock investors are compelled to strategically sell assets to maintain a target leverage

ratio. I introduce an equilibrium concept from game theory, the non-symmetric static

Nash equilibrium in continuous strategies, and show formally that such equilibrium

exists, is unique, and can be calculated using the method of successive approximations

within the framework of the model. I then derive an analytical approximation for

equilibrium �re-sale prices and validate the accuracy of the approximation through

numerical simulation. From this approximation I derive several (approximate) statics

amenable to economic interpretation. In particular, I demonstrate and quantify �re-

sale contagion e�ects that emerge endogenously from my model. I go on to quantify

the spillover e�ects of leverage, showing that the leverage decisions of some investors

impose externalities on other investors.

In chapter 2 I explain how the model parameters of chapter 1 can be estimated using

market prices and incomplete data on asset holdings. I then test the hypothesis that

model �re-sale prices predict realised returns in distressed markets, thus providing

empirical support for the model postulated in chapter 2.

In chapter 3 I show that autocorrelation � a straightforward estimate of the deviation

from a pure random walk in log prices � predicts realised returns. This predictability

remains after controlling for market, size, book-to-market, momentum, short-term re-

versal, long-term reversal and liquidity in sorted portfolio time-series tests. Moreover

autocorrelation remains a statistically and economically signi�cant predictor of real-

ised excess returns in stock level panel data regressions, even after controlling for a

wide range of stock characteristics in various speci�cations. Stocks with low estim-

ates of autocorrelation, which I term decaying stocks, generate unusually persistent

excess returns. A zero-cost hedge portfolio of decaying stocks generates statistically

and economically signi�cant excess returns on average in every month post portfolio

formation for horizons up to 25 years. An analysis of abnormal returns around earnings

announcement dates suggests that the outperformance of decaying stocks cannot be

easily explained by biased investor expectations of future earnings. This indicates a

possible alternative: the interpretation of autocorrelation as a novel priced risk factor,

or, perhaps more likely, as correlated with a still unknown but priced risk factor.
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