Cell Performance and Anodic Processes in Aluminium Smelting Studied by Product Gas Analysis

by

Mark Murray Radley Dorreen

A thesis submitted to the University of Auckland in fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering

Auckland

May 2000
Abstract

Aluminium smelting is an energy intensive process, and as a result there has been considerable and ongoing research over a number of decades on the energy efficiency of various aspects of the process. One of the most important measures is current efficiency, which has been shown to have direct relationships with current density, cell temperature, electrolyte chemistry, and anode-cathode distance. The effects of these variables on current efficiency are generally accepted, however there remains debate over the influence of the alumina concentration in the electrolyte on current efficiency.

This research relied upon the development of a laboratory scale aluminium smelting cell where the current efficiency was measured via sampling of the product gases. A modified oxygen balance was used, with gas analysis performed using online mass spectrometry.

The findings of this research agreed with the accepted current efficiency trends, showing a current density influence of 17.25 %CE per A/cm\(^2\), over the range 0.3 and 1.1 A/cm\(^2\). The influence of electrolyte chemistry was -7.8 %CE per unit cryolite molar ratio, between cryolite ratios 1.99 and 3. The anode-cathode distance was shown to have no influence on current efficiency in this cell, contradicting the established findings, however this was expected because of the design of the cell with no metal pad at the cathode and therefore constant mass transfer conditions at all the anode-cathode distances used.

The most significant finding concerning current efficiency is that the variation with alumina concentration is so small, -0.0376 %CE/wt% Al\(_2\)O\(_3\), that there is effectively no influence. While in many other studies an influence was found, the values and direction of the relationship varied. This suggests that in many cases the observed variation in current efficiency was actually caused by a change in the level of stability in the cell, by processes such as dissolution of sludge from the cathode or the thermal disturbance of alumina feeding, whereas in this research the cell was stable under all operating conditions.
In recent years there has been significant focus on the environmental impact of the emissions from aluminium smelters. Of particular interest are the perfluorocarbons and sulfurous species, because of the impact on global warming and the ozone layer.

Thermodynamic predictions indicate that the CF$_4$ formed at anode effect is in concentrations orders of magnitude higher than C$_2$F$_6$. Gas analysis from a cell going onto anode effect shows CF$_4$ formed only after the cell voltage has increased stepwise. The role of carbonyl fluoride in the onset of anode effect was investigated, and COF$_2$ was detected in the product gas shortly before the anode effect began. This indicates that COF$_2$ is a precursor to anode effect, by being formed as the anode polarisation increases before the anode effect begins. Voltage analysis shows the polarisation increases sufficiently to allow the electrolytic formation of COF$_2$. Once formed, the COF$_2$ then reacts with anode carbon, forming the initial layer of CF$_4$ under the anode. The thickness of the CF$_4$ layer increases until it becomes insulating, causing the voltage to increase suddenly in what is traditionally viewed as the anode effect onset, after which CF$_4$ and C$_2$F$_6$ are formed electrolytically.

Sulfur dioxide has generally been considered the most important sulfurous species in the waste gases from aluminium smelting. The sulfur in the anode carbon, however, is initially released as carbonyl sulfide in the zone under the anodes where the oxidation potential is low. The COS is then oxidised to SO$_2$ as it passes through progressively increasing oxidation potential zones, until it is released from the cell in the drafting air and most of the COS has reacted.
I would like to thank Dr Margaret Hyland and Professor Barry Welch for their guidance and supervision over a number of years. It is thanks to them that the opportunity to perform this study arose, and I have been fortunate to share in the knowledge, insights and different perspectives of co-supervisors along the way.

I am grateful to the Auckland University Research Committee, Auckland, New Zealand and the Comalco Research Services, Melbourne, Australia for financial support of this project. I would also like to thank the Comalco staff, in particular Dr Jenny Purdie, Fiona Stevens-McFadden and Dr Mark Taylor for technical input to the project and assistance with sample analysis.

There are a number of technical staff from the Department of Chemical Engineering and the School of Engineering, University of Auckland who have helped at various stages of the project. In particular I would like to thank Tom Gray, David Stringer, Trevor White, Tim Snape and Mike Gray.

