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Abstract

The re"search detailed in this thesis investigates the practical application of Computational Fluid Dy-
namics (CFD) to downwind sail design. Simulations were performed using CFX-5, an unstructured
commercial CFD package. The research focuses on the performance of the SST arrd k-t,r turb'lence
models which were judged to be CFX-5's most appropriate turbulence models for downwind sail flows.
Two-equation turbulence models are viewed as the most appropriate model type for sail simulations, they
capture a significant amount of the flow physics whilst providing turnaround times for sail simulations
of less than one day.

cFD simulations were compared with experimental data for a flat plate at shallow angles of inci-
dence' This test case holcls pa.rticular relevance to sail flows si-nce both flows are a^fiectecl b5r leadi'g eclge
separation bubtrles which form due to knife-e.dge separation at sharp leading edges. The cFD captures
this Ieading edge bubble well, with the SST model predicting the length of the bubble with zVoof the
experimental value.

wind trrnnel data was gathered for two-dimensional downwind sail sections for the purpose of CFDvalidation' A preliminary wind tun-uel study was curied out using a low aspect ratio model. The testswere prolte to three-dimensional effects ancl only t.hree-dirnensional cFD sinrulations were capable ofsuccessf'lly reproducing the flow- High aspect ratio wind tunnel test results were also conducted in aneffort to obtain nominally twedimensional wincl tur'rel clata. surface pressures were measured usingPressure Sensitive Paint (pSp), however due to the low dynamis pressure of the tests error appea.red inthe data and comparison with the cFD was poor- R.esults shoq/ that cFD is capable of qualitativelyreproducing downwind sail flows, the lea.ding and trailing edge separation regions were captured and theCFD results compared well with wind tunnel flow visualisation.
Finally' cFD simulations were used to investigate the two-dimensional downwincl sail design spacethrough a pa'rametric study of sail draft and camber. Resurts show that increasing ca.mfgl increases bothlift and drag a trend that also is evident in three-dimensional sail designs. It is also shown that gains canbe made by using designs with draft values as far aft as 60% which helps reduce the extent of trailingedge separation' This parametric design study illustrates how cFD can be used successfully to analysedesign trends and rank designs.

The research presented illustrates how cFD can be rnecl in the design process but also that caremrtst be made in validating the method. Through this study the relative strengths and weaknesses ofthe turbulence models are better understood. Whilst CFD cannot yet be reliably used for downwind sailperformance prediction, it is still a usefirl tool for iuvestigating the flow structure which leads to betterunderstanding of the design space.
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