http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Application of Computational Fluid Dynamics to Two-Dimensional Downwind Sail Flows

A DISSERTATION
SUBMITTED TO THE DEPARTMENTS OF MECHANICAL ENGINEERING AND ENGINEERING SCIENCE
OF THE UNIVERSITY OF AUCKLAND
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Stephen Collie
Departments of Mechanical Engineering and Engineering Science
School of Engineering
The University of Auckland
August 2006
© Copyright by Stephen Collie
Departments of Mechanical Engineering and Engineering Science
School of Engineering
The University of Auckland 2006
All Rights Reserved.
Abstract

The research detailed in this thesis investigates the practical application of Computational Fluid Dynamics (CFD) to downwind sail design. Simulations were performed using CFX-5, an unstructured commercial CFD package. The research focuses on the performance of the SST and k-ω turbulence models which were judged to be CFX-5's most appropriate turbulence models for downwind sail flows. Two-equation turbulence models are viewed as the most appropriate model type for sail simulations, they capture a significant amount of the flow physics whilst providing turnaround times for sail simulations of less than one day.

CFD simulations were compared with experimental data for a flat plate at shallow angles of incidence. This test case holds particular relevance to sail flows since both flows are affected by leading edge separation bubbles which form due to knife-edge separation at sharp leading edges. The CFD captures this leading edge bubble well, with the SST model predicting the length of the bubble with 7% of the experimental value.

Wind tunnel data was gathered for two-dimensional downwind sail sections for the purpose of CFD validation. A preliminary wind tunnel study was carried out using a low aspect ratio model. The tests were prone to three-dimensional effects and only three-dimensional CFD simulations were capable of successfully reproducing the flow. High aspect ratio wind tunnel test results were also conducted in an effort to obtain nominally two-dimensional wind tunnel data. Surface pressures were measured using Pressure Sensitive Paint (PSP), however due to the low dynamic pressure of the tests error appeared in the data and comparison with the CFD was poor. Results show that CFD is capable of qualitatively reproducing downwind sail flows, the leading and trailing edge separation regions were captured and the CFD results compared well with wind tunnel flow visualisation.

Finally, CFD simulations were used to investigate the two-dimensional downwind sail design space through a parametric study of sail draft and camber. Results show that increasing camber increases both lift and drag a trend that also is evident in three-dimensional sail designs. It is also shown that gains can be made by using designs with draft values as far aft as 60% which helps reduce the extent of trailing edge separation. This parametric design study illustrates how CFD can be used successfully to analyse design trends and rank designs.

The research presented illustrates how CFD can be used in the design process but also that care must be made in validating the method. Through this study the relative strengths and weaknesses of the turbulence models are better understood. Whilst CFD cannot yet be reliably used for downwind sail performance prediction, it is still a useful tool for investigating the flow structure which leads to better understanding of the design space.
Acknowledgements

My greatest appreciation goes out to Professor Margot Gerritsen whose investment in me over many years has been considerable. Through undergraduate, Masters and Ph.D. theses Margot has supported me and has provided a solid base for my academic development. Her kindness in continuing to advise me after her move from Auckland to Stanford University was vital to the course of my Ph.D. Margot has readily gone out of her way for me and I appreciate that greatly. Moreover, her advise is always well thought out and clear whilst also provides room for discovery and individual thought. Margot, I thank you and I look forward to continuing doing research with you.

Much thanks goes to Professor Peter Jackson whose supervision in this Ph.D. was extremely valued and reflective of his considerable experience and knowledge. Peter’s thoughtful questions and answers always motivated me to explore the topic deeply and challenged me to question results from new directions.

Burns Fallow has been my mentor in the sail design industry for many years. From giving me the opportunity as an undergraduate to perform my work experience at North Sails, through to his valued advice on this thesis. Burns has provided me with many valuable experiences and shared much of his esteemed knowledge of sail design.

Acknowledgement must also be provided to Technology New Zealand who supported me thought TIF fellowship contract NSLX9901. Similarly thanks goes to The University of Auckland’s Doctoral Scholarship program.