To the postgraduate students of the Chemical Engineering Department, being one of you is part of the experience of taking postgraduate study, and the comradeship it brings should not be diminished.

To my parents, whose support gave me the confidence to begin this project.

And especially to Lisa, thanks for your continual encouragement, patience and support that have helped me to finish.
Table of Contents

Abstract... ii

Acknowledgements... iv

List of Figures... viii

List of Tables... xii

1. Introduction .. 1
 1.1. Purpose of this Research... 2
 1.2. Scope of the Experimental Work.. 2
 1.3. Coverage of the Thesis... 3

2. Background and Theory .. 5
 2.1. Aluminium Production... 5
 2.2. Cell Energy Requirements.. 7
 2.3. Current Efficiency.. 12
 2.4. Methods for Measuring Current Efficiency .. 16
 2.4.1. Aluminium Balance... 16
 2.4.2. Gas Analysis and the Pearson-Waddington Equation... 17
 2.4.3. The Oxygen Balance Method.. 20
 2.5. Factors Influencing Current Efficiency ... 23
 2.5.1. Operating Temperature.. 23
 2.5.2. Alumina Concentration.. 25
 2.5.3. Additives to the Electrolyte... 35
 2.5.4. Current Density.. 39
 2.5.5. Anode-Cathode Distance... 40
 2.6. Carbon Consumption... 42
 2.7. Anode Effect.. 45
 2.8. Sulfur Containing Emissions.. 51
Table of Contents

3. Theory and Development of the Gas Analysis System .. 56
 3.1. Gas Analysis ... 56
 3.2. Quadrupole Mass Spectrometry .. 58
 3.2.1. Principal of Operation .. 59
 3.2.2. Gas Ionisation and Fragmentation .. 60
 3.3. The Mass Spectrometer and Sample Inlet .. 64
 3.4. Gas Flowrate Control and Determination ... 66
 3.5. Improvements to the Accuracy of Gas Analysis ... 68

4. Design and Operation of the Experimental System ... 74
 4.1. Experimental Cell .. 74
 4.2. Data Acquisition ... 79

5. Current Efficiency Determination Algorithm ... 83
 5.1. Mass Spectrometer Calibration ... 83
 5.2. Product Gas Concentration ... 86
 5.3. Current Efficiency Determination ... 88

6. Cell Performance and the Effect of Key Variables .. 92
 6.1. General Performance of the Cell .. 92
 6.2. The Influence of Cell Variables on Current Efficiency 100
 6.2.1. The Influence of Anode-Cathode Distance on Current Efficiency 100
 6.2.2. The Influence of Current Density on Current Efficiency 102
 6.2.3. The Influence of Electrolyte Chemistry on Current Efficiency 103
 6.3. The Influence of Alumina Concentration on Current Efficiency 105
 6.4. Summary .. 113

7. Components of Cell Voltage ... 114
 7.1. The Current Interruption Method .. 114
 7.2. Continuous Cell Voltage Measurement .. 118
 7.3. Summary .. 127

8. Gas Evolution During Electrolysis and at Anode Effect ... 128
8.1. Thermodynamic Predictions ... 128
 8.1.1. Thermodynamic Predictions: Electrolysis ... 130
 8.1.2. Thermodynamic Predictions: Anode Effect 134
8.2. Experimental Findings ... 137
 8.2.1. Comparison to Thermodynamic Predictions 138
 8.2.2. Onset of Anode Effect ... 139
 8.2.3. Formation of COF$_2$... 141
 8.2.4. Involvement of Boron Nitride .. 144
8.3. Summary .. 146

9. Forms of Sulfur Released from the Cell ... 147
 9.1. Thermodynamic Predictions ... 147
 9.2. Experimental Findings ... 153
 9.3. Summary .. 155

10. Conclusions and Implications of the Research ... 156
 10.1. Accuracy and Success of the Method Developed 156
 10.2. Cell Performance and Current Efficiency Trends 156
 10.3. Cell Voltage Analysis .. 158
 10.4. The Anode Effect and Fluoride Compounds ... 158
 10.5. Sulfurous Species Formed in the Cell .. 159
 10.6. Future Work ... 160

