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ABSTRACT

A new method for the synthesis of broadband impedance
transformers having predictable passband frequency response
is presented. The technique is based on the use of non-
commensurate (i.e. unequal element length) transmission
line networks. Through the use of approximations and
computer optimization studies non-commensurate circuits
are shown to be advantageous in distributed circuit design.
The new method derives a non-commensuréfe circuit from
a conventional commensurate prototype in such a way that
the transmission matrix of pairs of elements in-both circuits
is made equal at one frequency. The transformation used
ensures that the frequency response of the derived circuit
closely matches that of the prototype circuit. Limitations
on section characteristic impedances imposed either by
constructional constraints or other practical realizability
considerations are more easily met using the new design
technique than when using conventional commensurate networks
alone. Moreover, wide harmonically related passbands
are largely avoided. The method finds greatest application
where there are circuit length (or size) restrictions
which must be met. Where such restrictions do not apply,
conventional commensurate techniques are usually sufficiently
flexible. The non-commensurate technique can however
still provide benefits of even greater flexibility or
better stop-band attenuation. The method presented is
only an approximate equivalence and so an analysis of
the technique is presented. The analysis establishes
the degree of approximation. The use and application
of the non-commensurate design technique are supported

by an experimental investigation.
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LIST OF SYMBOLS AND ABBREVIATIONS

A, B, C, D

BW

C; C

d, D

L, L

LHP

MIL

Modified transmission parameters, see
equation (5.9)
_l)

bandwidth = 2(f2-f1) / (f2+f1)

susceptance (Q

shunt capacitance (F)

fringing capacitance .

denominator (subscripts e and o refer

to even and odd parts)

real frequency (Hz)

quarter-wave frequency, i.e. element lengths
are A/4 at £

frequency of lower edge of passband

frequency of upper edge of passband .
centre frequency = (fl+f2)/2

equivélencing frequency

gain parameter; see equation (2.4)
Gain-bandwidth theory

ripple height factor, see (2.18, 2.19)

also microstrip dielectric thickness (m)
physical length (m)

series inductance (H)

left-half-plane

number of open circuit-series and short
circuit-parallel stubs - }

minimum insertion loss




n, N

op

os

RHP

sp

SS

Sij

viii

number of unit elements

numerator (subscripts e and o refer to
even and odd parts)

.open circuited - parallel stub

open circuited - series stub

complex frequency variable (distributed)
=I + 32 (Q = tan ©)

= |ol

power into a network -

power incident at input of a network
power loss ratio; see equaticn (1.4)

power into a resistive network termination
constant factor in the factorization of |p|?
number of short circuit - series and open

circuit - parallel stubs

coaxial transmission line inner and outer
conductor radii

resistance ()

right-half-plane
non-commensurate length variable
= sine1 siné2

also s = jw

short circuited - parallel stub
short circuited - series stub
scattering parameters

impedance scaling factor

also transmission coefficient
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B = |&]

[T] transmission matrix

UE unit element

v speed of wave propagation (ms-l)

v voltage

VSWR voltage standing wave ratio= (l+|p|)/(1-|p]|)

W microstrip conductor width (m)

X frequency variable; see equation (2.11)

X reactance ( Q71) 3

¥ admittance ( Q-l) )

2 z-transform operator

Z impedance or element characteristic impedance
(Q)

a bandwidth parameter (eg «.cos®)
also attenuation constant (Np m-l)

B8 phase constant = 27 /A

Y propagation constant = a+5B8

A small finite change

m

ripple parameter; see equations (2.42

- 2.44)
e electrical length (radians) = B8 ¢
o, B
]
4 electrical lengths corresponding to
62 fo’ f1' f2' fc
¢
ediff difference length = 81-62
Otot total length = 8,+e, -

A wavelength (m) fA = v



U B |

O

frequency variable; see equation (2.9)
frequency variable; see equation (2.10)
input reflection coefficient

frequency variable; see equation (2.8)
also = /p

radian frequency = 2.n.f

frequency variable = tan ©