Finally I would like to thank my friends and family who have always provided me with a warm and exciting life outside of my studies. Sharon, Dave, Jocelyn, Heather and Philippa, your love, support and sacrifice is cherished.
Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Motivation 1

1.2 Previous aerodynamic studies related to yacht sails 4

1.3 Present contributions 8

1.4 Thesis outline 9

2 Introduction to Sailing, Sails and Sail Flows 11

2.1 Introduction 11

2.2 The America’s Cup 11

2.2.1 The history of the Cup 11

2.2.2 The America’s Cup Rule 12

2.2.3 America’s Cup Yacht Racing 13

2.3 Upwind Sailing 13

2.4 Downwind sailing 16

2.4.1 Wind tunnel testing of downwind sails 17

2.4.2 Sail shapes 18

2.4.3 Flow structure for two-dimensional downwind sail sections 19

2.4.4 Flow structure for three-dimensional downwind sails 20

2.4.5 What is the maximum possible lift for a sail section? 24

2.5 Computational issues for sail flow modelling 26

2.6 Aeroelasticity of sails 26

3 Computational Approach 28

3.1 Introduction 28

3.2 Turbulence and turbulence modelling 30

3.2.1 Turbulent boundary layers 30

3.2.2 Reynolds averaging and the RANS equations 32

3.2.3 The Boussinesq approximation 33

3.2.4 Summary of two-equation models 34
3.3 The turbulence models
3.3.1 The standard $k - \epsilon$ model .. 35
3.3.2 Low Reynolds Number (LRN) modifications for the $k - \epsilon$ model .. 38
3.3.3 The $k - \omega$ model .. 38
3.3.4 Comparing the $k - \epsilon$ and $k - \omega$ models .. 40
3.3.5 Menter's BSL and SST models .. 41
3.4 Turbulence modelling issues for downwind sail flows
3.4.1 Validation of turbulence models for high-lift configurations .. 44
3.4.2 Validation of the CFX-5 turbulence models for the NACA 4412 airfoil at maximum lift .. 45
3.4.3 Unsteady RANS .. 47
3.4.4 Suitability of the CFX-5 two-equation turbulence models for downwind sail flows .. 48
3.5 Description of the CFD software
3.5.1 Grid generation .. 49
3.5.2 Pre-processing .. 50
3.5.3 The solver .. 54

4 The Flat Plate at Shallow Incidence .. 58
4.1 Introduction .. 58
4.1.1 Flow structure .. 59
4.1.2 The thin airfoil bubble .. 61
4.1.3 The short bubble .. 62
4.1.4 Experimental data .. 63
4.1.5 The CFD model .. 64
4.2 Results .. 66
4.2.1 Grid convergence study .. 66
4.2.2 Comparison at $\alpha = 1^\circ$.. 67
4.2.3 Comparison at $\alpha = 3^\circ$.. 74
4.3 Summary .. 80
4.3.1 Experiments vs SST and $k - \omega$ simulations .. 80
4.3.2 SST vs $k - \omega$.. 81
4.4 Conclusions .. 82

5 Preliminary Wind Tunnel and CFD Investigations .. 83
5.1 Introduction .. 83
5.1.1 Wind tunnel setup .. 83
5.1.2 The CFD Model .. 85
5.2 Results .. 86
5.2.1 Convergence studies .. 86
5.2.2 Wind tunnel - CFD comparison .. 87
5.3 Conclusions .. 92
List of Tables

4.1 Reattachment lengths for the flat plate at $\alpha = 1^\circ$ 69
4.2 Reattachment lengths for the flat plate at $\alpha = 3^\circ$ 74

6.1 Chordwise positioning of the 5 boundary layer measurement stations within each flow region. 119
6.2 Position of the reattachment and separation points for the SST and $k-\omega$ models at $\alpha = 20^\circ$. 119
List of Figures