11. References .. 161

12. Appendix 1: Accuracy and Variability of Current Efficiency Measurement 170
List of Figures

Figure 2.1 Schematic of a prebaked anode Hall-Héroult cell. ..6
Figure 2.2 Schematic of the voltage drops through a cell with anodic current density of
0.7 A/cm², taken from Grjotheim and Welch [14]. ...11
Figure 2.3 Schematic of the back-reaction zones, with simplified reaction steps.14
Figure 2.4 Equilibrium constant for the Boudouard reaction.19
Figure 2.5 Equilibrium Constant of Airburn Reactions 2.26 and 2.2719
Figure 2.6 Anode temperature profile and reactions, taken from Fischer and Perruchoud
[18] ..20
Figure 2.7 Mass balance considerations around a cell ..22
Figure 2.8 Effect of temperature on Al solubility for a Na₃AlF₆-4wt%Al₂O₃-5wt%CaF₂-
9wt%AlF₃ electrolyte. ..25
Figure 2.9 Current efficiency vs alumina concentration, from Grjotheim et al. [35]...27
Figure 2.10 Current Efficiency vs Alumina Concentration [37]29
Figure 2.11 Current efficiency with a rapid decrease in alumina content [25]..........30
Figure 2.12 Current efficiency variations with under- and over-feeding of alumina [25].
...30
Figure 2.13 Current efficiency of prebaked cells [26] ..31
Figure 2.14 Current efficiency of Söderberg cells [26] ...31
Figure 2.15 Current efficiency with increasing alumina, temperature kept constant [29].
...32
Figure 2.16 Current efficiency with decreasing alumina, temperature allowed to vary
[29] ...32
Figure 2.17 Electrolyte liquidus temperature as a function of additives [40]35
Figure 2.18 Aluminium solubility in cryolite at 970°C as a function of additives [41]. 36
Figure 2.19 Current efficiency with anode-cathode distance [49]41
Figure 2.20 Current efficiency with ACD, taken from Alcorn et al. [26]42
Figure 2.21 Anode composition and burning, from Fischer and Perruchoud [18]44
Figure 2.22 Product gas composition changes during anode effect [52]48
Figure 2.23 PFC generation with metal shorting during anode effect [52]49
Figure 2.24 Total electrolytic carbon consumption (CC) and carbon gasification (CG) as a function of anode sulfur content [76]. ...55
Figure 3.1 Schematic of the ionisation, separation and detection stages of a quadrupole mass spectrometer. ...59
Figure 3.2 Schematic of the vacuum system. ..65
Figure 3.3 Schematic of the gas metering and filtering system ..68
Figure 3.4 Mass spectrometer calibration with poor vacuum sealing. 69
Figure 3.5 Mass spectrometer calibration with good vacuum sealing ..70
Figure 3.6 Calibration curves for the data displayed in Figure 3.5 ... 71
Figure 3.7 Mass spectrometer data with varying baseline values ...72
Figure 3.8 Mass spectrometer data for an entire experiment .. 73
Figure 4.1 Dimensions of the crucible, anode and boron nitride inserts 75
Figure 4.2 Schematic of the furnace container, lid, anode and crucible 77
Figure 4.3 Top view of the furnace lid ... 78
Figure 4.4 The furnace and inconel container ... 79
Figure 4.5 Schematic of the data acquisition .. 80
Figure 5.1 Mass spectrometer data for an entire experiment .. 83
Figure 5.2 Calibration curves of the starting calibration data in Figure 5.1 85
Figure 5.3 Gas concentrations calculated from the mass spectrometer data 87
Figure 5.4 Anode gas bubble release frequency ... 88
Figure 5.5 Current efficiency calculated by the oxygen balance method 89
Figure 5.6 Current efficiency variability [22] .. 91
Figure 6.1 Product gas concentration during electrolysis ... 92
Figure 6.2 Current efficiency vs time ... 94
Figure 6.3 Electrolyte and anode temperatures during electrolysis 95
Figure 6.4 Partial pressure at m/e = 14 and 28 due to carbon monoxide 98
Figure 6.5 Ratio of m/e 14/28 during carbon monoxide calibration and electrolysis. 99
Figure 6.6 Influence of anode-cathode distance on current efficiency 101
Figure 6.7 Influence of anode current density on current efficiency 103
Figure 6.8 Influence of electrolyte chemistry on current efficiency 105
Figure 6.9 Current Efficiency vs Al_2O_3 Concentration (runs a-f) ..106
Figure 6.10 Current Efficiency vs Al_2O_3 Concentration (runs g-l).................................107
Figure 6.11 Current Efficiency vs Al_2O_3 Concentration (runs m-p).................................107
Figure 6.12 Current Efficiency - Al_2O_3 Concentration Linear Fits109
Figure 6.13 Change of current efficiency with varying alumina concentration.........................109
Figure 6.14 Comparison to literature values for the alumina influence on current efficiency...110

