

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

Application of Computational Fluid Dynamics to Two-Dimensional Downwind Sail Flows

A DISSERTATION SUBMITTED TO THE DEPARTMENTS OF MECHANICAL ENGINEERING AND ENGINEERING SCIENCE OF THE UNIVERSITY OF AUCKLAND IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Stephen Collie

Departments of Mechanical Engineering and Engineering Science School of Engineering The University of Auckland August 2006 © Copyright by **Stephen Collie** Departments of Mechanical Engineering and Engineering Science School of Engineering The University of Auckland 2006 All Rights Reserved

Abstract

The research detailed in this thesis investigates the practical application of Computational Fluid Dynamics (CFD) to downwind sail design. Simulations were performed using CFX-5, an unstructured commercial CFD package. The research focuses on the performance of the SST and k- ω turbulence models which were judged to be CFX-5's most appropriate turbulence models for downwind sail flows. Two-equation turbulence models are viewed as the most appropriate model type for sail simulations, they capture a significant amount of the flow physics whilst providing turnaround times for sail simulations of less than one day.

CFD simulations were compared with experimental data for a flat plate at shallow angles of incidence. This test case holds particular relevance to sail flows since both flows are affected by leading edge separation bubbles which form due to knife-edge separation at sharp leading edges. The CFD captures this leading edge bubble well, with the SST model predicting the length of the bubble with 7% of the experimental value.

Wind tunnel data was gathered for two-dimensional downwind sail sections for the purpose of CFD validation. A preliminary wind tunnel study was carried out using a low aspect ratio model. The tests were prone to three-dimensional effects and only three-dimensional CFD simulations were capable of successfully reproducing the flow. High aspect ratio wind tunnel test results were also conducted in an effort to obtain nominally two-dimensional wind tunnel data. Surface pressures were measured using Pressure Sensitive Paint (PSP), however due to the low dynamic pressure of the tests error appeared in the data and comparison with the CFD was poor. Results show that CFD is capable of qualitatively reproducing downwind sail flows, the leading and trailing edge separation regions were captured and the CFD results compared well with wind tunnel flow visualisation.

Finally, CFD simulations were used to investigate the two-dimensional downwind sail design space through a parametric study of sail draft and camber. Results show that increasing camber increases both lift and drag a trend that also is evident in three-dimensional sail designs. It is also shown that gains can be made by using designs with draft values as far aft as 60% which helps reduce the extent of trailing edge separation. This parametric design study illustrates how CFD can be used successfully to analyse design trends and rank designs.

The research presented illustrates how CFD can be used in the design process but also that care must be made in validating the method. Through this study the relative strengths and weaknesses of the turbulence models are better understood. Whilst CFD cannot yet be reliably used for downwind sail performance prediction, it is still a useful tool for investigating the flow structure which leads to better understanding of the design space.

Acknowledgements

My greatest appreciation goes out to Professor Margot Gerritsen whose investment in me over many years has been considerable. Through undergraduate, Masters and Ph.D. theses Margot has supported me and has provided a solid base for my academic development. Her kindness in continuing to advise me after her move from Auckland to Stanford University was vital to the course of my Ph.D. Margot has readily gone out of her way for me and I appreciate that greatly. Moreover, her advise is always well thought out and clear whilst also provides room for discovery and individual thought. Margot, I thank you and I look forward to continuing doing research with you.

Much thanks goes to Professor Peter Jackson whose supervision in this Ph.D. was extremely valued and reflective of his considerable experience and knowledge. Peter's thoughtful questions and answers always motivated me to explore the topic deeply and challenged me to question results from new directions.

Burns Fallow has been my mentor in the sail design industry for many years. From giving me the opportunity as an undergraduate to perform my work experience at North Sails, through to his valued advice on this thesis. Burns has provided me with many valuable experiences and shared much of his esteemed knowledge of sail design.

Acknowledgement must also be provided to Technology New Zealand who supported me thought TIF fellowship contract NSLX9901. Similarly thanks goes to The University of Auckland's Doctoral Scholarship program.

Finally I would like to thank my friends and family who have always provided me with a warm and exciting life outside of my studies. Sharon, Dave, Jocelyn, Heather and Philippa, your love, support and sacrifice is cherished.