1.1 Americas cup yachts sailing downwind under spinnaker. The large foresails - which are symmetrical in cross-section - are known as spinnakers. Asymmetrical downwind sails are known as gennakers. ... 1
1.2 Wind tunnel testing of a model gennaker in The University of Auckland's Twisted Flow Wind Tunnel. ... 2
1.3 Examples of flow visualisation techniques. a. Wind tunnel smoke stream visualisation. b. Streamlines and surface pressures plotted from CFD results. ... 3
1.4 Wilkinson's universal pressure distribution (Wilkinson, 1984). 6

2.1 The America's Cup. .. 12
2.2 The America's Cup Course. ... 13
2.3 The aerodynamic forces on a yacht sailing upwind. 14
2.4 The hydrodynamic forces on a yacht sailing upwind. 14
2.5 The twisted wind profile. .. 15
2.6 The aerodynamic forces on a yacht sailing downwind at 90 degrees apparent (average conditions for an ACC yacht). 16

2.7 A schematic of the University of Auckland's Twisted Flow Wind Tunnel. 17
2.8 A sail section with its defining geometry. .. 18
2.9 A two-dimensional downwind sail flow. .. 19
2.10 Schematic of the three-dimensional flow past a gennaker at typical trim. 20
2.11 Smoke-flow visualisation for a fibreglass model of an ACC spinnaker in the Twisted Flow Wind Tunnel. ... 21
2.12 Lift coefficient versus angle of attack (relative to the chord line of the sail) for a solid model spinnaker. The lift coefficients were calculated using the projected sail area. 23

3.1 Schematic of large eddies in a turbulent boundary layer. The flow above the boundary layer has a velocity U; the turbulent eddies move at a velocity scale, umix, which is of the order of a tenth of U. The largest eddy size, (lumix) is comparable to the boundary layer thickness (δ) (Wilcox, 1998). ... 30
3.2 Subdivisions of the near-wall region. ... 31
3.3 Streamlines for the flow past the NACA 4412 airfoil at maximum lift (13.87°). The simulation was computed by the Author using CFX with the SST model. 45
3.4 Comparison of experimental results of the pressure coefficient, C_p, with different turbulence models for the NACA 4412 airfoil (Carrega-Ferreira, Holzwarth, Menter, Esch and Luu, 2001). ... 46
3.5 Trailing edge detail of the pressure coefficient for the NACA 4412 airfoil (Carrega-Ferreira et al., 2001). ... 46
3.6 Streamwise velocity profiles computed using several different turbulence models for the NACA 4412 airfoil (Carrega-Ferreira et al., 2001). ... 47
3.7 Positions of the six boundary layer traverses for the NACA 4412 test case. ... 47
3.8 The ICEM-HEXA grid generation technique. ... 50
3.9 A schematic of the wall boundary treatment. ... 52
3.10 The control volume approach. ... 54
4.1 Schematic of the flow past a flat plate at shallow incidence. ... 59
4.2 Typical pressure coefficient plots. ... 60
4.3 Schematic of the leading edge bubble illustrating the secondary bubble near the leading edge. ... 62
4.4 The short airfoil bubble (bubble size exaggerated). ... 62
4.5 Flat plate dimensions. ... 64
4.6 Details of the domain for the flat plate. ... 65
4.7 Computational grid for the flat plate (medium resolution). ... 65
4.8 Grid convergence study of the lift and drag coefficients ($\alpha = 3^\circ$). ... 66
4.9 Grid convergence of the surface pressure coefficients ($\alpha = 3^\circ$). ... 67
4.10 Velocity contours ($\alpha = 1^\circ$). ... 68
4.12 Chordwise velocity profiles within the leading edge bubble ($\alpha = 1^\circ$). ... 69
4.13 Near-wall chordwise velocity profiles within the leading edge bubble ($\alpha = 1^\circ$). ... 70
4.14 Chordwise velocity profiles downstream of reattachment ($\alpha = 1^\circ$). ... 71
4.15 Chordwise velocity profiles downstream of reattachment (log scale, $\alpha = 1^\circ$). ... 72
4.16 Pressure coefficient plot ($\alpha = 1^\circ$). ... 74
4.17 Streamwise velocity contours ($\alpha = 3^\circ$). ... 75
4.18 Chordwise velocity profiles within the leading edge bubble ($\alpha = 3^\circ$). ... 76
4.19 Near wall chordwise velocity profiles at $x/c = 0.031$ ($\alpha = 3^\circ$). ... 77
4.20 Turbulent kinetic energy profiles within the leading edge bubble ($\alpha = 3^\circ$). ... 78
4.21 Turbulent kinetic energy contours around the leading edge ($\alpha = 3^\circ$). ... 79
5.1 The wind tunnel model. ... 83
5.2 The wind tunnel model setup (from above, not to scale). ... 84
5.3 Details of the domain for the preliminary study. ... 85
5.4 The coarse grid. ... 86
5.5 Grid convergence of the time-averaged lift and drag coefficients. ... 87
5.7 Velocity contours and streamlines ($\alpha = 15^\circ$). ... 88
5.6 Force coefficients versus angle of attack ($\alpha = 15^\circ$). — Data, 6 SST, + $k - \omega$, x $k - \epsilon$, Δ

