

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

NON-COMMENSURATE REALIZATION

OF COMPACT BROADBAND R.F.

CIRCUITS

A thesis submitted for the degree of Doctor of Philosophy, University of Auckland

D. A. E. BLOMFIELD

MARCH 1983

ABSTRACT

A new method for the synthesis of broadband impedance transformers having predictable passband frequency response is presented. The technique is based on the use of noncommensurate (i.e. unequal element length) transmission line networks. Through the use of approximations and computer optimization studies non-commensurate circuits are shown to be advantageous in distributed circuit design. The new method derives a non-commensurate circuit from a conventional commensurate prototype in such a way that the transmission matrix of pairs of elements in both circuits is made equal at one frequency. The transformation used ensures that the frequency response of the derived circuit closely matches that of the prototype circuit. Limitations on section characteristic impedances imposed either by constructional constraints or other practical realizability considerations are more easily met using the new design technique than when using conventional commensurate networks alone. Moreover, wide harmonically related passbands are largely avoided. The method finds greatest application where there are circuit length (or size) restrictions which must be met. Where such restrictions do not apply, conventional commensurate techniques are usually sufficiently flexible. The non-commensurate technique can however still provide benefits of even greater flexibility or better stop-band attenuation. The method presented is only an approximate equivalence and so an analysis of the technique is presented. The analysis establishes the degree of approximation. The use and application of the non-commensurate design technique are supported by an experimental investigation.

DEDICATION

In honour of the God who created all things so that we might one day discover them. May their discovery honour Him.

ACKNOWLEDGEMENTS

In submitting this thesis the author cannot help but feel he is but a novice in the field of research. Consequently I have continued to be grateful for the help and encouragement given by many people. In particular I would like to record my thanks to Dr B. Egan and Dr A.G. Williamson, my supervisors, for their generous and invaluable assistance. I am also indebted to the assistance of the University Grants Committee. TABLE OF CONTENTS

	ABSTRACT			i
DEDICATION				ii
ACKNOWLEDGEMENTS				ii
TABLE OF CONTENTS				iii
	LIST OF SYMB	OLS AND	ABBREVIATIONS	vii
	PREFACE			xi
	CHAPTER 1	INTRO	DUCTION AND REVIEW	
		1.1	References	22
	CHAPTER 2	COMME	NSURATE CIRCUIT SYNTHESIS	
		2.1	Introduction	26
		2.2	Insertion Loss Functions	27
			2.2.1 Richards' Transformation	27
			2.2.2 Form of Realizable Insertion	
			Loss Function	28
			2.2.3 Application to Insertion Loss	
			Design	30
			2.2.4 Equi-ripple Function	31
			2.2.5 Factorization of S	32
		2.3	Synthesis of Circuits from	
			Insertion Loss Functions	37
			2.3.1 Series and Shunt Stub Extraction	38
			2.3.2 Unit Element Extraction	40
		2.4	Numerical Examples	43
			2.4.1 Flat passband response (analytical)	44
			2.4.2 Sloped passband response	
			(numerical)	52
		2.5	Summary	58
		2.6	References	59
C	HAPTER 3	COMMEN	SURATE CIRCUIT TECHNIQUES	
		3.1	Introduction	61
		3.2	Gain-Bandwidth Theory and Complex	
	a. I i i		Loads	62
		3.3	Practical Realizability and Design	
			Considerations	69
				241.22

iii

	3.4	Incorporating Realizability into	
		Circuit Synthesis	76
	3.5	Kuroda's Identities and Circuit	
		Transformations	81
		3.5.1 The Four Identities	82
		3.5.2 Partial Stub Extraction	84
		3.5.3 Quasi-non-commensurate	
		Transformation	86
		3.5.4 Examples	90
	3.6	Summary	96
	3.7	References	97
CHAPTER 4	THE AL	RGUMENT FOR NON-COMMENSURATE NETWORKS	
	4.1	Introduction	99
	4.2	Redundant Element Synthesis	103
	4.3	First Order Approximations	108
		4.3.1 Open and Short Circuited Stubs	108
		4.3.2 Unit elements	109
		4.3.3 Discussion	111
	4.4	Computer Optimization	112
	4.5	Summary	119
	4.6	References	121
CHAPTER 5	NON-CO	OMMENSURATE CIRCUIT SYNTHESIS TECHNIQUE	-13
	5.1	Introduction	122
	5.2	Development of Theory	123
	5.3	Synthesis Equations	128
		5.3.1 Preamble	128
		5.3.2 General Trends	135
		5.3.3 General prototype; choice of Z	136
		5.3.4 General prototype; choice of θ	138
		5.3.5 General prototype; choice of s	139
		5.3.6 Commensurate prototype; choice of s	142
14		5.3.7 The Two Related Solutions	143
		5.3.8 Limiting Conditions	144
		5.3.9 Restrictions on the free parameter	149
	5.4	Summary	151