Contents

F	ADSU	ract	iii
P	Ackn	nowledgements	iv
1	Int	troduction	
	1.1		1
	1.2		1
	1.3	 Previous aerodynamic studies related to yacht sails	4
	1.4	3 Present contributions	8
		4 Thesis outline	9
2	Int	troduction to Sailing, Sails and Sail Flows	11
	2.1		11
	2.2	The America's Cup	11
		2.2.1 The history of the Cup	11
		2.2.2 The America's Cup Rule	
		2.2.3 America's Cup Yacht Racing	$\frac{12}{13}$
	2.3	opwind Saining	13
	2.4	Downwind sailing	
		2.4.1 Wind tunnel testing of downwind sails	16
		2.4.2 Sail shapes	17
		2.4.3 Flow structure for two-dimensional downwind sail sections	18
		2.4.4 Flow structure for three-dimensional downwind sails	19
		2.4.5 What is the maximum possible lift for a sail section?	20
	2.5	Computational issues for sail flow modelling	24
	2.6	Aeroelasticity of sails	26
3	C		26
3		nputational Approach	28
	3.1	Introduction	28
	3.2	Turbulence and turbulence modelling	28
		S.2.1 Turbuent boundary layers	30
		5.2.2 Reynolds averaging and the RANS equations	32
		5.2.5 The Boussinesq approximation	33
		5.2.4 Summary of two-equation models	33 34
			Ut

	3.	3 The	turbulence models	35
		3.3.1		35
		3.3.2		38
		3.3.3	The $k - \omega$ model	38
		3.3.4	Comparing the $k - \epsilon$ and $k - \omega$ models	40
		3.3.5		41
	3.4	4 Turb	ulence modelling issues for downwind sail flows	44
		3.4.1	Validation of turbulence models for high-lift configurations	44
		3.4.2	Validation of the CFX-5 turbulence models for the NACA 4412 airfoil at maximum	1.1
			lift	45
		3.4.3	Unsteady RANS	43
		3.4.4	Suitability of the $CFX-5$ two-equation turbulence models for downwind sail flows .	48
	3.5	Desci	ciption of the CFD software	
		3.5.1	Grid generation	49
		3.5.2	Pre-processing	49
		3.5.3	The solver	50 54
				04
4			Plate at Shallow Incidence	58
	4.1	Intro	luction	58
		4.1.1	Flow structure	59
		4.1.2	The thin airfoil bubble	61
		4.1.3	The short bubble	62
		4.1.4	Experimental data	63
	1.0	4.1.5	The CFD model	64
	4.2	Result	8	66
		4.2.1	Grid convergence study	66
		4.2.2	Comparison at $\alpha = 1^{\circ}$	67
		4.2.3	Comparison at $\alpha = 3^{\circ}$	74
	4.3	Summ	ary	80
		4.0.1	Experiments vs SST and $k - \omega$ simulations	80
		4.0.2	$351 \text{ vs} k - \omega$	81
	4.4	Conclu		32
	Pre		y Wind Tunnel and CFD Investigations	0
	5.1	Introdu	etion 8	3
		5.1.1	uction	33
		5.1.2	Wind tunnel setup	33
	5.2	Results	The CFD Model	5
		5.2.1	Convergence studies	6
			Convergence studies	6
1		Conclus	Wind tunnel - CFD comparison	7
(*		Soucius	sions	2