3D solution (SST). ... 88

5.8 Wind tunnel flow visualisation overlaid with streamlines computed using CFD. 89

5.9 The wake structure. .. 91

5.10 The wake structure computed by the 3D model, $\alpha = 15^\circ$ (image reflected through symmetry plane). .. 91

5.11 Suction side shear stress and pressure coefficient surface plots computed using the 3D model. .. 91

6.1 CFD surface pressure and wall shear (τ_w) plots for the three-dimensional analysis of the wind tunnel model (tunnel wall at bottom of figure, tunnel centerline at top). 95

6.2 CFD streamlines and surface pressures for the three-dimensional analysis of the wind tunnel model (tunnel wall at figure left, tunnel centerline at figure right). 96

6.3 Shaping the model using tension. ... 97

6.4 A schematic of the tensioning system (not to scale). .. 97

6.5 Photographs illustrating the tensioning system and the mounting of the model to the tunnel frame. .. 98

6.6 The model set up in the 7 x 10 foot subsonic wind tunnel. .. 99

6.7 The clamps and stay setup that was used to increase the torsional rigidity of the model. 99

6.8 Illustration of the reference targets on the PSP and the positions of the test and calibration regions. .. 101

6.9 Comparison between the raw C_p data for a single row of pixels and the smoothed data (65 x 7 pixel averaging stencil) for the suction side of the model at $\alpha = 20^\circ$. Note that the raw data comes from an average image produced from a series of images taken during the test. .. 102

6.10 Details of the medium sized domain (not to scale). .. 102

6.11 The computational grid (medium grid density, medium domain size). .. 103

6.12 Flow visualisation experiments for the 25% camber circular arc at $\alpha = 20^\circ$. 105

6.13 Close up of the surface flow visualisation illustrating the presence of a secondary recirculation bubble within the leading edge bubble. .. 105

6.14 Comparison between CFD and PSP runs at $\alpha = 20^\circ$. .. 106

6.15 Lift coefficient versus domain length for the SST model at $\alpha = 20$ degrees. 108

6.16 Time step convergence of the lift and drag coefficients ($\alpha = 15^\circ$). .. 109

6.17 Grid convergence of the lift and drag coefficients ($\alpha = 20^\circ$). .. 110

6.18 Computed lift coefficients near maximum lift .. 110

6.19 Evaluation of the fitted polynomial for the SST lift polar. .. 111

6.20 Comparison between the PSP data and CFD at $\alpha = 20^\circ$. .. 112

6.21 Lift and drag coefficients plotted against angle of attack for the 25% camber arc. These coefficients were computed using the SST and $k - \omega$ turbulence models. .. 112

