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Abstract

The research detailed in this thesis investigates the practical application of Computational Fluid Dy-
namics (CFD) to downwind sail design. Simulations were performed using CFX-5, an unstructured
commercial CFD package. The research focuses on the performance of the SST and k-w turbulence
models which were judged to be CFX-5’s most appropriate turbulence models for downwind sail flows.
Two-equation turbulence models are viewed as the most appropriate model type for sail simulations, they
capture a significant amount of the flow physics whilst providing turnaround times for sail simulations
of less than one day.

CFD simulations were compared with experimental data for a flat plate at shallow angles of inci-
dence. This test case holds particular relevance to sail flows since both flows are affected by leading edge
separation bubbles which form due to knife-edge separation at sharp leading edges. The CFD captures
this leading edge bubble well, with the SST model predicting the length of the bubble with 7% of the
experimental value.

Wind tunnel data was gathered for two-dimensional downwind sail sections for the purpose of CFD
validation. A preliminary wind tunnel study was carried out using a low aspect ratio model. The tests
were prone to three-dimensional effects and only three-dimensional CFD simulations were capable of
successfully reproducing the flow. High aspect ratio wind tunnel test results were also conducted in an
effort to obtain nominally two-dimensional wind tunnel data. Surface pressures were measured using
Pressure Sensitive Paint (PSP), however due to the low dynamic pressure of the tests error appeared in
the data and comparison with the CFD was poor. Results show that CFD is capable of qualitatively
reproducing downwind sail flows, the leading and trailing edge separation regions were captured and the
CFD results compared well with wind tunnel flow visualisation.

Finally, CFD simulations were used to investigate the two-dimensional downwind sail design space
through a parametric study of sail draft and camber. Results show that increasing camber increases both
lift and drag a trend that also is evident in three-dimensional sail designs. It is also shown that gains can
be made by using designs with draft values as far aft as 60% which helps reduce the extent of trailing
edge separation. This parametric design study illustrates how CFD can be used successfully to analyse
design trends and rank designs.

The research presented illustrates how CFD can be used in the design process but also that care
must be made in validating the method. Through this study the relative strengths and weaknesses of
the turbulence models are better understood. Whilst CFD cannot yet be reliably used for downwind sail
performance prediction, it is still a useful tool for investigating the flow structure which leads to better
understanding of the design space.
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P blending parameter for the NAC term
0 displacement thickness
dij dirac delta function

€ dissipation of turbulent kinetic energy per unit mass
o} unknown variable

K Von Karman’s constant

v kinematic viscosity, v = %

v eddy viscosity

m dynamic viscosity

p density

o closure coefficient for the turbulent transport

o4 closure coefficient for cross diffusion



O¢
Tk
O

Tij
Tw

Cel

closure coefficient for the turbulent transport of €
closure coefficient for the turbulent transport of k
closure coefficient for the turbulent transport of w
Reynolds shear stress

Reynolds (or turbulent) stress tensor

shear stress at the wall

specific rate of dissipation of turbulent kinetic energy
finite volume coefficients

face area

Bradshaw’s coefficient

boundary condition vector

log-law constant

closure coefficient for the production term in the e-equation
closure coefficient for the dissipation term in the e-equation
closure coefficient for the eddy viscosity

current face of the control volume

cross-diffusion blending function

SST blending function

turbulence intensity

integration point

turbulent kinetic energy

characteristic mean-flow length scale

mixing length of the turbulent eddies

the Navier-Stokes operator

upstream node

the set of neighboring nodes

instanteous pressure

total pressure

dynamic pressure

mean-flow pressure

turbulent pressure fluctions

Reynolds number, Re = #

mean rate-of-strain tensor

time

viscous stress tensor

time-scale for Reynolds averaging

instantaneous velocity

mean-flow velocity

turbulent velocity fluctuation

dimensionless velocity, U+ — u%

friction velocity, u, = (7, /p)\/?
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Wniz mixing velocity of the turbulent eddies

Uso freestream velocity magnitude

1% volume of the control volume

Ay perpendicular distance between the wall and the first grid point

Y distance to the nearest wall

y* non-dimensional wall distance, y* = “2¢

ATAA  American Institute of Aeronautics and Astronautics

AMG  Algebraic Multigrid

ASM Algebraic Stress Models

BSL the Baseline model

CTR Centre for Turbulence Research

DES Dettached Eddy Simulation

DNS Direct Numerical Simulation

ILU Incomplete Lower Upper factorisation

LES Large Eddy Simulation

LRN Low Reynolds Number

NAC Numerical Advection Control

PDE Partial Differential Equation

SST Shear Stress Transport
Chapter 4

@ angle of attack

A surface area

Cp drag coefficient, Cy = W'zp%gj

) lift coefficient, C1 = 17

Cp pressure coefficient, Cp = #U'Z;

D drag force

L lift force

N non-dimensional grid spacing

u velocity in the chordwise direction

o turbulent velocity fluctuations in the chordwise direction
uryms — RMS of the u velocity fluctuations

v velocity in the direction perpendicular to the plate

v’ turbulent velocity fluctuations in the direction perpendicular to the plate
vrms  RMS of the v velocity fluctuations

w velocity in the spanwise direction

w' turbulent velocity fluctuations in the spanwise direction
wrys  RMS of the w velocity fluctuations
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b 7
Xgr

ZPG

chordwise dimension

reattachment length

Zero Pressure Gradient
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Chapter 5

2D Two Dimensional
3D Three Dimensional
Chapter 6
A PSP calibration coefficient
B PSP calibration coefficient
1) Phase angle
I light intensity at pressure p
I light intensity at pressure pg
L, Length of a particular flow region (leading edge bubble, recovery region or trailing edge
separation region)
Po wind-off pressure
Xr Reattachment length of the leading edge bubble (%¢)
Xs Trailing edge separation position (Y%ee)
PSP Pressure Sensitive Paint
Chapter 7
B apparent wind angle (
€A aerodynamic drag angle (
Cr total force coefficient {‘
Cpr driving force coefficient |
Cps drag coefficient scaled by the arc length 1
Cxr heeling force coefficient
ClLmax maximum lift coefficient
CLSmax maximum lift coefficient scaled by the arc length
s arc length
Vme velocity made good (the yacht’s velocity component in the direction of the next mark)
SF foot length
SLE leech length
SLU luff length
SMG  mid girth length
SSA measured downwind sail area,