	6 V		on Study	94
	6.	.1 Intr	oduction	94
	6.	.2 Wir	nd tunnel experiments	94
		6.2.	1 Model Design	94
		6.2.2	2 Model Setup	96
		6.2.3	3 Test Conditions	98
		6.2.4	4 Pressure measurement setup	100
		6.2.5	• The CFD model	. 102
	6.	3 Win	d Tunnel Results	104
		6.3.1	Surface flow visualisation	104
		6.3.2	2 Surface pressure measurements	106
	6.4	4 CFE	Results	108
		0.4.1	Domain size verification	. 108
		6.4.2	Time step convergence study	109
		6.4.3	Grid convergence study	109
		6.4.4	Maximum lift	110
		6.4.5	Pressure coefficient comparison	111
		6.4.6	rorce coefficient plots	111
		6.4.7	General comparisons between the turbulence models	116
		6.4.8	Examination of the flow near maximum lift ($\alpha = 20^{\circ}$)	110
	6.5	Conc	lusions	. 128
7	Ти		ensional CFD Analysis of Downwind Sail Designs	
	7.1	Intro	duction	129
		7.1.1	duction	. 129
		7.1.2	The sail sections	. 129
		7.1.3	Downwind performance analysis and design goals	. 130
	7.2	Result	The CFD model	. 132
		7.2.1	Time step convergence study	. 134
		7.2.2	Time step convergence study	. 134
		7.2.3	Performance of the base sail section	. 134
		7.2.4	Mainsail influence	. 135
		7.2.5	Effects of sail camber	. 135
		7.2.6	Effects of sail draft	. 141
		7.2.7	Driving and heeling force polars	. 143
	7.3	Conclu	isions	. 147
0	C			. 150
8	Con	clusior	15	151
Gl	ossar	y of S	ailing Terms	
	155			
Bil	oliog	raphy		155
				157

List of Tables

4.1	Reattachment lengths for the flat plate at $\alpha = 1^{\circ}$	69
4.2	Reattachment lengths for the flat plate at $\alpha = 3^{\circ}$	74
6.1	Chordwise positioning of the 5 boundary layer measurement stations within each flow region.	119
6.2	Position of the reattachment and separation points for the SST and $k - \omega$ models at $\alpha = 20^{\circ}$.	119

List of Figures

1.1	Americas cup yachts sailing downwind under spinnaker. The large foresails - which are	
	symmetrical in cross-section - are known as spinnakers. Asymmetrical downwind sails are	
	known as gennakers.	1
1.2	Wind tunnel testing of a model gennaker in The University of Auckaland's Twisted Flow	
	Wind Tunnel.	2
1.3	Examples of flow visualisation techniques. a. Wind tunnel smoke stream visualisation. b.	
	Streamlines and surface pressures plotted from CFD results.	3
1.4	Wilkinson's universal pressure distribution (Wilkinson, 1984)	6
2.1	The America's Cup.	12
2.2	The America's Cup Course.	13
2.3	The aerodynamic forces on a yacht sailing upwind.	14
2.4	The hydrodynamic forces on a yacht sailing upwind.	14
2.5	The twisted wind profile.	15
2.6	The aerodynamic forces on a yacht sailing downwind at 90 degrees apparent (average	
	conditions for an ACC yacht)	16
2.7	A schematic of the University of Auckland's Twisted Flow Wind Tunnel.	17
2.8	A sail section with its defining geometry	18
2.9	A two-dimensional downwind sail flow	19
2.10	Schematic of the three-dimensional flow past a gennaker at typical trim.	20
2.11	Smoke-flow visualisation for a fibreglass model of an ACC spinnaker in the Twisted Flow	
	Wind Tunnel	21
2.12	Lift coefficient versus angle of attack (relative to the chord line of the sail) for a solid model	
	spinnaker. The lift coefficients were calculated using the projected sail area	23
3.1	Schematic of large eddies in a turbulent boundary layer. The flow above the boundary	
	layer has a velocity U; the turbulent eddies move at a velocity scale, u_{mix} , which is of the	
	order of a tenth of U. The largest eddy size, (l_{mix}) is comparable to the boundary layer	
	thickness (δ) (Wilcox, 1998).	30
3.2	Subdivisions of the near-wall region.	31
3.3	Streamlines for the flow past the NACA 4412 airfoil at maximum lift (13.87°). The simu-	
	lation was computed by the Author using CFX with the SST model	45