6.22 Lift/Drag polars for the 25% camber arc computed using the SST and $k - \omega$ models. 113

6.23 Time-averaged C_p plots for the 25% camber arc at various angles of attack. All plots were computed using the SST turbulence model. .. 114
6.24 A schematic of the flow past the 25% camber arc at low angles of attack ($\alpha \approx 5^\circ$). 115
6.25 A schematic of the flow past the 25% camber arc at ideal angle of attack ($\alpha \approx 9^\circ$). 115
6.26 A schematic of the flow past the 25% camber arc at maximum lift ($\alpha \approx 20^\circ$). 115
6.27 A schematic of the post-stall flow past the 25% camber arc ($\alpha \approx 25^\circ$). 115
6.28 Time history of the force coefficients for the 25% camber arc at $\alpha = 27.5^\circ$ (SST model). 116
6.29 Time-averaged reattachment lengths (X_R) of the leading edge bubble as a function of angle of attack (α) .. 117
6.30 Time-averaged separation points (X_S) of the trailing edge separation region as a function of angle of attack (α) .. 118
6.31 Flow streamlines and normalised velocity contours (U/U_∞) for the 25% camber arc showing the evolution of the wake through one period of vortex shedding. The simulation was computed using the SST turbulence model and the angle of attack is 20$^\circ$. 120
6.32 Lift and drag time-history for the 25% camber arc at $\alpha = 20^\circ$ 121
6.33 Measurement stations for the boundary layer profiles .. 121
6.34 Chordwise velocity profiles within the leading edge bubble ($\alpha = 20^\circ$) 122
6.35 Chordwise velocity profiles in the attached flow region ($\alpha = 20^\circ$) 123
6.36 Chordwise velocity profiles within the trailing edge separation region ($\alpha = 20^\circ$) 124
6.37 Turbulent kinetic energy profiles within the leading edge bubble ($\alpha = 20^\circ$) 126
6.38 Turbulent kinetic energy profiles within the attached flow region ($\alpha = 20^\circ$) 127

7.1 Comparison of sails of varying camber (21%, 23%, 25%, 27%, 29%, 31%) with draft fixed at 45% 130
7.2 Comparison of sails of varying draft (40%, 45%, 50%, 55%) with camber fixed at 23% 130
7.3 Forces on a downwind sail .. 131
7.4 Details of the domain for the design study .. 132
7.5 The medium grid from the grid convergence study (domain dimensions = 15m x 8m, chord length = 1m and near wall grid spacing = 6.25 x 10$^{-5}$m) 133
7.6 Time step convergence of the lift and drag coefficients ($\alpha = 15^\circ$) 134
7.7 Grid convergence of the lift and drag coefficients ($\alpha = 20^\circ$) 135
7.8 Lift versus angle of attack for the 2345 section 135
7.9 Comparison between the 2345 section (in red) and a 23% camber circular arc (in blue) 136
7.10 Typical induced downwash distribution (in the streamwise direction) due to three-dimensional tip effects (Marchaj, 1979) 137
7.11 The computational grid for the gennaker/mainsail configuration (Close up of the region around the sails) 137
7.12 Comparison of the flow streamlines and velocity contours for the gennaker / mainsail configuration (a) and the gennaker without the mainsail present (b) ($\alpha = 20^\circ$). The simulations are unsteady and the plots presented are at the same phase angle (180 degrees) 138
7.13 Pressure coefficient plots for the gennaker with and without the mainsail present ($\alpha = 20$) 139
7.14 A schematic of the circulation field of the mainsail and its influence on the gennaker 140
7.15 Lift versus angle of attack for the gennaker/mainsail configuration and the gennaker by itself 140
7.16 C_L_{max} versus camber (where C_L_{max} is averaged across the different drafts). .. 141

7.17 $C_{L_{\text{max}}}$ versus camber (where $C_{L_{\text{max}}}$ is scaled by the arc length and averaged across the different draft values). 142

7.18 C_{DS} at C_L_{max} versus camber (where C_{DS} is scaled by the arc length and averaged across the different draft values). ... 143