Figure 7.1 Current interruption to determine components of cell voltage ..115
Figure 7.2 Change in polarisation with alumina concentration...118
Figure 7.3 Cell voltage during electrolysis up to anode effect onset ..119
Figure 7.4 Components of total cell voltage during electrolysis ...121
Figure 7.5 External plus polarisation voltage ($I=1.107\text{A/cm}^2$, $CR=2.33$)121
Figure 7.6 External plus polarisation voltage ($I=0.856\text{A/cm}^2$, $CR=2.33$)122
Figure 7.7 External plus polarisation voltage ($I=0.554\text{A/cm}^2$, $CR=2.33$)122
Figure 7.8 External plus polarisation voltage ($I=0.295\text{A/cm}^2$, $CR=2.33$)123
Figure 7.9 External plus polarisation voltage ($I=1.107\text{A/cm}^2$, $CR=1.99$)123
Figure 7.10 Combined polarisation plus external voltage curves ..124
Figure 7.11 Polarisation plus alumina activity contribution ..125
Figure 7.12 Anode polarisation without the activity contribution ...126
Figure 8.1 Equilibrium gas composition: laboratory cell, electrolysis ...131
Figure 8.2 Equilibrium gas composition: industrial cell (unburnt), electrolysis132
Figure 8.3 Equilibrium gas composition: industrial cell (partially burnt), electrolysis132
Figure 8.4 Equilibrium gas composition: industrial cell (completely burnt), electrolysis133
Figure 8.5 Equilibrium gas composition, laboratory cell, anode effect135
Figure 8.6 Equilibrium gas composition: industrial cell (unburnt), anode effect135
Figure 8.7 Equilibrium gas composition: industrial cell (partially burnt), anode effect136
Figure 8.8 Equilibrium gas composition: industrial cell (completely burnt), anode effect136
Figure 8.9 CF_4 generation at anode effect ...138
List of Tables

Table 2.1 Anode Polarisation in the Laboratory and Plant...10
Table 2.2 Current Efficiency Dependence on Temperature..24
Table 2.3 Influence of alumina concentration on current efficiency......................................26
Table 2.4 Effect of cryolite ratio on current efficiency..37
Table 2.5 Influence of calcium fluoride on current efficiency...39
Table 2.6 The overall consumption of an anode...44
Table 2.7 Global warming potential of PFC’s referenced to CO2 [68]..............................50
Table 3.1 Advantages and disadvantages of different gas analysis instruments [65]............57
Table 3.2 Fragment ion pattern coefficients in quadrupole mass spectrometry....................62
Table 4.1 Signal Measurement and Calculation..81
Table 5.1 Gas calibration flowrates..84
Table 5.2 Calibration curve constants...86
Table 6.1 Influence of anode-cathode distance on current efficiency.................................100
Table 6.2 Influence of anode current density on current efficiency......................................102
Table 6.3 Influence of electrolyte chemistry on current efficiency......................................104
Table 6.4 The Influence of Alumina Concentration on Current Efficiency..........................108
Table 7.1 Polarisation measurements from current interruption..116
Table 8.1 Initial molar conditions (normal electrolysis)..130
Table 8.2 Initial molar conditions (anode effect)...130
Table 8.3 Equilibrium gas composition (mol fraction) at 975°C for electrolysis....................133
Table 8.4 Equilibrium gas composition (mol fraction) at 975°C for anode effect..................137
Table 9.1 Equilibrium gas composition (mol fraction) at 975°C for electrolysis....................150
Table 9.2 Equilibrium gas composition (mol fraction) at 975°C for anode effect..................153