3.	Γ is the pressure coefficient, U_p , with different turbulence	
	models for the NACA 4412 airfoil (Carrega-Ferreira, Holzwarth, Menter, Esch and Luu	
	2001)	. 46
3.	5 Trailing edge detail of the pressure coefficient for the NACA 4412 airfoil (Carrega-Ferreira	
	et al., 2001).	. 46
3.	6 Streamwise velocity profiles computed using several different turbulence models for the	. 10
	NACA 4412 airfoil (Carrega-Ferreira et al., 2001).	. 47
3.	7 Positions of the six boundary layer traverses for the NACA 4412 test case.	. 47
3.	8 The <i>ICEM-HEXA</i> grid generation technique.	. 50
3.9	9 A schematic of the wall boundary treatment.	. 50
3.	10 The control volume approach.	54
4.9		
4.1	of the new past a nat plate at shallow incidence.	59
4.2	1 ypical pressure coefficient plots.	60
4.3	Schematic of the leading edge bubble illustrating the secondary bubble near the leading	
	eage.	62
4.4	The short airfoil bubble (bubble size exaggerated).	62
4.5	Flat plate dimensions.	64
4.6	Details of the domain for the flat plate.	65
4.7	Computational grid for the flat plate (medium resolution).	65
4.8	Grid convergence study of the lift and drag coefficients ($\alpha = 3^{\circ}$)	66
4.9	Give convergence of the surface pressure coefficients ($\alpha = 3^{\circ}$)	67
4.1	$\alpha = 1^{\circ}$.	
4.12	$\alpha = 10^{\circ}$ chordwhise velocity profiles within the leading edge bubble ($\alpha = 1^{\circ}$)	68 60
1.1.	The streammes and the measurement stations for the flate plate at $\alpha = 1^{\circ}$ (SCT model)	69 60
1.10	, real-wall chordwise velocity profiles within the leading edge hubble $(\alpha - 1^{\circ})$	69 70
1.1.7	Chordwise velocity profiles downstream of reattachment ($\alpha = 1^{\circ}$)	70
1.10	Chordwise velocity profiles downstream of reattchment (log acale 10)	71
7.10	$\alpha = 1^{\circ}$	72
4.17	Streamwise velocity contours ($\alpha = 3^{\circ}$).	
4.18	Chordwise velocity profiles within the leading edge bubble ($\alpha = 3^{\circ}$).	75
4.19	Near wall chordwise velocity profiles at $x/c = 0.031$ ($\alpha = 3^{\circ}$).	76
4.20	Further the control of the second se	77
4.21	Turbulent kinetic energy contours around the leading edge ($\alpha = 3^{\circ}$)	78 79
5.1	The wind tunnel model.	
5.2	The wind tunnel model setup (from above, not to scale).	83
5.3	because of the domain for the preliminary study	84
5.4	The coarse grid.	85
5.5	Grid convergence of the time-averaged lift and drag coefficients.	86
5.7	Velocity contours and streamlines ($\alpha = 15^{\circ}$).	87
	$(\alpha = 10)$.	88

5.6	Force coefficients versus angle of attack ($\alpha = 15$). —— Data, o SST, $+k - \omega$, $\times k - \epsilon$, Δ	
	3D solution (SST).	88
5.8	Wind tunnel flow visualisation overlaid with streamlines computed using CFD	89
5.9	The wake structure.	91
5.10		
	plane)	91
5.11	. I share a state of the state	
	model.	91
6.1	CFD surface pressure and wall shear (τ_w) plots for the three-dimensional analysis of the	
	wind tunnel model (tunnel wall at bottom of figure, tunnel centerline at top)	95
6.2	CFD streamlines and surface pressures for the three-dimensional analysis of the wind	
	tunnel model (tunnel wall at figure left, tunnel centerline at figure right).	96
6.3	Shaping the model using tension.	97
6.4	A schematic of the tensioning system (not to scale).	97
6.5	Photographs illustrating the tensioning system and the mounting of the model to the	
	tunnel frame.	98
6.6	The model set up in the 7×10 foot subsonic wind tunnel	99
6.7	The clamps and stay setup that was used to increase the torsional rigidity of the model	99
6.8	Illustration of the reference targets on the PSP and the positions of the test and calibration	
	regions	101
6.9	Comparison between the raw C_p data for a single row of pixels and the smoothed data (65	
	\times 7 pixel averaging stencil) for the suction side of the model at $\alpha = 20^{\circ}$. Note that the	
	raw data comes from an average image produced from a series of images taken during the	
	test	102
6.10		102
6.11		103
		105
6.13	Close up of the surface flow visualisation illustrating the presence of a secondary recircu-	
	lation bubble within the leading edge bubble.	
	Comparison between CFD and PSP runs at $\alpha = 20^{\circ}$	
	Lift coefficient versus domain length for the SST model at $\alpha=20$ degrees	
6.16	Time step convergence of the lift and drag coefficients ($\alpha = 15^{\circ}$)	109
	Grid convergence of the lift and drag coefficients ($\alpha = 20^{\circ}$)	
	Computed lift coefficients near maxium lift	
	Evaluation of the fitted polynomial for the SST lift polar.	
6.20	Comparison between the PSP data and CFD at $\alpha = 20^{\circ}$.	112
6.21	Lift and drag coefficients plotted against angle of attack for the 25% camber arc. These	
		112
	Lift/Drag polars for the 25% camber arc computed using the SST and $k - \omega$ models	113
6.23	Time-averaged C_P plots for the 25% camber arc at various angles of attack. All plots were	
	computed using the SST turbulence model	114