7.20 The influence of draft position on the flow. ... 144

7.19 $C_{L_{\text{max}}}$ versus draft (where $C_{L_{\text{max}}}$ is scaled by the arc length and averaged across the different camber values). ... 144

7.21 $C_{L_{\text{max}}}$ versus draft for each camber value. ... 145

7.22 Driving force coefficient for the base section shape (section 2345). 147

7.23 Heeling force coefficient for the base section shape (section 2345). 148

7.24 Driving force coefficient for section 3155. ... 149

7.25 Driving force polar for the base sail shape (section 2345) based on a estimated ACC apparent wind speeds. ... 149
List of Symbols and Abbreviations

Chapter 1

\(a \)
mean-line designation; fraction of the chord from leading edge over which loading is uniform at the ideal angle of attack

ACC
America's Cup Class

CFD
Computational Fluid Dynamics

FEA
Finite Element Analysis

LDA
Laser Doppler Anemometry

NASA
National Aeronautics and Space Administration

PC
Personal Computer

RANS
Reynolds Averaged Navier-Stokes

RMS
Root Mean Squared

SYR
Stanford Yacht Research

TIF
Technology for Industry Fellowship

TFWT
Twisted Flow Wind Tunnel

VPP
Velocity Prediction Program

Chapter 2

\(\alpha_i \)
induced reduction of the angle of attack due to three-dimensional effects

\(\beta \)
apparent wind angle

\(\Gamma \)
circulation

\(\lambda \)
leeway angle

\(A \)
wing / sail area

\(AR \)
aspect ratio

\(c \)
chord length

\(C_{L(2D)} \)
lifting coefficient (two-dimensional flow)

\(C_{L(3D)} \)
lifting coefficient (three-dimensional flow)

\(DSP \)
displacement of an ACC yacht

\(D_{Aero} \)
aerodynamic drag force
\(F_D \) \quad \text{driving force} \\
\(F_H \) \quad \text{heeling force} \\
\(F_S \) \quad \text{hydrodynamic side force} \\
\(F_{T(Aero)} \) \quad \text{total aerodynamic force} \\
\(F_{T(Hydro)} \) \quad \text{total hydrodynamic force} \\
h \quad \text{wing / sail span} \\
\(L \) \quad \text{measured length of an ACC yacht} \\
\(L_{Aero} \) \quad \text{aerodynamic lift force} \\
\(O_{CE} \) \quad \text{Center of Effort} \\
R \quad \text{resistance} \\
S \quad \text{measured upwind sail area of an ACC yacht} \\
\(V_A \) \quad \text{apparent wind velocity} \\
\(V_S \) \quad \text{boat velocity} \\
\(V_T \) \quad \text{true wind velocity} \\
\(y_{back} \) \quad \text{the perpendicular distance between the sail and the chordline halfway between} \ x_d \ \text{and the trailing edge} \\
\(y_{front} \) \quad \text{the perpendicular distance between the sail and the chordline halfway between} \ \text{the leading edge and} \ x_d \\
\(y_{max} \) \quad \text{the greatest perpendicular distance between the sail and the chordline} \\
\(x_d \) \quad \text{the chordwise location of} \ y_{max} \\
IACC \quad \text{International America's Cup Class} \\
RNG \quad \text{Renormalisation Group} \\