iv

CHAPTER	6	ADDITI	IONAL NON-COMMENSURATE TECHNIQUES	
		6.1	Introduction	153
		6.2	Mixed Lumped-Distributed Design	
			Technique	153
		6.3	Further Simplifications to New Technique	155
			6.3.1 Method 1 (open or short	
			circuited load)	161
			6.3.2 Method 2 (real load and input	
			impedance)	163
			6.3.3 Discussion	164
		6.4	Summary	179
		6.5	References	181
CHAPTER :	7	INVEST	IGATION OF NEW TECHNIQUES AND	×
			IMATIONS	
		7.1		182
		7.2	The Choice of Equivalencing Frequency	183
			7.2.1 Effect on Derived Circuit	103
			Parameters	104
			7.2.2 Optimum Choice and its Effect	184
			on Frequency Response	184
		7.3	The ABCD Parameters - A Taylor Series	104
			Expansion	198
		7.4	The Poles and Zeros of the Frequency	190
			Response	203
		7.5	Summary	205
CHAPTER 8):	ADDITO	-	210
CHAFIER 0)	8.1	ATION OF NEW TECHNIQUES	
		8.2	Introduction	212
		8.3	Design Specifications	213
		8.4	Commensurate Prototype	214
		0.4	Application of Non-Commensurate	
		8.5	Transformations	218
		8.6	Circuit Realization in Coaxial Form	228
		0.0	Measurement Techniques	229
			8.6.1 Different Source Impedance	229
			8.6.2 Measurements and their	
21			Uncertainties	232
			8.6.3 Reflection and Transmission	
		8.7	Coefficients	234
		0.1	Experimental Results	235

v

		8.8	Fringing	g Capacitance	238
			8.8.1	Computation of Fringing	
				Capacitance	238
			8.8.2	Compensating for Fringing	
				Capacitance	239
			8.8.3	Application to Experimental	
				Circuits	244
		8.9	Summary		244
		8.10	Referenc	ces	246
CHAPTER 9		CONCLUS	IONS		247
APPENDIX A	· :	Factori	zation c	of $ \rho ^2$; constants of	
			ionality		249
APPENDIX B	3:	Conditi	ons of S	Sufficiency for UE extraction	253
APPENDIX C	::	The (1-	P ²) fact	or in UE extraction	255
APPENDIX D) :	Commens	urate Ci	rcuit Synthesis - Computer	
		Routine			257
APPENDIX E	: :	Commens	urate Ci	rcuit Transformations -	
		Compute	r Routin	e	265
APPENDIX F		Taylor	Series E	xpansion of Transmission	
		Paramet			271
APPENDIX G	:	Rationa	l Reflec	tion Coefficient Functions	276
APPENDIX H	:	Error A	nalysis		280

,

vi

LIST OF SYMBOLS AND ABBREVIATIONS

.

A, B, C, D	Modified transmission parameters, see
	equation (5.9)
В	susceptance (Ω^{-1})
BW	bandwidth = $2(f_2 - f_1) / (f_2 + f_1)$
C, C _s	shunt capacitance (F)
C _f	fringing capacitance .
d, D	denominator (subscripts e and o refer
	to even and odd parts)
f	real frequency (Hz)
fo	quarter-wave frequency, i.e. element lengths
	are $\lambda/4$ at fo
fl	frequency of lower edge of passband
f ₂	frequency of upper edge of passband
fc	centre frequency = $(f_1+f_2)/2$
fe	equivalencing frequency
G	gain parameter; see equation (2.4)
GBW	Gain-bandwidth theory
h	ripple height factor, see (2.18, 2.19)
	also microstrip dielectric thickness (m)
L	physical length (m)
L, L _s	series inductance (H)
LHP	left-half-plane
m	number of open circuit-series and short
	circuit-parallel stubs
MIL	minimum insertion loss

n	number of unit elements
n, N	numerator (subscripts e and o refer to
	even and odd parts)
op	open circuited - parallel stub
os	open circuited - series stub
p	complex frequency variable (distributed)
	$= \Sigma + j\Omega$ ($\Omega = \tan \Theta$)
P	= p
Pin	power into a network
Pinc	power incident at input of a network
PL	power loss ratio; see equation (1.4)
Pout	power into a resistive network termination
đ	constant factor in the factorization of $ \rho ^2$
r	number of short circuit - series and open
	circuit - parallel stubs
r _i , r _o	coaxial transmission line inner and outer
	conductor radii
R	resistance (Ω)
RHP	right-half-plane
S	non-commensurate length variable
	$= \sin \theta_1 \sin \theta_2$
	also s = jω
sp	short circuited - parallel stub
SS	short circuited - series stub
s _{ij}	scattering parameters
t	impedance scaling factor
	also transmission coefficient

viii

т	= t
- [T]	transmission matrix
UE	unit element
v	speed of wave propagation (ms ⁻¹)
v	
	voltage
VSWR	voltage standing wave ratio= $(1+ \rho)/(1- \rho)$
W	microstrip conductor width (m)
x	frequency variable; see equation (2.11)
х	reactance (Ω^{-1})
Y	admittance (Ω^{-1})
Z	z-transform operator
Z	impedance or element characteristic impedance (Ω)
α	bandwidth parameter (eg $\alpha.cos\theta$)
	also attenuation constant (Np m ⁻¹)
β	phase constant = $2\pi / \lambda$
Υ	propagation constant = $\alpha + j\beta$
Δ	small finite change
ε	ripple parameter; see equations (2.42
	- 2.44)
θ	electrical length (radians) = $\beta \ell$
⁰ 0	Γ
θ ₁	
θ2	electrical lengths corresponding to
	f _o , f ₁ , f ₂ , f _c
θ _c	
⊖ _{diff}	difference length = $\theta_1 - \theta_2$
etot	total length = $\theta_1 + \theta_2$
λ	wavelength (m) $f\lambda = v$

×

٤ ₁	frequency variable; see equation (2.9)
ج ع	frequency variable; see equation (2.10)
ρ	input reflection coefficient
ø	frequency variable; see equation (2.8)
	also = $/\rho$
ω	radian frequency = $2.\pi.f$
Ω	frequency variable = $\tan \Theta$

.*

1

х