6.2	24 A schematic of the flow past the 25% camber arc at low angles of attack ($\alpha \approx 5^{\circ}$) 115
6.2	25 A schematic of the flow past the 25% camber arc at ideal angle of attack ($\alpha \approx 9^{\circ}$) 115
6.2	26 A schematic of the flow past the 25% camber arc at maximum lift ($\alpha \approx 20^{\circ}$)
6.2	7 A schematic of the post-stall flow past the 25% camber arc ($\alpha \approx 25^{\circ}$)
6.2	8 Time history of the force coefficients for the 25% camber arc at $\alpha = 27.5^{\circ}$ (SST model). 116
6.2	9 Time-averaged reattachment lengths (X_R) of the leading edge bubble as a function of angle
	of attack (α)
6.3	0 Time-averaged separation points (X_S) of the trailing edge separation region as a function
	of angle of attack (α)
6.3	1 Flow streamlines and normalised velocity contours (U/U_{∞}) for the 25% camber arc showing
	the evolution of the wake through one period of vortex shedding. The simulation was
	computed using the SST turbulence model and the angle of attack is 20°
6.3	2 Lift and drag time-history for the 25% camber arc at $\alpha = 20^{\circ}$
6.3	3 Measurement stations for the boundary layer profiles
6.34	4 Chordwise velocity profiles within the leading edge bubble ($\alpha = 20^{\circ}$)
6.3	5 Chordwise velocity profiles in the attached flow region ($\alpha = 20^{\circ}$)
6.36	6 Chordwise velocity profiles within the trailing edge separation region ($\alpha = 20^{\circ}$)
6.37	⁷ Turbulent kinetic energy profiles within the leading edge bubble ($\alpha = 20^{\circ}$)
6.38	³ Turbulent kinetic energy profiles within the attached flow region ($\alpha = 20^{\circ}$)
7.1	Comparison of sails of varying camber (21%, 23%, 25%, 27%, 29%, 31%) with draft fixed
	at 45%
7.2	Comparison of sails of varying draft (40% , 45% , 50% , 55%) with camber fixed at 23% 130
7.3	Forces on a downwind sail
7.4	Details of the domain for the design study
7.5	The medium grid from the grid convergence study (domain dimensions = $15m \times 8m$, chord
	length = $1m$ and near wall grid spacing = $6.25 \times 10^{-5}m$)
7.6	Time step convergence of the lift and drag coefficients ($\alpha = 15^{\circ}$)
7.7	Grid convergence of the lift and drag coefficients ($\alpha = 20^{\circ}$),
7.8	Lift versus angle of attack for the 2345 section
7.9	comparison between the 2345 section (in red) and a 23% camber circular arc (in blue) 126
7.10	Typical induced downwash distribution (in the streamwise direction) due to three dimensional
	tip enects (Marchaj, 1979).
7.11	The computational grid for the gennaker/mainsail configuration (Close up of the region
	around the sails)
	comparison of the now streamlines and velocity contours for the gennaker / mainsail
	congulation (a) and the gennaker without the mainsail present (b) ($\alpha = 20^{\circ}$). The simulation
	ations are unsteady and the plots presented are at the same phase angle (180 degrees) 128
1.10	ressure coefficient plots for the gennaker with and without the mainsail present ($\alpha = 20$) 120
1.11	A schematic of the circulation held of the mainsail and its influence on the connelser
1.10	Ent versus angle of attack for the gennaker/mainsail configuration and the gennaker by
i	itself