\text{Chapter 3} \\

\(\alpha \) \quad \text{closure coefficient for the production of} \ \omega \\
\(\beta \) \quad \text{closure coefficient for the dissipation of} \ \omega \\
\(\beta^* \) \quad \text{closure coefficient for the dissipation of} \ k \\
\(\psi \) \quad \text{blending parameter for the NAC term} \\
\(\delta \) \quad \text{displacement thickness} \\
\(\delta_{ij} \) \quad \text{dirac delta function} \\
\(\epsilon \) \quad \text{dissipation of turbulent kinetic energy per unit mass} \\
\(\phi \) \quad \text{unknown variable} \\
\(\kappa \) \quad \text{Von Karman's constant} \\
\(\nu \) \quad \text{kinematic viscosity,} \ \nu = \frac{\mu}{\rho} \\
\(\nu_T \) \quad \text{eddy viscosity} \\
\(\mu \) \quad \text{dynamic viscosity} \\
\(\rho \) \quad \text{density} \\
\(\sigma \) \quad \text{closure coefficient for the turbulent transport} \\
\(\sigma_d \) \quad \text{closure coefficient for cross diffusion}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_\varepsilon)</td>
<td>closure coefficient for the turbulent transport of (\varepsilon)</td>
</tr>
<tr>
<td>(\sigma_k)</td>
<td>closure coefficient for the turbulent transport of (k)</td>
</tr>
<tr>
<td>(\sigma_\omega)</td>
<td>closure coefficient for the turbulent transport of (\omega)</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Reynolds shear stress</td>
</tr>
<tr>
<td>(\tau_{ij})</td>
<td>Reynolds (or turbulent) stress tensor</td>
</tr>
<tr>
<td>(\tau_w)</td>
<td>shear stress at the wall</td>
</tr>
<tr>
<td>(\omega)</td>
<td>specific rate of dissipation of turbulent kinetic energy</td>
</tr>
<tr>
<td>(a)</td>
<td>finite volume coefficients</td>
</tr>
<tr>
<td>(A)</td>
<td>face area</td>
</tr>
<tr>
<td>(a_1)</td>
<td>Bradshaw's coefficient</td>
</tr>
<tr>
<td>(b)</td>
<td>boundary condition vector</td>
</tr>
<tr>
<td>(B)</td>
<td>log-law constant</td>
</tr>
<tr>
<td>(C_{e1})</td>
<td>closure coefficient for the production term in the (\varepsilon)-equation</td>
</tr>
<tr>
<td>(C_{e2})</td>
<td>closure coefficient for the dissipation term in the (\varepsilon)-equation</td>
</tr>
<tr>
<td>(C_\mu)</td>
<td>closure coefficient for the eddy viscosity</td>
</tr>
<tr>
<td>(f)</td>
<td>current face of the control volume</td>
</tr>
<tr>
<td>(F_1)</td>
<td>cross-diffusion blending function</td>
</tr>
<tr>
<td>(F_2)</td>
<td>SST blending function</td>
</tr>
<tr>
<td>(I)</td>
<td>turbulence intensity</td>
</tr>
<tr>
<td>(i_p)</td>
<td>integration point</td>
</tr>
<tr>
<td>(k)</td>
<td>turbulent kinetic energy</td>
</tr>
<tr>
<td>(L)</td>
<td>characteristic mean-flow length scale</td>
</tr>
<tr>
<td>(l_{mix})</td>
<td>mixing length of the turbulent eddies</td>
</tr>
<tr>
<td>(N)</td>
<td>the Navier-Stokes operator</td>
</tr>
<tr>
<td>(n)</td>
<td>upstream node</td>
</tr>
<tr>
<td>(\Omega_b)</td>
<td>the set of neighboring nodes</td>
</tr>
<tr>
<td>(p)</td>
<td>instantaneous pressure</td>
</tr>
<tr>
<td>(p_t)</td>
<td>total pressure</td>
</tr>
<tr>
<td>(p_d)</td>
<td>dynamic pressure</td>
</tr>
<tr>
<td>(P)</td>
<td>mean-flow pressure</td>
</tr>
<tr>
<td>(p')</td>
<td>turbulent pressure fluctuations</td>
</tr>
<tr>
<td>(\text{Re})</td>
<td>Reynolds number, (\text{Re} = \frac{\nu U_\infty L}{\mu})</td>
</tr>
<tr>
<td>(S_{ij})</td>
<td>mean rate-of-strain tensor</td>
</tr>
<tr>
<td>(t)</td>
<td>time</td>
</tr>
<tr>
<td>(t_{ij})</td>
<td>viscous stress tensor</td>
</tr>
<tr>
<td>(T)</td>
<td>time-scale for Reynolds averaging</td>
</tr>
<tr>
<td>(u)</td>
<td>instantaneous velocity</td>
</tr>
<tr>
<td>(U)</td>
<td>mean-flow velocity</td>
</tr>
<tr>
<td>(u')</td>
<td>turbulent velocity fluctuation</td>
</tr>
<tr>
<td>(U^+)</td>
<td>dimensionless velocity, (U^+ = \frac{U}{u_\tau})</td>
</tr>
<tr>
<td>(u_\tau)</td>
<td>friction velocity, (u_\tau = (\tau_w/\rho)^{1/2})</td>
</tr>
</tbody>
</table>
"\(u_{mix}\) mixing velocity of the turbulent eddies