$C_{L \max}$ versus camber (where $C_{L \max}$ is averaged across the different drafts)	141
$C_{LS\text{max}}$ versus camber (where $C_{LS\text{max}}$ is scaled by the arc length and averaged across the	
different draft values)	142
C_{DS} at $C_{L \max}$ versus camber (where C_{DS} is scaled by the arc length and averaged across	
the different draft values)	143
The influence of draft position on the flow.	144
$C_{LS\text{max}}$ versus draft (where $C_{LS\text{max}}$ is scaled by the arc length and averaged across the	
different camber values)	144
$C_{LS \max}$ versus draft for each camber value.	145
Driving force coefficient for the base section shape (section 2345)	147
Heeling force coefficient for the base section shape (section 2345)	148
Driving force coefficient for section 3155	149
Driving force polar for the base sail shape (section 2345) based on a estimated ACC	
apparent wind speeds	149
	$C_{LS \max}$ versus camber (where $C_{LS \max}$ is scaled by the arc length and averaged across the different draft values)

List of Symbols and Abbreviations

Chapter 1

a mean-line designation; fraction of the chord from leading edge over which loading is uniform at the ideal angle of attack

- ACC America's Cup Class
- CFD Computational Fluid Dynamics
- FEA Finite Element Analysis
- LDA Laser Doppler Anemometry
- NASA National Aeronautics and Space Administration
- PC Personal Computer
- RANS Reynolds Averaged Navier-Stokes
- RMS Root Mean Squared
- SYR Stanford Yacht Research
- TIF Technology for Industry Fellowship
- TFWT Twisted Flow Wind Tunnel
- VPP Velocity Prediction Program

- α_i induced reduction of the angle of attack due to three-dimensional effects
- β apparent wind angle
- Γ circulation
- λ leeway angle
- A wing / sail area
- AR aspect ratio
- c chord length
- $C_{L(2D)}$ lift coefficient (two-dimensional flow)
- $C_{L(3D)}$ lift coefficient (three-dimensional flow)
- DSP displacement of an ACC yacht
- D_{Aero} aerodynamic drag force

F_D	driving force
F_{H}	heeling force
F_S	hydrodynamic side force
$F_{T(Aero)}$	total aerodynamic force
	total hydrodynamic force
h	wing / sail span
L	measured length of an ACC yacht
L_{Aero}	aerodynamic lift force
O_{CE}	Center of Effort
R	resistance
S	measured upwind sail area of an ACC yacht
V_A	apparent wind velocity
V_S	boat velocity
V_T	true wind velocity
y_{back}	the perpendicular distance between the sail and the chordline halfway between x_d and the
	trailing edge
y_{front}	the perpendicular distance between the sail and the chordline halfway between the leading
	edge and x_d
y_{\max}	the greatest perpendicular distance between the sail and the chordline
x_d	the chordwise location of y_{\max}
IACC	International America's Cup Class
RNG	Renormalisation Group

- α closure coefficient for the production of ω
- β closure coefficient for the dissipation of ω
- β^* closure coefficient for the dissipation of k
- ψ blending parameter for the NAC term
- δ displacement thickness
- δ_{ij} dirac delta function
- ϵ dissipation of turbulent kinetic energy per unit mass
- ϕ unknown variable
- κ Von Karman's constant
- ν kinematic viscosity, $\nu = \frac{\mu}{\rho}$
- ν_T eddy viscosity
- μ dynamic viscosity
- ho density
- σ closure coefficient for the turbulent transport
- σ_d closure coefficient for cross diffusion

σ_ϵ	closure coefficient for the turbulent transport of ϵ			
σ_k	closure coefficient for the turbulent transport of k			
σ_k				
au	Solution and a second second			
$ au_{ij}$	Reynolds (or turbulent) stress tensor			
τ_w	shear stress at the wall			
ω	specific rate of dissipation of turbulent kinetic energy			
a	finite volume coefficients			
A	face area			
a_1	Bradshaw's coefficient			
b	boundary condition vector			
B	log-law constant			
$C_{\epsilon 1}$	closure coefficient for the production term in the ϵ -equation			
$C_{\epsilon 1}$	closure coefficient for the dissipation term in the ϵ -equation			
C_{μ}	closure coefficient for the eddy viscosity			
f	current face of the control volume			
F_1	cross-diffusion blending function			
F_2	SST blending function			
Ι	turbulence intensity			
ip	integration point			
k	turbulent kinetic energy			
L	characteristic mean-flow length scale			
l_{mix}	mixing length of the turbulent eddies			
N	the Navier-Stokes operator			
n	upstream node			
nb	the set of neighboring nodes			
p	instanteous pressure			
p_t	total pressure			
p_d	dynamic pressure			
P	mean-flow pressure			
p'	turbulent pressure fluctions			
Re	Reynolds number, $\operatorname{Re} = \frac{\rho U_{\infty} L}{\mu}$			
S_{ij}	mean rate-of-strain tensor			
t	time			
t_{ij}	viscous stress tensor			
T	time-scale for Reynolds averaging			
u	instantaneous velocity			
U	mean-flow velocity			
u'	turbulent velocity fluctuation			
U^+	dimensionless velocity, $U^+ = \frac{U}{u_{\tau}}$			
$u_{ au}$	friction velocity, $u_{\tau} = (\tau_w/\rho)^{1/2}$			

u _{mix}	mixing	velocity	of the	turbulent	eddies
------------------	--------	----------	--------	-----------	--------

- U_{∞} freestream velocity magnitude
- V volume of the control volume

 Δy perpendicular distance between the wall and the first grid point

- y distance to the nearest wall
- y^+ non-dimensional wall distance, $y^+ = \frac{u_{\tau y}}{\nu}$
- AIAA American Institute of Aeronautics and Astronautics
- AMG Algebraic Multigrid
- ASM Algebraic Stress Models
- BSL the Baseline model
- CTR Centre for Turbulence Research
- DES Dettached Eddy Simulation
- DNS Direct Numerical Simulation
- ILU Incomplete Lower Upper factorisation
- LES Large Eddy Simulation
- LRN Low Reynolds Number
- NAC Numerical Advection Control
- PDE Partial Differential Equation
- SST Shear Stress Transport

α	angle of attack
A	surface area
C_D	drag coefficient, $C_d = \frac{D}{1/2\rho U_{\infty}^2 A}$
C_L	drag coefficient, $C_d = \frac{D}{1/2\rho U_{\infty}^2 A}$ lift coefficient, $C_L = \frac{L}{1/2\rho U_{\infty}^2 A}$
C_P	pressure coefficient, $C_P = \frac{P}{1/2\rho U_{\infty}^2}$
D	drag force
L	lift force
N	non-dimensional grid spacing
u	velocity in the chordwise direction
u'	turbulent velocity fluctuations in the chordwise direction
u_{RMS}	RMS of the u velocity fluctuations
v	velocity in the direction perpendicular to the plate
v'	turbulent velocity fluctuations in the direction perpendicular to the plate
v_{RMS}	RMS of the v velocity fluctuations
w	velocity in the spanwise direction
w'	turbulent velocity fluctuations in the spanwise direction
w_{RMS}	RMS of the w velocity fluctuations

- x chordwise dimension
- X_R reattachment length
- ZPG Zero Pressure Gradient

Chapter 5

2D	Two Dimensional

3D Three Dimensional

Chapter 6

A	PSP calibration coefficient
B	PSP calibration coefficient
ϕ	Phase angle
Ι	light intensity at pressure p
I_0	light intensity at pressure p_0
L_*	Length of a particular flow region (leading edge bubble, recovery region or trailing edge separation region)
p_0	wind-off pressure
X_R	Reattachment length of the leading edge bubble $(\%c)$
X_S	Trailing edge separation position $(\% c)$
PSP	

PSP Pressure Sensitive Paint

β	apparent wind angle
ε_A	aerodynamic drag angle
C_T	total force coefficient
C_{DF}	driving force coefficient
C_{DS}	drag coefficient scaled by the arc length
C_{HF}	heeling force coefficient
$C_{L\max}$	maximum lift coefficient
$C_{LS\max}$	maximum lift coefficient scaled by the arc length
s	arc length
V_{MG}	velocity made good (the yacht's velocity component in the direction of the next mark)
SF	foot length
SLE	leech length
SLU	luff length
SMG	mid girth length
SSA	measured downwind sail area