\(U_\infty\) freestream velocity magnitude

\(V\) volume of the control volume

\(\Delta y\) perpendicular distance between the wall and the first grid point

\(y\) distance to the nearest wall

\(y^+\) non-dimensional wall distance, \(y^+ = \frac{u_{\tau}}{v}\)

AIAA American Institute of Aeronautics and Astronautics
AMG Algebraic Multigrid
ASM Algebraic Stress Models
BSL the Baseline model
CTR Centre for Turbulence Research
DES Detached Eddy Simulation
DNS Direct Numerical Simulation
ILU Incomplete Lower Upper factorisation
LES Large Eddy Simulation
LRN Low Reynolds Number
NAC Numerical Advection Control
PDE Partial Differential Equation
SST Shear Stress Transport

Chapter 4

\(\alpha\) angle of attack

\(A\) surface area

\(C_D\) drag coefficient, \(C_D = \frac{D}{\frac{1}{2} \rho U_\infty^2 A}\)

\(C_L\) lift coefficient, \(C_L = \frac{L}{\frac{1}{2} \rho U_\infty^2 A}\)

\(C_P\) pressure coefficient, \(C_P = \frac{P}{\frac{1}{2} \rho U_\infty^2}\)

\(D\) drag force

\(L\) lift force

\(N\) non-dimensional grid spacing

\(u\) velocity in the chordwise direction

\(u'\) turbulent velocity fluctuations in the chordwise direction

\(u_{RMS}\) RMS of the \(u\) velocity fluctuations

\(v\) velocity in the direction perpendicular to the plate

\(v'\) turbulent velocity fluctuations in the direction perpendicular to the plate

\(v_{RMS}\) RMS of the \(v\) velocity fluctuations

\(w\) velocity in the spanwise direction

\(w'\) turbulent velocity fluctuations in the spanwise direction

\(w_{RMS}\) RMS of the \(w\) velocity fluctuations
\(x \) chordwise dimension
\(X_R \) reattachment length
ZPG Zero Pressure Gradient
Chapter 5

2D Two Dimensional
3D Three Dimensional

Chapter 6

A PSP calibration coefficient
B PSP calibration coefficient
\(\phi\) Phase angle
I light intensity at pressure \(p\)
I\(_0\) light intensity at pressure \(p_0\)
L\(_*\) Length of a particular flow region (leading edge bubble, recovery region or trailing edge separation region)
p\(_0\) wind-off pressure
X\(_R\) Reattachment length of the leading edge bubble (%c)
X\(_S\) Trailing edge separation position (%c)

PSP Pressure Sensitive Paint

Chapter 7

\(\beta\) apparent wind angle
\(\varepsilon_A\) aerodynamic drag angle

\(C_T\) total force coefficient
\(C_{DF}\) driving force coefficient
\(C_{DS}\) drag coefficient scaled by the arc length
\(C_{HF}\) heeling force coefficient
\(C_{L_{max}}\) maximum lift coefficient
\(C_{L_{S_{max}}}\) maximum lift coefficient scaled by the arc length
\(s\) arc length

\(V_{MG}\) velocity made good (the yacht’s velocity component in the direction of the next mark)
\(SF\) foot length
\(SLE\) leech length
\(SLU\) luff length
\(SMG\) mid girth length
\(SSA\) measured downwind sail area